Sample records for hadronic cascade model

  1. geant4 hadronic cascade models analysis of proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Waged, Khaled; Benha University, Faculty of Science, Physics Department; Felemban, Nuha

    2011-07-15

    We describe how various hadronic cascade models, which are implemented in the geant4 toolkit, describe proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c, recently measured in the hadron production (HARP) experiment at CERN. The Binary, ultrarelativistic quantum molecular dynamics (UrQMD) and modified FRITIOF (FTF) hadronic cascade models are chosen for investigation. The first two models are based on limited (Binary) and branched (UrQMD) binary scattering between cascade particles which can be either a baryon or meson, in the three-dimensional space of the nucleus, while the latter (FTF) considersmore » collective interactions between nucleons only, on the plane of impact parameter. It is found that the slow (p{sub T}{<=}0.3 GeV/c) proton spectra are quite sensitive to the different treatments of cascade pictures, while the fast (p{sub T}>0.3 GeV/c) proton spectra are not strongly affected by the differences between the FTF and UrQMD models. It is also shown that the UrQMD and FTF combined with Binary (FTFB) models could reproduce both proton and charged pion spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c with the same accuracy.« less

  2. Comments on QCD confinement, DTU model, and hadron-nucleus collisions. [Flux tube model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.

    1981-04-01

    Complementary discussions on the QCD flux tube model and the DTU model in connection with our previous work are given. It is also shown that the recent hadron-nucleus collision model has two important suppression mechanisms for particle production. Within the projectile cascade approximation, the model leads to the prediction of approximate anti ..nu.. universality.

  3. Geant4 models for simulation of hadron/ion nuclear interactions at moderate and low energies.

    NASA Astrophysics Data System (ADS)

    Ivantchenko, Anton; Ivanchenko, Vladimir; Quesada, Jose-Manuel; Wright, Dennis

    The Geant4 toolkit is intended for Monte Carlo simulation of particle transport in media. It was initially designed for High Energy Physics purposes such as experiments at the Large Hadron Collider (LHC) at CERN. The toolkit offers a set of models allowing effective simulation of cosmic ray interactions with different materials. For moderate and low energy hadron/ion interactions with nuclei there are a number of competitive models: Binary and Bertini intra-nuclear cascade models, quantum molecular dynamic model (QMD), INCL/ABLA cascade model, and Chiral Invariant Phase Space Decay model (CHIPS). We report the status of these models for the recent version of Geant4 (release 9.3, December 2009). The Bertini cascade in-ternal cross sections were upgraded. The native Geant4 precompound and deexcitation models were used in the Binary cascade and QMD. They were significantly improved including emis-sion of light fragments, the Fermi break-up model, the General Evaporation Model (GEM), the multi-fragmentation model, and the fission model. Comparisons between model predictions and data for thin target experiments for neutron, proton, light ions, and isotope production are presented and discussed. The focus of these validations is concentrated on target materials important for space missions.

  4. Dependence of the average spatial and energy characteristics of the hadron-lepton cascade on the strong interaction parameters at superhigh energies

    NASA Technical Reports Server (NTRS)

    Boyadjian, N. G.; Dallakyan, P. Y.; Garyaka, A. P.; Mamidjanian, E. A.

    1985-01-01

    A method for calculating the average spatial and energy characteristics of hadron-lepton cascades in the atmosphere is described. The results of calculations for various strong interaction models of primary protons and nuclei are presented. The sensitivity of the experimentally observed extensive air showers (EAS) characteristics to variations of the elementary act parameters is analyzed.

  5. Results of EAS characteristics calculations in the framework of the universal hadronic interaction model NEXUS

    NASA Astrophysics Data System (ADS)

    Kalmykov, N. N.; Ostapchenko, S. S.; Werner, K.

    An extensive air shower (EAS) calculation scheme based on cascade equations and some EAS characteristics for energies 1014 -1017 eV are presented. The universal hadronic interaction model NEXUS is employed to provide the necessary data concerning hadron-air collisions. The influence of model assumptions on the longitudinal EAS development is discussed in the framework of the NEXUS and QGSJET models. Applied to EAS simulations, perspectives of combined Monte Carlo and numerical methods are considered.

  6. Influence of hadron and atmospheric models on computation of cosmic ray ionization in the atmosphere-Extension to heavy nuclei

    NASA Astrophysics Data System (ADS)

    Mishev, A. L.; Velinov, P. I. Y.

    2014-12-01

    In the last few years an essential progress in development of physical models for cosmic ray induced ionization in the atmosphere is achieved. The majority of these models are full target, i.e. based on Monte Carlo simulation of an electromagnetic-muon-nucleon cascade in the atmosphere. Basically, the contribution of proton nuclei is highlighted, i.e. the contribution of primary cosmic ray α-particles and heavy nuclei to the atmospheric ionization is neglected or scaled to protons. The development of cosmic ray induced atmospheric cascade is sensitive to the energy and mass of the primary cosmic ray particle. The largest uncertainties in Monte Carlo simulations of a cascade in the Earth atmosphere are due to assumed hadron interaction models, the so-called hadron generators. In the work presented here we compare the ionization yield functions Y for primary cosmic ray nuclei, such as α-particles, Oxygen and Iron nuclei, assuming different hadron interaction models. The computations are fulfilled with the CORSIKA 6.9 code using GHEISHA 2002, FLUKA 2011, UrQMD hadron generators for energy below 80 GeV/nucleon and QGSJET II for energy above 80 GeV/nucleon. The observed difference between hadron generators is widely discussed. The influence of different atmospheric parametrizations, namely US standard atmosphere, US standard atmosphere winter and summer profiles on ion production rate is studied. Assuming realistic primary cosmic ray mass composition, the ion production rate is obtained at several rigidity cut-offs - from 1 GV (high latitudes) to 15 GV (equatorial latitudes) using various hadron generators. The computations are compared with experimental data. A conclusion concerning the consistency of the hadron generators is stated.

  7. PACIAE 2.1: An updated issue of the parton and hadron cascade model PACIAE 2.0

    NASA Astrophysics Data System (ADS)

    Sa, Ben-Hao; Zhou, Dai-Mei; Yan, Yu-Liang; Dong, Bao-Guo; Cai, Xu

    2013-05-01

    We have updated the parton and hadron cascade model PACIAE 2.0 (cf. Ben-Hao Sa, Dai-Mei Zhou, Yu-Liang Yan, Xiao-Mei Li, Sheng-Qin Feng, Bao-Guo Dong, Xu Cai, Comput. Phys. Comm. 183 (2012) 333.) to the new issue of PACIAE 2.1. The PACIAE model is based on PYTHIA. In the PYTHIA model, once the hadron transverse momentum pT is randomly sampled in the string fragmentation, the px and py components are originally put on the circle with radius pT randomly. Now it is put on the circumference of ellipse with half major and minor axes of pT(1+δp) and pT(1-δp), respectively, in order to better investigate the final state transverse momentum anisotropy. New version program summaryManuscript title: PACIAE 2.1: An updated issue of the parton and hadron cascade model PACIAE 2.0 Authors: Ben-Hao Sa, Dai-Mei Zhou, Yu-Liang Yan, Bao-Guo Dong, and Xu Cai Program title: PACIAE version 2.1 Journal reference: Catalogue identifier: Licensing provisions: none Programming language: FORTRAN 77 or GFORTRAN Computer: DELL Studio XPS and others with a FORTRAN 77 or GFORTRAN compiler Operating system: Linux or Windows with FORTRAN 77 or GFORTRAN compiler RAM: ≈ 1GB Number of processors used: Supplementary material: Keywords: relativistic nuclear collision; PYTHIA model; PACIAE model Classification: 11.1, 17.8 External routines/libraries: Subprograms used: Catalogue identifier of previous version: aeki_v1_0* Journal reference of previous version: Comput. Phys. Comm. 183(2012)333. Does the new version supersede the previous version?: Yes* Nature of problem: PACIAE is based on PYTHIA. In the PYTHIA model, once the hadron transverse momentum(pT)is randomly sampled in the string fragmentation, thepxandpycomponents are randomly placed on the circle with radius ofpT. This strongly cancels the final state transverse momentum asymmetry developed dynamically. Solution method: Thepxandpycomponent of hadron in the string fragmentation is now randomly placed on the circumference of an ellipse with

  8. Review on DTU-parton model for hadron-hadron and hadron-nucleus collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.

    1980-08-01

    The parton picture of color separation of dual string and its subsequent breakup is used to motivate the DTU-parton model for high energy small p/sub T/ multiparticle productions in hadron-hadron and hadron-nucleus collisions. A brief survey on phenomenological applications of the model: such as the inclusive spectra for various hh processes and central plateau heights predicted, hA inclusive spectra and the approximate anti v-universalities is presented.

  9. Test of Hadronic Interaction Models with the KASCADE Hadron Calorimeter

    NASA Astrophysics Data System (ADS)

    Milke, J.; KASCADE Collaboration

    The interpretation of extensive air shower (EAS) measurements often requires the comparison with EAS simulations based on high-energy hadronic interaction models. These interaction models have to extrapolate into kinematical regions and energy ranges beyond the limit of present accelerators. Therefore, it is necessary to test whether these models are able to describe the EAS development in a consistent way. By measuring simultaneously the hadronic, electromagnetic, and muonic part of an EAS the experiment KASCADE offers best facilities for checking the models. For the EAS simulations the program CORSIKA with several hadronic event generators implemented is used. Different hadronic observables, e.g. hadron number, energy spectrum, lateral distribution, are investigated, as well as their correlations with the electromagnetic and muonic shower size. By comparing measurements and simulations the consistency of the description of the EAS development is checked. First results with the new interaction model NEXUS and the version II.5 of the model DPMJET, recently included in CORSIKA, are presented and compared with QGSJET simulations.

  10. Stopping pions in high-energy nuclear cascades.

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Johnson, D. P.; Thompson, J. A.

    1973-01-01

    Results of Monte Carlo calculations for the number and energy spectra of charged pions from nuclear-electromagnetic cascades developing in rock are presented for primary hadron energies ranging from 3 to 3000 GeV. These spectra are given as functions of the longitudinal depth in the absorber and the lateral distance from the cascade axis. The number of charged pions which stop in the absorber increases with the primary energy of the hadron initiating the cascade.

  11. Comparing Geant4 hadronic models for the WENDI-II rem meter response function.

    PubMed

    Vanaudenhove, T; Dubus, A; Pauly, N

    2013-01-01

    The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application.

  12. Geant4 hadronic physics for space radiation environment.

    PubMed

    Ivantchenko, Anton V; Ivanchenko, Vladimir N; Molina, Jose-Manuel Quesada; Incerti, Sebastien L

    2012-01-01

    To test and to develop Geant4 (Geometry And Tracking version 4) Monte Carlo hadronic models with focus on applications in a space radiation environment. The Monte Carlo simulations have been performed using the Geant4 toolkit. Binary (BIC), its extension for incident light ions (BIC-ion) and Bertini (BERT) cascades were used as main Monte Carlo generators. For comparisons purposes, some other models were tested too. The hadronic testing suite has been used as a primary tool for model development and validation against experimental data. The Geant4 pre-compound (PRECO) and de-excitation (DEE) models were revised and improved. Proton, neutron, pion, and ion nuclear interactions were simulated with the recent version of Geant4 9.4 and were compared with experimental data from thin and thick target experiments. The Geant4 toolkit offers a large set of models allowing effective simulation of interactions of particles with matter. We have tested different Monte Carlo generators with our hadronic testing suite and accordingly we can propose an optimal configuration of Geant4 models for the simulation of the space radiation environment.

  13. Theoretical study of EAS hadronic structure

    NASA Technical Reports Server (NTRS)

    Popova, L.

    1985-01-01

    The structure of extensive air showers (EAS) is determined mainly by the energetic hadrons. They are strongly collimated in the core of the shower and essential difficulties are encountered for resolution of individual hadrons. The properties for resolution are different from the variety of hadron detectors used in EAS experiments. This is the main difficulty in obtaining a general agreement between actually registered data with different detectors. The most plausible source for disagreement is the uncertainty in determination of the energy of individual hadrons. This research demonstrates that a better agreement can be obtained with the average tendency of hadronic measurements if one assumes a larger coefficient of inelasticity and stronger energy increase of the total inelastic cross section in high energy pion interactions. EAS data above 10 to the 5th power GeV are revealing a faster development of hadronic cascades in the air then can be expected by extrapolating the parameters of hadron interactions obtained in accelerator measurements.

  14. Cascading disaster models in postburn flash flood

    Treesearch

    Fred May

    2007-01-01

    A useful method of modeling threats from hazards and documenting their disaster causation sequences is called “cascading threat modeling.” This type of modeling enables emergency planners to address hazard and risk assessments systematically. This paper describes a cascading threat modeling and analysis process. Wildfire and an associated postburn flash flood disaster...

  15. Test of a chromomagnetic model for hadron mass differences

    NASA Astrophysics Data System (ADS)

    Lichtenberg, D. B.; Roncaglia, R.

    1993-05-01

    An oversimplified model consisting of the QCD color-magnetic interaction has been used previously by Silvestre-Brac and others to compare the masses of exotic and normal hadrons. We show that the model can give qualitatively wrong answers when applied to systems of normal hadrons.

  16. Electromagnetic and muonic structure of showers initiated by gamma-rays and by hadrons

    NASA Technical Reports Server (NTRS)

    Hillas, A. M.

    1985-01-01

    If photon cascades develop by the usual mechanisms, there should indeed be notable differences between the structure of showers due to photon and hadron primaries, as regards muon densities and lateral distributions of some detector signals. The muon content of showers from Cygnus X-3, observed at Kiel, cannot be understood in this way. One remedy is to postulate arbitrarily a strong hadronic interaction of photons in the TeV region. This would utterly change the nature of electromagnetic cascades, but surprisingly does not at first sight seem to be in conflict with air shower observations.

  17. Modeling and analysis of cascade solar cells

    NASA Technical Reports Server (NTRS)

    Ho, F. D.

    1986-01-01

    A brief review is given of the present status of the development of cascade solar cells. It is known that photovoltaic efficiencies can be improved through this development. The designs and calculations of the multijunction cells, however, are quite complicated. The main goal is to find a method which is a compromise between accuracy and simplicity for modeling a cascade solar cell. Three approaches are presently under way, among them (1) equivalent circuit approach, (2) numerical approach, and (3) analytical approach. Here, the first and the second approaches are discussed. The equivalent circuit approach using SPICE (Simulation Program, Integrated Circuit Emphasis) to the cascade cells and the cascade-cell array is highlighted. The methods of extracting parameters for modeling are discussed.

  18. Polyakov loop and the hadron resonance gas model.

    PubMed

    Megías, E; Arriola, E Ruiz; Salcedo, L L

    2012-10-12

    The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T)≈1/2[∑(α)g(α)e(-Δ(α)/T), where g(α) are the degeneracies and Δ(α) are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N(f)=2+1 for temperatures in the range 150 MeVmodels. For temperatures below 150 MeV different lattice results disagree. One set of data can be described if exotic hadrons are present in the QCD spectrum while other sets do not require such states.

  19. Self-organization, the cascade model, and natural hazards.

    PubMed

    Turcotte, Donald L; Malamud, Bruce D; Guzzetti, Fausto; Reichenbach, Paola

    2002-02-19

    We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions.

  20. Self-organization, the cascade model, and natural hazards

    PubMed Central

    Turcotte, Donald L.; Malamud, Bruce D.; Guzzetti, Fausto; Reichenbach, Paola

    2002-01-01

    We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions. PMID:11875206

  1. An interacting boundary layer model for cascades

    NASA Technical Reports Server (NTRS)

    Davis, R. T.; Rothmayer, A. P.

    1983-01-01

    A laminar, incompressible interacting boundary layer model is developed for two-dimensional cascades. In the limit of large cascade spacing these equations reduce to the interacting boundary layer equations for a single body immersed in an infinite stream. A fully implicit numerical method is used to solve the governing equations, and is found to be at least as efficient as the same technique applied to the single body problem. Solutions are then presented for a cascade of finite flat plates and a cascade of finite sine-waves, with cusped leading and trailing edges.

  2. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altsybeev, Igor

    2016-01-22

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.

  3. A cascading failure model for analyzing railway accident causation

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Tao; Li, Ke-Ping

    2018-01-01

    In this paper, a new cascading failure model is proposed for quantitatively analyzing the railway accident causation. In the model, the loads of nodes are redistributed according to the strength of the causal relationships between the nodes. By analyzing the actual situation of the existing prevention measures, a critical threshold of the load parameter in the model is obtained. To verify the effectiveness of the proposed cascading model, simulation experiments of a train collision accident are performed. The results show that the cascading failure model can describe the cascading process of the railway accident more accurately than the previous models, and can quantitatively analyze the sensitivities and the influence of the causes. In conclusion, this model can assist us to reveal the latent rules of accident causation to reduce the occurrence of railway accidents.

  4. Modeling techniques for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  5. Modeling techniques for quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less

  6. Phenomenological model of nuclear primary air showers

    NASA Technical Reports Server (NTRS)

    Tompkins, D. R., Jr.; Saterlie, S. F.

    1976-01-01

    The development of proton primary air showers is described in terms of a model based on a hadron core plus an electromagnetic cascade. The muon component is neglected. The model uses three parameters: a rate at which hadron core energy is converted into electromagnetic cascade energy and a two-parameter sea-level shower-age function. By assuming an interaction length for the primary nucleus, the model is extended to nuclear primaries. Both models are applied over the energy range from 10 to the 13th power to 10 to the 21st power eV. Both models describe the size and age structure (neglecting muons) from a depth of 342 to 2052 g/sq cm.

  7. Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology.

    PubMed

    Courtoy, Aurore; Baeßler, Stefan; González-Alonso, Martín; Liuti, Simonetta

    2015-10-16

    We evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations.

  8. Systematic Uncertainties in High-Energy Hadronic Interaction Models

    NASA Astrophysics Data System (ADS)

    Zha, M.; Knapp, J.; Ostapchenko, S.

    2003-07-01

    Hadronic interaction models for cosmic ray energies are uncertain since our knowledge of hadronic interactions is extrap olated from accelerator experiments at much lower energies. At present most high-energy models are based on Grib ov-Regge theory of multi-Pomeron exchange, which provides a theoretical framework to evaluate cross-sections and particle production. While experimental data constrain some of the model parameters, others are not well determined and are therefore a source of systematic uncertainties. In this paper we evaluate the variation of results obtained with the QGSJET model, when modifying parameters relating to three ma jor sources of uncertainty: the form of the parton structure function, the role of diffractive interactions, and the string hadronisation. Results on inelastic cross sections, on secondary particle production and on the air shower development are discussed.

  9. Going beyond the second virial coefficient in the hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Bugaev, K. A.; Sagun, V. V.; Ivanytskyi, A. I.; Yakimenko, I. P.; Nikonov, E. G.; Taranenko, A. V.; Zinovjev, G. M.

    2018-02-01

    We develop a novel formulation of the hadron resonance gas model which, besides a hard-core repulsion, explicitly accounts for the surface tension induced by the interaction between the particles. Such an equation of state allows us to go beyond the Van der Waals approximation for any number of different hard-core radii. A comparison with the Carnahan-Starling equation of state shows that the new model is valid for packing fractions 0.2-0.22, while the usual Van der Waals model is inapplicable at packing fractions above 0.1-0.11. Moreover, it is shown that the equation of state with induced surface tension is softer than the one of hard spheres and remains causal at higher particle densities. The great advantage of our model is that there are only two equations to be solved and neither their number nor their form depend on the values of the hard-core radii used for different hadronic resonances. Such an advantage leads to a significant mathematical simplification compared to other versions of truly multi-component hadron resonance gas models. Using this equation of state we obtain a high-quality fit of the ALICE hadron multiplicities measured at the center-of-mass energy 2.76 TeV per nucleon and we find that the dependence of χ2 / ndf on the temperature has a single global minimum in the traditional hadron resonance gas model with the multi-component hard-core repulsion. Also we find two local minima of χ2 / ndf in the model in which the proper volume of each hadron is proportional to its mass. However, it is shown that in the latter model a second local minimum located at higher temperatures always appears far above the limit of its applicability.

  10. Modeling Kelvin Wave Cascades in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Boffetta, G.; Celani, A.; Dezzani, D.; Laurie, J.; Nazarenko, S.

    2009-09-01

    We study two different types of simplified models for Kelvin wave turbulence on quantized vortex lines in superfluids near zero temperature. Our first model is obtained from a truncated expansion of the Local Induction Approximation (Truncated-LIA) and it is shown to possess the same scalings and the essential behaviour as the full Biot-Savart model, being much simpler than the later and, therefore, more amenable to theoretical and numerical investigations. The Truncated-LIA model supports six-wave interactions and dual cascades, which are clearly demonstrated via the direct numerical simulation of this model in the present paper. In particular, our simulations confirm presence of the weak turbulence regime and the theoretically predicted spectra for the direct energy cascade and the inverse wave action cascade. The second type of model we study, the Differential Approximation Model (DAM), takes a further drastic simplification by assuming locality of interactions in k-space via using a differential closure that preserves the main scalings of the Kelvin wave dynamics. DAMs are even more amenable to study and they form a useful tool by providing simple analytical solutions in the cases when extra physical effects are present, e.g. forcing by reconnections, friction dissipation and phonon radiation. We study these models numerically and test their theoretical predictions, in particular the formation of the stationary spectra, and closeness of numerics for the higher-order DAM to the analytical predictions for the lower-order DAM.

  11. Confinement and hadron-hadron interactions by general relativistic methods

    NASA Astrophysics Data System (ADS)

    Recami, Erasmo

    By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.

  12. Identification of cascade water tanks using a PWARX model

    NASA Astrophysics Data System (ADS)

    Mattsson, Per; Zachariah, Dave; Stoica, Petre

    2018-06-01

    In this paper we consider the identification of a discrete-time nonlinear dynamical model for a cascade water tank process. The proposed method starts with a nominal linear dynamical model of the system, and proceeds to model its prediction errors using a model that is piecewise affine in the data. As data is observed, the nominal model is refined into a piecewise ARX model which can capture a wide range of nonlinearities, such as the saturation in the cascade tanks. The proposed method uses a likelihood-based methodology which adaptively penalizes model complexity and directly leads to a computationally efficient implementation.

  13. INCAS: an analytical model to describe displacement cascades

    NASA Astrophysics Data System (ADS)

    Jumel, Stéphanie; Claude Van-Duysen, Jean

    2004-07-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  14. Tropospheric energy cascades in a global circulation model

    NASA Astrophysics Data System (ADS)

    Brune, Sebastian; Becker, Erich

    2010-05-01

    The global horizontal kinetic energy (KE) spectrum and its budget are analyzed using results from a mechanistic GCM. The model has a standard spectral dynamical core with very high vertikal resolution up to the middle stratosphere (T330/L100). As a turbulence model we combine the Smagorinsky scheme with an energy conserving hyperdiffusion that is applied for the very smallest resolved scales. The simulation confirms a slope of the KE spectrum close to -3 in the synoptic regime where the KE is dominated by vortical modes. Towards the mesoscales the spectrum flattens and assumes a slope close to -5/3. Here divergent modes become increasingly important and even dominate the KE. Our complete analysis of the sinks and sources in the spectral KE budget reveals the overall energy fluxes through the spectrum. For the upper troposphere, the change of KE due to horizontal advection is negative for large synoptic scales. It is positive for the planetary scale, as expected, and for the mesoscales as well. This implies that the mesoscales, which include the dynamical sources of tropospheric gravity waves, are in fact sustained by the energy injection at the baroclinic scale (forward energy cascade). We find an enstrophy cascade in accordance with 2D turbulence, but zero downscaling of energy due to the vortical modes alone. In other words, the forward energy cascade in the synoptic and mesoscale regime is solely due to the divergent modes and their nonlinear interaction with the vortical modes. This picture, derived form a mechanistic model, not only lends further evidence for a generally forward energy cascade in the upper tropospheric away from the baroclinic scale. It also extends the picture proposed earlier by Tung and Orlando: The transition from a -3 to a -5/3 slope in the tropospheric macroturbulence spectrum reflects the fact, that the energy cascade due to the horizontally divergent (3D) modes is hidden behind the (2D) enstrophy cascade in the synoptic regime but

  15. Hadronic molecules

    NASA Astrophysics Data System (ADS)

    Guo, Feng-Kun; Hanhart, Christoph; Meißner, Ulf-G.; Wang, Qian; Zhao, Qiang; Zou, Bing-Song

    2018-01-01

    A large number of experimental discoveries especially in the heavy quarkonium sector that did not meet the expectations of the until then very successful quark model led to a renaissance of hadron spectroscopy. Among various explanations of the internal structure of these excitations, hadronic molecules, being analogs of light nuclei, play a unique role since for those predictions can be made with controlled uncertainty. Experimental evidence of various candidates of hadronic molecules and methods of identifying such structures are reviewed. Nonrelativistic effective field theories are the suitable framework for studying hadronic molecules and are discussed in both the continuum and finite volumes. Also pertinent lattice QCD results are presented. Further, the production mechanisms and decays of hadronic molecules are discussed and comments are given on the reliability of certain assertions often made in the literature.

  16. Hadron rapidity spectra within a hybrid model

    NASA Astrophysics Data System (ADS)

    Khvorostukhin, A. S.; Toneev, V. D.

    2017-03-01

    A multistage hybrid model is constructed what joins the initial non-equilibrium stage of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system treated within ideal hydrodynamics (the second stage). Particles can still rescatter after hydrodynamical expansion that is the third interaction stage. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra.

  17. Hadronic Interaction Models and the Air Shower Simulation Program CORSIKA

    NASA Astrophysics Data System (ADS)

    Heck, D.; KASCADE Collaboration

    The Monte Carlo program CORSIKA simulates the 4-dimensional evolution of extensive air showers in the atmosphere initiated by photons, hadrons or nuclei. It contains links to the hadronic interaction models DPMJET, HDPM, NEXUS, QGSJET, SIBYLL, and VENUS. These codes are employed to treat the hadronic interactions at energies above 80 GeV. Since their first implementation in 1996 the models DPMJET and SIBYLL have been revised to versions II.5 and 2.1, respectively. Also the treatment of diffractive interactions by QGSJET has been slightly modified. The models DPMJET, QGSJET and SIBYLL are able to simulate collisions even at the highest energies reaching up to 1020 eV, which are at the focus of present research. The recently added NEXUS 2 program uses a unified approach combining Gribov-Regge theory and perturbative QCD. This model is based on the universality hypothesis of the behavior of highenergy interactions and presently works up to 1017 eV. A comparison of simulations performed with different models gives an indication on the systematic uncertainties of simulated air shower properties, which arise from the extrapolations to energies, kinematic ranges, or projectile-target combinations not covered by man-made colliders. Results obtained with the most actual programs are presented.

  18. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  19. Hadron-nucleus interactions at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.; He, Z.; Tow, D.M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topologial unitarization)-parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate nu-bar universality. The expansion to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  20. Hadron-nucleus interactions at high energies

    NASA Astrophysics Data System (ADS)

    Chiu, Charles B.; He, Zuoxiu; Tow, Don M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topological unitarization) -parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate ν¯ universality. The extension to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  1. Cascade process modeling with mechanism-based hierarchical neural networks.

    PubMed

    Cong, Qiumei; Yu, Wen; Chai, Tianyou

    2010-02-01

    Cascade process, such as wastewater treatment plant, includes many nonlinear sub-systems and many variables. When the number of sub-systems is big, the input-output relation in the first block and the last block cannot represent the whole process. In this paper we use two techniques to overcome the above problem. Firstly we propose a new neural model: hierarchical neural networks to identify the cascade process; then we use serial structural mechanism model based on the physical equations to connect with neural model. A stable learning algorithm and theoretical analysis are given. Finally, this method is used to model a wastewater treatment plant. Real operational data of wastewater treatment plant is applied to illustrate the modeling approach.

  2. Dissipative properties of hot and dense hadronic matter in an excluded-volume hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-09-01

    We estimate dissipative properties, viz., shear and bulk viscosities of hadronic matter using relativistic Boltzmann equation in relaxation time approximation within the framework of excluded-volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio (η /s ) decreases with temperature while at finite baryon chemical potential this ratio shows the same behavior as a function of temperature but reaches close to the Kovtun-Son-Starinets (KSS) bound. Further along the chemical freezeout curve, ratio η /s is almost constant apart from small initial monotonic rise. This observation may have some relevance to the experimental finding that the differential elliptic flow of charged hadrons does not change considerably at lower center-of-mass energy. We further find that bulk viscosity to entropy density (ζ /s ) decreases with temperature while this ratio has higher value at finite baryon chemical potential at higher temperature. Along the freezeout curve ζ /s decreases monotonically at lower center-of-mass energy and then saturates.

  3. Rope Hadronization and Strange Particle Production

    NASA Astrophysics Data System (ADS)

    Bierlich, Christian

    2018-02-01

    Rope Hadronization is a model extending the Lund string hadronization model to describe environments with many overlapping strings, such as high multiplicity pp collisions or AA collisions. Including effects of Rope Hadronization drastically improves description of strange/non-strange hadron ratios as function of event multiplicity in all systems from e+e- to AA. Implementation of Rope Hadronization in the MC event generators Dipsy and PYTHIA8 is discussed, as well as future prospects for jet studies and studies of small systems.

  4. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    USGS Publications Warehouse

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  5. Interacting hadron resonance gas model in the K -matrix formalism

    NASA Astrophysics Data System (ADS)

    Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas

    2018-05-01

    An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.

  6. Hadron rapidity spectra within a hybrid model

    NASA Astrophysics Data System (ADS)

    Khvorostukhin, A. S.; Toneev, V. D.

    2017-01-01

    A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.

  7. Test of high-energy hadronic interaction models with high-altitude cosmic-ray data

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Kempa, J.

    2003-09-01

    Emulsion experiments placed at high mountain altitudes register hadrons and high-energy γ-rays with an energy threshold in the TeV region. These secondary shower particles are produced in the forward direction of interactions of mainly primary protons and alpha-particles in the Earth's atmosphere. Single γ's and hadrons are mainly produced by the interactions of the primary cosmic-ray nuclei of primary energy below 1015eV. Therefore the measurements are sensitive to the physics of high-energy hadronic interaction models, e.g., as implemented in the Monte Carlo air shower simulation program CORSIKA. By use of detailed simulations invoking various different models for the hadronic interactions we compare the predictions for the single-particle spectra with data of the Pamir experiment. For higher primary energies characteristics of so-called gamma-ray families are used for the comparisons. Including detailed simulations for the Pamir detector we found that the data are incompatible with the HDPM and SIBYLL 1.6 models, but are in agreement with QGSJET, NEXUS, and VENUS.

  8. About Separation of Hadron and Electromagnetic Cascades in the Pamela Calorimeter

    NASA Astrophysics Data System (ADS)

    Stozhkov, Yuri I.; Basili, A.; Bencardino, R.; Casolino, M.; de Pascale, M. P.; Furano, G.; Menicucci, A.; Minori, M.; Morselli, A.; Picozza, P.; Sparvoli, R.; Wischnewski, R.; Bakaldin, A.; Galper, A. M.; Koldashov, S. V.; Korotkov, M. G.; Mikhailov, V. V.; Voronov, S. A.; Yurkin, Y. T.; Adriani, O.; Bonechi, L.; Bongi, M.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Straulino, S.; Taccetti, F.; Vannuccini, E.; Castellini, G.; Boezio, M.; Bonvicini, M.; Mocchiutti, E.; Schiavon, P.; Vacchi, A.; Zampa, G.; Zampa, N.; Carlson, P.; Lund, J.; Lundquist, J.; Orsi, S.; Pearce, M.; Barbarino, G. C.; Campana, D.; Osteria, G.; Rossi, G.; Russo, S.; Boscherini, M.; Mennh, W.; Simonh, M.; Bongiorno, L.; Ricci, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Mirizzi, N.; Romita, M.; Spinelli, P.; Bogomolov, E.; Krutkov, S.; Vasiljev, G.; Bazilevskaya, G. A.; Kvashnin, A. N.; Logachev, V. I.; Makhmutov, V. S.; Maksumov, O. S.; Stozhkov, Yu. I.; Mitchell, J. W.; Streitmatter, R. E.; Stochaj, S. J.

    Results of calibration of the PAMELA instrument at the CERN facilities are discussed. In September, 2003, the calibration of the Neutron Detector together with the Calorimeter was performed with the CERN beams of electrons and protons with energies of 20 - 180 GeV. The implementation of the Neutron Detector increases a rejection factor of hadrons from electrons about ten times. The results of calibration are in agreement with calculations.

  9. Cascading failures in interdependent systems under a flow redistribution model

    NASA Astrophysics Data System (ADS)

    Zhang, Yingrui; Arenas, Alex; Yaǧan, Osman

    2018-02-01

    Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {LA,i,CA ,i} i =1 n and {LB,i,CB ,i} i =1 n, respectively. When a line fails in system A , a fraction of its load is redistributed to alive lines in B , while remaining (1 -a ) fraction is redistributed equally among all functional lines in A ; a line failure in B is treated similarly with b giving the fraction to be redistributed to A . We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p1 fraction of lines in A and p2 fraction in B . We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b , and robustness is maximized at non-trivial a ,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

  10. Cascading failures in interdependent systems under a flow redistribution model.

    PubMed

    Zhang, Yingrui; Arenas, Alex; Yağan, Osman

    2018-02-01

    Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {L_{A,i},C_{A,i}}_{i=1}^{n} and {L_{B,i},C_{B,i}}_{i=1}^{n}, respectively. When a line fails in system A, a fraction of its load is redistributed to alive lines in B, while remaining (1-a) fraction is redistributed equally among all functional lines in A; a line failure in B is treated similarly with b giving the fraction to be redistributed to A. We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p_{1} fraction of lines in A and p_{2} fraction in B. We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b, and robustness is maximized at non-trivial a,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

  11. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  12. A novel information cascade model in online social networks

    NASA Astrophysics Data System (ADS)

    Tong, Chao; He, Wenbo; Niu, Jianwei; Xie, Zhongyu

    2016-02-01

    The spread and diffusion of information has become one of the hot issues in today's social network analysis. To analyze the spread of online social network information and the attribute of cascade, in this paper, we discuss the spread of two kinds of users' decisions for city-wide activities, namely the "want to take part in the activity" and "be interested in the activity", based on the users' attention in "DouBan" and the data of the city-wide activities. We analyze the characteristics of the activity-decision's spread in these aspects: the scale and scope of the cascade subgraph, the structure characteristic of the cascade subgraph, the topological attribute of spread tree, and the occurrence frequency of cascade subgraph. On this basis, we propose a new information spread model. Based on the classical independent diffusion model, we introduce three mechanisms, equal probability, similarity of nodes, and popularity of nodes, which can generate and affect the spread of information. Besides, by conducting the experiments in six different kinds of network data set, we compare the effects of three mechanisms above mentioned, totally six specific factors, on the spread of information, and put forward that the node's popularity plays an important role in the information spread.

  13. A test of the hadronic interaction model EPOS with air shower data

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Luczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2009-03-01

    Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.

  14. Test of the hadronic interaction model EPOS with KASCADE air shower data

    NASA Astrophysics Data System (ADS)

    Hörandel, J. R.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; KASCADE-Grande Collaboration

    2009-12-01

    Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.

  15. Developmental Cascade Model for Adolescent Substance Use from Infancy to Late Adolescence

    ERIC Educational Resources Information Center

    Eiden, Rina D.; Lessard, Jared; Colder, Craig R.; Livingston, Jennifer; Casey, Meghan; Leonard, Kenneth E.

    2016-01-01

    A developmental cascade model for adolescent substance use beginning in infancy was examined in a sample of children with alcoholic and nonalcoholic parents. The model examined the role of parents' alcohol diagnoses, depression and antisocial behavior in a cascading process of risk via 3 major hypothesized pathways: first, via parental…

  16. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction

    PubMed Central

    Desikan, Radhika

    2016-01-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482

  17. A hadronic origin for ultra-high-frequency-peaked BL Lac objects

    NASA Astrophysics Data System (ADS)

    Cerruti, M.; Zech, A.; Boisson, C.; Inoue, S.

    2015-03-01

    Current Cherenkov telescopes have identified a population of ultra-high-frequency peaked BL Lac objects (UHBLs), also known as extreme blazars, that exhibit exceptionally hard TeV spectra, including 1ES 0229+200, 1ES 0347-121, RGB J0710+591, 1ES 1101-232, and 1ES 1218+304. Although one-zone synchrotron-self-Compton (SSC) models have been generally successful in interpreting the high-energy emission observed in other BL Lac objects, they are problematic for UHBLs, necessitating very large Doppler factors and/or extremely high minimum Lorentz factors of the emitting leptonic population. In this context, we have investigated alternative scenarios where hadronic emission processes are important, using a newly developed (lepto-)hadronic numerical code to systematically explore the physical parameters of the emission region that reproduces the observed spectra while avoiding the extreme values encountered in pure SSC models. Assuming a fixed Doppler factor δ = 30, two principal parameter regimes are identified, where the high-energy emission is due to: (1) proton-synchrotron radiation, with magnetic fields B ˜ 1-100 G and maximum proton energies Ep; max ≲ 1019 eV; and (2) synchrotron emission from p-γ-induced cascades as well as SSC emission from primary leptons, with B ˜ 0.1-1 G and Ep; max ≲ 1017 eV. This can be realized with plausible, sub-Eddington values for the total (kinetic plus magnetic) power of the emitting plasma, in contrast to hadronic interpretations for other blazar classes that often warrant highly super-Eddington values.

  18. Measurement of higher harmonic flow coefficients of identified hadrons in Pb-Pb collisions at = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Mohammadi, Naghmeh; ALICE Collaboration

    2017-01-01

    The latest ALICE results on the centrality and transverse momentum dependence of v 2, v 3, v 4 and v 5 for π± , K ± and p() in Pb-Pb collisions at = 2.76 TeV are presented. The flow coefficients exhibit a clear mass ordering for p T < 2.5 GeV/c for all harmonics. For transverse momentum values larger than about 3 GeV/c, mesons exhibit distinctively lower flow values compared to baryons, suggesting that coalescence might be the relevant particle production mechanism in this region. The experimental data for p T < 2.5 GeV/c are described fairly well by the hydrodynamical model iEBE-VISHNU, which models the hydrodynamical expansion of the fireball using a value of η/s = 0.08, coupled to a hadronic cascade model (UrQMD). Finally, A Multi-Phase Transition Model (AMPT) highlights the significant contribution of the hadronic rescattering phase and of coalescence as the dominant particle production mechanism to the mass ordering at low p T and the baryon-meson grouping at intermediate p T, respectively.

