Science.gov

Sample records for hadronic radiation environment

  1. Effects of radiation on scintillating fiber performance. [SSC hadron calorimeter

    SciTech Connect

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G. ); Carey, R.; Rothman, M.; Sulak, L.; Worstell, W. ); Parr, H. )

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented.

  2. J/psi and UPSILON radiative and hadronic decays

    SciTech Connect

    Bloom, E.D.

    1987-07-01

    The search for gluonium at the J/psi and UPSILON is discussed, as well as the search for exotics at the UPSILON. Reactions discussed include radiative and hadronic decays of the J/psi and the search for radiative decays of the UPSILON. Future perspectives are also briefly considered. 45 refs., 27 figs. (LEW)

  3. Synchrotron radiation issues in future hadron colliders

    SciTech Connect

    P. Bauer, C. Darve and I. Terechkine

    2002-11-21

    Hadron machines mostly use high field superconducting magnets operating at low temperatures. Therefore the issue of extracting a SR power heat load becomes more critical and costly. Conceptual solutions to the problem exist in the form of beam screens and photon stops. Cooled beam screens are more expensive in production and operation than photon stops, but they are, unlike photon stops, routinely used in existing machines. Photon stops are the most economical solution because the heat load is extracted at room temperature. They presently consider it most prudent to work with a combined beam screen and photon stop approach, in which the photon stop absorbs most of the SR power, and the beam screen serves only the vacuum purpose. Provided that the recently launched photon stop R and D [10] supports it, we would like to explore solutions with photon stops only. This would allow to reduce the magnet apertures to a certain extent with respect to those required to accommodate high SR power compliant beam screens and reduce cost. The possibility of magnet designs, which have larger vertical apertures where large cooling capillaries can be housed at no additional cost, would allow to soften this statement somewhat and should therefore be pursued as well.

  4. Solution Radioactivated by Hadron Radiation Can Increase Sister Chromatid Exchanges

    PubMed Central

    Maeda, Junko; Yurkon, Charles R.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Kato, Sayaka; Brents, Colleen A.; Uesaka, Mitsuru; Fujimori, Akira; Kitamura, Hisashi; Kato, Takamitsu A.

    2015-01-01

    When energetic particles irradiate matter, it becomes activated by nuclear reactions. Radioactivation induced cellular effects are not clearly understood, but it could be a part of bystander effects. This investigation is aimed at understanding the biological effects from radioactivation in solution induced by hadron radiation. Water or phosphate buffered saline was activated by being exposed to hadron radiation including protons, carbon- and iron-ions. 1 mL of radioactivated solution was transferred to flasks with Chinese hamster ovary (CHO) cells cultured in 5 mL of complete media. The induction of sister chromatid exchanges (SCE) was used to observe any increase in DNA damage responses. The energy spectrum and the half-lives of the radioactivation were analyzed by NaI scintillation detector in order to identify generated radionuclides. In the radioactivated solution, 511 keV gamma-rays were observed, and their half-lives were approximately 2 min, 10 min, and 20 min. They respectively correspond to the beta+ decay of 15O, 13N, and 11C. The SCE frequencies in CHO cells increased depending on the amount of radioactivation in the solution. These were suppressed with a 2-hour delayed solution transfer or pretreatment with dimethyl sulfoxide (DMSO). Our results suggest that the SCE induction by radioactivated solution was mediated by free radicals produced by the annihilated gamma-rays. Since the SCE induction and DMSO modulation are also reported in radiation-induced bystander effects, our results imply that radioactivation of the solution may have some contribution to the bystander effects from hadron radiation. Further investigations are required to assess if radioactivation effects would attribute an additional level of cancer risk of the hadron radiation therapy itself. PMID:26657140

  5. Hadron Formation in DIS in a nuclear environment

    NASA Astrophysics Data System (ADS)

    Muccifora, Valeria

    2002-10-01

    The influence of the nuclear medium on the production of charged hadrons in semi-inclusive deep inelastic scattering has been studied by the HERMES experiment at DESY using 27.5 GeV positrons. A substantial reduction of the multiplicity of charged hadrons and identified charged pions from nuclei relative to that from deuterium has been measured as function of the relevant kinematic variables. The preliminary results on krypton show a larger reduction of the multiplicity ratio RMh with respect to the one previously measured on nitrogen and suggest a possible modification of the quark fragmentation process in the nuclear environment.

  6. Radiation protection at Hadron therapy facilities.

    PubMed

    Pelliccioni, Maorizio

    2011-07-01

    The Italian National Centre for Oncological Hadrontherapy is currently under construction in Pavia. It is designed for the treatment of deep-seated tumours (up to a depth of 27 cm of water equivalent) with proton and C-ion beams as well as for both clinical and radiobiological research. The particles will be accelerated by a 7-MeV u(-1) LINAC injector and a 400-MeV u(-1) synchrotron. In the first phase of the project, three treatment rooms will be in operation, equipped with four fixed beams, three horizontal and one vertical. The accelerators are currently undergoing commissioning. The main radiation protection problems encountered (shielding, activation, etc.) are hereby illustrated and discussed in relation to the constraints set by the Italian national authorities.

  7. The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Bourdarie, Sebastien; Xapsos, Michael A.

    2008-01-01

    The effects of the space radiation environment on spacecraft systems and instruments are significant design considerations for space missions. Astronaut exposure is a serious concern for manned missions. In order to meet these challenges and have reliable, cost-effective designs, the radiation environment must be understood and accurately modeled. The nature of the environment varies greatly between low earth orbits, higher earth orbits and interplanetary space. There are both short-term and long-term variations with the phase of the solar cycle. In this paper we concentrate mainly on charged particle radiations. Descriptions of the radiation belts and particles of solar and cosmic origin are reviewed. An overview of the traditional models is presented accompanied by their application areas and limitations. This is followed by discussion of some recent model developments.

  8. Genesis Radiation Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; Skipworth, William C.

    2007-01-01

    The Genesis spacecraft launched on 8 August 2001 sampled solar wind environments at L1 from 2001 to 2004. After the Science Capsule door was opened, numerous foils and samples were exposed to the various solar wind environments during periods including slow solar wind from the streamer belts, fast solar wind flows from coronal holes, and coronal mass ejections. The Survey and Examination of Eroded Returned Surfaces (SEERS) program led by NASA's Space Environments and Effects program had initiated access for the space materials community to the remaining Science Capsule hardware after the science samples had been removed for evaluation of materials exposure to the space environment. This presentation will describe the process used to generate a reference radiation Genesis Radiation Environment developed for the SEERS program for use by the materials science community in their analyses of the Genesis hardware.

  9. Lunar radiation environment

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan; Spence, Harlan; Wilson, Jody

    One of the goals of the CRaTER investigation is to characterize the radiation environment near the Moon in order to enable exploration. The state-of-the-art understanding developed thus far during the LRO mission is documented in a special issue of the Spaceweather Journal entitled “Space Weather: Building the observational foundation to deduce biological effects of space radiation” (Schwadron et al., 2013a). This recently published CRaTER work probes deeper into the physics of the radiation environment at the Moon. It motivates and provides the scientific basis for new investigations in the next phase of the LRO mission. The effects of Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) range from chemical modification of the regolith, the generation of a radiation albedo that is increasingly illuminating chemical properties of the regolith, causing charging of the regolith and hazards to human explorers and robotic missions. Low-lunar orbit provides a platform for measuring SEP anisotropy over timescales of 2 hours both parallel and perpendicular to the ecliptic plane, and so far we have observed more than 18 SEP events with time-variable anisotropies during the LRO mission. Albedo proton maps of the Moon from CRaTER indicate that the flux of lunar albedo protons is correlated with elemental abundances at the lunar surface. The yield of albedo protons from the maria is 1% higher than the yield from the highlands, and there are localized peaks with even higher contrast (that may be co-located with peaks in trace elemental abundances as measured by the Lunar Prospector Gamma Ray Spectrometer). The Moon’s radiation environment both charges and affects the chemistry in the Moon’s polar regions, particularly in PSRs. This makes these regions a prime target for new CRaTER observations, since CRaTER measures GCRs and SEPs that penetrate the regolith down to 10s of cm. Thus, we review emerging discoveries from LRO/CRaTER’s remarkable exploration of

  10. Radiation Environment Inside Spacecraft

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick

    2015-01-01

    Dr. Patrick O'Neill, NASA Johnson Space Center, will present a detailed description of the radiation environment inside spacecraft. The free space (outside) solar and galactic cosmic ray and trapped Van Allen belt proton spectra are significantly modified as these ions propagate through various thicknesses of spacecraft structure and shielding material. In addition to energy loss, secondary ions are created as the ions interact with the structure materials. Nuclear interaction codes (FLUKA, GEANT4, HZTRAN, MCNPX, CEM03, and PHITS) transport free space spectra through different thicknesses of various materials. These "inside" energy spectra are then converted to Linear Energy Transfer (LET) spectra and dose rate - that's what's needed by electronics systems designers. Model predictions are compared to radiation measurements made by instruments such as the Intra-Vehicular Charged Particle Directional Spectrometer (IV-CPDS) used inside the Space Station, Orion, and Space Shuttle.

  11. Geant4 models for space radiation environment.

    NASA Astrophysics Data System (ADS)

    Ivantchenko, Anton; Nieminen, Petteri; Incerti, Sebastien; Santin, Giovanni; Ivantchenko, Vladimir; Grichine, Vladimir; Allison, John

    The space radiation environment includes wide varieties of particles from electrons to heavy ions. In order to correctly predict the dose received by astronauts and devices the simulation models must have good applicability and produce accurate results from 10 MeV/u up to 10 GeV/u, where the most radioactive hazardous particles are present in the spectra. Appropriate models should also provide a good description of electromagnetic interactions down to very low energies (10 eV/u - 10 MeV/u) for understanding the damage mechanisms due to long-term low doses. Predictions of biological dose during long interplanetary journeys also need models for hadronic interactions of energetic heavy ions extending higher energies (10 GeV/u - 100 GeV/u, but possibly up to 1 TeV/u). Geant4 is a powerful toolkit, which in some areas well surpasses the needs from space radiation studies, while in other areas is being developed and/or validated to properly cover the modelling requirements outlined above. Our activities in ESA projects deal with the research and development of both Geant4 hadronic and electromagnetic physics. Recently the scope of verification tests and benchmarks has been extended. Hadronic tests and benchmarks run proton, pion, and ion interactions with matter at various energies. In the Geant4 hadronic sub-libraries, the most accurate cross sections have been identified and selected as a default for all particle types relevant to space applications. Significant developments were carried out for ion/ion interaction models. These now allow one to perform Geant4 simulations for all particle types and energies relevant to space applications. For the validation of ion models the hadronic testing suite for ion interactions was significantly extended. In this work the results of benchmarking versus data in a wide energy range for projectile protons and ions will be shown and discussed. Here we show results of the tests runs and their precision. Recommendations for Geant4

  12. Modeling the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2006-01-01

    There has been a renaissance of interest in space radiation environment modeling. This has been fueled by the growing need to replace long time standard AP-9 and AE-8 trapped particle models, the interplanetary exploration initiative, the modern satellite instrumentation that has led to unprecedented measurement accuracy, and the pervasive use of Commercial off the Shelf (COTS) microelectronics that require more accurate predictive capabilities. The objective of this viewgraph presentation was to provide basic understanding of the components of the space radiation environment and their variations, review traditional radiation effects application models, and present recent developments.

  13. The space radiation environment

    SciTech Connect

    Robbins, D.E.

    1997-04-30

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.

  14. Hadron formation in a nuclear environment at HERMES

    NASA Astrophysics Data System (ADS)

    Muccifora, V.; HERM. E. S. Collaboration

    The influence of the nuclear medium on the production of charged hadrons in semi-inclusive deep inelastic scattering has been studied by the HERMES experiment at DESY using 27.5 GeV positrons. A substantial reduction of the multiplicity of charged hadrons and identified charged pions from nuclei relative to that from deuterium has been measured as a function of the relevant kinematic variables. The preliminary results on krypton show a larger reduction of the multiplicity ratio R hM with respect to the one previously measured on nitrogen. Both the krypton and nitrogen data show that the multiplicity ratio is the same for positive and negative pions, while a significant difference is observed between R hM for positive and negative hadrons. This result can be interpreted in terms of a difference between the formation time of protons and pions. Alternatively, it has been suggested that the observed differences between positive and negative hadrons can be attributed to a different modification of the quark and antiquark fragmentation functions in nuclei.

  15. 3D measurement of the radiation distribution in a water phantom in a hadron therapy beam

    NASA Astrophysics Data System (ADS)

    Opalka, L.; Granja, C.; Hartmann, B.; Jakubek, J.; Jaekel, O.; Martisikova, M.; Pospisil, S.; Solc, J.

    2012-01-01

    Hadron therapy is a highly precise radio-therapeutic method with many advantages especially in cases when the tumour is close to sensitive organs where standard treatments cannot be used. For reliable treatment planning it is necessary to have calculation tools for maximization of the dose delivered to the targeted tissue and minimization of the dose outside of it. While the main physical processes in material irradiated by hadron beams are known, in reality the processes involved are complex so that analytical computations are impossible. Thus, the planning tools to incorporate simplified models and numerical approximations and an experimental method for high precision verification of the models within phantoms is desired. The development of sensitive, high resolution and online methods for measurement of the radiation environment inside of the irradiated object is the aim of this work. Such measurements are made possible by the resolving power of the state-of-the-art pixel detector Timepix. This quantum counting imaging device is able to record the characteristic shapes of the particle traces including their energies deposited in the detector. All these data recorded for each event allow to estimate the particle type, its energy and direction of flight. Event-by-event analysis is done using pattern recognition of the characteristic traces. The objective of the experiment is the detection and characterization of secondary radiation generated by the primary therapeutic beams in tissue equivalent material (water). Measurements were performed inside of a water phantom irradiated by a carbon beam at the Heidelberg Ion-Beam Therapy Center (HIT).

  16. The IRAS radiation environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    Orbital flux integration for three selected mission altitudes and geographic instantaneous flux-mapping for nominal flight-path altitude were used to determine the external charged particle radiation predicted for the Infrared Astronomy Satellite. A current field model was used for magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions. Innovative analysis features introduced include (1) positional fluxes as a function of time and energy for the most severe pass through the South Atlantic Anomaly; (2) total positional doses as a function of time and shield thickness; (3) comparison mapping fluxes for ratios of positional intensities to orbit integrated averages; and (4) statistical exposure-time history of a trajectory as a function of energy indicating, in percent of total mission duration, the time intervals over which the instantaneous fluxes would exceed the orbit integrated averages. Results are presented in tables and graphs.

  17. Resistive Plate Chamber digitization in a hadronic shower environment

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Boumediene, D.; Carloganu, C.; Français, V.; Cho, G.; Kim, D.-W.; Lee, S. C.; Park, W.; Vallecorsa, S.; Apostolakis, J.; Folger, G.; Grefe, C.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cauwenbergh, S.; Tytgat, M.; Pingault, A.; Zaganidis, N.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Yoshioka, T.; Cortina Gil, E.; Mannai, S.; Buridon, V.; Combaret, C.; Caponetto, L.; Eté, R.; Garillot, G.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Chadeeva, M.; Danilov, M.; Corriveau, F.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Bilokin, S.; Bonis, J.; Cornebise, P.; Richard, F.; Pöschl, R.; Rouëné, J.; Thiebault, A.; Zerwas, D.; Anduze, M.; Balagura, V.; Belkadhi, K.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Haddad, Y.; Magniette, F.; Ruan, M.; Rubio-Roy, M.; Shpak, K.; Videau, H.; Yu, D.; Callier, S.; Conforti di Lorenzo, S.; Dulucq, F.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Kotera, K.; Ono, H.; Takeshita, T.

    2016-06-01

    The CALICE Semi-Digital Hadronic Calorimeter technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadronic calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. To be able to study the performance of such a calorimeter in future experiments it is important to ensure reliable simulation of its response. This paper presents the SDHCAL prototype simulation performed with GEANT4 and the digitization procedure achieved with an algorithm called SimDigital. A detailed description of this algorithm is given and the methods to determinate its parameters using muon tracks and electromagnetic showers are explained. The comparison with hadronic shower data shows a good agreement up to 50 GeV. Discrepancies are observed at higher energies. The reasons for these differences are investigated.

  18. Rare Hadronic and Radiative Penguin B Decays at BaBar

    SciTech Connect

    Willocq, Stephane

    2002-02-07

    We report recent results in the study of rare hadronic and radiative penguin decays of B mesons. These results are based on a sample of 23 million BB pairs collected by the BaBar Collaboration at the SLAC PEP-II e+e- B Factory.

  19. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    SciTech Connect

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  20. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  1. Simulation of radiation environment for the LHeC detector

    NASA Astrophysics Data System (ADS)

    Nayaz, Abdullah; Piliçer, Ercan; Joya, Musa

    2017-02-01

    The detector response and simulation of radiation environment for the Large Hadron electron Collider (LHeC) baseline detector is estimated to predict its performance over the lifetime of the project. In this work, the geometry of the LHeC detector, as reported in LHeC Conceptual Design Report (CDR), built in FLUKA Monte Carlo tool in order to simulate the detector response and radiation environment. For this purpose, events of electrons and protons with high enough energy were sent isotropically from interaction point of the detector. As a result, the detector response and radiation background for the LHeC detector, with different USRBIN code (ENERGY, HADGT20M, ALL-CHAR, ALL-PAR) in FLUKA, are presented.

  2. Radiation Assurance for the Space Environment

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; LaBel, Kenneth A.; Poivey, Christian

    2004-01-01

    The space radiation environment can lead to extremely harsh operating conditions for spacecraft electronic systems. A hardness assurance methodology must be followed to assure that the space radiation environment does not compromise the functionality and performance of space-based systems during the mission lifetime. The methodology includes a definition of the radiation environment, assessment of the radiation sensitivity of parts, worst-case analysis of the impact of radiation effects, and part acceptance decisions which are likely to include mitigation measures.

  3. Radiation beam therapy evolution: From X-rays to hadrons

    SciTech Connect

    Khoroshkov, V. S.

    2006-10-15

    The history of external radiation beam therapy (radiotherapy)-in particular, proton therapy (PT)-is brietly outlined. Two possible strategies in increasing the efficacy of radiotherapy are considered. The radiotherapy methods and techniques are brietly described. The possibilities of PT in providing effective treatment and the main achievements are demonstrated. The state of the art in the PT development involving the active creation of large clinical PT centers since 1990 is analyzed.

  4. Martian Radiation Environment Experiment (MARIE)

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    1999-01-01

    Space radiation presents a very serious hazard to crews of interplanetary human missions. The two sources of this radiation are the galactic cosmic rays (GCR) and solar energetic particle (SEP) events. The GCR provides a steady source of low dose rate radiation that is primarily responsible for stochastic effects, such as cancer, and can effect the response of the central nervous system. Nuclear interactions of these components with the Martian atmosphere produces substantial flux of neutrons with high Radio Biological Effectiveness. The uncertainty in the knowledge of many fragmentation cross sections and their energy dependence required by radiation transport codes, uncertainties in the ambient radiation environment, and knowledge of the Martian atmosphere, lead to large enough uncertainties in the knowledge of calculated radiation dose in both free space (cruise phase), in Martian orbit, and on Martian surface. Direct measurements of radiation levels, the relative contributions of protons, neutrons, and heavy ions, and Martian atmospheric characteristics is thus a prerequisite for any human mission. An integrated suite of two spectrometers to provide these data will be described. The Orbiter spectrometer will measure the energy spectrum of SEP events from 15 to 500 MeV/n, and when combined with data from other space based instruments, such as the Advanced Composition Explorer (ACE), would provide accurate GCR spectra also. The Lander spectrometer would measure the absorbed dose rate, dose equivalent dose rate, and the linear energy transfer (LET) spectra and is capable of separating the relative contribution of these quantities from protons, neutrons, and high Z particles. There are two separate flight instruments, one for the Orbiter and one for the Lander, based on a common design of the backplane, the central processing unit (CPU), power supply, and onboard data storage. The Orbiter instrument consists of an energetic particle spectrometer that can measure

  5. Radiation effects in the environment

    SciTech Connect

    Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B.; Yazzie, A.; Isaac, M.C.P.; Seaborg, G.T.; Leavitt, C.P.

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

  6. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  7. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider

    DOE PAGES

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; ...

    2016-02-18

    We observed the collective behavior of hadronic particles in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In our work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. Moreover, the thermal photons can thus shine over the prompt background, and increase the low pT direct photon spectrum by a factor of 2–3 in 0%–1% p+Pb collisions at 5.02 TeV. This thermalmore » photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.« less

  8. R&D Studies on Radiation Hard Wavelength Shifting Fiber for CMS Hadronic Endcap Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Neuhaus, John

    2009-11-01

    The Hadronic Endcap (HE) calorimeters of the CMS experiment cover the pseudorapidity range of 1.4 to 3 on both sides of the CMS detector, contributing to superior jet and missing transverse energy resolutions. As the integrated luminosity of the LHC increases, the scintillator tiles used in the CMS Hadronic Endcap calorimeter will lose their efficiency. Here, we propose to replace the scintillator tiles in high radiation area with ``radiation hard'' quartz plates. To increase the light collection efficiency, the generated Cerenkov photons are collected by UV absorbing wavelength shifting (WLS) fibers. Our previous study has shown that quartz plates and plastic wavelength shifting fibers can be used as an effective calorimeter. However there is no radiation hard WLS fiber commercially available. Here we summarize the R&D studies on constructing a radiation hard WLS fiber prototype in University of Iowa CMS Laboratories. The results from the tests performed on quartz fibers treated with p-Terphenyl, as well as the Geant4 simulations of this prototype are presented.

  9. Galactic cosmic radiation environment models

    NASA Astrophysics Data System (ADS)

    Badhwar, G. D.; O'Neill, P. M.; Troung, A. G.

    2001-02-01

    Models of the radiation environment in free space and in near earth orbits are required to estimate the radiation dose to the astronauts for Mars, Space Shuttle, and the International Space Station missions, and to estimate the rate of single event upsets and latch-ups in electronic devices. Accurate knowledge of the environment is critical for the design of optimal shielding during both the cruise phase and for a habitat on Mars or the Moon. Measurements of the energy spectra of galactic cosmic rays (GCR) have been made for nearly four decades. In the last decade, models have been constructed that can predict the energy spectra of any GCR nuclei to an accuracy of better than 25%. Fresh and more accurate measurements have been made in the last year. These measurements can lead to more accurate models. Improvements in these models can be made in determining the local interstellar spectra and in predicting the level of solar modulation. It is the coupling of the two that defines a GCR model. This paper reviews of two of the more widely used models, and a comparison of their predictions with new proton and helium data from the Alpha Magnetic Spectrometer (AMS), and spectra of beryllium to iron in the ~40 to 500 MeV/n acquired by the Advanced Composition Explorer (ACE) during the 1997-98 solar minimum. Regressions equations relating the IMP-8 helium count rate to the solar modulation deceleration parameter calculated using the Climax neutron monitor rate have been developed and may lead to improvements in the predictive capacity of the models. .

  10. Analogy of QCD hadronization and Hawking-Unruh radiation at NICA

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel

    2016-08-01

    The proposed analogy of particle production from high-energy collisions and Hawking-Unruh radiation from black holes is extended to finite density (collisions) and finite electric charge (black holes). Assuming that the electric charge is directly proportional to the density (or the chemical potential), it becomes clear that for at least two freezeout conditions; constant s/ T 3 and E/ N, the proposed analogy works very well. Dependence of radiation (freezeout) temperature on finite electric charge leads to an excellent estimation for kaon-to-pion ratio, for instance, especially in the energy range covered by NICA. The precise and complete measurements for various light-flavored particle yields and ratios are essential in characterizing Hawing-Unruh radiation from charged black holes and the QCD hadronization at finite density, as well.

  11. Overview of the Martian radiation environment experiment

    SciTech Connect

    Zeitlin, C.; Cleghorn, T.F.; Cucinotta, F.A.; Saganti, P.; Andersen, V.; Lee, K.T.; Pinsky, L.S.; Atwell, W.; Turner, R.; Badhwar, G.

    2004-12-01

    Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001 Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars.

  12. Overview of the Martian radiation environment experiment

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Cleghorn, T.; Cucinotta, F.; Saganti, P.; Andersen, V.; Lee, K.; Pinsky, L.; Atwell, W.; Turner, R.; Badhwar, G.

    2004-01-01

    Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001 Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Overview of the Martian radiation environment experiment.

    PubMed

    Zeitlin, C; Cleghorn, T; Cucinotta, F; Saganti, P; Andersen, V; Lee, K; Pinsky, L; Atwell, W; Turner, R; Badhwar, G

    2004-01-01

    Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001 Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars.

  14. Radiation Environment for the Jupiter Europa Orbiter

    NASA Astrophysics Data System (ADS)

    Jun, Insoo

    2008-09-01

    One of the major challenges for the Jupiter Europa Orbiter (JEO) mission would be that the spacecraft should be designed to survive an intense radiation environment expected at Jupiter and Europa. The proper definition of the radiation environments is the important first step, because it could affect almost every aspects of mission and spacecraft design. These include optimizing the trajectory to minimize radiation exposure, determining mission lifetime, selecting parts, materials, detectors and sensors, shielding design, etc. The radiation environments generated for the 2008 JEO study will be covered, emphasizing the radiation environment mainly responsible for the total ionizing dose (TID) and displacement damage dose (DDD). The latest models developed at JPL will be used to generate the TID and DDD environments. Finally, the major radiation issues will be summarized, and a mitigation plan will be discussed.

  15. Space, Atmospheric, and Terrestrial Radiation Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.

    2003-01-01

    The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.

  16. The Near-Earth Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  17. Manned Mars mission radiation environment and radiobiology

    NASA Technical Reports Server (NTRS)

    Nachtwey, D. S.

    1986-01-01

    Potential radiation hazards to crew members on manned Mars missions are discussed. It deals briefly with radiation sources and environments likely to be encountered during various phases of such missions, providing quantitative estimates of these environments. Also provided are quantitative data and discussions on the implications of such radiation on the human body. Various sorts of protective measures are suggested. Recent re-evaluation of allowable dose limits by the National Council of Radiation Protection is discussed, and potential implications from such activity are assessed.

  18. Search for Hadronic Decays of a Light Higgs Boson in the Radiative Decay

    SciTech Connect

    Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; McKenna, J.A.

    2012-02-16

    The authors search for hadronic decays of a light Higgs boson (A{sup 0}) produced in radiative decays of an {Upsilon}(2S) or {Upsilon}(3S) meson, {Upsilon} {yields} {gamma}A{sup 0}. The data have been recorded by the BABAR experiment at the {Upsilon}(3S) and {Upsilon}(2S) center of mass energies, and include (121.3 {+-} 1.2) x 10{sup 6} {Upsilon}(3S) and (98.3 {+-} 0.9) x 10{sup 6} {Upsilon}(2S) mesons. No significant signal is observed. We set 90% confidence level upper limits on the product branching fractions {beta}({Upsilon}(nS) {yields} {gamma}A{sup 0}) {center_dot} {beta}(A{sup 0} {yields} hadrons) (n = 2 or 3) that range from 1 x 10{sup -6} for an A{sup 0} mass of 0.3 GeV/c{sup 2} to 8 x 10{sup -5} at 7 GeV/c{sup 2}.

  19. Natural radiation environment III. [Lead Abstract

    SciTech Connect

    Gesell, T.F.; Lowder, W.M.

    1980-01-01

    Separate abstracts were prepared for the 52 research papers presented at this symposium in April 1978. The major topics in this volume deal with penetrating radiation measurements, radiation surveys and population exposure, radioactivity in the indoor environment, and technologically enhanced natural radioactivity. (KRM)

  20. Visualization Method for Space Radiation Environments

    NASA Astrophysics Data System (ADS)

    Farrell, Joseph

    2000-11-01

    VISUALIZATION METHOD FOR SPACE RADIATION FLUX CONTOURS By using electron and proton radiation environment models (NASA AE8 and AP8), we have developed a method for rapidly visualizing radiation flux data in near-Earth space. Iso-flux contours are computed as implicit function surfaces, with the radiation environment models providing the numerical function calls needed. The surfaces are displayed as a function of solar minimum or maximum, particle energy range, and flux level. Because the underlying governing magnetic fields have a greatly varying spatial dependence as a function of position about the Earth, a special coordinate grid is used to optimize the computational speed for the surface to be displayed. The method visually demonstrates the energy dependence, tilt, center-offset, and anisotropy of the radiation belts surrounding the Earth, including a means of displaying the South Atlantic Anomaly for low Earth orbits. Sponsored by NASA Marshall Space Flight Center, Contract GS-35F-4461G, Order H-32485D.

  1. The dynamic radiation environment assimilation model (DREAM)

    SciTech Connect

    Reeves, Geoffrey D; Koller, Josef; Tokar, Robert L; Chen, Yue; Henderson, Michael G; Friedel, Reiner H

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  2. [UV-radiation--sources, wavelength, environment].

    PubMed

    Hölzle, Erhard; Hönigsmann, Herbert

    2005-09-01

    The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.

  3. Relating space radiation environments to risk estimates

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.

  4. Radiation and Plasma Environments for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.

    2006-01-01

    Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.

  5. Radiative habitable zones in martian polar environments.

    PubMed

    Córdoba-Jabonero, Carmen; Zorzano, María-Paz; Selsis, Franck; Patel, Manish R; Cockell, Charles S

    2005-06-01

    The biologically damaging solar ultraviolet (UV) radiation (quantified by the DNA-weighted dose) reaches the martian surface in extremely high levels. Searching for potentially habitable UV-protected environments on Mars, we considered the polar ice caps that consist of a seasonally varying CO2 ice cover and a permanent H2O ice layer. It was found that, though the CO2 ice is insufficient by itself to screen the UV radiation, at approximately 1 m depth within the perennial H2O ice the DNA-weighted dose is reduced to terrestrial levels. This depth depends strongly on the optical properties of the H2O ice layers (for instance snow-like layers). The Earth-like DNA-weighted dose and Photosynthetically Active Radiation (PAR) requirements were used to define the upper and lower limits of the northern and southern polar Radiative Habitable Zone (RHZ) for which a temporal and spatial mapping was performed. Based on these studies we conclude that photosynthetic life might be possible within the ice layers of the polar regions. The thickness varies along each martian polar spring and summer between approximately 1.5 and 2.4 m for H2O ice-like layers, and a few centimeters for snow-like covers. These martian Earth-like radiative habitable environments may be primary targets for future martian astrobiological missions. Special attention should be paid to planetary protection, since the polar RHZ may also be subject to terrestrial contamination by probes.

  6. Optical data transmission systems in radiation environment

    NASA Astrophysics Data System (ADS)

    Leskovar, Branko

    1989-05-01

    The rapidly expanding field of optical data transmission includes a wide variety of particle accelerator, detector and nuclear power facility applications in which transmission systems are required to withstand exposure to the radiation background. Fiber optic links provide several major advantages over conventional electronic data transmission systems. These include immunity to electromagnetic interference and low transmission losses for very high data rates. The state of the art of optical transmitters, low loss fiber waveguides and receivers in radiation environment is reviewed and summarized. Emphasis is placed on the effects of irradiation on the performance of light emitting and laser diodes, optical fiber waveguides, photodiodes and associated electronics components and subassemblies.

  7. MSL-RAD radiation environment measurements.

    PubMed

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Hassler, Donald M; Ehresmann, Bent; Köhler, Jan; Böhm, Eckart; Böttcher, Stephan; Brinza, David; Burmeister, Sönke; Cucinotta, Francis; Martin, Cesar; Posner, Arik; Rafkin, Scot; Reitz, Guenther

    2015-09-01

    In this study, results are presented from the on-board radiation assessment detector (RAD) of Mars Science Laboratory (MSL). RAD is designed to measure the energetic particle radiation environment, which consists of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) as well as secondary particles created by nuclear interactions of primary particles in the shielding (during cruise) or Martian soil and atmosphere (surface measurements). During the cruise, RAD collected data on space radiation from inside the craft, thus allowing for a reasonable estimation of what a human crew travelling to/from Mars might be exposed to. On the surface of Mars, RAD is shielded by the atmosphere (from above) and the planet itself (from below). RAD measures the first detailed radiation data from the surface of another planet, and they are highly relevant for planning future crewed missions. The results for radiation dose and dose equivalent (a quantity most directly related to human health risk) are presented during the cruise phase, as well as on the Martian surface. Dose and dose equivalent are dominated by the continuous GCR radiation, but several SEP events were also detected and are discussed here.

  8. Space radiation environment monitoring onboard Chinese spacecrafts

    NASA Astrophysics Data System (ADS)

    Wang, Shijin; Xu, Ying; Zhang, Xianguo

    The space particle radiation can cause harsh hazards to spacecraft performance and lifetime. Numerous operational anomalies and several Chinese satellites failures have been attributed to radiation effects. The failure of FY-1 satellite, in 1991, increased awareness of space radiation effects and enhanced monitoring in situ. From then on, Space Environment Monitors (SEM) have been widely used in a great number of Chinese spacecrafts, such as SZ-4 manned spacecraft, FY-1, FY-3 sun-synchronous orbit satellites, FY-2 geo-synchronous orbit satellite, CE-1 lunar probe satellite, and so on. In particular, the SJ-4 and the SJ-5 satellites, which were used for special experiments of space radiation and theirs effects on spacecrafts, had been launched in 1990's. The sustained space radiation monitoring on LEO and GEO has accumulated a mass of data and can promote studies for empirical model of space radiation. In this article, monitoring at the Chinese spacecrafts from 1990's to the predictive future will be described, and cross-calibration of data and their typical results will be given.

  9. Radiation exposure in the moon environment

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Matthiae, Daniel

    2012-12-01

    During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the

  10. Comparison of the Light Charged Particles on Scatter Radiation Dose in Thyroid Hadron Therapy

    PubMed Central

    Azizi, M; Mowlavi, AA

    2014-01-01

    Background: Hadron therapy is a novel technique of cancer radiation therapy which employs charged particles beams, 1H and light ions in particular. Due to their physical and radiobiological properties, they allow one to obtain a more conformal treatment, sparing better the healthy tissues located in proximity of the tumor and allowing a higher control of the disease. Objective: As it is well known, these light particles can interact with nuclei in the tissue, and produce the different secondary particles such as neutron and photon. These particles can damage specially the critical organs behind of thyroid gland. Methods: In this research, we simulated neck geometry by MCNPX code and calculated the light particles dose at distance of 2.14 cm in thyroid gland, for different particles beam: 1H, 2H, 3He, and 4He. Thyroid treatment is important because the spine and vertebrae is situated right behind to the thyroid gland on the posterior side. Results: The results show that 2H has the most total flux for photon and neutron, 1.944E-3 and 1.7666E-2, respectively. Whereas 1H and 3He have best conditions, 8.88609E-4 and 1.35431E-3 for photon, 4.90506E-4 and 4.34057E-3 for neutron, respectively. The same calculation has obtained for energy depositions for these particles. Conclusion: In this research, we investigated that which of these light particles can deliver the maximum dose to the normal tissues and the minimum dose to the tumor. By comparing these results for the mentioned light particles, we find out 1H and 3He is the best therapy choices for thyroid glands whereas 2H is the worst. PMID:25505774

  11. On the problem of lunar radiation environment

    NASA Astrophysics Data System (ADS)

    Denisov, A. N.; Kuznetsov, N. V.; Nymmik, R. A.; Panasyuk, M. I.; Sobolevskii, N. M.

    2010-12-01

    In connection with projects of manned bases on the Moon it becomes topical to estimate radiation danger for their inhabitants. In this paper we describe a method of evaluation of the radiation environment on the lunar surface produced by galactic and solar cosmic rays. The roles of both primary and secondary radiations generated in the depth of the lunar soil under the action of high-energy protons and nuclei are taken into account. Calculated fluxes of particles are used in order to estimate annual averaged absorbed and equivalent local dose rates in tissues. It is established that in the lunar rock the contribution of secondary neutrons to the dose rate exceeds that of protons. The contribution of the secondary particles generated by nuclei of galactic cosmic rays to the dose rate is estimated.

  12. Europa Surface Radiation Environment for Lander Assessment

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Sturner, Steven J.

    2006-01-01

    The Jovian magnetospheric particle environment at Europa's surface is critical to assessment of landed astrobiological experiments in three respects: (1) the landing site must be chosen for the best prospects for detectable organic or inorganic signs of Life, e.g. regions of freshly emergent flows from the subsurface; (2) lander systems must reach the surface through the Jovian magnetospheric environment and operate long enough on the surface to return useful data; (3) lander instrumentation must be capable of detecting signs of life in the context of the local environmental radiation and associated chemistry. The Galileo, Voyager, and Pioneer missions have provided a wealth of data on energetic particle intensities throughout the Jovian magnetosphere including from many flybys of Europa. cumulative radiation dosages for spacecraft enroute to Europa can be well characterized, but knowledge of the surface radiation environment is very limited. Energetic electrons should primarily impact the trailing hemisphere with decreasing intensity towards the center of the leading hemisphere and are the most significant radiation component down to meter depths in the surface regolith due to secondary interactions. Observed surface distribution for sulfates is suggestive of electron irradiation but may have alternative interpretations. Having much-larger magnetic gyroradii than electrons, energetic protons and heavier ions irradiate more of the global surface. The particular orientations of electron, proton, and ion gyromotion would project into corresponding directional (e.g., east-west) anisotropies of particle flu into the surface. Particular topographic features at the landing site may therefore offer shielding from part of the incident radiation.

  13. Ionizing Radiation Environments and Exposure Risks

    NASA Astrophysics Data System (ADS)

    Kim, M. H. Y.

    2015-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.

  14. Epitaxial silicon detectors for particle tracking—Radiation tolerance at extreme hadron fluences

    NASA Astrophysics Data System (ADS)

    Lindström, Gunnar; Dolenc, Irena; Fretwurst, Eckhart; Hönniger, Frank; Kramberger, Gregor; Moll, Michael; Nossarzewska, Elsbieta; Pintilie, Ioana; Röder, Ralf

    2006-11-01

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 μm had been irradiated with reactor neutrons and high-energy protons (24 GeV/ c) up to integrated fluences of Φeq=10 16 cm -2. Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at EC-0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with 90Sr electrons (mip's) is also almost identical to what was expected. A charge collection efficiency of 60

  15. Updating the Jovian Proton Radiation Environment - 2015

    NASA Technical Reports Server (NTRS)

    Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin

    2015-01-01

    Since publication in 1983 by N. Divine and H. Garrett, the Jet Propulsion Laboratory's plasma and radiation models have been the design standard for NASA's missions to Jupiter. These models consist of representations of the cold plasma and electrons, the warm and auroral electrons and protons, and the radiation environment (electron, proton, and heavy ions). To date, however, the high-energy proton model has been limited to an L-shell of 12. With the requirement to compute the effects of the high energy protons and other heavy ions on the proposed Europa mission, the extension of the high energy proton model from approximately 12 L-shell to approximately 50 L-shell has become necessary. In particular, a model of the proton environment over that range is required to estimate radiation effects on the solar arrays for the mission. This study describes both the steps taken to extend the original Divine proton model out to an approximately 50 L-shell and the resulting model developed to accomplish that goal. In addition to hydrogen, the oxygen, sulfur, and helium heavy ion environments have also been added between approximately 6 L-shell and approximately 50 L-shell. Finally, selected examples of the model's predictions are presented to illustrate the uses of the tool.

  16. Use of COTS microelectronics in radiation environments

    SciTech Connect

    Winokur, P.S.; Lum, G.K.; Shaneyfelt, M.R.; Sexton, F.W.; Hash, G.L.; Scott, L.

    1999-12-01

    This paper addresses key issues for the cost-effective use of COTS (Commercially available Off The Shelf) microelectronics in radiation environments that enable circuit or system designers to manage risks and ensure mission success. They review several factors and tradeoffs affecting the successful application of COTS parts including (1) hardness assurance and qualification issues, (2) system hardening techniques, and (3) life-cycle costs. The paper also describes several experimental studies that address trends in total-dose, transient, and single-event radiation hardness as COTS technology scales to smaller feature sizes. As an example, the level at which dose-rate upset occurs in Samsung SRAMs increases from 1.4 x 10{sup 8} rad(Si)/s for a 256K SRAM to 7.7 x 10{sup 9} rad(Si)/s for a 4M SRAM, indicating unintentional hardening improvements in the design of process of a commercial technology. Additional experiments were performed to quantify variations in radiation hardness for COTS parts. In one study, only small (10--15%) variations were found in the dose-rate upset and latchup thresholds for Samsung 4M SRAMs from three different date codes. In another study, irradiations of 4M SRAMs from Samsung, Hitachi, and Toshiba indicate large differences in total-dose radiation hardness. The paper attempts to carefully define terms and clear up misunderstandings about the definitions of COTS and radiation-hardened (RH) technology.

  17. Results from the Martian Radiation Environment Experiment

    NASA Astrophysics Data System (ADS)

    Zeitlin, C.; Cleghorn, T. F.; Cucinotta, F. A.; Saganti, P.

    2003-12-01

    Ionizing radiation in space presents a potentially serious health hazard to astronauts on long-duration missions outside the geomagnetosphere. As a precursor to possible human exploration, the Martian Radiation Environment Experiment, MARIE, is returning the first detailed radiation data from Mars. MARIE is designed to measure the nearly constant flux of energetic Galactic Cosmic Rays (GCR) and intermittent Solar Particle Events (SPE). Despite considerable uncertainties in the normalization of MARIE data, comparisons to model calculations show good agreement, well within the estimated errors. The radiation dose equivalent on Mars from GCR is predicted to be 0.2 - 0.3 Sieverts/yr. (This is approximately 1000 times higher than the cosmic ray dose received on Earth.) In Mars orbit, over the first 16 months of operation, MARIE data show an annual dose equivalent of 0.4 +- 0.1 Sv/yr. That the measured rate is higher than the calculation is expected, since in orbit there is a contribution from low-energy particles that do not survive transport through the atmosphere. Additionally, SPE during this period have contributed about 0.04 Sv/yr to the average annual dose equivalent, a figure that can vary substantially over the course of the solar cycle. The implications of these data for human exploration will be discussed.

  18. Radiation Effects in the Space Telecommunications Environment

    SciTech Connect

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  19. Relating space radiation environments to risk estimates

    SciTech Connect

    Curtis, S.B.

    1991-10-01

    This lecture will provide a bridge from the physical energy or LET spectra as might be calculated in an organ to the risk of carcinogenesis, a particular concern for extended missions to the moon or beyond to Mars. Topics covered will include (1) LET spectra expected from galactic cosmic rays, (2) probabilities that individual cell nuclei in the body will be hit by heavy galactic cosmic ray particles, (3) the conventional methods of calculating risks from a mixed environment of high and low LET radiation, (4) an alternate method which provides certain advantages using fluence-related risk coefficients (risk cross sections), and (5) directions for future research and development of these ideas.

  20. Superconducting magnets in high-radiation environment at supercolliders

    SciTech Connect

    Mokhov, N.V.; Chichili, D.R.; Gourlay, S.A.; Van Sciver, S.; Zeller, A.

    2006-07-01

    The principal challenges arising from beam-induced energy deposition in superconducting (SC) magnets at high-energy high-luminosity hadron and lepton colliders are described. Radiation constraints are analyzed that include quench stability, dynamic heat loads on the cryogenic system, radiation damage limiting the component lifetime, and residual dose rates related to hands-on maintenance. These issues are especially challenging for the interaction regions (IR), particularly for the considered upgrade layouts of the Large Hadron Collider. Up to a few kW of beam power can dissipate in a single SC magnet, and a local peak power density can substantially exceed the quench levels. Just formally, the magnet lifetime is limited to a few months under these conditions. Possible solutions and the ways to mitigate these problems are described in this paper along with R&D needed.