  19. Test of interaction models up to 40 PeV by studying hadronic cores of EAS

    NASA Astrophysics Data System (ADS)

    KASCADE Collaboration; Apel, W. D.; Badea, A. F.; Bekk, K.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Hörandel, J. R.; Kampert, K.-H.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Oehlschläger, J.; Ostapchenko, S.; Petcu, M.; Pierog, T.; Rebel, H.; Risse, A.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Ulrich, H.; van Buren, J.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2007-12-01

    The interpretation of extensive air shower measurements often requires a comparison with shower simulations in the atmosphere. These calculations rely on hadronic interaction models which have to extrapolate into kinematical and energy regions not explored by present-day collider experiments. The KASCADE experiment with its large hadron calorimeter and the detector array for the electromagnetic and muonic components provides experimental data to check such interaction models. For the simulations the program CORSIKA is used, which has several hadronic event generators embedded. For high-energy interactions (E_{\\rm{lab}}\\gtrsim100 \\ {\\rm{GeV}}) the models DPMJET, \\{\\sc NEX{\\sc US}} , QGSJET and SIBYLL have been used. Low-energy interactions have been treated by GHEISHA and FLUKA. Different hadronic observables are investigated as well as their correlations with the electromagnetic and muonic shower components up to primary energies of about 40 PeV. Although the predictions of the more recent models are to a large extent compatible with the measured data within the range given by proton and iron primary particles, there are still significant differences between the individual models.

  20. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  1. Sensitivity of atmospheric muon flux calculation to low energy hadronic interaction models

    NASA Astrophysics Data System (ADS)

    Djemil, T.; Attallah, R.; Capdevielle, J. N.

    2007-10-01

    We investigate in this paper the impact of some up-to-date hadronic interaction models on the calculation of the atmospheric muon flux. Calculations are carried out with the air shower simulation code CORSIKA in combination with the hadronic interaction models FLUKA and UrQMD below 80 GeV/nucleon and NEXUS elsewhere. We also examine the atmospheric effects using two different parametrizations of the US standard atmosphere. The cosmic ray spectra of protons and α particles, the only primary particles considered here, are taken according to the force field model which describes properly solar modulation. Numerical results are compared with the BESS-2001 experimental data.

  2. An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.

    PubMed

    Sander, P Martin

    2013-01-01

    Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism"). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.

  3. Universal resilience patterns in cascading load model: More capacity is not always better

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo

    We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.

  4. Cascading walks model for human mobility patterns.

    PubMed

    Han, Xiao-Pu; Wang, Xiang-Wen; Yan, Xiao-Yong; Wang, Bing-Hong

    2015-01-01

    Uncovering the mechanism behind the scaling laws and series of anomalies in human trajectories is of fundamental significance in understanding many spatio-temporal phenomena. Recently, several models, e.g. the explorations-returns model (Song et al., 2010) and the radiation model for intercity travels (Simini et al., 2012), have been proposed to study the origin of these anomalies and the prediction of human movements. However, an agent-based model that could reproduce most of empirical observations without priori is still lacking. In this paper, considering the empirical findings on the correlations of move-lengths and staying time in human trips, we propose a simple model which is mainly based on the cascading processes to capture the human mobility patterns. In this model, each long-range movement activates series of shorter movements that are organized by the law of localized explorations and preferential returns in prescribed region. Based on the numerical simulations and analytical studies, we show more than five statistical characters that are well consistent with the empirical observations, including several types of scaling anomalies and the ultraslow diffusion properties, implying the cascading processes associated with the localized exploration and preferential returns are indeed a key in the understanding of human mobility activities. Moreover, the model shows both of the diverse individual mobility and aggregated scaling displacements, bridging the micro and macro patterns in human mobility. In summary, our model successfully explains most of empirical findings and provides deeper understandings on the emergence of human mobility patterns.

  5. Hadron masses in a gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rujula, A.; Georgi, H.; Glashow, S.L.

    1975-07-01

    We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb- like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced onmore » us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the $Sigma$-$lambda$ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons.« less

  6. Cascades in the Threshold Model for varying system sizes

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis; Sreenivasan, Sameet; Szymanski, Boleslaw; Korniss, Gyorgy

    2015-03-01

    A classical model in opinion dynamics is the Threshold Model (TM) aiming to model the spread of a new opinion based on the social drive of peer pressure. Under the TM a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. Cascades in the TM depend on multiple parameters, such as the number and selection strategy of the initially active nodes (initiators), and the threshold distribution of the nodes. For a uniform threshold in the network there is a critical fraction of initiators for which a transition from small to large cascades occurs, which for ER graphs is largerly independent of the system size. Here, we study the spread contribution of each newly assigned initiator under the TM for different initiator selection strategies for synthetic graphs of various sizes. We observe that for ER graphs when large cascades occur, the spread contribution of the added initiator on the transition point is independent of the system size, while the contribution of the rest of the initiators converges to zero at infinite system size. This property is used for the identification of large transitions for various threshold distributions. Supported in part by ARL NS-CTA, ARO, ONR, and DARPA.

  7. An Evolutionary Cascade Model for Sauropod Dinosaur Gigantism - Overview, Update and Tests

    PubMed Central

    Sander, P. Martin

    2013-01-01

    Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades (“Reproduction”, “Feeding”, “Head and neck”, “Avian-style lung”, and “Metabolism”). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait “Very high body mass”. Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size. PMID:24205267

  8. A Multiplicative Cascade Model for High-Resolution Space-Time Downscaling of Rainfall

    NASA Astrophysics Data System (ADS)

    Raut, Bhupendra A.; Seed, Alan W.; Reeder, Michael J.; Jakob, Christian

    2018-02-01

    Distributions of rainfall with the time and space resolutions of minutes and kilometers, respectively, are often needed to drive the hydrological models used in a range of engineering, environmental, and urban design applications. The work described here is the first step in constructing a model capable of downscaling rainfall to scales of minutes and kilometers from time and space resolutions of several hours and a hundred kilometers. A multiplicative random cascade model known as the Short-Term Ensemble Prediction System is run with parameters from the radar observations at Melbourne (Australia). The orographic effects are added through multiplicative correction factor after the model is run. In the first set of model calculations, 112 significant rain events over Melbourne are simulated 100 times. Because of the stochastic nature of the cascade model, the simulations represent 100 possible realizations of the same rain event. The cascade model produces realistic spatial and temporal patterns of rainfall at 6 min and 1 km resolution (the resolution of the radar data), the statistical properties of which are in close agreement with observation. In the second set of calculations, the cascade model is run continuously for all days from January 2008 to August 2015 and the rainfall accumulations are compared at 12 locations in the greater Melbourne area. The statistical properties of the observations lie with envelope of the 100 ensemble members. The model successfully reproduces the frequency distribution of the 6 min rainfall intensities, storm durations, interarrival times, and autocorrelation function.

  9. Model and Study on Cascade Control System Based on IGBT Chopping Control

    NASA Astrophysics Data System (ADS)

    Niu, Yuxin; Chen, Liangqiao; Wang, Shuwen

    2018-01-01

    Thyristor cascade control system has a wide range of applications in the industrial field, but the traditional cascade control system has some shortcomings, such as a low power factor, serious harmonic pollution. In this paper, not only analyzing its system structure and working principle, but also discussing the two main factors affecting the power factor. Chopping-control cascade control system, adopted a new power switching device IGBT, which could overcome traditional cascade control system’s two main drawbacks efficiently. The basic principle of this cascade control system is discussed in this paper and the model of speed control system is built by using MATLAB/Simulink software. Finally, the simulation results of the system shows that the system works efficiently. This system is worthy to be spread widely in engineering application.

  10. Disambiguating seesaw models using invariant mass variables at hadron colliders

    DOE PAGES

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-19

    Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less

  11. Disambiguating seesaw models using invariant mass variables at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.

  12. The Attention Cascade Model and Attentional Blink

    ERIC Educational Resources Information Center

    Shih, Shui-I

    2008-01-01

    An attention cascade model is proposed to account for attentional blinks in rapid serial visual presentation (RSVP) of stimuli. Data were collected using single characters in a single RSVP stream at 10 Hz [Shih, S., & Reeves, A. (2007). "Attentional capture in rapid serial visual presentation." "Spatial Vision", 20(4), 301-315], and single words,…

  13. A coarse wood dynamics model for the Western Cascades.

    Treesearch

    K. Mellen; A. Ager

    2002-01-01

    The Coarse Wood Dynamics Model (CWDM) analyzes the dynamics (fall, fragmentation, and decomposition) of Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) snags and down logs in forested ecosystems of the western Cascades of Oregon and Washington. The model predicts snag fall, height loss and decay,...

  14. Lateral distribution of high energy hadrons and gamma ray in air shower cores observed with emulsion chambers

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Kawasumi, N.; Tsushima, I.; Honda, K.; Hashimoto, K.; Navia, C. E.; Matinic, N.; Aquirre, C.

    1985-01-01

    A high energy event of a bundle of electrons, gamma rays and hadronic gamma rays in an air shower core were observed. The bundles were detected with an emulsion chamber with thickness of 15 cm lead. This air shower is estimated to be initiated with a proton with energy around 10 to the 17th power to 10 to the 18th power eV at an altitude of around 100 gmc/2. Lateral distributions of the electromagnetic component with energy above 2 TeV and also the hadronic component of energy above 6 TeV of this air shower core were determined. Particles in the bundle are produced with process of the development of the nuclear cascade, the primary energy of each interaction in the cascade which produces these particles is unknown. To know the primary energy dependence of transverse momentum, the average products of energy and distance for various average energies of secondary particles are studied.

  15. Infinitely divisible cascades to model the statistics of natural images.

    PubMed

    Chainais, Pierre

    2007-12-01

    We propose to model the statistics of natural images thanks to the large class of stochastic processes called Infinitely Divisible Cascades (IDC). IDC were first introduced in one dimension to provide multifractal time series to model the so-called intermittency phenomenon in hydrodynamical turbulence. We have extended the definition of scalar infinitely divisible cascades from 1 to N dimensions and commented on the relevance of such a model in fully developed turbulence in [1]. In this article, we focus on the particular 2 dimensional case. IDC appear as good candidates to model the statistics of natural images. They share most of their usual properties and appear to be consistent with several independent theoretical and experimental approaches of the literature. We point out the interest of IDC for applications to procedural texture synthesis.

  16. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  17. Cascading Walks Model for Human Mobility Patterns

    PubMed Central

    Han, Xiao-Pu; Wang, Xiang-Wen; Yan, Xiao-Yong; Wang, Bing-Hong

    2015-01-01

    Background Uncovering the mechanism behind the scaling laws and series of anomalies in human trajectories is of fundamental significance in understanding many spatio-temporal phenomena. Recently, several models, e.g. the explorations-returns model (Song et al., 2010) and the radiation model for intercity travels (Simini et al., 2012), have been proposed to study the origin of these anomalies and the prediction of human movements. However, an agent-based model that could reproduce most of empirical observations without priori is still lacking. Methodology/Principal Findings In this paper, considering the empirical findings on the correlations of move-lengths and staying time in human trips, we propose a simple model which is mainly based on the cascading processes to capture the human mobility patterns. In this model, each long-range movement activates series of shorter movements that are organized by the law of localized explorations and preferential returns in prescribed region. Conclusions/Significance Based on the numerical simulations and analytical studies, we show more than five statistical characters that are well consistent with the empirical observations, including several types of scaling anomalies and the ultraslow diffusion properties, implying the cascading processes associated with the localized exploration and preferential returns are indeed a key in the understanding of human mobility activities. Moreover, the model shows both of the diverse individual mobility and aggregated scaling displacements, bridging the micro and macro patterns in human mobility. In summary, our model successfully explains most of empirical findings and provides deeper understandings on the emergence of human mobility patterns. PMID:25860140

  18. A developmental cascade perspective of paediatric obesity: a conceptual model and scoping review.

    PubMed

    Smith, Justin D; Egan, Kaitlyn N; Montaño, Zorash; Dawson-McClure, Spring; Jake-Schoffman, Danielle E; Larson, Madeline; St George, Sara M

    2018-04-05

    Considering the immense challenge of preventing obesity, the time has come to reconceptualise the way we study the obesity development in childhood. The developmental cascade model offers a longitudinal framework to elucidate the way cumulative consequences and spreading effects of risk and protective factors, across and within biopsychosocial spheres and phases of development, can propel individuals towards obesity. In this article, we use a theory-driven model-building approach and a scoping review that included 310 published studies to propose a developmental cascade model of paediatric obesity. The proposed model provides a basis for testing hypothesised cascades with multiple intervening variables and complex longitudinal processes. Moreover, the model informs future research by resolving seemingly contradictory findings on pathways to obesity previously thought to be distinct (low self-esteem, consuming sugary foods, and poor sleep cause obesity) that are actually processes working together over time (low self-esteem causes consumption of sugary foods which disrupts sleep quality and contributes to obesity). The findings of such inquiries can aid in identifying the timing and specific targets of preventive interventions across and within developmental phases. The implications of such a cascade model of paediatric obesity for health psychology and developmental and prevention sciences are discussed.

  19. Hadronic model for the non-thermal radiation from the binary system AR Scorpii

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2018-05-01

    AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.

  20. Test of hadronic interaction models with the KASCADE-Grande muon data

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2013-06-01

    KASCADE-Grande is an air-shower observatory devoted for the detection of cosmic rays with energies in the interval of 1014 - 1018 eV, where the Grande array is responsible for the higher energy range. The experiment comprises different detection systems which allow precise measurements of the charged, electron and muon numbers of extensive air-showers (EAS). These data is employed not only to reconstruct the properties of the primary cosmic-ray particle but also to test hadronic interaction models at high energies. In this contribution, predictions of the muon content of EAS from QGSJET II-2, SIBYLL 2.1 and EPOS 1.99 are confronted with the experimental measurements performed with the KASCADE-Grande experiment in order to test the validity of these hadronic models commonly used in EAS simulations.

  1. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also

  2. Lumley's energy cascade dissipation rate model for boundary-free turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Duncan, B. S.

    1992-01-01

    True dissipation occurs mainly at the highest wavenumbers where the eddy sizes are comparatively small. These high wavenumbers receive their energy through the spectral cascade of energy starting with the largest eddies spilling energy into the smaller eddies, passing through each wavenumber until it is dissipated at the microscopic scale. However, a small percentage of the energy does not spill continuously through the cascade but is instantly passed to the higher wavenumbers. Consequently, the smallest eddies receive a certain amount of energy almost immediately. As the spectral energy cascade continues, the highest wavenumber needs a certain time to receive all the energy which has been transferred from the largest eddies. As such, there is a time delay, of the order of tau, between the generation of energy by the largest eddies and the eventual dissipation of this energy. For equilibrium turbulence at high Reynolds numbers, there is a wide range where energy is neither produced by the large eddies nor dissipated by viscosity, but is conserved and passed from wavenumber to higher wavenumbers. The rate at which energy cascades from one wavenumber to another is proportional to the energy contained within that wavenumber. This rate is constant and has been used in the past as a dissipation rate of turbulent kinetic energy. However, this is true only in steady, equilibrium turbulence. Most dissipation models contend that the production of dissipation is proportional to the production of energy and that the destruction of dissipation is proportional to the destruction of energy. In essence, these models state that the change in the dissipation rate is proportional to the change in the kinetic energy. This assumption is obviously incorrect for the case where there is no production of turbulent energy, yet energy continues to cascade from large to small eddies. If the time lag between the onset on the energy cascade to the destruction of energy at the microscale can be

  3. Modeling cascading failures with the crisis of trust in social networks

    NASA Astrophysics Data System (ADS)

    Yi, Chengqi; Bao, Yuanyuan; Jiang, Jingchi; Xue, Yibo

    2015-10-01

    In social networks, some friends often post or disseminate malicious information, such as advertising messages, informal overseas purchasing messages, illegal messages, or rumors. Too much malicious information may cause a feeling of intense annoyance. When the feeling exceeds a certain threshold, it will lead social network users to distrust these friends, which we call the crisis of trust. The crisis of trust in social networks has already become a universal concern and an urgent unsolved problem. As a result of the crisis of trust, users will cut off their relationships with some of their untrustworthy friends. Once a few of these relationships are made unavailable, it is likely that other friends will decline trust, and a large portion of the social network will be influenced. The phenomenon in which the unavailability of a few relationships will trigger the failure of successive relationships is known as cascading failure dynamics. To our best knowledge, no one has formally proposed cascading failures dynamics with the crisis of trust in social networks. In this paper, we address this potential issue, quantify the trust between two users based on user similarity, and model the minimum tolerance with a nonlinear equation. Furthermore, we construct the processes of cascading failures dynamics by considering the unique features of social networks. Based on real social network datasets (Sina Weibo, Facebook and Twitter), we adopt two attack strategies (the highest trust attack (HT) and the lowest trust attack (LT)) to evaluate the proposed dynamics and to further analyze the changes of the topology, connectivity, cascading time and cascade effect under the above attacks. We numerically find that the sparse and inhomogeneous network structure in our cascading model can better improve the robustness of social networks than the dense and homogeneous structure. However, the network structure that seems like ripples is more vulnerable than the other two network

  4. Period adding cascades: experiment and modeling in air bubbling.

    PubMed

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  5. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    NASA Astrophysics Data System (ADS)

    Dorokhov, Alexander E.

    2004-11-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, ahvp(1)μ, is estimated.

  6. Model independent particle mass measurements in missing energy events at hadron colliders

    NASA Astrophysics Data System (ADS)

    Park, Myeonghun

    2011-12-01

    This dissertation describes several new kinematic methods to measure the masses of new particles in events with missing transverse energy at hadron colliders. Each method relies on the measurement of some feature (a peak or an endpoint) in the distribution of a suitable kinematic variable. The first method makes use of the "Gator" variable s min , whose peak provides a global and fully inclusive measure of the production scale of the new particles. In the early stage of the LHC, this variable can be used both as an estimator and a discriminator for new physics over the standard model backgrounds. The next method studies the invariant mass distributions of the visible decay products from a cascade decay chain and the shapes and endpoints of those distributions. Given a sufficient number of endpoint measurements, one could in principle attempt to invert and solve for the mass spectrum. However, the non-linear character of the relevant coupled quadratic equations often leads to multiple solutions. In addition, there is a combinatorial ambiguity related to the ordering of the decay products from the cascade decay chain. We propose a new set of invariant mass variables which are less sensitive to these problems. We demonstrate how the new particle mass spectrum can be extracted from the measurement of their kinematic endpoints. The remaining methods described in the dissertation are based on "transverse" invariant mass variables like the "Cambridge" transverse mass MT2, the "Sheffield" contrasverse mass MCT and their corresponding one-dimensional projections MT2⊥, M T2||, MCT⊥ , and MCT|| with respect to the upstream transverse momentum U⃗T . The main advantage of all those methods is that they can be applied to very short (single-stage) decay topologies, as well as to a subsystem of the observed event. The methods can also be generalized to the case of non-identical missing particles, as demonstrated in Chapter 7. A complete set of analytical results for the

  7. A hadron-nucleus collision event generator for simulations at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Eisenhardt, S.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Sterzenbach, G.; Theis, D.; Weber, J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA-Collaboration

    2002-10-01

    Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the Δ33-resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular distributions based on phase shift analysis are used for elastic nucleon-nucleon as well as elastic and charge exchange pion-nucleon scattering. Also kaons and antinucleons can be treated as projectiles. Good agreement with experimental data is found predominantly for lower projectile energies, i.e. in the regime of the Bertini code. The original as well as the extended Bertini model have been implemented as shower codes into the high energy detector simulation package GEANT-3.14, allowing now its use also in full Monte Carlo studies of detector systems at intermediate energies. The GEANT-3.14 here have been used mainly for its powerful geometry and analysing packages due to the complex EDDA detector system.

  8. Hadronic Resonance production in ALICE

    NASA Astrophysics Data System (ADS)

    Markert, Christina; ALICE Collaboration

    2017-07-01

    In heavy ion collisions a fireball of hot and dense matter is created. Short lived hadronic resonances are sensitive to the medium properties, in particular to the temperature, density and system size. Resonance yields and momentum distributions are used to gain insight into the hadronic phase, its expansion velocity and time duration. The multiplicity dependent hadronic resonance production in p-p, p-Pb and Pb-Pb collisions will be discussed within the context of the possible extended hadronic and partonic phase. The experimental results will be compared to EPOS+UrQMD model calculations to discuss the system size dependent interactions of the hadronic medium on various resonances. Small systems such as p-p and p-Pb collisions will be discussed with respect to resonance and strange particle measurements.

  9. Cascade aeroacoustics including steady loading effects

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiao-Wei D.; Fleeter, Sanford

    A mathematical model is developed to analyze the effects of airfoil and cascade geometry, steady aerodynamic loading, and the characteristics of the unsteady flow field on the discrete frequency noise generation of a blade row in an incompressible flow. The unsteady lift which generates the noise is predicted with a complex first-order cascade convected gust analysis. This model was then applied to the Gostelow airfoil cascade and variations, demonstrating that steady loading, cascade solidity, and the gust direction are significant. Also, even at zero incidence, the classical flat plate cascade predictions are unacceptable.

  10. Higher harmonic flow coefficients of identified hadrons in Pb-Pb collisions at √{s_{NN}}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovska, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ravasenga, I.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-09-01

    The elliptic, triangular, quadrangular and pentagonal anisotropic flow coefficients for π±, K± and p+overline{p} in Pb-Pb collisions at √{s_{NN}}=2.76 TeV were measured with the ALICE detector at the Large Hadron Collider. The results were obtained with the Scalar Product method, correlating the identified hadrons with reference particles from a different pseudorapidity region. Effects not related to the common event symmetry planes (non-flow) were estimated using correlations in pp collisions and were subtracted from the measurement. The obtained flow coefficients exhibit a clear mass ordering for transverse momentum ( p T) values below ≈ 3 GeV/ c. In the intermediate p T region (3 < p T < 6 GeV/ c), particles group at an approximate level according to the number of constituent quarks, suggesting that coalescence might be the relevant particle production mechanism in this region. The results for p T < 3 GeV/ c are described fairly well by a hydrodynamical model (iEBE-VISHNU) that uses initial conditions generated by A Multi-Phase Transport model (AMPT) and describes the expansion of the fireball using a value of 0.08 for the ratio of shear viscosity to entropy density ( η/s), coupled to a hadronic cascade model (UrQMD). Finally, expectations from AMPT alone fail to quantitatively describe the measurements for all harmonics throughout the measured transverse momentum region. However, the comparison to the AMPT model highlights the importance of the late hadronic rescattering stage to the development of the observed mass ordering at low values of p T and of coalescence as a particle production mechanism for the particle type grouping at intermediate values of p T for all harmonics. [Figure not available: see fulltext.

  11. The KASCADE-Grande energy spectrum of cosmic rays and the role of hadronic interaction models

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2014-05-01

    Previous results obtained by KASCADE-Grande using the QGSjetII-02 hadronic interaction model have shown that the energy spectrum of cosmic rays between 1016 eV and 1018 eV exhibits a significant hardening at approximately 2×1016 eV and a slight but statistically significant steepening close to 1017 eV. Moreover, the analysis with QGSjetII-02 suggests that the break observed around 1017 eV is caused by the heavy component of primary cosmic rays. In this paper, we report on the results of similar analyses performed using the SIBYLL 2.1 and EPOS 1.99 hadronic interaction models to interpret the data. The present results confirm qualitatively the previous findings. However, the intensity of the all-particle spectrum, the positions of the hardening and steepening of the spectrum, as well as the relative abundance of the heavy and light mass groups depend on the hadronic interaction model used to interpret the data.

  12. Experimental determination of unsteady blade element aerodynamics in cascades. Volume 2: Translation mode cascade

    NASA Technical Reports Server (NTRS)

    Riffel, R. E.; Rothrock, M. D.

    1980-01-01

    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.

  13. Digital Hadron Calorimetry

    NASA Astrophysics Data System (ADS)

    Bilki, Burak

    2018-03-01

    The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.

  14. Cascading Failures in Bi-partite Graphs: Model for Systemic Risk Propagation

    PubMed Central

    Huang, Xuqing; Vodenska, Irena; Havlin, Shlomo; Stanley, H. Eugene

    2013-01-01

    As economic entities become increasingly interconnected, a shock in a financial network can provoke significant cascading failures throughout the system. To study the systemic risk of financial systems, we create a bi-partite banking network model composed of banks and bank assets and propose a cascading failure model to describe the risk propagation process during crises. We empirically test the model with 2007 US commercial banks balance sheet data and compare the model prediction of the failed banks with the real failed banks after 2007. We find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation. The results suggest that this model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the failure of over 350 US commercial banks during 2008–2011. PMID:23386974

  15. Renyi Entropies in Particle Cascades

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Ostruszka, A.

    2003-01-01

    Renyi entropies for particle distributions following from the general cascade models are discussed. The p-model and the β distribution introduced in earlier studies of cascades are discussed in some detail. Some phenomenological consequences are pointed out.

  16. Hadronic Origin of Prompt High-energy Emission of Gamma-ray Bursts Revisited: In the Case of a Limited Maximum Proton Energy

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ruo-Yu; Dai, Zi-Gao; Asano, Katsuaki

    2018-04-01

    The high-energy (>100 MeV) emission observed by the Fermi Large Area Telescope during the prompt phase of some luminous gamma-ray bursts (GRBs) could arise from the cascade induced by interactions between accelerated protons and the radiation field of GRBs. The photomeson process, which is usually suggested to operate in such a hadronic explanation, requires a rather high proton energy (>1017 eV) for an efficient interaction. However, whether GRBs can accelerate protons to such a high energy is far from guaranteed, although they have been suggested as the candidate source for ultrahigh-energy cosmic rays. In this work, we revisit the hadronic model for the prompt high-energy emission of GRBs with a smaller maximum proton energy than the usually adopted value estimated from the Bohm condition. In this case, the Bethe–Heitler pair production process becomes comparably important or even dominates over the photomeson process. We show that with a relatively low maximum proton energy with a Lorentz factor of 105 in the comoving frame, the cascade emission can still reproduce various types of high-energy spectra of GRBs. For most GRBs without high-energy emission detected, the maximum proton energy could be even lower and relax the constraints on the parameters of the GRB jet resulting from the nondetection of GRB neutrinos by IceCube.

  17. Hard Diffraction in Lepton--Hadron and Hadron--Hadron Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2002-09-01

    It is argued that the breakdown of factorization observed recently in the diffractive dijet production in deep inelastic lepton induced and hadron induced processes is naturally explained in the Good--Walker picture of diffraction dissociation. An explicit formula for the hadronic cross-section is given and successfully compared with the existing data.

  18. Higher harmonic flow coefficients of identified hadrons in Pb-Pb collisions at $$\\sqrt{s_{\\mathrm{NN}}}=2.76 $$ TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-09-28

    The elliptic, triangular, quadrangular and pentagonal anisotropic flow coefficients for π ± , K ± and p +more » $$\\bar{p}$$ in Pb-Pb collisions at √s NN=2.76 TeV were measured with the ALICE detector at the Large Hadron Collider. The results were obtained with the Scalar Product method, correlating the identified hadrons with reference particles from a different pseudorapidity region. Effects not related to the common event symmetry planes (non-flow) were estimated using correlations in pp collisions and were subtracted from the measurement. The obtained flow coefficients exhibit a clear mass ordering for transverse momentum (p T ) values below ≈ 3 GeV/c. In the intermediate p T region (3 < p T < 6 GeV/c), particles group at an approximate level according to the number of constituent quarks, suggesting that coalescence might be the relevant particle production mechanism in this region. The results for p T < 3 GeV/c are described fairly well by a hydrodynamical model (iEBE-VISHNU) that uses initial conditions generated by A Multi-Phase Transport model (AMPT) and describes the expansion of the fireball using a value of 0.08 for the ratio of shear viscosity to entropy density (η/s), coupled to a hadronic cascade model (UrQMD). Finally, expectations from AMPT alone fail to quantitatively describe the measurements for all harmonics throughout the measured transverse momentum region. However, the comparison to the AMPT model highlights the importance of the late hadronic rescattering stage to the development of the observed mass ordering at low values of p T and of coalescence as a particle production mechanism for the particle type grouping at intermediate values of p T for all harmonics.« less

  19. Charge distributions and correlations in fragmentation models for soft hadron collisions

    NASA Astrophysics Data System (ADS)

    de Wolf, E. A.

    1984-03-01

    Data on charge distributions and charge correlations in pp and meson-proton interactions at PS and SPS energies are successfully compared with the Lund fragmentation model for low- P T hadron collisions. It is argued that local conservation of quantum numbers and resonance production, as implemented in fragmentation models, are sufficient ingredients to explain most of the available experimental results at these energies. No necessity is found for dual-sheet contributions considered in DTU-based parton models.

  20. A simple model of global cascades on random networks

    NASA Astrophysics Data System (ADS)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  1. Oregon Cascades Play Fairway Analysis: Raster Datasets and Models

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This submission includes maps of the spatial distribution of basaltic, and felsic rocks in the Oregon Cascades. It also includes a final Play Fairway Analysis (PFA) model, with the heat and permeability composite risk segments (CRS) supplied separately. Metadata for each raster dataset can be found within the zip files, in the TIF images

  2. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  3. Di-hadron correlations with identified leading hadrons in 200 GeV Au + Au and d + Au collisions at STAR

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, T.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Z. M.; Li, Y.; Li, C.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Ma, R.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, F.; Wang, H.; Wang, G.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, H.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, N.; Yang, S.; Yang, Y.; Yang, Q.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Y.; Zhang, Z.; Zhang, J. B.; Zhang, J.; Zhang, X. P.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.

    2015-12-01

    The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

  4. Thin limit of the 6D Cascading DGP model

    NASA Astrophysics Data System (ADS)

    Sbisà, Fulvio

    2018-05-01

    A thin limit description of the 6D Cascading DGP model is derived, starting from a configuration where both the codimension-1 and the codimension-2 branes are thick. Postulating that the thicknesses of the two branes obey a hierarchic relation, the thin limit is executed in two steps. First the thin limit of the codimension-1 brane is executed, obtaining a system where a "ribbon" codimension-2 brane is embedded inside a thin codimension-1 brane with induced gravity, and then the thin limit of the ribbon brane is considered. By proposing a geometric ansatz on the limit configuration, the junction conditions which are to hold at the thin codimension-2 brane are derived. The latters are fully non-perturbative and covariant and, together with the Israel junction conditions at the codimension-1 brane and the Einstein equations in the bulk, constitute the looked-for thin limit formulation of the 6D Cascading DGP model. It is commented on how wide is the class of thin source configurations which can be placed on the thin codimension-2 brane.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, K.; Longacre, R.; Srivastava, D.K.

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions inmore » QCD, involving 2 {r_arrow} 2 parton collisions, 2 {r_arrow} 1 parton fusion processes, and 1 {r_arrow} 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 {r_arrow} n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it.« less

  6. Hot Strange Hadronic Matter in an Effective Model

    NASA Astrophysics Data System (ADS)

    Qian, Wei-Liang; Su, Ru-Keng; Song, Hong-Qiu

    2003-10-01

    An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given. The project supported in part by National Natural Science Foundation of China under Grant Nos. 10075071, 10047005, 19947001, 19975010, and 10235030, and the CAS Knowledge Innovation Project No. KJCX2-N11. Also supported by the State Key Basic Research Development Program under Grant No. G200077400 and the Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences

  7. Di-hadron correlations with identified leading hadrons in 200 GeV Au + Au and d + Au collisions at STAR

    DOE PAGES

    Adamczyk, L.

    2015-10-23

    The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher formore » leading non-pions than pions. As a result, the consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.« less

  8. Inferring network structure from cascades.

    PubMed

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  9. Inferring network structure from cascades

    NASA Astrophysics Data System (ADS)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  10. Limits of Risk Predictability in a Cascading Alternating Renewal Process Model.

    PubMed

    Lin, Xin; Moussawi, Alaa; Korniss, Gyorgy; Bakdash, Jonathan Z; Szymanski, Boleslaw K

    2017-07-27

    Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Alternating Renewal Process (CARP) to forecast interconnected global risks. However, assessments of the model's prediction precision are limited by lack of sufficient ground truth data. Here, we establish prediction precision as a function of input data size by using alternative long ground truth data generated by simulations of the CARP model with known parameters. We illustrate the approach on a model of fires in artificial cities assembled from basic city blocks with diverse housing. The results confirm that parameter recovery variance exhibits power law decay as a function of the length of available ground truth data. Using CARP, we also demonstrate estimation using a disparate dataset that also has dependencies: real-world prediction precision for the global risk model based on the World Economic Forum Global Risk Report. We conclude that the CARP model is an efficient method for predicting catastrophic cascading events with potential applications to emerging local and global interconnected risks.

  11. Information cascade on networks

    NASA Astrophysics Data System (ADS)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  12. Cascading Failures as Continuous Phase-Space Transitions

    DOE PAGES

    Yang, Yang; Motter, Adilson E.

    2017-12-14

    In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-scale cascading failure. We derive a continuous model to advance our understanding of cascading failures in power-grid networks. The model accounts for both the failure of transmission lines and the desynchronization of power generators and incorporates the transient dynamics between successive steps of the cascade. In this framework, we show that a cascade event is a phase-space transition from an equilibrium state with high energy to an equilibrium state with lower energy, which can be suitably described in a closed form using a global Hamiltonian-likemore » function. From this function, we show that a perturbed system cannot always reach the equilibrium state predicted by quasi-steady-state cascade models, which would correspond to a reduced number of failures, and may instead undergo a larger cascade. We also show that, in the presence of two or more perturbations, the outcome depends strongly on the order and timing of the individual perturbations. These results offer new insights into the current understanding of cascading dynamics, with potential implications for control interventions.« less

  13. Cascading Failures as Continuous Phase-Space Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Motter, Adilson E.

    In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-scale cascading failure. We derive a continuous model to advance our understanding of cascading failures in power-grid networks. The model accounts for both the failure of transmission lines and the desynchronization of power generators and incorporates the transient dynamics between successive steps of the cascade. In this framework, we show that a cascade event is a phase-space transition from an equilibrium state with high energy to an equilibrium state with lower energy, which can be suitably described in a closed form using a global Hamiltonian-likemore » function. From this function, we show that a perturbed system cannot always reach the equilibrium state predicted by quasi-steady-state cascade models, which would correspond to a reduced number of failures, and may instead undergo a larger cascade. We also show that, in the presence of two or more perturbations, the outcome depends strongly on the order and timing of the individual perturbations. These results offer new insights into the current understanding of cascading dynamics, with potential implications for control interventions.« less

  14. Statistical hadronization and microcanonical ensemble

    DOE PAGES

    Becattini, F.; Ferroni, L.

    2004-01-01

    We present a Monte Carlo calculation of the microcanonical ensemble of the of the ideal hadron-resonance gas including all known states up to a mass of 1. 8 GeV, taking into account quantum statistics. The computing method is a development of a previous one based on a Metropolis Monte Carlo algorithm, with a the grand-canonical limit of the multi-species multiplicity distribution as proposal matrix. The microcanonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy. This algorithm opens the way for event generators based for themore » statistical hadronization model.« less

  15. Nuclear ``pasta'' phase within density dependent hadronic models

    NASA Astrophysics Data System (ADS)

    Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.

    2009-03-01

    In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.

  16. Effects of two-temperature model on cascade evolution in Ni and NiFe

    DOE PAGES

    Samolyuk, German D.; Xue, Haizhou; Bei, Hongbin; ...

    2016-07-05

    We perform molecular dynamics simulations of Ni ion cascades in Ni and equiatomic NiFe under the following conditions: (a) classical molecular dynamics (MD) simulations without consideration of electronic energy loss, (b) classical MD simulations with the electronic stopping included, and (c) using the coupled two-temperature MD (2T-MD) model that incorporates both the electronic stopping and the electron-phonon interactions. Our results indicate that the electronic effects are more profound in the higher-energy cascades, and that the 2T-MD model results in a smaller amount of surviving damage and smaller defect clusters, while less damage is produced in NiFe than in Ni.

  17. Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions

    DOE PAGES

    Cao, Shanshan; Luo, Tan; He, Yayun; ...

    2017-09-25

    We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less

  18. Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shanshan; Luo, Tan; He, Yayun

    We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less

  19. Density matrix Monte Carlo modeling of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian

    2017-10-01

    By including elements of the density matrix formalism, the semiclassical ensemble Monte Carlo method for carrier transport is extended to incorporate incoherent tunneling, known to play an important role in quantum cascade lasers (QCLs). In particular, this effect dominates electron transport across thick injection barriers, which are frequently used in terahertz QCL designs. A self-consistent model for quantum mechanical dephasing is implemented, eliminating the need for empirical simulation parameters. Our modeling approach is validated against available experimental data for different types of terahertz QCL designs.

  20. Cascade Model of Ionization Multiplication of Electrons in Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Romanenko, V. A.; Solodky, S. A.; Kudryavtsev, A. A.; Suleymanov, I. A.

    1996-10-01

    For determination of EDF in non-uniform fields a Monte-Carlo simulation(Tran Ngoc An et al., J.Phys.D: Appl. Phys. 10, 2317 (1977))^,(J.P. Boeuf et al., Phys.D: Appl.Phys. 15, 2169 (1982)) is applied. As alternative multi-beam cascade model(H.B. Valentini, Contrib.Plasma Phys. 27, 331 (1987)) is offered. Our model eliminates defects of that model and enables to determine EDF of low pressure plasma in non-uniform fields. A cascade model (with EDF dividing in monoenergetic electron groups) for arbitrary electric potential profile was used. Modeling was carried out for electron forward scattering only, constant electron mean free path; ionization was considered only. The equation system was solved for the region with kinetic energies more than ionization energy. The boundary conditions (on ionization energy curve) take into account electron transitions from higher-lying level in the less than ionization energy region and secondary electron production. The problem solution in analytical functions was obtained. The insertion of additional processes does not make significant difficulties. EDF and electrokinetical parameters in helium from numerical calculations are well agreed with above-mentioned authors. Work was carried out under RFFI (project N 96-02-18417) support.

  1. Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.

    PubMed

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-01-01

    To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.

  2. Jet-induced medium excitation in γ-hadron correlation at RHIC

    DOE PAGES

    Chen, Wei; Cao, Shanshan; Luo, Tan; ...

    2017-09-25

    Both jet transport and jet-induced medium excitation are investigated simultaneously within the coupled Linear Boltzmann Transport and hydro (CoLBT-hydro) model. In this coupled approach, energy-momentum deposition from propagating jet shower partons in the elastic and radiation processes is taken as a source term in hydrodynamics and the hydro background for LBT simulation is updated for next time step. We use CoLBT-hydro model to simulate γ-jet events of Au+Au collisions at RHIC. Hadron spectra from both the hadronization of jet shower partons and jet-induced medium excitation are calculated and compared to experimental data. Parton energy loss of jet shower partons leadsmore » to the suppression of hadron yields at large z T = p h T/p γ T while medium excitations leads to enhancement of hadron yields at small z T. Meanwhile, a significant broadening of low p T hadron yields and the depletion of soft hadrons in the γ direction are observed in the calculation of γ-hadron angular correlation.« less

  3. Jet-induced medium excitation in γ-hadron correlation at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei; Cao, Shanshan; Luo, Tan

    Both jet transport and jet-induced medium excitation are investigated simultaneously within the coupled Linear Boltzmann Transport and hydro (CoLBT-hydro) model. In this coupled approach, energy-momentum deposition from propagating jet shower partons in the elastic and radiation processes is taken as a source term in hydrodynamics and the hydro background for LBT simulation is updated for next time step. We use CoLBT-hydro model to simulate γ-jet events of Au+Au collisions at RHIC. Hadron spectra from both the hadronization of jet shower partons and jet-induced medium excitation are calculated and compared to experimental data. Parton energy loss of jet shower partons leadsmore » to the suppression of hadron yields at large z T = p h T/p γ T while medium excitations leads to enhancement of hadron yields at small z T. Meanwhile, a significant broadening of low p T hadron yields and the depletion of soft hadrons in the γ direction are observed in the calculation of γ-hadron angular correlation.« less

  4. Connected word recognition using a cascaded neuro-computational model

    NASA Astrophysics Data System (ADS)

    Hoya, Tetsuya; van Leeuwen, Cees

    2016-10-01

    We propose a novel framework for processing a continuous speech stream that contains a varying number of words, as well as non-speech periods. Speech samples are segmented into word-tokens and non-speech periods. An augmented version of an earlier-proposed, cascaded neuro-computational model is used for recognising individual words within the stream. Simulation studies using both a multi-speaker-dependent and speaker-independent digit string database show that the proposed method yields a recognition performance comparable to that obtained by a benchmark approach using hidden Markov models with embedded training.

  5. Modelling exclusive meson pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Harland-Lang, L. A.; Khoze, V. A.; Ryskin, M. G.

    2014-04-01

    We present a study of the central exclusive production of light meson pairs, concentrating on the region of lower invariant masses of the central system and/or meson transverse momentum, where perturbative QCD cannot be reliably applied. We describe in detail a phenomenological model, using the tools of Regge theory, that may be applied with some success in this regime, and we present the new, publicly available, Dime Monte Carlo (MC) implementation of this for , and production. The MC implementation includes a fully differential treatment of the survival factor, which in general depends on all kinematic variables, as well as allows for the so far reasonably unconstrained model parameters to be set by the user. We present predictions for the Tevatron and LHC, discuss and estimate the size of the proton-dissociative background, and show how future measurements may further test this Regge-based approach, as well as the soft hadronic model required to calculate the survival factor, in particular in the presence of tagged protons.

  6. Open issues in hadronic interactions for air showers

    NASA Astrophysics Data System (ADS)

    Pierog, Tanguy

    2017-06-01

    In detailed air shower simulations, the uncertainty in the prediction of shower observables for different primary particles and energies is currently dominated by differences between hadronic interaction models. With the results of the first run of the LHC, the difference between post-LHC model predictions has been reduced to the same level as experimental uncertainties of cosmic ray experiments. At the same time new types of air shower observables, like the muon production depth, have been measured, adding new constraints on hadronic models. Currently no model is able to consistently reproduce all mass composition measurements possible within the Pierre Auger Observatory for instance. Comparing the different models, and with LHC and cosmic ray data, we will show that the remaining open issues in hadronic interactions in air shower development are now in the pion-air interactions and in nuclear effects.

  7. Correlation femtoscopy study at energies available at the JINR Nuclotron-based Ion Collider fAcility and the BNL Relativistic Heavy Ion Collider within a viscous hydrodynamic plus cascade model

    NASA Astrophysics Data System (ADS)

    Batyuk, P.; Karpenko, Iu.; Lednicky, R.; Malinina, L.; Mikhaylov, K.; Rogachevsky, O.; Wielanek, D.

    2017-08-01

    Correlation femtoscopy allows one to measure the space-time characteristics of particle production in relativistic heavy-ion collisions due to the effects of quantum statistics (QS) and final state interactions (FSIs). The main features of the femtoscopy measurements at top RHIC and LHC energies are considered as a manifestation of strong collective flow and are well interpreted within hydrodynamic models employing equation of state (EoS) with a crossover type transition between quark-gluon plasma (QGP) and hadron gas phases. The femtoscopy at lower energies was intensively studied at AGS and SPS accelerators and is being studied now in the Beam Energy Scan program (BES) at the BNL Relativistic Heavy Ion Collider in the context of exploration of the QCD phase diagram. In this article we present femtoscopic observables calculated for Au-Au collisions at √{sN N}=7.7 -62.4 GeV in a viscous hydro + cascade model vHLLE+UrQMD and their dependence on the EoS of thermalized matter.

  8. A cascade model of information processing and encoding for retinal prosthesis.

    PubMed

    Pei, Zhi-Jun; Gao, Guan-Xin; Hao, Bo; Qiao, Qing-Li; Ai, Hui-Jian

    2016-04-01

    Retinal prosthesis offers a potential treatment for individuals suffering from photoreceptor degeneration diseases. Establishing biological retinal models and simulating how the biological retina convert incoming light signal into spike trains that can be properly decoded by the brain is a key issue. Some retinal models have been presented, ranking from structural models inspired by the layered architecture to functional models originated from a set of specific physiological phenomena. However, Most of these focus on stimulus image compression, edge detection and reconstruction, but do not generate spike trains corresponding to visual image. In this study, based on state-of-the-art retinal physiological mechanism, including effective visual information extraction, static nonlinear rectification of biological systems and neurons Poisson coding, a cascade model of the retina including the out plexiform layer for information processing and the inner plexiform layer for information encoding was brought forward, which integrates both anatomic connections and functional computations of retina. Using MATLAB software, spike trains corresponding to stimulus image were numerically computed by four steps: linear spatiotemporal filtering, static nonlinear rectification, radial sampling and then Poisson spike generation. The simulated results suggested that such a cascade model could recreate visual information processing and encoding functionalities of the retina, which is helpful in developing artificial retina for the retinally blind.

  9. Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-08-15

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.

  10. Framework for cascade size calculations on random networks

    NASA Astrophysics Data System (ADS)

    Burkholz, Rebekka; Schweitzer, Frank

    2018-04-01

    We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.

  11. Wall-resolved spectral cascade-transport turbulence model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  12. Wall-resolved spectral cascade-transport turbulence model

    DOE PAGES

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.; ...

    2017-07-08

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  13. Stimulus exposure and gaze bias: a further test of the gaze cascade model.

    PubMed

    Glaholt, Mackenzie G; Reingold, Eyal M

    2009-04-01

    We tested predictions derived from the gaze cascade model of preference decision making (Shimojo, Simion, Shimojo, & Scheier, 2003; Simion & Shimojo, 2006, 2007). In each trial, participants' eye movements were monitored while they performed an eight-alternative decision task in which four of the items in the array were preexposed prior to the trial. Replicating previous findings, we found a gaze bias toward the chosen item prior to the response. However, contrary to the prediction of the gaze cascade model, preexposure of stimuli decreased, rather than increased, the magnitude of the gaze bias in preference decisions. Furthermore, unlike the prediction of the model, preexposure did not affect the likelihood of an item being chosen, and the pattern of looking behavior in preference decisions and on a non preference control task was remarkably similar. Implications of the present findings in multistage models of decision making are discussed.

  14. Charmed hadron production in pp collision

    NASA Astrophysics Data System (ADS)

    Goswami, Umananda Dev

    2007-10-01

    We investigated the production of charmed hadrons ( D+, D-, D0, D, Λc+, Λ¯c-) in pp collisions as a function of √{s}, xF, p⊥2 and p⊥ in the framework of the QGSJET model. The study of charmed hadron production characteristics in pp collision is particularly important for cosmic ray physics in the context of atmospheric prompt lepton fluxes. Here our aim is to check the reliability of the QGSJET model to be used to study the production of charmed hadrons in cosmic ray hadronic interactions with air nuclei. Charmed hadroproduction cross sections or the charmed hadron average multiplicities in pp collisions are relatively very small. The maximum production of all charmed hadrons takes place with low values of xF, p⊥2, and p⊥ within a small range for all values of √{s} under study. Charmed hadroproduction cross sections as a function of xF and p⊥2 are compared with the LEBC-EHS and LEBC-MPS experiment data for D-meson production. The agreement is quite satisfactory for smaller values of p⊥2 (⩽2 (GeV/c) 2). There is an asymmetry in charmed hadroproduction in pp collision. For all xF, asymmetry is prominent in the low value of √{s}. There is a strong preference for producing Λc+ rather than Λ¯c-baryons, while that for producing D¯ rather than D-mesons for this range of √{s}. Asymmetry increases from zero to ±1 around xF = 0.3 for all values of √{s} and for all charmed hardron groups. The patterns of asymmetric production of different charmed hadrons with xF are approximately the same as that with √{s}. We compare our calculation with the data from Fermilab experiment E781 (SELEX) for Λc-baryon production. The agreement is quite good. The asymmetry of charmed hadroproduction with p⊥ does not follow any well defined pattern.

  15. Experimental determination of unsteady blade element aerodynamics in cascades. Volume 1: Torsion mode cascade

    NASA Technical Reports Server (NTRS)

    Riffel, R. E.; Rothrock, M. D.

    1980-01-01

    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.

  16. Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States

    NASA Astrophysics Data System (ADS)

    Beitel, M.; Gallmeister, K.; Greiner, C.

    2017-01-01

    Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc . A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles as the Ξ0- and the Ω--baryon. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH . Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2. . . 5 fm/c.

  17. PREFACE: Focus section on Hadronic Physics Focus section on Hadronic Physics

    NASA Astrophysics Data System (ADS)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  18. Study of ordered hadron chains with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Mateos, D.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2017-11-01

    The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. The data sample consists of 190 μ b-1 of minimum-bias events collected with proton-proton collisions at a center-of-mass energy √{s }=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.

  19. Modeling strategic competition in hydro-thermal electricity generation markets with cascaded reservoir-hydroelectric generation plants

    NASA Astrophysics Data System (ADS)

    Uluca, Basak

    This dissertation aims to achieve two goals. The first is to model the strategic interactions of firms that own cascaded reservoir-hydro plants in oligopolistic and mixed oligopolistic hydrothermal electricity generation markets. Although competition in thermal generation has been extensively modeled since the beginning of deregulation, the literature on competition in hydro generation is still limited; in particular, equilibrium models of oligopoly that study the competitive behavior of firms that own reservoir-hydro plants along the same river in hydrothermal electricity generation markets are still under development. In competitive markets, when the reservoirs are located along the same river, the water released from an upstream reservoir for electricity generation becomes input to the immediate downstream reservoir, which may be owned by a competitor, for current or future use. To capture the strategic interactions among firms with cascaded reservoir-hydro plants, the Upstream-Conjecture approach is proposed. Under the Upstream-Conjecture approach, a firm with an upstream reservoir-hydro plant assumes that firms with downstream reservoir-hydro plants will respond to changes in the upstream firm's water release by adjusting their water release by the same amount. The results of the Upstream Conjecture experiments indicate that firms that own upstream reservoirs in a cascade may have incentive to withhold or limit hydro generation, forcing a reduction in the utilization of the downstream hydro generation plants that are owned by competitors. Introducing competition to hydroelectricity generation markets is challenging and ownership allocation of the previously state-owned cascaded reservoir-hydro plants through privatization can have significant impact on the competitiveness of the generation market. The second goal of the dissertation is to extract empirical guidance about best policy choices for the ownership of the state-owned generation plants, including the

  20. Sum rules for quasifree scattering of hadrons

    NASA Astrophysics Data System (ADS)

    Peterson, R. J.

    2018-02-01

    The areas d σ /d Ω of fitted quasifree scattering peaks from bound nucleons for continuum hadron-nucleus spectra measuring d2σ /d Ω d ω are converted to sum rules akin to the Coulomb sums familiar from continuum electron scattering spectra from nuclear charge. Hadronic spectra with or without charge exchange of the beam are considered. These sums are compared to the simple expectations of a nonrelativistic Fermi gas, including a Pauli blocking factor. For scattering without charge exchange, the hadronic sums are below this expectation, as also observed with Coulomb sums. For charge exchange spectra, the sums are near or above the simple expectation, with larger uncertainties. The strong role of hadron-nucleon in-medium total cross sections is noted from use of the Glauber model.

  1. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.

    PubMed

    Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H

    2017-03-20

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  2. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    NASA Astrophysics Data System (ADS)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-03-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  3. LEPTONIC AND LEPTO-HADRONIC MODELING OF THE 2010 NOVEMBER FLARE FROM 3C 454.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diltz, C.; Böttcher, M.

    In this study, we use a one-zone leptonic and a lepto-hadronic model to investigate the multi-wavelength emission and prominent flare of the flat spectrum radio quasar 3C 454.3 in 2010 November. We perform a parameter study with both models to obtain broadband fits to the spectral energy distribution (SED) of 3C 454.3. Starting with the baseline parameters obtained from the fits, we then investigate different flaring scenarios for both models to explain an extreme outburst and spectral hardening of 3C 454.3 that occurred in 2010 November. We find that the one-zone lepto-hadronic model can successfully explain both the broadband multi-wavelengthmore » SED and light curves in the optical R, Swift X-Ray Telescope, and Fermi γ -ray band passes for 3C 454.3 during quiescence and the peak of the 2010 November flare. We also find that the one-zone leptonic model produces poor fits to the broadband spectra in the X-ray and high-energy γ -ray band passes for the 2010 November flare.« less

  4. Three-dimensional Cascaded Lattice Boltzmann Model for Thermal Convective Flows

    NASA Astrophysics Data System (ADS)

    Hajabdollahi, Farzaneh; Premnath, Kannan

    2017-11-01

    Fluid motion driven by thermal effects, such as due to buoyancy in differentially heated enclosures arise in several natural and industrial settings, whose understanding can be achieved via numerical simulations. Lattice Boltzmann (LB) methods are efficient kinetic computational approaches for coupled flow physics problems. In this study, we develop three-dimensional (3D) LB models based on central moments and multiple relaxation times for D3Q7 and D3Q15 lattices to solve the energy transport equations in a double distribution function approach. Their collision operators lead to a cascaded structure involving higher order terms resulting in improved stability. This is coupled to a central moment based LB flow solver with source terms. The new 3D cascaded LB models for the convective flows are first validated for natural convection of air driven thermally on two vertically opposite faces in a cubic cavity at different Rayleigh numbers against prior numerical and experimental data, which show good quantitative agreement. Then, the detailed structure of the 3D flow and thermal fields and the heat transfer rates at different Rayleigh numbers are analyzed and interpreted.

  5. A stochastical event-based continuous time step rainfall generator based on Poisson rectangular pulse and microcanonical random cascade models

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph

    2017-04-01

    Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative

  6. Dynamically induced cascading failures in power grids.

    PubMed

    Schäfer, Benjamin; Witthaut, Dirk; Timme, Marc; Latora, Vito

    2018-05-17

    Reliable functioning of infrastructure networks is essential for our modern society. Cascading failures are the cause of most large-scale network outages. Although cascading failures often exhibit dynamical transients, the modeling of cascades has so far mainly focused on the analysis of sequences of steady states. In this article, we focus on electrical transmission networks and introduce a framework that takes into account both the event-based nature of cascades and the essentials of the network dynamics. We find that transients of the order of seconds in the flows of a power grid play a crucial role in the emergence of collective behaviors. We finally propose a forecasting method to identify critical lines and components in advance or during operation. Overall, our work highlights the relevance of dynamically induced failures on the synchronization dynamics of national power grids of different European countries and provides methods to predict and model cascading failures.

  7. Particle production at energies available at the CERN Large Hadron Collider within an evolutionary model

    NASA Astrophysics Data System (ADS)

    Sinyukov, Yu. M.; Shapoval, V. M.

    2018-06-01

    The particle yields and particle number ratios in Pb+Pb collisions at the CERN Large Hadron Collider (LHC) energy √{sN N}=2.76 TeV are described within the integrated hydrokinetic model (iHKM) at two different equations of state (EoS) for quark-gluon matter and the two corresponding hadronization temperatures T =165 MeV and T =156 MeV. The role of particle interactions at the final afterburner stage of the collision in the particle production is investigated by means of comparison of the results of full iHKM simulations with those where the annihilation and other inelastic processes (except for resonance decays) are switched off after hadronization/particlization, similarly as in the thermal models. An analysis supports the picture of continuous chemical freeze-out in the sense that the corrections to the sudden chemical freeze-out results, which arise because of the inelastic reactions at the subsequent evolution times, are noticeable and improve the description of particle number ratios. An important observation is that, although the particle number ratios with switched-off inelastic reactions are quite different at different particlization temperatures which are adopted for different equations of state to reproduce experimental data, the complete iHKM calculations bring very close results in both cases.

  8. Nonword Reading: Comparing Dual-Route Cascaded and Connectionist Dual-Process Models with Human Data

    ERIC Educational Resources Information Center

    Pritchard, Stephen C.; Coltheart, Max; Palethorpe, Sallyanne; Castles, Anne

    2012-01-01

    Two prominent dual-route computational models of reading aloud are the dual-route cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While sharing similarly designed lexical routes, the two models differ greatly in their respective nonlexical route architecture, such that they often differ on nonword pronunciation. Neither…

  9. Using the Cascade Model to Improve Antenatal Screening for the Hemoglobin Disorders

    ERIC Educational Resources Information Center

    Gould, Dinah; Papadopoulos, Irena; Kelly, Daniel

    2012-01-01

    Introduction: The inherited hemoglobin disorders constitute a major public health problem. Facilitators (experienced hemoglobin counselors) were trained to deliver knowledge and skills to "frontline" practitioners to enable them to support parents during antenatal screening via a cascade (train-the-trainer) model. Objectives of…

  10. Study of ordered hadron chains with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-11-29

    The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. Here, the data sample consists of 190 μb –1 of minimum-bias events collected with proton-proton collisions at a center-of-massmore » energy √s=7 TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.« less

  11. A cascaded QSAR model for efficient prediction of overall power conversion efficiency of all-organic dye-sensitized solar cells.

    PubMed

    Li, Hongzhi; Zhong, Ziyan; Li, Lin; Gao, Rui; Cui, Jingxia; Gao, Ting; Hu, Li Hong; Lu, Yinghua; Su, Zhong-Min; Li, Hui

    2015-05-30

    A cascaded model is proposed to establish the quantitative structure-activity relationship (QSAR) between the overall power conversion efficiency (PCE) and quantum chemical molecular descriptors of all-organic dye sensitizers. The cascaded model is a two-level network in which the outputs of the first level (JSC, VOC, and FF) are the inputs of the second level, and the ultimate end-point is the overall PCE of dye-sensitized solar cells (DSSCs). The model combines quantum chemical methods and machine learning methods, further including quantum chemical calculations, data division, feature selection, regression, and validation steps. To improve the efficiency of the model and reduce the redundancy and noise of the molecular descriptors, six feature selection methods (multiple linear regression, genetic algorithms, mean impact value, forward selection, backward elimination, and +n-m algorithm) are used with the support vector machine. The best established cascaded model predicts the PCE values of DSSCs with a MAE of 0.57 (%), which is about 10% of the mean value PCE (5.62%). The validation parameters according to the OECD principles are R(2) (0.75), Q(2) (0.77), and Qcv2 (0.76), which demonstrate the great goodness-of-fit, predictivity, and robustness of the model. Additionally, the applicability domain of the cascaded QSAR model is defined for further application. This study demonstrates that the established cascaded model is able to effectively predict the PCE for organic dye sensitizers with very low cost and relatively high accuracy, providing a useful tool for the design of dye sensitizers with high PCE. © 2015 Wiley Periodicals, Inc.

  12. A new possible picture of the hadron structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokrovsky, Yury E.

    A new chiral-scale invariant version of the bag model (CSB) is developed and applied to calculations of masses and radii for single bag states. The mass formula of the CSB model contains no free parameters and connects masses and radii of the bags with fundamental QCD scales, namely with {lambda}{sub QCD}, , , and quark masses. For high angular momentum states the CSB model well describes hadron Regge trajectories and predicts thin flux tubes with R{sub tube}{approx_equal}0.25 fm close to the small tube radii introduced a posteriori in modern models. For low angular momentum states this model predicts smallmore » radii of the bags R{sub bag}{approx_equal}0.25 fm close to the radii associated with constituent quarks. Masses of the lowest angular momentum bags are obtained close to the data for well known hadron resonances ({pi}(1300), {omega}(1420), N(1440),{delta}(1600), etc.). These resonances are predicted to be almost single bag states. But ground states of SU(3) hadrons (N(940), {pi}(140), etc.) are treated as strongly bounded multi bag states--BagBag-mesons, and BagBagBag-baryons like in the old Fermi, Yang, and Sakata models. As well, this model predicts the low mass excitations of SU(3) hadrons newly observed for nucleons at the following masses 1004, 1044, and 1094 MeV.« less

  13. Hadronic interactions in the MINOS detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordosky, Michael Alan

    2004-08-01

    MINOS, the Main Injector Neutrino Oscillation Search, will study neutrino flavor transformations using a Near detector at the Fermi National Accelerator Laboratory and a Far detector located in the Soudan Underground Laboratory in northern Minnesota. The MINOS collaboration also constructed the CalDet (calibration detector), a smaller version of the Near and Far detectors, to determine the topological and signal response to hadrons, electrons and muons. The detector was exposed to test-beams in the CERN Proton Synchrotron East Hall during 2001-2003, where it collected events at momentum settings between 200 MeV/c and 10 GeV/c. In this dissertation we present results ofmore » the CalDet experiment, focusing on the topological and signal response to hadrons. We briefly describe the MINOS experiment and its iron-scintillator tracking-sampling calorimters as a motivation for the CalDet experiment. We discuss the operation of the CalDet in the beamlines as well as the trigger and particle identification systems used to isolate the hadron sample. The method used to calibrate the MINOS detector is described and validated with test-beam data. The test-beams were simulated to model the muon flux, energy loss upstream of the detector and the kaon background. We describe the procedure used to discriminate between pions and muons on the basis of the event topology. The hadron samples were used to benchmark the existing GEANT3 based hadronic shower codes and determine the detector response and resolution for pions and protons. We conclude with comments on the response to single hadrons and to neutrino induced hadronic showers.« less

  14. SPATIAL FOREST SOIL PROPERTIES FOR ECOLOGICAL MODELING IN THE WESTERN OREGON CASCADES

    EPA Science Inventory

    The ultimate objective of this work is to provide a spatially distributed database of soil properties to serve as inputs to model ecological processes in western forests at the landscape scale. The Central Western Oregon Cascades are rich in biodiversity and they are a fascinati...

  15. Modeling off-resonant nonlinear-optical cascading in mesoscopic thin films and guest-host molecular systems

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael

    2013-12-01

    A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.

  16. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    PubMed Central

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-01-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835

  17. Cumulative Risk Disparities in Children's Neurocognitive Functioning: A Developmental Cascade Model

    ERIC Educational Resources Information Center

    Wade, Mark; Browne, Dillon T.; Plamondon, Andre; Daniel, Ella; Jenkins, Jennifer M.

    2016-01-01

    The current longitudinal study examined the role of cumulative social risk on children's theory of mind (ToM) and executive functioning (EF) across early development. Further, we also tested a cascade model of development in which children's social cognition at 18 months was hypothesized to predict ToM and EF at age 4.5 through intermediary…

  18. Statistical analysis of cascading failures in power grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael; Pfitzner, Rene; Turitsyn, Konstantin

    2010-12-01

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systemsmore » consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.« less

  19. Glacier modeling in support of field observations of mass balance at South Cascade Glacier, Washington, USA

    USGS Publications Warehouse

    Josberger, Edward G.; Bidlake, William R.

    2010-01-01

    The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  20. Elliptic flow of identified hadrons in Pb-Pb collisions at $$ \\sqrt{s_{\\mathrm{NN}}}=2.76 $$ TeV

    DOE PAGES

    Abelev, B.; Adam, J.; Adamová, D.; ...

    2015-06-29

    Here, the elliptic flow coefficient (v 2) of identified particles in Pb-Pb collisions at √s NN =2.76 TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of |Δη| > 0.9 between the identified hadron under study and the reference particles. The v 2 is reported for π ±, K ±, K S 0, p+p¯, Φ, Λ+Λ¯, Ξ –+Ξ¯+ and Ω –+Ω ¯+ in several collision centralities. In the low transverse momentum (p T) region, p T < 3 GeV/c,more » v 2(p T) exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for π± and the combined K ± and K S 0 results, are described fairly well by hydrodynamic calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the v 2(p T) for p+p¯, Φ, Λ+Λ¯ and Ξ –+Ξ ¯+. For transverse momentum values larger than about 3 GeV/c, particles tend to group according to their type, i.e. mesons and baryons. The present measurements exhibit deviations from the number of constituent quark (NCQ) scaling at the level of ±20% for p T > 3 GeV/c.« less

  1. A New Era of Symmetries in the Hadronic Interaction

    NASA Astrophysics Data System (ADS)

    Crawford, Christopher

    2016-09-01

    The search for a weak component of the nuclear force began in 1957, shortly after the proposal of parity violation. While it has been observed in compound nuclei with large nuclear enhancements, a systematic characterization of the hadronic weak interaction is still forthcoming almost sixty years later. New experimental facilities and technology have rejuvenated efforts to map out this ``complexity frontier'' within the Standard Model, and we will soon have precision data from multiple few-body experiments. In parallel, modern effective field theories have provided a systematic model independent description of the hadronic interaction with estimates of higher-order effects. The characterization of discrete symmetries in hadronic systems has recently become important for the design and analysis of other precision symmetries measurements, for example, electron PV scattering and time-reversal violation experiments. These new developments in experiment, theory, and application have ushered in a new era in hadronic parity violation. We acknowledge support from DOE-NP under Contract DE-SC0008107.

  2. Constraining the hadronic spectrum through QCD thermodynamics on the lattice

    NASA Astrophysics Data System (ADS)

    Alba, Paolo; Bellwied, Rene; Borsányi, Szabolcs; Fodor, Zoltan; Günther, Jana; Katz, Sandor D.; Mantovani Sarti, Valentina; Noronha-Hostler, Jacquelyn; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2017-08-01

    Fluctuations of conserved charges allow us to study the chemical composition of hadronic matter. A comparison between lattice simulations and the hadron resonance gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well-established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the quark model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results.

  3. Rare b-hadron decays as probe of new physics

    NASA Astrophysics Data System (ADS)

    Lanfranchi, Gaia

    2018-05-01

    The unexpected absence of unambiguous signals of New Physics (NP) at the TeV scale at the Large Hadron Collider (LHC) puts today flavor physics at the forefront. In particular, rare decays of b-hadrons represent a unique probe to challenge the Standard Model (SM) paradigm and test models of NP at a scale much higher than that accessible by direct searches. This article reviews the status of the field.

  4. An empirical model to determine the hadronic resonance contributions \\overline{B}{} ^0 → \\overline{K}{} ^{*0} μ ^+ μ ^- to transitions

    NASA Astrophysics Data System (ADS)

    Blake, T.; Egede, U.; Owen, P.; Petridis, K. A.; Pomery, G.

    2018-06-01

    A method for analysing the hadronic resonance contributions in \\overline{B}{} ^0 → \\overline{K}{} ^{*0} μ ^+ μ ^- decays is presented. This method uses an empirical model that relies on measurements of the branching fractions and polarisation amplitudes of final states involving J^{PC}=1^{-} resonances, relative to the short-distance component, across the full dimuon mass spectrum of \\overline{B}{} ^0 → \\overline{K}{} ^{*0} μ ^+ μ ^- transitions. The model is in good agreement with existing calculations of hadronic non-local effects. The effect of this contribution to the angular observables is presented and it is demonstrated how the narrow resonances in the q^2 spectrum provide a dramatic enhancement to CP-violating effects in the short-distance amplitude. Finally, a study of the hadronic resonance effects on lepton universality ratios, R_{K^{(*)}}, in the presence of new physics is presented.

  5. Threshold cascades with response heterogeneity in multiplex networks

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Brummitt, Charles D.; Goh, K.-I.

    2014-12-01

    Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.

  6. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    PubMed

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  7. Calculation of transonic flow in radial turbine blade cascade

    NASA Astrophysics Data System (ADS)

    Petr, Straka

    2017-09-01

    Numerical modeling of transonic centripetal turbulent flow in radial blade cascade is described in this paper. Attention is paid to effect of the outlet confusor on flow through the radial blade cascade. Parameters of presented radial blade cascade are compared with its linear representation

  8. Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies

    NASA Technical Reports Server (NTRS)

    Chou, T. T.; Chen, N. Y.

    1985-01-01

    The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.

  9. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  10. The Transfer of Content Knowledge in a Cascade Model of Professional Development

    ERIC Educational Resources Information Center

    Turner, Fay; Brownhill, Simon; Wilson, Elaine

    2017-01-01

    A cascade model of professional development presents a particular risk that "knowledge" promoted in a programme will be diluted or distorted as it passes from originators of the programme to local trainers and then to the target teachers. Careful monitoring of trainers' and teachers' knowledge as it is transferred through the system is…

  11. The Materosion project, a sediment cascade modeling for torrential sediment transfers: final results and perspectives

    NASA Astrophysics Data System (ADS)

    Rudaz, Benjamin; Loye, Alexandre; Mazotti, Benoit; Bardou, Eric; Jaboyedoff, Michel

    2013-04-01

    The Materosion project, conducted between the swiss canton of Valais (CREALP) and University of Lausanne (CRET) aims at forecasting sediment transfer in alpine torrents using the sediment cascade concept. The study site is the high Anniviers valley, around the village of Zinal (Valais). The torrents are divided in homogeneous reaches, to and from which sediments are transported by debris flows and bedload transport events. The model runs simulations of 100 years, with a 1-month time step, each with a given a random meteorological event ranging from no activity up to high magnitude debris flows. These events are calibrated using local rain data and observed corresponding debris flow frequencies. The model is applied to ten torrent systems with variable geological context, watershed geometries and sediment supplies. Given the high number of possible event scenarios, 10'000 simulations per torrent are performed, giving a statistical distribution of cumulated volumes and an event size distribution. A way to visualize the complex results data is proposed, and a back-analysis of the internal sediment cascade dynamic is performed. The back-analysis shows that the results' distribution stabilize after ~5'000 simulations. The model results, especially the range of debris flow volumes are crucial to maintain mitigation measures such as retention dams, and give clues for future sediment cascade modeling.

  12. Ericksen number and Deborah number cascade predictions of a model for liquid crystalline polymers for simple shear flow

    NASA Astrophysics Data System (ADS)

    Klein, D. Harley; Leal, L. Gary; García-Cervera, Carlos J.; Ceniceros, Hector D.

    2007-02-01

    We consider the behavior of the Doi-Marrucci-Greco (DMG) model for nematic liquid crystalline polymers in planar shear flow. We found the DMG model to exhibit dynamics in both qualitative and quantitative agreement with experimental observations reported by Larson and Mead [Liq. Cryst. 15, 151 (1993)] for the Ericksen number and Deborah number cascades. For increasing shear rates within the Ericksen number cascade, the DMG model displays three distinct regimes: stable simple shear, stable roll cells, and irregular structure accompanied by disclination formation. In accordance with experimental observations, the model predicts both ±1 and ±1/2 disclinations. Although ±1 defects form via the ridge-splitting mechanism first identified by Feng, Tao, and Leal [J. Fluid Mech. 449, 179 (2001)], a new mechanism is identified for the formation of ±1/2 defects. Within the Deborah number cascade, with increasing Deborah number, the DMG model exhibits a streamwise banded texture, in the absence of disclinations and roll cells, followed by a monodomain wherein the mean orientation lies within the shear plane throughout the domain.

  13. Cascading gravity is ghost free

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.

    2010-06-15

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  14. Cosmic ray air shower characteristics in the framework of the parton-based Gribov-Regge model NEXUS

    NASA Astrophysics Data System (ADS)

    Bossard, G.; Drescher, H. J.; Kalmykov, N. N.; Ostapchenko, S.; Pavlov, A. I.; Pierog, T.; Vishnevskaya, E. A.; Werner, K.

    2001-03-01

    The purpose of this paper is twofold: first we want to introduce a new type of hadronic interaction model (NEXUS), which has a much more solid theoretical basis than, for example, presently used models such as QGSJET and VENUS, and ensures therefore a much more reliable extrapolation towards high energies. Secondly, we want to promote an extensive air shower (EAS) calculation scheme, based on cascade equations rather than explicit Monte Carlo simulations, which is very accurate in calculations of main EAS characteristics and extremely fast concerning computing time. We employ the NEXUS model to provide the necessary data on particle production in hadron-air collisions and present the average EAS characteristics for energies 1014-1017 eV. The experimental data of the CASA-BLANCA group are analyzed in the framework of the new model.

  15. Energy Cascade in Fermi-Pasta Models

    NASA Astrophysics Data System (ADS)

    Ponno, A.; Bambusi, D.

    We show that, for long-wavelength initial conditions, the FPU dynamics is described, up to a certain time, by two KdV-like equations, which represent the resonant Hamiltonian normal form of the system. The energy cascade taking place in the system is then quantitatively characterized by arguments of dimensional analysis based on such equations.

  16. Monte Carlo simulation of the nuclear-electromagnetic cascade development and the energy response of ionization spectrometers

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1973-01-01

    Modifications to the basic computer program for performing the simulations are reported. The major changes include: (1) extension of the calculations to include the development of cascades initiated by heavy nuclei, (2) improved treatment of the nuclear disintegrations which occur during the interactions of hadrons in heavy absorbers, (3) incorporation of accurate multi-pion final-state cross sections for various interactions at accelerator energies, (4) restructuring of the program logic so that calculations can be made for sandwich-type detectors, and (5) logic modifications related to execution of the program.

  17. Cascades on a stochastic pulse-coupled network

    NASA Astrophysics Data System (ADS)

    Wray, C. M.; Bishop, S. R.

    2014-09-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.

  18. Cascades on a stochastic pulse-coupled network

    PubMed Central

    Wray, C. M.; Bishop, S. R.

    2014-01-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided. PMID:25213626

  19. The Blazar 3C 66A in 2003-2004: hadronic versus leptonic model fits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimer, A.; Joshi, M.; Boettcher, M.

    2008-12-24

    The low-frequency peaked BL Lac object 3C 66A was the subject of an extensive multi-wavelength campaign from July 2003 till April 2004, which included quasi-simultaneous observations at optical, X-rays and very high energy gamma-rays. Here we apply the hadronic Synchrotron-Proton Blazar (SPB) model to the observed spectral energy distribution time-averaged over a flaring state, and compare the resulting model fits to those obtained from the application of the leptonic Synchrotron-Self-Compton (SSC) model. The results are used to identify diagnostic key predictions of the two blazar models for future multi-wavelength observations.

  20. Model of the Phase Transition Mimicking the Pasta Phase in Cold and Dense Quark-Hadron Matter

    NASA Astrophysics Data System (ADS)

    Ayriyan, Alexander; Grigorian, Hovik

    2018-02-01

    A simple mixed phase model mimicking so-called "pasta" phases in the quarkhadron phase transition is developed and applied to static neutron stars for the case of DD2 type hadronic and NJL type quark matter models. The influence of the mixed phase on the mass-radius relation of the compact stars is investigated. Model parameters are chosen such that the results are in agreement with the mass-radius constraints.

  1. Testing the inhibitory cascade model in Mesozoic and Cenozoic mammaliaforms

    PubMed Central

    2013-01-01

    Background Much of the current research in the growing field of evolutionary development concerns relating developmental pathways to large-scale patterns of morphological evolution, with developmental constraints on variation, and hence diversity, a field of particular interest. Tooth morphology offers an excellent model system for such ‘evo-devo’ studies, because teeth are well preserved in the fossil record, and are commonly used in phylogenetic analyses and as ecological proxies. Moreover, tooth development is relatively well studied, and has provided several testable hypotheses of developmental influences on macroevolutionary patterns. The recently-described Inhibitory Cascade (IC) Model provides just such a hypothesis for mammalian lower molar evolution. Derived from experimental data, the IC Model suggests that a balance between mesenchymal activators and molar-derived inhibitors determines the size of the immediately posterior molar, predicting firstly that molars either decrease in size along the tooth row, or increase in size, or are all of equal size, and secondly that the second lower molar should occupy one third of lower molar area. Here, we tested the IC Model in a large selection of taxa from diverse extant and fossil mammalian groups, ranging from the Middle Jurassic (~176 to 161 Ma) to the Recent. Results Results show that most taxa (~65%) fell within the predicted areas of the Inhibitory Cascade Model. However, members of several extinct groups fell into the regions where m2 was largest, or rarely, smallest, including the majority of the polyphyletic “condylarths”. Most Mesozoic mammals fell near the centre of the space with equality of size in all three molars. The distribution of taxa was significantly clustered by diet and by phylogenetic group. Conclusions Overall, the IC Model was supported as a plesiomorphic developmental system for Mammalia, suggesting that mammal tooth size has been subjected to this developmental constraint at

  2. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  3. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE PAGES

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...

    2017-03-20

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  4. The presence of accessory cusps in chimpanzee lower molars is consistent with a patterning cascade model of development

    PubMed Central

    Skinner, Matthew M; Gunz, Philipp

    2010-01-01

    Tooth crown morphology is of primary importance in fossil primate systematics and understanding the developmental basis of its variation facilitates phenotypic analyses of fossil teeth. Lower molars of species in the chimp/human clade (including fossil hominins) possess between four and seven cusps and this variability has been implicated in alpha taxonomy and phylogenetic systematics. What is known about the developmental basis of variation in cusp number – based primarily on experimental studies of rodent molars – suggests that cusps form under a morphodynamic, patterning cascade model involving the iterative formation of enamel knots. In this study we test whether variation in cusp 6 (C6) presence in common chimpanzee and bonobo lower molars (n = 55) is consistent with predictions derived from the patterning cascade model. Using microcomputed tomography we imaged the enamel-dentine junction of lower molars and used geometric morphometrics to examine shape variation in the molar crown correlated with variation in C6 presence (in particular the size and spacing of the dentine horns). Results indicate that C6 presence is consistent with predictions of a patterning cascade model, with larger molars exhibiting a higher frequency of C6 and with the location and size of later-forming cusps correlated with C6 variation. These results demonstrate that a patterning cascade model is appropriate for interpreting cusp variation in Pan and have implications for cusp nomenclature and the use of accessory cusp morphology in primate systematics. PMID:20629983

  5. Forecasting Social Unrest Using Activity Cascades

    PubMed Central

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J.; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen “on the ground.” Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach. PMID:26091012

  6. Forecasting Social Unrest Using Activity Cascades.

    PubMed

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach.