  1. Radiation Environment at Mars and Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 8, 2003

    This graphic shows the radiation dose equivalent as measured by Odyssey's martian radiation environment experiment at Mars and by instruments aboard the Earth-orbiting International Space Station (ISS), for the 18-month period from April 2002 through October 2003. The accumulated total in Mars orbit is just over two times larger than that aboard the Space Station. The bars where the Mars instrument's measurements are well above the average (as shown by the orange line) are months when there was significant solar activity, which increases the dose equivalent. Dose equivalent is expressed in units of milliSieverts per day.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington. The radiation experiment was provided by the Johnson Space Center, Houston, Texas. Lockheed Martin Space Systems, Denver, Colo., is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Astrophysical radiation environments of habitable worlds

    NASA Astrophysics Data System (ADS)

    Smith, David Samuel

    Numerous astrophysical sources of radiation affect the environment of planets orbiting within the liquid-water habitable zone of main-sequence stars. This dissertation reaches a number of conclusions about the ionizing radiation environment of the habitable zone with respect to X-rays and gamma-rays from stellar flares and background Galactic cosmic rays. Gamma-rays and X-rays incident on terrestrial-like exoplanet atmospheres can be efficiently reprocessed into diffuse UV emission that, depending on the presence of atmospheric UV absorbers, can reach the surface. Extreme solar X-ray flares over the last 4.6 Gyr could have delivered large enough radiation doses to the Martian surface to sterilize any unprotected organisms, depending on the largest energy releases possible. These flares also pose a significant hazard to manned space missions, since a large flare can occur with little or no warning during an extravehicular activity. A flare as large as the largest observed could deliver radiation doses exceeding safety limits to an astronaut protected by only a spacesuit. With respect to particle radiation, the nature of Galactic cosmic-ray modulation by astrospheres means that habitable-zone cosmic-ray fluxes change by much larger magnitudes when passing through low- densities regions of the interstellar medium. In contrast to the popular idea that passages through dense molecular clouds are required to significantly enhance Galactic cosmic-ray fluxes and affect planets' electrical circuits, background mutation rates, and climates, we find that densities of only 0.1-10 cm -3 , the densities of most interstellar clouds, are sufficient to bring fluxes close to the full, interstellar level. Finally, passages through dense molecular clouds are necessary to shrink astrospheres to within the habitable zone, but such events produce even higher interstellar hydrogen and dust accretion rates than have been estimated because of the combination of enhanced charge

  3. Study of radiation damage to the CMS Hadronic Endcap Calorimeter and investigation into new physics using multi-boson measurements

    SciTech Connect

    Belloni, Alberto

    2016-03-31

    This document is the final report for the U.S. D.O.E. Grant No. DE-SC0014088, which covers the period from May 15, 2015 to March 31, 2016. The funded research covered the study of multi-boson final states, culminated in the measurement of the W±γγ and, for the first time at an hadronic collider, of the Zγγ production cross sections. These processes, among the rarest multi-boson final states measurable by LHC experiments, allow us to investigate the possibility of new physics in a model-independent way, by looking for anomalies in the standard model couplings among electroweak bosons. In particular, these 3-boson final states access quartic gauge couplings; the W±γγ analysis performed as a part of this proposal sets limits on anomalies in the WWγγ quartic gauge coupling. The award also covered R&D activities to define a radiation-tolerant material to be used in the incoming upgrade of the CMS hadronic endcap calorimeter. In particular, the usage of a liquid-scintillator-based detector was investigated. The research work performed in this direction has been collected in a paper recently submitted for publication in the Journal of Instrumentation (JINST).

  4. The ionizing radiation environment in space and its effects

    SciTech Connect

    Adams, Jim; Falconer, David; Fry, Dan

    2012-11-20

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  5. High Radiation Environment Nuclear Fragment Separator Magnet

    SciTech Connect

    Kahn, Stephen; Gupta, Ramesh

    2016-01-31

    Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bends the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the

  6. Renormdynamics and Hadronization

    NASA Astrophysics Data System (ADS)

    Makhaldiani, Nugzar

    2016-01-01

    Independently radiating valence quarks and corresponding negative binomial distribution presents phenomenologically preferable mechanism of hadronization in multiparticle production processes. Main properties of the renormdynamics, corresponding motion equations and their solutions are considered.

  7. Conformal radiation therapy with hadron beams and the programs of the TERA Foundation.

    PubMed

    Amaldi, U

    1998-01-01

    Proposed fifty years ago, tumor therapy with charged hadron beams has been under rapid development since 1993-94. Indeed hadrontherapy was born in 1938, when neutron beams have been used in cancer therapy, but it has become an accepted therapeutical modality only in the last five years. Fast neutrons are still in use, even if their limitations are now apparent. Charged hadron beams are more favorable, since the largest specific energy deposition occurs at the end of their range in matter. The most used hadrons are at present protons and carbon ions. Both allow a dose deposition which conforms to the tumor target. Radiobiology experiments and the results of the first clinical trials indicate that carbon ions have, on top of this macroscopic property, a different way of interacting with cells at the microscopic level. There are thus solid hopes to use carbon beams of about 4500 MeV to control tumors which are radioresistant both to X-rays and protons. After discussing these macroscopic and microscopic properties of hadrontherapy, the twelve dedicated hadrontherapy centres, which will be treating patients from 2001-2002, are shortly described. Five of them are in the USA and seven in Japan, while no hospital based centre for deep protontherapy is fully financed in Europe. The second part of this review is devoted to the Italian hadrontherapy programme, based on the development of the network RITA, the construction in Rome by the "Istituto Superiore di Sanità" of a novel proton accelerator based on a 3 GHz linac, the design of a linac to boost the energy of protons extracted from a 50-70 MeV cyclotron and the construction in Mirasole, near Milano, of a center for protons and ions known as "CNAO". This center will have a synchrotron, which is under design at CERN in the framework of a collaboration of TERA with AUSTRON and GSI which is called PIMMS (Proton Ion Medical Machine Study) and is headed by Dr. Phyl Bryant.

  8. A Zero Degree Calorimeter for the High Radiation Environment at LHC

    NASA Astrophysics Data System (ADS)

    Bohorquez, Juan; Atlas Collaboration

    2016-09-01

    The two ATLAS Zero Degree Calorimeters(ZDC) are hadron calorimeters that measure the energy of non-colliding nuclear fragments thus providing information on the impact parameter in heavy ion collisions and input for the fast online selection of ultra-peripheral collisions. The ZDCs are located downstream of the straight ATLAS beam pipe section, 140 m from the interaction point. The ZDCs are sampling calorimeters and are composed of alternating layers of tungsten plates and quartz radiator. The extreme radiation environment (up to 20 Grad/yr) causes degradation of the optical performance of the quartz rods, leading to time dependent ZDC performance and frequent repair. A radiation hard ZDC design is being developed at UIUC based on circulating a liquid Cherenkov radiator replacing the present quartz rods. The upgrade aims at using the ZDC in LHC p+Pb runs for the study of nuclear effects in proton structure at low x. The radiation hardness of materials considered for the upgrade will be tested using a passive container that will be installed in place of the ZDC during the ongoing 2016 p+p run at the LHC. The details of the radiation test will be presented together with planned tests on the optical response and isotopic composition of candidate materials after irradiation. REU program supported by NSF Grant PHY-1062690.

  9. Radiation-Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael; Cressler, John D.

    2008-01-01

    This conference poster explores NASA's Radiation-Hardened Electronics for Space Environments project. This project aims to advance the state of the art in high performance, radiation-hardened electronics that enable the long-term, reliable operation of a spacecraft in extreme radiation and temperature of space and the lunar surface.

  10. Exploration of the Mars Radiation Environment Using MARIE

    NASA Technical Reports Server (NTRS)

    Cucinotta, F.; Badhwar, G.; Zeitlin, C.; Cleghorn, T.; Bahr, J.; Beyer, T.; Chambellan, C.; Delaune, P.; Dunn, R.; Flanders, J.

    2002-01-01

    One of three science instruments onboard Mars Odyssey is the Mars Radiation Environment Experiment (MARIE), which is described here. MARIE is an energetic particle spectrometer which will characterize the space radiation environment of Mars and determine its risk to human exploration. Additional information is contained in the original extended abstract.

  11. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  12. Overview of Radiation Environments and Human Exposures

    NASA Technical Reports Server (NTRS)

    Wilson, John W.

    2004-01-01

    Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by the Earth s atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high altitude and space operations.

  13. Overview of radiation environments and human exposures

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    2000-01-01

    Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by Earth's atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high-altitude and space operations.

  14. Exoplanet Host Star Radiation and Plasma Environment

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Güdel, Manuel

    Radiation from host stars controls the planetary energy budget, photochemistry in planetary atmospheres, and mass loss from the outer layers of these atmospheres. Stellar optical and infrared radiation, the major source of energy for the lower atmosphere and planetary surfaces, increases slowly as stars evolve from the Zero-Age-Main-Sequence. Ultraviolet radiation, including the Lyman-α emission line that dominates the UV spectrum of M dwarf stars, controls photochemical reactions of important molecules, including H2O, CO2, and CH4. Extreme ultraviolet and X-radiation from host stars ionizes and heats the outer layers of planetary atmospheres driving mass loss that is rapid for close-in Jupiter-like planets. The strength of the stellar UV, EUV, and X-radiation depends on stellar activity, which decays with time as stellar rotation decreases. As a result, the evolution of an exoplanet's atmosphere depends on the evolution of its host star. We summarize the available techniques for measuring or estimating the X-ray, EUV, and UV radiation of host stars with different spectral types and ages.

  15. RADECS Short Course Session I: The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael; Bourdarie, Sebastien

    2007-01-01

    The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.

  16. Studies of sigma(e+ e- to hadrons) at BaBar using Initial State Radiation (ISR)

    SciTech Connect

    Wang, W.F.; /Orsay, LAL

    2007-10-24

    We present a review of BaBar results on e{sup +}e{sup -} {yields} hadrons using the initial state radiation technique. Cross sections over the {radical}s range from threshold to 4-5 GeV, with very small point-to-point systematic errors, are presented for the {pi}{sup +}{pi}{sup -}{pi}{sup 0}, 2({pi}{sup +}{pi}{sup -}), 2(K{sup +}K{sup -}), 3({pi}{sup +}{pi}{sup -}), 2({pi}{sup +}{pi}{sup -})2{pi}{sup 0}, 2({pi}{sup +}{pi}{sup -})K{sup +}K{sup -}, and p{bar p} final states. The preliminary results of e{sup +}e{sup -} {yields} K{sup +}K{sup -}{pi}{sup +}{pi}{sup -} and e{sup +}e{sup -} {yields} K{sup +}K{sup -}{pi}{sup 0}{pi}{sup 0} cross sections are also presented.

  17. Emergency Medical Rescue in a Radiation Environment

    SciTech Connect

    Briesmeister, L.; Ellington, Y.; Hollis, R.; Kunzman, J.; McNaughton, M.; Ramsey, G.; Somers, B.; Turner, A.; Finn, J.

    1999-09-14

    Previous experience with emergency medical rescues in the presence of radiation or contamination indicates that the training provided to emergency responders is not always appropriate. A new course developed at Los Alamos includes specific procedures for emergency response in a variety of radiological conditions.

  18. Silicon carbide semiconductor technology for high temperature and radiation environments

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.

    1993-01-01

    Viewgraphs on silicon carbide semiconductor technology and its potential for enabling electronic devices to function in high temperature and high radiation environments are presented. Topics covered include silicon carbide; sublimation growth of 6H-SiC boules; SiC chemical vapor deposition reaction system; 6H silicon carbide p-n junction diode; silicon carbide MOSFET; and silicon carbide JFET radiation response.

  19. Measurement of Radiation Pressure in an Ambient Environment

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph; Munday, Jeremy

    2015-03-01

    Light has momentum and thus exerts ``radiation pressure'' when it is reflected or absorbed due to the conservation of momentum. Micromechanical transducers and oscillators are suitable for measurement and utilization of radiation pressure due to their high sensitivities. However, other light-induced mechanical deformations such as photothermal effects often obscure accurate measurements of radiation pressure in these systems. In this work, we investigate the radiation pressure and photothermal force on an uncoated silicon nitride microcantilever under illumination by a 660 nm laser in an ambient environment. To magnify the mechanical effects, the cantilever is driven optically from dc across its resonance frequency, and the amplitude and phase of its oscillation are acquired by an optical beam deflection method and a lockin amplifier. We show that radiation pressure and photothermal effects can be distinguished through the cantilever's frequency response. Furthermore, in a radiation pressure dominant regime, our measurement of the radiation force agrees quantitatively with the theoretical calculation.

  20. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Mereghetti, A.; Sagia, E.; Silari, M.

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on target are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shielding data for the design of future light-ion radiation therapy facilities.

  1. Optical fibres for high radiation dose environments

    NASA Astrophysics Data System (ADS)

    Henschel, H.; Kohn, O.; Schmidt, H. U.; Bawirzanski, E.; Landers, A.

    1994-06-01

    A variety of modern single mode (SM) and graded index (GI) fibres as well as a new pure silica multimode step index (MMSI) fibre with high OH content were irradiated at a Co-60 gamma ray source with a dose rate of approximately = 1.5Gy/s up to a total dose of 10(exp 6)Gy. The radiation-induced loss of all fibres was measured continuously during and after irradiation at discrete wavelengths (approximately = 850, approximately = 1070, approximately = 1300, approximately = 1550nm). With one SM fibre type also the 'breaking stress' before and after irradiation was determined. Radiation-induced losses of approximately less than 5dB/50m (at approximately = 1300nm) were found with some of the SM fibres, whereas the MMSI fibre showed a final induced loss of only 0.5dB/50m at 1070nm wavelength. The breaking stress of the SM fibre increased by about 10%.

  2. ERTS/Nimbus radiation environment information

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1973-01-01

    The results of the ERTS/Nimbus satellite investigation of electron flux levels are presented. Flux calculations were made with the use of two electron environment models, both of which are static and describe the environment during the solar maximum conditions of October 1967. It is concluded that the construction of these models makes it possible to infer a change of the average quiet time electron flux levels as a function of the solar cycle.

  3. Optimized Radiator Geometries for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin

    2013-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft's vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approximately 325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Intense Thermal Infrared Reflector (ITIR), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of ITIR is the absence of louvers or other moving parts and its simple geometry (no parabolic shapes). ITIR consists of a specularly reflective shielding surface and a diffuse radiating surface joined to form a horizontally oriented V-shape (shielding surface on top). The point of intersection of these surfaces is defined by two angles, those which define the tilt of each surface with respect to the local horizontal. The optimum set of these angles is determined on a case-by-case basis. The idea assumes minimal conductive heat transfer between shielding and radiating surfaces, and a practical design would likely stack sets of these surfaces on top of one another to reduce radiator thickness.

  4. Evaluations of Risks from the Lunar and Mars Radiation Environments

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.

    2008-01-01

    Protecting astronauts from the space radiation environments requires accurate projections of radiation in future space missions. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. The galactic cosmic radiation (GCR) flux for the next solar cycle was estimated as a function of interplanetary deceleration potential, which has been derived from GCR flux and Climax neutron monitor rate measurements over the last 4 decades. For the chaotic nature of solar particle event (SPE) occurrence, the mean frequency of SPE at any given proton fluence threshold during a defined mission duration was obtained from a Poisson process model using proton fluence measurements of SPEs during the past 5 solar cycles (19-23). Analytic energy spectra of 34 historically large SPEs were constructed over broad energy ranges extending to GeV. Using an integrated space radiation model (which includes the transport codes HZETRN [1] and BRYNTRN [2], and the quantum nuclear interaction model QMSFRG[3]), the propagation and interaction properties of the energetic nucleons through various media were predicted. Risk assessment from GCR and SPE was evaluated at the specific organs inside a typical spacecraft using CAM [4] model. The representative risk level at each event size and their standard deviation were obtained from the analysis of 34 SPEs. Risks from different event sizes and their frequency of occurrences in a specified mission period were evaluated for the concern of acute health effects especially during extra-vehicular activities (EVA). The results will be useful for the development of an integrated strategy of optimizing radiation protection on the lunar and Mars missions. Keywords: Space Radiation Environments; Galactic Cosmic Radiation; Solar Particle Event; Radiation Risk; Risk

  5. The radiation environment in low-Earth orbit.

    PubMed

    Badhwar, G D

    1997-11-01

    The radiation environment in low-Earth orbit is a complex mixture of galactic cosmic radiation, particles of trapped belts and secondary particles generated in both the spacecraft and Earth's atmosphere. Infrequently, solar energetic particles are injected into the Earth's magnetosphere and can penetrate into low-Earth orbiting spacecraft. In this paper, the sources of charged-particle radiation that contribute significantly to radiation exposure on manned spacecraft are reviewed briefly, and estimates of expected dose rate for the upcoming International Space Station that are based on measurements made on the Russian Mir orbital station are provided.

  6. Radiative decays of the {upsilon}(1S) to a pair of charged hadrons

    SciTech Connect

    Athar, S.B.; Avery, P.; Breva-Newell, L.; Patel, R.; Potlia, V.; Stoeck, H.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B.I.; Gollin, G.D.; Karliner, I.; Kim, D.; Lowrey, N.; Naik, P.; Sedlack, C.; Selen, M.; White, E.J.; Williams, J.; Wiss, J.

    2006-02-01

    Using data obtained with the CLEO III detector, running at the Cornell Electron Storage Ring (CESR), we report on a new study of exclusive radiative {upsilon}(1S) decays into the final states {gamma}{pi}{sup +}{pi}{sup -}, {gamma}K{sup +}K{sup -}, and {gamma}pp. We present branching ratio measurements for the decay modes {upsilon}(1S){yields}{gamma}f{sub 2}(1270), {upsilon}(1S){yields}{gamma}f{sub 2}{sup '}(1525), and {upsilon}(1S){yields}{gamma}K{sup +}K{sup -}; helicity production ratios for f{sub 2}(1270) and f{sub 2}{sup '}(1525); upper limits for the decay {upsilon}(1S){yields}{gamma}f{sub J}(2200), with f{sub J}(2220){yields}{pi}{sup +}{pi}{sup -}, K{sup +}K{sup -}, pp; and an upper limit for the decay {upsilon}(1S){yields}{gamma}X(1860), with X(1860){yields}{gamma}pp.

  7. Designing Equipment for Use in Gamma Radiation Environments

    SciTech Connect

    Vandergriff, K.U.

    1990-01-01

    High levels of gamma radiation are known to cause degradation in a variety of materials and components. When designing systems to operate in a high radiation environment, special precautions and procedures should be followed. This report (1) outlines steps that should be followed in designing equipment and (2) explains the general effects of radiation on various engineering materials and components. Much information exists in the literature on radiation effects upon materials. However, very little information is available to give the designer a step-by-step process for designing systems that will be subject to high levels of gamma radiation, such as those found in a nuclear fuel reprocessing facility. In this report, many radiation effect references are relied upon to aid in the design of components and systems.

  8. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider

    SciTech Connect

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles

    2016-02-18

    We observed the collective behavior of hadronic particles in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In our work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. Moreover, the thermal photons can thus shine over the prompt background, and increase the low pT direct photon spectrum by a factor of 2–3 in 0%–1% p+Pb collisions at 5.02 TeV. This thermal photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.

  9. Prediction of LDEF ionizing radiation environment

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Parnell, T. A.; Derrickson, James H.; Armstrong, T. W.; Benton, E. V.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements.

  10. Damage-tolerant nanotwinned metals with nanovoids under radiation environments

    DOE PAGES

    Chen, Y.; Yu, K. Y.; Liu, Y.; ...

    2015-04-24

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from highmore » density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.« less

  11. Damage-tolerant nanotwinned metals with nanovoids under radiation environments

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yu, K. Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X.

    2015-04-01

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.

  12. [About Dose-Effect Relationship in the Environment Radiation Protection].

    PubMed

    Udalova, A A

    2015-01-01

    One of the most important stages in the development of a methodology for the environment radiation protection is the assessment and justification of critical radiation exposure levels for ecosystem components. In this study application of the approach for critical dose level estimation is demonstrated on the example of the data about ionizing radiation effect on reproduction and survival of agricultural plants after acute and chronic exposures. Influence of the type of dose-effect relationship on the estimated values of the critical doses and dose rates is studied using three models (linear, logarithmic and logistic). The findings obtained do not provide any robust recommendations in favor of one of the three tested functions. The models of dose-effect relationship (threshold or non-threshold) and types of radiation-induced effects (stochastic and deterministic) are discussed from the viewpoint of developing a system for radiation protection of human and non-human biota.

  13. Characterization of radiation environments at selected Pacific Northwest Laboratory facilities

    SciTech Connect

    Oxley, C.L.

    1992-10-01

    This report is based on a study conducted by Pacific Northwest Laboratory (PNL) from December 15, 1990 to December 15, 1991, to characterize the radiation environments at selected locations within PNL facilities. Thermoluminescent dosimeters were placed at 72 locations to measure non-productive radiation exposure to identify areas in which continuous occupation by a staff member would expose the staff member to radiation exceeding the 100 mrem/yr limit. The areas measured were found to be below the 0.05 mR/hr limit with the exception of three locations. At these three locations above the limit, radiation exposure was reduced by changing office locations and by additional shielding around radiation sources. Evaluations are recommended to determine the causes of elevated exposure rate readings.

  14. Damage-tolerant nanotwinned metals with nanovoids under radiation environments

    PubMed Central

    Chen, Y.; Yu, K Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X.

    2015-01-01

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials. PMID:25906997

  15. Radiation Environment Modeling for Spacecraft Design: New Model Developments

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray

    2006-01-01

    A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.

  16. Assessment of radiation awareness training in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Whisker, Vaughn E., III

    The prospect of new nuclear power plant orders in the near future and the graying of the current workforce create a need to train new personnel faster and better. Immersive virtual reality (VR) may offer a solution to the training challenge. VR technology presented in a CAVE Automatic Virtual Environment (CAVE) provides a high-fidelity, one-to-one scale environment where areas of the power plant can be recreated and virtual radiation environments can be simulated, making it possible to safely expose workers to virtual radiation in the context of the actual work environment. The use of virtual reality for training is supported by many educational theories; constructivism and discovery learning, in particular. Educational theory describes the importance of matching the training to the task. Plant access training and radiation worker training, common forms of training in the nuclear industry, rely on computer-based training methods in most cases, which effectively transfer declarative knowledge, but are poor at transferring skills. If an activity were to be added, the training would provide personnel with the opportunity to develop skills and apply their knowledge so they could be more effective when working in the radiation environment. An experiment was developed to test immersive virtual reality's suitability for training radiation awareness. Using a mixed methodology of quantitative and qualitative measures, the subjects' performances before and after training were assessed. First, subjects completed a pre-test to measure their knowledge prior to completing any training. Next they completed unsupervised computer-based training, which consisted of a PowerPoint presentation and a PDF document. After completing a brief orientation activity in the virtual environment, one group of participants received supplemental radiation awareness training in a simulated radiation environment presented in the CAVE, while a second group, the control group, moved directly to the

  17. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  18. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    SciTech Connect

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-15

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  19. Thermal Radiation from Nuclear Detonations in Urban Environments

    SciTech Connect

    Marrs, R E; Moss, W C; Whitlock, B

    2007-06-04

    There are three principal causes of ''prompt'' casualties from a nuclear detonation: nuclear (gamma-ray and neutron) radiation, thermal radiation, and blast. Common estimates of the range of these prompt effects indicate that thermal radiation has the largest lethal range [1]. Non-lethal skin burns, flash blindness, and retinal burns occur out to much greater range. Estimates of casualties from thermal radiation assume air bursts over flat terrain. In urban environments with multiple buildings and terrain features, the extent of thermal radiation may be significantly reduced by shadowing. We have developed a capability for calculating the distribution of thermal energy deposition in urban environments using detailed 3D computer models of actual cities. The size, height, and radiated power from the fireball as a function of time are combined with ray tracing to calculate the energy deposition on all surfaces. For surface bursts less than 100 kt in locations with large buildings or terrain features, the calculations confirm the expected reduction in thermal damage.

  20. Effects of radiation environment on reusable nuclear shuttle system

    NASA Technical Reports Server (NTRS)

    Lane, A. G.

    1972-01-01

    Parametric tradeoff analyses of a wide spectrum of alternate tank configurations to minimize both primary and secondary, direct and scattered radiation sources emanating from the NERVA are reported. The analytical approach utilizing point kernel techniques is described and detailed data are presented on the magnitude of neutron/gamma doses for different locations. Single-tank configurations utilizing smaller cone angles and end cap radii were found to minimize integral radiation levels, hence, stage shielding-weight penalties for shuttle missions. Hybrid configurations employing an upper tank with a reduced cone angle and end cap radius result in low integral payload doses primarily due to the increased separation distance caused by the elongation of the larger capacity upper tank. A preliminary radiation damage assessment is discussed of possible reusable nuclear shuttle materials, components, and subsystems, and the possible effects of the radiation environment on various phases of RNS mission operations.

  1. Radiation Belt Environment Model: Application to Space Weather and Beyond

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching H.

    2011-01-01

    Understanding the dynamics and variability of the radiation belts are of great scientific and space weather significance. A physics-based Radiation Belt Environment (RBE) model has been developed to simulate and predict the radiation particle intensities. The RBE model considers the influences from the solar wind, ring current and plasmasphere. It takes into account the particle drift in realistic, time-varying magnetic and electric field, and includes diffusive effects of wave-particle interactions with various wave modes in the magnetosphere. The RBE model has been used to perform event studies and real-time prediction of energetic electron fluxes. In this talk, we will describe the RBE model equation, inputs and capabilities. Recent advancement in space weather application and artificial radiation belt study will be discussed as well.

  2. Recent Developments in the Radiation Belt Environment Model

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Glocer, A.; Zheng, Q.; Horne, R. B.; Meredith, N. P.; Albert, J. M.; Nagai, T.

    2010-01-01

    The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied.Weare able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration.

  3. Travel for the 2004 American Statistical Association Biannual Radiation Meeting: "Radiation in Realistic Environments: Interactions Between Radiation and Other Factors

    SciTech Connect

    Brenner, David J.

    2009-07-21

    The 16th ASA Conference on Radiation and Health, held June 27-30, 2004 in Beaver Creek, CO, offered a unique forum for discussing research related to the effects of radiation exposures on human health in a multidisciplinary setting. The Conference furnishes investigators in health related disciplines the opportunity to learn about new quantitative approaches to their problems and furnishes statisticians the opportunity to learn about new applications for their discipline. The Conference was attended by about 60 scientists including statisticians, epidemiologists, biologists and physicists interested in radiation research. For the first time, ten recipients of Young Investigator Awards participated in the conference. The Conference began with a debate on the question: “Do radiation doses below 1 cGy increase cancer risks?” The keynote speaker was Dr. Martin Lavin, who gave a banquet presentation on the timely topic “How important is ATM?” The focus of the 2004 Conference on Radiation and Health was Radiation in Realistic Environments: Interactions Between Radiation and Other Risk Modifiers. The sessions of the conference included: Radiation, Smoking, and Lung Cancer Interactions of Radiation with Genetic Factors: ATM Radiation, Genetics, and Epigenetics Radiotherapeutic Interactions The Conference on Radiation and Health is held bi-annually, and participants are looking forward to the 17th conference to be held in 2006.

  4. Radiation environment at aviation altitudes and in space.

    PubMed

    Sihver, L; Ploc, O; Puchalska, M; Ambrožová, I; Kubančák, J; Kyselová, D; Shurshakov, V

    2015-06-01

    On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that aircrews that could receive dose of >1 mSv y(-1) must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and

  5. Development of n-on-p Silicon Sensors for Very High Radiation Environments

    SciTech Connect

    Unno, Y.; Li, Z.; Affolder, A.A.; Allport, P.P. et al.

    2010-05-06

    We have developed a novel and highly radiation-tolerant n-in-p silicon microstrip sensor for very high radiation environments such as in the Super Large Hadron Collider. The sensors are designed for a fluence of 1 x 10{sup 15} neq/cm{sup 2} and are fabricated from p-type, FZ, 6 in. (150 mm) wafers onto which we lay out a single 9.75 cm x 9.75 cm large-area sensor and several 1 cm x 1 cm miniature sensors with various n-strip isolation structures. By evaluating the sensors both pre- and post-irradiation by protons and neutrons, we find that the full depletion voltage evolves to approximately 800 V and that the n-strip isolation depends on the p{sup +} concentration. In addition, we characterize the interstrip resistance, interstrip capacitance and the punch-through-protection (PTP) voltage. The first fabrication batch allowed us to identify the weak spots in the PTP and the stereo strip layouts. By understanding the source of the weakness, the mask was modified accordingly. After modification, the follow-up fabrication batches and the latest fabrication of about 30 main sensors and associated miniature sensors have shown good performance, with no sign of microdischarge up to 1000 V.

  6. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  7. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  8. Basic mechanisms of radiation effects in the natural space radiation environment

    SciTech Connect

    Schwank, J.R.

    1994-06-01

    Four general topics are covered in respect to the natural space radiation environment: (1) particles trapped by the earth`s magnetic field, (2) cosmic rays, (3) radiation environment inside a spacecraft, (4) laboratory radiation sources. The interaction of radiation with materials is described by ionization effects and displacement effects. Total-dose effects on MOS devices is discussed with respect to: measurement techniques, electron-hole yield, hole transport, oxide traps, interface traps, border traps, device properties, case studies and special concerns for commercial devices. Other device types considered for total-dose effects are SOI devices and nitrided oxide devices. Lastly, single event phenomena are discussed with respect to charge collection mechanisms and hard errors. (GHH)

  9. Radiation from Gas-Jet Diffusion Flames in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.; Sotos, Raymond G.; Stocker, Dennis P.

    1991-01-01

    This paper presents the first demonstration of quantitative flame-radiation measurement in microgravity environments, with the objective of studying the influences and characteristics of radiative transfer on the behavior of gas-jet diffusion flames with possible application to spacecraft fire detection. Laminar diffusion flames of propane, burning in quiescent air at atmospheric pressure, are studied in the 5.18-Second Zero-Gravity Facility of NASA Lewis Research Center. Radiation from these flames is measured using a wide-view angle, thermopile-detector radiometer, and comparisons are made with normal-gravity flames. The results show that the radiation level is significantly higher in microgravity compared to normal-gravity environments due to larger flame size, enhanced soot formation, and entrapment of combustion products in the vicinity of the flame. These effects are the consequences of the removal of buoyancy which makes diffusion the dominant mechanism of transport. The results show that longer test times may be needed to reach steady state in microgravity environments.

  10. The Dynamics of the Atmospheric Radiation Environment at Aviation Altitudes

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, Epaminondas G.

    2004-01-01

    Single Event Effects vulnerability of on-board computers that regulate the: navigational, flight control, communication, and life support systems has become an issue in advanced modern aircraft, especially those that may be equipped with new technology devices in terabit memory banks (low voltage, nanometer feature size, gigabit integration). To address this concern, radiation spectrometers need to fly continually on a multitude of carriers over long periods of time so as to accumulate sufficient information that will broaden our understanding of the very dynamic and complex nature of the atmospheric radiation environment regarding: composition, spectral distribution, intensity, temporal variation, and spatial variation.

  11. A space radiation shielding model of the Martian radiation environment experiment (MARIE).

    PubMed

    Atwell, W; Saganti, P; Cucinotta, F A; Zeitlin, C J

    2004-01-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.

  12. A space radiation shielding model of the Martian radiation environment experiment (MARIE)

    NASA Technical Reports Server (NTRS)

    Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.

    2004-01-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Radiation environment at LEO orbits: MC simulation and experimental data.

    NASA Astrophysics Data System (ADS)

    Zanini, Alba; Borla, Oscar; Damasso, Mario; Falzetta, Giuseppe

    The evaluations of the different components of the radiation environment in spacecraft, both in LEO orbits and in deep space is of great importance because the biological effect on humans and the risk for instrumentation strongly depends on the kind of radiation (high or low LET). That is important especially in view of long term manned or unmanned space missions, (mission to Mars, solar system exploration). The study of space radiation field is extremely complex and not completely solved till today. Given the complexity of the radiation field, an accurate dose evaluation should be considered an indispensable part of any space mission. Two simulation codes (MCNPX and GEANT4) have been used to assess the secondary radiation inside FO-TON M3 satellite and ISS. The energy spectra of primary radiation at LEO orbits have been modelled by using various tools (SPENVIS, OMERE, CREME96) considering separately Van Allen protons, the GCR protons and the GCR alpha particles. This data are used as input for the two MC codes and transported inside the spacecraft. The results of two calculation meth-ods have been compared. Moreover some experimental results previously obtained on FOTON M3 satellite by using TLD, Bubble dosimeter and LIULIN detector are considered to check the performances of the two codes. Finally the same experimental device are at present collecting data on the ISS (ASI experiment BIOKIS -nDOSE) and at the end of the mission the results will be compared with the calculation.

  14. Experimental simulation of proton space radiation environments: A dosimetric perspective

    NASA Astrophysics Data System (ADS)

    Hardy, K. A.; Leavitt, D. D.

    1994-10-01

    Three-dimensional dose calculation techniques developed for radiotherapy treatment planning were used to calculate dose distributions from unidirectional, planar rotational and omnidirectional incident radiation (experimental proton beams and solar flares). The calculations predicted regions of high dose within primate heads exposed to 55-MeV protons, supporting the postulate of radiation-induced brain tumors within this population/1/. Comparisons among predicted doses to the human head from solar flares of three different energies demonstrated differences between unidirectional and omnidirectional irradiation in the space environment. The results can be used to estimate dose distributions based on a) limited phantom measurements, or b) nonuniformly incident radiation in orbit; both situations are difficult to replicate under laboratory exposure conditions.

  15. Saturn Ring Radiation Environment for the Cassini Grand Finale Orbits

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Kollmann, Peter; Johnson, Robert E.; Roussos, Elias; Sittler, Edward C.; Sturner, Steven J.

    2016-10-01

    Grand Finale (proximal) orbits of Cassini from April to September 2017 will provide an unprecedented opportunity for further in-situ exploration of the energetic radiation environment primarily arising from galactic cosmic ray interactions with the main rings. Improved modeling of these interactions contributes to ring mass properties, radiation chemistry, and source modeling for trapped radiation within and beyond the rings. Our new GEANT simulations show that these interactions produce very substantial fluxes of secondary gamma rays, neutrons, electrons, protons, and more short-lived particles. Cosmic ray albedo neutron decay from ring neutron emissions provides the primary source of trapped protons near and above 10 MeV in the radiation belts extending from beyond the F ring to the orbit of Tethys. Fluxes of these high-energy trapped protons increased as expected with declining solar activity from 2004 through 2009, consistent with decreasing modulation of the galactic cosmic ray protons and heavier ions by the solar wind. In 2017 solar activity and modulation will again be declining from earlier maximum levels in 2012 - 2014, while solar illumination of the rings will be near solstice levels. There may then be similarities in the ring radiation and plasma environment to conditions in 2004. In comparison, the 1979 traversal of the main rings by Pioneer 11 occurred during peak solar activity but declining cosmic ray flux. The questions are then what radiation environment we might expect to find during the Grand Finale orbits, how would the Cassini MIMI LEMMS sensor respond to this environment, and how might these new measurements change our understanding of the rings? During SOI flyover of the rings, LEMMS nominal data showed intensities higher than those from Pioneer 11 to an extent that cannot be explained by the updated interaction model. LEMMS more likely responded to penetrating high-energy radiation at energies outside its nominal ranges for electrons and

  16. Preliminary results from Radiation Environment Investigations on GIOVE-A

    NASA Astrophysics Data System (ADS)

    Underwood, C. I.; Taylor, B.; Ryden, K. A.; Rodgers, D. J.; Dyer, C. S.; Evans, H. D. R.; Daly, E. J.

    GIOVE-A is a small satellite build by SSTL UK for the European Space Agency as a first element of its Galileo satellite navigation programme GIOVE-A s primary payload is a navigation payload to secure use of the frequencies allocated by the International Telecommunications Union ITU for the Galileo system and to demonstrate critical technologies for the navigation payload of future operational Galileo satellites It also includes radiation environments and effects experiments constructed by the University of Surrey CEDEX and QinetiQ MERLIN to characterise the hazardous MEO environment GIOVE-A was launched 28 December 2005 into a 24000 km circular orbit with 56 degree inclination The environment experiments contain detectors to register the electron proton and ion signals and also to investigate the resulting total dose and charging environments The payloads will be described and preliminary results will be presented

  17. Results from the Martian Radiation Environment Experiment MARIE

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Cleghorn, T.; Cucinotta, F.; Saganti, P.; Andersen, V.; Lee, K.; Pinsky, L.; Atwell, W.; Turner, R.

    2003-01-01

    One of the three science instruments aboard the 2001 Mars Odyssey spacecraft is the Martian Radiation Environment Experiment, MARIE. MARIE consists of a stack of silicon detectors, augmented by a Cerenkov detector. MARIE is designed to measure a portion of the particle spectrum of the Galactic Cosmic Rays (GCR), as well as the high fluxes of low-energy protons (energies less than about 100 MeV) that are intermittently produced by active regions on the sun in Solar Particle Events (SPE). MARIE is providing the first detailed information about the radiation environment near Mars.measurements. MARIE has been operating successfully for nearly a year. Solar particle events of considerable interest have been observed, and data have been obtained that will yield GCR spectra from a novel observation point in the solar system.

  18. Radiation environments and absorbed dose estimations on manned space missions.

    PubMed

    Curtis, S B; Atwell, W; Beever, R; Hardy, A

    1986-01-01

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5 degrees, 57 degrees and 90 degrees) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5 degrees orbital inclination.

  19. A virtual environment for medical radiation collaborative learning.

    PubMed

    Bridge, Pete; Trapp, Jamie V; Kastanis, Lazaros; Pack, Darren; Parker, Jacqui C

    2015-06-01

    A software-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students' understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 % of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of "invisible" physical principles and increased opportunity for experimentation and collaborative problem-based learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.

  20. The geomagnetically trapped radiation environment: A radiological point of view

    NASA Technical Reports Server (NTRS)

    Holly, F. E.

    1972-01-01

    The regions of naturally occurring, geomagnetically trapped radiation are briefly reviewed in terms of physical parameters such as; particle types, fluxes, spectrums, and spatial distributions. The major emphasis is placed upon a description of this environment in terms of the radiobiologically relevant parameters of absorbed dose and dose-rate and a discussion of the radiological implications in terms of the possible impact on space vehicle design and mission planning.

  1. [Organization of monitoring of electromagnetic radiation in the urban environment].

    PubMed

    Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R

    2008-01-01

    The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.

  2. Hadron interactions

    SciTech Connect

    K. Orginos

    2011-12-01

    In this talk I am reviewing recent calculations of properties of multi-hadron systems in lattice QCD. In particular, I am reviewing results of elastic scattering phase shifts in meson-meson, meson-baryon and baryon-baryon systems, as well as discussing results indicating possible existence of bound states in two baryon systems. Finally, calculations of properties of systems with more than two hadrons are presented.

  3. Predicted radiation environment of the Saturn baseline diode

    SciTech Connect

    Halbleib, J.A.; Lee, J.R.

    1987-09-01

    Coupled electron/photon Monte Carlo radiation transport was used to predict the radiation environment of the Saturn accelerator for the baseline diode design. The x-ray output has been calculated, as well as energy deposition in CaF/sub 2/ thermoluminescent dosimetry and silicon. It is found that the design criteria for the radiation environment will be met and that approximately 10 kJ of x rays will be available for simulation experiments, if the diode provides a nominal beam of 2.0-MeV electrons for 20 ns with a peak current of 12.5 MA. The penalty in dose and x-ray output for operating below the nominal energy in order to obtain a softer spectrum is quantified. The penalty for using excessive electron equilibration in the standard packaging of the thermoluminescent dosimeters is shown to be negligible. An intrinsic lack of electron equilibration for silicon elements of components and subsystems is verified for Saturn environments, demonstrating the ambiguity of design criteria based on silicon deposition. Validation of an efficient next-event-estimator method for predicting energy deposition in equilibrated detectors/dosimetry is confirmed. Finally, direct-electron depositions in excess of 1 kJ/g are shown to be easily achievable. 34 refs., 30 figs.

  4. Damage-tolerant nanotwinned metals with nanovoids under radiation environments

    SciTech Connect

    Chen, Y.; Yu, K. Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X.

    2015-04-24

    Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.

  5. Numerical simulation of the radiation environment on Martian surface

    NASA Astrophysics Data System (ADS)

    Zhao, L.

    2015-12-01

    The radiation environment on the Martian surface is significantly different from that on earth. Existing observation and studies reveal that the radiation environment on the Martian surface is highly variable regarding to both short- and long-term time scales. For example, its dose rate presents diurnal and seasonal variations associated with atmospheric pressure changes. Moreover, dose rate is also strongly influenced by the modulation from GCR flux. Numerical simulation and theoretical explanations are required to understand the mechanisms behind these features, and to predict the time variation of radiation environment on the Martian surface if aircraft is supposed to land on it in near future. The high energy galactic cosmic rays (GCRs) which are ubiquitous throughout the solar system are highly penetrating and extremely difficult to shield against beyond the Earth's protective atmosphere and magnetosphere. The goal of this article is to evaluate the long term radiation risk on the Martian surface. Therefore, we need to develop a realistic time-dependent GCR model, which will be integrated with Geant4 transport code subsequently to reproduce the observed variation of surface dose rate associated with the changing heliospheric conditions. In general, the propagation of cosmic rays in the interplanetary medium can be described by a Fokker-Planck equation (or Parker equation). In last decade,we witnessed a fast development of GCR transport models within the heliosphere based on accurate gas-dynamic and MHD backgrounds from global models of the heliosphere. The global MHD simulation produces a more realistic pattern of the 3-D heliospheric structure, as well as the interface between the solar system and the surrounding interstellar space. As a consequence, integrating plasma background obtained from global-dependent 3-D MHD simulation and stochastic Parker transport simulation, we expect to produce an accurate global physical-based GCR modulation model. Combined

  6. A new Mars radiation environment model with visualization

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clowdsley, M. S.; Singleterry, R. C.; Wilson, J. W.

    2004-01-01

    A new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (OCR) has been developed at the NASA Langley Research Center. Solar modulated primary particles rescaled for Mars conditions are transported through the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account. The Martian atmosphere has been modeled by using the Mars Global Reference Atmospheric Model--version 2001 (Mars-GRAM 2001). The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g., CO2 ice, H2O ice) along with its time variation throughout the Martian year. Particle transport has been performed with the HZETRN heavy ion code. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  7. Radiation environment in the region of thunderstorm neutrons generation

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Grigoriev, A. V.; Malyshkin, Y.

    2011-12-01

    There exist a number of experimental data favoring the idea of the connection between thunderstorm activity and rises of neutron count rate, registered in on-ground [1,2] as well as space experiments [3]. Recent investigations in this area showed that the observation of thunderstorm neutrons onboard low-orbiting satellites is in principal possible [4]. The current view on the problem of thunderstorm neutrons origin assumes their generation in photonuclear reactions of the TGF radiation and atmosphere components [5]. Such neutron radiation has almost no effect on the dosimetric environment in low orbits due to dispersion in the atmosphere [6]. However it could be of considerable importance in the region of the neutrons generation (on altitudes of 10 - 20 km). The indicated values match altitudes of aviation flights so that, taking into account high penetration power of neutron radiation, one may expect some connected hazard. In the present study we perform a numerical simulation of the thunderstorm neutron radiation near the generation area. The modeling includes generation of the neutrons from TGF and further propagation with account of interaction with background nuclei. On the basis of modeling results we obtain estimates of the absorbed dose for various configurations and altitudes of the neutrons source.

  8. Study of resistive micromegas detectors in a mixed neutron and photon radiation environment

    NASA Astrophysics Data System (ADS)

    Alexopoulos, T.; Iakovidis, G.; Tsipolitis, G.

    2012-05-01

    The Muon ATLAS Micromegas Activity (MAMMA) focuses on the development and testing of large-area muon detectors based on the bulk-Micromegas technology. These detectors are candidates for the upgrade of the ATLAS Muon System in view of the luminosity upgrade of Large Hadron Collider at CERN (sLHC). They will combine trigger and precision measurement capability in a single device. A novel protection scheme using resistive strips above the readout electrode has been developed. The response and sparking properties of resistive Micromegas detectors were successfully tested in a mixed (neutron and gamma) high radiation environment supplied by the Tandem accelerator at the N.C.S.R. Demokritos in Athens. Monte-Carlo studies have been employed to study the effect of 5.5 MeV neutrons impinging on Micromegas detectors. The response of the Micromegas detectors on the photons originating from the inevitable neutron inelastic scattering on the surrounding materials of the experimental facility was also studied.

  9. Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-10-07

    We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. Here, we show that the scaling with dose rate is consistent with that expected from diffusion effects.