  7. Constraints on the I = 1 hadronic τ decay and e+e- →hadrons data sets and implications for (g - 2) μ

    NASA Astrophysics Data System (ADS)

    Maltman, Kim

    2006-02-01

    Sum rule tests are performed on the spectral data for (i) flavor ud vector-current-induced hadronic τ decays and (ii) e+e- hadroproduction, in the region below s ∼ 3- 4 GeV2, where discrepancies exist between the isospin-breaking-corrected charged and neutral current I = 1 spectral functions. The τ data is found to be compatible with expectations based on high-scale αs (MZ) determinations, while the electroproduction data displays two problems. The results favor determinations of the leading order hadronic contribution to (g - 2) μ which incorporate hadronic τ decay data over those employing electroproduction data only, and hence a reduced discrepancy between experiment and the Standard Model prediction for (g - 2) μ.

  8. Testing hadronic interaction models using a highly granular silicon-tungsten calorimeter

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Repond, J.; Schlereth, J.; Xia, L.; Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Eigen, G.; Mikami, Y.; Price, T.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Cârloganu, C.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Lima, J. G. R.; Salcido, P.; Zutshi, V.; Boisvert, V.; Green, B.; Misiejuk, A.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cauwenbergh, S.; Tytgat, M.; Zaganidis, N.; Hostachy, J.-Y.; Morin, L.; Gadow, K.; Göttlicher, P.; Günter, C.; Krüger, K.; Lutz, B.; Reinecke, M.; Sefkow, F.; Feege, N.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Kaplan, A.; Norbeck, E.; Northacker, D.; Onel, Y.; Kim, E. J.; van Doren, B.; Wilson, G. W.; Wing, M.; Bobchenko, B.; Chadeeva, M.; Chistov, R.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Popova, E.; Gabriel, M.; Kiesling, C.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci-Giannelli, M.; Fleury, J.; Frisson, T.; Kégl, B.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de La Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; Matthieu, A.; Mora de Freitas, P.; Videau, H.; Augustin, J.-E.; David, J.; Ghislain, P.; Lacour, D.; Lavergne, L.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Götze, M.; Calice Collaboration

    2015-09-01

    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 350,000 selected π- events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the GEANT4 simulation tool kit are compared to this data. A reasonable overall description of the data is observed; the Monte Carlo predictions are within 20% of the data, and for many observables much closer. The largest quantitative discrepancies are found in the longitudinal and transverse distributions of reconstructed energy.

  9. Cascades on a class of clustered random networks

    NASA Astrophysics Data System (ADS)

    Hackett, Adam; Melnik, Sergey; Gleeson, James P.

    2011-05-01

    We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of random networks with arbitrary degree distribution and nonzero clustering introduced previously in [M. E. J. Newman, Phys. Rev. Lett. PRLTAO0031-900710.1103/PhysRevLett.103.058701103, 058701 (2009)]. A condition for the existence of global cascades is derived as well as a general criterion that determines whether increasing the level of clustering will increase, or decrease, the expected cascade size. Applications, examples of which are provided, include site percolation, bond percolation, and Watts’ threshold model; in all cases analytical results give excellent agreement with numerical simulations.

  10. Hadron-rich cosmic-ray families detected by emulsion chamber.

    NASA Astrophysics Data System (ADS)

    Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.

    1995-11-01

    Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.

  11. Hadron Physics at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Ulrich

    2011-10-24

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  12. A cascaded neuro-computational model for spoken word recognition

    NASA Astrophysics Data System (ADS)

    Hoya, Tetsuya; van Leeuwen, Cees

    2010-03-01

    In human speech recognition, words are analysed at both pre-lexical (i.e., sub-word) and lexical (word) levels. The aim of this paper is to propose a constructive neuro-computational model that incorporates both these levels as cascaded layers of pre-lexical and lexical units. The layered structure enables the system to handle the variability of real speech input. Within the model, receptive fields of the pre-lexical layer consist of radial basis functions; the lexical layer is composed of units that perform pattern matching between their internal template and a series of labels, corresponding to the winning receptive fields in the pre-lexical layer. The model adapts through self-tuning of all units, in combination with the formation of a connectivity structure through unsupervised (first layer) and supervised (higher layers) network growth. Simulation studies show that the model can achieve a level of performance in spoken word recognition similar to that of a benchmark approach using hidden Markov models, while enabling parallel access to word candidates in lexical decision making.

  13. WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph, E-mail: ouliang@usc.edu, E-mail: pgary@lanl.gov, E-mail: josephjw@usc.edu

    2015-02-20

    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inversemore » cascade regime is much weaker than that in the forward cascade regime.« less

  14. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    NASA Astrophysics Data System (ADS)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  15. An estimate of the bulk viscosity of the hadronic medium

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane

    2017-05-01

    The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.

  16. Temperament Pathways to Childhood Disruptive Behavior and Adolescent Substance Abuse: Testing a Cascade Model

    ERIC Educational Resources Information Center

    Martel, Michelle M.; Pierce, Laura; Nigg, Joel T.; Jester, Jennifer M.; Adams, Kenneth; Puttler, Leon I.; Buu, Anne; Fitzgerald, Hiram; Zucker, Robert A.

    2009-01-01

    Temperament traits may increase risk for developmental psychopathology like Attention-Deficit/Hyperactivity Disorder (ADHD) and disruptive behaviors during childhood, as well as predisposing to substance abuse during adolescence. In the current study, a cascade model of trait pathways to adolescent substance abuse was examined. Component…

  17. Rapidity distributions of hadrons in the HydHSD hybrid model

    NASA Astrophysics Data System (ADS)

    Khvorostukhin, A. S.; Toneev, V. D.

    2017-03-01

    A multistage hybrid model intended for describing heavy-ion interactions in the energy region of the NICA collider under construction in Dubna is proposed. The model combines the initial, fast, interaction stage described by the model of hadron string dynamics (HSD) and the subsequent evolution that the expanding system formed at the first stage experiences at the second stage and which one treats on the basis of ideal hydrodynamics; after the completion of the second stage, the particles involved may still undergo rescattering (third interaction stage). The model admits three freeze-out scenarios: isochronous, isothermal, and isoenergetic. Generally, the HydHSD hybrid model developed in the present study provides fairly good agreement with available experimental data on proton rapidity spectra. It is shown that, within this hybrid model, the two-humped structure of proton rapidity distributions can be obtained either by increasing the freeze-out temperature and energy density or by more lately going over to the hydrodynamic stage. Although the proposed hybrid model reproduces rapidity spectra of protons, it is unable to describe rapidity distributions of pions, systematically underestimating their yield. It is necessary to refine the model by including viscosity effects at the hydrodynamic stage of evolution of the system and by considering in more detail the third interaction stage.

  18. The gluon condensation at high energy hadron collisions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Lan, Jiangshan

    2017-03-01

    We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing-antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton-proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron-hadron colliders.

  19. Di-hadron production at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anefalos Pereira, Sergio; et. al.,

    Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Hadron pair (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complement single hadron SIDIS. Di-hadrons allow the study of low- and high-twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs ( f1, g1, h1), the Higher Twist (HT) e and hL functions are very interesting becausemore » they offer insights into the physics of the largely unexplored quark-gluon correlations, which provide access into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on di-hadron beam-, target- and double-spin asymmetries will be presented.« less

  20. Multiplicity moments at low and high energy in hadron--hadron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antich, P.; Calligarich, E.; Cecchet, G.

    1974-01-19

    A phenomenological investigation is made of the relation obtained by Weingarten for the multiplicity moments in hadron -hadron interactions. The predictions are compared with moments computed from the experimental data, over a wide energy range, of the reactions pp, pp, pi /sup approximately /p, and K/sup approximately /p. (LBS)

  1. Phase transition and information cascade in a voting model

    NASA Astrophysics Data System (ADS)

    Hisakado, M.; Mori, S.

    2010-08-01

    In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters—copycat and independent—and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.

  2. Relevance of the hadronic interaction model in the interpretation of multiple muon data as detected with the MACRO experiment

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Coutu, S.; de Benedictis, L.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Hawthorne, A.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Mazzotta, C.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Nolty, R.; Okada, C.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrera, S.; Pistilli, P.; Popa, V.; Rainó, A.; Rastelli, A.; Reynoldson, J.; Ronga, F.; Rubizzo, U.; Sanzgiri, A.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlé, G.; Togo, V.; Walter, C. W.; Webb, R.

    1999-03-01

    With the aim of discussing the effect of the possible sources of systematic uncertainties in simulation models, the analysis of multiple muon events from the MACRO experiment at Gran Sasso is reviewed. In particular, the predictions from different currently available hadronic interaction models are compared.

  3. Flavor-dependent eigenvolume interactions in a hadron resonance gas

    NASA Astrophysics Data System (ADS)

    Alba, P.; Vovchenko, V.; Gorenstein, M. I.; Stoecker, H.

    2018-06-01

    Eigenvolume effects in the hadron resonance gas (HRG) model are studied for experimental hadronic yields in nucleus-nucleus collisions. If particle eigenvolumes are different for different hadron species, the excluded volume HRG (EV-HRG) improves fits to multiplicity data. In particular, using different mass-volume relations for strange and non-strange hadrons we observe a remarkable improvement in the quality of the fits. This effect appears to be rather insensitive to other details in the schemes employed in the EV-HRG. We show that the parameters found from fitting the data of the ALICE Collaboration in central Pb+Pb collisions at the collision energy √{sNN } = 2.76 TeV entail the same improvement for all centralities at the same collision energy, and for the RHIC and SPS data at lower collision energies. Our findings are put in the context of recent fits of lattice QCD results.

  4. Multiplicities of secondary hadrons produced in vp and overlinevp charged current interactions

    NASA Astrophysics Data System (ADS)

    Grässler, H.; Lanske, D.; Schulte, R.; Jones, G. T.; Middleton, R. P.; O'Neale, S. W.; Böckmann, K.; Gebel, W.; Geich-Gimbel, C.; Nellen, B.; Grant, A.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Chima, J. S.; Mobayyen, M. M.; Talebzadeh, M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Settles, R.; Wernhard, K. L.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicić, D.; Saitta, B.; Wells, J.; Aachen-Birmingham-Bonn-CERN-Imperial College-München (MPI)-Oxford Collaboration

    1983-08-01

    In an experiment with the hydrogen bubble chamber BEBC at CERN multiplicities of hadrons produced in νp and overlinevp interactions have been investigated. Results are presented on the multiplicities of charged hadrons and neutral pions, forward and backward multiplicities of charged hadrons and correlations between forward and backward multiplicities. Comparisons are made with hadronic reactions and e +e - annihilation. In the framework of the quark-parton model the data imply similar charged multiplicities for the fragments of a u- and a d-quark, and a larger multiplicities for the fragments of a uu- than for a ud-diquark. The correlation data suggest independent fragmentation of the quark and diquark for hadronic masses above ˜ 7 GeV and local charge compensation within an event.

  5. Testing of the DPMJET and VENUS hadronic interaction models with help of the atmospheric muons

    NASA Astrophysics Data System (ADS)

    Dedenko, L. G.; Lukyashin, A. V.; Roganova, T. M.; Fedorova, G. F.

    2017-01-01

    The more accurate original calculations of the atmospheric vertical muon energy spectra at energies 102 - 105 GeV have been carried out in terms of DPMJET and VENUS models. The Gaisser-Honda approximations of the measured energy spectra of primary protons, helium and nitrogen nuclei have been used. The package CORSIKA has been used to simulate cascades in the standard atmosphere induced by different primary particles with various fixed energies E. Statistics of simulated cascades for secondary particles with energies (0.01-1)·E was increased up to 106. It has been shown that predictions of the DPMJET and VENUS models for these muon fluxes are below the data of the classical experiments L3 + Cosmic, MACRO and LVD by factors of ˜ 1.6-1.95 at energies above 102 GeV. It has been concluded that these tested models underestimate the production of the most energetic secondary particles, namely, π-mesons and K-mesons, in interactions of the primary protons and other primary nuclei with nuclei in the atmosphere by the same factors.

  6. Cascading failure in the wireless sensor scale-free networks

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li

    2015-05-01

    In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).

  7. The B  -  L supersymmetric standard model with inverse seesaw at the large hadron collider.

    PubMed

    Khalil, S; Moretti, S

    2017-03-01

    We review the TeV scale B  -  L extension of the minimal supersymmetric standard model (BLSSM) where an inverse seesaw mechanism of light neutrino mass generation is naturally implemented and concentrate on its hallmark manifestations at the large hadron collider (LHC).

  8. Testing an idealized dynamic cascade model of the development of serious violence in adolescence.

    PubMed

    Dodge, Kenneth A; Greenberg, Mark T; Malone, Patrick S

    2008-01-01

    A dynamic cascade model of development of serious adolescent violence was proposed and tested through prospective inquiry with 754 children (50% male; 43% African American) from 27 schools at 4 geographic sites followed annually from kindergarten through Grade 11 (ages 5-18). Self, parent, teacher, peer, observer, and administrative reports provided data. Partial least squares analyses revealed a cascade of prediction and mediation: An early social context of disadvantage predicts harsh-inconsistent parenting, which predicts social and cognitive deficits, which predicts conduct problem behavior, which predicts elementary school social and academic failure, which predicts parental withdrawal from supervision and monitoring, which predicts deviant peer associations, which ultimately predicts adolescent violence. Findings suggest targets for in-depth inquiry and preventive intervention.

  9. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.

    2015-10-01

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (∼0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential. The Gao-Weber potential appears to give a more realistic description of cascade dynamics in SiC, but still has some shortcomings when the defect migration barriers are compared to the ab initio results.

  10. Bankruptcy cascades in interbank markets.

    PubMed

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.

  11. Bankruptcy Cascades in Interbank Markets

    PubMed Central

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank’s liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  12. Hard Diffraction in Hadron--Hadron Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    2002-11-01

    Breakdown of factorization observed recently in the diffractive dijet production in deep inelastic lepton induced and hadron induced processes is explained using the Good-Walker picture of diffraction dissociation. Numerical estimates agree with the recent data.

  13. van der Waals Interactions and Hadron Resonance Gas: Role of resonance widths modeling on conserved charges fluctuations

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr; Alba, Paolo; Gorenstein, Mark I.; Stoecker, Horst

    2018-02-01

    The quantum van der Waals (QvdW) extension of the ideal hadron resonance gas (HRG) model which includes the attractive and repulsive interactions between baryons - the QvdW-HRG model - is applied to study the behavior of the baryon number related susceptibilities in the crossover temperature region. Inclusion of the QvdW interactions leads to a qualitatively different behavior of susceptibilities, in many cases resembling lattice QCD simulations. It is shown that for some observables, in particular for χBQ11/χB2, effects of the QvdW interactions essentially cancel out. It is found that the inclusion of the finite resonance widths leads to an improved description of χB2, but it also leads to a worse description of χBQ11/χB2, as compared to the lattice data. On the other hand, inclusion of the extra, unconfirmed baryons into the hadron list leads to a simultaneous improvement in the description of both observables.

  14. Issues and opportunities in exotic hadrons

    DOE PAGES

    Briceno, Raul A.; Cohen, Thomas D.; Coito, S.; ...

    2016-04-01

    The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. Consequently, it is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimentalmore » and theoretical issues concerning heavy exotic hadrons is presented.« less

  15. Kinetic freeze-out conditions for the production of resonances, hadronic molecules, and light nuclei

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae; Song, Taesoo; Lee, Su Houng

    2018-02-01

    We investigate the freeze-out conditions of a particle in an expanding system of interacting particles in order to understand the productions of resonances, hadronic molecules, and light nuclei in heavy-ion collisions. Applying the kinetic freeze-out condition with explicit hydrodynamic calculations for the expanding hadronic phase to the daughter particles of K* mesons, we find that the larger suppression of the yield ratio of K*/K at the Large Hadron Collider (LHC) than at the Relativisitic Heavy Ion Collider (RHIC) compared to the expectations from the statistical hadronization model based on chemical freeze-out parameters reflects the lower kinetic freeze-out temperature at LHC than at RHIC. Furthermore, we point out that for the light nuclei or hadronic molecules that are bound, the freeze-out condition should be applied to the respective particle in the hadronic matter. It is then shown through the rate equation that when the nucleon and pion numbers are kept constant at the chemical freeze-out value during the hadronic phase, the deuteron number quickly approaches an asymptotic value that is close to the statistical model prediction at the chemical freeze-out point. We argue that the reduction seen in K* numbers is a typical result for a particle that has a large natural decay width decaying into daughter particles, while that for deuteron is typical for a stable hadronic bound state.

  16. Di-hadron production at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    Anefalos Pereira, Sergio; CLAS Collaboration

    2015-04-01

    Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Pair of hadrons (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complements single-hadron SIDIS. The study of di-hadrons allow us to study higher twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs (f 1, g 1, h 1), the Higher Twist (HT) e and hL functions are very interesting because they offer insights into the physics of the largely unexplored quark-gluon correlations which provide direct and unique insights into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on beam-, target- and double-spin asymmetries will be presented.

  17. Probing leptophilic dark sectors with hadronic processes

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2017-08-01

    We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton-antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. We use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.

  18. Propagation of hydro-meteorological uncertainty in a model cascade framework to inundation prediction

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rincón, J. P.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.

    2015-07-01

    This investigation aims to study the propagation of meteorological uncertainty within a cascade modelling approach to flood prediction. The methodology was comprised of a numerical weather prediction (NWP) model, a distributed rainfall-runoff model and a 2-D hydrodynamic model. The uncertainty evaluation was carried out at the meteorological and hydrological levels of the model chain, which enabled the investigation of how errors that originated in the rainfall prediction interact at a catchment level and propagate to an estimated inundation area and depth. For this, a hindcast scenario is utilised removing non-behavioural ensemble members at each stage, based on the fit with observed data. At the hydrodynamic level, an uncertainty assessment was not incorporated; instead, the model was setup following guidelines for the best possible representation of the case study. The selected extreme event corresponds to a flood that took place in the southeast of Mexico during November 2009, for which field data (e.g. rain gauges; discharge) and satellite imagery were available. Uncertainty in the meteorological model was estimated by means of a multi-physics ensemble technique, which is designed to represent errors from our limited knowledge of the processes generating precipitation. In the hydrological model, a multi-response validation was implemented through the definition of six sets of plausible parameters from past flood events. Precipitation fields from the meteorological model were employed as input in a distributed hydrological model, and resulting flood hydrographs were used as forcing conditions in the 2-D hydrodynamic model. The evolution of skill within the model cascade shows a complex aggregation of errors between models, suggesting that in valley-filling events hydro-meteorological uncertainty has a larger effect on inundation depths than that observed in estimated flood inundation extents.

  19. Southern cascades bioregion

    Treesearch

    Carl N. Skinner; Alan H. Taylor

    2006-01-01

    The Cascade Range extends from British Columbia, Canada, south to northern California where it meets the Sierra Nevada. The Southern Cascades bioregion in California is bounded on the west by the Sacramento Valley and the Klamath Mountains, and on the east by the Modoc Plateau and Great Basin. The bioregion encompasses the Southern Cascades section of Miles and Goudey...

  20. Ultrasensitivity in signaling cascades revisited: Linking local and global ultrasensitivity estimations.

    PubMed

    Altszyler, Edgar; Ventura, Alejandra C; Colman-Lerner, Alejandro; Chernomoretz, Ariel

    2017-01-01

    Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O'Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models.

  1. Suppression of high-pT hadrons in Pb+Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong

    2011-09-01

    The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.

  2. Representation of radiative strength functions within a practical model of cascade gamma decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, D. C., E-mail: vuconghnue@gmail.com; Sukhovoj, A. M., E-mail: suchovoj@nf.jinr.ru; Mitsyna, L. V., E-mail: mitsyna@nf.jinr.ru

    A practical model developed at the Joint Institute for Nuclear Research (JINR, Dubna) in order to describe the cascade gamma decay of neutron resonances makes it possible to determine simultaneously, from an approximation of the intensities of two-step cascades, parameters of nuclear level densities and partial widths with respect to the emission of nuclear-reaction products. The number of the phenomenological ideas used isminimized in themodel version considered in the present study. An analysis of new results confirms what was obtained earlier for the dependence of dynamics of the interaction of fermion and boson nuclear states on the nuclear shape. Frommore » the ratio of the level densities for excitations of the vibrational and quasiparticle types, it also follows that this interaction manifests itself in the region around the neutron binding energy and is probably different in nuclei that have different parities of nucleons.« less

  3. Neutrino Emissivity in the Quark-Hadron Mixed Phase

    NASA Astrophysics Data System (ADS)

    Spinella, William; Weber, Fridolin; Orsaria, Milva; Contrera, Gustavo

    2018-05-01

    In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the cores of neutron stars. To this end we use relativistic mean-field equations of state to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ($\\lesssim 10^9$ K) and quark fractions ($\\lesssim 30\\%$), and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions. There are a number of open issues that need to be addressed in a future study on the neutrino emission rates caused by electron-quark blob bremsstrahlung. Chiefly among them are the role of collective oscillations of matter, electron band structures, and of gaps at the boundaries of the Brillouin zones on bremsstrahlung, as discussed in the summary section of this paper. We hope this paper will stimulate studies addressing these issues.

  4. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  5. Rapidity distributions of hadrons in the HydHSD hybrid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khvorostukhin, A. S., E-mail: hvorost@theor.jinr.ru; Toneev, V. D.

    2017-03-15

    A multistage hybrid model intended for describing heavy-ion interactions in the energy region of the NICA collider under construction in Dubna is proposed. The model combines the initial, fast, interaction stage described by the model of hadron string dynamics (HSD) and the subsequent evolution that the expanding system formed at the first stage experiences at the second stage and which one treats on the basis of ideal hydrodynamics; after the completion of the second stage, the particles involved may still undergo rescattering (third interaction stage). The model admits three freeze-out scenarios: isochronous, isothermal, and isoenergetic. Generally, the HydHSD hybrid modelmore » developed in the present study provides fairly good agreement with available experimental data on proton rapidity spectra. It is shown that, within this hybrid model, the two-humped structure of proton rapidity distributions can be obtained either by increasing the freeze-out temperature and energy density or by more lately going over to the hydrodynamic stage. Although the proposed hybrid model reproduces rapidity spectra of protons, it is unable to describe rapidity distributions of pions, systematically underestimating their yield. It is necessary to refine the model by including viscosity effects at the hydrodynamic stage of evolution of the system and by considering in more detail the third interaction stage.« less

  6. DRoplet and hAdron generator for nuclear collisions: An update

    NASA Astrophysics Data System (ADS)

    Tomášik, Boris

    2016-10-01

    The Monte Carlo generator DRAGON simulates hadron production in ultrarelativistic nuclear collisions. The underlying theoretical description is provided by the blast-wave model. DRAGON includes second-order angular anisotropy in transverse shape and the amplitude of the transverse expansion velocity. It also allows to simulate hadron production from a fragmented fireball, e.g. as resulting from spinodal decomposition happening at the first-order phase transition.

  7. PREFACE: Focus section on Hadronic Physics

    NASA Astrophysics Data System (ADS)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  8. Modulation transfer function cascade model for a sampled IR imaging system.

    PubMed

    de Luca, L; Cardone, G

    1991-05-01

    The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.

  9. Mathematical Model of Nonstationary Separation Processes Proceeding in the Cascade of Gas Centrifuges in the Process of Separation of Multicomponent Isotope Mixtures

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Ushakov, A. A.; Sovach, V. P.

    2017-03-01

    We have developed and realized on software a mathematical model of the nonstationary separation processes proceeding in the cascades of gas centrifuges in the process of separation of multicomponent isotope mixtures. With the use of this model the parameters of the separation process of germanium isotopes have been calculated. It has been shown that the model adequately describes the nonstationary processes in the cascade and is suitable for calculating their parameters in the process of separation of multicomponent isotope mixtures.

  10. Design and performance studies of a hadronic calorimeter for a FCC-hh experiment

    NASA Astrophysics Data System (ADS)

    Faltova, J.

    2018-03-01

    The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

  11. Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindskog, M., E-mail: martin.lindskog@teorfys.lu.se; Wacker, A.; Wolf, J. M.

    2014-09-08

    We study the operation of an 8.5 μm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents,more » agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.« less

  12. Unstable Hadrons in Hot Hadron Gas in Laboratory and in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Inga; Rafelski, Johann

    2011-04-01

    We study kinetic master equations for reactions involving the formation and the natural decay of unstable particles in a thermal expanding hadronic gas in the laboratory and in the early Universe. We consider here for the first time the role of the decay channel of one (hadron resonance) into two daughter particles, and also by token of detailed balance the inverse process, fusion of two (thermal) particles into one. We obtain the thermal invariant reaction rate using as an input the free space (vacuum) decay time and show the medium quantum effects on π+π<->ρ reaction relaxation time. As another laboratory example we describe the K+K<->φ process in thermal expanding hadronic gas in heavy ions collisions. A particularly interesting application of our formalism is the 0̂<->γ+γ process in the early Universe. We also explore the fate of charged pions and the muon freeze-out in the Universe. Another interesting field of application of our formalism is the study of short lived hadronic resonances, which are in general not able to reach yield equilibrium. We study the evolution of hadron resonances in small drops of QGP and use the insight gained to generalize the dynamics to QED effects as well.

  13. Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers.

    PubMed

    Wang, Zhixin; Liang, Yong; Yin, Xuefan; Peng, Chao; Hu, Weiwei; Faist, Jérôme

    2017-05-15

    An analytical coupled-wave model is developed for surface-emitting photonic-crystal quantum cascade lasers (PhC-QCLs). This model provides an accurate and efficient analysis of full three-dimensional device structure with large-area cavity size. Various laser properties of interest including the band structure, mode frequency, cavity loss, mode intensity profile, and far field pattern (FFP), as well as their dependence on PhC structures and cavity size, are investigated. Comparison with numerical simulations confirms the accuracy and validity of our model. The calculated FFP and polarization profile well explain the previously reported experimental results. In particular, we reveal the possibility of switching the lasing modes and generating single-lobed FFP by properly tuning PhC structures.

  14. Statistical hadronization with exclusive channels in e +e - annihilation

    DOE PAGES

    Ferroni, L.; Becattini, F.

    2012-01-01

    We present a systematic analysis of exclusive hadronic channels in e +e - collisions at centre-of-mass energies between 2.1 and 2.6 GeV within the statistical hadronization model. Because of the low multiplicities involved, calculations have been carried out in the full microcanonical ensemble, including conservation of energy-momentum, angular momentum, parity, isospin, and all relevant charges. We show that the data is in an overall good agreement with the model for an energy density of about 0.5 GeV/fm 3 and an extra strangeness suppression parameter γ S 0:7, essentially the same values found with fits to inclusive multiplicities at higher energy.

  15. Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.

    2016-07-01

    We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.

  16. Hadronic vacuum polarization in true muonium

    NASA Astrophysics Data System (ADS)

    Lamm, Henry

    2017-01-01

    In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form factor and better estimates of the perturbative QCD contributions are used to study the model dependence of the previous calculation. The second, more accurate method directly integrates the Drell ratio R (s ) to obtain C1 ,HVP=-0.04874 (9 ) . This corresponds to an energy shift in the hyperfine splitting (HFS) of Δ EHFS,HVP μ=-8202 (16 ) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources. We also compute the contribution in positronium, which is too small at present to detect.

  17. Hadron Collider Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incandela, J.R.

    2000-03-07

    Experiments are being prepared at the Fermilab Tevatron and the CERN Large Hadron Collider that promise to deliver extraordinary insights into the nature of spontaneous symmetry breaking, and the role of supersymmetry in the universe. This article reviews the goals, challenges, and designs of these experiments. The first hadron collider, the ISR at CERN, has to overcome two initial obstacles. The first was low luminosity, which steadily improved over time. The second was the broad angular spread of interesting events. In this regard Maurice Jacob noted (1): The answer is ... sophisticated detectors covering at least the whole central regionmore » (45{degree} {le} {theta} {le} 135{degree}) and full azimuth. This statement, while obvious today, reflects the major revelation of the ISR period that hadrons have partonic substructure. The result was an unexpectedly strong hadronic yield at large transverse momentum (p{sub T}). Partly because of this, the ISR missed the discovery of the J/{psi} and later missed the {Upsilon}. The ISR era was therefore somewhat less auspicious than it might have been. It did however make important contributions in areas such as jet production and charm excitation and it paved the way for the SPS collider, also at CERN.« less

  18. Rescuing Ecosystems from Extinction Cascades

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  19. How quantitative measures unravel design principles in multi-stage phosphorylation cascades.

    PubMed

    Frey, Simone; Millat, Thomas; Hohmann, Stefan; Wolkenhauer, Olaf

    2008-09-07

    We investigate design principles of linear multi-stage phosphorylation cascades by using quantitative measures for signaling time, signal duration and signal amplitude. We compare alternative pathway structures by varying the number of phosphorylations and the length of the cascade. We show that a model for a weakly activated pathway does not reflect the biological context well, unless it is restricted to certain parameter combinations. Focusing therefore on a more general model, we compare alternative structures with respect to a multivariate optimization criterion. We test the hypothesis that the structure of a linear multi-stage phosphorylation cascade is the result of an optimization process aiming for a fast response, defined by the minimum of the product of signaling time and signal duration. It is then shown that certain pathway structures minimize this criterion. Several popular models of MAPK cascades form the basis of our study. These models represent different levels of approximation, which we compare and discuss with respect to the quantitative measures.

  20. Cascade Apartments: Deep Energy Multifamily Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, A.; Mattheis, L.; Kunkle, R.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofitmore » package after considering utility window incentives and KCHA capitol improvement funding.« less

  1. Cascade Apartments: Deep Energy Multifamily Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, A.; Mattheis, L.; Kunkle, R.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit packagemore » after considering utility window incentives and KCHA capitol improvement funding.« less

  2. An equivalent circuit model for terahertz quantum cascade lasers: Modeling and experiments

    NASA Astrophysics Data System (ADS)

    Yao, Chen; Xu, Tian-Hong; Wan, Wen-Jian; Zhu, Yong-Hao; Cao, Jun-Cheng

    2015-09-01

    Terahertz quantum cascade lasers (THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model. Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61404149), the Major National Development Project of Scientific Instrument and Equipment, China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the Major Project, China (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300).

  3. Higgs Boson Searches at Hadron Colliders (1/4)

    ScienceCinema

    Jakobs, Karl

    2018-05-21

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  4. The Emergence of Hadrons from QCD Color

    NASA Astrophysics Data System (ADS)

    Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration

    2015-10-01

    The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.

  5. Probing leptophilic dark sectors with hadronic processes

    DOE PAGES

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2017-05-29

    We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton–antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. Wemore » use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.« less

  6. Stochastic Flow Cascades

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo I.; Shlesinger, Michael F.

    2012-01-01

    We introduce and explore a Stochastic Flow Cascade (SFC) model: A general statistical model for the unidirectional flow through a tandem array of heterogeneous filters. Examples include the flow of: (i) liquid through heterogeneous porous layers; (ii) shocks through tandem shot noise systems; (iii) signals through tandem communication filters. The SFC model combines together the Langevin equation, convolution filters and moving averages, and Poissonian randomizations. A comprehensive analysis of the SFC model is carried out, yielding closed-form results. Lévy laws are shown to universally emerge from the SFC model, and characterize both heavy tailed retention times (Noah effect) and long-ranged correlations (Joseph effect).

  7. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  8. Search for squarks and gluinos in events with hadronically decaying tau leptons, jets and missing transverse momentum in proton-proton collisions at √{s}=13 TeV recorded with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zwalinski, L.

    2016-12-01

    A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton has been performed using 3.2 fb^{-1} of proton-proton collision data at √{s}=13{ TeV} recorded by the ATLAS detector at the Large Hadron Collider in 2015. Two exclusive final states are considered, with either exactly one or at least two tau leptons. No excess over the Standard Model prediction is observed in the data. Results are interpreted in the context of gauge-mediated supersymmetry breaking and a simplified model of gluino pair production with tau-rich cascade decays, substantially improving on previous limits. In the GMSB model considered, supersymmetry-breaking scale (Λ ) values below 92 { TeV} are excluded at the 95% confidence level, corresponding to gluino masses below 2000 { GeV}. For large values of tan β , values of Λ up to 107 { TeV} and gluino masses up to 2300 { GeV} are excluded. In the simplified model, gluino masses are excluded up to 1570 { GeV} for neutralino masses around 100 { GeV}. Neutralino masses below 700 { GeV} are excluded for all gluino masses between 800 and 1500 { GeV}, while the strongest exclusion of 750 { GeV} is achieved for gluino masses around 1450 { GeV}.

  9. Lepton jets and low-mass sterile neutrinos at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dube, Sourabh; Gadkari, Divya; Thalapillil, Arun M.

    2017-09-01

    Sterile neutrinos, if they exist, are potential harbingers for physics beyond the Standard Model. They have the capacity to shed light on our flavor sector, grand unification frameworks, dark matter sector and origins of baryon antibaryon asymmetry. There have been a few seminal studies that have broached the subject of sterile neutrinos with low, electroweak-scale masses (i.e. ΛQCD≪mNR≪mW± ) and investigated their reach at hadron colliders using lepton jets. These preliminary studies nevertheless assume background-free scenarios after certain selection criteria which are overly optimistic and untenable in realistic situations. These lead to incorrect projections. The unique signal topology and challenging hadronic environment also make this mass-scale regime ripe for a careful investigation. With the above motivations, we attempt to perform the first systematic study of low, electroweak-scale, right-handed neutrinos at hadron colliders, in this unique signal topology. There are currently no active searches at hadron colliders for sterile neutrino states in this mass range, and we frame the study in the context of the 13 TeV high-luminosity Large Hadron Collider and the proposed FCC-hh/SppC 100 TeV p p -collider.

  10. Investigation of oscillating cascade aerodynamics by an experimental influence coefficient technique

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1988-01-01

    Fundamental experiments are performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate the torsion mode unsteady aerodynamics of a biconvex airfoil cascade at realistic values of the reduced frequency for all interblade phase angles at a specified mean flow condition. In particular, an unsteady aerodynamic influence coefficient technique is developed and utilized in which only one airfoil in the cascade is oscillated at a time and the resulting airfoil surface unsteady pressure distribution measured on one dynamically instrumented airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils oscillating at a specified interblade phase angle are then determined through a vector summation of these data. These influence coefficient determined oscillation cascade data are correlated with data obtained in this cascade with all airfoils oscillating at several interblade phase angle values. The influence coefficients are then utilized to determine the unsteady aerodynamics of the cascade for all interblade phase angles, with these unique data subsequently correlated with predictions from a linearized unsteady cascade model.

  11. Harmonic cascade FEL designs for LUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, G.; Reinsch, M.; Wurtele, J.

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1more » keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.« less

  12. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

  13. Trophic cascades of bottom-up and top-down forcing on nutrients and plankton in the Kattegat, evaluated by modelling

    NASA Astrophysics Data System (ADS)

    Petersen, Marcell Elo; Maar, Marie; Larsen, Janus; Møller, Eva Friis; Hansen, Per Juel

    2017-05-01

    The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model ERGOM was validated and applied in a local set-up of the Kattegat, Denmark, using the off-line Flexsem framework. The model scenarios were conducted by changing the forcing by ± 20% of nutrient inputs (bottom-up) and mesozooplankton mortality (top-down), and both types of forcing combined. The model results showed that cascading effects operated differently depending on the forcing type. In the single-forcing bottom-up scenarios, the cascade directions were in the same direction as the forcing. For scenarios involving top-down, there was a skipped-level-transmission in the trophic responses that was either attenuated or amplified at different trophic levels. On a seasonal scale, bottom-up forcing showed strongest response during winter-spring for DIN and Chl a concentrations, whereas top-down forcing had the highest cascade strength during summer for Chl a concentrations and microzooplankton biomass. On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient input and mesozooplankton mortality calling for the need of an integrated management of marine areas exploited by human activities.

  14. Consumer-mediated recycling and cascading trophic interactions.

    PubMed

    Leroux, Shawn J; Loreau, Michel

    2010-07-01

    Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.

  15. Search for squarks and gluinos in events with hadronically decaying tau leptons, jets and missing transverse momentum in proton-proton collisions at [Formula: see text] TeV recorded with the ATLAS detector.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Cornell, S Díez; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jeng, G-Y; Jennens, D; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koehler, N M; Koffas, T; Koffeman, E; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Leyton, M; Li, B; Li, C; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Mlynarikova, M; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paganini, M; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shirabe, S; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wolf, T M H; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zwalinski, L

    2016-01-01

    A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton has been performed using 3.2 fb[Formula: see text] of proton-proton collision data at [Formula: see text] recorded by the ATLAS detector at the Large Hadron Collider in 2015. Two exclusive final states are considered, with either exactly one or at least two tau leptons. No excess over the Standard Model prediction is observed in the data. Results are interpreted in the context of gauge-mediated supersymmetry breaking and a simplified model of gluino pair production with tau-rich cascade decays, substantially improving on previous limits. In the GMSB model considered, supersymmetry-breaking scale ([Formula: see text]) values below [Formula: see text] are excluded at the 95% confidence level, corresponding to gluino masses below [Formula: see text]. For large values of [Formula: see text], values of [Formula: see text] up to [Formula: see text] and gluino masses up to [Formula: see text] are excluded. In the simplified model, gluino masses are excluded up to [Formula: see text] for neutralino masses around [Formula: see text]. Neutralino masses below [Formula: see text] are excluded for all gluino masses between 800 and [Formula: see text], while the strongest exclusion of [Formula: see text] is achieved for gluino masses around [Formula: see text].