  10. Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Litomin, A.; Mossolov, V.; Shumeiko, N.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Spilbeeck, A.; Alves, G. A.; Aldá Júnior, W. L.; Hensel, C.; Carvalho, W.; Chinellato, J.; De Oliveira Martins, C.; Matos Figueiredo, D.; Mora Herrera, C.; Nogima, H.; Prado Da Silva, W. L.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Finger, M.; Finger, M., Jr.; Jain, S.; Khurana, R.; Adamov, G.; Tsamalaidze, Z.; Behrens, U.; Borras, K.; Campbell, A.; Costanza, F.; Gunnellini, P.; Lobanov, A.; Melzer-Pellmann, I.-A.; Muhl, C.; Roland, B.; Sahin, M.; Saxena, P.; Hegde, V.; Kothekar, K.; Pandey, S.; Sharma, S.; Beri, S. B.; Bhawandeep, B.; Chawla, R.; Kalsi, A.; Kaur, A.; Kaur, M.; Walia, G.; Bhattacharya, S.; Ghosh, S.; Nandan, S.; Purohit, A.; Sharan, M.; Banerjee, S.; Bhattacharya, S.; Bhowmik, S.; Chatterjee, S.; Das, P.; Dewanjee, R. K.; Jain, S.; Kumar, S.; Maity, M.; Majumder, G.; Mandakini, P.; Patil, M.; Sarkar, T.; Saikh, A.; Sezen, S.; Juodagalvis, A.; Afanasiev, S.; Bunin, P.; Ershov, Y.; Golutvin, I.; Malakhov, A.; Moisenz, P.; Smirnov, V.; Zarubin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, Yu.; Dermenev, A.; Karneyeu, A.; Krasnikov, N.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Toms, M.; Zhokin, A.; Flacher, H.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Bitioukov, S.; Elumakhov, D.; Kalinin, A.; Krychkine, V.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Volkov, A.; Adiguzel, A.; Bakirci, N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Murat Guler, A.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cankocak, K.; Sen, S.; Boyarintsev, A.; Grynyov, B.; Levchuk, L.; Popov, V.; Sorokin, P.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Gastler, D.; Hazen, E.; Rohlf, J.; Sulak, L.; Wu, S.; Zou, D.; Hakala, J.; Heintz, U.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Gary, J. W.; Ghiasi Shirazi, S. M.; Lacroix, F.; Long, O. R.; Wei, H.; Bhandari, R.; Heller, R.; Stuart, D.; Yoo, J. H.; Apresyan, A.; Chen, Y.; Duarte, J.; Spiropulu, M.; Winn, D.; Abdullin, S.; Banerjee, S.; Chlebana, F.; Freeman, J.; Green, D.; Hare, D.; Hirschauer, J.; Joshi, U.; Lincoln, D.; Los, S.; Pedro, K.; Spalding, W. J.; Strobbe, N.; Tkaczyk, S.; Whitbeck, A.; Linn, S.; Markowitz, P.; Martinez, G.; Bertoldi, M.; Hagopian, S.; Hagopian, V.; Kolberg, T.; Baarmand, M. M.; Noonan, D.; Roy, T.; Yumiceva, F.; Bilki, B.; Clarida, W.; Debbins, P.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Schmidt, I.; Snyder, C.; Southwick, D.; Tiras, E.; Yi, K.; Al-bataineh, A.; Bowen, J.; Castle, J.; McBrayer, W.; Murray, M.; Wang, Q.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Baden, A.; Belloni, A.; Eno, S. C.; Ferraioli, C.; Grassi, T.; Hadley, N. J.; Jeng, G.-Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Yang, Z. S.; Apyan, A.; Bierwagen, K.; Brandt, S.; Klute, M.; Niu, X.; Chatterjee, R. M.; Evans, A.; Frahm, E.; Kubota, Y.; Lesko, Z.; Mans, J.; Ruckstuhl, N.; Heering, A.; Karmgard, D. J.; Musienko, Y.; Ruchti, R.; Wayne, M.; Benaglia, A. D.; Medvedeva, T.; Mei, K.; Tully, C.; Bodek, A.; de Barbaro, P.; Galanti, M.; Garcia-Bellido, A.; Khukhunaishvili, A.; Lo, K. H.; Vishnevskiy, D.; Zielinski, M.; Agapitos, A.; Chou, J. P.; Hughes, E.; Saka, H.; Sheffield, D.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Goadhouse, S.; Hirosky, R.; Wang, Y.; CMS-HCAL Collaboration

    2016-10-01

    We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. We show that the scaling with dose rate is consistent with that expected from diffusion effects.

  11. GEM detectors development for radiation environment: neutron tests and simulations

    NASA Astrophysics Data System (ADS)

    Chernyshova, Maryna; Jednoróg, Sławomir; Malinowski, Karol; Czarski, Tomasz; Ziółkowski, Adam; Bieńkowska, Barbara; Prokopowicz, Rafał; Łaszyńska, Ewa; Kowalska-Strzeciwilk, Ewa; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Krawczyk, Rafał D.; Linczuk, Paweł; Potrykus, Paweł; Bajdel, Barcel

    2016-09-01

    One of the requests from the ongoing ITER-Like Wall Project is to have diagnostics for Soft X-Ray (SXR) monitoring in tokamak. Such diagnostics should be focused on tungsten emission measurements, as an increased attention is currently paid to tungsten due to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. In addition, such diagnostics should be able to withstand harsh radiation environment at tokamak during its operation. The presented work is related to the development of such diagnostics based on Gas Electron Multiplier (GEM) technology. More specifically, an influence of neutron radiation on performance of the GEM detectors is studied both experimentally and through computer simulations. The neutron induced radioactivity (after neutron source exposure) was found to be not pronounced comparing to an impact of other secondary neutron reaction products (during the exposure).

  12. The Martian Radiation Environment Experiment -- Results and Status

    NASA Astrophysics Data System (ADS)

    Zeitlin, C.; Cleghorn, T. F.; Cucinotta, F. A.; Saganti, P.; Andersen, V.; Lee, K. T.; Pinsky, L. S.; Atwell, W.; Turner, R.

    2004-05-01

    Ionizing radiation in space presents a potentially serious health hazard to astronauts on long-duration missions. Missions that take humans outside the geomagnetosphere (which provides significant shielding for crews in low-Earth orbit) are of particular concern. A mission to Mars would expose a crew to a substantial radiation dose from high-energy heavy ions in the Galactic Cosmic Radiation (GCR). Though not expected to cause acute effects, such exposures might endanger the long-term health of crewmembers, leading to increased risk of late effects such as cancer and cataract. Since the biological effects of these ions are not well understood, NASA cannot yet specify career limits for deep-space missions. While ground-based research in radiobiology continues, it is necessary to characterize the radiation field on the Martian surface. This is determined by the radiation incident on the top of the Martian atmosphere, the transmission properties of the atmosphere, and the production of secondary particles (neutrons in particular) in the upper part of the surface. The Martian Radiation Environment Experiment (MARIE), aboard the 2001 Mars Odyssey spacecraft, has returned the first detailed measurements of the radiation field incident on the atmosphere. MARIE consists of a stack of silicon charged-particle detectors, designed to measure the nearly-constant flux of energetic Galactic Cosmic Rays (GCR) and intermittent Solar Particle Events (SPE). The detector is optimized for the detection of solar protons and helium in the energy range from 30 to 75 MeV/nucleon, though higher energies and heavier ions are also detected. Despite considerable uncertainties in data normalization, the measured dose agrees with model calculations, to an accuracy well within the (conservatively) estimated errors. As of this writing (Feb. 2004), MARIE is off, having sustained damage during the large Solar Particle Event of Oct. 29, 2003. Attempts to recover the instrument will resume in the

  13. Phenotype-environment correlations in a putative whitefish adaptive radiation.

    PubMed

    Harrod, Chris; Mallela, Jennie; Kahilainen, Kimmo K

    2010-09-01

    1. The adaptive radiation of fishes into benthic (littoral) and pelagic (lentic) morphs in post-glacial lakes has become an important model system for speciation. Although these systems are well studied, there is little evidence of the existence of morphs that have diverged to utilize resources in the remaining principal lake habitat, the profundal zone. 2. Here, we tested phenotype-environment correlations of three whitefish (Coregonus lavaretus) morphs that have radiated into littoral, pelagic and profundal niches in northern Scandinavian lakes. We hypothesized that morphs in such trimorphic systems would have a morphology adapted to one of the principal lake habitats (littoral, pelagic or profundal niches). Most whitefish populations in the study area are formed by a single (monomorphic) whitefish morph, and we further hypothesized that these populations should display intermediate morphotypes and niche utilization. We used a combination of traditional (stomach content, habitat use, gill raker counts) and more recently developed (stable isotopes, geometric morphometrics) techniques to evaluate phenotype-environment correlations in two lakes with trimorphic and two lakes with monomorphic whitefish. 3. Distinct phenotype-environment correlations were evident for each principal niche in whitefish morphs inhabiting trimorphic lakes. Monomorphic whitefish exploited multiple habitats, had intermediate morphology, displayed increased variance in gillraker-counts, and relied significantly on zooplankton, most likely due to relaxed resource competition. 4. We suggest that the ecological processes acting in the trimorphic lakes are similar to each other, and are driving the adaptive evolution of whitefish morphs, possibly leading to the formation of new species.

  14. Visualization of Radiation Environment on Mars: Assessment with MARIE Measurements

    NASA Technical Reports Server (NTRS)

    Saganti, P.; Cucinotta, F.; Zeitlin, C.; Cleghorn, T.; Flanders, J.; Riman, F.; Hu, X.; Pinsky, L.; Lee, K.; Anderson, V.; Atwell, W.; Turner, R.

    2003-01-01

    For a given GCR (Galactic Cosmic Ray) environment at Mars, particle flux of protons, alpha particles, and heavy ions, are also needed on the surface of Mars for future human exploration missions. For the past twelve months, the MARJE (Martian Radiation Environment Experiment) instrument onboard the 200J Mars Odyssey has been providing the radiation measurements from the Martian orbit. These measurements are well correlated with the HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations during these specific GCR environment conditions are now extended and transported through the CO2 atmosphere onto the Martian surface. These calculated pa11icle flux distributions are presented as a function of the Martian topography making use of the MOLA (Mars Orbiter Laser Altimeter) data from the MGS (Mars Global Surveyor). Also, particle flux calculations are presented with visualization in the human body from skin depth to the internal organs including the blood-forming organs.

  15. Internal Charging Design Environments for the Earths Radiation Belts

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2009-01-01

    Relativistic electrons in the Earth's radiation belts are a widely recognized threat to spacecraft because they penetrate lightly shielded vehicle hulls and deep into insulating materials where they accumulate to sufficient levels to produce electrostatic discharges. Strategies for evaluating the magnitude of the relativistic electron flux environment and its potential for producing ESD events are varied. Simple "rule of thumb" estimates such as the widely used 10(exp 10) e-/sq cm fluence within 10 hour threshold for the onset of pulsing in dielectric materials provide a quick estimate of when to expect charging issues. More sophisticated strategies based on models of the trapped electron flux within the Earth s magnetic field provide time dependent estimates of electron flux along spacecraft orbits and orbit integrate electron flux. Finally, measurements of electron flux can be used to demonstrate mean and extreme relativistic electron environments. This presentation will evaluate strategies used to specify energetic electron flux and fluence environments along spacecraft trajectories in the Earth s radiation belts.

  16. Radiation Hardened Electronics Destined For Severe Nuclear Reactor Environments

    SciTech Connect

    Holbert, Keith E.; Clark, Lawrence T.

    2016-02-19

    Post nuclear accident conditions represent a harsh environment for electronics. The full station blackout experience at Fukushima shows the necessity for emergency sensing capabilities in a radiation-enhanced environment. This NEET (Nuclear Energy Enabling Technologies) research project developed radiation hardened by design (RHBD) electronics using commercially available technology that employs commercial off-the-shelf (COTS) devices and present generation circuit fabrication techniques to improve the total ionizing dose (TID) hardness of electronics. Such technology not only has applicability to severe accident conditions but also to facilities throughout the nuclear fuel cycle in which radiation tolerance is required. For example, with TID tolerance to megarads of dose, electronics could be deployed for long-term monitoring, inspection and decontamination missions. The present work has taken a two-pronged approach, specifically, development of both board and application-specific integrated circuit (ASIC) level RHBD techniques. The former path has focused on TID testing of representative microcontroller ICs with embedded flash (eFlash) memory, as well as standalone flash devices that utilize the same fabrication technologies. The standalone flash devices are less complicated, allowing better understanding of the TID response of the crucial circuits. Our TID experiments utilize biased components that are in-situ tested, and in full operation during irradiation. A potential pitfall in the qualification of memory circuits is the lack of rigorous testing of the possible memory states. For this reason, we employ test patterns that include all ones, all zeros, a checkerboard of zeros and ones, an inverse checkerboard, and random data. With experimental evidence of improved radiation response for unbiased versus biased conditions, a demonstration-level board using the COTS devices was constructed. Through a combination of redundancy and power gating, the demonstration

  17. Mars Surface Ionizing Radiation Environment: Need for Validation

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M. Y.; Clowdsley, M. S.; Heinbockel, J. H.; Tripathi, R. K.; Singleterry, R. C.; Shinn, J. L.; Suggs, R.

    1999-01-01

    Protection against the hazards from exposure to ionizing radiation remains an unresolved issue in the Human Exploration and Development of Space (HEDS) enterprise [1]. The major uncertainty is the lack of data on biological response to galactic cosmic ray (GCR) exposures but even a full understanding of the physical interaction of GCR with shielding and body tissues is not yet available and has a potentially large impact on mission costs. "The general opinion is that the initial flights should be short-stay missions performed as fast as possible (so-called 'Sprint' missions) to minimize crew exposure to the zero-g and space radiation environment, to ease requirements on system reliability, and to enhance the probability of mission success." The short-stay missions tend to have long transit times and may not be the best option due to the relatively long exposure to zero-g and ionizing radiation. On the other hand the short-transit missions tend to have long stays on the surface requiring an adequate knowledge of the surface radiation environment to estimate risks and to design shield configurations. Our knowledge of the surface environment is theoretically based and suffers from an incomplete understanding of the physical interactions of GCR with the Martian atmosphere, Martian surface, and intervening shield materials. An important component of Mars surface robotic exploration is the opportunity to test our understanding of the Mars surface environment. The Mars surface environment is generated by the interaction of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPEs) with the Mars atmosphere and Mars surface materials. In these interactions, multiple charged ions are reduced in size and secondary particles are generated, including neutrons. Upon impact with the Martian surface, the character of the interactions changes as a result of the differing nuclear constituents of the surface materials. Among the surface environment are many neutrons diffusing from

  18. Solar Cycle Variation and Application to the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William

    1999-01-01

    The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.

  19. Estimates of the radiation environment for a nuclear rocket engine

    SciTech Connect

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-12-31

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments.

  20. Effect of ionizing radiation on the waste package environment

    SciTech Connect

    Reed, D.T.; Van Konynenburg, R.A.

    1991-05-01

    The radiolytic production of nitrogen oxides, nitrogen acids and ammonia are discussed in relation to the expected environment in a high-level waste repository that may be constructed at the Yucca Mountain site if it is found to be suitable. Both literature data and repository-relevant data are summarized for air-water vapor systems. The limiting cases of a dry air and a pure water vapor gas phase are also discussed. Design guidelines and recommendations, based solely on the potential consequence of radiation enhancement of corrosion, are given. 13 refs., 5 figs., 1 tab.

  1. Late effects from hadron therapy

    SciTech Connect

    Blakely, Eleanor A.; Chang, Polly Y.

    2004-06-01

    Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.

  2. The ST environment: Expected charged particle radiation levels

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    The external (surface incident) charged particle radiation, predicted for the ST satellite at the three different mission altitudes, was determined in two ways: (1) by orbital flux-integration and (2) by geographical instantaneous flux-mapping. The latest standard models of the environment were used in this effort. Magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions were obtained from a current field model. Spatial and temporal variations or conditions affecting the static environment models were considered and accounted for, wherever possible. Limited shielding and dose evaluations were performed for a simple geometry. Results, given in tabular and graphical form, are analyzed, explained, and discussed. Conclusions are included.

  3. A Radiation Dosimeter Concept for the Lunar Surface Environment

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Watts, John; Kuznetsov, Eugeny N.; Parnell, Thomas A.; Pendleton, Geoff N.

    2007-01-01

    A novel silicon detector configuration for radiation dose measurements in an environment where solar energetic particles are of most concern is described. The dosimeter would also measure the dose from galactic cosmic rays. In the lunar environment a large range in particle flux and ionization density must be measured and converted to dose equivalent. This could be accomplished with a thick (e.g. 2mm) silicon detector segmented into cubic volume elements "voxels" followed by a second, thin monolithic silicon detector. The electronics needed to implement this detector concept include analog signal processors (ASIC) and a field programmable gate array (FPGA) for data accumulation and conversion to linear energy transfer (LET) spectra and to dose-equivalent (Sievert). Currently available commercial ASIC's and FPGA's are suitable for implementing the analog and digital systems.

  4. Comparison of Martian Radiation Environment with International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This graphic shows the radiation dose equivalent as measured by Odyssey's Martian radiation environment experiment at Mars and by instruments aboard the International Space Station, for the 11-month period from April 2002 through February 2003. The accumulated total in Mars orbit is about two and a half times larger than that aboard the Space Station. Averaged over this time period, about 10 percent of the dose equivalent at Mars is due to solar particles, although a 30 percent contribution from solar particles was seen in July 2002, when the sun was particularly active.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The radiation experiment was provided by the Johnson Space Center, Houston, Tex. Lockheed Martin Astronautics, Denver, Colo., is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Space Suit Radiator Performance in Lunar and Mars Environments

    NASA Technical Reports Server (NTRS)

    Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Stephan, Ryan; Trevino, Luis; Paul, Heather

    2005-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to thus become the single largest expendable during an eight hour EVA. We can significantly reduce the amount of expendable water consumed in the sublimator by using a radiator to reject heat from the Astronaut during an EVA. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 260 W (900 Btu/h) of heat were rejected in Lunar and Mars environments with temperatures as cold as -170 C (- 275 F). Further, the RAFT-X endured several freeze / thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit.

  6. Evaluating a radiation monitor for mixed-field environments based on SRAM technology

    NASA Astrophysics Data System (ADS)

    Tsiligiannis, G.; Dilillo, L.; Bosio, A.; Girard, P.; Pravossoudovitch, S.; Todri, A.; Virazel, A.; Mekki, J.; Brugger, M.; Wrobel, F.; Saigne, F.

    2014-05-01

    Instruments operating in particle accelerators and colliders are exposed to radiations that are composed of particles of different types and energies. Several of these instruments often embed devices that are not hardened against radiation effects. Thus, there is a strong need for monitoring the levels of radiation inside the mixed-field radiation areas, throughout different positions. Different metrics exist for measuring the radiation damage induced to electronic devices, such as the Total Ionizing Dose (TID), the Displacement Damage (DD) and of course the fluence of particles for estimating the error rates of the electronic devices among other applications. In this paper, we propose an SRAM based monitor, that is used to define the fluence of High Energy Hadrons (HEH) by detecting Single Event Upsets in the memory array. We evaluated the device by testing it inside the H4IRRAD area of CERN, a test area that reproduces the radiation conditions inside the Large Hadron Collider (LHC) tunnel and its shielded areas. By using stability estimation methods and presenting experimental data, we prove that this device is proper to be used for such a purpose.

  7. Diamond based detectors for high temperature, high radiation environments

    NASA Astrophysics Data System (ADS)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.

    2017-01-01

    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  8. Radiation effects in generic populations inhabiting a limiting environment.

    PubMed

    Sazykina, T G; Kryshev, A I

    2012-05-01

    A generic population model is formulated for radiation risk assessment of natural biota. The model demonstrates that effects of radiation on the population survival do not follow directly the effects on individual organisms. Dose rates resulting in population extinction can be analytically calculated. Besides individual radiosensitivity, two key parameters were found to determine the survival potential of a population under chronic radiation stress: the ratio “biomass losses/biomass synthesis,” and the lump amount of limiting resource in the environment. A benchmark scenario “Population response to chronic irradiation” developed within the IAEA Programme EMRAS II was calculated for generic populations of mice, hare/rabbit, wolf/wild dog, and deer/goat chronically exposed to different levels of ionizing radiation. In the conditions of the benchmark scenario, model populations survived normally (>90% of the control value) at dose rates below the following levels: 3 mGy day(-1) for wolf/wild dog; 10 mGy day(-1) for deer/goat; 14 mGy day(-1) for hare/rabbit; and 20 mGy day(-1) for mice. The model predictions showed a relatively high survival potential of short-lived and productive species such as mice. At the same time, populations of long-lived animals with slow and radiosensitive reproduction such as wolf/wild dog were candidates to extinction at chronic exposures above 5 mGy day(-1). Recovery of short-lived and productive species took a much shorter time compared with long-lived and slow reproductive species.

  9. Space Suit Radiator Performance in Lunar and Mars Environments

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Trevino, Luis; Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Stephan, Ryan

    2007-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 3.48 lbs, an additional eight pounds of water are loaded into the unit of which about six to eight are sublimated and lost; this is the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the Astronaut during an EVA, we can significantly reduce the amount of expendable water consumed by the sublimator. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 800 Btu/h of heat were rejected in lunar and Mars environments with temperatures as cold as 150 F. Tilting the radiator did not cause an observable loss in performance. The RAFT-X endured freeze/thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit. We were also able to operate the heat exchanger in a partially frozen configuration to throttle the heat rejection rate from 530 Btu/h at low water flow rate down to 300 Btu/h. Finally, the deliberate loss of a single loop heat pipe only degraded the heat rejection performance by about 2 to 5%.

  10. Space Suit Radiator Performance in Lunar and Mars Environments

    NASA Technical Reports Server (NTRS)

    Nabity, James; Mason, Georgia; Copeland, Robert; Libberton, Kerry; Trevino, Luis; Stephan, Ryan; Paul, Heather

    2007-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 3.48 lbs, an additional eight pounds of water are loaded into the unit of which about six to eight are sublimated and lost; this is the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the Astronaut during an EVA, we can significantly reduce the amount of expendable water consumed by the sublimator. Last year we reported on the design and initial operational assessment tests of our novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X). Herein, we report on tests conducted in the NASA Johnson Space Center Chamber E Thermal Vacuum Test Facility. Up to 800 Btu/h of heat were rejected in lunar and Mars environments with temperatures as cold as -150 F. Tilting the radiator did not cause an observable loss in performance. The RAFT-X endured freeze / thaw cycles and in fact, the heat exchanger was completely frozen three times without any apparent damage to the unit. We were also able to operate the heat exchanger in a partially frozen configuration to throttle the heat rejection rate from 530 Btu/h at low water flow rate down to 300 Btu/h. Finally, the deliberate loss of a single loop heat pipe only degraded the heat rejection performance by about 2 to 5%.

  11. Atmospheric, Ionospheric, and Energetic Radiation Environments of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Kollmann, P.; Sittler, E. C., Jr.; Johnson, R. E.; Sturner, S. J.

    2015-12-01

    Planetary magnetospheric and high-energy cosmic ray interactions with Saturn's rings were first explored in-situ during the Pioneer 11 flyby in 1979. The following Voyager flybys produced a wealth of new information on ring structure and mass, and on spatial structure of the radiation belts beyond the main rings. Next came the Cassini Orbiter flyover of the rings during Saturn Orbital Insertion in 2004 with the first in-situ measurements of the ring atmosphere and plasma ionosphere. Cassini has since fully explored the radiation belt and magnetospheric plasma region beyond the main rings, discovering how Enceladus acts as a source of water group neutrals and water ions for the ion plasma. But do the main rings also substantially contribute by UV photolysis to water group plasma (H+, O+, OH+, H2O+, H3O+, O2+) and neutrals inwards from Enceladus? More massive rings, than earlier inferred from Pioneer 11 and Voyager observations, would further contribute by bulk ring ice radiolysis from interactions of galactic cosmic ray particles. Products of these interactions include neutron-decay proton and electron injection into the radiation belts beyond the main rings. How does radiolysis from moon and ring sweeping of the radiation belt particles compare with direct gas and plasma sources from the main rings and Enceladus? Can the magnetospheric ion and electron populations reasonably be accounted for by the sum of the ring-neutron-decay and outer magnetospheric inputs? Pioneer 11 made the deepest radial penetration into the C-ring, next followed by Cassini SOI. What might Cassini's higher-inclination proximal orbits reveal about the atmospheric, ionospheric, and energetic radiation environments in the D-ring and the proximal gap region? Recent modeling predicts a lower-intensity innermost radiation belt extending from the gap to the inner D-ring. Other remaining questions include the lifetimes of narrow and diffuse dust rings with respect to plasma and energetic particle

  12. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    SciTech Connect

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  13. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    DOE PAGES

    Sun, C.; Zheng, S.; Wei, C. C.; ...

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size ofmore » ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.« less

  14. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    NASA Astrophysics Data System (ADS)

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  15. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments.

    PubMed

    Sun, C; Zheng, S; Wei, C C; Wu, Y; Shao, L; Yang, Y; Hartwig, K T; Maloy, S A; Zinkle, S J; Allen, T R; Wang, H; Zhang, X

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304 L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500 °C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M(23)C(6) precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.

  16. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    PubMed Central

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.

    2015-01-01

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments. PMID:25588326

  17. Martian Radiation Environment: Model Calculations and Recent Measurements with "MARIE"

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Cucinotta, F. A.; zeitlin, C. J.; Cleghorn, T. F.

    2004-01-01

    The Galactic Cosmic Ray spectra in Mars orbit were generated with the recently expanded HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations are compared with the first eighteen months of measured data from the MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft that is currently in Martian orbit. The dose rates observed by the MARIE instrument are within 10% of the model calculated predictions. Model calculations are compared with the MARIE measurements of dose, dose-equivalent values, along with the available particle flux distribution. Model calculated particle flux includes GCR elemental composition of atomic number, Z = 1-28 and mass number, A = 1-58. Particle flux calculations specific for the current MARIE mapping period are reviewed and presented.

  18. BNCT-RTPE: BNCT radiation treatment planning environment

    SciTech Connect

    Wessol, D.E.; Wheeler, F.J.; Babcock, R.S.

    1995-11-01

    Several improvements have been developed for the BNCT radiation treatment planning environment (BNCT-Rtpe) during 1994. These improvements have been incorporated into Version 1.0 of BNCT-Rtpe which is currently installed at the INEL, BNL, Japanese Research Center (JRC), and Finland`s Technical Research Center. Platforms supported by this software include Hewlett-Packard (HP), SUN, International Business Machines (IBM), and Silicon Graphics Incorporated (SGI). A draft version of the BNCT-Rtpe user manual is available. Version 1.1 of BNCT-Rtpe is scheduled for release in March 1995. It is anticipated that Version 2.x of BNCT-Rtpe, which includes the nonproprietary NURBS library and data structures, will be released in September 1995.

  19. Coupled Convective and Radiative Heat Transfer Simulation for Urban Environments

    NASA Astrophysics Data System (ADS)

    Gracik, Stefan; Sadeghipour, Mostapha; Pitchurov, George; Liu, Jiying; Heidarinejad, Mohammad; Srebric, Jelena; Building Science Group, Penn State Team

    2013-11-01

    A building's surroundings affect its energy use. An analysis of building energy use needs to include the effects of its urban environment, as over half of the world's population now lives in cities. To correctly model the energy flow around buildings, an energy simulation needs to account for both convective and radiative heat transfer. This study develops a new model by coupling OpenFOAM and Radiance, open source packages for simulating computational fluid dynamics (CFD) and solar radiation, respectively. The model currently provides themo-fluid parameters including convective heat transfer coefficients, pressure coefficients, and solar heat fluxes that will be used as inputs for building energy simulations in a follow up study. The model uses Penn State campus buildings immersed in the atmospheric boundary layer flow as a case study to determine the thermo-fluid parameters around buildings. The results of this case study show that shadows can reduce the solar heat flux of a building's surface by eighty percent during a sunny afternoon. Convective heat transfer coefficients can vary by around fifty percent during a windy day.

  20. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  1. Three keys to the radiation of angiosperms into freezing environments.

    PubMed

    Zanne, Amy E; Tank, David C; Cornwell, William K; Eastman, Jonathan M; Smith, Stephen A; FitzJohn, Richard G; McGlinn, Daniel J; O'Meara, Brian C; Moles, Angela T; Reich, Peter B; Royer, Dana L; Soltis, Douglas E; Stevens, Peter F; Westoby, Mark; Wright, Ian J; Aarssen, Lonnie; Bertin, Robert I; Calaminus, Andre; Govaerts, Rafaël; Hemmings, Frank; Leishman, Michelle R; Oleksyn, Jacek; Soltis, Pamela S; Swenson, Nathan G; Warman, Laura; Beaulieu, Jeremy M

    2014-02-06

    Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.

  2. Hadron physics

    SciTech Connect

    Bunce, G.

    1984-05-30

    Is all hadronic physics ultimately describable by QCD. Certainly, many disparate phenomena can be understood within the QCD framework. Also certainly, there are important questions which are open, both theoretically (little guidance, as yet) and experimentally, regarding confinement. Are there dibaryons, baryonium, glueballs. In addition, there are experimental results which at present do not have an explanation. This talk, after a short section on QCD successes and difficulties, will emphasize two experimental topics which have recent results - glueball spectroscopy and exclusive reactions at large momentum transfer. Both are experimentally accessible in the AGS/LAMPF II/AGS II/TRIUMF II/SIN II energy domain.

  3. Direct radiative forcing from black carbon aerosols over urban environment

    NASA Astrophysics Data System (ADS)

    Badarinath, K. V. S.; Madhavi Latha, K.

    There is growing evidence that the earth’s climate is changing and will likely continue to change in the future. It is still debated whether these changes are due to natural variability of the climate system or a result of increases in the concentration of greenhouse gases in the atmosphere. Black carbon (BC) has become the subject of interest for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes, viz., vegetation burning, industrial effluents and motor vehicle exhausts, etc. In this paper, we present results from our measurements on black carbon aerosols, total aerosol mass concentration and aerosol optical depth over an urban environment namely Hyderabad during January to May, 2003. Diurnal variations of BC indicate high BC concentrations during 6:00 9:00 and 19:00 23:00 h. Weekday variations of BC concentrations increase gradually from Monday to Wednesday and gradually decrease from Thursday to Sunday. Analysis of traffic density along with meteorological parameters suggests that the primary determinant for BC concentration levels and patterns is traffic density. Seasonal variations of BC suggest that the BC concentrations are high during dry season compared to rainy season due to the scavenging by air. The fraction of BC to total mass concentration has been observed to be 7% during January to May. BC showed positive correlation with total mass concentration and aerosol optical depth at 500 nm. Radiative transfer calculations suggests that during January to May, diurnal averaged aerosol forcing at the surface is -33 Wm2 and at the top of the atmosphere (TOA) above 100 km it is observed to be +9 Wm-2. The results have been discussed in detail in the paper.

  4. Direct radiative forcing from black carbon aerosols over urban environment

    NASA Astrophysics Data System (ADS)

    Madhavi Latha, K.; Badarinath, K. V. S.

    There is growing evidence that the earth's climate is changing and will likely continue to change in the future. It is still debated whether these changes are due to natural variability of the climate system or a result of increases in the concentration of greenhouse gases in the atmosphere. Black carbon (BC) has become the subject of interest for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes viz., vegetation burning, industrial effluents and motor vehicle exhausts etc. In this paper, we present results from our measurements on black carbon aerosols, total aerosol mass concentration and aerosol optical depth over an urban environment namely Hyderabad during January to May, 2003. Diurnal variations of BC suggests that high BC concentrations observed during 6:00-9:00hrs and 19:00-23:00hrs. Weekday variations of BC suggest that the day average BC concentrations increases gradually from Monday to Wednesday and gradually decreased from Thursday to Sunday. Analysis of traffic density along with meteorological parameters suggests that the primary determinant for BC concentration levels and patterns is traffic density. Seasonal variations of BC suggest that the BC concentrations are high during dry season compared to rainy season due to scavenging effects of BC during rainy season. Fraction of BC to total mass concentration has been observed to be 7% during January to May. BC showed positive correlation with total mass concentration and aerosol optical depth at 500nm. Radiative transfer calculations suggests that during January to May, diurnal averaged aerosol forcing at the surface calculated to be -33Wm -2 and at the top of the atmosphere (TOA) it is observed to +9 Wm -2. The

  5. Radiation environment monitoring for manned missions to Mars.

    PubMed

    Benghin, V V; Petrov, V M

    2003-01-01

    In this paper a radiation monitoring system for manned Mars missions is described, based on the most recent requirements on crew radiation safety. A comparison is shown between the radiation monitoring systems for Earth-orbiting and interplanetary spacecraft, with similarities and differences pointed out and discussed. An operational and technological sketch of the chosen problem solving approach is also given.

  6. The Natural Radiation Environment, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Kastner, Jacob

    The somatic and genetic effects of naturally occurring radiation are described in this illustrated booklet. Internal sources of radiation from food, water, and air and external sources including radioisotopes in rock, brick, water, and air and cosmic radiation are tabulated. Detection methods are described, and their use in biological and physical…

  7. Local Heliospheric and Interstellar Radiation Environment of Planet X

    NASA Astrophysics Data System (ADS)

    Cooper, John

    2017-01-01

    The orbit and aphelion direction of the putative Planet X at mass 10 ME has been inferred earlier from orbital modeling of Sedna and other distant Kuiper Belt Objects. The centroid of possible aphelion locations at 103 AU lies within the heliotail potentially extending thousands of AU downstream from the direction of interstellar neutral flow into the heliosphere. The only spacecraft now heading in that general direction is Pioneer 10, long silent since last contact in January 2003 at 82 AU from the Sun. The Interstellar Background Explorer (IBEX) has from Earth orbit, however, been mapping energetic neutral atom (ENA) emissions from the outer heliosphere, including in the heliotail direction. Angular resolutions of the IBEX ENA maps are too coarse to resolve Planet X itself but could inform on larger-scale particle flux environments of distant objects within the heliotail. Present Voyager 1 energetic particle measurements in the outer heliosheath will eventually be joined by Voyager 2 bulk plasma measurements at ion energies below 10 keV for more complete characterization of particle flux distributions. These distributions can then be used to model external radiation interactions with the more distant objects of our solar system, potentially including Planet X.

  8. ATLAS Transition Radiation Tracker (TRT): Straw tubes for tracking and particle identification at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Mindur, Bartosz

    2017-02-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three inner detector tracking subsystems and consists of ∼300,000 thin-walled drift tubes (;straw tubes;) that are 4 mm in diameter. The TRT system provides ∼ 30 space points with ∼130 micron resolution for charged tracks with | η | < 2 and pT > 0.5 GeV / c . The TRT also provides electron identification capability by detecting transition radiation (TR) X-ray photons in an Xe-based working gas mixture. Compared to Run 1, the LHC beams now provide a higher centre of mass energy (13 TeV), more bunches with a reduced spacing (25 ns), and more particles in each bunch leading to very challenging, higher occupancies in the TRT. Significant modifications of the TRT detector have been made for LHC Run 2 mainly to improve response to the expected much higher rate of hits and to mitigate leaks of the Xe-based active gas mixture. The higher rates required changes to the data acquisition system and introduction of validity gate to reject out-of-time hits. Many gas leaks were repaired and the gas system was modified to use a cheaper Ar-based gas mixture in some channels. A likelihood method was introduced to optimise the TRT electron identification.

  9. The environment of the γ-ray emitting SNR G338.3-0.0: a hadronic interpretation for HESS J1640-465

    NASA Astrophysics Data System (ADS)

    Supan, L.; Supanitsky, A. D.; Castelletti, G.

    2016-05-01

    The supernova remnant (SNR) G338.3-0.0 spatially correlates with HESS J1640-465, which is considered the most luminous γ-ray source associated with a SNR in our Galaxy. The X-ray pulsar PSR J1640-4631 has been recently discovered within the SNR shell, which could favor a leptonic origin for the detected very-high-energy (VHE) emission. In spite of this, the origin of the VHE radiation from HESS J1640-465 has not been unambiguously clarified so far. Indeed, a hadronic explanation cannot be ruled out by current observations. On the basis of atomic (HI) and molecular (12CO) archival data, we determine, for the first time, the total ambient density of protons in the region of the G338.3-0.0/HESS J1640-465 system, a critical parameter for understanding the emission mechanisms at very high energies. The value obtained is in the 100-130 cm-3 range. Besides this, we developed a new hadronic model to describe the spectral energy distribution (SED) of the HESS J1640-465 source, which includes the latest total γ-ray cross-section for proton-proton collisions available in the literature. By using the assessed ambient proton density, we found that the total energy in accelerated protons required to fit the data is 5.4+4.7-2.3 ×1049 erg and 1.6+1.4-0.7 ×1050 erg for a source distance of 8.5 and 13 kpc, respectively. The case where the source distance is 8.5 kpc agrees with the typical scenario in which the energy released is on the order of 1051 erg and ~10% of that energy is transferred to the accelerated protons, whereas the case corresponding to a source distance of 13 kpc requires either a higher value of the energy released in the explosion or a larger energy fraction to accelerate protons.

  10. Simulation and analysis of antennas radiating in a complex environment

    NASA Technical Reports Server (NTRS)

    Kim, J. J.; Burnside, W. D.

    1986-01-01

    A numerical procedure for computing the high-frequency radiation patterns of antennas mounted on curved surfaces is described. The procedure utilizes the uniform geometrical theory of diffraction to examine the antenna system's performance, which is dependent on antenna radiation patterns. Composite ellipsoid models of fuselage shapes are developed and the formation of geodesic paths on the models is studied; the shape of the fuselage affects the radiation patterns. The actual field radiated by the source and scattered by the structure is calculated using the ray field technique. The numerical solution is applied to the analysis of the antenna radiation patterns of a military aircraft, private aircraft, and the Space Shuttle orbiter. Good correlation between the calculated and measured radiation patterns is noted verifying the usefulness and accuracy of the numerical procedure.

  11. Radiation environment study of near space in China area

    NASA Astrophysics Data System (ADS)

    Fan, Dongdong; Chen, Xingfeng; Li, Zhengqiang; Mei, Xiaodong

    2015-10-01

    Aerospace activity becomes research hotspot for worldwide aviation big countries. Solar radiation study is the prerequisite for aerospace activity to carry out, but lack of observation in near space layer becomes the barrier. Based on reanalysis data, input key parameters are determined and simulation experiments are tried separately to simulate downward solar radiation and ultraviolet radiation transfer process of near space in China area. Results show that atmospheric influence on the solar radiation and ultraviolet radiation transfer process has regional characteristic. As key factors such as ozone are affected by atmospheric action both on its density, horizontal and vertical distribution, meteorological data of stratosphere needs to been considered and near space in China area is divided by its activity feature. Simulated results show that solar and ultraviolet radiation is time, latitude and ozone density-variant and has complicated variation characteristics.

  12. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  13. Uncertainties in radiation effect predictions for the natural radiation environments of space

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Stassinopoulos, E. G.

    1994-01-01

    Future manned missions beyond low earth orbit require accurate predictions of the risk to astronauts and to critical systems from exposure to ionizing radiation. For low-level exposures, the hazards are dominated by rare single-event phenomena where individual cosmic-ray particles or spallation reactions result in potentially catastrophic changes in critical components. Examples might be a biological lesion leading to cancer in an astronaut or a memory upset leading to an undesired rocket firing. The risks of such events appears to depend on the amount of energy deposited within critical sensitive volumes of biological cells and microelectronic components. The critical environmental information needed to estimate the risks posed by the natural space environments, including solar flares, is the number of times more than a threshold amount of energy for an event will be deposited in the critical microvolumes. These predictions are complicated by uncertainties in the natural environments, particularly the composition of flares, and by the effects of shielding. Microdosimetric data for large numbers of orbits are needed to improve the environmental models and to test the transport codes used to predict event rates.

  14. Uncertainties in radiation effect predictions for the natural radiation environments of space.

    PubMed

    McNulty, P J; Stassinopoulos, E G

    1994-10-01

    Future manned missions beyond low earth orbit require accurate predictions of the risk to astronauts and to critical systems from exposure to ionizing radiation. For low-level exposures, the hazards are dominated by rare single-event phenomena where individual cosmic-ray particles or spallation reactions result in potentially catastrophic changes in critical components. Examples might be a biological lesion leading to cancer in an astronaut or a memory upset leading to an undesired rocket firing. The risks of such events appears to depend on the amount of energy deposited within critical sensitive volumes of biological cells and microelectronic components. The critical environmental information needed to estimate the risks posed by the natural space environments, including solar flares, is the number of times more than a threshold amount of energy for an event will be deposited in the critical microvolumes. These predictions are complicated by uncertainties in the natural environments, particularly the composition of flares, and by the effects of shielding. Microdosimetric data for large numbers of orbits are needed to improve the environmental models and to test the transport codes used to predict event rates.

  15. The ionizing radiation environment of LDEF prerecovery predictions

    NASA Technical Reports Server (NTRS)

    Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang

    1991-01-01

    The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.

  16. [Radiation Environment Study of Near Space in China Area].

    PubMed

    Mei, Xiao-dong; Sun, Ji-lin; Li, Zheng-qiang; Chen, Xing-feng; Xing, Jin; Xu, Hua; Qie, Li-li; Lü, Yang; Li, Yang; Liu, Li

    2016-03-01

    Aerospace activity in near space (20-50 km) has become a research hotspot for aviation big countries worldwide. Solar radiation study, as the prerequisite to carry out aerospace activity, is facing the barrier of lacking of observation in near space layer. Ozone is the most important factor that affects radiation value in this layer. Based on ECMWF reanalysis data, this input key parameter and its horizontal, vertical and temporal characteristics are analyzedwith results showing obvious regional features in temporal-spatial distribution and varieties. With meteorological data and surface parameters, near space over China is divided into 5 parts. Key factors' value is confirmed over each division. With SBDART radiation transfer model, solar radiation and ultraviolet radiation simulation in near space are conducted separately. Results show that it is influenced by latitude, total ozone and its vertical distribution, radiation varies under complex rules. The average year and monthly solar radiation strengthens changes with latitude reduction, while annual range changes reversely. Air absorbing is related to latitude and land-sea contrast and shows different values and seasonal variations. The ultraviolet radiation over South China Sea reaches its maximum value and minimum annual range, as well as minimum monthly range with value strengthening in summer and weakening in winter. In other areas radiation increases in summer while weakens in winter, monthly range shows double peaks with higher value in spring and autumn, lower in summer and winter. Air absorption in ultraviolet radiation is influenced by multiple factors, vertical varieties over areas besides South China Sea enhance in summer time. The vertical changes of monthly ranges affected by air absorption show consistence in higher and lower layer in June and July, while in other months ranges are bigger in higher layer.

  17. The atmospheric cosmic- and solar energetic particle radiation environment at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Smart, D F; Sauer, H H

    1998-01-01

    Galactic cosmic rays interact with the solar wind, the earth's magnetic field and hadron, lepton and photon fields at aircraft altitudes. In addition to cosmic rays, energetic particles generated by solar activity bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as atmospheric cosmic rays. We have used a code based on transport theory to calculate atmospheric cosmic-ray quantities and compared them with experimental data. Agreement with these data is seen to be good. We have then used this code to calculate equivalent doses to aircraft crews. We have also used the code to calculate radiation doses from several large solar energetic particle events which took place in 1989, including the very large event that occurred on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory.

  18. Computation of radiative fields in opposed-flow flame spread in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Villaraza, Jeanie Ray P.

    The purpose of this thesis is to perform radiation computations in opposed-flow flame spread in a microgravity environment. In this work, the flame spread simulations consider a thermally thin, PMMA fuel in a quiescent, microgravity environment or facing low opposed-flow velocities at ambient conditions of 1 atm and 50-50 volumetric mixture of oxygen and nitrogen. The flame spread model, which is a Computational Fluid Dynamics (CFD) model, is used for numerical simulations in combination with a radiation model. The CFD code is written in FORTRAN language, and a Matlab code is developed for plotting results. The temperature and species fields from CFD computations are used as inputs into the radiation model. Radiative quantities are calculated by using a global balance method along with the total transmittance non-homogeneous model. Radiation effect on thermocouple temperature measurement is investigated. Although this topic is well known, performing radiation correction calculations usually considers surface radiation only and not gas radiation. The inclusion of gas radiation is utilized in predicting the gas temperature that a thermocouple would measure. A narrow bed radiation model is used to determine the average incident radiative flux at a specified location from which a thermocouple temperature measurement is predicted. This study focuses on the quiescent microgravity environment only. The effect of parameters such as thermocouple surface emissivity and bead diameter are also studied. For the main part of this thesis, the effect of gas radiation on the mechanism of flame spread over a thermally thin, solid fuel in microgravity is investigated computationally. Generated radiative fields including thermal and species fields are utilized to investigate the nature of the influence of gas radiation on flame structure as well as its role in the mechanism of opposed-flow flame spread. The opposed-flow configuration considers low flow velocities including a quiescent

  19. Cloud Formation and Acceleration in a Radiative Environment

    NASA Astrophysics Data System (ADS)

    Proga, Daniel; Waters, Tim

    2015-05-01

    In a radiatively heated and cooled medium, thermal instability (TI) is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field’s theory to self-consistently account for a radiation force resulting from bound-free and bound-bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one- and two-dimensional (1D/2D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1D simulations demonstrate that the TI can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to supersonic velocities. However, our 2D simulations reveal that a single cloud with a simple morphology cannot be maintained due to destructive processes, triggered by the Rayleigh-Taylor instability and followed by the Kelvin-Helmholtz instability. Nevertheless, the resulting cold gas structures are still significantly accelerated before they are ultimately dispersed.

  20. CLOUD FORMATION AND ACCELERATION IN A RADIATIVE ENVIRONMENT

    SciTech Connect

    Proga, Daniel; Waters, Tim

    2015-05-10

    In a radiatively heated and cooled medium, thermal instability (TI) is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field’s theory to self-consistently account for a radiation force resulting from bound–free and bound–bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one- and two-dimensional (1D/2D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1D simulations demonstrate that the TI can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to supersonic velocities. However, our 2D simulations reveal that a single cloud with a simple morphology cannot be maintained due to destructive processes, triggered by the Rayleigh–Taylor instability and followed by the Kelvin–Helmholtz instability. Nevertheless, the resulting cold gas structures are still significantly accelerated before they are ultimately dispersed.

  1. Effects of solar electromagnetic radiation on the terrestrial environment.

    NASA Astrophysics Data System (ADS)

    Dickinson, R. E.

    Contents: Atmospheric structure and composition (thermosphere, stratosphere and mesosphere structure and chemistry, tropospheric chemistry). The climate system (current questions, introduction to simple climate models, trapping of thermal radiation by atmospheric constituents, thermal feedback by clouds and water vapor, anthropogenic modulation of trace gases important for climate, atmospheric and oceanic circulation and the seasons, primitive climate, the carbon cycle and the faint-early-Sun). Solar radiation drives the biosphere (origins of photosynthesis, photosynthesis in action, harvesting the sunlight, net primary productivity).

  2. New Hadron Monitor By Using A Gas-Filled RF Resonator

    SciTech Connect

    Yonehara, Katsuya; Fasce, Giorgio; Flanagan, Gene; Johnson, Rolland; Tollestrup, Alvin; Zwaska, Robert

    2015-05-01

    It is trend to build an intense neutrino beam facility for the fundamental physics research, e.g. LBNF at Fermilab, T2K at KEK, and CNGS at CERN. They have investigated a hadron monitor to diagnose the primary/secondary beam quality. The existing hadron monitor based on an ionization chamber is not robust in the high-radiation environment vicinity of MW-class secondary particle production targets. We propose a gas-filled RF resonator to use as the hadron monitor since it is simple and hence radiation robust in this environment. When charged particles pass through the resonator they produce ionized plasma via the Coulomb interaction with the inert gas. The beam-induced plasma changes the permittivity of inert gas. As a result, a resonant frequency in the resonator shifts with the amount of ionized electrons. The radiation sensitivity is adjustable by the inert gas pressure and the RF amplitude. The hadron profile will be reconstructed with a tomography technique in the hodoscope which consists of X, Y, and theta layers by using a strip-shaped gas resonator. The sensitivity and possible system design will be shown in this presentation.

  3. Evaluation of the effects of solar radiation on glass. [space environment simulation

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Harada, Y.

    1979-01-01

    The degradation of glass used on space structures due to electromagnetic and particulate radiation in a space environment was evaluated. The space environment was defined and a simulated space exposure apparatus was constructed. Four optical materials were exposed to simulated solar and particulate radiation in a space environment. Sapphire and fused silica experienced little change in transmittance, while optical crown glass and ultra low expansion glass darkened appreciably. Specimen selection and preparation, exposure conditions, and the effect of simulated exposure are discussed. A selective bibliography of the effect of radiation on glass is included.

  4. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  5. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Strobbe, N.

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  6. The Los Alamos dynamic radiation environment assimilation model (DREAM) for space weather specification and forecasting

    SciTech Connect

    Reeves, Geoffrey D; Friedel, Reiner H W; Chen, Yue; Koller, Josef; Henderson, Michael G

    2008-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity by assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.

  7. Exploration Technology Developments Program's Radiation Hardened Electronics for Space Environments (RHESE) Project Overview

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Darty, Ronald C.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    Primary Objective: 1) A computational tool to accurately predict electronics performance in the presence of space radiation in support of spacecraft design: a) Total dose; b) Single Event Effects; and c) Mean Time Between Failure. (Developed as successor to CR ME96.) Secondary Objectives: 2) To provide a detailed description of the natural radiation environment in support of radiation health and instrument design: a) In deep space; b) Inside the magnetosphere; and c) Behind shielding.

  8. Report: Results of Technical Network Vulnerability Assessment: EPA’s Radiation and Indoor Environments National Laboratory

    EPA Pesticide Factsheets

    Report #09-P-0053, December 9, 2008. Vulnerability testing of EPA’s Radiation and Indoor Environments National Laboratory (R&IEN) network identified Internet Protocol addresses with medium-risk vulnerabilities.

  9. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  10. Spacecraft Environments Interactive: Space Radiation and Its Effects on Electronic System

    NASA Technical Reports Server (NTRS)

    Howard, J. W., Jr.; Hardage, D. M.

    1999-01-01

    The natural space environment is characterized by complex and subtle phenomena hostile to spacecraft. Effects of these phenomena impact spacecraft design, development, and operation. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of space radiation and its effects on electronic systems essential to accomplish overall mission objectives, especially in the current climate of smaller/better/cheaper faster. This primer outlines the radiation environments encountered in space, discusses regions and types of radiation, applies the information to effects that these environments have on electronic systems, addresses design guidelines and system reliability, and stresses the importance of early involvement of radiation specialists in mission planning, system design, and design review (part-by-part verification).

  11. The PHENIX Hadron Blind Detector

    SciTech Connect

    Durham, J. M.

    2009-03-10

    Dielectron measurements by the PHENIX Experiment at RHIC are limited by the combinatorial background from electrons and positrons which are not produced in the same pair. The Hadron Blind Detector will allow a substantial reduction of this background by correctly identifying dielectrons from photon conversions and pion Dalitz decays which dominate the signal in the low mass region of the spectrum. Triple GEM stacks, with a CsI photocathode deposited on the uppermost GEM, detect Cherenkov light produced by electrons in a CF{sub 4} radiator. The transparency of CF{sub 4}, high quantum efficiency of CsI in the UV, and absence of a window between the gas radiator and the GEMs allow a large photoelectron yield, while minimizing the hadron signal. Results from the HBD in RHIC's Run-7 and preparations for upcoming runs are discussed.

  12. Using a Commercial Ethernet PHY Device in a Radiation Environment

    NASA Technical Reports Server (NTRS)

    Parks, Jeremy; Arani, Michael; Arroyo, Roberto

    2014-01-01

    This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.

  13. Retention characteristics of SNOS nonvolatile devices in a radiation environment

    SciTech Connect

    McWhorter, P.J.; Miller, S.L.; Dellin, T.A.; Axness, C.A.

    1987-12-01

    A quantitative model is developed that can accurately predict the threshold voltage shift, and hence data loss, in SNOS nonvolatile memory transistors over a wide range of dose rates. The model accounts for both the time dependent and radiation induced mechanisms leading to data loss. Experimental measurements are made to verify the validity and accuracy of the model under a variety of irradiation conditions.

  14. Characterization of the SPR II generated radiation environments next to and within a guidance system

    SciTech Connect

    Kelly, J.G.; Griffin, P.J.

    1994-02-01

    The neutron fluences and spectra and the gamma ray doses inside and in the vicinity of a guidance system exposed to the Sandia Pulsed Reactor II (SPR II) in four configurations have been determined. This project required customization of the environment and the application of new techniques to determine the spectra within the system. The required radiation environment was achieved, and the experimental results clearly demonstrated that the radiation environment inside the system was very different from that seen outside. This example demonstrates very clearly that experimenters must consider the effect the test apparatus may have on the environment inside the system.

  15. Ultraviolet radiation environment of pollen and its effect on pollen germination. Final report

    SciTech Connect

    Not Available

    1981-12-01

    The damage to pollen caused by natural ultraviolet radiation was investigated. Experimental and literature research into the UV radiation environment is reported. Viability and germination of wind and insect pollinated species were determined. Physiological, developmental, and protective factors influencing UV sensitivity of binucleate, advanced binucleate, and trinucleate pollen grains are compared.

  16. The ultraviolet radiation environment of pollen and its effect on pollen germination

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The damage to pollen caused by natural ultraviolet radiation was investigated. Experimental and literature research into the UV radiation environment is reported. Viability and germination of wind and insect pollinated species were determined. Physiological, developmental, and protective factors influencing UV sensitivity of binucleate, advanced binucleate, and trinucleate pollen grains are compared.

  17. Effects of the specular Orbiter forward radiators on a typical Spacelab payload thermal environment

    NASA Technical Reports Server (NTRS)

    Turner, L. D.; Humphries, W. R.; Littles, J. W.

    1981-01-01

    Orbiter radiators, having a specular reflection, must be considered when determining the design environment for payloads which can view the forward deployed radiators. Unlike most surfaces on the Orbiter, which reflect energy diffusely, the radiators are covered with a highly specular silverized Teflon material, with high emissivity, and have a concave contour, producing a local concentration of reflected energy towards the region of angle incidence. The combined effects of radiator specularity and geometry were analyzed using the Thermal Radiation Analysis System (TRASYS II), a specialized ray trace program, and a generalized Monte-Carlo-based thermal radiation program. Data given for a 0 deg payload inclination angle at orbital noon at 3.454 m indicate that the maximum total flux and average flux can increase 173% and 63%, respectively, when compared to diffuse radiators.

  18. QCD in hadron-hadron collisions

    SciTech Connect

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.

  19. Radiation effects control: Eyes, skin. [space environment simulation

    NASA Technical Reports Server (NTRS)

    Hightower, D.; Smathers, J. B.

    1974-01-01

    Adverse effects on the lens of the eye and the skin due to exposure to proton radiation during manned space flight were evaluated. Actual proton irradiation which might be encountered in space was simulated. Irradiation regimes included single acute exposures, daily fractionated exposures, and weekly fractionated exposures. Animals were exposed and then maintained and examined periodically until data sufficient to meet the objective were obtained. No significant skin effects were noted and no serious sight impairment was exhibited.

  20. Iodine-131 tositumomab (Bexxar) in a radiation oncology environment

    SciTech Connect

    Macklis, Roger M. . E-mail: macklir@ccf.org

    2006-10-01

    Iodine-131 (I-131) tositumomab (Bexxar; GlaxoSmithKline, Research Triangle Park, NC) is one of two recently approved radiolabeled antibodies directed against the CD20 surface antigen found on normal B cells and in more than 95% of B cell non-Hodgkin's lymphoma. The compound itself is formulated as an IgG2a immunoglobulin radiolabeled with the mixed beta/gamma emitter I-131. Multicenter clinical trials have repeatedly shown impressive clinical responses (20-40% complete response rates and 60-80% overall response rates) in the patient groups for whom this treatment is indicated. Treatment-related toxicity is generally extremely mild and typically involves only reversible hematopoietic suppression and (in some cases) a risk of treatment-induced hypothyroidism. Owing to Radiation safety concerns necessitated by the clinical use of this targeted radiopharmaceutical, it is important for radiation oncology departments wishing to participate in the care of these patients to establish methodologies and standard operating procedures for safe and efficient departmental use. This summary reviews the pertinent background information related to the current clinical experience with I-131 tositumomab and highlights some of the major opportunities for the participation of radiation oncology in the patient evaluation and treatment process. I-131 tositumomab provides an excellent example of the way in which the increasingly important new field of 'targeted therapy' intersects with the practice of clinical radiotherapy. The author contends that it will be worth the time and effort involved in establishing a firm basis for the development of a comprehensive program for systemic targeted radiopharmaceutical therapies (STaRT) within Radiation medicine domain.

  1. MARS15 Simulation of Radiation Environment at the ESS Linac

    SciTech Connect

    Mokhov, N. V.; Eidelman, Yu. I.; Rakhno, I. L.; Tchelidze, L.; Tropin, I. S.

    2016-12-01

    Comprehensive studies with the MARS15(2016) Monte-Carlo code are described on evaluation of prompt and residual radiation levels induced by nominal and accidental beam losses in the 5-MW, 2-GeV European Spallation Source (ESS) Linac. These are to provide a basis for radiation shielding design verification through the accelerator complex. The calculation model is based on the latest engineering design and includes a sophisticated algorithm for particle tracking in the machine RF cavities as well as a well-established model of the beam loss. Substantial efforts were put in solving the deep-penetration problem for the thick shielding around the tunnel with numerous complex penetrations. It allowed us to study in detail not only the prompt dose, but also component and air activation, radiation loads on the soil outside the tunnel, and skyshine studies for the complicated 3-D surface above the machine. Among the other things, the newest features in MARS15 (2016), such as a ROOT-based beamline builder and a TENDL-based event generator for nuclear interactions below 100 MeV, were very useful in this challenging application

  2. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam

    2007-01-01

    In space, astronauts are constantly bombarded with energetic particles. The goal of the National Aeronautics and Space Agency and the NASA Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. Among the identified radiation risks are cancer, acute and late CNS damage, chronic and degenerative tissue decease, and acute radiation syndrome. The term "safely" means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences can be defined. The NASA Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting the identified radiation risks. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus, the fourth element develops computer algorithms to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining

  3. Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin A.; Vogel, Matthew R.; Trevino, Luis A.; Stephan, Ryan A.

    2008-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approx.325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Upright Lunar Terrain Radiator Assembly (ULTRA), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of the ULTRA is the absence of louvers or other moving parts and its simple geometry. Analysis of the ULTRA for a lunar extravehicular activity (EVA) portable life support system (PLSS) is shown to provide moderate heat rejection, on average, at all solar incident angles assuming an average radiator temperature of 294 K, whereas prior concepts exhibited insignificant heat rejection or heat absorption at higher incident angles. The performance of the ULTRA for a lunar lander is also discussed and compared to the performance of a vertically oriented, flat panel radiator at various lunar latitudes.

  4. Estimation of The Radiation Environment Based On The NASA Ap-8 and Ae-8 Models

    NASA Technical Reports Server (NTRS)

    Morton, Thomas; Lyons, Valerie (Technical Monitor)

    2002-01-01

    In this paper, we discuss the earth's trapped radiation environment, as described by the NASA models AP-8 and AE-8. We include a description of the sources and structure of the trapped radiation belts, and their dependence on external factors. After describing how to use the models to predict the environment, we present data from various space missions, and compare those data to the models. This shows the limits and strengths of the models. Finally, we describe alternative models of the trapped radiation belts, and discuss why they have not been widely adopted yet.

  5. Monte Carlo simulations of the radiation environment for the CMS experiment

    NASA Astrophysics Data System (ADS)

    Mallows, S.; Azhgirey, I.; Bayshev, I.; Bergstrom, I.; Cooijmans, T.; Dabrowski, A.; Glöggler, L.; Guthoff, M.; Kurochkin, I.; Vincke, H.; Tajeda, S.

    2016-07-01

    Monte Carlo radiation transport codes are used by the CMS Beam Radiation Instrumentation and Luminosity (BRIL) project to estimate the radiation levels due to proton-proton collisions and machine induced background. Results are used by the CMS collaboration for various applications: comparison with detector hit rates, pile-up studies, predictions of radiation damage based on various models (Dose, NIEL, DPA), shielding design, estimations of residual dose environment. Simulation parameters, and the maintenance of the input files are summarized, and key results are presented. Furthermore, an overview of additional programs developed by the BRIL project to meet the specific needs of CMS community is given.

  6. Material Response of One-Dimensional, Steady-State Transpiration Cooling in Radiative and Convective Environments

    NASA Technical Reports Server (NTRS)

    Kubota, Hirotoshi

    1975-01-01

    A simplified analytical solution for thermal response of a transpiration-cooled porous heat-shield material in an intense radiative-convective heating environment is presented. Essential features of this approach are "two-flux method" for radiative transfer process and "two-temperature" assumption for solid and gas temperatures. Incident radiative-convective heatings are specified as boundary conditions. Sample results are shown using porous silica with CO2 transpiration and some parameters quantitatively show the effect on this transpiration cooling system. Summarized maps for mass injection rate, porosity and blowing correction factor for radiation are obtained in order to realize such a cooling system.

  7. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    SciTech Connect

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  8. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    PubMed

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  9. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L.; Brinza, David E.; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A.; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A.; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P.; MSL Science Team; Kemppinen, Osku; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; Berger, Thomas; Matthia, Daniel; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Hamilton, Victoria; Peterson, Joseph; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; García, César Martín; Mueller-Mellin, Reinhold; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  10. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  11. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2015-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the design margin concept with one of failure probability.

  12. Capacitor-based isolation amplifiers for harsh radiation environments

    NASA Astrophysics Data System (ADS)

    Franco, Francisco J.; Zong, Yi; de Agapito, Juan A.

    2010-01-01

    Commercial-off-the-shelf (COTS) capacitor-based isolation amplifiers were irradiated at the Portuguese Research Reactor (PRR) in order to determine its tolerance to the displacement damage and total ionising dose (TID). The set of experimental data shows that some of these devices are suitable for zones inside future nuclear facilities where the expected total radiation damage would be below 2.2×1013 1-MeV neutron/cm2 and 230 Gy (Si). However, some drawbacks must be taken into account by the electronic designers such as the increase of the output offset voltage and the slight modification of the transmission gain.

  13. Radiation Environment on Mir Orbital Station During Solar Minimum

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    Space radiation poses a significant risk for the stay and rotation cycle of astronauts on the International Space Station (ISS). The ISS is in the same orbit as the Mir orbital station and as such, data acquired onboard the Mir station is of direct applicability to the ISS astronaut. During the seven NASA-Mir missions, data were acquired with a variety of both passive and active detectors, including measurements of astronaut doses. This paper describes these measurements and comparisons with measurements carried out by other groups. It is shown that trapped protons absorbed can be very well described by quadratic equation in In(p), where p is the atmospheric density. Similarly, the galactic cosmic ray absorbed dose is nearly exponentially related to the deceleration potential. The average radiation quality factor with the ICRP-60 definition is about 2.44. Using the measured quality factor, absorbed crew doses, and estimates of neutron dose equivalent, leads to crew stay times as short as 9 months during a deep solar minimum. The data are compared with in vivo dose estimates using chromosome aberrations (simple translocations and total exchange) on same astronauts.

  14. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model.

    PubMed

    Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut

    2010-03-01

    Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

  15. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model

    NASA Astrophysics Data System (ADS)

    Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut

    2010-03-01

    Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

  16. Using Space Weather Variability in Evaluating the Radiation Environment Design Specifications for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Blackwell, William C.; Minow, Joseph I.; Bruce, Margaret B.; Howard, James W.

    2007-01-01

    NASA's Constellation program, initiated to fulfill the Vision for Space Exploration, will create a new generation of vehicles for servicing low Earth orbit, the Moon, and beyond. Space radiation specifications for space system hardware are necessarily conservative to assure system robustness for a wide range of space environments. Spectral models of solar particle events and trapped radiation belt environments are used to develop the design requirements for estimating total ionizing radiation dose, displacement damage, and single event effects for Constellation hardware. We first describe the rationale using the spectra chosen to establish the total dose and single event design environmental specifications for Constellation systems. We then compare variability of the space environment to the spectral design models to evaluate their applicability as conservative design environments and potential vulnerabilities to extreme space weather events

  17. High energy hadron-hadron collisions

    SciTech Connect

    Chou, T.T.

    1990-11-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e{sup +}e{sup {minus}} annihilation. For elastic collisions, a simple expression for the proton matter distribution is proposed which fits well the elastic {bar p}p scattering from ISR to S{bar p}pS energies within the geometrical model. The proton form factor is of the dipole form with an energy-dependent range parameter. The {bar p}p elastic differential cross section at Tevatron energies obtained by extrapolation is in good agreement with experiments. For multiparticle emission processes a unified physical picture for hadron-hadron and e{sup +}e{sup {minus}} collisions was proposed. A number of predictions were made, including the one that KNO-scaling does not obtain for e{sup +}e{sup {minus}} two-jet events. An extension of the considerations within the geometrical model led to a theory of the momentum distributions of the outgoing particles which are found in good agreement with current experimental data. Extrapolations of results to higher energies have been made. The cluster size of hadrons produced in e{sup +}e{sup {minus}} annihilation is found to increase slowly with energy.

  18. Radiation therapists' and radiation oncology medical physicists' perceptions of work and the working environment in Australia: a qualitative study.

    PubMed

    Halkett, G K B; McKay, J; Hegney, D G; Breen, Lauren J; Berg, M; Ebert, M A; Davis, M; Kearvell, R

    2016-05-05

    Workforce recruitment and retention are issues in radiation oncology. The working environment is likely to have an impact on retention; however, there is a lack of research in this area. The objectives of this study were to: investigate radiation therapists' (RTs) and radiation oncology medical physicists' (ROMPs) perceptions of work and the working environment; and determine the factors that influence the ability of RTs and ROMPs to undertake their work and how these factors affect recruitment and retention. Semi-structured interviews were conducted and thematic analysis was used. Twenty-eight RTs and 21 ROMPs participated. The overarching themes were delivering care, support in work, working conditions and lifestyle. The overarching themes were mostly consistent across both groups; however, the exemplars reflected the different roles and perspectives of RTs and ROMPs. Participants described the importance they placed on treating patients and improving their lives. Working conditions were sometimes difficult with participants reporting pressure at work, large workloads and longer hours and overtime. Insufficient staff numbers impacted on the effectiveness of staff, the working environment and intentions to stay. Staff satisfaction is likely to be improved if changes are made to the working environment. We make recommendations that may assist departments to support RTs and ROMPs.

  19. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  20. Low-radiation environment affects the development of protection mechanisms in V79 cells.

    PubMed

    Fratini, E; Carbone, C; Capece, D; Esposito, G; Simone, G; Tabocchini, M A; Tomasi, M; Belli, M; Satta, L

    2015-05-01

    Very little is known about the influence of environmental radiation on living matter. In principle, important information can be acquired by analysing possible differences between parallel biological systems, one in a reference-radiation environment (RRE) and the other in a low-radiation environment (LRE). We took advantage of the unique opportunity represented by the cell culture facilities at the Gran Sasso National Laboratories of the Istituto Nazionale di Fisica Nucleare, where environment dose rate reduction factors in the underground (LRE), with respect to the external laboratory (RRE), are as follows: 10(3) for neutrons, 10(7) for directly ionizing cosmic rays and 10 for total γ-rays. Chinese hamster V79 cells were cultured for 10 months in both RRE and LRE. At the end of this period, all the cultures were kept in RRE for another 6 months. Changes in the activities of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX) and spontaneous mutation frequency at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus were investigated. The results obtained suggest that environmental radiation might act as a trigger of defence mechanisms in V79 cells, specifically those in reference conditions, showing a higher degree of defence against endogenous damage as compared to cells grown in a very low-radiation environment. Our findings corroborate the hypothesis that environmental radiation contributes to the development of defence mechanisms in today living organisms/systems.

  1. Performance Characterization of Digital Optical Data Transfer Systems for Use in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Ladbury, Ray L.; Day, John H. (Technical Monitor)

    2000-01-01

    Radiation effects in photonic and microelectronic components can impact the performance of high-speed digital optical data link in a variety of ways. This segment of the short course focuses on radiation effects in digital optical data links operating in the MHz to GHz regime. (Some of the information is applicable to frequencies above and below this regime) The three basic component level effects that should be considered are Total Ionizing Dose (TID), Displacement Damage Dose (DDD) and Single Event Effects (SEE). In some cases the system performance degradation can be quantified from component level tests, while in others a more holistic characterization approach must be taken. In Section 2.0 of this segment of the Short Course we will give a brief overview of the space radiation environment follow by a summary of the basic space radiation effects important for microelectronics and photonics listed above. The last part of this section will give an example of a typical mission radiation environment requirements. Section 3.0 gives an overview of intra-satellite digital optical data link systems. It contains a discussion of the digital optical data link and it's components. Also, we discuss some of the important system performance metrics that are impacted by radiation effects degradation of optical and optoelectronic component performance. Section 4.0 discusses radiation effects in optical and optoelectronic components. While each component effect will be discussed, the focus of this section is on degradation of passive optical components and SEE in photodiodes (other mechanisms are covered in segment II of this short course entitled "Photonic Devices with Complex and Multiple Failure Modes"). Section 5.0 will focus on optical data link system response to the space radiation environment. System level SEE ground testing will be discussed. Then we give a discussion of system level assessment of data link performance when operating in the space radiation environment.

  2. A Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam

    2006-01-01

    The goal of the National Aeronautics and Space Agency and the Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. The term safely means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences (for example, excess lifetime fatal cancer risk) can be defined. The Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the understanding of health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus the fourth element develops computer codes to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining methods to mitigate the risks are keys to a successful radiation protection strategy.

  3. Radiation environment on the Mir orbital station during solar minimum.

    PubMed

    Badhwar, G D; Atwell, W; Cash, B; Petrov, V M; Akatov YuA; Tchernykh, I V; Shurshakov, V A; Arkhangelsky, V A

    1998-01-01

    The Mir station has been in a 51.65 degrees inclination orbit since March 1986. In March 1995, the first US astronaut flew on the Mir-18 mission and returned on the Space Shuttle in July 1995. Since then three additional US astronauts have stayed on orbit for up to 6 months. Since the return of the first US astronaut, both the Spektr and Priroda modules have docked with Mir station, altering the mass shielding distribution. Radiation measurements, including the direct comparison of US and Russian absorbed dose rates in the Base Block of the Mir station, were made during the Mir-18 and -19 missions. There is a significant variation of dose rates across the core module; the six locations sampled showed a variation of a factor of nearly two. A tissue equivalent proportional counter (TEPC) measured a total absorbed dose rate of 300 microGy/day, roughly equally divided between the rate due to trapped protons from the South Atlantic Anomaly (SAA) and galactic cosmic radiation (GCR). This dose rate is about a factor of two lower than the rate measured by the thinly shielded (0.5 g cm-2 of Al) operational ion chamber (R-16), and about 3/2 of the rate of the more heavily shielded (3.5 g cm-2 of Al) ion chamber. This is due to the differences in the mass shielding properties at the location of these detectors. A comparison of integral linear energy transfer (LET) spectra measured by TEPC and plastic nuclear track detectors (PNTDs) deployed side by side are in remarkable agreement in the LET region of 15-1000 keV/micrometer, where the PNTDs are fully efficient. The average quality factor, using the ICRP-26 definition, was 2.6, which is higher than normally used. There is excellent agreement between the measured GCR dose rate and model calculations, but this is not true for trapped protons. The measured Mir-18 crew skin dose equivalent rate was 1133 microSv/day. Using the skin dose rate and anatomical models, we have estimated the blood-forming organ (BFO) dose rate and the

  4. Radiation environment on the MIR orbital station during solar minimum

    NASA Astrophysics Data System (ADS)

    Badhwar, G. D.; Atwell, W.; Cash, B.; Petrov, V. M.; Akatov, Yu. A.; Tchernykh, I. V.; Shurshakov, V. A.; Arkhangelsky, V. A.

    The Mir station has been in a 51.65 deg inclination orbit since March 1986. In March 1995, the first US astronaut flew on the Mir-18 mission and returned on the Space Shuttle in July 1995. Since then three additional US astronauts have stayed on orbit for up to 6 months. Since the return of the first US astronaut, both the Spektr and Priroda modules have docked with Mir station, altering the mass shielding distribution. Radiation measurements, including the direct comparison of US and Russian absorbed dose rates in the Base Block of the Mir station, were made during the Mir-18 and -19 missions. There is a significant variation of dose rates across the core module; the six locations sampled showed a variation of a factor of nearly two. A tissue equivalent proportional counter (TEPC) measured a total absorbed dose rate of 300 mu Gy/day, roughly equally divided between the rate due to trapped protons from the South Atlantic Anomaly (SAA) and galactic cosmic radiation (GCR). This dose rate is about a factor of two lower than the rate measured by the thinly shielded (0.5 g cm^-2 of Al) operational ion chamber (R-16), and about 3/2 of the rate of the more heavily shielded (3.5 g cm^-2 of Al) ion chamber. This is due to the differences in the mass shielding properties at the location of these detectors. A comparison of integral linear energy transfer (LET) spectra measured by TEPC and plastic nuclear track detectors (PNTDs) deployed side by side are in remarkable agreement in the LET region of 15 -1000 keV/mum, where the PNTDs are fully efficient. The average quality factor, using the ICRP-26 definition, was 2.6, which is higher than normally used. There is excellent agreement between the measured GCR dose rate and model calculations, but this is not true for trapped protons. The measured Mir-18 crew skin dose equivalent rate was 1133 muSv/day. Using the skin dose rate and anatomical models, we have estimated the blood-forming organ (BFO) dose rate and the maximum stay

  5. Radiative effects of aerosols on the environment in China

    NASA Astrophysics Data System (ADS)

    Yu, Hongbin

    Anthropogenic emissions and concentrations of aerosol precursors and aerosols over China are among the highest in major countries of the world. Due to large emissions of soot and dust, aerosol absorption is high. Based on the observed direct and diffuse irradiance, a single scattering albedo of about 0.8 is derived for two large agri/eco/industrial areas. Aerosol direct effect can exert various environmental impacts in China. Photochemical activities in the atmospheric boundary layer (ABL) are significantly reduced because of reductions in photolysis rates and in emissions of biogenic hydrocarbons. Crop yields under optimal conditions can be reduced due to the reduction in surface solar irradiance. The most significant aerosol radiative perturbation is in changing the air-surface interaction and diurnal evolution of ABL. Reductions in various surface heat fluxes due to aerosols depend on soil moisture. Over a relatively dry surface, the evaporation has a small change, leading to the largest decrease of surface skin temperature at noon. Over a relatively wet surface, a substantial reduction in evaporation results in the largest surface cooling in the early morning. The diurnal temperature range (DTR) can be reduced by an amount comparable to the observed decrease of DTR. The longwave absorption of aerosols can lead to an increase of the daily minimum temperature and contributes to about 20% of the decrease in the DTR. The near-surface air temperature has the largest cooling in the early morning because the ABL is shallow and the temperature is sensitive to the radiative perturbation. As a result of the reduced sensible heat flux, the surface layer becomes more stable. Moreover, the aerosol heating enhances the stabilization of surface layer and in turn further reduces the sensible heat flux. As a result the ABL height can be reduced substantially. This will have many important ramifications, including trapping/accumulation of air pollutants, and perturbing the water

  6. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  7. Space Environment Effects: Low-Altitude Trapped Radiation Model

    NASA Technical Reports Server (NTRS)

    Huston, S. L.; Pfitzer, K. A.

    1998-01-01

    Accurate models of the Earth's trapped energetic proton environment are required for both piloted and robotic space missions. For piloted missions, the concern is mainly total dose to the astronauts, particularly in long-duration missions and during extravehicular activity (EVA). As astronomical and remote-sensing detectors become more sensitive, the proton flux can induce unwanted backgrounds in these instruments. Due to this unwanted background, the following description details the development of a new model for the low-trapped proton environment. The model is based on nearly 20 years of data from the TIRO/NOAA weather satellites. The model, which has been designated NOAAPRO (for NOAA protons), predicts the integral omnidirectional proton flux in three energy ranges: >16, >36, and >80 MeV. It contains a true solar cycle variation and accounts for the secular variation in the Earth's magnetic field. It also extends to lower values of the magnetic L parameter than does AP8. Thus, the model addresses the major shortcomings of AP8.

  8. Modeling Background Radiation in our Environment Using Geochemical Data

    SciTech Connect

    Malchow, Russell L.; Marsac, Kara; Burnley, Pamela; Hausrath, Elisabeth; Haber, Daniel; Adcock, Christopher

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation: D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.

  9. Johnson noise thermometer for high radiation and high temperature environments

    NASA Astrophysics Data System (ADS)

    Oakes, L. C.; Shepard, R. L.

    The purpose of development work on the Johnson noise power thermometer (JNPT) was to apply the work of Nyquist, who showed that the mean-squared noise voltage spectrum appearing across an unloaded resistor of value R is given by anti e sub n (2) = 4hfR (exp(hf/kT) - 1)) where anti e sub n (2) has the units volts squared per unit frequency, and h and k are the Planck and Boltzmann constants, respectively, f is the frequency in hertz (Hz) and T is the absolute temperature in Kelvins (K). J.B. Johnson showed that the noise was independent of the composition of the resistor. These discoveries gave rise to a temperature measurement technique using the Johnson noise voltage and Johnson noise current in a noise power mode, which essentially gives immunity to the decalibrating effects of radiation-induced transmutations of the temperature-sensing element. Experiments have been conducted in which temperature measurements were made in the range from 300 to 1200 K. Extrapolation of plots of these data pass through absolute zero, as expected. In-pile irradiation experiments show no perceptible decalibration after 4500 h in high neutron flux even though 80 percent of the original sensor material, rhenium, had been transmuted to osmium.

  10. Geant4 Predictions of Energy Spectra in Typical Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Sabra, M. S.; Barghouty, A. F.

    2014-01-01

    Accurate knowledge of energy spectra inside spacecraft is important for protecting astronauts as well as sensitive electronics from the harmful effects of space radiation. Such knowledge allows one to confidently map the radiation environment inside the vehicle. The purpose of this talk is to present preliminary calculations for energy spectra inside a spherical shell shielding and behind a slab in typical space radiation environment using the 3D Monte-Carlo transport code Geant4. We have simulated proton and iron isotropic sources and beams impinging on Aluminum and Gallium arsenide (GaAs) targets at energies of 0.2, 0.6, 1, and 10 GeV/u. If time permits, other radiation sources and beams (_, C, O) and targets (C, Si, Ge, water) will be presented. The results are compared to ground-based measurements where available.

  11. Organization and operation of the Sixth International Symposium on the Natural Radiation Environment (NRE VI)

    SciTech Connect

    Hopke, P.K.

    1996-10-01

    An important source of human exposure to radiation is the natural world including cosmic rays, cosmogenic radionuclides, natural terrestrial radionuclides, and radon isotopes and its decay products. Considerable effort is being expended on a worldwide basis to characterize the exposure to the natural radiation environment and determine the important pathways for the exposure to result in the dose to tissue that leads to injury and disease. The problem of background exposure to naturally occurring radioactivity has been the subject of research since the initial discovery of the radioactivity of uranium and thorium. However, with the advent of artificial sources of radiation with both benefits and harm the nature and magnitude of the natural radiation environment and the effects on various populations are important in the development of overall public health strategies as ALARA principles are applied to the situation.

  12. Using Space Weather Variability in Evaluation the Radiation Environment Specifications for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Minow, Joseph I.; Bruce, Margaret; Howard, James W.

    2008-01-01

    Hardware design environments for NASA's Constellation Program-the Vision for Space Exploration program to design and build new vehicles for servicing low Earth orbit and the Moon and beyond-have been developed that are necessarily conservative in nature to assure robust hardware design and development required to build space systems which will meet operational goals in a wide range of space environments, This presentation will describe the rationale used to establish the space radiation and plasma design environments specified for a variety of applications including total ionizing radiation dose, dose rate effects, and spacecraft charging and will compare the design environments with "space weather" variability to evaluate the applicability of the design environments and potential vulnerabilities of the system to extreme space weather events.

  13. Are biological effects of space radiation really altered under the microgravity environment?

    NASA Astrophysics Data System (ADS)

    Yatagai, Fumio; Ishioka, Noriaki

    2014-10-01

    Two major factors of space environment are space radiation and microgravity. It is generally considered that a high level of ionizing radiation (IR) in space has an influence on living organisms including humans; therefore, the possible alteration of space-radiation influences by the microgravity environment is of great concern. In fact, examination of such a possibility has been extensively conducted since the early days of space experiments, suggesting a possible synergistic effect of radiation and microgravity in some experiments but a negative observation in others. Because these complicated results remain not well understood, we propose a solution to this problem. Gene expression analysis is one of the solutions to the problem. In fact, gene expression may be changed by microgravity, and further modification may be possible through IR. This result could reveal an interactive effect of both factors on the cellular responses, which could in turn reveal whether the human-health abnormalities expected under the microgravity environment can be altered by space radiation. We believe that this is a new aspect in the study of the interactive effect of radiation and microgravity. However, further improvements in space experimental technologies are required for future studies.

  14. Determining the Zenith-Angle Dependence of the Martian Surface Radiation Environment

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert; Rafkin, Scot; Reitz, Guenther; Koehler, Jan; Posner, Arik; Hassler, Donald M.; Guo, Jingnan; Ehresmann, Bent; Zeitlin, Cary

    2016-07-01

    We report the zenith angle dependence of the radiation environment at Gale Crater on Mars. This is the first determination of this dependence on another planet than Earth and is important for future human exploration of Mars and understanding radiation effects in the Martian regolith. Within the narrow range of tilt angles (0° ≤ θ ≤ 15°) experienced by Curiosity on Mars, we find a dependence J ∝ cos^{γ'} (θ) with γ' = 1.18 ± 0.07, which is not too different from an isotropic radiation field and quite different from that at sea level on Earth where γ' ≈ 2.0.

  15. Hadronic and electromagnetic fragmentation of ultrarelativistic heavy ions at LHC

    NASA Astrophysics Data System (ADS)

    Braun, H. H.; Fassò, A.; Ferrari, A.; Jowett, J. M.; Sala, P. R.; Smirnov, G. I.

    2014-02-01

    Reliable predictions of yields of nuclear fragments produced in electromagnetic dissociation and hadronic fragmentation of ion beams are of great practical importance in analyzing beam losses and interactions with the beam environment at the Large Hadron Collider (LHC) at CERN as well as for estimating radiation effects of galactic cosmic rays on the spacecraft crew and electronic equipment. The model for predicting the fragmentation of relativistic heavy ions is briefly described, and then applied to problems of relevance for LHC. The results are based on the fluka code, which includes electromagnetic dissociation physics and dpmjet-iii as hadronic event generator. We consider the interaction of fully stripped lead ions with nuclei in the energy range from about one hundred MeV to ultrarelativistic energies. The yields of fragments close in the mass and charge to initial ions are calculated. The approach under discussion provides a good overall description of Pb fragmentation data at 30 and 158A GeV as well as recent LHC data for √sNN =2.76 TeV Pb-Pb interactions. Good agreement with the calculations in the framework of different models is found. This justifies application of the developed simulation technique both at the LHC injection energy of 177A GeV and at its collision energies of 1.38, 1.58, and 2.75A TeV, and gives confidence in the results obtained.

  16. Hadron particle theory

    SciTech Connect

    Alonso, J.R.

    1995-05-01

    Radiation therapy with ``hadrons`` (protons, neutrons, pions, ions) has accrued a 55-year track record, with by now over 30,000 patients having received treatments with one of these particles. Very good, and in some cases spectacular results are leading to growth in the field in specific well-defined directions. The most noted contributor to success has been the ability to better define and control the radiation field produced with these particles, to increase the dose delivered to the treatment volume while achieving a high degree of sparing of normal tissue. An additional benefit is the highly-ionizing, character of certain beams, leading to creater cell-killing potential for tumor lines that have historically been very resistant to radiation treatments. Until recently these treatments have been delivered in laboratories and research centers whose primary, or original mission was physics research. With maturity in the field has come both the desire to provide beam facilities more accessible to the clinical setting, of a hospital, as well as achieving, highly-efficient, reliable and economical accelerator and beam-delivery systems that can make maximum advantage of the physical characteristics of these particle beams. Considerable work in technology development is now leading, to the implementation of many of these ideas, and a new generation of clinically-oriented facilities is beginning to appear. We will discuss both the physical, clinical and technological considerations that are driving these designs, as well as highlighting, specific examples of new facilities that are either now treating, patients or that will be doing so in the near future.

  17. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    NASA Technical Reports Server (NTRS)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; Walkowicz, Lucianne M.

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  18. THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS

    SciTech Connect

    France, Kevin; Froning, Cynthia S.; Stocke, John T.; Bushinsky, Rachel; Linsky, Jeffrey L.; Roberge, Aki; Tian, Feng; Desert, Jean-Michel; Mauas, Pablo; Vieytes, Mariela; Walkowicz, Lucianne M.

    2013-02-15

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No 'UV-quiet' M dwarfs are observed. The bright stellar Ly{alpha} emission lines are reconstructed, and we find that the Ly{alpha} line fluxes comprise {approx}37%-75% of the total 1150-3100 A flux from most M dwarfs; {approx}>10{sup 3} times the solar value. We develop an empirical scaling relation between Ly{alpha} and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Ly{alpha}. The intrinsic unreddened flux ratio is F(Ly{alpha})/F(Mg II) = 10 {+-} 3. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O{sub 2} and O{sub 3}, is shown to be {approx}0.5-3 for all M dwarfs in our sample, >10{sup 3} times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%-500% on 10{sup 2}-10{sup 3} s timescales. This effect should be taken into account in future UV transiting

  19. High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.

  20. Experimental investigation of the radiation shielding of a MCP detector in the radiation environment near Europa

    NASA Astrophysics Data System (ADS)

    Tulej, Marek; Wurz, Peter; Meyer, Stefan; Lasi, Davide; Lüthi, Matthias; Galli, André; Piazza, Daniele; Desorgher, Laurent; Hajdas, Wojciech; Reggiani, Davide; Karlsson, Stefan; Kalla, Leif

    2016-04-01

    The Neutral Ion Mass spectrometer (NIM) is one of the six instruments in the Particle Environmental Package (PEP) designed for the JUICE mission of ESA to the Jupiter system. NIM will conduct detailed measurements of chemical composition of Jovian moon exospheres and is equipped with a sensitive MCP ion detector. To maintain high sensitivity of the NIM instrument, background signals arising from the presence of a large background of penetrating radiation (mostly high-energy electrons and protons) in Jupiter's magnetosphere have to be minimised. We investigate the performance of a layered-Z radiation shield, an Al-Ta-Al sandwich, as a potential shielding against high-energy electrons. The experimental investigations were performed at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The facility delivers a particle beam containing e,  and  with an adjustable momentum ranging from 17.5 to 345 MeV/c. The measurements of the induced radiation background generated during the interaction of primary particles with Al-Ta-Al sandwich were conducted by beam diagnostic methods and a MCP detector. Diagnostic methods provided for the characterisation of the beam parameters (beam geometry, flux and intensity) and identification of individual particles in the primary beam and in the flux of secondary particles. The MCP detector measurements provided information on the effects of radiation and the results of these measurements define the performance of the shielding material in reducing the background arising from penetrating radiation. In parallel, we performed modelling studies using GEANT 4 and GRASS methods to identify products of the interaction and predict their fluxes and particle rates at the MCP detector. Combination of the experiment and modelling studies yields detailed characterisation of the radiation effects produced by the interaction of the incident e- in the

  1. Degradation mechanisms of cable insulation materials during radiation-thermal ageing in radiation environment

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Ohshima, Takeshi; Shimada, Akihiko; Kudoh, Hisaaki

    2011-02-01

    Radiation and thermal degradation of ethylene-propylene rubber (EPR) and crosslinked polyethylene (XLPE) as cable insulation materials were investigated by evaluating tensile properties, gel-fraction, and swelling ratio, as well as by the infrared (FTIR) analysis. The activation energy of thermal oxidative degradation changed over the range 100-120 °C for both EPR and XLPE. This may be attributed to the fact that the content of an antioxidant used as the stabilizer for polymers decreases by evaporation during thermal ageing at high temperatures. The analysis of antioxidant content and oxidative products in XLPE as a model sample showed that a small amount of antioxidant significantly reduced the extent of thermal oxidation, but was not effective for radiation induced oxidation. The changes in mechanical properties were well reflected by the degree of oxidation. A new model of polymer degradation mechanisms was proposed where the degradation does not take place by chain reaction via peroxy radical and hydro-peroxide. The role of the antioxidant in the polymer is the reduction of free radical formation in the initiation step in thermal oxidation, and it could not stop radical reactions for either radiation or thermal oxidation.

  2. Hadron Physics at FAIR

    SciTech Connect

    Wiedner, Ulrich

    2011-10-24

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  3. Holographic Model of Hadronization

    SciTech Connect

    Evans, Nick; Tedder, Andrew

    2008-04-25

    We study hadronization of the final state in a particle-antiparticle annihilation using a holographic gravity dual description of QCD. At the point of hadronization we match the events to a simple (Gaussian) energy distribution in the five dimensional theory. The final state multiplicities are then modeled by calculating the overlap between the Gaussian and a set of functions in the fifth dimension which represent each hadron. We compare our results to those measured in e{sup +}e{sup -} collisions. Hadron production numbers over a range of 4 orders of magnitude are reproduced well.