  16. Search for squarks and gluinos in events with hadronically decaying tau leptons, jets and missing transverse momentum in proton–proton collisions at $$\\sqrt{s}=13$$ TeV recorded with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2016-12-10

    A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton has been performed using 3.2 fb –1 of proton–proton collision data at √s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015. Two exclusive final states are considered, with either exactly one or at least two tau leptons. No excess over the Standard Model prediction is observed in the data. Results are interpreted in the context of gauge-mediated supersymmetry breaking and a simplified model of gluino pair production with tau-rich cascade decays, substantially improvingmore » on previous limits. In the GMSB model considered, supersymmetry-breaking scale (Λ) values below 92 TeV are excluded at the 95% confidence level, corresponding to gluino masses below 2000 GeV. For large values of tanβ, values of Λ up to 107 TeV and gluino masses up to 2300 GeV are excluded. In the simplified model, gluino masses are excluded up to 1570 GeV for neutralino masses around 100 GeV. Neutralino masses below 700 GeV are excluded for all gluino masses between 800 and 1500 GeV, while the strongest exclusion of 750 GeV is achieved for gluino masses around 1450 GeV.« less

  17. Comparison of hadron production models for π±, k±, protons and antiprotons production in proton-carbon interactions at 60 GeV/c

    NASA Astrophysics Data System (ADS)

    Ajaz, M.; Ullah, S.; Ali, Y.; Younis, H.

    2018-02-01

    In this research paper, the comprehensive results on the double differential yield of π± and k± mesons, protons and antiprotons as a function of laboratory momentum are reported. These hadrons are produced in proton-carbon interaction at 60 GeV/c. EPOS 1.99, EPOS-LHC and QGSJETII-04 models are used to perform simulations. Comparing the predictions of these models show that QGSJETII-04 model predicts higher yields of all the hadrons in most of the cases at the peak of the distribution. In this interval, the EPOS 1.99 and EPOS-LHC produce similar results. In most of the cases at higher momentum of the hadrons, all the three models are in good agreement. For protons, all models are in good agreement. EPOS-LHC gives high yield of antiprotons at high momentum values as compared to the other two models. EPOS-LHC gives higher prediction at the peak value for π+ mesons and protons at higher polar angle intervals of 100 < 𝜃 < 420 and 100 < 𝜃 < 360, respectively, and EPOS 1.99 gives higher prediction at the peak value for π- mesons for 140 < 𝜃 < 420. The model predictions, except for antiprotons, are compared with the data obtained by the NA61/SHINE experiment at 31 GeV/c proton-carbon collision, which clearly shows that the behavior of the distributions in models are similar to the ones from the data but the yield in data is low because of lower beam energy.

  18. Turbulent cascade in a two-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Xin; Faculty of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000; Liu, San-Qiu, E-mail: sqlgroup@ncu.edu.cn

    2014-11-15

    It is shown that small but finite-amplitude drift wave turbulence in a two-ion-species plasma can be modeled by a Hasegawa-Mima equation. The mode cascade process and resulting turbulent spectrum are investigated. The spectrum is found to be similar to that of a two-component plasma, but the space and time scales of the turbulent cascade process can be quite different since they are rescaled by the presence of the second ion species.

  19. Cascades frog conservation assessment

    Treesearch

    Karen Pope; Catherine Brown; Marc Hayes; Gregory Green; Diane Macfarlane

    2014-01-01

    The Cascades frog (Rana cascadae) is a montane, lentic-breeding amphibian that has become rare in the southern Cascade Range and remains relatively widespread in the Klamath Mountains of northern California. In the southern Cascades, remaining populations occur primarily in meadow habitats where the fungal disease, chytridiomycosis, and habitat...

  20. Study of hadron bundles observed in Chacaltaya two-story emulsion chamber

    NASA Technical Reports Server (NTRS)

    Aoki, H.

    1985-01-01

    The existence of hadron-rich families associated with few gamma-ray emission named Centauro and Mini-Centauro phemonena was reported. It was investigated whether these are produced by the special type of interaction different from the ordinary pion multiple production or not. The experimental results are compared with simulation calculation based on ordinary multiple pion production model. Both hadron multiplicity distribution, obtained from the present observation and the simulation calculation, show almost the same distribution which means that hadron bundles of such smaller multiplicities are considered to originate from successive interactions of surviving nucleon with the nature of multiple production during passage through the atmosphere.

  1. Improving Identification of Dijet Resonances at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-01

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.

  2. Improving identification of dijet resonances at hadron colliders.

    PubMed

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-30

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.

  3. Small vulnerable sets determine large network cascades in power grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less

  4. Small vulnerable sets determine large network cascades in power grids

    DOE PAGES

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    2017-11-17

    The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less

  5. Delivering a sustainable trauma management training programme tailored for low-resource settings in East, Central and Southern African countries using a cascading course model.

    PubMed

    Peter, N A; Pandit, H; Le, G; Nduhiu, M; Moro, E; Lavy, C

    2016-05-01

    Injuries cause five million deaths and 279 Disability Adjusted Life Years (DALYS) each year worldwide. The COSECSA Oxford Orthopaedic Link (COOL) is a multi-country partnership programme that has delivered training in trauma management to nine sub-Saharan countries across a wide-cadre of health-workers using a model of "primary" courses delivered by UK instructors, followed by "cascading" courses led by local faculty. This study examines the impact on knowledge and clinical confidence among health-workers, and compares the performance of "cascading" and "primary" courses delivered in low-resource settings. Data was collated from 1030 candidates (119 Clinical Officers, 540 Doctors, 260 Nurses and 111 Medical Students) trained over 28 courses (9 "primary" and 19 "cascading" courses) in nine sub-Saharan countries between 2012 and 2013. Knowledge and clinical confidence of candidates were assessed using pre- and post-course MCQs and confidence matrix rating of clinical scenarios. Changes were measured in relation to co-variants of gender, job roles and primary versus cascading courses. Multivariate regression modelling and cost analysis was performed to examine the impact of primary versus cascading courses on candidates' performance. There was a significant improvement in knowledge (58% to 77%, p<0.05) and clinical confidence (68% to 90%, p<0.05) post-course. "Non-doctors" demonstrated a greater improvement in knowledge (22%) and confidence (24%) following the course (p<0.05). The degree of improvement of MCQ scores differed significantly, with the cascading courses (21%) outperforming primary courses (15%) (p<0.002). This is further supported by multivariate regression modelling where cascading courses are a strong predictor for improvement in MCQ scores (Coef=4.83, p<0.05). Trauma management training of health-workers plays a pivotal role in tackling the ever-growing trauma burden in Africa. Our study suggests cascading PTC courses may be an effective model in

  6. Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Deutsches Elektronen--Synchrotron, DESY, D-22603 Hamburg; Frank, Mariana

    2008-08-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the {mu} problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model viamore » the measurements at the Large Hadron Collider experiments.« less

  7. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data.

    PubMed

    Guo, Yang; Liu, Shuhui; Li, Zhanhuai; Shang, Xuequn

    2018-04-11

    The classification of cancer subtypes is of great importance to cancer disease diagnosis and therapy. Many supervised learning approaches have been applied to cancer subtype classification in the past few years, especially of deep learning based approaches. Recently, the deep forest model has been proposed as an alternative of deep neural networks to learn hyper-representations by using cascade ensemble decision trees. It has been proved that the deep forest model has competitive or even better performance than deep neural networks in some extent. However, the standard deep forest model may face overfitting and ensemble diversity challenges when dealing with small sample size and high-dimensional biology data. In this paper, we propose a deep learning model, so-called BCDForest, to address cancer subtype classification on small-scale biology datasets, which can be viewed as a modification of the standard deep forest model. The BCDForest distinguishes from the standard deep forest model with the following two main contributions: First, a named multi-class-grained scanning method is proposed to train multiple binary classifiers to encourage diversity of ensemble. Meanwhile, the fitting quality of each classifier is considered in representation learning. Second, we propose a boosting strategy to emphasize more important features in cascade forests, thus to propagate the benefits of discriminative features among cascade layers to improve the classification performance. Systematic comparison experiments on both microarray and RNA-Seq gene expression datasets demonstrate that our method consistently outperforms the state-of-the-art methods in application of cancer subtype classification. The multi-class-grained scanning and boosting strategy in our model provide an effective solution to ease the overfitting challenge and improve the robustness of deep forest model working on small-scale data. Our model provides a useful approach to the classification of cancer subtypes

  8. Cascading failures in ac electricity grids.

    PubMed

    Rohden, Martin; Jung, Daniel; Tamrakar, Samyak; Kettemann, Stefan

    2016-09-01

    Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current (AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold above which a transmission line fails does not seem to change the power-law exponent q≈1.6. Furthermore, we study the influence of the placement of generators and consumers on the number of affected consumers and demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model and considering a random placement of consumers, we find that the probability to disconnect more than a certain number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential, while for small ones the decay is slow, indicating a power-law decay.

  9. Modified energy cascade model adapted for a multicrop Lunar greenhouse prototype

    NASA Astrophysics Data System (ADS)

    Boscheri, G.; Kacira, M.; Patterson, L.; Giacomelli, G.; Sadler, P.; Furfaro, R.; Lobascio, C.; Lamantea, M.; Grizzaffi, L.

    2012-10-01

    Models are required to accurately predict mass and energy balances in a bioregenerative life support system. A modified energy cascade model was used to predict outputs of a multi-crop (tomatoes, potatoes, lettuce and strawberries) Lunar greenhouse prototype. The model performance was evaluated against measured data obtained from several system closure experiments. The model predictions corresponded well to those obtained from experimental measurements for the overall system closure test period (five months), especially for biomass produced (0.7% underestimated), water consumption (0.3% overestimated) and condensate production (0.5% overestimated). However, the model was less accurate when the results were compared with data obtained from a shorter experimental time period, with 31%, 48% and 51% error for biomass uptake, water consumption, and condensate production, respectively, which were obtained under more complex crop production patterns (e.g. tall tomato plants covering part of the lettuce production zones). These results, together with a model sensitivity analysis highlighted the necessity of periodic characterization of the environmental parameters (e.g. light levels, air leakage) in the Lunar greenhouse.

  10. Anisotropic flow and flow fluctuations for Au + Au at √sNN =200 GeV in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Ma, L.; Ma, G. L.; Ma, Y. G.

    2014-04-01

    Anisotropic flow coefficients and their fluctuations are investigated for Au + Au collisions at center-of-mass energy √sNN = 200 GeV by using a multiphase transport model with string melting scenario. Experimental results of azimuthal anisotropies by means of the two- and four-particle cumulants are generally well reproduced by the model including both parton cascade and hadronic rescatterings. Event-by-event treatments of the harmonic flow coefficients vn (for n =2, 3, and 4) are performed, in which event distributions of vn for different orders are consistent with Gaussian shapes over all centrality bins. Systematic studies on centrality, transverse momentum (pT), and pseudorapidity (η) dependencies of anisotropic flows and quantitative estimations of the flow fluctuations are presented. The pT and η dependencies of absolute fluctuations for both v2 and v3 follow trends similar to their flow coefficients. Relative fluctuation of triangular flow v3 is slightly centrality dependent, which is quite different from that of elliptic flow v2. It is observed that parton cascade has a large effect on the flow fluctuations, but hadronic scatterings make little contribution to the flow fluctuations, which indicates flow fluctuations are mainly modified during partonic evolution stage.

  11. Learning optimal embedded cascades.

    PubMed

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  12. Investigation of the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.

    2017-08-01

    In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.

  13. Extending earthquakes' reach through cascading.

    PubMed

    Marsan, David; Lengliné, Olivier

    2008-02-22

    Earthquakes, whatever their size, can trigger other earthquakes. Mainshocks cause aftershocks to occur, which in turn activate their own local aftershock sequences, resulting in a cascade of triggering that extends the reach of the initial mainshock. A long-lasting difficulty is to determine which earthquakes are connected, either directly or indirectly. Here we show that this causal structure can be found probabilistically, with no a priori model nor parameterization. Large regional earthquakes are found to have a short direct influence in comparison to the overall aftershock sequence duration. Relative to these large mainshocks, small earthquakes collectively have a greater effect on triggering. Hence, cascade triggering is a key component in earthquake interactions.

  14. PREFACE: 5th DAE-BRNS Workshop on Hadron Physics (Hadron 2011)

    NASA Astrophysics Data System (ADS)

    Jyoti Roy, Bidyut; Chatterjee, A.; Kailas, S.

    2012-07-01

    The 5th DAE-BRNS Workshop on Hadron Physics was held at the Bhabha Atomic Research Centre (BARC), Mumbai from 31 October to 4 November 2011. This workshop series, supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS, DAE), Govt. of India, began ten years ago with the first one being held at BARC, Mumbai in October 2002. The second one was held at Puri in 2005, organized jointly by Institute of Physics, Bhubneswar and Saha Institute of Nuclear Physics, Kolkata. The 3rd and 4th ones took place, respectively, at Shantineketan in 2006, organized by Visva Bharati University, and at Aligarh in 2008, organized by Aligarh Muslim University, Aligarh. The aim of the present workshop was to bring together the experts and young researchers in the field of hadron physics (both experiment and theory) and to have in-depth discussions on the current research activities in this field. The format of the workshop was: a series of review lectures by various experts from India and abroad, the presentation of advanced research results by researchers in the field, and a review of major experimental programs being planned and pursued in major laboratories in the field of hadron physics, with the aim of providing a platform for the young participants for interaction with their peers. The upcoming international FAIR facility at GSI is a unique future facility for studies of hadron physics in the charm sector and hyper nuclear physics. The Indian hadron physics community is involved in this mega science project and is working with the PANDA collaboration on the development of detectors, simulation and software tools for the hadron physics programme with antiprotons at FAIR. A one-day discussion session was held at this workshop to discuss India-PANDA activities, the current collaboration status and the work plan. This volume presents the workshop proceedings consisting of lectures and seminars which were delivered during the workshop. We are thankful to

  15. Optical feedback effects on terahertz quantum cascade lasers: modelling and applications

    NASA Astrophysics Data System (ADS)

    Rakić, Aleksandar D.; Lim, Yah Leng; Taimre, Thomas; Agnew, Gary; Qi, Xiaoqiong; Bertling, Karl; Han, She; Wilson, Stephen J.; Kundu, Iman; Grier, Andrew; Ikonić, Zoran; Valavanis, Alexander; Demić, Aleksandar; Keeley, James; Li, Lianhe H.; Linfield, Edmund H.; Davies, A. Giles; Harrison, Paul; Ferguson, Blake; Walker, Graeme; Prow, Tarl; Indjin, Dragan; Soyer, H. Peter

    2016-11-01

    Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1-5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model.

  16. Hadron Physics with PANDA at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Ulrich

    2011-10-21

    The recently established FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The PANDA experiment, which is integrated in the HESR storage ring for antiprotons is at the center of the hadron physics program. It includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics and electromagnetic processes.

  17. KASCADE-Grande: Composition studies in the view of the post-LHC hadronic interaction models

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Pierro, F. Di; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2017-06-01

    The KASCADE-Grande experiment has significantly contributed to the current knowledge about the energy spectrum and composition of cosmic rays for energies between the knee and the ankle. Meanwhile, post-LHC versions of the hadronic interaction models are available and used to interpret the entire data set of KASCADE-Grande. In addition, a new, combined analysis of both arrays, KASCADE and Grande, was developed significantly increasing the accuracy of the shower observables. First results of the new analysis with the entire data set of the KASCADE-Grande experiment will be the focus of this contribution.

  18. On Cascade Energy Transfer in Convective Turbulence

    NASA Astrophysics Data System (ADS)

    Shestakov, A. V.; Stepanov, R. A.; Frick, P. G.

    2017-12-01

    The paper is devoted to specificities of the cascade processes in developed turbulence existing on a background of the density (temperature) gradient either parallel (turbulence in a stably stratified (SS) medium) or antiparallel (convective turbulence (CT)) to the gravitational force. Our main attention is paid to the Obukhov-Bolgiano (OB) regime, which presumes a balance between the buoyancy and nonlinear forces in a sufficiently extensive part of the inertial interval. Up to now, there has been no reliable evidence of the existence of the OB regime, although fragments of spectra with slopes close to-11/5 and-7/5 were detected in some works on the numerical simulations of convective turbulence. The paper presents a critical comparison of these data with the results obtained in this work using the cascade model of convective turbulence, which makes it possible to consider a wide range of control parameters. The cascade model is new and was obtained by the generalization of the class of helical cascade models to the case of turbulent convection. It is shown that, in developed turbulence, which is characterized by an interval with a constant spectral flux of kinetic energy, the buoyancy force cannot compete with nonlinear interactions and has no essential effect on the dynamics of the inertial interval. It is the buoyancy force that supplies the cascade process with energy in convective turbulence but only in the maximum scales. Under the SS conditions, the buoyancy forces reduce the energy of turbulent pulsations. In the case of stable stratification, the buoyancy force reduces the turbulence pulsation energy. The OB regime arises in none of these cases, but, in the scales beyond the inertial interval, Kolmogorov's turbulence with the "-5/3" law, in which temperature behaves like a passive admixture, is established. The observed deviations from the "-5/3" spectrum, erroneously interpreted as the OB regime, are manifested in the case of insufficient separation of

  19. Vulnerability and cosusceptibility determine the size of network cascades

    DOE PAGES

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    2017-01-27

    In a network, a local disturbance can propagate and eventually cause a substantial part of the system to fail in cascade events that are easy to conceptualize but extraordinarily difficult to predict. Furthermore, we develop a statistical framework that can predict cascade size distributions by incorporating two ingredients only: the vulnerability of individual components and the cosusceptibility of groups of components (i.e., their tendency to fail together). Using cascades in power grids as a representative example, we show that correlations between component failures define structured and often surprisingly large groups of cosusceptible components. Aside from their implications for blackout studies,more » these results provide insights and a new modeling framework for understanding cascades in financial systems, food webs, and complex networks in general.« less

  20. Measurement of the hadronic final state in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; De Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Haries, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jöhnsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurça, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; London, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Ząçek, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; H1 Collaboration

    1993-01-01

    We report on the first experimental study of the hadronic final state in deep inelastic electron-proton scattering with the H1 detector at HERA. Energy flow and transverse momentum characteristics are measured and presented both in the laboratory and in the hadronic center of mass frames. Comparison is made with QCD models distinguished by their different treatment of parton emission.

  1. Variations on Debris Disks. IV. An Improved Analytical Model for Collisional Cascades

    NASA Astrophysics Data System (ADS)

    Kenyon, Scott J.; Bromley, Benjamin C.

    2017-04-01

    We derive a new analytical model for the evolution of a collisional cascade in a thin annulus around a single central star. In this model, r max the size of the largest object changes with time, {r}\\max \\propto {t}-γ , with γ ≈ 0.1-0.2. Compared to standard models where r max is constant in time, this evolution results in a more rapid decline of M d , the total mass of solids in the annulus, and L d , the luminosity of small particles in the annulus: {M}d\\propto {t}-(γ +1) and {L}d\\propto {t}-(γ /2+1). We demonstrate that the analytical model provides an excellent match to a comprehensive suite of numerical coagulation simulations for annuli at 1 au and at 25 au. If the evolution of real debris disks follows the predictions of the analytical or numerical models, the observed luminosities for evolved stars require up to a factor of two more mass than predicted by previous analytical models.

  2. Lepton effects on the protoneutron stars with the hadron-quark mixed phase in the Nambu-Jona-Lasinio model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasutake, Nobutoshi; Kashiwa, Kouji

    2009-02-15

    We study the structures of hybrid stars with leptons at finite temperature under beta equilibrium. For the quark phase, we use the three flavor Nambu-Jona-Lasinio (NJL) model. For the hadron phase, we adopt the nuclear equation of state (EOS) by Shen et al.. This EOS is in the framework of the relativistic mean field theory including the tree body effects. For the hadron-quark phase transition, we impose the bulk Gibbs construction or the Maxwell construction to take into account uncertainties by finite-size effects. We find that the pure quark phase does not appear in stable star cores in all cases.more » With the phase transition, the maximum masses increase {approx}10% for high lepton fraction. On the contrary, without the transition, they decrease {approx}10%. We also find that, in the NJL model, the lepton fraction is more important for structures of unstable stars than the temperature. This result is important for many astrophysical phenomena such as the core collapse of massive stars.« less

  3. Examining the Crossover from the Hadronic to Partonic Phase in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Mingmei; Yu Meiling; Liu Lianshou

    2008-03-07

    A mechanism, consistent with color confinement, for the transition between perturbative and physical vacua during the gradual crossover from the hadronic to partonic phase is proposed. The essence of this mechanism is the appearance and growing up of a kind of grape-shape perturbative vacuum inside the physical one. A percolation model based on simple dynamics for parton delocalization is constructed to exhibit this mechanism. The crossover from hadronic matter to sQGP (strongly coupled quark-gluon plasma) as well as the transition from sQGP to weakly coupled quark-gluon plasma with increasing temperature is successfully described by using this model.

  4. New method to measure the attenuation of hadrons in extensive air showers

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hildebrand, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2009-07-01

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth’s atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 106 to 3×107GeV the attenuation length obtained increases from 170 to 210g/cm2. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  5. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  6. Phenomenology of soft hadron interactions and the relevant EAS data

    NASA Technical Reports Server (NTRS)

    Kalmykov, N. N.; Khristiansen, G. B.; Motova, M. V.

    1984-01-01

    The interpretation of the experimental data in superhigh energy cosmic rays requires the calculations using various models of elementary hadron interaction. One should prefer the models justified by accelerator data and giving definite predictions for superhigh energies. The model of quark-gluon pomeron strings (the QGPS models) satisfies this requirement.

  7. Influence maximization in social networks under an independent cascade-based model

    NASA Astrophysics Data System (ADS)

    Wang, Qiyao; Jin, Yuehui; Lin, Zhen; Cheng, Shiduan; Yang, Tan

    2016-02-01

    The rapid growth of online social networks is important for viral marketing. Influence maximization refers to the process of finding influential users who make the most of information or product adoption. An independent cascade-based model for influence maximization, called IMIC-OC, was proposed to calculate positive influence. We assumed that influential users spread positive opinions. At the beginning, users held positive or negative opinions as their initial opinions. When more users became involved in the discussions, users balanced their own opinions and those of their neighbors. The number of users who did not change positive opinions was used to determine positive influence. Corresponding influential users who had maximum positive influence were then obtained. Experiments were conducted on three real networks, namely, Facebook, HEP-PH and Epinions, to calculate maximum positive influence based on the IMIC-OC model and two other baseline methods. The proposed model resulted in larger positive influence, thus indicating better performance compared with the baseline methods.

  8. Promising diphoton signals of the little radion at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, H.; McElmurry, T; Soni, A.

    2010-12-28

    In little Randall-Sundrum models, the bulk couplings of the radion to massless gauge fields can yield a greatly enhanced diphoton signal at hadron colliders. We examine the implications of the Tevatron data for the little radion and also show that the 7 TeV run at the Large Hadron Collider will have an impressive reach in this channel. The diphoton signal is crucial in the search for a light radion, or the dual dilaton, and can potentially probe the ultraviolet scale of the theory.

  9. Selected Topics on Hadronic B Decays From BaBar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, K.; /SLAC

    Recent measurements of branching fractions and decay-rate asymmetries in charmless hadronic B decays at the BaBar experiment are presented. The selected topics include Dalitz plot analyses of B {yields} K{sup +} {pi}{sup -}{pi} and signal searches in B {yields} PP and PV, where isoscalar mesons are involved, and in B {yields} b{sub 1}P, P and V denote a pseudoscalar and vector meson, respectively. Several measurements in charmless hadronic B decays have indicated possible deviations from the theoretical predictions within the Standard Model. The measurements presented would contribute to searching for and resolving such puzzles.

  10. Compact single-pass X-ray FEL with harmonic multiplication cascades

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.

    2018-07-01

    The generation of X-ray radiation in cascaded single-pass free electron laser (FEL), which amplifies high harmonics of a two-frequency undulator, is studied. Power dynamics of FEL harmonics is explored with the help of the phenomenological model of a single pass FEL. The model describes both linear and non-linear harmonic generation, starting from a coherent seed laser and initial shot noise with account for main loss factors for each harmonic in each cascade individually: the energy spread and beam divergence, the coupling losses between FEL cascades, the diffraction etc. The model was validated with the experiment and with relevant 3-D simulations. It is employed for modeling the cascaded FELs with harmonic multiplication and analyzing the evolution of FEL harmonic power with the aim to obtain the maximum high harmonic power in the X-ray band at the shortest possible FEL length with the lowest possible seed frequency. The advantages of two-frequency undulators in HGHG FELs are elucidated. The requirements for the electron beam are studied; the need for low energy spread is evidenced: our evaluations yield σe < 2 × 10-4. Several cascaded HGHG FELs with two-frequency undulators are modeled. Generation of soft X-ray radiation at λ = 2 . 71 nm, reaching ∼50 MW power with I0 ∼ 100 A in a cascaded FEL at just 40 m with 13.51 nm seed, matching peak reflectivity of Mo/Si, is demonstrated. The generation of 40 MW radiation power at λ = 2 . 27 nm with the beam current I0 ∼ 100 A, energy E = 950 MeV and the energy spread σe = 2 × 10-4 is studied, using second and third harmonics in three-stage 45 m long FEL. The multistage FEL is modeled for generating radiation in nanometer band: ∼40 MW power at λ ∼ 2 . 6 nm with I0 ∼ 175 A current in just ∼40 m long FEL with commercially available F2 excimer UV laser seed at 157 nm. The peak radiation power rises to ∼0.5 GW for ∼1 kA beam current.

  11. Scattering and stopping of hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    It was observed, in the 180 litre xenon bubble chamber, that when hadrons with kinetic energy higher than the pion production threshold fall on a layer of nuclear matter - on an atomic nucleus in other words - in many cases they can pass through it without causing particles production but they are deflected through some deflection angles; if the energy is lower than a few GeV and the nuclear matter layer is thick enough, the hadrons can be stopped in it. The amount of the deflection at a given incident hadron energy varies with the way the hadron strikes the atomic nucleus; the probability of the occurrence of stopping depends on the incident hadron identity and energy, and on the way the hadron passed through the nucleus, as well.

  12. High-energy photon-hadron scattering in holographic QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishio, Ryoichi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwano-ha 5-1-5, 277-8583; Watari, Taizan

    2011-10-01

    This article provides an in-depth look at hadron high-energy scattering by using gravity dual descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) serve as clean experimental probes into nonperturbative internal structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) photon in gravity dual can be exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken x) is dominated by parton contributions (=Pomeron contributions) even in strong coupling regime, there is a chance to learn a lesson for generalized parton distribution (GPD) bymore » using gravity dual models. We begin with refining derivation of the Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying particular attention to the role played by the complex spin variable j. The BPST Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons with nonlinear trajectories, and we clarify the relation between Pomeron couplings and the Pomeron form factor. We emphasize that the saddle-point value j* of the scattering amplitude in the complex j-plane representation is a very important concept in understanding qualitative behavior of the scattering amplitude. The total Pomeron contribution to the scattering is decomposed into the saddle-point contribution and at most a finite number of pole contributions, and when the pole contributions are absent (which we call saddle-point phase), kinematical variable (q,x,t)-dependence of ln(1/q) evolution and ln(1/x) evolution parameters {gamma}{sub eff} and {lambda}{sub eff} in DIS and t-slope parameter B of DVCS in HERA experiment are all reproduced qualitatively in gravity dual. All of these observations shed a new light on modeling of GPD. Straightforward application of those results to other hadron high-energy scattering is also discussed.« less

  13. Temperament Pathways to Childhood Disruptive Behavior and Adolescent Substance Abuse: Testing a Cascade Model

    PubMed Central

    Martel, Michelle M.; Pierce, Laura; Nigg, Joel T.; Jester, Jennifer M.; Adams, Kenneth; Puttler, Leon I.; Buu, Anne; Fitzgerald, Hiram; Zucker, Robert A.

    2008-01-01

    Temperament traits may increase risk for developmental psychopathology like Attention-Deficit/Hyperactivity Disorder (ADHD) and disruptive behaviors during childhood, as well as predisposing to substance abuse during adolescence. In the current study, a cascade model of trait pathways to adolescent substance abuse was examined. Component hypotheses were that (a) maladaptive traits would increase risk for inattention/hyperactivity, (b) inattention/hyperactivity would increase risk for disruptive behaviors, and (c) disruptive behaviors would lead to adolescent substance abuse. Participants were 674 children (486 boys) from 321 families in an ongoing, longitudinal high risk study that began when children were three years old. Temperament traits assessed were reactive control, resiliency, and negative emotionality, using examiner ratings on the California Q-Sort. Parent, teacher, and self ratings of inattention/hyperactivity, disruptive behaviors, and substance abuse were also obtained. Low levels of childhood reactive control, but not resiliency or negative emotionality, were associated with adolescent substance abuse, mediated by disruptive behaviors. Using a cascade model, family risk for substance abuse was partially mediated by reactive control, inattention/hyperactivity, and disruptive behavior. Some, but not all, temperament traits in childhood were related to adolescent substance abuse; these effects were mediated via inattentive/hyperactive and disruptive behaviors. PMID:18787942

  14. Mid and long-term optimize scheduling of cascade hydro-power stations based on modified GA-POA method

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Yang, Xiong

    2018-06-01

    In this paper, to explore the efficiency and rationality of the cascade combined generation, a cascade combined optimal model with the maximum generating capacity is established, and solving the model by the modified GA-POA method. It provides a useful reference for the joint development of cascade hydro-power stations in large river basins. The typical annual runoff data are selected to calculate the difference between the calculated results under different representative years. The results show that the cascade operation of cascaded hydro-power stations can significantly increase the overall power generation of cascade and ease the flood risk caused by concentration of flood season.

  15. Cascade generalized predictive control strategy for boiler drum level.

    PubMed

    Xu, Min; Li, Shaoyuan; Cai, Wenjian

    2005-07-01

    This paper proposes a cascade model predictive control scheme for boiler drum level control. By employing generalized predictive control structures for both inner and outer loops, measured and unmeasured disturbances can be effectively rejected, and drum level at constant load is maintained. In addition, nonminimum phase characteristic and system constraints in both loops can be handled effectively by generalized predictive control algorithms. Simulation results are provided to show that cascade generalized predictive control results in better performance than that of well tuned cascade proportional integral differential controllers. The algorithm has also been implemented to control a 75-MW boiler plant, and the results show an improvement over conventional control schemes.

  16. Gain competition in dual wavelength quantum cascade lasers.

    PubMed

    Geiser, Markus; Pflügl, Christian; Belyanin, Alexey; Wang, Qi Jie; Yu, Nanfang; Edamura, Tadanaka; Yamanishi, Masamichi; Kan, Hirofumi; Fischer, Milan; Wittmann, Andreas; Faist, Jérôme; Capasso, Federico

    2010-05-10

    We investigated dual wavelength mid-infrared quantum cascade lasers based on heterogeneous cascades. We found that due to gain competition laser action tends to start in higher order lateral modes. The mid-infrared mode with the lower threshold current reduces population inversion for the second laser with the higher threshold current due to stimulated emission. We developed a rate equation model to quantitatively describe mode interactions due to mutual gain depletion. (c) 2010 Optical Society of America.

  17. Developmental Cascade Model for Adolescent Substance Use From Infancy to Late Adolescence

    PubMed Central

    Eiden, Rina D.; Lessard, Jared; Colder, Craig R.; Livingston, Jennifer; Casey, Meghan; Leonard, Kenneth E.

    2016-01-01

    A developmental cascade model for adolescent substance use beginning in infancy was examined in a sample of children with alcoholic and non-alcoholic parents. The model examined the role of parents’ alcohol diagnoses, depression and antisocial behavior in a cascading process of risk via three major hypothesized pathways: first via parental warmth/sensitivity from toddler to kindergarten age predicting higher parental monitoring in middle childhood through early adolescence serving as a protective pathway for adolescent substance use; second, via child low self-regulation in the preschool years to a continuing externalizing behavior problem pathway leading to underage drinking and higher engagement with substance using peers; and third, via higher social competence from kindergarten age through middle childhood being protective against engagement with delinquent and substance using peers, and leading to lower adolescent substance use. The sample consisted of 227 intact families recruited from the community at 12 months of child age. Results were supportive for the first two pathways to substance use in late adolescence. Among proximal, early adolescent risks, engagement with delinquent peers and parent’s acceptance of underage drinking were significant predictors of late adolescent alcohol and marijuana use. The results highlight the important protective roles of maternal warmth/sensitivity in early childhood to kindergarten age, parental monitoring in middle childhood, and of child self-regulation in the preschool period as reducing risk for externalizing behavior problems, underage drinking, and engagement with delinquent peers in early adolescence. Specific implications for the creation of developmentally fine-tuned preventive intervention are discussed. PMID:27584669

  18. Optimization of cascading failure on complex network based on NNIA

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Zhu, Zhiliang; Qi, Yi; Yu, Hai; Xu, Yanjie

    2018-07-01

    Recently, the robustness of networks under cascading failure has attracted extensive attention. Different from previous studies, we concentrate on how to improve the robustness of the networks from the perspective of intelligent optimization. We establish two multi-objective optimization models that comprehensively consider the operational cost of the edges in the networks and the robustness of the networks. The NNIA (Non-dominated Neighbor Immune Algorithm) is applied to solve the optimization models. We finished simulations of the Barabási-Albert (BA) network and Erdös-Rényi (ER) network. In the solutions, we find the edges that can facilitate the propagation of cascading failure and the edges that can suppress the propagation of cascading failure. From the conclusions, we take optimal protection measures to weaken the damage caused by cascading failures. We also consider actual situations of operational cost feasibility of the edges. People can make a more practical choice based on the operational cost. Our work will be helpful in the design of highly robust networks or improvement of the robustness of networks in the future.

  19. Interrelation of structure and operational states in cascading failure of overloading lines in power grids

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying

    2017-09-01

    As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.

  20. A dual-route cascaded model of reading by deaf adults: evidence for grapheme to viseme conversion.

    PubMed

    Elliott, Eeva A; Braun, Mario; Kuhlmann, Michael; Jacobs, Arthur M

    2012-01-01

    There is an ongoing debate whether deaf individuals access phonology when reading, and if so, what impact the ability to access phonology might have on reading achievement. However, the debate so far has been theoretically unspecific on two accounts: (a) the phonological units deaf individuals may have of oral language have not been specified and (b) there seem to be no explicit cognitive models specifying how phonology and other factors operate in reading by deaf individuals. We propose that deaf individuals have representations of the sublexical structure of oral-aural language which are based on mouth shapes and that these sublexical units are activated during reading by deaf individuals. We specify the sublexical units of deaf German readers as 11 "visemes" and incorporate the viseme set into a working model of single-word reading by deaf adults based on the dual-route cascaded model of reading aloud by Coltheart, Rastle, Perry, Langdon, and Ziegler (2001. DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204-256. doi: 10.1037//0033-295x.108.1.204). We assessed the indirect route of this model by investigating the "pseudo-homoviseme" effect using a lexical decision task in deaf German reading adults. We found a main effect of pseudo-homovisemy, suggesting that at least some deaf individuals do automatically access sublexical structure during single-word reading.

  1. Hadron-collider limits on new electroweak interactions from the heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1990-01-01

    We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less

  2. The < ln A > study with the Muon tracking detector in the KASCADE-Grande experiment - comparison of hadronic interaction models

    NASA Astrophysics Data System (ADS)

    Łuczak, P.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Curcio, C.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-08-01

    With the KASCADE-Grande Muon Tracking Detector it was possible to measure with high accuracy directions of EAS muons with energy above 0.8 GeV and up to 700 m distance from the shower centre. Reconstructed muon tracks allow investigation of muon pseudorapidity (η) distributions. These distributions are nearly identical to the pseudorapidity distributions of their parent mesons produced in hadronic interactions. Comparison of the η distributions from measured and simulated showers can be used to test the quality of the high energy hadronic interaction models. The pseudorapidity distributions reflect the longitudinal development of EAS and, as such, are sensitive to the mass of the cosmic ray primary particles. With various parameters of the η distribution, obtained from the Muon Tracking Detector data, it is possible to calculate the average logarithm of mass of the primary cosmic ray particles. The results of the < ln A > analysis in the primary energy range 1016 eV-1017 eV with the 1st quartile and the mean value of the distributions will be presented for the QGSJet-II-2, QGSJet-II-4, EPOS 1.99 and EPOS LHC models in combination with the FLUKA model.

  3. Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Uzhinskiy, V.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Götze, M.; Hartbrich, O.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-07-01

    Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8 GeV to 100 GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.

  4. In vitro models of the metastatic cascade: from local invasion to extravasation

    PubMed Central

    Bersini, S.; Jeon, J.S.; Moretti, Matteo; Kamm, R.D.

    2014-01-01

    A crucial event in the metastatic cascade is the extravasation of circulating cancer cells from blood capillaries to the surrounding tissues. The past 5 years have been characterized by a significant evolution in the development of in vitro extravasation models, which moved from traditional transmigration chambers to more sophisticated microfluidic devices, enabling the study of complex cell–cell and cell–matrix interactions in multicellular, controlled environments. These advanced assays could be applied to screen easily and rapidly a broad spectrum of molecules inhibiting cancer cell endothelial adhesion and extravasation, thus contributing to the design of more focused in vivo tests. PMID:24361339

  5. Computation of flows in a turn-around duct and a turbine cascade using advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Luo, J.

    1993-01-01

    Numerical investigation has been carried out to evaluate the capability of the Algebraic Reynolds Stress Model (ARSM) and the Nonlinear Stress Model (NLSM) to predict strongly curved turbulent flow in a turn-around duct (TAD). The ARSM includes the near-wall damping term of pressure-strain correlation phi(sub ij,w), which enables accurate prediction of individual Reynolds stress components in wall flows. The TAD mean flow quantities are reasonably well predicted by various turbulence models. The ARSM yields better predictions for both the mean flow and the turbulence quantities than the NLSM and the k-epsilon (k = turbulent kinetic energy, epsilon = dissipation rate of k) model. The NLSM also shows slight improvement over the k-epsilon model. However, all the models fail to capture the recovery of the flow from strong curvature effects. The formulation for phi(sub ij,w) appears to be incorrect near the concave surface. The hybrid k-epsilon/ARSM, Chien's k-epsilon model, and Coakley's q-omega (q = the square root of k, omega = epsilon/k) model have also been employed to compute the aerodynamics and heat transfer of a transonic turbine cascade. The surface pressure distributions and the wake profiles are predicted well by all the models. The k-epsilon model and the k-epsilon/ARSM model provide better predictions of heat transfer than the q-omega model. The k-epsilon/ARSM solutions show significant differences in the predicted skin friction coefficients, heat transfer rates and the cascade performance parameters, as compared to the k-epsilon model. The k-epsilon/ARSM model appears to capture, qualitatively, the anisotropy associated with by-pass transition.