  4. Holographic model of hadronization.

    PubMed

    Evans, Nick; Tedder, Andrew

    2008-04-25

    We study hadronization of the final state in a particle-antiparticle annihilation using a holographic gravity dual description of QCD. At the point of hadronization we match the events to a simple (Gaussian) energy distribution in the five dimensional theory. The final state multiplicities are then modeled by calculating the overlap between the Gaussian and a set of functions in the fifth dimension which represent each hadron. We compare our results to those measured in e(+)e(-) collisions. Hadron production numbers over a range of 4 orders of magnitude are reproduced well.

  5. Evaluation of the robustness of chromatographic columns in a simulated highly radiative Jovian environment

    NASA Astrophysics Data System (ADS)

    Freissinet, C.; Getty, S. A.; Trainer, M. G.; Glavin, D. P.; Mahaffy, P. R.; McLain, H. L.; Benna, M.

    2016-03-01

    Gas chromatography mass spectrometry (GCMS) is currently the most widely used analytical method for in situ investigation of organic molecules in space environments. Various types of GC column stationary phases have been, are currently, or will be used at the different solar system bodies including Mars, the Moon, Titan and comets. However, GCMS use in highly radiative environments such as Jupiter and its moons has never been explored and raises questions on the robustness of GC columns and stationary phases to extreme radiation. In this study, several types of GC columns were irradiated by high-energy electrons and protons in order to simulate the harsh conditions of a journey through Jupiter's radiation belts. Post-irradiation characterization shows that the three types of columns investigated, DB-5MS, CP-Chirasil-Dex CB and GS-GasPro, maintained their peak resolution and general separation performance after the radiation exposure. These results demonstrate that GCMS techniques can be applied to study the space environment of Jupiter's icy moons with no need for substantial radiation shielding of the columns.

  6. Experimental Characterization of a Composite Morphing Radiator Prototype in a Relevant Thermal Environment

    NASA Technical Reports Server (NTRS)

    Bertagne, Christopher L.; Chong, Jorge B.; Whitcomb, John D.; Hartl, Darren J.; Erickson, Lisa R.

    2017-01-01

    For future long duration space missions, crewed vehicles will require advanced thermal control systems to maintain a desired internal environment temperature in spite of a large range of internal and external heat loads. Current radiators are only able to achieve turndown ratios (i.e. the ratio between the radiator's maximum and minimum heat rejection rates) of approximately 3:1. Upcoming missions will require radiators capable of 12:1 turndown ratios. A radiator with the ability to alter shape could significantly increase turndown capacity. Shape memory alloys (SMAs) offer promising qualities for this endeavor, namely their temperature-dependent phase change and capacity for work. In 2015, the first ever morphing radiator prototype was constructed in which SMA actuators passively altered the radiator shape in response to a thermal load. This work describes a follow-on endeavor to demonstrate a similar concept using highly thermally conductive composite materials. Numerous versions of this new concept were tested in a thermal vacuum environment and successfully demonstrated morphing behavior and variable heat rejection, achieving a turndown ratio of 4.84:1. A summary of these thermal experiments and their results are provided herein.

  7. The Martian surface radiation environment - a comparison of models and MSL/RAD measurements

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Ehresmann, Bent; Lohf, Henning; Köhler, Jan; Zeitlin, Cary; Appel, Jan; Sato, Tatsuhiko; Slaba, Tony; Martin, Cesar; Berger, Thomas; Boehm, Eckart; Boettcher, Stephan; Brinza, David E.; Burmeister, Soenke; Guo, Jingnan; Hassler, Donald M.; Posner, Arik; Rafkin, Scot C. R.; Reitz, Günther; Wilson, John W.; Wimmer-Schweingruber, Robert F.

    2016-03-01

    Context: The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been measuring the radiation environment on the surface of Mars since August 6th 2012. MSL-RAD is the first instrument to provide detailed information about charged and neutral particle spectra and dose rates on the Martian surface, and one of the primary objectives of the RAD investigation is to help improve and validate current radiation transport models. Aims: Applying different numerical transport models with boundary conditions derived from the MSL-RAD environment the goal of this work was to both provide predictions for the particle spectra and the radiation exposure on the Martian surface complementing the RAD sensitive range and, at the same time, validate the results with the experimental data, where applicable. Such validated models can be used to predict dose rates for future manned missions as well as for performing shield optimization studies. Methods: Several particle transport models (GEANT4, PHITS, HZETRN/OLTARIS) were used to predict the particle flux and the corresponding radiation environment caused by galactic cosmic radiation on Mars. From the calculated particle spectra the dose rates on the surface are estimated. Results: Calculations of particle spectra and dose rates induced by galactic cosmic radiation on the Martian surface are presented. Although good agreement is found in many cases for the different transport codes, GEANT4, PHITS, and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude discrepancies in certain particle spectra. We have found that RAD data is helping to make better choices of input parameters and physical models. Elements of these validated models can be applied to more detailed studies on how the radiation environment is influenced by solar modulation, Martian atmosphere and soil, and changes due to the Martian seasonal pressure cycle. By extending the range of the calculated particle spectra with respect to

  8. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Berzak Hopkins, L. F.; Ma, T.; Ralph, J. E.; Albert, F.; Benedetti, L. R.; Celliers, P. M.; Döppner, T.; Goyon, C. S.; Izumi, N.; Jarrott, L. C.; Khan, S. F.; Kline, J. L.; Kritcher, A. L.; Kyrala, G. A.; Nagel, S. R.; Pak, A. E.; Patel, P.; Rosen, M. D.; Rygg, J. R.; Schneider, M. B.; Turnbull, D. P.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2016-11-01

    Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4 ×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

  9. A Method for Estimating the Probability of Floating Gate Prompt Charge Loss in a Radiation Environment

    NASA Technical Reports Server (NTRS)

    Edmonds, L. D.

    2016-01-01

    Since advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.

  10. A Method for Estimating the Probability of Floating Gate Prompt Charge Loss in a Radiation Environment

    NASA Technical Reports Server (NTRS)

    Edmonds, L. D.

    2016-01-01

    Because advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.

  11. Interactions of Changing Solar Ultraviolet Radiation and Climate with Light Induced Chemical Reactions in Aquatic Environments

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet radiation that reach the surface of North American aquatic environments. Concurrent changes in atmospheric CO2 are resulting in changes in stratification and precipitation that ar...

  12. INTERACTIONS OF SOLAR UV RADIATION AND DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet (UV) radiation that reaches the surface of aquatic environments. Recent studies have demonstrated that these UV increases cause changes in photochemical reactions that affect the...

  13. The retention characteristics of nonvolatile SNOS memory transistors in a radiation environment: Experiment and model

    SciTech Connect

    McWhorter, P.J.; Miller, S.L.; Dellin, T.A.; Axness, C.L.

    1987-01-01

    Experimental data and a model to accurately and quantitatively predict the data are presented for retention of SNOS memory devices over a wide range of dose rates. A wide range of SNOS stack geometries are examined. The model is designed to aid in screening nonvolatile memories for use in a radiation environment.

  14. The terrestrial radiation environment and EVA's: Prediction requirements, model improvements, and warning systems. [radiation hazards to orbital workers and spacecrews

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1979-01-01

    The total medical-biological impact of the Earth's space radiation environment on humans is a function of combined EVA and non-EVA exposure. In either case, the correct assessment of the eventual health risk to crew members is crucial to the success and viability of a project or mission. Aside from the medical-biological aspect itself, the validity of any assessment depends entirely on the existence of good and reliable models providing the high quality data that is needed for such evaluations, which should contain time histories of storm and substorm events, their intensities, their frequency of occurence, and their duration. Prediction requirements, advantageous and desirable model developments and improvements, and systems that need to be designed and tested, which would alert space crews and maintenance personnel about impending radiation danger are outlined.

  15. Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations.

    PubMed

    Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Navarrete, Jesica Urbina; Galante, Douglas; Rodrigues, Fabio; Azua-Bustos, Armando; Rothschild, Lynn Justine

    2016-10-01

    Desiccation resistance and a high intracellular Mn/Fe ratio contribute to ionizing radiation resistance of Deinococcus radiodurans. We hypothesized that this was a general phenomenon and thus developed a strategy to search for highly radiation-resistant organisms based on their natural environment. While desiccation is a typical feature of deserts, the correlation between radiation resistance and the intracellular Mn/Fe ratio of indigenous microorganisms or the Mn/Fe ratio of the environment, has not yet been described. UV-C radiation is highly damaging to biomolecules including DNA. It was used in this study as a selective tool because of its relevance to early life on earth, high altitude aerobiology and the search for life beyond Earth. Surface soil samples were collected from the Sonoran Desert, Arizona (USA), from the Atacama Desert in Chile and from a manganese mine in northern Argentina. Microbial isolates were selected after exposure to UV-C irradiation and growth. The isolates comprised 28 genera grouped within six phyla, which we ranked according to their resistance to UV-C irradiation. Survival curves were performed for the most resistant isolates and correlated with their intracellular Mn/Fe ratio, which was determined by ICP-MS. Five percent of the isolates were highly resistant, including one more resistant than D. radiodurans, a bacterium generally considered the most radiation-resistant organism, thus used as a model for radiation resistance studies. No correlation was observed between the occurrence of resistant microorganisms and the Mn/Fe ratio in the soil samples. However, all resistant isolates showed an intracellular Mn/Fe ratio much higher than the sensitive isolates. Our findings could represent a new front in efforts to harness mechanisms of UV-C radiation resistance from extreme environments.

  16. Impact of cirrus on the surface radiative environment at the FIRE ETLA Palisades, NY site

    NASA Technical Reports Server (NTRS)

    Robinson, David A.; Kukla, George; Frei, Allan

    1990-01-01

    FIRE Extended Time Limited Area (ETLA) observations provide year round information critical to gaining a better understanding of cloud/climate interactions. The Lamont/Rutgers team has participated in the ETLS program through the collection and analysis of shortwave and longwave downwelling irradiances at Palisades, NY. These data are providing useful information on surface radiative fluxes with respect to sky condition, solar zenith angle and season. Their utility extends to the calibration and validation of cloud/radiative models and satellite cloud and radiative retrievals. The impact cirrus clouds have on the surface radiative environment is examined using Palisades ETLA information on atmospheric transmissivities and downwelling longwave fluxes for winter and summer cirrus and clear sky episodes in 1987.

  17. Scaling violation in hadron-nucleus interaction

    NASA Technical Reports Server (NTRS)

    Verbetski, Y. G.; Garsevanishvili, L. P.; Kotlyarevski, D. M.; Ladaria, N. K.; Tatalashvili, N. G.; Tsomaya, P. V.; Sherer, N. I.; Shabelski, Y. M.; Stemanetyan, G. Z.

    1985-01-01

    The scaling violation within the pionization region in the energy range of 0.2 to 2.0 TeV is shown on the basis of the analysis of angular characteristics in the interactions of the cosmic radiation hadrons with the nuclei of various substances (CH2, Al, Cu, Pb).

  18. Effects of radiation on the environment: a need to question old paradigms and enhance collaboration among radiation biologists and radiation ecologists.

    PubMed

    Hinton, T G; Bedford, J S; Congdon, J C; Whicker, F W

    2004-09-01

    A historical perspective is given of the current paradigm that does not explicitly protect nonhuman biota from radiation but instead relies on the concept that if dose limits are set to protect humans, then the environment is automatically protected as well. We summarize recent international questioning of this paradigm and briefly present three frameworks for protecting biota that are being considered by the U.S. Department of Energy, the Canadian Nuclear Safety Commission, and the International Commission on Radiological Protection. We point out a controversial component in each of the three frameworks and suggest topics that need additional research. We emphasize that to properly address radiation protection of the environment, we need to understand how effects are integrated across different levels of biological organization. We caution that the proposed use of molecular end points to estimate ecological risks from radioactive contamination is applicable only if we understand the extent of the impact that molecular damage has on individual organisms and populations of exposed biota. To accomplish the latter, enhanced collaborations are required among the traditionally separate disciplines of radiation biology and radiation ecology.

  19. QCD, hadrons and beyond

    NASA Astrophysics Data System (ADS)

    Nardulli, G.

    2005-04-01

    I give a summary of Section E of the sixth edition of the Conference Quark confinement and the hadron spectrum. Papers were presented on different subjects, from spectroscopy, including pentaquarks and hadron structure, to new physics effects (non commutative field theories, supersymmetry and extra dimensions) and the problem of color confinement, both in ordinary Yang-Mills models and in supersymmetric Yang-Mills.

  20. The Study of Simulated Space Radiation Environment Effect on Conductive Properties of ITO Thermal Control Materials

    NASA Astrophysics Data System (ADS)

    Wei-Quan, Feng; Chun-Qing, Zhao; Zi-Cai, Shen; Yi-Gang, Ding; Fan, Zhang; Yu-Ming, Liu; Hui-Qi, Zheng; Xue, Zhao

    In order to prevent detrimental effects of ESD caused by differential surface charging of spacecraft under space environments, an ITO transparent conductive coating is often deposited on the thermal control materials outside spacecraft. Since the ITO coating is exposed in space environment, the environment effects on electrical property of ITO coatings concern designers of spacecraft deeply. This paper introduces ground tests to simulate space radiation environmental effects on conductive property of ITO coating. Samples are made of ITO/OSR, ITO/Kapton/Al and ITO/FEP/Ag thermal control coatings. Simulated space radiation environment conditions are NUV of 500ESH, 40 keV electron of 2 × 1016 е/cm2, 40 keV proton of 2.5 × 1015 p/cm2. Conductive property is surface resistivity measured in-situ in vacuum. Test results proved that the surface resistivity for all ITO coatings have a sudden decrease in the beginning of environment test. The reasons for it may be the oxygen vacancies caused by vacuum and decayed RIC caused by radiation. Degradation in conductive properties caused by irradiation were found. ITO/FEP/Ag exhibits more degradation than other two kinds. The conductive property of ITO/kapton/Al is stable for vacuum irradiation. The analysis of SEM and XPS found more crackers and less Sn and In concentration after irradiation which may be the reason for conductive property degradation.

  1. A New Time-dependent Model for the Martian Radiation Environment

    NASA Technical Reports Server (NTRS)

    DeAngelis, G.; Clowdsley, M. S.; Singleterry, R. C., Jr.; Wilson, J. W.

    2003-01-01

    Manned space activities have been until present time limited to the near-Earth environment, most of them to low Earth orbit (LEO) scenarios, with only some of the Apollo missions targeted to the Moon. In current times most human exploration and development of space (HEDS) activities are related to the development of the International Space Station (ISS), and therefore take place in the LEO environment. A natural extension of HEDS activities will be going beyond LEO, and reach asteroids, Mars, Jupiter, Saturn, the Kuiper belt and the outskirts of the Solar System. Such long journeys onboard spacecraft outside the protective umbrella of the geomagnetic field will require higher levels of protection from the radiation environment found in the deep space for both astronauts and equipment. So, it is important to have available a tool for radiation shielding which takes into account the radiation environments found all along the interplanetary space and at the different bodies encountered in the Solar System. Moreover, the radiation protection is one of the two NASA highest concerns and priorities. A tool integrating different radiation environments with shielding computation techniques especially tailored for deep space mission scenario is instrumental in view of this exigency. In view of manned missions targeted to Mars, for which radiation exposure is one of the greatest problems and challenges to be tackled, it is of fundamental importance to have available a tool which allows to know which are the particle flux and spectra at any time at any point of the Martian surface. With this goal in mind, a new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) has been developed. Solar modulated primary particles rescaled for Mars conditions are transported within the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account

  2. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    SciTech Connect

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be

  3. Preliminary Convective-Radiative Heating Environments for a Neptune Aerocapture Mission

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Wright, Michael J.; Olejniczak, Joseph; Takashima, Naruhisa; Sutton, Kenneth; Prabhu, Dinesh

    2004-01-01

    Convective and radiative heating environments have been computed for a three-dimensional ellipsled configuration which would perform an aerocapture maneuver at Neptune. This work was performed as part of a one-year Neptune aerocapture spacecraft systems study that also included analyses of trajectories, atmospheric modeling, aerodynamics, structural design, and other disciplines. Complementary heating analyses were conducted by separate teams using independent sets of aerothermodynamic modeling tools (i.e. Navier-Stokes and radiation transport codes). Environments were generated for a large 5.50 m length ellipsled and a small 2.88 m length ellipsled. Radiative heating was found to contribute up to 80% of the total heating rate at the ellipsled nose depending on the trajectory point. Good agreement between convective heating predictions from the two Navier-Stokes solvers was obtained. However, the radiation analysis revealed several uncertainties in the computational models employed in both sets of codes, as well as large differences between the predicted radiative heating rates.

  4. New techniques to apply an optical fiber image guide to harsh radiation environments in nuclear facilities

    NASA Astrophysics Data System (ADS)

    Kimura, Atsushi; Takada, Eiji; Hosono, Yoneichi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Hayami, Hiroyuki

    1999-01-01

    To apply optical fiber image guide (IG) to harsh radiation environments, we have developed two new techniques. One technique is a visible type IG with a color correcting system and the other technique is an IR type IG. We irradiated the IGs utilizing a 60Co gamma source. Measured Images with the visible type IG became dark and yellowish because of radiation induced loss. By using a color correction system, the original color of the images can be obtained. In the case of IR type IG, because of low radiation induced loss in the IR region, the degree of darkening was less than half of that for the visible type of IG. For a fixed irradiated length of 2.5m, the dose limit for using IG was estimated to be 4.6 X 108 with the visible type IG and 1.2 X 109 with the IR type IG. These radiation resistivities were more than 103 times of that for usual CCD cameras. With these techniques, IG can be applied to harsh radiation environment.

  5. [Radiation protection of the environment: anthropocentric and eco-centric principles].

    PubMed

    Aleksakhin, R M; Fesenko, S V

    2004-01-01

    The second half of the XX century was dominated in the field of radiation protection of the environment by the anthropocentric concept stated by the International Commission on Radiological Protection (ICRP). According to this concept "if man is adequately protected by radiological standards then biota are also adequately protected". At the end of the XX--beginning of the XXI centuries in the area of area of radiation protection of nature an ecocentric strategy is beginning to develop where emphasis has swung to the protection of biota in their environment. Inadequacy of ICRP's anthroposentric concept is reported. Issues are discussed such as ecological dosimetry, nonequidosal irradiation of man and biota, criteria for estimating radiation induced changes in biota and man, as well as the need to harmonize permissible exposure doses to man and biota. An urgent need is stressed to develop a single (synthetic) concept of radiation protection which simultaneously ensures protection of human health and biota well-being in their environment. This concept is to be based on the recognition of the integrity of socio-natural ecosystems where man and biota are considered as a unity.

  6. Overview of the spaceflight radiation environment and its impact on cell biology experiments.

    PubMed

    Todd, Paul

    2004-03-01

    Variables studied in typical cellular radiation biology experiments are cell killing, mutagenesis, transformation to malignancy, heritable damage, and DNA damage and repair. Dose response curves for cells exposed to low-LET radiations and some high LET radiations are well known. The low-LET dose rate in low earth orbit is roughly 1.0 mSv/day, the heavy-ion (Z>2) flux is about 1.0 particle/cm2-s corresponding to about 0.3 mSv/day, and the integrated neutron flux is roughly 2 neutrons/cm2-s corresponding to 0.012 mGy/d or, assuming a QF of 10, 0.12 mSv/d. Published dose-response curves were used to estimate the probability that a mammalian cell will be affected by each of the above types of damage. As a general approximation the exposure of an experimental cell population to the space radiation environment for 100 days will result in the following probabilities of damage per cell: cell killing based on clonogenicity 0.02, mutagenesis per locus based on phenotype analysis 1 x 10(-6), point mutation induction 2 x 10(-8) per locus, malignant transformation in vitro based on colony morphology 1.2 x 10(-5), heritable damage based on colony size 0.02, and induced DNA double-strand breaks based on fragment analysis by electrophoresis 3.5/cell or 0.26/cell after repair. Most of these figures are accurate to within a factor of 2. Thus the spaceflight radiation environment has essentially undetectable impact on typical cell biology experiments unless experimental goals involve the precise measurement of one of the above end-points. Other in vitro end-points, such as tissue morphogenesis and cell differentiation, are expected to be similarly unaffected by the spaceflight radiation environment.

  7. Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling

    DTIC Science & Technology

    2014-09-04

    a high quality GaAs solar cell in the absence of radiative coupling (B¼ 0).6,9 The current–voltage response of the cell was characterized by a solar ...efficiency multijunction cells . Experimental Alta Devices provided thin-lm, exible GaAs solar cells for the experimental portion of this study. The...Multijunction solar cell efficiencies: effect of spectral window, optical environment and radiative coupling† Carissa N. Eisler,a Ze’ev R. Abrams,b

  8. [Effect of the ISS Russian segment configuration on the service module radiation environment].

    PubMed

    Mitrikas, V G

    2011-01-01

    Mathematical modeling of variations in the Service module radiation environment as a function of ISS Russian segment configuration was carried out using models of the RS modules and a spherical humanoid phantom. ISS reconfiguration impacted significantly only the phantom brought into the transfer compartment (ExT). The Radiation Safety Service prohibition for cosmonauts to stay in this compartment during solar flare events remains valid. In all other instances, error of dose estimation is higher as compared to dose value estimation with consideration for ISS RS reconfiguration.

  9. GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.

    2010-01-01

    We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....

  10. Future Electron-Hadron Colliders

    SciTech Connect

    Litvinenko, V.

    2010-05-23

    Outstanding research potential of electron-hadron colliders (EHC) was clearly demonstrated by first - and the only - electron-proton collider HERA (DESY, Germany). Physics data from HERA revealed new previously unknown facets of Quantum Chromo-Dynamics (QCD). EHC is an ultimate microscope probing QCD in its natural environment, i.e. inside the hadrons. In contrast with hadrons, electrons are elementary particles with known initial state. Hence, scattering electrons from hadrons provides a clearest pass to their secrets. It turns EHC into an ultimate machine for high precision QCD studies and opens access to rich physics with a great discovery potential: solving proton spin puzzle, observing gluon saturation or physics beyond standard model. Access to this physics requires high-energy high-luminosity EHCs and a wide reach in the center-of-mass (CM) energies. This paper gives a brief overview of four proposed electron-hadron colliders: ENC at GSI (Darmstadt, Germany), ELIC/MEIC at TJNAF (Newport News, VA, USA), eRHIC at BNL (Upton, NY, USA) and LHeC at CERN (Geneva, Switzerland). Future electron-hadron colliders promise to deliver very rich physics not only in the quantity but also in the precision. They are aiming at very high luminosity two-to-four orders of magnitude beyond the luminosity demonstrated by the very successful HERA. While ENC and LHeC are on opposite side of the energy spectrum, eRHIC and ELIC are competing for becoming an electron-ion collider (EIC) in the U.S. Administrations of BNL and Jlab, in concert with US DoE office of Nuclear Physics, work on the strategy for down-selecting between eRHIC and ELIC. The ENC, EIC and LHeC QCD physics programs to a large degree are complimentary to each other and to the LHC physics. In last decade, an Electron Ion Collider (EIC) collaboration held about 25 collaboration meetings to develop physics program for EIC with CM energy {approx}100 GeV. One of these meetings was held at GSI, where ENC topic was in the

  11. Effects of radiation on scintillating fiber performance

    SciTech Connect

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-12-31

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented.

  12. Effects of radiation on scintillating fiber performance

    SciTech Connect

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E. ); Carey, R.; Rothman, M.; Sulak, L.; Worstell, W. ); Paar, H. )

    1993-08-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented.

  13. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    NASA Astrophysics Data System (ADS)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  14. Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER)

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Baker, T.; Blake, B.; Case, A. W.; Cooper, J. F.; Golightly, M.; Jordan, A.; Joyce, C.; Kasper, J.; Kozarev, K.; Mislinski, J.; Mazur, J.; Posner, A.; Rother, O.; Smith, S.; Spence, H. E.; Townsend, L. W.; Wilson, J.; Zeitlin, C.

    2012-03-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) measures linear energy transfer by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) on the Lunar Reconnaissance Orbiter (LRO) Mission in a circular, polar lunar orbit. GCR fluxes remain at the highest levels ever observed during the space age. One of the largest SEP events observed by CRaTER during the LRO mission occurred on June 7, 2011. We compare model predictions by the Earth-Moon-Mars Radiation Environment Module (EMMREM) for both dose rates from GCRs and SEPs during this event with results from CRaTER. We find agreement between these models and the CRaTER dose rates, which together demonstrate the accuracy of EMMREM, and its suitability for a real-time space weather system. We utilize CRaTER to test forecasts made by the Relativistic Electron Alert System for Exploration (REleASE), which successfully predicts the June 7th event. At the maximum CRaTER-observed GCR dose rate (˜11.7 cGy/yr where Gy is a unit indicating energy deposition per unit mass, 1 Gy = 1 J/kg), GCRs deposit ˜88 eV/molecule in water over 4 billion years, causing significant change in molecular composition and physical structure (e.g., density, color, crystallinity) of water ice, loss of molecular hydrogen, and production of more complex molecules linking carbon and other elements in the irradiated ice. This shows that space weathering by GCRs may be extremely important for chemical evolution of ice on the Moon. Thus, we show comprehensive observations from the CRaTER instrument on the Lunar Reconnaissance Orbiter that characterizes the radiation environment and space weathering on the Moon.

  15. Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable-zone Planets

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-02-01

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  16. CONSTRAINING THE RADIATION AND PLASMA ENVIRONMENT OF THE KEPLER CIRCUMBINARY HABITABLE-ZONE PLANETS

    SciTech Connect

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-02-20

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  17. The Use of Heavy Ion Radiation as an Analog for Space Radiation Environment and Its Effects on Drug Stability

    NASA Technical Reports Server (NTRS)

    Vaksman, Z.; Du, B.; Daniels, V.; Putcha, L.

    2007-01-01

    While it is common knowledge that electromagnetic radiation such as x-rays and gamma rays affect physical-chemical characteristics (PC) of compounds in addition to their toxic and mutagenic effects on biological systems, there are no reports on the effects of cosmic radiation encountered during space missions on stability of pharmaceuticals. Alterations in PC of drug formulations can adversely affect treatment with medications in space. Preliminary evaluation of stability and shelf-life of select pharmaceuticals (12) flown on space missions revealed that 37% and 40% of the formulations failed to meet USP requirements after shuttle and ISS flights, respectively. Based on these results, the current investigation is designed to examine the effect of proton (P) and heavy ion (Fe) radiation on 20 pharmaceutical preparations flown aboard the shuttle and ISS. The objectives of this project are: 1) Examine susceptibility of pharmaceuticals to short acute bouts of high intensity ionizing radiation species encountered during space flights; 2) Estimate extent of degradation of susceptible formulations as a function of intensity of each beam (P & Fe); and 3) compare and contrast the effects of single beam irradiation to that of a combined beam (P + Fe) that simulates space craft environment on drug stability. Irradiations were conducted at the Brookhaven National Laboratories (BNL) with beam strengths of 10 cGy, 10 or 50Gy of P and Fe beams separately. Preliminary evaluation of results revealed a reduction in the chemical content of label claim ranging 12-55 % for Augmentin, 7% for promethzine tablets and 9% for ciprofloxacin ointment. These results are in agreement, although less in magnitude than those observed during space flight and after gamma irradiation.

  18. Experimental investigation of the radiation shielding efficiency of a MCP detector in the radiation environment near Jupiter's moon Europa

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Meyer, S.; Lüthi, M.; Lasi, D.; Galli, A.; Piazza, D.; Desorgher, L.; Reggiani, D.; Hajdas, W.; Karlsson, S.; Kalla, L.; Wurz, P.

    2016-09-01

    Neutral Ion Mass spectrometer (NIM) is one of the instruments in the Particle Environmental Package (PEP) designed for the JUICE mission of ESA to the Jupiter system. NIM, equipped with a sensitive MCP ion detector, will conduct detailed measurements of the chemical composition of Jovian icy moons exospheres. To achieve high sensitivity of the instrument, radiation effects due to the high radiation background (high-energy electrons and protons) around Jupiter have to be minimised. We investigate the performance of an Al-Ta-Al composite stack as a potential shielding against high-energy electrons. Experiments were performed at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The facility delivers a particle beam containing e-, μ- and π- with momentum from 17.5 to 345 MeV/c (Hajdas et al., 2014). The measurements of the radiation environment generated during the interaction of primary particles with the Al-Ta-Al material were conducted with dedicated beam diagnostic methods and with the NIM MCP detector. In parallel, modelling studies using GEANT4 and GRAS suites were performed to identify products of the interaction and predict ultimate fluxes and particle rates at the MCP detector. Combination of experiment and modelling studies yields detailed characterisation of the radiation fields produced by the interaction of the incident e- with the shielding material in the range of the beam momentum from 17.5 to 345 MeV/c. We derived the effective MCP detection efficiency to primary and secondary radiation and effective shielding transmission coefficients to incident high-energy electron beam in the range of applied beam momenta. This study shows that the applied shielding attenuates efficiently high-energy electrons. Nevertheless, owing to nearly linear increase of the bremsstrahlung production rate with incident beam energy, above 130 MeV their detection rates measured by the MCP

  19. A historical fluence analysis of the radiation environment of the Chandra X-ray Observatory and implications for continued radiation monitoring

    NASA Astrophysics Data System (ADS)

    DePasquale, J. M.; Plucinsky, P. P.; Schwartz, D. A.

    2006-06-01

    Now in operation for over 6 years, the Chandra X-ray Observatory (CXO) has sampled a variety of space environments. Its highly elliptical orbit, with a 63.5 hr period, regularly takes the spacecraft through the Earth's radiation belts, the magnetosphere, the magnetosheath and into the solar wind. Additionally, the CXO has weathered several severe solar storms during its time in orbit. Given the vulnerability of Chandra's Charge Coupled Devices (CCDs) to radiation damage from low energy protons, proper radiation management has been a prime concern of the Chandra team. A comprehensive approach utilizing scheduled radiation safing, in addition to both on-board autonomous radiation monitoring and manual intervention, has proved successful at managing further radiation damage. However, the future of autonomous radiation monitoring on-board the CXO faces a new challenge as the multi-layer insulation (MLI) on its radiation monitor, the Electron, Proton, Helium Instrument (EPHIN), continues to degrade, leading to elevated temperatures. Operating at higher temperatures, the data from some EPHIN channels can become noisy and unreliable for radiation monitoring. This paper explores the full implication of the loss of EPHIN to CXO radiation monitoring by evaluating the fluences the CXO experienced during 40 autonomous radiation safing events from 2000 through 2005 in various hypothetical scenarios which include the use of EPHIN in limited to no capacity as a radiation monitor. We also consider the possibility of replacing EPHIN with Chandra's High Resolution Camera (HRC) for radiation monitoring.

  20. Hadron therapy: history, status, prospects

    NASA Astrophysics Data System (ADS)

    Klenov, G. I.; Khoroshkov, V. S.

    2016-08-01

    A brief historical review is given of external radiation therapy (RT), one of the main cancer treatment methods along with surgery and chemotherapy. Cellular mechanisms of radiation damage are described. Special attention is paid to hadron (proton and ion) therapy, its history, results, problems, challenges, current trends, and prospects. Undeniably great contributions to proton therapy have been made by Russian researchers, notably at the experimental centers that have operated since the mid-20th century at the Joint Institute for Nuclear Research, the A I Alikhanov Institute for Theoretical and Experimental Physics (ITEP), and the B P Konstantinov Petersburg Institute of Nuclear Physics. A quarter of the global clinical experience was accumulated by 1990 at the world's largest ITEP-hosted multicabin proton therapy center.

  1. Hazards of radiation at work and in the environment. Project module

    SciTech Connect

    Decoufle, P.

    1982-12-01

    Partial contents include: radiation hazards - relevance, practice and prevention; radiation quantities and units; sources of radiation exposure; biological effects of ionizing radiation; radiation monitoring devices; and principles of radiation protection.

  2. Implications of the space radiation environment for human exploration in deep space.

    PubMed

    Townsend, Lawrence W

    2005-01-01

    Human exploration of the solar system beyond Earth's orbit will entail many risks for the crew on these deep space missions. One of the most significant health risks is exposure to the harsh space radiation environment beyond the protection provided by the Earth's intrinsic magnetic field. Crew on exploration missions will be exposed to a complex mixture of very energetic particles. Chronic exposures to the ever-present background galactic cosmic ray (GCR) spectrum consisting of all naturally occurring chemical elements are combined with sporadic, possibly acute exposures to large fluxes of solar energetic particles, mainly protons and alpha particles. The background GCR environment is mainly a matter of concern for stochastic effects, such as the induction of cancer with subsequent mortality in many cases, and late deterministic effects, such as cataracts and possible damage to the central nervous system. Unfortunately, the actual risks of cancer induction and mortality owing to the very important high-energy heavy ion component of the GCR spectrum are essentially unknown. The sporadic occurrence of extremely large solar energetic particle events (SPE), usually associated with intense solar activity, is also a major concern for the possible manifestation of acute effects from the accompanying high doses of such radiations, especially acute radiation syndrome effects such as nausea, emesis, haemorrhaging or, possibly, even death. In this presentation, an overview of the space radiation environment, estimates of the associated body organ doses and equivalent doses and the potential biological effects on crew in deep space are presented. Possible methods of mitigating these radiations, thereby reducing the associated risks to crew are also described.

  3. Methodology for testing infrared focal plane arrays in simulated nuclear radiation environments

    NASA Astrophysics Data System (ADS)

    Divita, E. L.; Mills, R. E.; Koch, T. L.; Gordon, M. J.; Wilcox, R. A.; Williams, R. E.

    1992-07-01

    This paper summarizes test methodology for focal plane array (FPA) testing that can be used for benign (clear) and radiation environments, and describes the use of custom dewars and integrated test equipment in an example environment. The test methodology, consistent with American Society for Testing Materials (ASTM) standards, is presented for the total accumulated gamma dose, transient dose rate, gamma flux, and neutron fluence environments. The merits and limitations of using Cobalt 60 for gamma environment simulations and of using various fast-neutron reactors and neutron sources for neutron simulations are presented. Test result examples are presented to demonstrate test data acquisition and FPA parameter performance under different measurement conditions and environmental simulations.

  4. Survey of Materials Problems Resulting from Low-Pressure and Radiation Environment in Space

    NASA Technical Reports Server (NTRS)

    Lad, Robert A.

    1960-01-01

    On the basis of our present knowledge of the space environment, one might state that the exposure of materials to the radiation environment will present problems mainly with the impairment of the transparency of plastics and ionic solids due to ultraviolet radiation and with surface sputtering effects on emissivity and other thin film properties. The high vacuum in space will be of greater consequence in that it will render useless some members of practically all of the material classes. However, adequate solutions to most problems can be anticipated if enough information is at hand. This survey indicates that information is lacking at levels from the basic to the applied. A partial list of research areas in need of attack is included.

  5. Study on the mechanical property of polyimide film in space radiation environments

    NASA Astrophysics Data System (ADS)

    Shen, Zicai; Mu, Yongqiang; Ding, Yigang; Liu, Yuming; Zhao, Chunqing

    2016-01-01

    Polyimide films are widely used in spacecraft, but their mechanical properties would degrade in space environments, such as electron, proton, near ultraviolet or far ultraviolet, etc. The mechanical property and mechanism of polyimide film in electron, proton, near ultraviolet and far ultraviolet was studied by Φ800 combined space radiation test facility of Beijing Institute of Space Environment Engineering (BISSE. Rupture elongation of Kapton film decrease with the increase of the tensile deformation rate. The tensile strength and the rupture elongation of Kapton film decrease with the increase of electron and proton radiation, while tensile strength and the rupture elongation of Kapton film decrease firstly and then increase with near ultraviolet and far ultraviolet.

  6. The radiation environment in a low earth orbit:the case of BeppoSAX

    NASA Astrophysics Data System (ADS)

    Campana, Riccardo; Orlandini, Mauro; Del Monte, Ettore; Feroci, Marco; Frontera, Filippo

    2014-11-01

    Low-inclination, low altitude Earth orbits (LEO) are of increasing importance for astrophysical satellites, due to their low background environment. Here, the South Atlantic Anomaly (SAA) is the region with the highest amount of radiation. We study the radiation environment in a LEO (500-600 km altitude, 4∘ inclination) through the particle background measured by the Particle Monitor (PM) experiment onboard the BeppoSAX satellite, between 1996 and 2002. Using time series of particle count rates measured by PM we construct intensity maps and derive SAA passage times and fluences. The low-latitude SAA regions are found to have an intensity strongly decreasing with altitude and dependent on the magnetic rigidity. The SAA extent, westward drift and strength vs altitude is shown.

  7. Technical design of hadron therapy facilities

    SciTech Connect

    Alonso, J.R.

    1993-08-01

    Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Loma Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

  8. Technical Design of Hadron Therapy Facilities

    SciTech Connect

    Alonso, J.R.

    1993-08-01

    Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of these originally physics-research oriented. The great promise shown for treating cancer has led the medical community to seek dedicated accelerator facilities in a hospital setting, where more rapid progress can be made in clinical research. This paper will discuss accelerator and beam characteristics relevant to hadron therapy, particularly as applied to hospital-based facilities. A survey of currently-operating and planned hadron therapy facilities will be given, with particular emphasis on Lorna Linda (the first dedicated proton facility in a hospital) and HIMAC (the first dedicated heavy-ion medical facility).

  9. The external gamma radiation environment from the Kiwi Phoebus, and Pewee reactors

    NASA Technical Reports Server (NTRS)

    Malenfant, R. E.

    1972-01-01

    During the past few years, ground tests of high-powered propulsion-prototype reactors have provided several opportunities to observe the external radiation environment. Reactor tests have been conducted in free air and inside of open well shields. Measurements were taken over distances ranging from contact with the pressure vessel out to greater than 5000' both during operation and after shutdown. Some measurements characteristic of each of the systems are presented and compared with results of calculations.

  10. Simulation and analysis of the LUCID experiment in the Low Earth Orbit radiation environment

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Harrison, M. A.

    2014-06-01

    The Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment is a satellite-based device that will use five Timepix hybrid silicon pixel detectors to make measurements of the radiation environment at an altitude of approximately 635 km, i.e. in Low Earth Orbit (LEO). The experiment is due to launch aboard Surrey Satellite Technology Limited's (SSTL's) TechDemoSat-1 in 2014. The Timepix detectors, developed by the Medipix Collaboration, are arranged to form the five sides of a cube enclosed by a 0.7 mm thick aluminium "dome", and will be operated in Time-over-Threshold mode to allow the flux, energy and directionality of incident ionising radiation to be measured. To estimate the anticipated data rates with respect to these measurements, the LUCID experiment has been modelled using the GEANT4 software framework. As an input to these simulations, SPENVIS, ESA's Space Environment information system, was used to obtain the estimated flux of trapped protons and electrons in TechDemoSat-1's orbit with NASA's AP-8 and AE-8 models. A web portal, LUCIDITY, was developeded to allow school students from the LUCID Collaboration to manage SPENVIS flux spectra and GEANT4 input cards. The initial results reported here confirm that the LUCID's data transmission allowance is sufficient, and further work applying the techniques to more specific space radiation environments with a more sophisticated simulation is proposed.

  11. Fragmentation of extracellular DNA by long-term exposure to radiation from uranium in aquatic environments.

    PubMed

    Arruda-Neto, J D T; Nieto, L; Righi, H; Cotta, M A; Carrer, H; Rodrigues, T E; Genofre, G C

    2012-08-01

    Persistent harmful scenarios associated with disposal of radioactive waste, high-background radiation areas and severe nuclear accidents are of great concern regarding consequences to both human health and the environment. Of particular concern is the extracellular DNA in aquatic environments contaminated by radiological substances. Strand breaks induced by radiation promote decrease in the transformation efficiency for extracellular DNA. The focus of this study is the quantification of DNA damage following long-term exposure (over one year) to low doses of natural uranium (an alpha particle emitter) to simulate natural conditions, since nothing is known about alpha radiation induced damage to extracellular DNA. A high-resolution Atomic Force Microscope was used to evaluate DNA fragments. Double-stranded plasmid pBS as a model for extracellular DNA was exposed to different amounts of natural uranium. It was demonstrated that low concentrations of U in water (50 to 150 ppm) produce appreciable numbers of double strand breaks, scaling with the square of the average doses. The importance of these findings for environment monitoring of radiological pollution is addressed.

  12. The Earth-Moon-Mars Radiation Environment Module (EMMREM): Framework and Current Developments

    NASA Astrophysics Data System (ADS)

    Kozarev, K. A.; Schwadron, N. A.; Townsend, L. W.; Hatcher, R.; Desai, M.; Al-Dayeh, M.; Squier, R.

    2009-04-01

    As the international space community is preparing to return humans to the Moon, and to set the stage for manned exploration of Mars, it remains unclear if long missions outside of Low-Earth Orbit (LEO) can be accomplished with acceptable risk. The central objective of our project, the Earth-Moon-Mars Radiation Environment Module (EMMREM), is to create a reliable numerical model for completely characterizing time-dependent radiation exposure in the Earth-Moon-Mars and Interplanetary space environments. EMMREM includes several submodules-an energetic particle transport code (EPREM), a baryon transport code (BRYNTRN), submodules for input and output, and visualization. EPREM (Energetic Particles Radiation Environment Module) is a 3D parallelized kinetic code, the core of EMMREM. It is being integrated into the EMMREM framework, and we've introduced accurate positions for solar system bodies, spacecraft, and other observers within the code, using the NASA SPICE package. The EMMREM framework is currently being comprehensively validated using well-studied solar energetic proton events. The results of EMMREM will improve risk assessment models so that future human exploration missions can be adequately planned.

  13. Radiation Damage from Atomic to Meso-Scales in Extreme Environments

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.; Bourke, M. A.; Malloy, S. A.; Mariam, F. G.; Merrill, F. E.; Nastasi, Michael; Pitcher, E. J.; Rej, D. J.; Sarrao, J. L.; Shlachter, J. S.

    2010-11-01

    A foreboding materials challenge is to be able to withstand the 10--15 MW-year/m^2 neutron and heat fluence expected in the first wall and blanket structural materials of a fusion reactor. Overcoming radiation damage degradation is a key rate-controlling step in fusion materials development. New science, approaches, and facilities are needed at multiple scales. The objective of the new Center for Materials at Irradiation and Mechanical Extremes is to understand, at the atomic scale, the behavior of materials subject to extreme radiation doses and mechanical stress in order to synthesize new materials that can tolerate such conditions. The Matter Radiation Interactions in Extremes (MaRIE) concept is a National User Facility to realize the vision of 21^st century materials research and development. The Fission and Fusion Materials Facility (F^3) segment of MaRIE proposes to use the present proton linac at Los Alamos with a power upgrade to drive a spallation neutron source that can provide the required radiation environment. Coupled with integrated synthesis and characterization capability, F^3 would also provide the capability for in-situ measurements of transient radiation damage, using unique x-ray and charged particle radiography diagnostics.

  14. Radiobiology of Hadrons

    SciTech Connect

    Streit-Bianchi, Marilena

    2008-08-11

    Radiobiological studies of hadrons beams are essential for optimizing tumour treatments. Whit hadrons when clinical facilities are running radiobiological studies are also done to ensure beam optimization and quality control as well as for the understanding of tumour and normal tissue reactions and late effects. Beam characteristic determinations nowadays are carried out according to well established radiobiological standard parameters and using well established biological reference systems. Some of the most recent studies on the topic are reported here.

  15. Radiobiology of Hadrons

    NASA Astrophysics Data System (ADS)

    Streit-Bianchi, Marilena

    2008-08-01

    Radiobiological studies of hadrons beams are essential for optimizing tumour treatments. Whit hadrons when clinical facilities are running radiobiological studies are also done to ensure beam optimization and quality control as well as for the understanding of tumour and normal tissue reactions and late effects. Beam characteristic determinations nowadays are carried out according to well established radiobiological standard parameters and using well established biological reference systems. Some of the most recent studies on the topic are reported here.

  16. Holography inspired stringy hadrons

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Jacob

    2017-01-01

    Holography inspired stringy hadrons (HISH) is a set of models that describe hadrons: mesons, baryons and glueballs as strings in flat four dimensional space-time. The models are based on a "map" from stringy hadrons of holographic confining backgrounds. In this note we review the "derivation" of the models. We start with a brief reminder of the passage from the AdS5 ×S5 string theory to certain flavored confining holographic models. We then describe the string configurations in holographic backgrounds that correspond to a Wilson line, a meson, a baryon and a glueball. The key ingredients of the four dimensional picture of hadrons are the "string endpoint mass" and the "baryonic string vertex". We determine the classical trajectories of the HISH. We review the current understanding of the quantization of the hadronic strings. We end with a summary of the comparison of the outcome of the HISH models with the PDG data about mesons and baryons. We extract the values of the tension, masses and intercepts from best fits, write down certain predictions for higher excited hadrons and present attempts to identify glueballs.

  17. The Radiation Environment on the Martian Surface and during MSL's Cruise to Mars

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.

    2012-12-01

    An important part of assessing present and past habitability of Mars is to understand and characterize "life limiting factors" on the surface, such as the radiation environment. Radiation exposure is also a major concern for future human missions and characterizing the radiation environment, both on the surface of Mars and inside the spacecraft during the cruise to Mars, provides critical information to aid in the planning for future human exploration of Mars. RAD was the first MSL instrument to start collecting data, beginning its science investigation during cruise (10 days after launch) and making the first ever measurements of the radiation environment on another planet. RAD is an energetic particle analyzer designed to characterize a broad spectrum of energetic particle radiation including galactic cosmic rays, solar energetic particles, and secondary neutrons created both in the Mars atmosphere and regolith. RAD observations consist of a time series of periodic (typically hourly) measurements of charged particles from protons (Z=1) up to iron (Z=26) for energies above >10 MeV/nucleon, as well as neutrons from 10 to ~ 100 MeV. These synoptic observations are designed to characterize both the short term variability associated with the onset of solar energetic particle events as well as the long term variability of galactic cosmic rays over the solar cycle. RAD measurements will also be used to quantify the flux of biologically hazardous radiation at the surface of Mars today, and determine how these fluxes vary on diurnal, seasonal, solar cycle and episodic (flare, storm) timescales. These measurements will allow calculations of the depth in rock or soil to which this flux, when integrated over long timescales, provides a lethal dose for known terrestrial organisms. Through such measurements, we can learn how deep below the surface life would have to be, or have been in the past, to be protected. This talk will discuss the results obtained during the ~7 months

  18. The Radiation Environment on the Martian Surface and during MSL's Cruise to Mars

    NASA Astrophysics Data System (ADS)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Martin, Cesar; Boettcher, Stephan; Koehler, Jan; Guo, Jingnan; Brinza, David E.; Reitz, Guenther; Posner, Arik; the MSL Science Team

    2013-04-01

    An important part of assessing present and past habitability of Mars is to understand and characterize "life limiting factors" on the surface, such as the radiation environment. Radiation exposure is also a major concern for future human missions and characterizing the radiation environment, both on the surface of Mars and inside the spacecraft during the cruise to Mars, provides critical information to aid in the planning for future human exploration of Mars. RAD was the first MSL instrument to start collecting data, beginning its science investigation during cruise (10 days after launch) and making the first ever measurements of the radiation environment on another planet. RAD is an energetic particle analyzer designed to characterize a broad spectrum of energetic particle radiation including galactic cosmic rays, solar energetic particles, and secondary neutrons created both in the Mars atmosphere and regolith. RAD observations consist of a time series of periodic (typically hourly) measurements of charged particles from protons (Z=1) up to iron (Z=26) for energies above >10 MeV/nucleon, as well as neutrons from 10 to ~ 100 MeV. These synoptic observations are designed to characterize both the short term variability associated with the onset of solar energetic particle events as well as the long term variability of galactic cosmic rays over the solar cycle. RAD measurements will also be used to quantify the flux of biologically hazardous radiation at the surface of Mars today, and determine how these fluxes vary on diurnal, seasonal, solar cycle and episodic (flare, storm) timescales. These measurements will allow calculations of the depth in rock or soil to which this flux, when integrated over long timescales, provides a lethal dose for known terrestrial organisms. Through such measurements, we can learn how deep below the surface life would have to be, or have been in the past, to be protected. This talk will discuss the results obtained during the ~7 months

  19. Lessons Learned Using COTS Electronics for the International Space Station Radiation Environment

    NASA Technical Reports Server (NTRS)

    Blumer, John H.; Roth, A. (Technical Monitor)

    2001-01-01

    The mantra of 'Faster, Better, Cheaper' has to a large degree been interpreted as using Commercial Off-the-Shelf (COTS) components and/or circuit boards. One of the first space applications to actually use COTS in space along with radiation performance requirements was the Expedite the Processing of Experiments to Space Station (EXPRESS) Rack program, for the International Space Station (ISS). In order to meet the performance, cost and schedule targets, military grade Versa Module Eurocard (VME) was selected as the baseline design for the main computer, the Rack Interface Controller (RIC). VME was chosen as the computer backplane because of the large variety of military grade boards available, which were designed to meet the military environmental specifications (thermal, shock, vibration, etc.). These boards also have a paper pedigree in regards to components. Since these boards exceeded most ISS environmental requirements, it was reasoned using COTS mid-grade VME boards, as opposed to designing custom boards could save significant time and money. It was recognized up front the radiation environment of ISS, while benign compared to many space flight applications, would be the main challenge to using COTS. Thus in addition to selecting vendors on how well their boards met the usual performance and environmental specifications, the board's parts lists were reviewed on how well they would perform in the ISS radiation environment. However, issues with verifying that the available radiation test data was applicable to the actual part used, vendor part design changes and the fact most parts did not have valid test data soon complicated board and part selection in regards to radiation.

  20. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    NASA Astrophysics Data System (ADS)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  1. Degradation of thermal control materials under a simulated radiative space environment

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Sridhara, N.

    2012-11-01

    A spacecraft with a passive thermal control system utilizes various thermal control materials to maintain temperatures within safe operating limits. Materials used for spacecraft applications are exposed to harsh space environments such as ultraviolet (UV) and particle (electron, proton) irradiation and atomic oxygen (AO), undergo physical damage and thermal degradation, which must be considered for spacecraft thermal design optimization and cost effectiveness. This paper describes the effect of synergistic radiation on some of the important thermal control materials to verify the assumptions of beginning-of-life (BOL) and end-of-life (EOL) properties. Studies on the degradation in the optical properties (solar absorptance and infrared emittance) of some important thermal control materials exposed to simulated radiative geostationary space environment are discussed. The current studies are purely related to the influence of radiation on the degradation of the materials; other environmental aspects (e.g., thermal cycling) are not discussed. The thermal control materials investigated herein include different kind of second-surface mirrors, white anodizing, white paints, black paints, multilayer insulation materials, varnish coated aluminized polyimide, germanium coated polyimide, polyether ether ketone (PEEK) and poly tetra fluoro ethylene (PTFE). For this purpose, a test in the constant vacuum was performed reproducing a three year radiative space environment exposure, including ultraviolet and charged particle effects on North/South panels of a geostationary three-axis stabilized spacecraft. Reflectance spectra were measured in situ in the solar range (250-2500 nm) and the corresponding solar absorptance values were calculated. The test methodology and the degradations of the materials are discussed. The most important degradations among the low solar absorptance materials were found in the white paints whereas the rigid optical solar reflectors remained quite

  2. The upgrade of the CMS hadron calorimeter with silicon 5 photomultipliers

    SciTech Connect

    Strobbe, N.

    2016-09-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  3. Use of COTS [commercial-off-the-shelf] Microelectronics in Radiation Environments

    SciTech Connect

    Winokur, P.S.; Lum, G.K.; Shaneyfelt, M.R.; Sexton, F.W.; Hash, G.L.; Scott, L.

    1999-07-07

    This paper addresses key issues for the cost-effective use of COTS microelectronics in radiation environments that enable circuit or system designers to manage risks and ensure mission success. COTS parts with low radiation tolerance should not be used when they degrade mission critical functions or lead to premature system failure. We review several factors and tradeoffs affecting the successful application of COTS parts including (1) hardness assurance and qualification issues, (2) system hardening techniques, and (3) life-cycle costs. The paper also describes several experimental studies that address trends in total-dose, transient, and single-event radiation hardness as COTS technology scales to smaller feature sizes. As an example, the level at which dose-rate upset occurs in Samsung SRAMS increases from 1.4x10{sup 8} rads(Si)/s for a 256K SRAM to 7.7x10{sup 9} rads(Si)/s for a 4M SRAM, indicating unintentional hardening improvements in the design or process of a commercial technology. Additional experiments were performed to quantify variations in radiation hardness for COTS parts. In one study, only small (10-15%) variations were found in the dose-rate upset and latchup thresholds for Samsung 4M SRAMS from three different date codes. In another study, irradiations of 4M SRAMS from Samsung, Hitachi, and Toshiba indicate large differences in total-dose radiation hardness. The paper attempts to carefully define terms and clear up misunderstandings about the definitions of ''COTS'' and ''radiation-hardened'' technology.

  4. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-01

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt & Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around ``all possible missions''. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  5. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-20

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  6. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen

    SciTech Connect

    Butov, Oleg V. Golant, Konstantin M.; Shevtsov, Igor' A.; Fedorov, Artem N.

    2015-08-21

    The change of the transmission spectra of fiber Bragg gratings written in the optical fibers, whose silica cores are doped with either germanium or nitrogen, is studied experimentally under the influence of gamma-radiation. The transmission spectra in the neighborhood of the resonance (Bragg) wavelengths were regularly recorded “in-situ” in the course of irradiation during 24 days. For this purpose, uncoated gratings were placed in a pool near the spent fuel rods of a nuclear reactor. The fibers with the gratings written in them were in immediate contact with water. The estimated total absorbed radiation dose of the fibers is approximately 5 MGy. Molecular hydrogen, which is produced by radiolysis of water and penetrates into the core of silica fiber, is found to interact with the defects of Ge-doped silica induced by gamma-radiation, thereby causing a strong impact on the parameters of the spectrum of the Bragg gratings. On the contrary, in the case of gratings inscribed in N-doped silica fibers, the hydrogen molecules interact with defects induced in the course of laser UV exposure during the grating writing only. The possible subsequent formation of additional defects in N-doped silica under the influence of gamma-radiation has no substantial impact on the transmission spectra of Bragg gratings, which remained stable. The obtained results suggest that a small amount of molecular hydrogen resided in the fiber core is the main source of radiation instability of Ge-doped fiber Bragg grating sensors in radiation environments. These hydrogen molecules can remain in the Bragg gratings, in particular, after the inscription process in the hydrogen-loaded fibers.

  7. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen

    NASA Astrophysics Data System (ADS)

    Butov, Oleg V.; Golant, Konstantin M.; Shevtsov, Igor'A.; Fedorov, Artem N.

    2015-08-01

    The change of the transmission spectra of fiber Bragg gratings written in the optical fibers, whose silica cores are doped with either germanium or nitrogen, is studied experimentally under the influence of gamma-radiation. The transmission spectra in the neighborhood of the resonance (Bragg) wavelengths were regularly recorded "in-situ" in the course of irradiation during 24 days. For this purpose, uncoated gratings were placed in a pool near the spent fuel rods of a nuclear reactor. The fibers with the gratings written in them were in immediate contact with water. The estimated total absorbed radiation dose of the fibers is approximately 5 MGy. Molecular hydrogen, which is produced by radiolysis of water and penetrates into the core of silica fiber, is found to interact with the defects of Ge-doped silica induced by gamma-radiation, thereby causing a strong impact on the parameters of the spectrum of the Bragg gratings. On the contrary, in the case of gratings inscribed in N-doped silica fibers, the hydrogen molecules interact with defects induced in the course of laser UV exposure during the grating writing only. The possible subsequent formation of additional defects in N-doped silica under the influence of gamma-radiation has no substantial impact on the transmission spectra of Bragg gratings, which remained stable. The obtained results suggest that a small amount of molecular hydrogen resided in the fiber core is the main source of radiation instability of Ge-doped fiber Bragg grating sensors in radiation environments. These hydrogen molecules can remain in the Bragg gratings, in particular, after the inscription process in the hydrogen-loaded fibers.

  8. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  9. Structural topology optimization on sound radiation at resonance frequencies in thermal environments

    NASA Astrophysics Data System (ADS)

    Yang, XiongWei; Li, YueMing

    2015-03-01

    Thermal and acoustic environments pose severe challenges to the structural design of hypersonic vehicles. One of them is to find optimal design that exhibits ideal acoustic characteristics in a frequency band, which is discussed in this paper through topology optimization aiming at resonance sound radiation in thermal environments. The sound radiation at resonance frequencies is the main component of response, minimization on which is likely to provide a satisfactory design. A bi-material plate subjected to uniform temperature rise and excited by harmonic loading is studied here. Thermal stress is first evaluated and considered as pre stress in the following dynamic analysis; radiated sound power is then calculated through Rayleigh integral. Sensitivity analysis is carried out through adjoint method considering the complicated relationship between stress-induced geometric stiffness and design variables. As the resonance frequency is constantly changing during the optimization, its sensitivity should be considered. It is also noticed that mode switching may occur, so mode tracking technique is employed in this work. Some numerical examples are finally discussed.

  10. Characterization of gallium nitride microsystems within radiation and high-temperature environments

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Hou, Minmin; Chapin, Caitlin A.; Shankar, Ashwin; Senesky, Debbie G.

    2014-03-01

    New milestones in space exploration can be realized through the development of radiation-hardened, temperature-tolerant materials, sensors and electronics. This enables lightweight systems (reduced packaging requirements) with increased operation lifetimes. Gallium nitride (GaN) is a ceramic, semiconductor material that is stable within high-radiation, high-temperature and chemically corrosive environments. Recently, this material platform has been utilized to realize sensors and electronics for operation under extreme harsh conditions. These devices exploit the two-dimensional electron gas (2DEG) formed at the interface between AlGaN/GaN heterostructures, which is used as the material platform in high electron mobility transistors (HEMTs). In this paper, a review of the advancements in GaN manufacturing technology such as the growth of epitaxially deposited thin films, micromachining techniques and high-temperature metallization is presented. In addition, the compelling results of fabricating and operating micro-scale GaNbased sensors within radiation environments and at elevated temperatures are shown. The paper will close with future directions GaN-based microsystems technology for down-hole, propulsion and space exploration applications.

  11. Controllable passive detectors for study of the radiation environment in space and the atmosphere.

    PubMed

    Akopova, A B

    1998-01-01

    We propose to study the radiation environment on board different flight vehicles: cosmos-type satellites, orbital stations, Space Shuttles and civil (sonic and supersonic) aircraft. These investigations will be carried out with single type of passive detector, namely, nuclear photoemulsions (NPE) with adjustable threshold of particle detection within broad range of linear energy transfer (LET) that is done by means of the technique of selective development of NPE exposed in space. These investigations will allow, one to determine: integral spectra of LET of charged particles of cosmic ray (CR) over a wide range from 2.0 to 5 x 10(4) MeV/cm in biological tissue; differential energy spectra of fast neutrons (1-20 MeV); estimation of absorbed and equivalent doses from charged and neutral component CR; charge and energy spectra of low energy nuclei (E < or = 100 MeV) with Z > or = 2 having in view the extreme hazard radiation to biological objects and microelectronic schemes taken on board inside and outside of these different flight vehicles with exposures from several days to several months. The investigation of radiation environment on board the airplanes depending on the flight parameters will be conducted using emulsions of different sensitivity without any controlling of threshold sensitivity (Akopova et al., 1996). The proposed detector can be used in the joint experiments on the new International Cosmic Station "Alpha".

  12. Can the Equivalent Sphere Model Approximate Organ Doses in Space Radiation Environments?

    NASA Technical Reports Server (NTRS)

    Zi-Wei, Lin

    2007-01-01

    In space radiation calculations it is often useful to calculate the dose or dose equivalent in blood-forming organs (BFO). the skin or the eye. It has been customary to use a 5cm equivalent sphere to approximate the BFO dose. However previous studies have shown that a 5cm sphere gives conservative dose values for BFO. In this study we use a deterministic radiation transport with the Computerized Anatomical Man model to investigate whether the equivalent sphere model can approximate organ doses in space radiation environments. We find that for galactic cosmic rays environments the equivalent sphere model with an organ-specific constant radius parameter works well for the BFO dose equivalent and marginally well for the BFO dose and the dose equivalent of the eye or the skin. For solar particle events the radius parameters for the organ dose equivalent increase with the shielding thickness, and the model works marginally for BFO but is unacceptable for the eye or the skin The ranges of the radius parameters are also shown and the BFO radius parameters are found to be significantly larger than 5 cm in all eases.

  13. Mercury's solar wind interaction during the evolution of the solar radiation and particle environment

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Ribas, I.; Biernat, H. K.; Kolb, C.; Penz, T.; Patel, M. R.; Semenov, V. S.; Wurz, P.; Orsini, S.; Massetti, S.

    2003-04-01

    Astrophysical observations suggest that the young main-sequence Sun rotated about 10 times faster than today and had correspondingly stronger magnetic activity, which triggered higher radiation and particle emission. Quantitative estimates of the solar high-energy flux evolution are only indirectly possible by comparison with solar proxies. Multiwavelength observations in the 0.1 nm to 330 nm spectral region have been collected for a sample of solar proxies, containing stars which represent most of the Sun's main sequence lifetime from 130 Myr to 8.5 Gyr. They show an excellent correlation between the emitted flux and the stellar age. We use a power law relation between rotation periods, X-ray fluxes and solar mass loss for the estimation of the solar wind mass flux evolution during the past 4.5 Gyr ago. Mercury's present exosphere indicate a strong radiation-particle-surface interaction related to the solar particle and radiation environment. Since Mercury is the closest planet to the Sun, its surface was most exposed to enhanced particle- and radiation fluxes than those of any of the other Solar System bodies. To evaluate how such effects may have influenced Mercury's surface, we study the solar wind-magnetospheric interaction with emphasis of the influence of the interplanetary magnetic field particle surface sputtering and photon stimulated desorption processes during the planets history by using the observational data from the Sun in Time programme.

  14. The Martian and extraterrestrial UV radiation environment. Part II: further considerations on materials and design criteria for artificial ecosystems.

    PubMed

    Cockell, C S

    2001-12-01

    Ultraviolet radiation is an important natural physical influence on organism function and ecosystem interactions. The UV radiation fluxes in extraterrestrial environments are substantially different from those experienced on Earth. On Mars, the moon and in Earth orbit they are more biologically detrimental than on Earth. Based on previously presented fluxes and biologically weighted irradiances, this paper considers in more detail measures to mitigate UV radiation damage and methods to modify extraterrestrial UV radiation environments in artificial ecosystems that use natural sunlight. The transmission characteristics of a Martian material that will mimic the terrestrial UV radiation environment are presented. Transmissivity characteristics of other Martian and lunar materials are described. Manufacturing processes for the production of plastics and glass on the lunar and Martian surface are presented with special emphasis on photobiological requirements. Novel UV absorbing configurations are suggested.

  15. Hadronization of partons

    SciTech Connect

    Albino, S.

    2010-07-15

    The description of inclusive production of single unpolarized light hadrons using fragmentation functions in the framework of the factorization theorem is reviewed. The factorization of observables into perturbatively calculable quantities and these universal fragmentation functions are summarized and some improvements beyond the standard fixed order approach are discussed. The extraction of fragmentation functions for light charged ({pi}{sup {+-}}, K{sup {+-}}, and p/p) and neutral (K{sub S}{sup 0} and {Lambda}/{Lambda}) hadrons using these theoretical tools is discussed through global fits to experimental data from reactions at various colliders, in particular from accurate e{sup +}e{sup -} reactions at the Large Electron-Position Collider (LEP), and the subsequent successful predictions of other experimental data, such as data gathered at Hadron Electron Ring Accelerator (HERA), the Tevatron, and the Relativistic Heavy Ion Collider (RHIC), from these fitted fragmentation functions as allowed by factorization universality. These global fits also impose competitive constraints on {alpha}{sub s}(M{sub Z}). Emphasis is placed on the need for accurate data from pp(p) and ep reactions in which the hadron species is identified in order to constrain the separate fragmentation functions of the gluon and each quark flavor for each hadron species.

  16. The Radiation Environment for the LISA/Laser Interferometry Space Antenna

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael; Poivey, Christian

    2005-01-01

    The purpose of this document is to define the radiation environment for the evaluation of degradation due to total ionizing and non-ionizing dose and of single event effects (SEES) for the Laser Interferometry Space Antenna (LISA) instruments and spacecraft. The analysis took into account the radiation exposure for the nominal five-year mission at 20 degrees behind Earth's orbit of the sun, at 1 AU (astronomical unit) and assumes a launch date in 2014. The transfer trajectory out to final orbit has not yet been defined, therefore, this evaluation does not include the impact of passing through the Van Allen belts. Generally, transfer trajectories do not contribute significantly to degradation effects; however, single event effects and deep dielectric charging effects must be taken into consideration especially if critical maneuvers are planned during the van Allen belt passes.

  17. Exposure and temperature dependence of elongated blister formation in complex radiation environments

    SciTech Connect

    McDonell, W.R.

    1981-01-01

    Blistering of platinum alloy surfaces by /sup 252/Cf alpha particle and fission fragment radiations occurred at relatively low concentrations of implanted helium during exposures at room temperature as well as at 1000/sup 0/C. Distinctive configurations of the blisters resulting from transport of atoms displaced by the fission fragments persisted during the high temperature exposures. Post-exposure heating of specimens exposed at room-temperature produced no additional blistering until temperatures of 1300/sup 0/C were reached. Post-exposure heating of 1000/sup 0/C blistered specimens produced only thermal etching effects. The low helium concentrations required for blistering and the distinctive blister configurations produced by /sup 252/Cf exposures suggest a unique mode of surface distortion resulting from the large number and highly localized distributions of atom displacements generated by /sup 252/Cf fission fragments. Such conditions may not be duplicated in the He-ion and fast neutron radiation environments of fusion reactors.

  18. Progress towards a FLUKA based simulation tool aimed at the evaluation of space radiation environments

    NASA Astrophysics Data System (ADS)

    Andersen, V.; Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fassò, A.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; Lee, K.; Ottolenghi, A.; Pelliccioni, M.; Pinsky, L. S.; Ranft, J.; Roesler, S.; Sala, P. R.; Wilson, T. L.

    2004-02-01

    Goal of the NASA funded FLEUR project is to develop a simulation tool to predict the impact of radiation environments, in particular to evaluate the effect of shielding in space applications. The heart of this tool is the FLUKA Monte Carlo transport code which is traditionally used in related areas of research such as radio-protection and dosimetry, cosmic ray physics and modeling of biological effects of radiation on DNA (in connection with further external micro codes). An important aspect in this context are heavy ion nuclear interactions which at this point have been implemented in FLUKA for high and medium energies while work is proceeding to cover the low energy range. Further information is available at http://www.fluka.org and http://fleur.cern.ch

  19. Potential for use of indium phosphide solar cells in the space radiation environment

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1985-01-01

    Indium phosphide solar cells were observed to have significantly higher radiation resistance than either GaAs or Si after exposure to 10 MeV proton irradiation data and previous 1 MeV electron data together with projected efficiencies for InP, it was found that these latter cells produced more output power than either GaAs or Si after specified fluences of 10 MeV protons and 1 MeV electrons. Estimates of expected performance in a proton dominated space orbit yielded much less degradation for InP when compared to the remaining two cell types. It was concluded that, with additional development to increase efficiency, InP solar cells would perform significantly better than either GaAs or Si in the space radiation environment.

  20. Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Honda, Linton K.; Son, Youngjin; Ronney, Paul D.; Olson, Sandra (Technical Monitor); Gokoglu, Suleyman (Technical Monitor)

    2001-01-01

    Microgravity experiments on flame spread over thermally thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large spread rate (Sf) compared to dense fuels such as PMMA. This scheme enabled meaningful results to lie obtained even in 2.2 second drop tower experiments. It was found that, in contrast conventional understanding; steady spread can occur over thick fuels in quiescent microgravity environments, especially when a radiatively active diluent gas such as CO2 is employed. This is proposed to be due to radiative transfer from the flame to the fuel surface. Additionally, the transition from thermally thick to thermally thin behavior with decreasing bed thickness is demonstrated.

  1. Report: EPA’s Radiation and Indoor Environments National Laboratory Should Improve Its Computer Room Security Controls

    EPA Pesticide Factsheets

    Report #12-P-0847, September 21, 2012.Our review of the security posture and in-place environmental controls of EPA’s Radiation and Indoor Environments National Laboratory computer room disclosed an array of security and environmental control deficiencies.

  2. The Martian and extraterrestrial UV radiation environment--1. Biological and closed-loop ecosystem considerations.

    PubMed

    Cockell, C S; Andrady, A L

    1999-01-01

    The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.

  3. The NASA/National Space Science Data Center trapped radiation environment model program, 1964 - 1991

    NASA Technical Reports Server (NTRS)

    Vette, James I.

    1991-01-01

    The major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments is detailed. The effort is called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that was applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the development of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7.

  4. Performance test and image correction of CMOS image sensor in radiation environment

    NASA Astrophysics Data System (ADS)

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2016-09-01

    CMOS image sensors rival CCDs in domains that include strong radiation resistance as well as simple drive signals, so it is widely applied in the high-energy radiation environment, such as space optical imaging application and video monitoring of nuclear power equipment. However, the silicon material of CMOS image sensors has the ionizing dose effect in the high-energy rays, and then the indicators of image sensors, such as signal noise ratio (SNR), non-uniformity (NU) and bad point (BP) are degraded because of the radiation. The radiation environment of test experiments was generated by the 60Co γ-rays source. The camera module based on image sensor CMV2000 from CMOSIS Inc. was chosen as the research object. The ray dose used for the experiments was with a dose rate of 20krad/h. In the test experiences, the output signals of the pixels of image sensor were measured on the different total dose. The results of data analysis showed that with the accumulation of irradiation dose, SNR of image sensors decreased, NU of sensors was enhanced, and the number of BP increased. The indicators correction of image sensors was necessary, as it was the main factors to image quality. The image processing arithmetic was adopt to the data from the experiences in the work, which combined local threshold method with NU correction based on non-local means (NLM) method. The results from image processing showed that image correction can effectively inhibit the BP, improve the SNR, and reduce the NU.

  5. Signature mutations from B. subtilis spores exposed to radiations and simulated space environments

    NASA Astrophysics Data System (ADS)

    Munakata, , Nobuo; Natsume, Toshiyuki; Konishi, Teruaki; Hieda, Kotaro; Panitz, Corinna; Horneck, Gerda

    Rifampicin-resistant mutants were collected from the spores of three B. subtilis strains, HA101 (HA, repair proficient), TKJ6312 (US, UV-repair defective) and TKJ6412 (RF, recombination deficient) grown after exposure to various radiations and simulated space environments. All of 563 mutations analyzed carried sequence changes in the N-terminal region of the rpoB gene cod-ing for the subunit β of RNA polymerase II and belonged to 56 alleles. (1) Most of spontaneous mutants from the three strains belonged to 13 single-base substitution (SBS) alleles, exceptions (<2%) being one 3 bp insertion and one tandem double substitution (TDS). (2) About 6 % and 16 % of the mutations from the HA and RF spores, respectively, exposed to ionizing radiations were complex mutations including multiple-base substitutions, insertions and deletions. Several TDS and non-tandem double substitutions (NTDS), and 3, 6, 9 and one 30 bp deletions seem to provide signatures of the exposure to ionizing radiations. (3) Except one TDS from US and one NTDS from HA spores, UV or solar exposure seemed not to leave unique footprints. (4) In space simulation experiments, the only conditions involving high vacuum consistently increased the mutation frequency, and exhibited high occurrences (>50%) of TDS. In HA spores, the al-lele r201 (CA to TT at 1460) was the most frequent, while in US spores, another allele r210 (TC to AA at 1404) was the most frequent. In conclusion, some of the conditions encountered in space environments, such as space vacuum and ionizing radiations, could produce unique mutational signatures in the rpoB gene of B. subtilis spores.

  6. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  7. Trends in accelerator technology for hadron therapy

    NASA Astrophysics Data System (ADS)

    Kostromin, S. A.; Syresin, E. M.

    2013-12-01

    Hadron therapy with protons and carbon ions is one of the most effective branches in radiation oncology. It has advantages over therapy using gamma radiation and electron beams. Fifty thousand patients a year need such treatment in Russia. A review of the main modern trends in the development of accelerators for therapy and treatment techniques concerned with respiratory gated irradiation and scanning with the intensity modulated pencil beams is given. The main stages of formation, time structure, and the main parameters of the beams used in proton therapy, as well as the requirements for medicine accelerators, are considered. The main results of testing with the beam of the C235-V3 cyclotron for the first Russian specialized hospital proton therapy center in Dimitrovgrad are presented. The use of superconducting accelerators and gantry systems for hadron therapy is considered.

  8. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle

  9. Nuclear modification of charged hadron production at the LHC

    NASA Astrophysics Data System (ADS)

    De, Somnath; Srivastava, Dinesh K.

    2013-07-01

    We analyze recent results for the suppressed production of charged hadrons for Pb+Pb collisions at the center-of-mass energy of 2.76 TeV/nucleon-pair. We closely follow the treatment recently used by us in which partons lose energy due to the radiation of gluons following multiple scatterings while traversing the quark-gluon plasma, before fragmenting into hadrons at the center-of-mass energy of 200 GeV/nucleon-pair. We obtain an empirical value for the momentum transport coefficient (\\widehat{q}) and provide predictions for azimuthal anisotropy of hadron momenta for non-central collisions. Communicated by Steffen Bass

  10. Hadron Resonances from QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  11. Effect of ionizing radiation on the waste package environment; Revision 1

    SciTech Connect

    Reed, D.T.; Van Konynenburg, R.A.

    1991-05-01

    The radiolytic production of nitrogen oxides, nitrogen acids and ammonia are discussed in relation to the expected environment in a high-level waste repository that may be constructed at the Yucca Mountain site if it is found to be suitable. Both literature data and repository-relevant data are summarized for air-water vapor systems. The limiting cases of a dry air and a pure water vapor gas phase are also discussed. Design guidelines and recommendations, based solely on the potential consequence of radiation enhancement of corrosion, are given. 13 refs., 5 figs., 1 tab.

  12. Characteristic measurements of silicon dioxide aerogel plasmas generated in a Planckian radiation environment

    SciTech Connect

    Dong Quanli; Wang Shoujun; Li Yutong; Zhang Yi; Zhao Jing; Wei Huigang; Shi Jianrong; Zhao Gang; Zhang Jiyan; Gu Yuqiu; Ding Yongkun; Wen Tianshu; Zhang Wenhai; Hu Xin; Liu Shenye; Zhang Lin; Tang Yongjian; Zhang Baohan; Zheng Zhijian; Nishimura, Hiroaki

    2010-01-15

    The temporally and spatially resolved characteristics of silicon dioxide aerogel plasmas were studied using x-ray spectroscopy. The plasma was generated in the near-Planckian radiation environment within gold hohlraum targets irradiated by laser pulses with a total energy of 2.4 kJ in 1 ns. The contributions of silicon ions at different charge states to the specific components of the measured absorption spectra were also investigated. It was found that each main feature in the absorption spectra of the measured silicon dioxide aerogel plasmas was contributed by two neighboring silicon ionic species.

  13. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  14. Hadron Physics with Antiprotons

    SciTech Connect

    Wiedner, Ulrich

    2005-10-26

    The new FAIR facility which comes into operation at GSI in the upcoming years has a dedicated program of utilizing antiprotons for hadron physics. In particular, the planned PANDA experiment belongs to the group of core experiments at the new FAIR facility in Darmstadt/Germany. PANDA will be a universal detector to study the strong interaction by utilizing the annihilation process of antiprotons with protons and nuclear matter. The current paper gives an introduction into the hadron physics with antiprotons and part of the planned physics program with PANDA.

  15. Accuracy of Analog Fiber-Optic Links in Pulsed Radiation Environments

    SciTech Connect

    E. K. Miller, G. S. Macrum, I. J. McKenna, et al.

    2007-12-01

    Interferometric fiber-optic links used in pulsed-power experiments are evaluated for accuracy in the presence of radiation fields which alter fiber transmission. Amplitude-modulated format (e.g., Mach-Zehnder) and phase-modulated formats are compared. Historically, studies of radiation effects on optical fibers have focused on degradation and recovery of the fibers transmission properties; such work is either in the context of survivability of fibers in catastrophic conditions or suitability of fibers installed for command and control systems within an experimental facility [1], [2]. In this work, we consider links used to transmit realtime diagnostic data, and we analyze the error introduced by radiation effects during the drive pulse. The result is increased uncertainties in key parameters required to unfold the sinusoidal transfer function. Two types of modulation are considered: amplitude modulation typical of a Mach-Zehnder (M-Z) modulator [3], and phase modulation, which offers more flexible demodulation options but relies on the spatiotemporal coherence of the light in the fiber. The M-Z link is shown schematically in Fig. 1, and the phase-modulated link is shown in Fig. 2. We present data from two experimental environments: one with intense, controlled radiation fields to simulate conditions expected at the next generation of pulsed-power facilities, and the second with radiation effects below the noise level of the recording system. In the first case, we intentionally expose three types of single-mode fiber (SMF) to ionizing radiation and study the response by simultaneously monitoring phase and amplitude of the transmitted light. The phase and amplitude effects are evidently dominated by different physical phenomena, as their recovery dynamics are markedly different; both effects, though, show similar short-term behavior during exposure, integrating the dose at the dose levels studied, from 1 to 300 kRad, over the exposure times of 50 ps and 30 ns. In the

  16. Human response to high-background radiation environments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Durante, M.; Manti, L.

    2008-09-01

    The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200 400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3 4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation

  17. Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment.

    PubMed

    Ma, Jing; Li, Mi; Tan, Liying; Zhou, Yanping; Yu, Siyuan; Ran, Qiwen

    2009-08-31

    High power erbium-ytterbium co-doped fiber amplifier (EYDFA) has been radiated to the dose of 50 krad at the dose rate of 40 rad/s. Some key parameters have been measured to investigate the radiation effect on the EYDFA for space optical communication. Considering the dose of 50 krad is big enough to the most of low-dose radiation environment, these experimental results will be a good reference for the low-dose inter-satellite optical communication designers.

  18. Hadron Therapy for Cancer Treatment

    SciTech Connect

    Lennox, Arlene

    2003-09-10

    The biological and physical rationale for hadron therapy is well understood by the research community, but hadron therapy is not well established in mainstream medicine. This talk will describe the biological advantage of neutron therapy and the dose distribution advantage of proton therapy, followed by a discussion of the challenges to be met before hadron therapy can play a significant role in treating cancer. A proposal for a new research-oriented hadron clinic will be presented.

  19. Heat Transfer from Radiatively Heated Material in a Low Reynolds Number Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Yamashita, H.; Baum, H. R.; Kushida, G.; Nakabe, K.; Kashiwagi, T.

    1993-01-01

    A mathematical model of the transient three-dimensional heat transfer between a slowly moving ambient gas stream and a thermally thick or thin flat surface heated by external radiation in a microgravity environment is presented. The problem is motivated in part by fire safety issues in spacecraft. The gas phase is represented by variable property convection-diffusion energy and mass conservation equations valid at low Reynolds numbers. The absence of gravity and low Reynolds number together permit the flow to be represented by a self-consistent velocity potential determined by the ambient velocity and the thermal expansion in the gas. The solid exchanges energy with the gas by conduction/convection and with the surroundings by surface absorption and re-emission of radiation. Heat conduction in the solid is assumed to be one dimensional at each point on the surface as a consequence of the limited times (of order of 10 seconds) of interest in these simulations. Despite the apparent simplicity of the model, the results show a complex thermally induced flow near the heated surface. The thermal exchange between the gas and solid produces an outward sourcelike flow upstream of the center of the irradiated area and a sinklike flow downstream. The responses of the temperature fields and the associated flows to changes in the intensity of the external radiation and the ambient velocity are discussed.

  20. Transfer of Real-time Dynamic Radiation Environment Assimilation Model; Research to Operation

    NASA Astrophysics Data System (ADS)

    Cho, K. S. F.; Hwang, J.; Shin, D. K.; Kim, G. J.; Morley, S.; Henderson, M. G.; Friedel, R. H.; Reeves, G. D.

    2015-12-01

    Real-time Dynamic Radiation Environment Assimilation Model (rtDREAM) was developed by LANL for nowcast of energetic electrons' flux at the radiation belt to quantify potential risks from radiation damage at the satellites. Assimilated data are from multiple sources including LANL assets (GEO, GPS). For transfer from research to operation of the rtDREAM code, LANL/KSWC/NOAA makes a Memorandum Of Understanding (MOU) on the collaboration between three parts. By this MOU, KWSC/RRA provides all the support for transitioning the research version of DREAM to operations. KASI is primarily responsible for providing all the interfaces between the current scientific output formats of the code and useful space weather products that can be used and accessed through the web. In the second phase, KASI will be responsible in performing the work needed to transform the Van Allen Probes beacon data into "DREAM ready" inputs. KASI will also provide the "operational" code framework and additional data preparation, model output, display and web page codes back to LANL and SWPC. KASI is already a NASA partnering ground station for the Van Allen Probes' space weather beacon data and can here show use and utility of these data for comparison between rtDREAM and observations by web. NOAA has offered to take on some of the data processing tasks specific to the GOES data.

  1. Ethics, genetics and dynamics: an emerging systematic approach to radiation protection of the environment.

    PubMed

    Pentreath, R J

    2004-01-01

    There is now a general consensus of opinion that an explicit approach is necessary to demonstrate radiation protection of the environment, and that this approach needs to be developed in a systematic way. The framework that is emerging links ethical and moral issues (anthropocentric, biocentric, and ecocentric) to broad-based principles and objectives of environmental protection (sustainable development, maintaining biological diversity, and habitat protection) and then links these, in turn, to the needs of current environmental management practices, such as environmental exploitation, pollution control, and nature conservation. The relevance of this to radiation is that its effects (such as causing early mortality, morbidity, reduced reproductive success, as well as resulting in observable (scorable) cytogenetic damage) are those that may have a bearing on these same environmental management practices. The devise that would appear to be most useful to bridge the gap between our disparate data on radiation effects and the needs of environmental management, is that of adding to the concept of Reference Man in the shape of a small set of Reference Animals and Plants. This approach has now been adopted by the ICRP, adding new dynamics-the motive forces, both moral and physical-to the subject. The way is now clear for rapid progress to be made on a number of fronts.

  2. Application of the Self Calibrating Emissivity and/or Transmissivity Independent Multiwavelength Pyrometer in an Intense Ambient Radiation Environment

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1996-01-01

    The NASA self calibrating multiwavelength pyrometer is a recent addition to the list of pyrometers used in remote temperature measurement in research and development. The older one-color, two-color, and the disappearing filament pyrometers, as well as the multicolor and early multiwavelength pyrometers, all do not operate successfully in situations in which strong ambient radiation coexists with radiation originating from the measured surface. In such situations radiation departing from the target surface arrives at the pyrometer together with radiation coming from another source either directly or through reflection. Unlike the other pyrometers, the self calibrating multiwavelength pyrometer can still calibrate itself and measure the temperatures in this adverse environment.

  3. Radioactivity in food and the environment: calculations of UK radiation doses using integrated assessment methods.

    PubMed

    Camplin, W C; Brownless, G P; Round, G D; Winpenny, K; Hunt, G J

    2002-12-01

    A new method for estimating radiation doses to UK critical groups is proposed for discussion. Amongst others, the Food Standards Agency (FSA) and the Scottish Environment Protection Agency (SEPA) undertake surveillance of UK food and the environment as a check on the effect of discharges of radioactive wastes. Discharges in gaseous and liquid form are made under authorisation by the Environment Agency and SEPA under powers in the Radioactive Substance Act. Results of surveillance by the FSA and SEPA are published in the Radioactivity in Food and the Environment (RIFE) report series. In these reports, doses to critical groups are normally estimated separately for gaseous and liquid discharge pathways. Simple summation of these doses would tend to overestimate doses actually received. Three different methods of combining the effects of both types of discharge in an integrated assessment are considered and ranked according to their ease of application, transparency, scientific rigour and presentational issues. A single integrated assessment method is then chosen for further study. Doses are calculated for surveillance data for the calendar year 2000 and compared with those from the existing RIFE method.

  4. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments

    PubMed Central

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R.; Collins, Donald R.; Molina, Mario J.; Zhang, Renyi

    2016-01-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries. PMID:27035993

  5. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean

    2013-01-01

    Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.

  6. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments.

    PubMed

    Safi, Taqiyyah S; Munday, Jeremy N

    2015-09-21

    The method of detailed balance, introduced by Shockley and Queisser, is often used to find an upper theoretical limit for the efficiency of semiconductor pn-junction based photovoltaics. Typically the solar cell is assumed to be at an ambient temperature of 300 K. In this paper, we describe and analyze the use of radiative cooling techniques to lower the solar cell temperature below the ambient to surpass the detailed balance limit for a cell in contact with an ideal heat sink. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that our proposed structure yields an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for solar cells in an extraterrestrial environment in near-earth orbit.

  7. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments.

    PubMed

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R; Collins, Donald R; Molina, Mario J; Zhang, Renyi

    2016-04-19

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  8. Weibull model of multiplicity distribution in hadron-hadron collisions

    NASA Astrophysics Data System (ADS)

    Dash, Sadhana; Nandi, Basanta K.; Sett, Priyanka

    2016-06-01

    We introduce the use of the Weibull distribution as a simple parametrization of charged particle multiplicities in hadron-hadron collisions at all available energies, ranging from ISR energies to the most recent LHC energies. In statistics, the Weibull distribution has wide applicability in natural processes that involve fragmentation processes. This provides a natural connection to the available state-of-the-art models for multiparticle production in hadron-hadron collisions, which involve QCD parton fragmentation and hadronization. The Weibull distribution describes the multiplicity data at the most recent LHC energies better than the single negative binomial distribution.

  9. Hadron collider physics

    SciTech Connect

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  10. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  11. The measured radiation environment within Spacelabs 1 and 2 and comparison with predictions.

    PubMed

    Parnell, T A; Watts, J W; Fishman, G J; Benton, E V; Frank, A L; Gregory, J C

    1986-01-01

    To measure the radiation environment in the Spacelab (SL) module and on the pallet, a set of passive and active radiation detectors was flown as part of the Verification Flight Instrumentation (VFI). SL 1 carried 4 passive and 2 active detector packages which, with the data from the 26 passive detectors of Experiment INS006, provided a comprehensive survey of the radiation environment within the spacecraft. SL 2 carried 2 passive VFI units on the pallet. Thermoluminescent dosimeters (TLDs) measured the low linear energy transfer (LET) dose component; the HZE fluence and LET spectra were mapped with CR-39 track detectors; thermal and epithermal neutrons were measured with the use of fission foils; metal samples analyzed by gamma ray spectroscopy measured low levels of several activation lines. The TLDs registered from 97 to 143 mrad in the SL 1 module. Dose equivalents of 330 +/- 70 mrem in the SL 1 module and 537 +/- 37 mrem on the SL 2 pallet were measured. The active units in the SL 1 module each contained an integrating tissue-equivalent ion chamber and two differently-shielded xenon-filled proportional counters. The ion chambers accumulated 125 and 128 mrads for the mission with 17 and 12 mrads accumulated during passages through the South Atlantic Anomaly (SAA). The proportional counter rates (approximately 1 cps at sea level) were approximately 100 cps in the middle of the SAA (mostly protons), approximately 35 cps at large geomagnetic latitudes (cosmic rays) and approximately 100 cps in the South Horn of the electron belts (mostly bremsstrahlung). Detailed results of the measurements and comparison with calculated values are described.

  12. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-02-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4×107 n/s at the core-reflector interface, with an incoming current of 3.4×106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present

  13. Comparisons of several transport models in their predictions in typical space radiation environments

    NASA Astrophysics Data System (ADS)

    Lin, Z. W.; Adams, J. H.; Barghouty, A. F.; Randeniya, S. D.; Tripathi, R. K.; Watts, J. W.; Yepes, P. P.

    2012-02-01

    We have used several transport codes to calculate dose and dose equivalent values as well as the particle spectra behind a slab or inside a spherical shell shielding in typical space radiation environments. Two deterministic codes, HZETRN and UPROP, and two Monte Carlo codes, FLUKA and Geant4, are included. A soft solar particle event, a hard solar particle event, and a solar minimum galactic cosmic rays environment are considered; and the shielding material is either aluminum or polyethylene. We find that the dose values and particle spectra from HZETRN are in general rather consistent with Geant4 except for neutrons. The dose equivalent values from HZETRN and Geant4 are not far from each other, but the HZETRN values behind shielding are often lower than the Geant4 values. Results from FLUKA and Geant4 are mostly consistent for considered cases. However, results from the legacy code UPROP are often quite different from the other transport codes, partly due to its non-consideration of neutrons. Comparisons for the spherical shell geometry exhibit the same qualitative features as for the slab geometry. In addition, results from both deterministic and Monte Carlo transport codes show that the dose equivalent inside the spherical shell decreases from the center to the inner surface and this decrease is large for solar particle events; consistent with an earlier study based on deterministic radiation transport results. This study demonstrates both the consistency and inconsistency among these transport models in their typical space radiation predictions; further studies will be required to pinpoint the exact physics modules in these models that cause the differences and thus may be improved.