  6. Triple Cascade Behavior in Quasigeostrophic and Drift Turbulence and Generation of Zonal Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazarenko, Sergey; Quinn, Brenda

    2009-09-11

    We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima (CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the formation of zonal jets. We use a generalized Fjoertoft argument for the energy, enstrophy, and zonostrophy and show that they cascade anisotropically into nonintersecting sectors in k space with the energy cascading towards large zonal scales. Using direct numerical simulations of the CHM equation, we show that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjoertoft argument.

  7. Cosmic-ray cascades photographed in scintillator

    NASA Technical Reports Server (NTRS)

    Barrowes, S. C.; Huggett, R. W.; Levit, L. B.; Porter, L. G.

    1974-01-01

    Light produced by nuclear-electromagnetic cascades in a plastic scintillator can be photographed, and the resulting images on film used to measure both the energy content of the cascades and also the positions at which the cascades passed through the scintillator. The energy content of a cascade can be measured to 20% and its position determined to plus or minus 0.8 cm in each scintillator. Techniques for photographing the cascades and analyzing the film are described. Sample data are presented and discussed.

  8. Signaling cascades modulate the speed of signal propagation through space.

    PubMed

    Govern, Christopher C; Chakraborty, Arup K

    2009-01-01

    Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade) at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.

  9. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  10. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE PAGES

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  11. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  12. Light-front field theory in the description of hadrons

    NASA Astrophysics Data System (ADS)

    Ji, Chueng-Ryong

    2017-03-01

    We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  13. Electromagnetic cascades in pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1981-01-01

    The development of pair photon cascades initiated by high energy electrons above a pulsar polar cap is simulated numerically. The calculation uses the energy of the primary electron, the magnetic field strength, and the period of rotation as parameters and follows the curvature radiation emitted by the primary, the conversion of this radiation e(+) - e(-) pairs in the intense fields, and the quantized synchrotron radiation by the secondary pairs. A recursive technique allows the tracing of an indefinite number of generations using a Monte Carlo method. Gamma ray and pair spectra are calculated for cascades in different parts of the polar cap and with different acceleration models. It is found that synchrotron radiation from secondary pairs makes an important contribution to the gamma ray spectrum above 25 MeV, and that the final gamma ray and pair spectra are insensitive to the height of the accelerating region, as long as the acceleration of the primary electrons is not limited by radiation reaction.

  14. Systemic risk in a unifying framework for cascading processes on networks

    NASA Astrophysics Data System (ADS)

    Lorenz, J.; Battiston, S.; Schweitzer, F.

    2009-10-01

    We introduce a general framework for models of cascade and contagion processes on networks, to identify their commonalities and differences. In particular, models of social and financial cascades, as well as the fiber bundle model, the voter model, and models of epidemic spreading are recovered as special cases. To unify their description, we define the net fragility of a node, which is the difference between its fragility and the threshold that determines its failure. Nodes fail if their net fragility grows above zero and their failure increases the fragility of neighbouring nodes, thus possibly triggering a cascade. In this framework, we identify three classes depending on the way the fragility of a node is increased by the failure of a neighbour. At the microscopic level, we illustrate with specific examples how the failure spreading pattern varies with the node triggering the cascade, depending on its position in the network and its degree. At the macroscopic level, systemic risk is measured as the final fraction of failed nodes, X*, and for each of the three classes we derive a recursive equation to compute its value. The phase diagram of X* as a function of the initial conditions, thus allows for a prediction of the systemic risk as well as a comparison of the three different model classes. We could identify which model class leads to a first-order phase transition in systemic risk, i.e. situations where small changes in the initial conditions determine a global failure. Eventually, we generalize our framework to encompass stochastic contagion models. This indicates the potential for further generalizations.

  15. Factors Associated with PMTCT Cascade Completion in Four African Countries.

    PubMed

    Dionne-Odom, Jodie; Welty, Thomas K; Westfall, Andrew O; Chi, Benjamin H; Ekouevi, Didier Koumavi; Kasaro, Margaret; Tih, Pius M; Tita, Alan T N

    2016-01-01

    Background. Many countries are working to reduce or eliminate mother-to-child transmission (MTCT) of HIV. Prevention efforts have been conceptualized as steps in a cascade but cascade completion rates during and after pregnancy are low. Methods. A cross-sectional survey was performed across 26 communities in Cameroon, Cote d'Ivoire, South Africa, and Zambia. Women who reported a pregnancy within two years were enrolled. Participant responses were used to construct the PMTCT cascade with all of the following steps required for completion: at least one antenatal visit, HIV testing performed, HIV testing result received, initiation of maternal prophylaxis, and initiation of infant prophylaxis. Factors associated with cascade completion were identified using multivariable logistic regression modeling. Results. Of 976 HIV-infected women, only 355 (36.4%) completed the PMTCT cascade. Although most women (69.2%) did not know their partner's HIV status; awareness of partner HIV status was associated with cascade completion (aOR 1.4, 95% CI 1.01-2.0). Completion was also associated with receiving an HIV diagnosis prior to pregnancy compared with HIV diagnosis during or after pregnancy (aOR 14.1, 95% CI 5.2-38.6). Conclusions. Pregnant women with HIV infection in Africa who were aware of their partner's HIV status and who were diagnosed with HIV before pregnancy were more likely to complete the PMTCT cascade.

  16. Factors Associated with PMTCT Cascade Completion in Four African Countries

    PubMed Central

    Welty, Thomas K.; Westfall, Andrew O.; Chi, Benjamin H.; Ekouevi, Didier Koumavi; Tih, Pius M.; Tita, Alan T. N.

    2016-01-01

    Background. Many countries are working to reduce or eliminate mother-to-child transmission (MTCT) of HIV. Prevention efforts have been conceptualized as steps in a cascade but cascade completion rates during and after pregnancy are low. Methods. A cross-sectional survey was performed across 26 communities in Cameroon, Cote d'Ivoire, South Africa, and Zambia. Women who reported a pregnancy within two years were enrolled. Participant responses were used to construct the PMTCT cascade with all of the following steps required for completion: at least one antenatal visit, HIV testing performed, HIV testing result received, initiation of maternal prophylaxis, and initiation of infant prophylaxis. Factors associated with cascade completion were identified using multivariable logistic regression modeling. Results. Of 976 HIV-infected women, only 355 (36.4%) completed the PMTCT cascade. Although most women (69.2%) did not know their partner's HIV status; awareness of partner HIV status was associated with cascade completion (aOR 1.4, 95% CI 1.01–2.0). Completion was also associated with receiving an HIV diagnosis prior to pregnancy compared with HIV diagnosis during or after pregnancy (aOR 14.1, 95% CI 5.2–38.6). Conclusions. Pregnant women with HIV infection in Africa who were aware of their partner's HIV status and who were diagnosed with HIV before pregnancy were more likely to complete the PMTCT cascade. PMID:27872760

  17. Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model ***

    NASA Astrophysics Data System (ADS)

    Megías, E.; Ruiz Arriola, E.; Salcedo, L. L.

    2014-03-01

    Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed. Presented by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2011-25948), DGI (FIS2011-24149), Junta de Andalucía grant FQM-225, Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Spanish MINECO's Centro de Excelencia Severo Ochoa Program grant SEV-2012-0234, and the Juan de la Cierva Program.

  18. Unraveling hadron structure with generalized parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrei Belitsky; Anatoly Radyushkin

    2004-10-01

    The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling andmore » QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.« less

  19. Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws

    NASA Astrophysics Data System (ADS)

    Fu, Jing-Hua

    2017-09-01

    Higher moments of multiplicity fluctuations of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the canonical ensemble. Exact conservation of three charges, baryon number, electric charge, and strangeness is enforced in the large volume limit. Moments up to the fourth order of various particles are calculated at CERN Super Proton Synchrotron, BNL Relativistic Heavy Ion Collider (RHIC), and CERN Large Hadron Collider energies. The asymptotic fluctuations within a simplified model with only one conserved charge in the canonical ensemble are discussed where simple analytical expressions for moments of multiplicity distributions can be obtained. Moments products of net-proton, net-kaon, and net-charge distributions in Au + Au collisions at RHIC energies are calculated. The pseudorapidity coverage dependence of net-charge fluctuation is discussed.

  20. Exclusive processes and the fundamental structure of hadrons

    DOE PAGES

    Brodsky, Stanley J.

    2015-01-20

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less

  1. Exclusive processes and the fundamental structure of hadrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less

  2. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems.

  3. Multistep cascade annihilations of dark matter and the Galactic Center excess

    DOE PAGES

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.

    2015-05-26

    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect ofmore » multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current paper, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.« less

  4. Mesoscopic Modeling of Blood Clotting: Coagulation Cascade and Platelets Adhesion

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza; Li, Zhen; Karniadakis, George

    2015-11-01

    The process of clot formation and growth at a site on a blood vessel wall involve a number of multi-scale simultaneous processes including: multiple chemical reactions in the coagulation cascade, species transport and flow. To model these processes we have incorporated advection-diffusion-reaction (ADR) of multiple species into an extended version of Dissipative Particle Dynamics (DPD) method which is considered as a coarse-grained Molecular Dynamics method. At the continuum level this is equivalent to the Navier-Stokes equation plus one advection-diffusion equation for each specie. The chemistry of clot formation is now understood to be determined by mechanisms involving reactions among many species in dilute solution, where reaction rate constants and species diffusion coefficients in plasma are known. The role of blood particulates, i.e. red cells and platelets, in the clotting process is studied by including them separately and together in the simulations. An agonist-induced platelet activation mechanism is presented, while platelets adhesive dynamics based on a stochastic bond formation/dissociation process is included in the model.

  5. Cascading off the West Greenland Shelf: A numerical perspective

    NASA Astrophysics Data System (ADS)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Petrie, Brian; Azetsu-Scott, Kumiko; Lee, Craig M.

    2017-07-01

    Cascading of dense water from the shelf to deeper layers of the adjacent ocean basin has been observed in several locations around the world. The West Greenland Shelf (WGS), however, is a region where this process has never been documented. In this study, we use a numerical model with a 1/4° resolution to determine (i) if cascading could happen from the WGS; (ii) where and when it could take place; (iii) the forcings that induce or halt this process; and (iv) the path of the dense plume. Results show cascading happening off the WGS at Davis Strait. Dense waters form there due to brine rejection and slide down the slope during spring. Once the dense plume leaves the shelf, it gradually mixes with waters of similar density and moves northward into Baffin Bay. Our simulation showed events happening between 2003-2006 and during 2014; but no plume was observed in the simulation between 2007 and 2013. We suggest that the reason why cascading was halted in this period is related to: the increased freshwater transport from the Arctic Ocean through Fram Strait; the additional sea ice melting in the region; and the reduced presence of Irminger Water at Davis Strait during fall/early winter. Although observations at Davis Strait show that our simulation usually overestimates the seasonal range of temperature and salinity, they agree with the overall variability captured by the model. This suggests that cascades have the potential to develop on the WGS, albeit less dense than the ones estimated by the simulation.

  6. Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr; Motornenko, Anton; Gorenstein, Mark I.; Stoecker, Horst

    2018-03-01

    The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the "excluded volume" parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically from the classical excluded volume (EV) model result. At temperatures T =100 -200 MeV, the widely used classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core radius by large factors of 3-4. Previous studies, which employed the hard-core radii of hadrons as an input into the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc=0.25 -0.3 fm. Role of the attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV parameter vN N≃1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover temperature region.

  7. Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard

    2013-04-01

    The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.

  8. Disentangling Hadronic and Leptonic Cascade Scenarios from the Very-High-Energy Gamma-Ray Emission of Distant Hard-Spectrum Blazars

    DOE PAGES

    Takami, Hajime; Murase, Kohta; Dermer, Charles D.

    2013-06-26

    We show that recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; ≳ 100 eV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311–1938. We consider the prospects for detection of the VHE sources by the plannedmore » Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above ~500 GeV (depending on source redshift) for several luminous sources with z ≲ 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311–1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Lastly, accurate redshift measurements of hard-spectrum blazars are essential for this study.« less

  9. Hadron mass spectrum from lattice QCD.

    PubMed

    Majumder, Abhijit; Müller, Berndt

    2010-12-17

    Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.

  10. A cascade model of mentorship for frontline health workers in rural health facilities in Eastern Uganda: processes, achievements and lessons.

    PubMed

    Ajeani, Judith; Mangwi Ayiasi, Richard; Tetui, Moses; Ekirapa-Kiracho, Elizabeth; Namazzi, Gertrude; Muhumuza Kananura, Ronald; Namusoke Kiwanuka, Suzanne; Beyeza-Kashesya, Jolly

    2017-08-01

    There is increasing demand for trainers to shift from traditional didactic training to innovative approaches that are more results-oriented. Mentorship is one such approach that could bridge the clinical knowledge gap among health workers. This paper describes the experiences of an attempt to improve health-worker performance in maternal and newborn health in three rural districts through a mentoring process using the cascade model. The paper further highlights achievements and lessons learnt during implementation of the cascade model. The cascade model started with initial training of health workers from three districts of Pallisa, Kibuku and Kamuli from where potential local mentors were selected for further training and mentorship by central mentors. These local mentors then went on to conduct mentorship visits supported by the external mentors. The mentorship process concentrated on partograph use, newborn resuscitation, prevention and management of Post-Partum Haemorrhage (PPH), including active management of third stage of labour, preeclampsia management and management of the sick newborn. Data for this paper was obtained from key informant interviews with district-level managers and local mentors. Mentorship improved several aspects of health-care delivery, ranging from improved competencies and responsiveness to emergencies and health-worker professionalism. In addition, due to better district leadership for Maternal and Newborn Health (MNH), there were improved supplies/medicine availability, team work and innovative local problem-solving approaches. Health workers were ultimately empowered to perform better. The study demonstrated that it is possible to improve the competencies of frontline health workers through performance enhancement for MNH services using locally built capacity in clinical mentorship for Emergency Obstetric and Newborn Care (EmONC). The cascade mentoring process needed strong external mentorship support at the start to ensure improved

  11. Hadron molecules

    NASA Astrophysics Data System (ADS)

    Thomas, Gutsche; Tanja, Branz; Amand, Faessler; Ian, Woo Lee; Valery, E. Lyubovitskij

    2010-09-01

    We discuss a possible interpretation of the open charm mesons D*s0(2317), Ds1(2460) and the hidden charm mesons X(3872), Y(3940) and Y(4140) as hadron molecules. Using a phenomenological Lagrangian approach we review the strong and radiative decays of the D*s0(2317) and Ds1(2460) states. The X(3872) is assumed to consist dominantly of molecular hadronic components with an additional small admixture of a charmonium configuration. Determing the radiative (γJ/Ψ and γΨ(2s)) and strong (J/Ψ2π and J/Ψ3π) decay modes we show that the present experimental observation is consistent with the molecular structure assumption of the X(3872). Finally, we give evidence for molecular interpretations of the Y(3940) and Y(4140) related to the observed strong decay modes J/Ψ + ω or J/Ψ + varphi, respectively.

  12. van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.

    PubMed

    Vovchenko, Volodymyr; Gorenstein, Mark I; Stoecker, Horst

    2017-05-05

    An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T∼140-190  MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.

  13. Dynamic behavior of the interaction between epidemics and cascades on heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Jiang, Lurong; Jin, Xinyu; Xia, Yongxiang; Ouyang, Bo; Wu, Duanpo

    2014-12-01

    Epidemic spreading and cascading failure are two important dynamical processes on complex networks. They have been investigated separately for a long time. But in the real world, these two dynamics sometimes may interact with each other. In this paper, we explore a model combined with the SIR epidemic spreading model and a local load sharing cascading failure model. There exists a critical value of the tolerance parameter for which the epidemic with high infection probability can spread out and infect a fraction of the network in this model. When the tolerance parameter is smaller than the critical value, the cascading failure cuts off the abundance of paths and blocks the spreading of the epidemic locally. While the tolerance parameter is larger than the critical value, the epidemic spreads out and infects a fraction of the network. A method for estimating the critical value is proposed. In simulations, we verify the effectiveness of this method in the uncorrelated configuration model (UCM) scale-free networks.

  14. All-particle energy spectrum of KASCADE-Grande based on shower size and different hadronic interaction models

    NASA Astrophysics Data System (ADS)

    Kang, D.; Apel, W. D.; Arteaga-Velazquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schroder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2013-02-01

    KASCADE-Grande is a large detector array for observations of the energy spectrum as well as the chemical composition of cosmic ray air showers up to primary energies of 1 EeV. The multi-detector arrangement allows to measure the electromagnetic and muonic components for individual air showers. In this analysis, the reconstruction of the all-particle energy spectrum is based on the size spectra of the charged particle component. The energy is calibrated by using Monte Carlo simulations performed with CORSIKA and high-energy interaction models QGSJet, EPOS and SIBYLL. In all cases FLUKA has been used as low-energy interaction model. In this contribution the resulting spectra by means of different hadronic interaction models will be compared and discussed.

  15. Hadron Physics with Antiprotons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Ulrich

    2005-10-26

    The new FAIR facility which comes into operation at GSI in the upcoming years has a dedicated program of utilizing antiprotons for hadron physics. In particular, the planned PANDA experiment belongs to the group of core experiments at the new FAIR facility in Darmstadt/Germany. PANDA will be a universal detector to study the strong interaction by utilizing the annihilation process of antiprotons with protons and nuclear matter. The current paper gives an introduction into the hadron physics with antiprotons and part of the planned physics program with PANDA.

  16. Spatial distribution of Cherenkov light from cascade showers in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khomyakov, V. A., E-mail: VAKhomyakov@mephi.ru; Bogdanov, A. G.; Kindin, V. V.

    2016-12-15

    The spatial distribution of the Cherenkov light generated by cascade showers is analyzed using the NEVOD Cherenkov water detector. The dependence of the Cherenkov light intensity on the depth of shower development at various distances from the shower axis is investigated for the first time. The experimental data are compared with the Cherenkov light distributions predicted by various models for the scattering of cascade particles.

  17. Model for a pulsed terahertz quantum cascade laser under optical feedback.

    PubMed

    Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D

    2016-09-05

    Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.

  18. Spectra of hadrons and muons in the atmosphere: primary spectra, characteristics of hadron-air interactions

    NASA Astrophysics Data System (ADS)

    Yushkov, A. V.; Lagutin, A. A.

    2008-01-01

    Self-consistency of interaction models QGSJET 01, SIBYLL 2.1, NEXUS 3.97 and QGSJET II is checked in terms of their ability to reproduce simultaneously experimental data on fluxes of muons and hadrons. From this point of view SIBYLL 2.1 gives the most acceptable, though not quite satisfactory, results. Analysis of the situation for muons supports our previous conclusions, that the high-energy muon deficit is due both to underestimation of primary light nuclei fluxes in direct emulsion chamber experiments and to softness of p+A→π, K+X inclusive spectra in fragmentation region, especially prominent in case of QGSJET 01 model.

  19. Cascading failure in scale-free networks with tunable clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Jun; Gu, Bo; Guan, Xiang-Min; Zhu, Yan-Bo; Lv, Ren-Li

    2016-02-01

    Cascading failure is ubiquitous in many networked infrastructure systems, such as power grids, Internet and air transportation systems. In this paper, we extend the cascading failure model to a scale-free network with tunable clustering and focus on the effect of clustering coefficient on system robustness. It is found that the network robustness undergoes a nonmonotonic transition with the increment of clustering coefficient: both highly and lowly clustered networks are fragile under the intentional attack, and the network with moderate clustering coefficient can better resist the spread of cascading. We then provide an extensive explanation for this constructive phenomenon via the microscopic point of view and quantitative analysis. Our work can be useful to the design and optimization of infrastructure systems.

  20. Cascading costs: an economic nitrogen cycle.

    PubMed

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  1. Cascading costs: an economic nitrogen cycle.

    PubMed

    Moomaw, William R; Birch, Melissa B L

    2005-12-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N2. We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single tonne of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a tonne of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that tonne would cascade. The analysis reveals that it is most cost effective to remove a tonne of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  2. Efficient collective influence maximization in cascading processes with first-order transitions

    PubMed Central

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-01-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988

  3. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    PubMed Central

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems. PMID:26754065

  4. Efficient collective influence maximization in cascading processes with first-order transitions

    NASA Astrophysics Data System (ADS)

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-03-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.

  5. Overload cascading failure on complex networks with heterogeneous load redistribution

    NASA Astrophysics Data System (ADS)

    Hou, Yueyi; Xing, Xiaoyun; Li, Menghui; Zeng, An; Wang, Yougui

    2017-09-01

    Many real systems including the Internet, power-grid and financial networks experience rare but large overload cascading failures triggered by small initial shocks. Many models on complex networks have been developed to investigate this phenomenon. Most of these models are based on the load redistribution process and assume that the load on a failed node shifts to nearby nodes in the networks either evenly or according to the load distribution rule before the cascade. Inspired by the fact that real power-grid tends to place the excess load on the nodes with high remaining capacities, we study a heterogeneous load redistribution mechanism in a simplified sandpile model in this paper. We find that weak heterogeneity in load redistribution can effectively mitigate the cascade while strong heterogeneity in load redistribution may even enlarge the size of the final failure. With a parameter θ to control the degree of the redistribution heterogeneity, we identify a rather robust optimal θ∗ = 1. Finally, we find that θ∗ tends to shift to a larger value if the initial sand distribution is homogeneous.

  6. LCA-based optimization of wood utilization under special consideration of a cascading use of wood.

    PubMed

    Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus

    2015-04-01

    Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locationsmore » w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  8. A hybrid-system model of the coagulation cascade: simulation, sensitivity, and validation.

    PubMed

    Makin, Joseph G; Narayanan, Srini

    2013-10-01

    The process of human blood clotting involves a complex interaction of continuous-time/continuous-state processes and discrete-event/discrete-state phenomena, where the former comprise the various chemical rate equations and the latter comprise both threshold-limited behaviors and binary states (presence/absence of a chemical). Whereas previous blood-clotting models used only continuous dynamics and perforce addressed only portions of the coagulation cascade, we capture both continuous and discrete aspects by modeling it as a hybrid dynamical system. The model was implemented as a hybrid Petri net, a graphical modeling language that extends ordinary Petri nets to cover continuous quantities and continuous-time flows. The primary focus is simulation: (1) fidelity to the clinical data in terms of clotting-factor concentrations and elapsed time; (2) reproduction of known clotting pathologies; and (3) fine-grained predictions which may be used to refine clinical understanding of blood clotting. Next we examine sensitivity to rate-constant perturbation. Finally, we propose a method for titrating between reliance on the model and on prior clinical knowledge. For simplicity, we confine these last two analyses to a critical purely-continuous subsystem of the model.

  9. Statistical Model of Dynamic Markers of the Alzheimer's Pathological Cascade.

    PubMed

    Balsis, Steve; Geraci, Lisa; Benge, Jared; Lowe, Deborah A; Choudhury, Tabina K; Tirso, Robert; Doody, Rachelle S

    2018-05-05

    Alzheimer's disease (AD) is a progressive disease reflected in markers across assessment modalities, including neuroimaging, cognitive testing, and evaluation of adaptive function. Identifying a single continuum of decline across assessment modalities in a single sample is statistically challenging because of the multivariate nature of the data. To address this challenge, we implemented advanced statistical analyses designed specifically to model complex data across a single continuum. We analyzed data from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 1,056), focusing on indicators from the assessments of magnetic resonance imaging (MRI) volume, fluorodeoxyglucose positron emission tomography (FDG-PET) metabolic activity, cognitive performance, and adaptive function. Item response theory was used to identify the continuum of decline. Then, through a process of statistical scaling, indicators across all modalities were linked to that continuum and analyzed. Findings revealed that measures of MRI volume, FDG-PET metabolic activity, and adaptive function added measurement precision beyond that provided by cognitive measures, particularly in the relatively mild range of disease severity. More specifically, MRI volume, and FDG-PET metabolic activity become compromised in the very mild range of severity, followed by cognitive performance and finally adaptive function. Our statistically derived models of the AD pathological cascade are consistent with existing theoretical models.

  10. Nuclear electromagnetic cascades from nuclei with Z larger than or equal to 3

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1971-01-01

    A Monte Carlo simulation method was developed for studying nuclear-electromagnetic cascades initiated by high energy nuclei with Z or = 3 incident on heavy absorbers. The calculations are based on a cascade model which was first adjusted until it agreed with measurements made with protons at an accelerator. Modifications of the model used for protons include the incorporation of the probabilities for fragmentation of heavy nuclei into lighter nuclei, alpha particles, and nucleons. Mean values and fluctuations of the equivalent numbers of particles in the cascades at various depths in an iron absorber are presented for protons, carbon, and iron nuclei over the 30 to 300 GeV/nucleon energy range.

  11. On the hadron mass decomposition

    NASA Astrophysics Data System (ADS)

    Lorcé, Cédric

    2018-02-01

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force.

  12. Slow relaxation of cascade-induced defects in Fe

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-02-17

    On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less

  13. Averages of $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties as of summer 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; et al.

    2014-12-23

    This article reports world averages of measurements ofmore » $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, $CP$ violation parameters, parameters of semileptonic decays and CKM matrix elements.« less

  14. Quark Hadron Duality - Recent Jefferson Lab Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niculescu, Maria Ioana

    2016-08-01

    The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.

  15. New Approach for Nuclear Reaction Model in the Combination of Intra-nuclear Cascade and DWBA

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Iwamoto, O.; Iwamoto, Y.; Sato, T.; Niita, K.

    2014-04-01

    We applied a new nuclear reaction model that is a combination of the intra nuclear cascade model and the distorted wave Born approximation (DWBA) calculation to estimate neutron spectra in reactions induced by protons incident on 7Li and 9Be targets at incident energies below 50 MeV, using the particle and heavy ion transport code system (PHITS). The results obtained by PHITS with the new model reproduce the sharp peaks observed in the experimental double-differential cross sections as a result of taking into account transitions between discrete nuclear states in the DWBA. An excellent agreement was observed between the calculated results obtained using the combination model and experimental data on neutron yields from thick targets in the inclusive (p, xn) reaction.

  16. Hadron production experiments

    NASA Astrophysics Data System (ADS)

    Popov, Boris A.

    2013-02-01

    The HARP and NA61/SHINE hadroproduction experiments as well as their implications for neutrino physics are discussed. HARP measurements have already been used for predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve the atmospheric neutrino flux predictions and to help in the optimization of neutrino factory and super-beam designs. First measurements released recently by the NA61/SHINE experiment are of significant importance for a precise prediction of the J-PARC neutrino beam used for the T2K experiment. Both HARP and NA61/SHINE experiments provide also a large amount of input for validation and tuning of hadron production models in Monte-Carlo generators.

  17. Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

  18. Hadronic and nuclear interactions in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is themore » analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.« less

  19. Energy-range relations for hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  20. A plate-driven model for enigmatic volcanic history of the Cascades-Yellowstone System

    NASA Astrophysics Data System (ADS)

    Szwaja, S.; Kincaid, C. R.; Druken, K. A.; MacDougall, J.

    2013-12-01

    The Cascades subduction system in the Pacific Northwest (USA) represents a complex tectonic setting, where rollback subduction of the Juan de Fuca plate beneath the North American plate, back-arc extension, and a possible mantle plume have been proposed to explain the complicated volcanic trends observed over the past 20 Ma. Plume and non-plume models have been developed to reconcile the voluminous Columbia River/Steens Flood Basalts (CSFB) (~20 Ma), the age progressive (15 Ma to present) Snake River Plain (SRP) that terminates at Yellowstone and the opposite, or westward trending High Lava Plains (HLP) volcanic track of eastern/central Oregon. We present results from laboratory experiments designed to test a plate-driven model for reproducing gross spatial-temporal characteristics of these three magmatic features. Models use a glucose fluid with temperature dependent viscosity in representing Earth's mantle and continuous rubber belts that kinematically reproduce subduction trends for the Cascades system. Experiments begin at 20 Ma with a volume of mantle residuum in the Cascades wedge that is elongated and restricted in the trench-parallel and trench-normal directions, respectively. The underlying assumption is that residuum was created in the wedge during an earlier plate steepening event that caused the flood basalts. Our models characterize dispersion patterns for the melt residuum material as it deforms within four-dimensional wedge circulation fields driven by rollback subduction (e.g. with a translational component of motion). Results show that residuum viscosity, relative to the ambient fluid, determines whether anomalous fluid can evolve to a morphology that matches the SRP/HLP tracks over ~15-20Ma. A weak residuum (e.g. retained partial melt) deforms over this time scale from the initial north-south oriented feature to an east-west trending morphology that is thin in both depth and north-south extent, material initially beneath CSFB is offset to the

  1. The impact of the topology on cascading failures in a power grid model

    NASA Astrophysics Data System (ADS)

    Koç, Yakup; Warnier, Martijn; Mieghem, Piet Van; Kooij, Robert E.; Brazier, Frances M. T.

    2014-05-01

    Cascading failures are one of the main reasons for large scale blackouts in power transmission grids. Secure electrical power supply requires, together with careful operation, a robust design of the electrical power grid topology. Currently, the impact of the topology on grid robustness is mainly assessed by purely topological approaches, that fail to capture the essence of electric power flow. This paper proposes a metric, the effective graph resistance, to relate the topology of a power grid to its robustness against cascading failures by deliberate attacks, while also taking the fundamental characteristics of the electric power grid into account such as power flow allocation according to Kirchhoff laws. Experimental verification on synthetic power systems shows that the proposed metric reflects the grid robustness accurately. The proposed metric is used to optimize a grid topology for a higher level of robustness. To demonstrate its applicability, the metric is applied on the IEEE 118 bus power system to improve its robustness against cascading failures.

  2. Color-Sextet Quark Productions at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidekazu; Watanabe, Isamu

    Production cross-sections of color-sextet quarks at hadron colliders are estimated in various energies and the results are compared with cross-sections of the conventional top quark productions. Particular attentions are paid for a model recently proposed in Ref. 2 in order to explain the dynamical mechanism of the electroweak symmetry breaking. The model may be tested at SSC and LHC if the sextet quarks dominantly decay semileptonically through effective fourfermion interactions, or if the sextet quarks have long enough lifetime to reach the detectors.

  3. Universal effective hadron dynamics from superconformal algebra

    DOE PAGES

    Brodsky, Stanley J.; de Teramond, Guy F.; Dosch, Hans Gunter; ...

    2016-05-25

    An effective supersymmetric QCD light-front Hamiltonian for hadrons composed of light quarks, which includes a spin–spin interaction between the hadronic constituents, is constructed by embedding superconformal quantum mechanics into AdS space. A specific breaking of conformal symmetry inside the graded algebra determines a unique effective quark-confining potential for light hadrons, as well as remarkable connections between the meson and baryon spectra. The results are consistent with the empirical features of the light-quark hadron spectra, including a universal mass scale for the slopes of the meson and baryon Regge trajectories and a zero-mass pion in the limit of massless quarks. Ourmore » analysis is consistently applied to the excitation spectra of the π , ρ , K , K* and Φ meson families as well as to the N , Δ, Λ, Σ, Σ* , Ξ and Ξ* in the baryon sector. Here, we also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass of light hadrons is expressed in a universal and frame-independent decomposition in the semiclassical approximation described here.« less

  4. Active polarisation control of a quantum cascade laser using tuneable birefringence in waveguides.

    PubMed

    Dhirhe, D; Slight, T J; Holmes, B M; Ironside, C N

    2013-10-07

    We discuss the design, modelling, fabrication and characterisation of an integrated tuneable birefringent waveguide for quantum cascade lasers. We have fabricated quantum cascade lasers operating at wavelengths around 4450 nm that include polarisation mode converters and a differential phase shift section. We employed below laser threshold electroluminescence to investigate the single pass operation of the integrated device. We use a theory based on the electro-optic properties of birefringence in quantum cascade laser waveguides combined with a Jones matrix based description to gain an understanding of the electroluminescence results. With the quantum cascade lasers operating above threshold we demonstrated polarisation control of the output.

  5. Quantum-electrodynamic cascades in intense laser fields

    NASA Astrophysics Data System (ADS)

    Narozhny, N. B.; Fedotov, A. M.

    2015-01-01

    It is shown that in an intense laser field, along with cascades similar to extensive air showers, self-sustaining field-energized cascades can develop. For intensities of 1024~ \\text {W cm}-2 or higher, such cascades can even be initiated by a particle at rest in the focal area of a tightly focused laser pulse. The cascade appearance effect can considerably alter the progression of any process occurring in a high-intensity laser field. At very high intensities, the evolvement of such cascades can lead to the depletion of the laser field. This paper presents a design of an experiment to observe these two cascade types simultaneously already in next-generation laser facilities.

  6. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016

    DOE PAGES

    Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.; ...

    2017-12-21

    Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$  violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less

  7. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.

    Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$  violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less

  8. Slepton Pair Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Fuks, B.

    2007-04-01

    In R-parity conserving supersymmetric models, sleptons are produced in pairs at hadron colliders. We show that measurements of the longitudinal single-spin asymmetry at possible polarization upgrades of existing colliders allow for a direct extraction of the slepton mixing angle. A calculation of the transverse-momentum spectrum shows the importance of resummed contributions at next-to-leading logarithmic accuracy in the small and intermediate transverse-momentum regions and little dependence on unphysical scales and non-perturbative contributions.

  9. Signatures for Black Hole Production from Hadronic Observables at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Humanic, Thomas J.; Koch, Benjamin; Stöcker, Horst

    The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p + p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb+Pb collisions.

  10. Peculiarities of biological action of hadrons of space radiation.

    PubMed

    Akoev, I G; Yurov, S S

    1975-01-01

    Biological investigations in space enable one to make a significant contribution on high-energy hadrons to biological effects under the influence of factors of space flights. Physical and molecular principles of the action of high-energy hadrons are analysed. Genetic and somatic hadron effects produced by the secondary radiation from 70 GeV protons have been studied experimentally. The high biological effectiveness of hadrons, great variability in biological effects, and specifically of their action, are associated with strong interactions of high-energy hadrons. These are the probability of nuclear interaction with any atom nucleus, generation of a great number of secondary particles (among them, probably, highly effective multicharged and heavy nuclei, antiprotons, pi(-)-mesons), and the spatial distribution of secondary particles as a narrow cone with extremely high density of particles in its first part. The secondary radiation generated by high- and superhigh-energy hadrons upon their interaction with the spaceship is likely to be the greatest hazard of radiation to the crew during space flights.

  11. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.

  12. A minimal rupture cascade model for living cell plasticity

    NASA Astrophysics Data System (ADS)

    Polizzi, Stefano; Laperrousaz, Bastien; Perez-Reche, Francisco J.; Nicolini, Franck E.; Maguer Satta, Véronique; Arneodo, Alain; Argoul, Françoise

    2018-05-01

    Under physiological and pathological conditions, cells experience large forces and deformations that often exceed the linear viscoelastic regime. Here we drive CD34+ cells isolated from healthy and leukemic bone marrows in the highly nonlinear elasto-plastic regime, by poking their perinuclear region with a sharp AFM cantilever tip. We use the wavelet transform mathematical microscope to identify singular events in the force-indentation curves induced by local rupture events in the cytoskeleton (CSK). We distinguish two types of rupture events, brittle failures likely corresponding to irreversible ruptures in a stiff and highly cross-linked CSK and ductile failures resulting from dynamic cross-linker unbindings during plastic deformation without loss of CSK integrity. We propose a stochastic multiplicative cascade model of mechanical ruptures that reproduces quantitatively the experimental distributions of the energy released during these events, and provides some mathematical and mechanistic understanding of the robustness of the log-normal statistics observed in both brittle and ductile situations. We also show that brittle failures are relatively more prominent in leukemia than in healthy cells suggesting their greater fragility.

  13. Open Cascades as Simple Solutions to Providing Ultrasensitivity and Adaptation in Cellular Signaling

    PubMed Central

    Srividhya, Jeyaraman; Li, Yongfeng; Pomerening, Joseph R.

    2011-01-01

    Cell signaling is achieved predominantly by reversible phosphorylation-dephosphorylation reaction cascades. Up until now, circuits conferring adaptation have all required the presence of a cascade with some type of closed topology: negative–feedback loop with a buffering node, or incoherent feedforward loop with a proportioner node. In this paper—using Goldbeter and Koshland-type expressions—we propose a differential equation model to describe a generic, open signaling cascade that elicits an adaptation response. This is accomplished by coupling N phosphorylation–dephosphorylation cycles unidirectionally, without any explicit feedback loops. Using this model, we show that as the length of the cascade grows, the steady states of the downstream cycles reach a limiting value. In other words, our model indicates that there are a minimum number of cycles required to achieve a maximum in sensitivity and amplitude in the response of a signaling cascade. We also describe for the first time that the phenomenon of ultrasensitivity can be further subdivided into three sub–regimes, separated by sharp stimulus threshold values: OFF, OFF-ON-OFF, and ON. In the OFF-ON-OFF regime, an interesting property emerges. In the presence of a basal amount of activity, the temporal evolution of early cycles yields damped peak responses. On the other hand, the downstream cycles switch rapidly to a higher activity state for an extended period of time, prior to settling to an OFF state (OFF-ON-OFF). This response arises from the changing dynamics between a feed–forward activation module and dephosphorylation reactions. In conclusion, our model gives the new perspective that open signaling cascades embedded in complex biochemical circuits may possess the ability to show a switch–like adaptation response, without the need for any explicit feedback circuitry. PMID:21566270

  14. Cascaded analysis of signal and noise propagation through a heterogeneous breast model.

    PubMed

    Mainprize, James G; Yaffe, Martin J

    2010-10-01

    The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the "power law" filter used to generate the texture of the tissue distribution. A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.

  15. Polarization and Resummation in Slepton Production at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Klasen, M.

    2006-10-01

    In R-parity conserving supersymmetric (SUSY) models, sleptons are produced in pairs at hadron colliders through neutral and charged electroweak currents. We demonstrate that the polarization of the initial hadron beams allows for a direct extraction of the slepton mixing angle and thus for a determination of the underlying SUSY-breaking mechanism. We also perform a first precision calculation of the transverse-momentum ( q T) spectrum of the slepton pairs by resumming soft multiple-gluon emission at next-to-leading logarithmic order. The results show a relevant contribution of resummation both in the small and intermediate q T-regions, which strongly influences the extraction of the missing transverse-momentum signal and the subsequent slepton mass-determination, and little dependence on unphysical scales and non-perturbative contributions.

  16. The decay width of stringy hadrons

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Jacob; Weissman, Dorin

    2018-02-01

    In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp ⁡ (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  17. Social relevance: toward understanding the impact of the individual in an information cascade

    NASA Astrophysics Data System (ADS)

    Hall, Robert T.; White, Joshua S.; Fields, Jeremy

    2016-05-01

    Information Cascades (IC) through a social network occur due to the decision of users to disseminate content. We define this decision process as User Diffusion (UD). IC models typically describe an information cascade by treating a user as a node within a social graph, where a node's reception of an idea is represented by some activation state. The probability of activation then becomes a function of a node's connectedness to other activated nodes as well as, potentially, the history of activation attempts. We enrich this Coarse-Grained User Diffusion (CGUD) model by applying actor type logics to the nodes of the graph. The resulting Fine-Grained User Diffusion (FGUD) model utilizes prior research in actor typing to generate a predictive model regarding the future influence a user will have on an Information Cascade. Furthermore, we introduce a measure of Information Resonance that is used to aid in predictions regarding user behavior.

  18. Passive control of discrete-frequency tones generated by coupled detuned cascades

    NASA Astrophysics Data System (ADS)

    Sawyer, S.; Fleeter, S.

    2003-07-01

    Discrete-frequency tones generated by rotor-stator interactions are of particular concern in the design of fans and compressors. Classical theory considers an isolated flat-plate cascade of identical uniformly spaced airfoils. The current analysis extends this tuned isolated cascade theory to consider coupled aerodynamically detuned cascades where aerodynamic detuning is accomplished by changing the chord of alternate rotor blades and stator vanes. In a coupled cascade analysis, the configuration of the rotor influences the downstream acoustic response of the stator, and the stator configuration influences the upstream acoustic response of the rotor. This coupled detuned cascade unsteady aerodynamic model is first applied to a baseline tuned stage. This baseline stage is then aerodynamically detuned by replacing alternate rotor blades and stator vanes with decreased chord airfoils. The nominal aerodynamically detuned stage configuration is then optimized, with the stage acoustic response decreased 13 dB upstream and 1 dB downstream at the design operating condition. A reduction in the acoustic response of the optimized aerodynamically detuned stage is then demonstrated over a range of operating conditions.

  19. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    PubMed

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  20. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2012-09-01

    The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/√E/GeV. This resolution is improved to approximately 45%/√E/GeV with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to geant4 simulations yield resolution improvements comparable to those observed for real data.

  1. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2018-08-01

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. Simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  2. Ultra-fast hadronic calorimetry

    DOE PAGES

    Denisov, Dmitri; Lukic, Strahinja; Mokhov, Nikolai; ...

    2018-05-08

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. As a result, simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  3. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2004-05-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  4. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  5. Transverse-momentum and collision-energy dependence of high-pT hadron suppression in Au+Au collisions at ultrarelativistic energies.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Drees, K A; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-10-24

    We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[s(NN)]=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of p(T)-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.

  6. Raman mediated all-optical cascadable inverter using silicon-on-insulator waveguides.

    PubMed

    Sen, Mrinal; Das, Mukul K

    2013-12-01

    In this Letter, we propose an all-optical circuit for a cascadable and integrable logic inverter based on stimulated Raman scattering. A maximum product criteria for noise margin is taken to analyze the cascadability of the inverter. Variation of noise margin for different model parameters is also studied. Finally, the time domain response of the inverter is analyzed for different widths of input pulses.

  7. Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; et al.

    2012-07-01

    This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.

  8. Techniques for detecting the Cherenkov light from cascade showers in water

    NASA Astrophysics Data System (ADS)

    Khomyakov, V. A.; Bogdanov, A. G.; Kindin, V. V.; Kokoulin, R. P.; Petrukhin, A. A.; Khokhlov, S. S.; Shutenko, V. V.; Yashin, I. I.

    2018-01-01

    The NEVOD Cherenkov water detector (CWD) features a denser lattice of sensitive elements than the existing large-scale CWDs, whereby the spatial distribution of Cherenkov light from cascade showers is sampled with a superior resolution of 0.5 m, which is close to one radiation length for water (36 cm). The experimental techniques for investigating the Cherenkov light generated by particle cascades in water is proposed. The dependence of light intensity on the depth of shower development is for the first time measured at different distances from the shower axis. The results are compared with the Cherenkov light distributions predicted by various model descriptions for the scattering of cascade particles.

  9. Cascaded Bragg scattering in fiber optics.

    PubMed

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  10. A decentralized approach to reducing the social costs of cascading failures

    NASA Astrophysics Data System (ADS)

    Hines, Paul

    Large cascading failures in electrical power networks come with enormous social costs. These can be direct financial costs, such as the loss of refrigerated foods in grocery stores, or more indirect social costs, such as the traffic congestion that results from the failure of traffic signals. While engineers and policy makers have made numerous technical and organizational changes to reduce the frequency and impact of large cascading failures, the existing data, as described in Chapter 2 of this work, indicate that the overall frequency and impact of large electrical blackouts in the United States are not decreasing. Motivated by the cascading failure problem, this thesis describes a new method for Distributed Model Predictive Control and a power systems application. The central goal of the method, when applied to power systems, is to reduce the social costs of cascading failures by making small, targeted reductions in load and generation and changes to generator voltage set points. Unlike some existing schemes that operate from centrally located control centers, the method is operated by software agents located at substations distributed throughout the power network. The resulting multi-agent control system is a new approach to decentralized control, combining Distributed Model Predictive Control and Reciprocal Altruism. Experimental results indicate that this scheme can in fact decrease the average size, and thus social costs, of cascading failures. Over 100 randomly generated disturbances to a model of the IEEE 300 bus test network, the method resulted in nearly an order of magnitude decrease in average event size (measured in cost) relative to cascading failure simulations without remedial control actions. Additionally, the communication requirements for the method are measured, and found to be within the bandwidth capabilities of current communications technology (on the order of 100kB/second). Experiments on several resistor networks with varying structures

  11. Observation of exclusive electron-positron production in hadron-hadron collisions.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Caron, B; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; Daronco, S; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; Cecco, S De; Deisher, A; Lentdecker, G De; Dell'orso, M; Paoli, F Delli; Demortier, L; Deng, J; Deninno, M; Pedis, D De; Derwent, P F; Giovanni, G P Di; Dionisi, C; Ruzza, B Di; Dittmann, J R; Dituro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pinfold, J; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-03-16

    We present the first observation of exclusive e(+)e(-) production in hadron-hadron collisions, using pp[over] collision data at (square root) s = 1.96 TeV taken by the run II Collider Detector at Fermilab, and corresponding to an integrated luminosity of 532 pb(-1). We require the absence of any particle signatures in the detector except for an electron and a positron candidate, each with transverse energy E(T) > 5 GeV and pseudorapidity |eta| < 2. With these criteria, 16 events are observed compared to a background expectation of 1.9+/-0.3 events. These events are consistent in cross section and properties with the QED process pp[over] --> p + e(+)e(-) + p[over] through two-photon exchange. The measured cross section is 1.6(-0.3)(+0.5)(stat) +/- 0.3(syst) pb. This agrees with the theoretical prediction of 1.71+/-0.01 pb.

  12. A search for jet handedness in hadronic Z{sup 0} decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yoji

    1995-03-01

    Transport of polarization through hadronization process is one of the fundamental interest in Quantum Chromodynamics which is a theory of strong interactions. In the low energy region where the hadronization occurs, QCD calculations are difficult, therefore at present the transport can be investigated experimentally. In this study the authors have searched for signatures of polarization of quarks and antiquarks in hadronic jets from Z{sup 0} {yields} q{bar q} decays. The polarization of quarks and antiquark produced by Z{sup 0} decays are predicted by the Standard Model of elementary particle physics. The authors defined several quantities depending on {open_quotes}jet handedness{close_quotes} methodsmore » and studied the correlation between the predicted polarization and the quantities. The signal was estimated by analyzing power which represents degree of the polarization transport through the hadronization process. The Z{sup 0} decays were measured by SLC Large Detector and the polarized electron beam provided by SLAC Linear Collider was useful for this study. The data from the 1993 run showed no signature of the transport of quark and antiquark polarization. Upper limits on magnitude of the analyzing power were set in the range 0.05-0.15 depending on the methods.« less

  13. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  14. What is a Trophic Cascade?

    PubMed

    Ripple, William J; Estes, James A; Schmitz, Oswald J; Constant, Vanessa; Kaylor, Matthew J; Lenz, Adam; Motley, Jennifer L; Self, Katharine E; Taylor, David S; Wolf, Christopher

    2016-11-01

    Few concepts in ecology have been so influential as that of the trophic cascade. Since the 1980s, the term has been a central or major theme of more than 2000 scientific articles. Despite this importance and widespread usage, basic questions remain about what constitutes a trophic cascade. Inconsistent usage of language impedes scientific progress and the utility of scientific concepts in management and conservation. Herein, we offer a definition of trophic cascade that is designed to be both widely applicable yet explicit enough to exclude extraneous interactions. We discuss our proposed definition and its implications, and define important related terms, thereby providing a common language for scientists, policy makers, conservationists, and other stakeholders with an interest in trophic cascades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cascading Failures in Networks: Inference, Intervention and Robustness to WMDs

    DTIC Science & Technology

    2016-08-01

    model  is  posited,  and  different  cascade  eventualities  are   investigated),  this  proposal  aimed  to  focus  on  the   inverse  problem  and...theory  and  algorithms  for  an  “ inverse  problem”  or  “data-­ driven”  study  of  cascades  –  specifically,  learning  about  how  they  start

  16. Multiplicities of Hadrons Within Jets at STAR

    NASA Astrophysics Data System (ADS)

    Wheeler, Suzanne; Drachenberg, Jim; STAR Collaboration

    2017-09-01

    Jet measurements have long been tools used to understand QCD phenomena. There is still much to be learned from the production of hadrons inside of jets. In particular, hadron yields within jets from proton-proton collisions have been proposed as a way to unearth more information on gluon fragmentation functions. In 2011, the STAR experiment at RHIC collected 23 pb-1 of data from proton-proton collisions at √{ s} = 500 GeV. The jets of most interest for gluon fragmentation functions are those with transverse momentum around 6-15 GeV/c. Large acceptance charged particle tracking and electromagnetic calorimetry make STAR an excellent jet detector. Time-of-flight and specific energy loss in the tracking system allow particle identification on the various types of hadrons within the jets, e.g., distinguishing pions from kaons and protons. An integral part of analyzing the data collected is understanding how the finite resolutions of the various detector subsystems influence the measured jet and hadron kinematics. For this reason, Monte Carlo simulations can be used to track the shifting of the hadron and jet kinematics between the generator level and the detector reconstruction level. The status of this analysis will be presented. We would like to acknowledge the Ronald E. McNair program for supporting this research.

  17. Sensitivity-enhanced optical temperature sensor with cascaded LPFGs

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasuhiro; Miyoshi, Yuji; Ohashi, Masaharu

    2011-12-01

    We propose a new structure of optical fiber temperature sensor with cascaded long-period fiber gratings (LPFGs) and investigate the temperature dependent loss of cascaded LFPGs. Each of the cascaded LPFGs has the same resonance wavelength with the same temperature change, because the cascaded LPFGs are made of a heat-shrinkable tube and a screw. The total resonance loss of proposed cascaded LPFGs shows higher temperature sensitivity than that of a single LPFG. The thermal coefficient of 4-cascaded LPFG also shows more than 4 times larger than that of a single one.

  18. Is cascade reinforcement likely when sympatric and allopatric populations exchange migrants?

    PubMed

    Yukilevich, Roman; Aoki, Fumio

    2016-04-01

    When partially reproductively isolated species come back into secondary contact, these taxa may diverge in mating preferences and sexual cues to avoid maladaptive hybridization, a process known as reinforcement. This phenomenon often leads to reproductive character displacement (RCD) between sympatric and allopatric populations of reinforcing species that differ in their exposure to hybridization. Recent discussions have reinvigorated the idea that RCD may give rise to additional speciation between conspecific sympatric and allopatric populations, dubbing the concept "cascade reinforcement." Despite some empirical studies supporting cascade reinforcement, we still know very little about the conditions for its evolution. In the present article, we address this question by developing an individual-based population genetic model that explicitly simulates cascade reinforcement when one of the hybridizing species is split into sympatric and allopatric populations. Our results show that when sympatric and allopatric populations reside in the same environment and only differ in their exposure to maladaptive hybridization, migration between them generally inhibits the evolution of cascade by spreading the reinforcement alleles from sympatry into allopatry and erasing RCD. Under these conditions, cascade reinforcement only evolved when migration rate between sympatric and allopatric populations was very low. This indicates that stabilizing sexual selection in allopatry is generally ineffective in preventing the spread of reinforcement alleles. Only when sympatric and allopatric populations experienced divergent ecological selection did cascade reinforcement evolve in the presence of substantial migration. These predictions clarify the conditions for cascade reinforcement and facilitate our understanding of existing cases in nature.

  19. Muon–hadron detector of the carpet-2 array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhappuev, D. D.; Kudzhaev, A. U., E-mail: kudjaev@mail.ru; Klimenko, N. F.

    The 1-GeV muon–hadron detector of the Carpet-2 multipurpose shower array at the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (INR, Moscow, Russia) is able to record simultaneously muons and hadrons. The procedure developed for this device makes it possible to separate the muon and hadron components to a high degree of precision. The spatial and energy features of the muon and hadron extensive-air-shower components are presented. Experimental data from the Carpet-2 array are contrasted against data from the EAS-TOP and KASCADE arrays and against the results of the calculations based on the CORSIKA (GHEISHA + QGSJET01)more » code package and performed for primary protons and iron nuclei.« less

  20. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.

    2007-02-01

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory—at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E ˜ (TH - T)-(D⊥-6)/2 (for D⊥ < 6) and P ˜ (TH - T)-(D⊥-4)/2 (for D⊥ < 4) where D⊥ is the effective number of transverse dimensions of the string theory. This behavior for D⊥ < 6 is qualitatively different from typical models in statistical mechanics and if observed on the lattice would provide a direct test of the stringy nature of large Nc QCD. However since it can be seen that TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D⊥ via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  1. Developmental Cascade Models of a Parenting-focused Program for Divorced Families on Mental Health Problems and Substance Use in Emerging Adulthood

    PubMed Central

    Wolchik, Sharlene A.; Tein, Jenn-Yun; Sandler, Irwin N.; Kim, Han-Joe

    2017-01-01

    A developmental cascade model from functioning in adolescence to emerging adulthood was tested using data from a 15-year longitudinal follow-up of 240 emerging adults whose families participated in a randomized, experimental trial of a preventive program for divorced families. Families participated in the program or literature control condition when the offspring were ages 9 – 12. Short-term follow-ups were conducted 3 months and 6 months following completion of the program when the offspring were in middle to late adolescence. Long-term follow-ups were conducted 6 years and 15 years after program completion when the offspring were in emerging adulthood. It was hypothesized that the impact of the program on mental health and substance use outcomes in emerging adulthood would be explained by developmental cascade effects of program effects in adolescence. The results provided support for a cascade effects model. Specifically, academic competence in adolescence had spillover effects on internalizing problems and externalizing problems in emerging adulthood. Also, adaptive coping in adolescence was significantly, negatively related to binge drinking. Unexpectedly, internalizing symptoms in adolescence were significantly negatively related to marijuana use and alcohol use. Gender differences occurred in the links between mental health and substance use outcomes in adolescence and mental health and substance use outcomes in emerging adulthood. PMID:27427811

  2. Local measurement and numerical modeling of mass/heat transfer from a turbine blade in a linear cascade with tip clearance

    NASA Astrophysics Data System (ADS)

    Jin, Peitong

    2000-11-01

    Local mass/heat transfer measurements from the turbine blade near-tip and the tip surfaces are performed using the naphthalene sublimation technique. The experiments are conducted in a linear cascade consisting of five high-pressure blades with a central test-blade configuration. The incoming flow conditions are close to those of the gas turbine engine environment (boundary layer displacement thickness is about 0.01 of chord) with an exit Reynolds number of 6.2 x 105. The effects of tip clearance level (0.86%--6.90% of chord), mainstream Reynolds number and turbulence intensity (0.2 and 12.0%) are investigated. Two methods of flow visualization---oil and lampblack, laser light sheet smoke wire---as well as static pressure measurement on the blade surface are used to study the tip leakage flow and vortex in the cascade. In addition, numerical modeling of the flow and heat transfer processes in the linear cascade with different tip clearances is conducted using commercial software incorporating advanced turbulence models. The present study confirms many important results on the tip leakage flow and vortex from the literature, contributes to the current understanding in the effects of tip leakage flow and vortex on local heat transfer from the blade near-tip and the tip surfaces, and provides detailed local and average heat/mass transfer data applicable to turbine blade tip cooling design.

  3. A facility for investigation of multiple hadrons at cosmic-ray energies

    NASA Technical Reports Server (NTRS)

    Valtonen, E.; Torsti, J. J.; Arvela, H.; Lumme, M.; Nieminen, M.; Peltonen, J.; Vainikka, E.

    1985-01-01

    An experimental arrangement for studying multiple hadrons produced in high-energy hadron-nucleus interactions is under construction at the university of Turku. The method of investigation is based on the detection of hadrons arriving simultaneously at sea level over an area of a few square meters. The apparatus consists of a hadron spectrometer with position-sensitive detectors in connection with a small air shower array. The position resolution using streamer tube detectors will be about 10 mm. Energy spectra of hadrons or groups of simultaneous hadrons produced at primary energies below 10 to the 16th power eV can be measured in the energy range 1 to 2000 GeV.

  4. Evolution of Vertebrate Phototransduction: Cascade Activation

    PubMed Central

    Lamb, Trevor D.; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C.; Davies, Wayne I. L.; Hart, Nathan S.; Collin, Shaun P.; Hunt, David M.

    2016-01-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  5. Special Issue ;Sediment cascades in cold climate geosystems;

    NASA Astrophysics Data System (ADS)

    Morche, David; Krautblatter, Michael; Beylich, Achim A.

    2017-06-01

    This Editorial introduces the Special Issue on sediment cascades in cold climate geosystems that evolved from the eighth I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments; http://www.geomorph.org/sedibud-working-group/) workshop. The workshop was held from 1st to 4th September 2014 at the Environmental Research Station ;Schneefernerhaus; (http://www.schneefernerhaus.de/en/home.html) located at Mt. Zugspitze, the highest peak of Germany, (2962 m asl). Paper and poster presentations focused on observations, measurements and modeling of geomorphological processes in sediment cascades in cold climate geosystems. This resulting Special Issue brings together ten selected contributions from arctic and alpine environments.

  6. Status and Prospects for Hadron Production Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeter, Raphaeel

    2010-03-30

    The latest results from the HARP, MIPP and NA61 Hadron Production Experiments are reviewed and their implications for neutrinos physics experiments are discussed. We emphasize three neutrino sources: accelerator-based neutrino beams, advanced neutrino sources and atmospheric neutrinos. Finally, prospects from additional forthcoming hadron production measurements are presented.

  7. The hadronic corrections to muonic hydrogen Lamb shift from ChPT and the proton radius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peset, Clara

    2016-01-22

    We obtain a model independent expression for the muonic hydrogen Lamb shift. The leading hadronic effects are controlled by the chiral theory, which allows for their model independent determination. We give their complete expression including the pion and Delta particles. Out of this analysis and the experimental measurement of the muonic hydrogen Lamb shift we determine the electromagnetic proton radius: r{sub p} = 0.8412(15) fm. This number is at 6.8σ variance with respect to the CODATA value. The parametric control of the uncertainties allows us to obtain a model independent determination of the error, which is dominated by hadronic effects.

  8. Hadron scattering, resonances, and QCD

    NASA Astrophysics Data System (ADS)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  9. Variable soft X-ray excesses in active galactic nuclei from nonthermal electron-positron pair cascades

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Coppi, Paolo S.

    1991-01-01

    In the present study of the formation of steep soft X-ray excesses that are superposed on flatter, hard X-ray power-law spectra in nonthermal electron-positron pair cascade sources, the soft excess in pair-cascade AGN models appears as a steep power law superposed on the tail of the UV bump and the flat nonthermal (hard X-ray) power law. The model-parameter space in which an excess in soft X-rays is visible is ascertained, and the time-variability of soft excesses in pair cascade models is examined. It is established that the parameter space in which soft excesses appear encompasses the range of preferred input parameters for a recently development Compton reflection model of UV and X-ray emission from the central engine of an AGN.

  10. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.

    2017-07-01

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/ m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The

  11. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S. J.

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD

  12. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    DOE PAGES

    Brodsky, S. J.

    2017-07-11

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD

  13. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    NASA Astrophysics Data System (ADS)

    Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.

    2010-08-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  14. Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling

    NASA Astrophysics Data System (ADS)

    He, F.; Price, J. H.; Vu, K. T.; Malinowski, A.; Sahu, J. K.; Richardson, D. J.

    2006-12-01

    We show that it is possible to adapt existing software packages developed originally for modeling telecommunication devices and systems to reliably predict and optimize the performance of high-power Ytterbium-doped fiber amplifier and laser systems. The ready availability of a flexible, user-friendly design tool should be of considerable practical interest to scientists and engineers working with this important new laser technology since Ytterbium amplifier and amplifier cascades are often difficult to optimize experimentally due to the three-level nature of the Ytterbium laser transition. As examples of the utility and accuracy of the software, as well as the complexity of the systems and amplifier properties that can be successfully modeled, we present a comparison of experimental and theoretical results for individual core and cladding pumped amplifiers, and also for an ultra-short pulse four-stage amplifier system optimized both to provide a broad gain bandwidth and to minimize nonlinear effects. We also show how high energy 100 ns pulses with complex user definable temporal profiles can be created in a gain-saturated amplifier by suitable pre-shaping of the low-energy input pulses. Furthermore, with appropriate modifications the same software package can be applied to fiber amplifiers based on other rare-earth elements and glass hosts.

  15. Energy flow along the medium-induced parton cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaizot, J.-P., E-mail: jean-paul.blaizot@cea.fr; Mehtar-Tani, Y., E-mail: ymehtar@uw.edu

    2016-05-15

    We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs.more » The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.« less

  16. Overload-based cascades on multiplex networks and effects of inter-similarity

    PubMed Central

    Zhou, Dong

    2017-01-01

    Although cascading failures caused by overload on interdependent/interconnected networks have been studied in the recent years, the effect of overlapping links (inter-similarity) on robustness to such cascades in coupled networks is not well understood. This is an important issue since shared links exist in many real-world coupled networks. In this paper, we propose a new model for load-based cascading failures in multiplex networks. We leverage it to compare different network structures, coupling schemes, and overload rules. More importantly, we systematically investigate the impact of inter-similarity on the robustness of the whole system under an initial intentional attack. Surprisingly, we find that inter-similarity can have a negative impact on robustness to overload cascades. To the best of our knowledge, we are the first to report the competition between the positive and the negative impacts of overlapping links on the robustness of coupled networks. These results provide useful suggestions for designing robust coupled traffic systems. PMID:29252988

  17. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    NASA Astrophysics Data System (ADS)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  18. Is cascade reinforcement likely when sympatric and allopatric populations exchange migrants?

    PubMed Central

    Yukilevich, Roman; Aoki, Fumio

    2016-01-01

    Abstract When partially reproductively isolated species come back into secondary contact, these taxa may diverge in mating preferences and sexual cues to avoid maladaptive hybridization, a process known as reinforcement. This phenomenon often leads to reproductive character displacement (RCD) between sympatric and allopatric populations of reinforcing species that differ in their exposure to hybridization. Recent discussions have reinvigorated the idea that RCD may give rise to additional speciation between conspecific sympatric and allopatric populations, dubbing the concept “cascade reinforcement.” Despite some empirical studies supporting cascade reinforcement, we still know very little about the conditions for its evolution. In the present article, we address this question by developing an individual-based population genetic model that explicitly simulates cascade reinforcement when one of the hybridizing species is split into sympatric and allopatric populations. Our results show that when sympatric and allopatric populations reside in the same environment and only differ in their exposure to maladaptive hybridization, migration between them generally inhibits the evolution of cascade by spreading the reinforcement alleles from sympatry into allopatry and erasing RCD. Under these conditions, cascade reinforcement only evolved when migration rate between sympatric and allopatric populations was very low. This indicates that stabilizing sexual selection in allopatry is generally ineffective in preventing the spread of reinforcement alleles. Only when sympatric and allopatric populations experienced divergent ecological selection did cascade reinforcement evolve in the presence of substantial migration. These predictions clarify the conditions for cascade reinforcement and facilitate our understanding of existing cases in nature. PMID:29491903

  19. Exciton management in organic photovoltaic multidonor energy cascades.

    PubMed

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  20. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofitmore » package after considering utility window incentives and KCHA capitol improvement funding.« less

  1. The Production of Hadrons in Muon Scattering on Deuterium and Xenon Nuclei at 480-GeV (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldner-Rembold, Stefan

    1992-01-01

    For the present thesis the hadronic final states of 6309 muon-deuterium events and 2064 muon-xenon events in the kinematical range Q 2>1 (GeV/c) 2, x>0.002, 0.1< y<0.85, 8< W<30 GeV, and θ>3.5 mrad were studied. The multiplicity distributions of the muon-deuterium events and the muon-xenon events were described by means of the negative binomial distribution in intervals of the c.m. energy W. The two parameters anti n (mean multiplicity) and 1/k show for the muon-deuterium events a linear dependence on ln W2. The mean multiplicity anti n on xenon (anti n=10.43±0.19) is distinctly higher than on deuterium (anti n=7.76±0.07). Themore » rapidity distributions of the positively charged and the negatively charged hadrons from muon-deuterium events are very well described by the Monte-Carlo program LUND. In the two-particle rapidity correlation both short-range and long-range correlations can be detected. The two-particle rapidity correlation in the xenon data are different from the deuterium data in the backward range. This difference indicates that the intranuclear cascade takes place in a limited range of small rapidities - relatively independently on the residual fragmentation process.« less

  2. Hadronic Leading Order Contribution to the Muon g-2

    NASA Astrophysics Data System (ADS)

    Nomura, Daisuke

    2018-05-01

    We calculate the Standard Model (SM) prediction for the muon anomalous magnetic moment. By using the latest experimental data for e+e- → hadrons as input to dispersive integrals, we obtain the values of the leading order (LO) and the next-to-leading-order (NLO) hadronic vacuum polarisation contributions as ahad, LO VPμ = (693:27 ± 2:46) × 10-10 and ahad, NLO VP μ = (_9.82 ± 0:04) × 1010-10, respectively. When combined with other contributions to the SM prediction, we obtain aμ(SM) = (11659182:05 ± 3.56) × 10-10; which is deviated from the experimental value by Δaμ(exp) _ aμ(SM) = (27.05 ± 7.26) × 10-10. This means that there is a 3.7 σ discrepancy between the experimental value and the SM prediction. We also discuss another closely related quantity, the running QED coupling at the Z-pole, α(M2 Z). By using the same e+e- → hadrons data as input, our result for the 5-flavour quark contribution to the running QED coupling at the Z pole is Δ(5)had(M2 Z) = (276.11 ± 1.11) × 10-4, from which we obtain Δ(M2 Z) = 128.946 ± 0.015.

  3. The comparison of extraction of energy in two-cascade and one-cascade targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgoleva, G. V., E-mail: dolgg@list.ru; Ponomarev, I. V., E-mail: wingof17@mail.ru

    2016-01-15

    The paper is devoted to numerical designing of cylindrical microtargets on the basis of shock-free compression. When designing microtargets for the controlled thermonuclear fusion, the core tasks are to select geometry and make-up of layers, and the law of energy embedding as well, which allow receiving of “burning” of deuterium- tritium mix, that is, the existence of thermonuclear reactions of working area. Yet, the energy yield as a result of thermonuclear reactions has to be more than the embedded energy (the coefficient of amplification is more than a unit). So, an important issue is the value of the embedded energy.more » The purpose of the present paper is to study the extraction of energy by working DT area in one-cascade and two-cascade targets. A bigger extraction of energy will contribute to a better burning of DT mix and a bigger energy yield as a result of thermonuclear reactions. The comparison of analytical results to numerical calculations is carried out. The received results show advantages of a two-cascade target compared to a one-cascade one.« less

  4. Model approach for stress induced steroidal hormone cascade changes in severe mental diseases.

    PubMed

    Volko, Claus D; Regidor, Pedro A; Rohr, Uwe D

    2016-03-01

    Stress was described by Cushing and Selye as an adaptation to a foreign stressor by the anterior pituitary increasing ACTH, which stimulates the release of glucocorticoid and mineralocorticoid hormones. The question is raised whether stress can induce additional steroidal hormone cascade changes in severe mental diseases (SMD), since stress is the common denominator. A systematic literature review was conducted in PubMed, where the steroidal hormone cascade of patients with SMD was compared to the impact of increasing stress on the steroidal hormone cascade (a) in healthy amateur marathon runners with no overtraining; (b) in healthy well-trained elite soldiers of a ranger training unit in North Norway, who were under extreme physical and mental stress, sleep deprivation, and insufficient calories for 1 week; and, (c) in soldiers suffering from post traumatic stress disorder (PTSD), schizophrenia (SI), and bipolar disorders (BD). (a) When physical stress is exposed moderately to healthy men and women for 3-5 days, as in the case of amateur marathon runners, only few steroidal hormones are altered. A mild reduction in testosterone, cholesterol and triglycerides is detected in blood and in saliva, but there was no decrease in estradiol. Conversely, there is an increase of the glucocorticoids, aldosterone and cortisol. Cellular immunity, but not specific immunity, is reduced for a short time in these subjects. (b) These changes are also seen in healthy elite soldiers exposed to extreme physical and mental stress but to a somewhat greater extent. For instance, the aldosterone is increased by a factor of three. (c) In SMD, an irreversible effect on the entire steroidal hormone cascade is detected. Hormones at the top of the cascade, such as cholesterol, dehydroepiandrosterone (DHEA), aldosterone and other glucocorticoids, are increased. However, testosterone and estradiol and their metabolites, and other hormones at the lower end of the cascade, seem to be reduced. 1

  5. QED cascade saturation in extreme high fields.

    PubMed

    Luo, Wen; Liu, Wei-Yuan; Yuan, Tao; Chen, Min; Yu, Ji-Ye; Li, Fei-Yu; Del Sorbo, D; Ridgers, C P; Sheng, Zheng-Ming

    2018-05-30

    Upcoming ultrahigh power lasers at 10 PW level will make it possible to experimentally explore electron-positron (e - e + ) pair cascades and subsequent relativistic e - e + jets formation, which are supposed to occur in extreme astrophysical environments, such as black holes, pulsars, quasars and gamma-ray bursts. In the latter case it is a long-standing question as to how the relativistic jets are formed and what their temperatures and compositions are. Here we report simulation results of pair cascades in two counter-propagating QED-strong laser fields. A scaling of QED cascade growth with laser intensity is found, showing clear cascade saturation above threshold intensity of ~10 24 W/cm 2 . QED cascade saturation leads to pair plasma cooling and longitudinal compression along the laser axis, resulting in the subsequent formation of relativistic dense e - e + jets along transverse directions. Such laser-driven QED cascade saturation may open up the opportunity to study energetic astrophysical phenomena in laboratory.

  6. Perfomance of a compensating lead-scintillator hadronic calorimeter

    NASA Astrophysics Data System (ADS)

    Bernardi, E.; Drews, G.; Garcia, M. A.; Klanner, R.; Kötz, U.; Levman, G.; Lomperski, M.; Lüke, D.; Ros, E.; Selonke, F.; Tiecke, H.; Tsirou, M.; Vogel, W.

    1987-12-01

    We have built a sandwich calorimeter consisting of 10 mm thick lead plates and 2.5 mm thick scintillator sheets. The thickness ratio between lead and scintillator was optimized to achieve a good energy resolution for hadrons. We have exposed this calorimeter to electrons, hadrons and muons in the energy range between 3 and 75 GeV, obtaining an average energy resolution of {23%}/{E} for electrons and {44%}/{E} for hadrons. For energies above 10 GeV and after leakage corrections, the ratio of electron response to hardron response is 1.05.

  7. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J. D.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J. C.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G. R.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Pereira, L. A. S.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Strafella, F.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yelos, D.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2016-11-01

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110 - 170 TeV ), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33 ±0.16 (1.61 ±0.21 ) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  8. Confined but chirally symmetric hadrons at large density and the Casher's argument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glozman, L. Ya.

    2009-08-01

    The Casher argument, which is believed to be quite general, states that in the confining regime chiral symmetry is necessarily broken. In the large-N{sub c} limit and at moderate and low temperatures, QCD is confining up to arbitrary large densities, and there should appear a quarkyonic matter. It has been demonstrated, within a manifestly confining and chirally symmetric model, which is a 3+1 dimensional generalization of the 't Hooft model, that, at zero temperature and at a density exceeding a critical one, the chiral symmetry is restored while quarks remain confined in color-singlet hadrons. This is in conflict with themore » Casher argument. Here, we explain the reason why the Casher argument fails and clarify the physical mechanism lying behind such confined but chirally symmetric hadrons.« less

  9. Local vs. global redundancy - trade-offs between resilience against cascading failures and frequency stability

    NASA Astrophysics Data System (ADS)

    Plietzsch, A.; Schultz, P.; Heitzig, J.; Kurths, J.

    2016-05-01

    When designing or extending electricity grids, both frequency stability and resilience against cascading failures have to be considered amongst other aspects of energy security and economics such as construction costs due to total line length. Here, we compare an improved simulation model for cascading failures with state-of-the-art simulation models for short-term grid dynamics. Random ensembles of realistic power grid topologies are generated using a recent model that allows for a tuning of global vs local redundancy. The former can be measured by the algebraic connectivity of the network, whereas the latter can be measured by the networks transitivity. We show that, while frequency stability of an electricity grid benefits from a global form of redundancy, resilience against cascading failures rather requires a more local form of redundancy and further analyse the corresponding trade-off.

  10. Evolution of Vertebrate Phototransduction: Cascade Activation.

    PubMed

    Lamb, Trevor D; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C; Davies, Wayne I L; Hart, Nathan S; Collin, Shaun P; Hunt, David M

    2016-08-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Churazov, E. M.

    2017-09-01

    While rich clusters are powerful sources of X-rays, γ-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consider special sources of energy, likely active galactic nucleus (AGN) feedback, to suppress catastrophic cooling of the gas. We consider a model of AGN feedback that postulates that the AGN supplies the energy to the gas by inflating bubbles of relativistic plasma, whose energy content is dominated by cosmic-ray (CR) hadrons. If most of these hadrons can quickly escape the bubbles, then collisions of CRs with thermal protons in the intracluster medium (ICM) should lead to strong γ-ray emission, unless fast diffusion of CRs removes them from the cluster. Therefore, the lack of detections with modern γ-ray telescopes sets limits on the confinement time of CR hadrons in bubbles and CR diffusive propagation in the ICM.

  12. Random cascade model in the limit of infinite integral scale as the exponential of a nonstationary 1/f noise: Application to volatility fluctuations in stock markets

    NASA Astrophysics Data System (ADS)

    Muzy, Jean-François; Baïle, Rachel; Bacry, Emmanuel

    2013-04-01

    In this paper we propose a new model for volatility fluctuations in financial time series. This model relies on a nonstationary Gaussian process that exhibits aging behavior. It turns out that its properties, over any finite time interval, are very close to continuous cascade models. These latter models are indeed well known to reproduce faithfully the main stylized facts of financial time series. However, it involves a large-scale parameter (the so-called “integral scale” where the cascade is initiated) that is hard to interpret in finance. Moreover, the empirical value of the integral scale is in general deeply correlated to the overall length of the sample. This feature is precisely predicted by our model, which, as illustrated by various examples from daily stock index data, quantitatively reproduces the empirical observations.

  13. Multigrid calculation of three-dimensional viscous cascade flows

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Liou, M.-S.; Povinelli, L. A.

    1991-01-01

    A 3-D code for viscous cascade flow prediction was developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full multigrid method. The Baldwin-Lomax eddy viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.

  14. Multigrid calculation of three-dimensional viscous cascade flows

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Liou, M.-S.; Povinelli, L. A.

    1991-01-01

    A three-dimensional code for viscous cascade flow prediction has been developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full-multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large-scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.

  15. Deep-cascade: Cascading 3D Deep Neural Networks for Fast Anomaly Detection and Localization in Crowded Scenes.

    PubMed

    Sabokrou, Mohammad; Fayyaz, Mohsen; Fathy, Mahmood; Klette, Reinhard

    2017-02-17

    This paper proposes a fast and reliable method for anomaly detection and localization in video data showing crowded scenes. Time-efficient anomaly localization is an ongoing challenge and subject of this paper. We propose a cubicpatch- based method, characterised by a cascade of classifiers, which makes use of an advanced feature-learning approach. Our cascade of classifiers has two main stages. First, a light but deep 3D auto-encoder is used for early identification of "many" normal cubic patches. This deep network operates on small cubic patches as being the first stage, before carefully resizing remaining candidates of interest, and evaluating those at the second stage using a more complex and deeper 3D convolutional neural network (CNN). We divide the deep autoencoder and the CNN into multiple sub-stages which operate as cascaded classifiers. Shallow layers of the cascaded deep networks (designed as Gaussian classifiers, acting as weak single-class classifiers) detect "simple" normal patches such as background patches, and more complex normal patches are detected at deeper layers. It is shown that the proposed novel technique (a cascade of two cascaded classifiers) performs comparable to current top-performing detection and localization methods on standard benchmarks, but outperforms those in general with respect to required computation time.

  16. Developmental cascade models of a parenting-focused program for divorced families on mental health problems and substance use in emerging adulthood.

    PubMed

    Wolchik, Sharlene A; Tein, Jenn-Yun; Sandler, Irwin N; Kim, Han-Joe

    2016-08-01

    A developmental cascade model from functioning in adolescence to emerging adulthood was tested using data from a 15-year longitudinal follow-up of 240 emerging adults whose families participated in a randomized, experimental trial of a preventive program for divorced families. Families participated in the program or literature control condition when the offspring were ages 9-12. Short-term follow-ups were conducted 3 months and 6 months following completion of the program when the offspring were in late childhood/early adolescence. Long-term follow-ups were conducted 6 years and 15 years after program completion when the offspring were in middle to late adolescence and emerging adulthood, respectively. It was hypothesized that the impact of the program on mental health and substance use outcomes in emerging adulthood would be explained by developmental cascade effects of program effects in adolescence. The results provided support for a cascade effects model. Specifically, academic competence in adolescence had cross-domain effects on internalizing problems and externalizing problems in emerging adulthood. In addition, adaptive coping in adolescence was significantly, negatively related to binge drinking. It was unexpected that internalizing symptoms in adolescence were significantly negatively related to marijuana use and alcohol use. Gender differences occurred in the links between mental health problems and substance use in adolescence and mental health problems and substance use in emerging adulthood.