  14. MagRad: A code to optimize the operation of superconducting magnets in a radiation environment

    SciTech Connect

    Yeaw, Christopher T.

    1995-01-01

    A powerful computational tool, called MagRad, has been developed which optimizes magnet design for operation in radiation fields. Specifically, MagRad has been used for the analysis and design modification of the cable-in-conduit conductors of the TF magnet systems in fusion reactor designs. Since the TF magnets must operate in a radiation environment which damages the material components of the conductor and degrades their performance, the optimization of conductor design must account not only for start-up magnet performance, but also shut-down performance. The degradation in performance consists primarily of three effects: reduced stability margin of the conductor; a transition out of the well-cooled operating regime; and an increased maximum quench temperature attained in the conductor. Full analysis of the magnet performance over the lifetime of the reactor includes: radiation damage to the conductor, stability, protection, steady state heat removal, shielding effectiveness, optimal annealing schedules, and finally costing of the magnet and reactor. Free variables include primary and secondary conductor geometric and compositional parameters, as well as fusion reactor parameters. A means of dealing with the radiation damage to the conductor, namely high temperature superconductor anneals, is proposed, examined, and demonstrated to be both technically feasible and cost effective. Additionally, two relevant reactor designs (ITER CDA and ARIES-II/IV) have been analyzed. Upon addition of pure copper strands to the cable, the ITER CDA TF magnet design was found to be marginally acceptable, although much room for both performance improvement and cost reduction exists. A cost reduction of 10-15% of the capital cost of the reactor can be achieved by adopting a suitable superconductor annealing schedule. In both of these reactor analyses, the performance predictive capability of MagRad and its associated costing techniques have been demonstrated.

  15. Role of the UV external radiation field on the presence of astrophysical ices in protostellars environments

    NASA Astrophysics Data System (ADS)

    Robson Monteiro Rocha, Will; Pilling, Sergio

    2016-07-01

    The astrophysical ices survival is directly related with the temperature and ionizing radiation field in protostellars environments such as disks and envelopes. Computational models has shown that pure volatile molecules like CO and CH _{4} should survive only inside densest regions of molecular clouds or protoplanetary disks On the other hand, solid molecules such as H _{2}O and CH _{3}OH can be placed around 5 - 10 AU from the central protostar. Unlike of the previous models, we investigate the role of the UV external radiation field on the presence of ices in disks and envelopes. Once that a star-forming region is composed by the formation of many protostars, the external radiation field should be an important component to understand the real localization of the ices along the sight line. To address this topic it was employed the radiative transfer code RADMC-3D based on the Monte Carlo method. The code was used to model the spectrum and the near-infrared image of Elias 29. The initial parameters of the disk and envelope was taken from our previous paper (Rocha & Pilling (2015), ApJ 803:18). The opacities of the ices were calculated from the complex refractive index obtained at laboratory experiments perfomed at Grand Accélerateur National d'Íons Lourds (GANIL), by using the NKABS code from Rocha & Pilling (2014), SAA 123:436. The partial conclusions that we have obtained shows that pure CO volatile molecule cannot be placed at disk or envelope of Elias 29, unlike shown in our paper about Elias 29. Once it was observed in Elias 29 spectrum obtained with Infrared Space Observatory (ISO) between 2.5 - 190 μm, this molecule should be placed in foreground molecular clouds or trapped in the water ice matrix. The next calculations will be able to show where are placed the ices such as CH _{3}OH and CH _{3}CHO observed in Elias 29 spectrum.

  16. DNA Radiation Environments Program - Spring 1990 2-meter box experiments and analyses

    SciTech Connect

    Santoro, R.T ); Whitaker, S.Y. )

    1992-09-01

    This report summarizes the Spring 1990 2-m Box Experiments performed at the Army Pulse Radiation Facility (APRF) at Aberdeen Proving Ground, Maryland. These studies were sponsored by the Defense Nuclear Agency (DNA) under the Radiation Environments Program to obtain measured data for benchmarking the Adjoint Monte Carlo Code System, MASH, Version 1.0. MASH was developed as the Department of Defense and NATO code system for calculating neutron and gamma-ray radiation fields and shielding protection factors for armored vehicles and military structures against nuclear weapon radiation. In the experiments, neutron and gamma-ray dose and reduction factors were measured in the free-field and as a function of position on an anthropomorphic phantom that was placed outside and inside the steel-walled 2-m box. The data were acquired at a distance of 400-m from the APRF reactor. The measurements were performed by APRF, Bubble Technology Industries, the Defence Research Establishment Ottawa, Establishment Technique Central de l'Armement, and Harry Diamond Laboratory. Calculations were carried out by the Oak Ridge National Laboratory and Science Applications International Corporation. The purpose of these experiments was to measure the neutron and gamma-ray dose as a function of detector location on the phantom for cases when the phantom was standing in the free-field and inside of the box. Neutron measurements were made using a BD-IOOR bubble detector and gamma-ray measurements were made using thermoluminescent detectors (TLD). Calculated and measured data were compared in terms of the C/M ratio. DNA mandated that C/M values of {plus minus}20% define the acceptable limits for the comparison of the dose and reduction factor data and for qualifying the MASH code in replicating integral parameters.

  17. DNA Radiation Environments Program - Spring 1990 2-meter box experiments and analyses

    SciTech Connect

    Santoro, R.T; Whitaker, S.Y.

    1992-09-01

    This report summarizes the Spring 1990 2-m Box Experiments performed at the Army Pulse Radiation Facility (APRF) at Aberdeen Proving Ground, Maryland. These studies were sponsored by the Defense Nuclear Agency (DNA) under the Radiation Environments Program to obtain measured data for benchmarking the Adjoint Monte Carlo Code System, MASH, Version 1.0. MASH was developed as the Department of Defense and NATO code system for calculating neutron and gamma-ray radiation fields and shielding protection factors for armored vehicles and military structures against nuclear weapon radiation. In the experiments, neutron and gamma-ray dose and reduction factors were measured in the free-field and as a function of position on an anthropomorphic phantom that was placed outside and inside the steel-walled 2-m box. The data were acquired at a distance of 400-m from the APRF reactor. The measurements were performed by APRF, Bubble Technology Industries, the Defence Research Establishment Ottawa, Establishment Technique Central de l`Armement, and Harry Diamond Laboratory. Calculations were carried out by the Oak Ridge National Laboratory and Science Applications International Corporation. The purpose of these experiments was to measure the neutron and gamma-ray dose as a function of detector location on the phantom for cases when the phantom was standing in the free-field and inside of the box. Neutron measurements were made using a BD-IOOR bubble detector and gamma-ray measurements were made using thermoluminescent detectors (TLD). Calculated and measured data were compared in terms of the C/M ratio. DNA mandated that C/M values of {plus_minus}20% define the acceptable limits for the comparison of the dose and reduction factor data and for qualifying the MASH code in replicating integral parameters.

  18. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    NASA Astrophysics Data System (ADS)

    Bilki, Burak; CMS HCAL Collaboration

    2011-04-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of 1034cm-2s-1, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm × 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  19. Addressing ecological effects of radiation on populations and ecosystems to improve protection of the environment against radiation: Agreed statements from a Consensus Symposium☆

    PubMed Central

    Bréchignac, François; Oughton, Deborah; Mays, Claire; Barnthouse, Lawrence; Beasley, James C.; Bonisoli-Alquati, Andrea; Bradshaw, Clare; Brown, Justin; Dray, Stéphane; Geras’kin, Stanislav; Glenn, Travis; Higley, Kathy; Ishida, Ken; Kapustka, Lawrence; Kautsky, Ulrik; Kuhne, Wendy; Lynch, Michael; Mappes, Tapio; Mihok, Steve; Møller, Anders P.; Mothersill, Carmel; Mousseau, Timothy A.; Otaki, Joji M.; Pryakhin, Evgeny; Rhodes, Olin E.; Salbu, Brit; Strand, Per; Tsukada, Hirofumi

    2016-01-01

    This paper reports the output of a consensus symposium organized by the International Union of Radioecology in November 2015. The symposium gathered an academically diverse group of 30 scientists to consider the still debated ecological impact of radiation on populations and ecosystems. Stimulated by the Chernobyl and Fukushima disasters’ accidental contamination of the environment, there is increasing interest in developing environmental radiation protection frameworks. Scientific research conducted in a variety of laboratory and field settings has improved our knowledge of the effects of ionizing radiation on the environment. However, the results from such studies sometimes appear contradictory and there is disagreement about the implications for risk assessment. The Symposium discussions therefore focused on issues that might lead to different interpretations of the results, such as laboratory versus field approaches, organism versus population and ecosystemic inference strategies, dose estimation approaches and their significance under chronic exposure conditions. The participating scientists, from across the spectrum of disciplines and research areas, extending also beyond the traditional radioecology community, successfully developed a constructive spirit directed at understanding discrepancies. From the discussions, the group has derived seven consensus statements related to environmental protection against radiation, which are supplemented with some recommendations. Each of these statements is contextualized and discussed in view of contributing to the orientation and integration of future research, the results of which should yield better consensus on the ecological impact of radiation and consolidate suitable approaches for efficient radiological protection of the environment. PMID:27058410

  20. Addressing ecological effects of radiation on populations and ecosystems to improve protection of the environment against radiation: Agreed statements from a Consensus Symposium.

    PubMed

    Bréchignac, François; Oughton, Deborah; Mays, Claire; Barnthouse, Lawrence; Beasley, James C; Bonisoli-Alquati, Andrea; Bradshaw, Clare; Brown, Justin; Dray, Stéphane; Geras'kin, Stanislav; Glenn, Travis; Higley, Kathy; Ishida, Ken; Kapustka, Lawrence; Kautsky, Ulrik; Kuhne, Wendy; Lynch, Michael; Mappes, Tapio; Mihok, Steve; Møller, Anders P; Mothersill, Carmel; Mousseau, Timothy A; Otaki, Joji M; Pryakhin, Evgeny; Rhodes, Olin E; Salbu, Brit; Strand, Per; Tsukada, Hirofumi

    2016-07-01

    This paper reports the output of a consensus symposium organized by the International Union of Radioecology in November 2015. The symposium gathered an academically diverse group of 30 scientists to consider the still debated ecological impact of radiation on populations and ecosystems. Stimulated by the Chernobyl and Fukushima disasters' accidental contamination of the environment, there is increasing interest in developing environmental radiation protection frameworks. Scientific research conducted in a variety of laboratory and field settings has improved our knowledge of the effects of ionizing radiation on the environment. However, the results from such studies sometimes appear contradictory and there is disagreement about the implications for risk assessment. The Symposium discussions therefore focused on issues that might lead to different interpretations of the results, such as laboratory versus field approaches, organism versus population and ecosystemic inference strategies, dose estimation approaches and their significance under chronic exposure conditions. The participating scientists, from across the spectrum of disciplines and research areas, extending also beyond the traditional radioecology community, successfully developed a constructive spirit directed at understanding discrepancies. From the discussions, the group has derived seven consensus statements related to environmental protection against radiation, which are supplemented with some recommendations. Each of these statements is contextualized and discussed in view of contributing to the orientation and integration of future research, the results of which should yield better consensus on the ecological impact of radiation and consolidate suitable approaches for efficient radiological protection of the environment.

  1. Investigation of innovative radiation imaging method and system for radiological environments

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; Joung, J.; Kim, Y.; Lee, K.

    2017-03-01

    We have developed a novel imaging method that can be applied to most applications in the field of radiological environment imaging. It resolves either two-dimensional (2D) or three-dimensional (3D) distributions of radioactive sources in applications for homeland security, environmental monitoring, radiation contamination monitoring, baggage inspection, nuclear power plant monitoring, and more. The proposed imaging method uses a simple detector configured as a radiation-counting detector with spectroscopic capabilities. The detector module consists of two components: a flat field-of-view (FOV) collimator with a 30° FOV opening and a typical single-channel radiation detector made of a 2 in.×2 in. NaI(Tl) scintillator coupled to a 2 in photomultiplier tube (PMT). This simple detector module makes it possible to develop a cost-effective imaging system and provide design freedom in extending the system configuration to include one-dimensional (1D) or 2D detector-array shapes to meet the needs of various applications. One of most distinctive features of the new imaging method is that it uses only a pair of 2D projections to obtain a 3D reconstruction. The projections are measured by the proposed detector module at two positions orthogonal to one another; the measured projections are manipulated to enhance the resolution of the reconstructed 3D image. The imaging method comprises several steps performed consecutively: projection measurement, energy re-binning, projection separation, resolution and attenuation recovery, image reconstruction, and image consolidation and quantitative analysis. The resolution and attenuation recovery step provides the most distinctive and important processing by which the poor quality of projection data is enhanced. Such poor quality is mainly due to the use of a simple detector with a wide-opening flat FOV collimator. Simulation and experimental studies have been conducted to validate the proposed method. In this investigation, we

  2. Organization and operation of the sixth international symposium on the natural radiation environment (NRE VI). Final report

    SciTech Connect

    Hopke, P.K.

    1995-12-31

    An important source of human exposure to radiation is the natural world including cosmic rays, cosmogonic radionuclides, natural terrestrial radionuclides, and radon isotopes and its decay products. Considerable effort is being expended on a worldwide basis to characterize the exposure to the natural radiation environment and determine the important pathways for the exposure to result in dose to tissue that leads to injury and disease. The problem of background exposure to naturally occurring radioactivity has been the subject of research since the initial discovery of the radioactivity of uranium and thorium. However, with the advent of artificial sources of radiation with both benefits (medical x-rays and nuclear medicine), and harm (Chernobyl fallout), the nature and magnitude of the natural radiation environment and the effects on various populations are important in the development of overall public health strategies as ALARA principles are applied. To facilitate the exchange of information and the review of uncertainties and scientific research priorities, a series of 5 international meetings on Natural Radiation Environment, 1963, 1987, 1991. This conference (Montreal, 1995) covers the range of natural radiation environments that give rise to human exposure and dose. This document is a program summary.

  3. Markedly enhanced direct radiative forcing of black carbon particles under polluted urban environments

    NASA Astrophysics Data System (ADS)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zamora, Misti; Zeng, Liming; Shao, Min; Wu, Yusheng; Zheng, Jun; Wang, Yuan; Collins, Don; Zhang, Renyi

    2016-04-01

    Black carbon (BC) particles, produced from incomplete fossil fuel combustion and biomass burning, are ubiquitous in the atmosphere and have profound impacts on air quality, human health, weather, and climate. For example, in areas identified as aerosol hotspots, which include many urban centers and megacities worldwide, solar heating by BC particles has been shown to be comparable to warming due to the greenhouse gases2. Although BC represents a key short-lived climate forcer, its direct radiative forcing remains highly uncertain. In particular, the available results of absorption enhancement of BC particles during atmospheric aging are conflicting from the previous studies, leading to a large uncertainty in global radiative transfer calculation. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China and Houston, US, using a novel chamber approach. BC aging exhibits two distinct stages - initial transformation from a fractal to spherical morphology with little absorption variation and the subsequent growth of fully compact particles with a maximum absorption enhancement factor of 2.4. The variation in BC direct radiative forcing is highly dependent of the rate and timescale of aging, with an estimated increase of 0.45 (0.21 - 0.80) W m-2 from fresh to fully aged particles. Our results reveal a high climatic impact in polluted environments due to rapid aging and a clear distinction between urban cities in developed and developing countries for BC particles, highlighting a larger than recognized co-benefit in air quality improvement and climate protection by BC mediation.

  4. Nuclear Radiation Fields on the Mars Surface: Risk Analysis for Long-term Living Environment

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Clowdsley, Martha S.; Qualls, Garry D.; Nealy, John E.

    2005-01-01

    Mars, our nearest planet outward from the sun, has been targeted for several decades as a prospective site for expanded human habitation. Background space radiation exposures on Mars are expected to be orders of magnitude higher than on Earth. Recent risk analysis procedures based on detailed dosimetric techniques applicable to sensitive human organs have been developed along with experimental data regarding cell mutation rates resulting from exposures to a broad range of particle types and energy spectra. In this context, simulated exposure and subsequent risk for humans in residence on Mars are examined. A conceptual habitat structure, CAD-modeled with duly considered inherent shielding properties, has been implemented. Body self-shielding is evaluated using NASA standard computerized male and female models. The background environment is taken to consist not only of exposure from incident cosmic ray ions and their secondaries, but also include the contribution from secondary neutron fields produced in the tenuous atmosphere and the underlying regolith.

  5. Continuous electromagnetic radiation monitoring in the environment: analysis of the results in Greece.

    PubMed

    Manassas, Athanasios; Boursianis, Achilles; Samaras, Theodoros; Sahalos, John N

    2012-09-01

    Non-ionising radiation-monitoring networks were initiated as a result of the public concerns about the potential health effects from telecommunication emissions. In the present study, the data acquired from such networks in Greece are used to assess the changes in the outdoor electromagnetic environment with respect to location and time. The study shows that there is a statistically significant difference between the urban (median electric field: 1.1 V m(-1)) and the rural (median electric field: 0.3 V m(-1)) installations of monitoring units and also shows that there is a median diurnal variation (daily maximum to minimum) of 20.2 and 33.8 % for the broadcasting and mobile telecommunication emissions, respectively. Moreover, there is a difference in the electric field between daytime and night, but not between morning and afternoon. The results are in line with previously published data from spot measurements, monitoring networks and personal exposimeter studies performed in several European countries.

  6. Habitability in High Radiation Environments: The Case for Gaia at Europa

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.

    2004-12-01

    In the paper of Cooper et al. (2001) we concluded, in relation to our work on magnetospheric irradiation of Europa and the other icy galilean moons of Jupiter, that 'icy satellites with significant heat, irradiation, and subsurface water resources may provide common abodes for life throughout the universe'. This expanded the original proposal of Chyba (2000) and his later works that radiolytic production of oxidants and simple hydrocarbons on Europa's icy surface could support evolution and survival of life within a Europan subsurface ocean. In the general case of icy planets and moons the radiation environment does not have to interact directly with the surface but could also provide energy for life through radiation-induced chemistry in thick atmospheres chemically coupled to icy surfaces with hydrocarbon reservoirs as on Titan. The Gaia model for Earth implies that the entire planet operates with atmospheric, geologic, and geochemical processes conducive to life. Essential requirements for Gaia are an oxidizing atmospheric environment at planetary surfaces, where oxidants like molecular oxygen are produced by radiation processes (mediated by photosynthetic chemistry on Earth but more directly produced by radiolysis on Europa), reservoirs of liquid water and hydrocarbons on or below the surface, other reduced materials in the interior, and geologic processes which drive chemical exchange between the chemically oxidized surface and reduced interior environments. At Europa a thin oxygen atmosphere is observed and arises from magnetospheric interaction, and there is much evidence for active resurfacing likely related to solid-state convection and diapiric processes within a thick crust of soft ice overlying a liquid ocean. These processes on Europa are analogous to that of the tectonic conveyer belt that continually recycles carbon, oxygen, and other essential materials for life between the atmosphere, surface, and interior on Earth. The ice crust at Europa could be

  7. Environment-induced lentigines: formation of solar lentigines beyond ultraviolet radiation.

    PubMed

    Nakamura, Motoki; Morita, Akimichi; Seité, Sophie; Haarmann-Stemmann, Thomas; Grether-Beck, Susanne; Krutmann, Jean

    2015-06-01

    There is no doubt that ultraviolet radiation (UVR) contributes to the generation of acquired lentigines in human skin, as indicated by the term solar lentigo. A growing number of recent epidemiological and mechanistic studies, however, strongly suggest that in addition to UVR, other environmental factors contribute to lentigines' formation as well. We therefore here introduce the term 'environment-induced lentigo' (EIL) to refer to acquired pigment spots of human skin. In this view point, we (i) summarize the existing evidence to support a role of environmental toxicants other than UVR in the pathogenesis of EILs, (ii) we argue that activation of aryl hydrocarbon receptor (AHR) signalling by UVR and environmental toxicants is critically involved in triggering and sustaining a crosstalk between melanocytes, keratinocytes and fibroblasts, which then causes the development and persistence of EILs in human skin, and (iii) we discuss clinical implications for the prevention and treatment of EILs resulting from this concept.

  8. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S. D.

    1994-01-01

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research were covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.

  9. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arthur T.

    2001-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  10. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arhur T.

    1999-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  11. Hollow core and other infrared waveguides for instrumentation in intense radiation environments.

    SciTech Connect

    Weiss, Jonathan David

    2007-11-01

    The purpose of this LDRD was to study the effect of steady-state neutron and gamma irradiation on the transmission of waveguides designed to operate well in the near- or mid-IR region of the electromagnetic spectrum. In this context, near-IR refers to the region between 1.3 {mu}m and about 2.4 {mu}m, and mid-IR between 3.0 {mu}m and 4.5 {mu}m. Such radiation environments could exist in nuclear power plants or nuclear weapons. Pulsed and steady-state radiation effects had been extensively studied on silica-based optical fibers because they have been the most readily available, most widely used in communications and sensing, and the least expensive. However, silica-based fibers do not transmit well beyond about 1.8 {mu}m and they are virtually opaque in the mid-IR. The mid-IR, as defined above, and beyond, is where vibrational spectroscopy is carried out. This type of sensing is one important application of infrared optical fibers.

  12. NASA Galactic Cosmic Radiation Environment Model: Badhwar-O'Neill (2014)

    NASA Technical Reports Server (NTRS)

    O'Neill, P. M.; Golge, S.; Slaba, T. C.

    2015-01-01

    The Badhwar-O'Neill (BON) Galactic Cosmic Ray (GCR) flux model is used by NASA to certify microelectronic systems and in the analysis of radiation health risks for human space flight missions. Of special interest to NASA is the kinetic energy region below 4.0 GeV/n due to the fact that exposure from GCR behind shielding (e.g., inside a space vehicle) is heavily influenced by the GCR particles from this energy domain. The BON model numerically solves the Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration under the assumption of a spherically symmetric heliosphere. The model utilizes a GCR measurements database from various particle detectors to determine the boundary conditions. By using an updated GCR database and improved model fit parameters, the new BON model (BON14) is significantly improved over the previous BON models for describing the GCR radiation environment of interest to human space flight.

  13. Stimuli responsive deswelling of radiation synthesized collagen hydrogel in simulated physiological environment.

    PubMed

    Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin; Li, Jiuqiang

    2013-08-01

    Collagen hydrogels were prepared via radiation crosslinking. The simulated physiological environmental effects related to their biomedical applications on the volume phase transition of collagen hydrogel were studied, that is stimuli response to ions, temperature, and pH. The deswelling behavior of collagen hydrogel depends on the salt concentration, temperature, pH, and the hydrogel preparation procedure. Meanwhile, hydrogel structure related to the volume phase transition was investigated by FTIR, fluorescence spectrum, and HR-MAS NMR. Deswelling in salt solution caused little change on collagen conformation, and a denser network led to more significant tyrosine-derived fluorescence quenching. Hydrogen bonding between hydrated water and collagen polypeptide chain was dissociated and the activity of hydrophobic side chain increased, inducing a higher extent of contraction with the increasing of salt concentration. Moreover, salt solution treatments weakened the electrostatic interactions, side chains interactions, and hydrogen bonding of collagen hydrogel, which reduced the thermal stability of collagen hydrogel. Comparing with cell-free collagen hydrogel contraction, fibroblasts did not aggravate contraction of collagen hydrogel significantly. This study elucidated the deswelling mechanism of radiation crosslinked collagen hydrogel in simulated physiological environment and provides strategies for controlling the stimuli response of collagen hydrogel in biomedical application.

  14. NASA Galactic Cosmic Radiation Environment Model: Badhwar - O'Neill (2014)

    NASA Technical Reports Server (NTRS)

    Golge, S.; O'Neill, P. M.; Slaba, T. C.

    2015-01-01

    The Badhwar-O'Neill (BON) Galactic Cosmic Ray (GCR) flux model has been used by NASA to certify microelectronic systems and in the analysis of radiation health risks for human space flight missions. Of special interest to NASA is the kinetic energy region below 4.0 GeV/n due to the fact that exposure from GCR behind shielding (e.g., inside a space vehicle) is heavily influenced by the GCR particles from this energy domain. The BON model numerically solves the Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration under the assumption of a spherically symmetric heliosphere. The model utilizes a comprehensive database of GCR measurements from various particle detectors to determine boundary conditions. By using an updated GCR database and improved model fit parameters, the new BON model (BON14) is significantly improved over the previous BON models for describing the GCR radiation environment of interest to human space flight.

  15. Timepix-based radiation environment monitor measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Stoffle, Nicholas; Pinsky, Lawrence; Kroupa, Martin; Hoang, Son; Idarraga, John; Amberboy, Clif; Rios, Ryan; Hauss, Jessica; Keller, John; Bahadori, Amir; Semones, Edward; Turecek, Daniel; Jakubek, Jan; Vykydal, Zdenek; Pospisil, Stanislav

    2015-05-01

    A number of small, single element radiation detectors, employing the CERN-based Medipix2 Collaboration's Timepix Application Specific Integrated Circuit (ASIC) coupled to a specially modified version of the USB-Lite interface for that ASIC provided by the Institute for Experimental and Applied Physics (IEAP) at the Czech Technical University in Prague, have been developed at the University of Houston and NASA Johnson Space Center. These detectors, officially designated by NASA as Radiation Environment Monitors (REMs), were deployed aboard the International Space Station in late 2012. Six REM units are currently operating on Station Support Computers (SSCs) and returning data on a daily basis. The associated data acquisition software on the SSCs provides both automated data collection and transfer, as well as algorithms to handle adjustment of acquisition rates and recovery and restart of the acquisition software. A suite of ground software analysis tools has been developed to allow rapid analysis of the data and provides a ROOT-based framework for extending data analysis capabilities.

  16. A temporal forecast of radiation environments for future space exploration missions.

    PubMed

    Kim, Myung-Hee Y; Cucinotta, Francis A; Wilson, John W

    2007-06-01

    The understanding of future space radiation environments is an important goal for space mission operations, design, and risk assessment. We have developed a solar cycle statistical model in which sunspot number is coupled to space-related quantities, such as the galactic cosmic radiation (GCR) deceleration potential (phi) and the mean occurrence frequency of solar particle events (SPEs). Future GCR fluxes were derived from a predictive model, in which the temporal dependence represented by phi was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. These results showed that the point dose equivalent inside a typical spacecraft in interplanetary space was influenced by solar modulation by up to a factor of three. It also has been shown that a strong relationship exists between large SPE occurrences and phi. For future space exploration missions, cumulative probabilities of SPEs at various integral fluence levels during short-period missions were defined using a database of proton fluences of past SPEs. Analytic energy spectra of SPEs at different ranks of the integral fluences for energies greater than 30 MeV were constructed over broad energy ranges extending out to GeV for the analysis of representative exposure levels at those fluences. Results will guide the design of protection systems for astronauts during future space exploration missions.

  17. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Astrophysics Data System (ADS)

    Page, Arthur T.

    2001-07-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  18. QCD and Hadron Physics

    SciTech Connect

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  19. The Space Radiation Environment as it Relates to Electronic System Performance: Or Why Not to Fly Commercial Electronic Components in Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael A.; LaBel, Kenneth A.; Polvey, Christian

    2005-01-01

    This viewgraph presentation offers an overview of the space radiation environment, primarily in near-Earth environments such as Low Earth Orbit (LEO). The presentation describes the Halloween solar event of 2003 as an example of how solar activity can affect spacecraft electronic systems. The lunar radiation environment is also briefly summarized.

  20. The radiation environment on the Moon from galactic cosmic rays in a lunar habitat.

    PubMed

    Jia, Y; Lin, Z W

    2010-02-01

    We calculated how the radiation environment in a habitat on the surface of the Moon would have depended on the thickness of the habitat in the 1977 galactic cosmic-ray environment. The Geant4 Monte Carlo transport code was used, and a hemispherical dome made of lunar regolith was used to simulate the lunar habitat. We investigated the effective dose from primary and secondary particles including nuclei from protons up to nickel, neutrons, charged pions, photons, electrons and positrons. The total effective dose showed a strong decrease with the thickness of the habitat dome. However, the effective dose values from secondary neutrons, charged pions, photons, electrons and positrons all showed a strong increase followed by a gradual decrease with the habitat thickness. The fraction of the summed effective dose from these secondary particles in the total effective dose increased with the habitat thickness, from approximately 5% for the no-habitat case to about 47% for the habitat with an areal thickness of 100 g/cm(2).

  1. In vitro model of vitamin D synthesis by UV radiation in an Australian urban environment.

    PubMed

    McKinley, Alex; Janda, Monika; Auster, Josephine; Kimlin, Michael

    2011-01-01

    Vitamin D, an important constituent of human health, is produced through the exposure of human skin to short wave (280-315 nm) ultraviolet radiation (UV). We aimed to establish whether an urbanized environment with tall buildings in close proximity (an "urban canyon") significantly reduced the capacity of sunlight to synthesize vitamin D, when compared with a typical suburban area (∼2.5 km away); and to investigate the association of UV and vitamin D production with pollution, temperature, and humidity. Measurements of ambient UV (295-400 nm) (using a portable photometer/radiometer and detector) and synthesized vitamin D (from an in vitro model) were taken regularly at urban and control sites over 3 months in Brisbane, Australia. During a typical 20 min measurement, urban and control sites received 0.26 and 1.03 W m(-2) mean total UV respectively (P < 0.001), and produced 0.12 and 0.53 μg mL(-1) mean vitamin D (P < 0.001). Pollution, temperature and humidity were not associated with UV or vitamin D production. This demonstrates a large difference in vitamin D synthesis between an urban canyon and a nearby control site. Although the results cannot be directly applied to humans, they emphasize the need for further study of human vitamin D production in urban environments.

  2. Hadronization processes in neutrino interactions

    SciTech Connect

    Katori, Teppei; Mandalia, Shivesh

    2015-10-15

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  3. Integration of the Radiation Belt Environment Model Into the Space Weather Modeling Framework

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Toth, G.; Fok, M.; Gombosi, T.; Liemohn, M.

    2009-01-01

    We have integrated the Fok radiation belt environment (RBE) model into the space weather modeling framework (SWMF). RBE is coupled to the global magnetohydrodynamics component (represented by the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme, BATS-R-US, code) and the Ionosphere Electrodynamics component of the SWMF, following initial results using the Weimer empirical model for the ionospheric potential. The radiation belt (RB) model solves the convection-diffusion equation of the plasma in the energy range of 10 keV to a few MeV. In stand-alone mode RBE uses Tsyganenko's empirical models for the magnetic field, and Weimer's empirical model for the ionospheric potential. In the SWMF the BATS-R-US model provides the time dependent magnetic field by efficiently tracing the closed magnetic field-lines and passing the geometrical and field strength information to RBE at a regular cadence. The ionosphere electrodynamics component uses a two-dimensional vertical potential solver to provide new potential maps to the RBE model at regular intervals. We discuss the coupling algorithm and show some preliminary results with the coupled code. We run our newly coupled model for periods of steady solar wind conditions and compare our results to the RB model using an empirical magnetic field and potential model. We also simulate the RB for an active time period and find that there are substantial differences in the RB model results when changing either the magnetic field or the electric field, including the creation of an outer belt enhancement via rapid inward transport on the time scale of tens of minutes.

  4. Radiative Transfer Model of Dust Attenuation Curves in Clumpy, Galactic Environments

    NASA Astrophysics Data System (ADS)

    Seon, Kwang-Il; Draine, Bruce T.

    2016-12-01

    The attenuation of starlight by dust in galactic environments is investigated through models of radiative transfer in a spherical, clumpy interstellar medium (ISM). We show that the attenuation curves are primarily determined by the wavelength dependence of absorption rather than by the underlying extinction (absorption+scattering) curve; the observationally derived attenuation curves cannot constrain a unique extinction curve unless the absorption or scattering efficiency is specified. Attenuation curves consistent with the “Calzetti curve” are found by assuming the silicate-carbonaceous dust model for the Milky Way (MW), but with the 2175 Å bump suppressed or absent. The discrepancy between our results and previous work that claimed the Small Magellanic Cloud dust to be the origin of the Calzetti curve is ascribed to the difference in adopted albedos; we use the theoretically calculated albedos, whereas the previous works adopted albedos derived empirically from observations of reflection nebulae. It is found that the attenuation curves calculated with the MW dust model are well represented by a modified Calzetti curve with a varying slope and UV bump strength. The strong correlation between the slope and UV bump strength, as found in star-forming galaxies at 0.5\\lt z\\lt 2.0, is well reproduced when the abundance of the UV bump carriers is assumed to be 30%-40% of that of the MW dust; radiative transfer effects lead to shallower attenuation curves with weaker UV bumps as the ISM is more clumpy and dustier. We also argue that some local starburst galaxies have a UV bump in their attenuation curves, albeit very weak.

  5. Functional Traits in Parallel Evolutionary Radiations and Trait-Environment Associations in the Cape Floristic Region of South Africa.

    PubMed

    Mitchell, Nora; Moore, Timothy E; Mollmann, Hayley Kilroy; Carlson, Jane E; Mocko, Kerri; Martinez-Cabrera, Hugo; Adams, Christopher; Silander, John A; Jones, Cynthia S; Schlichting, Carl D; Holsinger, Kent E

    2015-04-01

    Evolutionary radiations with extreme levels of diversity present a unique opportunity to study the role of the environment in plant evolution. If environmental adaptation played an important role in such radiations, we expect to find associations between functional traits and key climatic variables. Similar trait-environment associations across clades may reflect common responses, while contradictory associations may suggest lineage-specific adaptations. Here, we explore trait-environment relationships in two evolutionary radiations in the fynbos biome of the highly biodiverse Cape Floristic Region (CFR) of South Africa. Protea and Pelargonium are morphologically and evolutionarily diverse genera that typify the CFR yet are substantially different in growth form and morphology. Our analytical approach employs a Bayesian multiple-response generalized linear mixed-effects model, taking into account covariation among traits and controlling for phylogenetic relationships. Of the pairwise trait-environment associations tested, 6 out of 24 were in the same direction and 2 out of 24 were in opposite directions, with the latter apparently reflecting alternative life-history strategies. These findings demonstrate that trait diversity within two plant lineages may reflect both parallel and idiosyncratic responses to the environment, rather than all taxa conforming to a global-scale pattern. Such insights are essential for understanding how trait-environment associations arise and how they influence species diversification.

  6. The Effect of Dose Rate on Composite Durability When Exposed to a Simulated Long-Term Lunar Radiation Environment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; O'Rourke, Mary Jane; Hill, Charles; Nutt, Steven; Atwell, William

    2011-01-01

    Human exploration of space beyond low Earth orbit (LEO) requires a safe living and working environment for crew. Composite materials are one type of material being investigated by NASA as a multi-functional structural approach to habitats for long-term use in space or on planetary surfaces with limited magnetic fields and atmosphere. These materials provide high strength with the potential for decreased weight and increased radiation protection of crew and electronics when compared with conventional aluminum structures. However, these materials have not been evaluated in a harsh radiation environment, as would be experienced outside of LEO or on a planetary surface. Thus, NASA has been investigating the durability of select composite materials in a long-term radiation environment. Previously, NASA exposed composite samples to a simulated, accelerated 30-year radiation treatment and tensile stresses similar to those of a habitat pressure vessel. The results showed evidence of potential surface oxidation and enhanced cross-linking of the matrix. As a follow-on study, we performed the same accelerated exposure alongside an exposure with a decreased dose rate. The slower dose ]rate is comparable to a realistic scenario, although still accelerated. Strain measurements were collected during exposure and showed that with a fastdose rate, the strain decreased with time, but with a slow ]dose rate, the strain increased with time. After the radiation exposures, samples were characterized via tensile tests, flexure tests, Fourier Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). The results of these tests will be discussed.

  7. Physics of very high energy hadron-hadron colliders

    SciTech Connect

    Hinchliffe, I.

    1986-09-01

    A review is given of the physics accessible at a very high energy hadron-hadron collider. Emphasis is placed on the reliability of the predicted rates, and upon the energy and luminosity required to explore new physics options. 38 refs., 19 figs.

  8. How Are Changing Solar Ultraviolet Radiation and Climate Affecting Light-induced Chemical Processes in Aquatic Environments?

    EPA Science Inventory

    Changes in the ozone layer over the past three decades have resulted in increases in solar UV-B radiation (280-315 nm) that reach the surface of aquatic environments. These changes have been accompanied by unprecedented changes in temperature and precipitation patterns around the...

  9. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    SciTech Connect

    Yonehara, Katsuya; Abrams, Robert; Dinkel, Holly; Freemire, Ben; Johnson, Rolland; Kazakevich, Grigory; Tollestrup, Alvin; Zwaska, Robert

    2016-06-01

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at the MuCool Test Area at Fermilab.

  10. The AMSAT-OSCAR-40 High Elliptical Orbit Radiation Environment Monitoring Payload - First Flight Results

    NASA Astrophysics Data System (ADS)

    Sweeting, Martin, , Sir

    Over the last decade, Surrey's micro-satellites have provided continuous monitoring of the proton and heavy-ion environment encountered in low-Earth orbit (LEO), through the use of a series of silicon PIN-diode-based particle detectors, starting with the UK Defence Evaluation Research Agency's (DERA's) Cosmic-Radiation Environment and Dosimetry (CREDO) payload, flown on-board UoSAT-3 in 1990, followed in 1992 by the Cosmic-Ray Experiment (CRE), developed at the Surrey Space Centre under a micro-satellite Technology Transfer (TT) programme operated between Surrey Satellite Technology Ltd. (SSTL) and the Korea Advanced Institute of Science and Technology (KAIST), and flown on the resulting KITSAT-1 micro-satellite. The CRE was flown again in 1993 on-board the PoSAT- 1 micro-satellite, developed under a similar TT programme operated between SSTL and Portugal. The results from all of these instruments have given a great deal of information on the nature of the low-Earth orbit (LEO) ionising radiation environment, and in the case of the PoSAT-1 CRE, continue to do so. However, to obtain a more complete "picture" of the magnetosphere, it is necessary to orbit instruments much further out in space An opportunity to do this arose in 1994 when amateur radio satellite groups (AMSAT) proposed launching a small (600 kg) communications satellite into highly elliptical orbit. This satellite, called AMSAT-OSCAR-40 (AO-40), was launched by Ariane 5 rocket on 16th November 2000, initially into a geostationary transfer orbit (GTO). The satellite has subsequently been manoeuvred into a highly elliptical, 1070 km x 58,700 km, 6.8o inclination orbit, and thus it affords the opportunity to observe the proton and heavy-ion environment through a large cross-section of Earth's magnetosphere. AO-40 carries a version of the CRE, which has been slightly modified in terms of interfaces and packaging to fit that particular satellite bus. However the particle detecting element is essentially

  11. INTERACTIONS OF SOLAR ULTRAVIOLET RADIATION AND DISSOLVED ORGANIC MATTER IN FRESHWATER AND MARINE ENVIRONMENTS

    EPA Science Inventory

    Solar radiation provides the primary driving force for the biogeochemical cycles upon which life and climate depend. Recent studies have demonstrated that the absorption of solar radiation, especially 'm the ultraviolet spectral region, results in photochemical reactions that can...

  12. Radiation beamline testbeds for the simulation of planetary and spacecraft environments for human and robotic mission risk assessment

    NASA Astrophysics Data System (ADS)

    Wilkins, Richard

    The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the inter-national space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Med-ical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the

  13. Radiation Beamline Testbeds for the Simulation of Planetary and Spacecraft Environments for Human and Robotic Mission Risk Assessment

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard

    2010-01-01

    The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the

  14. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  15. Quarkonia production with leptons and hadrons

    SciTech Connect

    V. Papadimitriou

    2004-06-09

    We discuss current issues and present the latest measurements on quarkonia production from experiments monitoring hadron-hadron and lepton-hadron collisions. These measurements include cross section and polarization results for charmonium and bottomonium states.

  16. Hadronic laws from QCD

    NASA Astrophysics Data System (ADS)

    Cahill, R. T.

    1992-06-01

    A review is given of progress in deriving the effective action for hadronic physics, S[π, ϱ, ω,.., overlineN, N,..] , from the fundamental defining action of QCD, S[ overlineq, q, A μa] . This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling.

  17. Exposure assessment of mobile phone base station radiation in an outdoor environment using sequential surrogate modeling.

    PubMed

    Aerts, Sam; Deschrijver, Dirk; Joseph, Wout; Verloock, Leen; Goeminne, Francis; Martens, Luc; Dhaene, Tom

    2013-05-01

    Human exposure to background radiofrequency electromagnetic fields (RF-EMF) has been increasing with the introduction of new technologies. There is a definite need for the quantification of RF-EMF exposure but a robust exposure assessment is not yet possible, mainly due to the lack of a fast and efficient measurement procedure. In this article, a new procedure is proposed for accurately mapping the exposure to base station radiation in an outdoor environment based on surrogate modeling and sequential design, an entirely new approach in the domain of dosimetry for human RF exposure. We tested our procedure in an urban area of about 0.04 km(2) for Global System for Mobile Communications (GSM) technology at 900 MHz (GSM900) using a personal exposimeter. Fifty measurement locations were sufficient to obtain a coarse street exposure map, locating regions of high and low exposure; 70 measurement locations were sufficient to characterize the electric field distribution in the area and build an accurate predictive interpolation model. Hence, accurate GSM900 downlink outdoor exposure maps (for use in, e.g., governmental risk communication and epidemiological studies) are developed by combining the proven efficiency of sequential design with the speed of exposimeter measurements and their ease of handling.

  18. Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Slaba, Tony C.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Badavi, Francis F.; Böhm, Eckart; Böttcher, Stephan; Brinza, David E.; Ehresmann, Bent; Hassler, Donald M.; Matthiä, Daniel; Rafkin, Scot

    2017-02-01

    The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anticorrelation between the recorded surface Galactic Cosmic Ray-induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation has also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 to 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions.

  19. Energy dependence of hadronic activity

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.; Groom, D. E.; Job, P. K.; Mokhov, N. V.; Stevenson, G. R.

    1994-01-01

    Two features of high-energy hadronic cascades have long been known to shielding specialists: a) in a high-energy hadronic cascade in a given material (incident E ≳ 10 GeV), the relative abundance and spectrum of each hadronic species responsible for most of the energy deposition is independent of the energy or species of the incident hadron, and b) because π0 production bleeds off more and more energy into the electromagnetic sector as the energy of the incident hadron increases, the absolute level of this low-energy hadronic activity ( E ≲ 1 GeV) rises less rapidly than the incident energy, and in fact rises very nearly as a power of the incident energy. Both features are of great importance in hadron calorimetry, where it is the "universal spectrum" which makes possible the definition of an intrinsic {e}/{h}, and the increasing fraction of the energy going into π0's which leads to the energy dependence of {e}/{π}. We present evidence for the "universal spectrum," and use an induction argument and simulation results to demonstrate that the low-energy activity ss Em, with 0.80 ≲ m ≲ 0.85. The hadronic activity produced by incident pions is 15-20% less than that initiated by protons.

  20. Quarkonium production in hadronic collisions

    SciTech Connect

    Gavai, R.; Schuler, G.A.; Sridhar, K.

    1995-07-01

    We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.

  1. Review of hadrons in medium

    SciTech Connect

    Krein, Gastão

    2016-01-22

    I review the present status in the theoretical and phenomenological understanding of hadron properties in strongly interacting matter. The topics covered are the EMC effect, nucleon structure functions in cold nuclear matter, spectral properties of light vector mesons in hot and cold nuclear matter, and in-medium properties of heavy flavored hadrons.