  17. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-05-01

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvénic fluctuations and a passive cascade of density and magnetic-field-strength fluctuations. The former are governed by the reduced magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvénic component (in the collisional limit, these compressive fluctuations

  18. Endwall Heat Transfer Measurements in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Giel, P. W.; Thurman, D. R.; VanFossen, G. J.; Hippensteele, S. A.; Boyle, R. J.

    1996-01-01

    Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 106, for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136' of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for computational fluid dynamics (CFD) code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.

  19. Hadron multiplicity variation with Q2 and scale breaking of the Hadron distributions in deep inelastic muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hamacher, K.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Korzen, B.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Malecki, P.; Maire, M.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Sholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1985-12-01

    Measurements are presented of the variation with Q2 (scaling violation) of the hadron multiplicity in deep inelastic muon-proton scattering. An increase in the average multiplicity of both the charged hadrons and K0 mesons is observed with increasing Q2 or xBj for fixed centre-of-mass energy W. The study of the shape of the effective fragmentation function Dh (z, W, Q2) shows that the increase of the particle yield with Q2 takes place for low z particles. The variation of the hadron distributions with Q2 is also studied in the current fragmentation region where a decrease in multiplicity is observed. Such effects are expected from QCD.

  20. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    PubMed Central

    Słomka, Jonasz; Dunkel, Jörn

    2017-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853

  1. Gluon correlations from a glasma flux-tube model compared to measured hadron correlations on transverse momentum (p t,p t) and angular differences (η Δ,φ Δ)

    DOE PAGES

    Trainor, Thomas A.; Ray, R. L.

    2011-09-09

    A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √( sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude thatmore » the glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.« less

  2. Environmental solid particle effects on compressor cascade performance

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Balan, C.

    1982-01-01

    The effect of suspended solid particles on the performance of the compressor cascade was investigated experimentally in a specially built cascade tunnel, using quartz sand particles. The cascades were made of NACA 65(10)10 airfoils. Three cascades were tested, one accelerating cascade and two diffusing cascades. The theoretical analysis assumes inviscid and incompressible two dimensional flow. The momentum exchange between the fluid and the particle is accounted for by the interphase force terms in the fluid momentum equation. The modified fluid phase momentum equations and the continuity equation are reduced to the conventional stream function vorticity formulation. The method treats the fluid phase in the Eulerian system and the particle phase in Lagrangian system. The experimental results indicate a small increase in the blade surface static pressures, while the theoretical results indicate a small decrease. The theoretical analysis, also predicts the loss in total pressure associated with the particulate flow through the cascade.

  3. τ hadronic spectral function moments in a nonpower QCD perturbation theory

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.

    2016-04-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.

  4. Comparison between hadronic final states produced in μ p and e + e - interactions

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-12-01

    A comparison is made between the properties of the final state hadrons produced in 280 GeV μ p interactions and in e + e - annihilation. The Lund model of hadroproduction is used as an aid in understanding the differences observed. The hadron distributions from μ p and e + e - interactions are consistent with the quark parton model assumption of environmental independence, provided that the differences in heavy quark production and hard QCD effects in the two processes are taken into account. A comparison with a K + p experiment is also made. Values are also determined for the Lund model parameters σq = 0.410 ± 0.002 ± 0.020 GeV and σ' = 0.29{-0.15/-0.13 +0.09+0.10} GeV, controlling the transverse momenta in fragmentation and intrinsic transverse momenta of the struck quark respectively.

  5. The Cascade Forestry Service Nursery

    Treesearch

    Don Westefer

    2002-01-01

    Cascade Forestry Service, Inc., is a private reforestation nursery and service company that has grown from a shoestring operation into an employee-owned company that both produces reforestation trees and assists landowners with forestry development and management. The Northeastern Forest and Conservation Nursery Association has proven instrumental in Cascade Forestry...

  6. Characterisation of turbulence downstream of a linear compressor cascade

    NASA Astrophysics Data System (ADS)

    di Mare, Luca; Jelly, Thomas; Day, Ivor

    2014-11-01

    Characterisation of turbulence in turbomachinery remains one of the most complex tasks in fluid mechanics. In addition, current closure models required for Reynolds-averaged Navier-Stokes computations do not accurately represent the action of turbulent forces against the mean flow. Therefore, the statistical properties of turbulence in turbomachinery are of significant interest. In the current work, single- and two-point hot-wire measurements have been acquired downstream of a linear compressor cascade in order to examine the properties of large-scale turbulent structures and to assess how they affect turbulent momentum and energy transfer in compressor passages. The cascade has seven controlled diffusion which are representative of high-pressure stator blades found in turbofan engines. Blade chord, thickness and camber are 0.1515 m, 9.3% and 42 degrees, respectively. Measurements were acquired at a chord Reynolds number of 6 . 92 ×105 . Single-point statistics highlight differences in turbulence structure when comparing mid-span and end-wall regions. Evaluation of two-point correlations and their corresponding spectra reveal the length-scales of the energy-bearing eddies in the cascade. Ultimately, these measurements can be used to calibrate future computational models. The authors gratefully acknowledge Rolls-Royce plc for funding this work and granting permission for its publication.

  7. New results on low energy exclusive hadronic final states from BABAR

    NASA Astrophysics Data System (ADS)

    Gary, J. William

    2018-01-01

    The 3.6 standard deviation discrepancy between the standard model (SM) prediction for the muon anomalous magnetic moment gμ - 2 and the corresponding experimental measurement is one of the most persistent and intriguing potential signals in particle physics for physics beyond the SM. The largest uncertainty in the SM prediction for gμ - 2 arises from the uncertainty in the measured low energy inclusive e+e- → hadrons cross section. New results from the BABAR experiment at SLAC for the e+e- → π+ π- π0 π0 and e+e- → KK ππ cross sections are presented that significantly reduce this uncertainty. New BABAR results for other low energy exclusive hadronic processes are also discussed.

  8. Determining transport coefficients for a microscopic simulation of a hadron gas

    NASA Astrophysics Data System (ADS)

    Pratt, Scott; Baez, Alexander; Kim, Jane

    2017-02-01

    Quark-gluon plasmas produced in relativistic heavy-ion collisions quickly expand and cool, entering a phase consisting of multiple interacting hadronic resonances just below the QCD deconfinement temperature, T ˜155 MeV. Numerical microscopic simulations have emerged as the principal method for modeling the behavior of the hadronic stage of heavy-ion collisions, but the transport properties that characterize these simulations are not well understood. Methods are presented here for extracting the shear viscosity and two transport parameters that emerge in Israel-Stewart hydrodynamics. The analysis is based on studying how the stress-energy tensor responds to velocity gradients. Results are consistent with Kubo relations if viscous relaxation times are twice the collision time.

  9. Physics of cosmological cascades and observable properties

    NASA Astrophysics Data System (ADS)

    Fitoussi, T.; Belmont, R.; Malzac, J.; Marcowith, A.; Cohen-Tanugi, J.; Jean, P.

    2017-04-01

    TeV photons from extragalactic sources are absorbed in the intergalactic medium and initiate electromagnetic cascades. These cascades offer a unique tool to probe the properties of the universe at cosmological scales. We present a new Monte Carlo code dedicated to the physics of such cascades. This code has been tested against both published results and analytical approximations, and is made publicly available. Using this numerical tool, we investigate the main cascade properties (spectrum, halo extension and time delays), and study in detail their dependence on the physical parameters (extragalactic magnetic field, extragalactic background light, source redshift, source spectrum and beaming emission). The limitations of analytical solutions are emphasized. In particular, analytical approximations account only for the first generation of photons and higher branches of the cascade tree are neglected.

  10. Measurement of the nuclear electromagnetic cascade development in glass at energies above 200 GeV

    NASA Technical Reports Server (NTRS)

    Gillespie, C. R.; Huggett, R. W.; Humphreys, D. R.; Jones, W. V.; Levit, L. B.

    1971-01-01

    The longitudinal development of nuclear-electromagnetic cascades with energies greater than 200 GeV was measured in a low-Z (glass) absorber. This was done in the course of operating an ionization spectrometer at mountain altitude in an experiment to study the properties of gamma rays emitted from individual interactions at energies around 10,000 GeV. The ionization produced by a cascade is sampled by 20 sheets of plastic scintillator spaced uniformly in depth every 2.2 radiation lengths. Adjacent pairs of scintillators are viewed by photomultipliers which measure the mean ionization produced by an individual cascade in 10 layers each 1.1 interaction length (4.4 radiation lengths) thick. The longitudinal development of the cascades was measured for about 250 cascades having energies ranging from 200 GeV to 2500 GeV. The observations are compared with the predictions of calculations made for this specific spectrometer using a three-dimensional Monte Carlo model of the nuclear-electromagnetic cascade.

  11. Design and Construction of a Vertex Chamber and Measurement of the Average Beta-Hadron Lifetime

    NASA Astrophysics Data System (ADS)

    Nelson, Harry Norman

    Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 μm thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 mum, and a resolution in extrapolation to the B-Hadron decay location of 87 mum. Its inner layer is 4.6 cm from e^+e ^- colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed both the 94 pb ^{-1} of integrated luminosity accumulated at sqrt{s} = 29 GeV with the Vertex Chamber in place as well as the 210 pb^{-1} accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. The trimmed mean signed impact parameters are 130 +/- 19 μm for data accumulated with the Vertex Chamber, and 162 +/- 25 μm for previous data. Together these indicate an average B-Hadron lifetime of tau_{b} = (1.37_sp{-0.19}{+0.22} stat. +/- 0.11 sys.) times (1 +/- 0.15 sys.) psec. We separate additive and multiplicative systematic errors because the second does not degrade the statistical significance of the difference of the result from 0. If b-c dominates b-quark decay the corresponding weak mixing matrix element mid V_ {cb

  12. Research on cascading failure in multilayer network with different coupling preference

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Jin, Lei; Wang, Xiao Juan

    This paper is aimed at constructing robust multilayer networks against cascading failure. Considering link protection strategies in reality, we design a cascading failure model based on load distribution and extend it to multilayer. We use the cascading failure model to deduce the scale of the largest connected component after cascading failure, from which we can find that the performance of four kinds of load distribution strategies associates with the load ratio of the current edge to its adjacent edge. Coupling preference is a typical characteristic in multilayer networks which corresponds to the network robustness. The coupling preference of multilayer networks is divided into two forms: the coupling preference in layers and the coupling preference between layers. To analyze the relationship between the coupling preference and the multilayer network robustness, we design a construction algorithm to generate multilayer networks with different coupling preferences. Simulation results show that the load distribution based on the node betweenness performs the best. When the coupling coefficient in layers is zero, the scale-free network is the most robust. In the random network, the assortative coupling in layers is more robust than the disassortative coupling. For the coupling preference between layers, the assortative coupling between layers is more robust than the disassortative coupling both in the scale free network and the random network.

  13. Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    2017-10-19

    Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less

  14. Imaging hadron calorimetry for future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Repond, José

    2013-12-01

    To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.

  15. Searching for the rules that govern hadron construction

    DOE PAGES

    Shepherd, Matthew R.; Dudek, Jozef J.; Mitchell, Ryan E.

    2016-06-22

    Just as quantum electrodynamics describes how electrons are bound in atoms by the electromagnetic force, mediated by the exchange of photons, quantum chromodynamics (QCD) describes how quarks are bound inside hadrons by the strong force, mediated by the exchange of gluons. QCD seems to allow hadrons constructed from increasingly many quarks to exist, just as atoms with increasing numbers of electrons exist, yet such complex constructions seemed, until recently, not to be present in nature. In this paper, we describe advances in the spectroscopy of mesons that are refining our understanding of the rules for predicting hadron structure from QCD.

  16. XVII International Conference on Hadron Spectroscopy and Structure

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The Hadron 2017 Conference is the seventeenth of a series of biennial conferences started in 1985 at Maryland, USA. Its official name, XVII International Conference on Hadron Spectroscopy and Structure, includes for the first time the term structure to emphasize the importance that this issue has acquired in recent editions of the series. The aim of the conference is to provide an overview of the present status and progress in hadron structure and dynamics, as well as a preview of the forthcoming investigations. It will cover lectures on both experimental and theoretical aspects, including in particular the presentation of new results.

  17. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  18. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE PAGES

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  19. Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archambault, S.; Griffin, S.; Archer, A.

    2017-02-01

    We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron–positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron–positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadenedmore » emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10{sup −14} G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.« less

  20. Design strategy for terahertz quantum dot cascade lasers.

    PubMed

    Burnett, Benjamin A; Williams, Benjamin S

    2016-10-31

    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.

  1. Comparison of sound power radiation from isolated airfoils and cascades in a turbulent flow.

    PubMed

    Blandeau, Vincent P; Joseph, Phillip F; Jenkins, Gareth; Powles, Christopher J

    2011-06-01

    An analytical model of the sound power radiated from a flat plate airfoil of infinite span in a 2D turbulent flow is presented. The effects of stagger angle on the radiated sound power are included so that the sound power radiated upstream and downstream relative to the fan axis can be predicted. Closed-form asymptotic expressions, valid at low and high frequencies, are provided for the upstream, downstream, and total sound power. A study of the effects of chord length on the total sound power at all reduced frequencies is presented. Excellent agreement for frequencies above a critical frequency is shown between the fast analytical isolated airfoil model presented in this paper and an existing, computationally demanding, cascade model, in which the unsteady loading of the cascade is computed numerically. Reasonable agreement is also observed at low frequencies for low solidity cascade configurations. © 2011 Acoustical Society of America

  2. Predator prey oscillations in a simple cascade model of drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berionni, V.; Guercan, Oe. D.

    2011-11-15

    A reduced three shell limit of a simple cascade model of drift wave turbulence, which emphasizes nonlocal interactions with a large scale mode, is considered. It is shown to describe both the well known predator prey dynamics between the drift waves and zonal flows and to reduce to the standard three wave interaction equations. Here, this model is considered as a dynamical system whose characteristics are investigated. The analytical solutions for the purely nonlinear limit are given in terms of the Jacobi elliptic functions. An approximate analytical solution involving Jacobi elliptic functions and exponential growth is computed using scale separationmore » for the case of unstable solutions that are observed when the energy injection rate is high. The fixed points of the system are determined, and the behavior around these fixed points is studied. The system is shown to display periodic solutions corresponding to limit cycle oscillations, apparently chaotic phase space orbits, as well as unstable solutions that grow slowly while oscillating rapidly. The period doubling route to transition to chaos is examined.« less

  3. Evolution of the vertebrate phototransduction cascade activation steps.

    PubMed

    Lamb, Trevor D; Hunt, David M

    2017-11-01

    We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, Gα T , the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication. Together, our models provide a plausible account for the origin and expansion of the vertebrate phototransduction cascade. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Quark charge retention in final state hadrons from deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Albanese, J. P.; Arneodo, M.; Arvidson, A.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Callebaut, D.; Carr, J.; Chima, J. S.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dahlgren, S.; Davies, J. K.; Dau, W. D.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Dreyer, T.; Drees, J.; Dumont, J. J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Gössling, C.; Grafström, P.; Grard, F.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Manz, A.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pönsgen, B.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Schlagböhmer, A.; Schmitz, N.; Schneegans, M.; Schröder, T.; Schultze, K.; Shiers, J.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G.; Thénard, J. M.; Thompson, J. C.; de la Torre, A.; Toth, J.; Urban, L.; Wahlen, H.; Wallucks, W.; Whalley, M.; Williams, W. S. C.; Wheeler, S.; Wimpenny, S.; Windmolders, R.; Wolf, G.; Zank, P.; European Muon Collaboration

    1984-08-01

    The net charge of final state hadrons in both the current and target fragmentation regions has been measured in 280 GeV/ c muon-proton scattering experiment. A clean kinematic separation of the two regions in the centre-of-mass rapidity is demonstrated. The dependence on xBj of the mean net charges is found to be consistent with a large contribution of sea quarks at small xBj and with the dominance of valence quarks at large xBj thus giving clear confirmation of the quarck- parton model. It is also shown that the lending forward hadron has a high probability of containing the struck quark.

  5. Crustal structure along the west flank of the Cascades, western Washington

    USGS Publications Warehouse

    Miller, K.C.; Keller, Gordon R.; Gridley, J.M.; Luetgert, J.H.; Mooney, W.D.; Thybo, H.

    1997-01-01

    Knowledge of the crustal structure of the Washington Cascades and adjacent Puget Lowland is important to both earthquake hazards studies and geologic studies of the evolution of this tectonically active region. We present a model for crustal velocity structure derived from analysis of seismic refraction/wide-angle reflection data collected in 1991 in western Washington. The 280-km-long north-south transect skirts the west flank of the Cascades as it crosses three tectonic provinces including the Northwest Cascades Thrust System (NWCS), the Puget Lowland, and the volcanic arc of the southern Cascades. Within the NWCS, upper crustal velocities range from 4.2 to 5.7 km s-1 and are consistent with the presence of a diverse suite of Mesozoic and Paleozoic metasediments and metavolcanics. In the upper 2-3 km of the Puget Lowland velocities drop to 1.7-3.5 km s-1 and reflect the occurrence of Oligocene to recent sediments within the basin. In the southern Washington Cascades, upper crustal velocities range from 4.0 to 5.5 km s-1 and are consistent with a large volume of Tertiary sediments and volcanics. A sharp change in velocity gradient at 5-10 km marks the division between the upper and middle crust. From approximately 10 to 35 km depth the velocity field is characterized by a velocity increase from ???6.0 to 7.2 km s-1. These high velocities do not support the presence of marine sedimentary rocks at depths of 10-20 km beneath the Cascades as previously proposed on the basis of magnetotelluric data. Crustal thickness ranges from 42 to 47 km along the profile. The lowermost crust consists of a 2 to 8-km-thick transitional layer with velocities of 7.3-7.4 km s-1. The upper mantle velocity appears to be an unusually low 7.6-7.8 km s-1. When compared to velocity models from other regions, this model most closely resembles those found in active continental arcs. Distinct seismicity patterns can be associated with individual tectonic provinces along the seismic transect. In

  6. Search for the associated production of the standard-model Higgs Boson in the all-hadronic channel.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-11-27

    We report on a search for the standard-model Higgs boson in pp collisions at square root(s) = 1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(--> qq/qq')H(--> bb) decay for Higgs boson masses of 100-150 GeV/c2 using data from run II at the Fermilab Tevatron. For m(H) = 120 GeV/c2, we exclude cross sections larger than 38 times the standard-model prediction.

  7. Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadid, L. Z.; Sahraoui, F.; Galtier, S., E-mail: lina.hadid@lpp.polytechnique.fr

    2017-03-20

    Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energymore » cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.« less

  8. Energy Weighted Angular Correlations Between Hadrons Produced in Electron-Positron Annihilation.

    NASA Astrophysics Data System (ADS)

    Strharsky, Roger Joseph

    Electron-positron annihilation at large center of mass energy produces many hadronic particles. Experimentalists then measure the energies of these particles in calorimeters. This study investigated correlations between the angular locations of one or two such calorimeters and the angular orientation of the electron beam in the laboratory frame of reference. The calculation of these correlations includes weighting by the fraction of the total center of mass energy which the calorimeter measures. Starting with the assumption that the reaction proceeeds through the intermediate production of a single quark/anti-quark pair, a simple statistical model was developed to provide a phenomenological description of the distribution of final state hadrons. The model distributions were then used to calculate the one- and two-calorimeter correlation functions. Results of these calculations were compared with available data and several predictions were made for those quantities which had not yet been measured. Failure of the model to reproduce all of the data was discussed in terms of quantum chromodynamics, a fundamental theory which includes quark interactions.

  9. Hadron electric polarizability from lattice QCD

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei

    2017-09-01

    Electromagnetic polarizabilities are important parameters for hadron structure, describing the response of the charge and current distributions inside the hadron to an external electromagnetic field. For most hadrons these quantities are poorly constrained experimentally since they can only be measured indirectly. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the neutron electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. We also discuss the effect of turning on the coupling between the background field and the sea quarks. A.A. is supported in part by the National Science Foundation CAREER Grant PHY-1151648 and by U.S. DOE Grant No. DE-FG02-95ER40907.

  10. Coherent J /ψ photoproduction in hadronic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zha, W.; Klein, S. R.; Ma, R.; Ruan, L.; Todoroki, T.; Tang, Z.; Xu, Z.; Yang, C.; Yang, Q.; Yang, S.

    2018-04-01

    Significant excesses of J /ψ yield at very low transverse momentum (pT<0.3 GeV/c ) were observed by the ALICE and STAR collaborations in peripheral hadronic A +A collisions. This is a sign of coherent photoproduction of J /ψ in violent hadronic interactions. Theoretically, the photoproduction of J /ψ in hadronic collisions raises questions about how spectator and nonspectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs to be included. This paper presents calculations of J /ψ production from coherent photon-nucleus (γ +A →J /ψ +A ) interactions in hadronic A +A collisions at BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J /ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle, and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. These predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.

  11. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory.

    PubMed

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allen, J D; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Ambrosio, M; Anastasi, G A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Biteau, J; Blaess, S G; Blanco, A; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Cancio, A; Canfora, F; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chirinos Diaz, J C; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Cronin, J; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; D'Olivo, J C; Dorofeev, A; Dos Anjos, R C; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G R; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Hulsman, J; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A; LaHurd, D; Latronico, L; Lauscher, M; Lautridou, P; Lebrun, P; Legumina, R; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Naranjo, I; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pedreira, F; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Pereira, L A S; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Strafella, F; Stutz, A; Suarez, F; Suarez Durán, M; Sudholz, T; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valbuena-Delgado, A; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yelos, D; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-11-04

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_{CM}=110-170  TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  12. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2016-10-31

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6–16 EeV (E CM = 110–170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. As a result, the average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  13. Supersymmetric dark matter in the harsh light of the Large Hadron Collider

    PubMed Central

    Peskin, Michael E.

    2015-01-01

    I review the status of the model of dark matter as the neutralino of supersymmetry in the light of constraints on supersymmetry given by the 7- to 8-TeV data from the Large Hadron Collider (LHC). PMID:25331902

  14. Quark-hadron duality in lepton scattering off nucleons

    NASA Astrophysics Data System (ADS)

    Graczyk, Krzysztof M.

    2010-03-01

    Quark-hadron (QH) duality in lepton scattering off nucleons is studied with the resonance quark model. It is shown that in the case of neutrino scattering off an isoscalar target the duality is simultaneously observed for charged and neutral currents xF1νN, F2νN, and xF3νN weak structure functions. We demonstrate that the QH duality can be a useful property for modeling structure functions in the so-called resonance region. As an example it is shown that combining relativistic quark model predictions with duality arguments allows a construction of the inclusive resonance F2ep structure function.

  15. Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Giel, P. W.; Thurman, D. R.; Lopez, I.; Boyle, R. J.; VanFossen, G. J.; Jett, T. A.; Camperchioli, W. P.; La, H.

    1996-01-01

    Three-dimensional flow field measurements are presented for a large scale transonic turbine blade cascade. Flow field total pressures and pitch and yaw flow angles were measured at an inlet Reynolds number of 1.0 x 10(exp 6) and at an isentropic exit Mach number of 1.3 in a low turbulence environment. Flow field data was obtained on five pitchwise/spanwise measurement planes, two upstream and three downstream of the cascade, each covering three blade pitches. Three-hole boundary layer probes and five-hole pitch/yaw probes were used to obtain data at over 1200 locations in each of the measurement planes. Blade and endwall static pressures were also measured at an inlet Reynolds number of 0.5 x 10(exp 6) and at an isentropic exit Mach number of 1.0. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet and because of the high degree of flow turning. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification.

  16. Characterization of equipment for shaping and imaging hadron minibeams

    NASA Astrophysics Data System (ADS)

    Pugatch, V.; Brons, S.; Campbell, M.; Kovalchuk, O.; Llopart, X.; Martínez-Rovira, I.; Momot, Ie.; Okhrimenko, O.; Prezado, Y.; Sorokin, Yu.

    2017-11-01

    For the feasibility studies of spatially fractionated hadron therapy prototypes of the equipment for hadron minibeams shaping and monitoring have been designed, built and tested. The collimators design was based on Monte Carlo simulations (Gate v.6.2). Slit and matrix collimators were used for minibeams shaping. Gafchromic films, micropixel detectors Timepix in a hybrid as well as metal mode were tested for measuring hadrons intensity distribution in minibeams. An overall beam profile was measured by the metal microstrip detector. The performance of a mini-beams shaping and monitoring equipment was characterized exploring low energy protons at the KINR Tandem generator as well as high energy carbon and oxygen ion beams at HIT (Heidelberg). The results demonstrate reliable performance of the tested equipment for shaping and imaging hadron mini-beam structures.

  17. Comparative study of displacement cascades simulated with 'magnetic' potentials and Mendelev-type potential in α-Fe

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2017-04-01

    Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.

  18. Hadronic Octaves: Symphony in Treble Clef

    NASA Astrophysics Data System (ADS)

    Ne'eman, Yuval

    2002-06-01

    Pythagoreanism, as derived from the physics of music, an artificial quantized system, involved simple ratios between integers and was conjectured by the Pythagoreans to extend to the whole of physics (the Music of the Spheres). It hit the jackpot in 1895 with Balmer's formula and has dominated XXth Century physics, with its Quantum Foundations. I review the history of Hadron Spectroscopy and my personal role in 1958-1964, i.e. (1) my 1960 discovery of SU(3) symmetry with an octet assignment for the j = 1/2 baryons (independently reached somewhat later by M. Gell-Mann), and (2) in 1961 (with H. Goldberg) my mathematical construction of a structural model which was then developed into the physical quark model by Gell-Mann and Zweig.

  19. Displacement Cascade Damage Production in Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as wellmore » as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less

  20. Tampering with the turbulent energy cascade with polymer additives

    NASA Astrophysics Data System (ADS)

    Valente, Pedro; da Silva, Carlos; Pinho, Fernando

    2014-11-01

    We show that the strong depletion of the viscous dissipation in homogeneous viscoelastic turbulence reported by previous authors does not necessarily imply a depletion of the turbulent energy cascade. However, for large polymer relaxation times there is an onset of a polymer-induced kinetic energy cascade which competes with the non-linear energy cascade leading to its depletion. Remarkably, the total energy cascade flux from both cascade mechanisms remains approximately the same fraction of the kinetic energy over the turnover time as the non-linear energy cascade flux in Newtonian turbulence. The authors acknowledge the funding from COMPETE, FEDER and FCT (Grant PTDC/EME-MFE/113589/2009).

  1. Comparative study of hadron- and γ-triggered azimuthal correlations in relativistic heavy-ion collisions

    DOE PAGES

    Ma, Guo -Lang; Wang, Xin -Nian

    2012-01-01

    In the framework of a multi-phase transport model, initial fluctuations in the transverse parton density lead to all orders of harmonic flows. Hadron-triggered azimuthal correlations include all contributions from harmonic flows, hot spots, and jet-medium excitations, which are isolated by using different initial conditions. We found that different physical components dominate different pseudorapidity ranges of dihadron correlations. Because γ-triggered azimuthal correlations can only be caused by jet-medium interactions, a comparative study of hadron- and γ -triggered azimuthal correlations can reveal more dynamics about jet-medium interactions.

  2. Finite-mode spectral model of homogeneous and isotropic Navier-stokes turbulence: a rapidly depleted energy cascade.

    PubMed

    Lévêque, E; Koudella, C R

    2001-04-30

    An eddy-viscous term is added to Navier-Stokes dynamics at wave numbers k greater than the inflection point kc of the energy flux F(log(k)). The eddy viscosity is fixed so that the energy spectrum satisfies E(k) = E(kc) (k/kc)(-3) for k>kc. This resulting forcing induces a rapid depletion of the energy cascade at k>kc. It is observed numerically that the model reproduces turbulence energetics at k< or =kc and statistics of two-point velocity correlations at scales r>lambda (Taylor microscale). Compared to a direct numerical simulation of R(lambda) = 130 an equivalent run with the present model results in a gain of a factor 20 in CPU time.

  3. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  4. Hadronic contribution to the muon g-2: A Dyson-Schwinger perspective

    NASA Astrophysics Data System (ADS)

    Goecke, T.; Fischer, C. S.; Williams, R.

    2012-04-01

    We summarize our results for hadronic contributions to the anomalous magnetic moment of the muon (aμ), the one from hadronic vacuum-polarization (HVP) and the light-by-light scattering contribution (LBL), obtained from the Dyson-Schwinger equations (DSEs) of QCD. In the case of HVP we find good agreement with model independent determinations from dispersion relations for aμHV P as well as for the Adler function with deviations well below the ten percent level. From this we conclude that the DSE approach should be capable of describing aμLBL with similar accuracy. We also present results for LBL using a resonance expansion of the quark-anti-quark T-matrix. Our preliminary value is aμLBL=(217±91)×10-11.

  5. Emergence of a turbulent cascade in a quantum gas

    NASA Astrophysics Data System (ADS)

    Navon, Nir; Gaunt, Alexander L.; Smith, Robert P.; Hadzibabic, Zoran

    2016-11-01

    A central concept in the modern understanding of turbulence is the existence of cascades of excitations from large to small length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov, and such cascades have since been observed in various systems, including interplanetary plasmas, supernovae, ocean waves and financial markets. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas—a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose-Einstein condensate in an optical box, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross-Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.

  6. Improved Dynamic Modeling of the Cascade Distillation Subsystem and Integration with Models of Other Water Recovery Subsystems

    NASA Technical Reports Server (NTRS)

    Perry, Bruce; Anderson, Molly

    2015-01-01

    The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station (ISS) Water Processor Assembly (WPA) to form a complete Water Recovery System (WRS) for future missions. Independent chemical process simulations with varying levels of detail have previously been developed using Aspen Custom Modeler (ACM) to aid in the analysis of the CDS and several WPA components. The existing CDS simulation could not model behavior during thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. The first part of this paper describes modifications to the ACM model of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version of the model can accurately predict behavior during thermal startup for both NaCl solution and pretreated urine feeds. The model is used to predict how changing operating parameters and design features of the CDS affects its performance, and conclusions from these predictions are discussed. The second part of this paper describes the integration of the modified CDS model and the existing WPA component models into a single WRS model. The integrated model is used to demonstrate the effects that changes to one component can have on the dynamic behavior of the system as a whole.

  7. MARS15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokhov, Nikolai

    MARS is a Monte Carlo code for inclusive and exclusive simulation of three-dimensional hadronic and electromagnetic cascades, muon, heavy-ion and low-energy neutron transport in accelerator, detector, spacecraft and shielding components in the energy range from a fraction of an electronvolt up to 100 TeV. Recent developments in the MARS15 physical models of hadron, heavy-ion and lepton interactions with nuclei and atoms include a new nuclear cross section library, a model for soft pion production, the cascade-exciton model, the quark gluon string models, deuteron-nucleus and neutrino-nucleus interaction models, detailed description of negative hadron and muon absorption and a unified treatment ofmore » muon, charged hadron and heavy-ion electromagnetic interactions with matter. New algorithms are implemented into the code and thoroughly benchmarked against experimental data. The code capabilities to simulate cascades and generate a variety of results in complex media have been also enhanced. Other changes in the current version concern the improved photo- and electro-production of hadrons and muons, improved algorithms for the 3-body decays, particle tracking in magnetic fields, synchrotron radiation by electrons and muons, significantly extended histograming capabilities and material description, and improved computational performance. In addition to direct energy deposition calculations, a new set of fluence-to-dose conversion factors for all particles including neutrino are built into the code. The code includes new modules for calculation of Displacement-per-Atom and nuclide inventory. The powerful ROOT geometry and visualization model implemented in MARS15 provides a large set of geometrical elements with a possibility of producing composite shapes and assemblies and their 3D visualization along with a possible import/export of geometry descriptions created by other codes (via the GDML format) and CAD systems (via the STEP format). The built-in MARS

  8. Hadron polarizability data analysis: GoAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegen, H., E-mail: hkstegen@mta.ca; Hornidge, D.; Collicott, C.

    The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.

  9. Hadron polarizability data analysis: GoAT

    NASA Astrophysics Data System (ADS)

    Stegen, H.; Collicott, C.; Hornidge, D.; Martel, P.; Ott, P.

    2015-12-01

    The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.

  10. Top quark studies at hadron colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  11. Fragmentation uncertainties in hadronic observables for top-quark mass measurements

    NASA Astrophysics Data System (ADS)

    Corcella, Gennaro; Franceschini, Roberto; Kim, Doojin

    2018-04-01

    We study the Monte Carlo uncertainties due to modeling of hadronization and showering in the extraction of the top-quark mass from observables that use exclusive hadronic final states in top decays, such as t →anything + J / ψ or t →anything + (B →charged tracks), where B is a B-hadron. To this end, we investigate the sensitivity of the top-quark mass, determined by means of a few observables already proposed in the literature as well as some new proposals, to the relevant parameters of event generators, such as HERWIG 6 and PYTHIA 8. We find that constraining those parameters at O (1%- 10%) is required to avoid a Monte Carlo uncertainty on mt greater than 500 MeV. For the sake of achieving the needed accuracy on such parameters, we examine the sensitivity of the top-quark mass measured from spectral features, such as peaks, endpoints and distributions of EB, mBℓ, and some mT2-like variables. We find that restricting oneself to regions sufficiently close to the endpoints enables one to substantially decrease the dependence on the Monte Carlo parameters, but at the price of inflating significantly the statistical uncertainties. To ameliorate this situation we study how well the data on top-quark production and decay at the LHC can be utilized to constrain the showering and hadronization variables. We find that a global exploration of several calibration observables, sensitive to the Monte Carlo parameters but very mildly to mt, can offer useful constraints on the parameters, as long as such quantities are measured with a 1% precision.

  12. Signatures of chiral symmetry restoration and its survival throughout the hadronic phase interactions

    NASA Astrophysics Data System (ADS)

    Bratkovskaya, E. L.; Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.

    2018-02-01

    The effect of the chiral symmetry restoration (CSR) on observables from heavy-ion collisions is studied in the energy range =3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ - ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon ∑-term we adopt ∑π ≈ 45 MeV which corresponds to a 'world average'. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at =3-20 GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive ones. Our results provide a microscopic explanation for the "horn" structure in the excitation function of the K+/π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to ≈ 7 GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium.

  13. Effects of strong laser fields on hadronic helium atoms

    NASA Astrophysics Data System (ADS)

    Lee, Han-Chieh; Jiang, Tsin-Fu

    2015-12-01

    The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosecond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even harmonic orders because of the transition between these angular orbitals and continuum states. On the other side, the rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.

  14. Higher-order Kerr effect and harmonic cascading in gases.

    PubMed

    Bache, Morten; Eilenberger, Falk; Minardi, Stefano

    2012-11-15

    The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity.

  15. Physics Program at COSY-Juelich with Polarized Hadronic Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kacharava, Andro

    2009-08-04

    Hadron physics aims at a fundamental understanding of all particles and their interactions that are subject to the strong force. Experiments using hadronic probes could contribute to shed light on open questions on the structure of hadrons and their interaction as well as the symmetries of nature. The COoler SYnchrotron COSY at the Forschungszentrum Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c. The availability of both an electron cooler as well as a stochastic beam cooling system allows for precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets.This contribution summarizesmore » the ongoing physics program at the COSY facility using ANKE, WASA and TOF detector systems with polarized hadronic probes, highlighting recent results and outlining the new developments.« less

  16. Target fragments in collisions of 1.8 GeV/nucleon Fe-56 nuclei with photoemulsion nuclei, and the cascade-evaporation model

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Ostroumov, V. I.; Benton, E. V.; Crawford, H. J.

    1995-01-01

    Nuclear photographic emulsion is used to study the dependence of the characteristics of target-nucleus fragments on the masses and impact parameters of interacting nuclei. The data obtained are compared in all details with the calculation results made in terms of the Dubna version of the cascade-evaporation model (DCM).

  17. Output control using feedforward and cascade controllers

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    An open-loop solution to the output control problem in SISO (single-input, single-output) systems by means of feedforward and cascade controllers is investigated. A simple characterization of feedforward controllers, which achieve steady-state disturbance rejection, is given in a transfer-function setting. Cascade controllers which cause steady-state command tracking are characterized. Disturbance decoupling and command matching controllers are identified. Conditions for existence of feedforward and cascade controllers are given. For unstable systems, it is shown that a stabilizing feedback controller can be used without affecting the feedforward and cascade controllers used for output control; hence, the three controllers can be designed independently. Output control by a combination of feedforward and feedback is discussed.

  18. Unsteady aerodynamics of an oscillating cascade in a compressible flow field

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Boldman, Donald R.; Fleeter, Sanford

    1987-01-01

    Fundamental experiments were performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate and quantify the unsteady aerodynamics of a cascade of biconvex airfoils executing torsion-mode oscillations at realistic reduced frequencies. Flush-mounted, high-response miniature pressure transducers were used to measure the unsteady airfoil surface pressures. The pressures were measured for three interblade phase angles at two inlet Mach numbers, 0.65 and 0.80, and two incidence angles, 0 and 7 deg. The time-variant pressures were analyzed by means of discrete Fourier transform techniques, and these unique data were then compared with predictions from a linearized unsteady cascade model. The experimental results indicate that the interblade phase angle had a major effect on the chordwise distributions of the airfoil surface unsteady pressure, and that reduced frequency, incidence angle, and Mach number had a somewhat less significant effect.

  19. Leading-order calculation of hadronic contributions to the Muon g-2 using the Dyson-Schwinger approach

    NASA Astrophysics Data System (ADS)

    Goecke, Tobias; Fischer, Christian S.; Williams, Richard

    2011-10-01

    We present a calculation of the hadronic vacuum polarisation (HVP) tensor within the framework of Dyson-Schwinger equations. To this end we use a well-established phenomenological model for the quark-gluon interaction with parameters fixed to reproduce hadronic observables. From the HVP tensor we compute both the Adler function and the HVP contribution to the anomalous magnetic moment of the muon, aμ. We find aμHVP = 6760 ×10-11 which deviates about two percent from the value extracted from experiment. Additionally, we make comparison with a recent lattice determination of aμHVP and find good agreement within our approach. We also discuss the implications of our result for a corresponding calculation of the hadronic light-by-light scattering contribution to aμ.

  20. Symmetry energy effects on the mixed hadron-quark phase at high baryon density

    NASA Astrophysics Data System (ADS)

    di Toro, M.; Liu, B.; Greco, V.; Baran, V.; Colonna, M.; Plumari, S.

    2011-01-01

    The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean-field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,ρB) diagram is lowered to a region accessible through heavy-ion collisions in the energy range of the new planned facilities (e.g., the FAIR/NICA projects). Some observable effects are suggested, in particular an isospin distillation mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson-baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is discussed.