  2. The effect of ionizing radiation on amino acids and bacterial spores in different geo- and cosmochemical environments

    NASA Astrophysics Data System (ADS)

    Kminek, Gerhard

    In this thesis I have investigated the impact of ionizing radiation from the environment on the stability of bacterial spores and amino acids. I measured the radiolysis constant of amino acids and the inactivation constant of bacterial spores. To put these results in the context of a natural setting, I have selected four different cases and calculated the radiation environment for meteorites, the Martian subsurface, terrestrial halite fluid inclusions, and fossil bones. Bacterial spores exhibit a remarkable resistance to adverse environments and are the best example for the long-term survival of life forms. On a molecular level, amino acids are of particular interest because of their importance in biochemistry and their stability in the environment. The significance of amino acids, however, goes back to a time before life existed. The exogenous delivery of amino acids by meteorites might have been essential to provide the required supply of organic molecules for the origin of life on the Earth. There is one common threat, however, to the preservation of amino acids and bacterial spores in all known terrestrial and extraterrestrial environments: ionizing radiation. Amino acids in meteorites are exposed to radiation from internal radioactivity and space radiation. I show that this radiation decomposes substantial amounts of amino acids over time, indicating a higher exogenous delivery of amino acids to the early Earth. The total radiodecomposition since the synthesis of amino acids is between 23 and 68%. Radiodecomposition induces a certain fractionation in favor of smaller amino acids. Fossil bones show a post-mortem uranium uptake. My results suggest a substantial radiodecomposition of amino acids on a 10 million year time scale. Age determination based on racemization of amino acids will be affected in fossil bones that are older than 1--30 million years. My results on the stability of bacterial spores in halite fluid inclusions and on Mars suggest that radiation

  3. A Wide Temperature, Radiation Tolerant, CMOS-compatible Precision Voltage Reference for Extreme Environment Instrumentation Systems

    SciTech Connect

    McCue, Mr. Benjamin; Blalock, Benjamin; Potts, J.; Kemerling, Mr. James; Isihara, Mr. Kyoshi; Leines, Capt. Matt; Britton Jr, Charles L

    2013-01-01

    Many design techniques have been incorporated into modern CMOS design practices to improve radiation tolerance of integrated circuits. Annular-gate NMOS structures have been proven to be significantly more radiation tolerant than the standard straight-gate variety. Many circuits can be designed using the annular-gate NMOS and the inherently radiation tolerant PMOS. Band-gap reference circuits, however, typically require p-n junction diodes. These p-n junction diodes are the dominating factor in radiation degradation in band-gap reference circuits. This paper proposes a different approach to band-gap reference design to alleviate the radiation susceptibility presented by the p-n junction diodes.

  4. Quantitative measurement of radiation pressure on a microcantilever in ambient environment

    NASA Astrophysics Data System (ADS)

    Ma, Dakang; Garrett, Joseph L.; Munday, Jeremy N.

    2015-03-01

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Micro/nano-mechanical transducers have become sensitive enough that radiation pressure can influence these systems. However, photothermal effects often accompany and overwhelm the radiation pressure, complicating its measurement. In this letter, we investigate the radiation force on an uncoated silicon nitride microcantilever in ambient conditions. We identify and separate the radiation pressure and photothermal forces through an analysis of the cantilever's frequency response. Further, by working in a regime where radiation pressure is dominant, we are able to accurately measure the radiation pressure. Experimental results are compared to theory and found to agree within the measured and calculated uncertainties.

  5. Mitigating the Effects of the Space Radiation Environment: A Novel Approach of Using Graded-Z Materials

    NASA Technical Reports Server (NTRS)

    Atwell, William; Rojdev, Kristina; Aghara, Sukesh; Sriprisan, Sirikul

    2013-01-01

    In this paper we present a novel space radiation shielding approach using various material lay-ups, called "Graded-Z" shielding, which could optimize cost, weight, and safety while mitigating the radiation exposures from the trapped radiation and solar proton environments, as well as the galactic cosmic radiation (GCR) environment, to humans and electronics. In addition, a validation and verification (V&V) was performed using two different high energy particle transport/dose codes (MCNPX & HZETRN). Inherently, we know that materials having high-hydrogen content are very good space radiation shielding materials. Graded-Z material lay-ups are very good trapped electron mitigators for medium earth orbit (MEO) and geostationary earth orbit (GEO). In addition, secondary particles, namely neutrons, are produced as the primary particles penetrate a spacecraft, which can have deleterious effects to both humans and electronics. The use of "dopants," such as beryllium, boron, and lithium, impregnated in other shielding materials provides a means of absorbing the secondary neutrons. Several examples of optimized Graded-Z shielding layups that include the use of composite materials are presented and discussed in detail. This parametric shielding study is an extension of some earlier pioneering work we (William Atwell and Kristina Rojdev) performed in 20041 and 20092.

  6. Radiation Protection. Measurement of radioactivity in the environment - Air- radon 222. A proposed ISO standard.

    NASA Astrophysics Data System (ADS)

    Gillmore, G.; Woods, M.

    2009-04-01

    Radon isotopes (222, 220, 219) are radioactive gases produced by the disintegration of radium isotopes 226, 224 and 223, which are decay products of uranium238, thorium232 and uranium235 respectively. All are found in the earth's crust. Solid elements, also radioactive, are produced by radon disintegration. Radon is classed as a rare gas in the periodic table of elements, along with helium, argon, neon, krypton and xenon. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead etc.). The potential danger of radon lies in its solid decay products rather than the gas itself. Whether or not they are attached aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size. Radon today is considered to be the main source of human exposure to natural radiation. At the international level, radon accounts for 52% of global average exposure to natural radiation. Isotope 222 (48%) is far more significant than isotope 220 (4%), whilst isotope 219 is considered as negligible. Exposure to radon varies considerably from one region to another, depending on factors such as weather conditions, and underlying geology. Activity concentration can therefore vary by a factor of 10 or even a 100 from one period of time to the next and from one area to another. There are many ways of measuring the radon 222 activity concentration and the potential alpha energy concentration of its short-lived decay products. Measuring techniques fall into three categories: - spot measurement methods; continuous measurement; integrated measurement. The proposed ISO (International Organisation for Standardisation) document suggests guidelines for measuring radon222 activity concentration and the potential alpha energy concentration of its short-lived decay products in a free (environment) and confined (buildings) atmosphere. The target date for availability of

  7. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  8. Hadron production experiments

    NASA Astrophysics Data System (ADS)

    Popov, Boris A.

    2013-02-01

    The HARP and NA61/SHINE hadroproduction experiments as well as their implications for neutrino physics are discussed. HARP measurements have already been used for predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve the atmospheric neutrino flux predictions and to help in the optimization of neutrino factory and super-beam designs. First measurements released recently by the NA61/SHINE experiment are of significant importance for a precise prediction of the J-PARC neutrino beam used for the T2K experiment. Both HARP and NA61/SHINE experiments provide also a large amount of input for validation and tuning of hadron production models in Monte-Carlo generators.

  9. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    SciTech Connect

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  10. Cosmic radiation and evolution of life on earth: Roles of environment, adaptation and selection

    NASA Astrophysics Data System (ADS)

    Todd, P.

    1994-10-01

    The role of ionizing radiation in general, and cosmic radiation in particular, in the evolution of organisms on the earth by adaptation and natural selection is considered in a series of questions: (1) Are there times during the evolution of the earth and of life when genetic material could be exposed to heavy ion radiation? (2) Throughout the course of chemical and biological evolution on the earth, what fraction of environmental mutagenesis could be attributable to cosmic and/or solar ionizing radiation? (3) Is ionizing radiation an agent of adaptation or selection, or both? (4) What can the cladistics of the evolution of genetic repair tell us about the global history of genotoxic selection pressures? (How much genetic diversity can be attributed to the selection of radiation-damage repair processes?

  11. A Radiation Hard Multi-Channel Digitizer ASIC for Operation in the Harsh Jovian Environment

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Aslam, S.; Akturk, A.; Quilligan, G.

    2011-01-01

    ultimately impact the surface of Europa after the mission is completed. The current JEO mission concept includes a range of instruments on the payload, to monitor dynamic phenomena (such as Io's volcanoes and Jupiters atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. The payload includes a low mass (3.7 Kg) and low power (< 5 W) Thermal Instrument (TI) concept for measuring possible warm thermal anomalies on Europa s cold surface caused by recent (< 10,000 years) eruptive activity. Regions of anomalously high heat flow will be identified by thermal mapping using a nadir pointing, push-broom filter radiometer that provides far-IR imagery in two broad band spectral wavelength regions, 8-20 m and 20-100 m, for surface temperature measurements with better than a 2 K accuracy and a spatial resolution of 250 m/pixel obtained from a 100 Km orbit. The temperature accuracy permits a search for elevated temperatures when combined with albedo information. The spatial resolution is sufficient to resolve Europa's larger cracks and ridge axial valleys. In order to accomplish the thermal mapping, the TI uses sensitive thermopile arrays that are readout by a custom designed low-noise Multi-Channel Digitizer (MCD) ASIC that resides very close to the thermopile linear array outputs. Both the thermopile array and the MCD ASIC will need to show full functionality within the harsh Jovian radiation environment, operating at cryogenic temperatures, typically 150 K to 170 K. In the following, a radiation mitigation strategy together with a low risk Radiation-Hardened-By-Design (RHBD) methodology using commercial foundry processes is given for the design and manufacture of a MCD ASIC that will meet this challenge.

  12. Energy Deposition and Radiological Studies for the LBNF Hadron Absorber

    SciTech Connect

    Rakhno, I. L.; Mokhov, N. V.; Tropin, I. S.; Eidelman, Y. I.

    2015-06-25

    Results of detailed Monte Carlo energy deposition and radiological studies performed for the LBNF hadron absorber with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. Both normal operation and accidental conditions were studied. Results of detailed thermal calculations with the ANSYS code helped to select the most viable design options.

  13. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    SciTech Connect

    Simos, N.

    2011-05-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  14. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  15. High-performing simulations of the space radiation environment for the International Space Station and Apollo Missions

    NASA Astrophysics Data System (ADS)

    Lund, Matthew Lawrence

    The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements

  16. Hadron collider physics at UCR

    SciTech Connect

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  17. Physics at future hadron colliders

    SciTech Connect

    U. Baur et al.

    2002-12-23

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  18. Mapping the Space Radiation Environment in LEO Orbit by the SATRAM Timepix Payload On Board the Proba-V Satellite

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Polansky, Stepan; Sospisil, Stanislav; Owens, Alan; Mellab, Karim

    2016-08-01

    The compact spacecraft payload SATRAM is operating in LEO orbit since 2013 on board the Proba-V satellite from ESA and provides high-resolution wide-range radiation monitoring of the satellite environment. Equipped with the pixel detector Timepix, the technology demonstration payload determines the composition (particle types) and spectral characterization (stopping power) of the mixed radiation field with quantum imaging sensitivity, charged particle tracking, energy loss and directionality capability. With a polar orbit (sun synchronous, 98° inclination) and altitude of 820 km the space radiation field is continuously sampled over the entire planet every few days. Results are given in the form of spatial- and time- correlated maps of dose rate and particle flux. Comparison is made between quiescent and geomagnetic storm activity periods.

  19. An update on standards for radiation in the environment and associated estimates of risk

    SciTech Connect

    Kocher, D.C.

    1989-06-21

    This presentation reviews current and proposed standards, recommendations, and guidances for limiting routine radiation exposures of the public, and estimates the risk corresponding to standards, recommendations, and guidances. These estimates provide a common basis for comparing different criteria for limiting public exposures to radiation, as well as hazardous chemicals.

  20. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  1. TOMS as a monitor of the ultraviolet radiation environment: Applications to photobiology

    NASA Technical Reports Server (NTRS)

    Frederick, John E.

    1987-01-01

    The flux of biologically relevant ultraviolet radiation that reaches the surface of the Earth varies with the ozone amount, surface reflectivity, and cloudcover. The Total Ozone Mapping Spectrometer (TOMS) provides information relevant to all three items. A recent application of satellite-based ozone measurements has been to develop climatologies of the biologically significant UV-B radiation reaching the Earth's surface. A growing body of research suggests that UV-B radiation tends to suppress the immune system of laboratory mice. At tropical latitudes, it is likely that parasitical diseases develop most readily in people who have experienced immune system suppression from UV-B exposure. The computed distribution of surface radiation combined with information on disease incidence may clarify the role of UV-B as a suppressor of the human immune system. TOMS used in conjunction with radiative transfer calculations can provide information of relevance in photobiology.

  2. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  3. Precision Studies of Hadronic and Electro-Weak Interactions for Collider Physics. Final Report

    SciTech Connect

    Yost, Scott A

    2014-04-02

    This project was directed toward developing precision computational tools for proton collisions at the Large Hadron Collider, focusing primarily on electroweak boson production and electroweak radiative corrections. The programs developed under this project carried the name HERWIRI, for High Energy Radiation With Infra-Red Improvements, and are the first steps in an ongoing program to develop a set of hadronic event generators based on combined QCD and QED exponentiation. HERWIRI1 applied these improvements to the hadronic shower, while HERWIRI2 will apply the electroweak corrections from the program KKMC developed for electron-positron scattering to a hadronic event generator, including exponentiated initial and final state radiation together with first-order electroweak corrections to the hard process. Some progress was also made on developing differential reduction techniques for hypergeometric functions, for application to the computation of Feynman diagrams.

  4. Predictions of the nuclear activation of materials on LDEF produced by the space radiation environment and comparison with flight measurements.

    PubMed

    Armstrong, T W; Colborn, B L; Harmon, B A; Laird, C E

    1996-11-01

    Model calculations have been made to compare with the induced radioactivity measured for materials on the LDEF satellite. Predictions and data comparisons are made for aluminum spacecraft components and for vanadium and nickel samples placed at multiple locations on the spacecraft. The calculated vs observed activations provide an indication of present model uncertainties in predicting nuclear activation as well as the magnitude and directionality of the trapped proton environment for low-Earth orbit missions. Environment model uncertainties based on the activation measurements are consistent with the uncertainties evaluated using other LDEF radiation dosimetry data.

  5. Scenario of a dirty bomb in an urban environment and acute management of radiation poisoning and injuries.

    PubMed

    Chin, F K C

    2007-10-01

    In the new security environment, there is a clear and present danger of terrorists using non-conventional weapons to inflict maximum psychological and economic damage on their targets. This article examines two scenarios of radiation contamination and injury, one accidental in nature leading to environmental contamination, and another of deliberate intent resulting in injury and death. This article also discusses the management of injury from radiological dispersion devices or dirty bombs, with emphasis on the immediate aftermath as well as strategy recommendations.

  6. Design of a Warm X-Ray Radiation Environment for Nuclear Weapons Effects Testing in the Nova-Upgrade Facility

    DTIC Science & Technology

    1992-03-01

    IN THE NOVA-UPGRADE FACILITY THESIS Jeffrey E. Malapit Captain, US Army AFIT/GNE/ENP/92M-7 Approved for public release; distribution unlimited. Form...Telegraph Rd Alexandria, VA 22310-3398 11. SUPPLEMENTARY NOTES 12a. DISTRIBU’ -4/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release... distribution unlimited. 13. ABSTRACT (Maximum 200 words) This engineering design project examined the creation of a radiation environ- ment for warm x

  7. Influence of nonequilibrium radiation and shape change on aerothermal environment of a Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Subramanian, S. V.

    1981-01-01

    The influence of nonequilibrium radiative energy transfer and the effect of probe configuration changes on the flow phenomena around a Jovian entry body are investigated. The radiating shock layer flow is assumed to be axisymmetric, viscous, laminar and in chemical equilibrium. The radiative transfer equations are derived under nonequilibrium conditions which include multilevel energy transitions. The equilibrium radiative transfer analysis is performed with an existing nongray radiation model which accounts for molecular band, atomic line, and continuum transitions. The nonequilibrium results are obtained with and without ablation injection in the shock layer. The nonequilibrium results are found to be greatly influenced by the temperature distribution in the shock layer. In the absence of ablative products, the convective and radiative heating to the entry body are reduced under nonequilibrium conditions. The influence of nonequilibrium is found to be greater at higher entry altitudes. With coupled ablation and carbon phenolic injection, 16 chemical species are used in the ablation layer for radiation absorption. Equilibrium and nonequilibrium results are compared under peak heating conditions.

  8. Design Issues for Using Magnetic Materials in Radiation Environments at Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2013-01-01

    One of the challenges of designing motors and alternators for use in nuclear powered space missions is accounting for the effects of radiation. Terrestrial reactor power plants use distance and shielding to minimize radiation damage but space missions must economize volume and mass. Past studies have shown that sufficiently high radiation levels can affect the magnetic response of hard and soft magnetic materials. Theoretical models explaining the radiation-induced degradation have been proposed but not verified. This paper reviews the literature and explains the cumulative effects of temperature, magnetic-load, and radiation-level on the magnetic properties of component materials. Magnetic property degradation is very specific to alloy choice and processing history, since magnetic properties are very much entwined with specific chemistry and microstructural features. However, there is basic theoretical as well as supportive experimental evidence that the negative impact to magnetic properties will be minimal if the bulk temperature of the material is less than fifty percent of the Curie temperature, the radiation flux is low, and the demagnetization field is small. Keywords: Magnets, Permanent Magnets, Power Converters, Nuclear Electric Power Generation, Radiation Tolerance.

  9. Design of a 0-50 mbar pressure measurement channel compatible with the LHC tunnel radiation environment

    NASA Astrophysics Data System (ADS)

    Casas, Juan; Jelen, Dorota; Trikoupis, Nikolaos

    2017-02-01

    The monitoring of cryogenic facilities often require the measurement of pressure in the sub 5’000 Pa range that are used for flow metering applications, for saturated superfluid helium, etc. The pressure measurement is based on the minute displacement of a sensing diaphragm often through contactless techniques by using capacitive or inductive methods. The LHC radiation environment forbid the use of standard commercial sensors because of the embedded electronics that are affected both by radiation induced drift and transient Single Event Effects (SEE). Passive pressure sensors from two manufacturers were investigated and a CERN designed radiation-tolerant electronics has been developed for measuring variable-reluctance sensors. During the last maintenance stop of the LHC accelerator, four absolute pressure sensors were installed in some of the low pressure bayonet heat exchangers and four differential pressure sensors on the venturi flowmeters that monitor the cooling flow of the 20.5 kA current leads of the ATLAS end-cap superconducting toroids. The pressure sensors operating range is about 1000 to 5000 Pa and the targeted uncertainty is +/- 50 Pa which would permit to measure the equivalent saturation temperature at 1.8 K within better than 0.01 K. This paper describes the radiation hard measuring head that is based on an inductive bridge, its associated radiation-tolerant electronics that is installed under the LHC superconducting magnets or the ATLAS detector cavern; and the first operational experience.

  10. Forward physics of hadronic colliders

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.

    2013-12-01

    These lectures were given at the Baikal Summer School on Physics of Elementary Particles and Astrophysics in July 2012. They can be viewed as a concise introduction to hadronic diffraction, to the physics of the Pomeron and related topics.

  11. Studies of atmosphere radio-sounding for monitoring of radiation environments around nuclear power plants

    NASA Astrophysics Data System (ADS)

    Boyarchuk, Kirill; Karelin, Alexander; Tumanov, Mikhail

    2014-05-01

    The nuclear power plants practically do not discharge to the atmosphere any products causing significant radioactive contaminations. However, during the years of the nuclear power industry, some large accidents occurred at the nuclear objects, and that caused enormous environmental contamination. Among the most significant accidents are: thermal explosion of a reservoir with high-level wastes at the Mayak enterprise in the South Ural region, near the town of Kyshtym, in the end of September 1957; accident at the nuclear power plant in Windscale, UK, in October 1957; accident at the Three-Mile Island, USA, in 1979; accident at the Chernobyl power plant in April 1986. In March of 2011, a large earthquake and the following tsunami caused the largest nuclear catastrophe of XXI century, the accident at the Fucushima-1 power plant. The last accident highlighted the need to review seriously the safety issues at the active power plants and to develop the new effective methods for remote detection and control over radioactive environmental contamination and over general geophysical situation in the areas. The main influence of the fission products on the environment is its ionisation, and therefore various detectable biological and physical processes that are caused by ions. Presence of an ionisation source within the area under study may cause significant changes of absolute humidity and, that is especially important, changes of the chemical potential of atmosphere vapours indicating presence of charged condensation centres. These effects may cause anomalies in the IR radiation emitted from the Earth surface and jumps in the chemical potentials of water vapours that may be observed by means of the satellite remote sensing by specialized equipment (works by Dimitar Ouzounov, Sergey Pulinets, e.a.). In the current study, the theoretical description is presented from positions of the molecular-kinetic condensation theory that shows significant changes of the absolute and

  12. Two types of hadrons

    NASA Astrophysics Data System (ADS)

    Jaffe, R. L.

    2008-05-01

    Resonances and enhancements in meson-meson scattering can be divided into two classes distinguished by their behavior as the number of colors (Nc) in QCD becomes large: The first are ordinary mesons that become stable as Nc → ∞. This class includes textbook qbar q mesons as well as glueballs and hybrids. The second class, extraordinary mesons, are enhancements that disappear as Nc → ∞; they subside into the hadronic continuum. This class includes indistinct and controversial objects that have been classified as qbarqbar qq mesons or meson-meson molecules. Peláez's study of the Nc dependence of unitarized chiral dynamics illustrates both classes: the p-wave ππ and Kπ resonances, the ρ (770) and K∗ (892), behave as ordinary mesons; the s-wave ππ and Kπ enhancements, the σ (600) and κ (800), behave like extraordinary mesons. Ordinary mesons resemble Feshbach resonances while extraordinary mesons look more like effects due to potentials in meson-meson scattering channels. I build and explore toy models along these lines. Finally I discuss some related dynamical issues affecting the interpretation of extraordinary mesons.

  13. Noise limitations of multiplier phototubes in the radiation environment of space

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.

    1976-01-01

    The contributions of Cerenkov emission, luminescence, secondary electron emission, and bremsstrahlung to radiation-induced data current and noise of multiplier phototubes were analyzed quantitatively. Fluorescence and Cerenkov emission in the tube window are the major contributors and can quantitatively account for dark count levels observed in orbit. Radiation-induced noise can be minimized by shielding, tube selection, and mode of operation. Optical decoupling of windows and cathode (side-window tubes) leads to further reduction of radiation-induced dark counts, as does reducing the window thickness and effective cathode area, and selection of window/cathode combinations of low fluorescence efficiency. In trapped radiation-free regions of near-earth orbits and in free space, Cerenkov emission by relativistic particles contributes predominantly to the photoelectron yield per event. Operating multiplier phototubes in the photon (pulse) counting mode will discriminate against these large pulses and substantially reduce the dark count and noise to levels determined by fluorescence.

  14. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  15. Radiation-Induced Processing of Hydrocarbons in Environments Relevant to Pluto

    DTIC Science & Technology

    2007-11-02

    residue were also performed. 15. NUMBER OF PAGES 54 14. SUBJECT TERMS Pluto, Kuiper Belt , cosmic radiation, infrared spectroscopy, ice analogs... Kuiper Belt , cosmic radiation, infrared spectroscopy, ice analogs, exobiology 2 Acknowledgments: I would like to offer my sincere thanks...distinct group of these objects of the outer solar system is classified as the Edgeworth- Kuiper Belt . The belt is defined as a disk-shaped region

  16. Influence of Coupled Radiation and Ablation on the Aerothermodynamic Environment of Planetary Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Gnoffo, Peter A.; Mazaheri, Alireza

    2013-01-01

    A review of recently published coupled radiation and ablation capabilities involving the simulation of hypersonic flowfields relevant to Earth, Mars, or Venus entry is presented. The three fundamental mechanisms of radiation coupling are identified as radiative cooling, precursor photochemistry, and ablation-radiation interaction. The impact of these mechanisms are shown to be significant for a 3 m radius sphere entering Earth at hypothetical Mars return conditions (approximately 15 km/s). To estimate the influence precursor absorption on the radiative flux for a wide range of conditions, a simplified approach is developed that requires only the non-precursor solution. Details of a developed coupled ablation approach, which is capable of treating both massively ablating flowfields in the sublimation regime and weakly ablating diffusion Climited oxidation cases, are presented. A review of the two primary uncoupled ablation approximations, identified as the blowing correction and film coefficient approximations, is made and their impact for Earth and Mars entries is shown to be significant for recession and convective heating predictions. Fully coupled ablation and radiation simulations are presented for the Mars return sphere throughout its entire trajectory. Applying to the Mars return sphere the Pioneer- Venus heritage carbon phenolic heatshield, which has properties available in the open literature, the differences between steady state ablation and coupling to a material response code are shown to be significant.

  17. Hadron bubble evolution into the quark sea

    SciTech Connect

    Freese, K. ); Adams, F.C. )

    1990-04-15

    A solution is presented for the evolution of hadron bubbles which nucleate in the quark sea if there is a first-order quark-hadron phase transition at a temperature {ital T}{sub {ital c}} on the order of 100 MeV. We make three assumptions: (1) the dominant mechanism for transport of latent heat is radiative, e.g., neutrinos; (2) the distance between nucleation sites is greater than the neutrino mean free path; and (3) the effects of hydrodynamic flow can be neglected. Bubbles nucleate with a characteristic radius 1 fm/{Delta}, where {Delta} is a dimensionless parameter for the undercooling (we take {Delta}{ge}10{sup {minus}4}, so that the expansion of the Universe can be neglected). We argue that bubbles grow stably and remain spherical until the radius becomes as large as the neutrino mean free path, {ital l}{congruent}10 cm. The growth then becomes diffusion limited and the bubbles become unstable to formation of dendrites, or fingerlike structures, because latent heat can diffuse away more easily from long fingers than from spheres. We study the nonlinear evolution of structure with a geometrical model'' and argue that the hadron bubbles ultimately look like stringy seaweed. The percolation of seaweed-shaped bubbles can leave behind regions of quark phase that are quite small. In fact, one might expect the typical scale to be {ital L}{sub {ital Q}}={ital l}{congruent}10 cm. Protons can easily diffuse out of such small regions (and neutrons back in). Thus, these instabilities can lead to important modifications of inhomogeneous nucleosynthesis, which requires {ital L}{sub {ital Q}}{approx gt}1 m.

  18. Web-based description of the space radiation environment using the Bethe-Bloch model

    NASA Astrophysics Data System (ADS)

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important

  19. Concepts and challenges in cancer risk prediction for the space radiation environment

    NASA Astrophysics Data System (ADS)

    Barcellos-Hoff, Mary Helen; Blakely, Eleanor A.; Burma, Sandeep; Fornace, Albert J.; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G.; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M.

    2015-07-01

    Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program.

  20. Concepts and challenges in cancer risk prediction for the space radiation environment.

    PubMed

    Barcellos-Hoff, Mary Helen; Blakely, Eleanor A; Burma, Sandeep; Fornace, Albert J; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M

    2015-07-01

    Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program.

  1. Human response to high-background radiation environments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Durante, M.; Manti, L.

    The main long-term goal of the space exploration program is the colonization of the planets of the Solar System The high cosmic radiation equivalent dose rate represents a major problem for a stable and safe colonization of the planets The dose rate on Mars ranges between 60 and 150 mSv year depending on the Solar cycle and altitude and can reach values as high as 360 mSv year on the Moon The average dose rate on the Earth is about 3 mSv year reduced to about 1 mSv year excluding the internal exposure to Rn daughters However some areas of the Earth have anomalously high levels of background radiation Values 200-400 times higher than the world average are found in regions where monazite sand deposits are abundant Population in Tibet experience a high cosmic radiation background Epidemiological studies did not detect any adverse health effects in the populations living in those high-background radiation areas on Earth Chromosomal aberrations in the peripheral blood lymphocytes from the population living in the high-background radiation areas have been measured in several studies because the chromosomal damage represents an early biomarker of cancer risk Similar cytogenetic studies have been recently performed in cohort of astronauts involved in single or repeated space flights over many years A comparison of the cytogenetic findings in populations exposed at high dose rate on Earth or in space will be described

  2. TRAP/SEE Code Users Manual for Predicting Trapped Radiation Environments

    NASA Astrophysics Data System (ADS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    TRAP/SEE is a PC-based computer code with a user-friendly interface which predicts the ionizing radiation exposure of spacecraft having orbits in the Earth's trapped radiation belts. The code incorporates the standard AP8 and AE8 trapped proton and electron models but also allows application of an improved database interpolation method. The code treats low-Earth as well as highly-elliptical Earth orbits, taking into account trajectory perturbations due to gravitational forces from the Moon and Sun, atmospheric drag, and solar radiation pressure. Orbit-average spectra, peak spectra per orbit, and instantaneous spectra at points along the orbit trajectory are calculated. Described in this report are the features, models, model limitations and uncertainties, input and output descriptions, and example calculations and applications for the TRAP/SEE code.

  3. Measurement of Near Earth Radiation Environment in Japan—Overview and Plan—

    NASA Astrophysics Data System (ADS)

    Goka, Tateo; Matsumoto, Haruhisa

    2009-06-01

    The current status of measuring radiation using JAXA satellites is reviewed. Starting with Engineering Test Satellite-V (ETS-V; KIKU-5 in Japanese) in 1987, efforts to conduct radiation measurements in space have continued using almost all Japan Aerospace Exploration Agency (JAXA formerly NASDA) satellites (ETS-VI, ADEOS, ADEOS-II, MDS-1, DRTS (ongoing), and ALOS (ongoing)), in geostationary orbit (GEO), geostationary -transfer orbit (GTO), and low-Earth orbit (LEO). Electrons, protons, alpha particles, and heavy ions have been the main objects of study. Future plans for radiation monitoring in JAXA, including GOSAT, Jason-2 (in ollaboration with CNES), SmartSat (in collaboration with NICT), and ISS/JEM/Exposure Facility/SEDA-AP, are presented.

  4. Hadronic nuclear energy: An approach towards green energy

    SciTech Connect

    Das Sarma, Indrani B.

    2015-03-10

    Nuclear energy is undoubtedly the largest energy source capable of meeting the total energy requirements to a large extent in long terms. However the conventional nuclear energy involves production of high level of radioactive wastes which possesses threat, both to the environment and mankind. The modern day demand of clean, cheap and abundant energy gets fulfilled by the novel fuels that have been developed through hadronic mechanics/chemistry. In the present paper, a short review of Hadronic nuclear energy by intermediate controlled nuclear synthesis and particle type like stimulated neutron decay and double beta decay has been presented.

  5. The ultraviolet radiation environment of Antarctica - McMurdo Station during September-October 1987

    NASA Technical Reports Server (NTRS)

    Lubin, Dan; Frederick, John E.; Krueger, Arlin J.

    1989-01-01

    Daily data from the Nimbus-7 TOMS were combined with a model of atmospheric radiative transfer to compute the time evolution of ultraviolet irradiance, at wavelengths from 290 to 350 nm, incident on McMurdo Station during September-October 1987. Large changes in column ozone occur as the polar vortex moves over the site. This is accompanied by correspondingly large variations in UV radiation at the earth's surface. At a wavelength near 305 nm, the irradiance in early October exceeds values appropriate to an unperturbed ozone layer by a factor of 5-6. As December 21 approaches, the noontime UV irradiance increases, irrespective of changes in ozone.

  6. Plant architecture, growth and radiative transfer for terrestrial and space environments

    NASA Technical Reports Server (NTRS)

    Norman, John M.; Goel, Narendra S.

    1993-01-01

    The overall objective of this research was to develop a hardware implemented model that would incorporate realistic and dynamic descriptions of canopy architecture in physiologically based models of plant growth and functioning, with an emphasis on radiative transfer while accommodating other environmental constraints. The general approach has five parts: a realistic mathematical treatment of canopy architecture, a methodology for combining this general canopy architectural description with a general radiative transfer model, the inclusion of physiological and environmental aspects of plant growth, inclusion of plant phenology, and integration.

  7. The Analysis on Space Radiation Environment and Effect of the KOMPSAT-2 Spacecraft(I): Total Ionizing Dose Effect

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Kim, Hak-Jung

    2001-11-01

    In this paper, space radiation environment and total ionizing dose(TID) effect have been analyzed for the KOMPSAT-2 operational orbit. It has been revealed that the trapped protons are concentrated in the SAA(South Atlantic Anomaly) area and that the trapped protons and electrons, and solar protons are main factors affecting TID. It turned out that low energy particles can be effectively blocked by aluminum shielding thickness, but high energy particles can not be effectively blocked by increasing aluminum shielding thickness. KOMPSAT-2 total radiation dose which is accumulated continuously to spacecraft electronics has been expressed as the function of aluminum thickness. These values can be used as the criteria for the selection of electronic parts and shielding thinkness of the KOMPSAT-2 structure or electronic box.

  8. A NASA Perspective and Validation and Testing of Design Hardening for the Natural Space Radiation Environment (GOMAC Tech 03)

    NASA Technical Reports Server (NTRS)

    Day, John H. (Technical Monitor); LaBel, Kenneth A.; Howard, James W.; Carts, Martin A.; Seidleck, Christine

    2003-01-01

    With the dearth of dedicated radiation hardened foundries, new and novel techniques are being developed for hardening designs using non-dedicated foundry services. In this paper, we will discuss the implications of validating these methods for the natural space radiation environment issues: total ionizing dose (TID) and single event effects (SEE). Topics of discussion include: Types of tests that are required, Design coverage (i.e., design libraries: do they need validating for each application?) A new task within NASA to compare existing design. This latter task is a new effort in FY03 utilizing a 8051 microcontroller core from multiple design hardening developers as a test vehicle to evaluate each mitigative technique.

  9. QCD thermodynamics and missing hadron states

    NASA Astrophysics Data System (ADS)

    Petreczky, Peter

    2016-03-01

    Equation of State and fluctuations of conserved charges in hot strongly interacting matter are being calculated with increasing accuracy in lattice QCD, and continuum results at physical quark masses become available. At sufficiently low temperature the thermodynamic quantities can be understood in terms of hadron resonance gas model that includes known hadrons and hadronic resonances from Particle Data Book. However, for some quantities it is necessary to include undiscovered hadronic resonances (missing states) that are, however, predicted by quark model and lattice QCD study of hadron spectrum. Thus, QCD thermodynamics can provide indications for the existence of yet undiscovered hadron states.

  10. Evaluation of cryogenic insulation materials and composites for use in nuclear radiation environments

    NASA Technical Reports Server (NTRS)

    Bullock, R. E.

    1972-01-01

    The following subjects are studied: (1) composite materials tests; (2) test of liquid level sensors and fission couples; (3) test of valve-seal materials; (4) boron epoxy composites; (5) radiation analysis of explosive materials and bifuels for RNS applications; and (6) test of thermal insulation.

  11. Influence of nonequilibrium radiation and shape change on aerothermal environment of Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Subramanian, S. V.

    1980-01-01

    Radiative transfer equations are derived under nonequilibrium conditions which include multilevel energy transitions. The nonequalibrium results, obtained with and without ablation injection in the shock layer, are found to be greatly influenced by the temperature distribution in the shock layer. In the absence of ablative products, the convective and radiative heating to the entry body are reduced significantly under nonequilibrium conditions. The influence of nonequilibrium is found to be greater at higher entry altitudes. With coupled ablation and carbon phenolic injection, 16 chemical species are used in the ablation layer for radiation absorption. Equilibrium and nonequilibrium results are compared under peak heating conditions. A 45 degree sphere cone, a 35 degree hyperboloid, and a 45 degree ellipsoid were used to study probe shape change. Results indicate that the shock layer flow field and heat transfer to the body are influenced significantly by the probe shape change. The effect of shape change on radiative heating of the afterbodies is found to be considerably larger for the sphere cone and ellipsoid than for the hyperboloid.

  12. Modelling radiation fluxes in simple and complex environments--application of the RayMan model.

    PubMed

    Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut

    2007-03-01

    The most important meteorological parameter affecting the human energy balance during sunny weather conditions is the mean radiant temperature T(mrt). It considers the uniform temperature of a surrounding surface giving off blackbody radiation, which results in the same energy gain of a human body given the prevailing radiation fluxes. This energy gain usually varies considerably in open space conditions. In this paper, the model 'RayMan', used for the calculation of short- and long-wave radiation fluxes on the human body, is presented. The model, which takes complex urban structures into account, is suitable for several applications in urban areas such as urban planning and street design. The final output of the model is, however, the calculated T(mrt), which is required in the human energy balance model, and thus also for the assessment of the urban bioclimate, with the use of thermal indices such as predicted mean vote (PMV), physiologically equivalent temperature (PET) and standard effective temperature (SET*). The model has been developed based on the German VDI-Guidelines 3789, Part II (environmental meteorology, interactions between atmosphere and surfaces; calculation of short- and long-wave radiation) and VDI-3787 (environmental meteorology, methods for the human-biometeorological evaluation of climate and air quality for urban and regional planning. Part I: climate). The validation of the results of the RayMan model agrees with similar results obtained from experimental studies.

  13. The ultraviolet radiation environment in the habitable zones around low-mass exoplanet host stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Linsky, Jeffrey L.; Parke Loyd, R. O.

    2014-11-01

    The EUV (200-911 Å), FUV (912-1750 Å), and NUV (1750-3200 Å) spectral energy distribution of exoplanet host stars has a profound influence on the atmospheres of Earth-like planets in the habitable zone. The stellar EUV radiation drives atmospheric heating, while the FUV (in particular, Ly α) and NUV radiation fields regulate the atmospheric chemistry: the dissociation of H2O and CO2, the production of O2 and O3, and may determine the ultimate habitability of these worlds. Despite the importance of this information for atmospheric modeling of exoplanetary systems, the EUV/FUV/NUV radiation fields of cool (K and M dwarf) exoplanet host stars are almost completely unconstrained by observation or theory. We present observational results from a Hubble Space Telescope survey of M dwarf exoplanet host stars, highlighting the importance of realistic UV radiation fields for the formation of potential biomarker molecules, O2 and O3. We conclude by describing preliminary results on the characterization of the UV time variability of these sources.

  14. Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Grigoriev, A.; Malyshkin, Y.

    2013-02-01

    High-energy radiation emitted from thunderclouds supposes generation of neutrons in photonuclear reactions of the gamma photons with air. This observation is supported by registration of neutrons during thunderstorm activity in a number of experiments, most of which established correlation with lightning. In this work we perform a modeling of the neutron generation and propagation processes at low atmospheric altitudes using current knowledge of the TGF source properties. On this basis we obtain dosimetric maps of thunderstorm neutron radiation and investigate possible radiation threat for aircraft flights. We estimate the maximal effective neutron dose that potentially can be received on board an aircraft in close proximity to the gamma source, to be of the order of 0.54 mSv over a time less than 0.1 s. This dose is considerably less than estimations obtained earlier for the associated electron and gamma radiation; nevertheless, this value is quite large by itself and under some circumstances the neutron component seems to be the most important for the dosimetric effect. Due to wide distribution in space, the thunderstorm neutrons are thought to also provide a convenient means for experimental investigation of gamma emissions from thunderclouds. To register neutrons from powerful gamma flashes that occur at the tops of thunderclouds, however, in the most favorable case one has to take a location above the 2 km level that is appropriate to mountains or aircraft facilities.

  15. Masses of constituent quarks confined in open bottom hadrons

    NASA Astrophysics Data System (ADS)

    Borka Jovanović, V.; Borka, D.; Jovanović, P.; Milošević, J.; Ignjatović, S. R.

    2014-12-01

    We apply color-spin and flavor-spin quark-quark interactions to the meson and baryon constituent quarks, and calculate constituent quark masses, as well as the coupling constants of these interactions. The main goal of this paper was to determine constituent quark masses from light and open bottom hadron masses, using the fitting method we have developed and clustering of hadron groups. We use color-spin Fermi-Breit (FB) and flavor-spin Glozman-Riska (GR) hyperfine interaction (HFI) to determine constituent quark masses (especially b quark mass). Another aim was to discern between the FB and GR HFI because our previous findings had indicated that both interactions were satisfactory. Our improved fitting procedure of constituent quark masses showed that on average color-spin (FB) HFI yields better fits. The method also shows the way how the constituent quark masses and the strength of the interaction constants appear in different hadron environments.

  16. A new micro-strip tracker for the new generation of experiments at hadron colliders

    SciTech Connect

    Dinardo, Mauro E.

    2005-12-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Zo's or W±'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

  17. The segmentation of hadron calorimeters

    NASA Astrophysics Data System (ADS)

    Chen, He Sheng

    1987-05-01

    Optimization of the segmentation of large hadron calorimeters is important in order to obtain good resolution for jet physics at minimum construction cost for the next generation of high energy experiments. The principles of the segmentation of hadron calorimeters are discussed. As an example, the Monte Carlo optimization of the segmentation of the L3 hadron calorimeter barrel at CERN is described. Comparisons of results for the reconstructed jet shapes show that the optimum number ADC channels is about 20K for the readout of 450K wires of the proportional chambers. The matching between the sandwiched φ towers and Z towers is the dominant factor for angular resolution. Based on these Monte Carlo simulations, an optimized tower structure is obtained.

  18. History of hadron therapy accelerators.

    PubMed

    Degiovanni, Alberto; Amaldi, Ugo

    2015-06-01

    In the last 60 years, hadron therapy has made great advances passing from a stage of pure research to a well-established treatment modality for solid tumours. In this paper the history of hadron therapy accelerators is reviewed, starting from the first cyclotrons used in the thirties for neutron therapy and passing to more modern and flexible machines used nowadays. The technical developments have been accompanied by clinical studies that allowed the selection of the tumours which are more sensitive to this type of radiotherapy. This paper aims at giving a review of the origin and the present status of hadron therapy accelerators, describing the technological basis and the continuous development of this application to medicine of instruments developed for fundamental science. At the end the present challenges are reviewed.

  19. Quenched hadron spectrum of QCD

    SciTech Connect

    Kim, Seyong.

    1992-12-01

    We calculate hadron spectrum of quantum chromodynamics without dynamical fermions on a 32[sup 3] [times] 64 lattice volume at [beta] = 6.5. Using two different wall sources of staggered fermion whose mass is 0.01, 0.005 and 0.0025 under the background gauge configurations, we extract local light hadron masses and the [triangle] masses and compare these hadron masses with those from experiments. The numerical simulation is executed on the Intel Touchstone Delta computer. We employ multihit metropolis algorithm with over-relaxation method steps to update gauge field configuration and gauge field configuration are collected at every 1000 sweeps. After the gauge field configuration is fixed to Coulomb gauge, the conjugate gradient method is used for Dirac matrix inversion.

  20. Quenched hadron spectrum of QCD

    SciTech Connect

    Kim, Seyong

    1992-12-01

    We calculate hadron spectrum of quantum chromodynamics without dynamical fermions on a 32{sup 3} {times} 64 lattice volume at {beta} = 6.5. Using two different wall sources of staggered fermion whose mass is 0.01, 0.005 and 0.0025 under the background gauge configurations, we extract local light hadron masses and the {triangle} masses and compare these hadron masses with those from experiments. The numerical simulation is executed on the Intel Touchstone Delta computer. We employ multihit metropolis algorithm with over-relaxation method steps to update gauge field configuration and gauge field configuration are collected at every 1000 sweeps. After the gauge field configuration is fixed to Coulomb gauge, the conjugate gradient method is used for Dirac matrix inversion.

  1. Hadron Contribution to Vacuum Polarisation

    NASA Astrophysics Data System (ADS)

    Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z.

    2016-10-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle-antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e- annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingredients to high precision tests of the Standard Theory.

  2. High temperature antenna development for space shuttle, volume 2. [space environment simulation effects on antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1974-01-01

    An S-band antenna system and a group of off-the-shelf aircraft antenna were exposed to temperatures simulating shuttle orbital cold soak and entry heating. Radiation pattern and impedance measurements before and after exposure to the thermal environments were used to evaluate the electrical performance. The results of the electrical and thermal testing are given. Test data showed minor changes in electrical performance and established the capability of these antenna to withstand both the low temperatures of space flight and the high temperatures of entry.

  3. Illuminating new electroweak states at hadron colliders

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian

    2016-07-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. We demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.

  4. Illuminating new electroweak states at hadron colliders

    DOE PAGES

    Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian

    2016-07-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Ourmore » proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. Lastly, we demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.« less

  5. Illuminating new electroweak states at hadron colliders

    SciTech Connect

    Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian

    2016-07-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. Lastly, we demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.

  6. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  7. Calculations and observations of solar particle enhancements to the radiation environment at aircraft altitudes.

    PubMed

    Dyer, C S; Lei, F; Clucas, S N; Smart, D F; Shea, M A

    2003-01-01

    Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations

  8. Hadron scattering, resonances, and QCD

    SciTech Connect

    Briceno, Raul

    2016-12-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  9. Search for long-term radiation trends in the environs of Swiss nuclear power plants.

    PubMed

    Bucher, B; Rybach, L; Schwarz, G

    2008-08-01

    Annually since 1989, biannually since 1994 the sites of the Swiss nuclear facilities are surveyed flying the same survey lines by airborne gamma ray spectrometry. The equipment and the data processing software used for those surveys were built and developed at the Institute of Geophysics, ETH Zurich. For mapping the ground radiation around the nuclear facilities, a pixel representation and a modified spectrum dose index (SDI) method are used. In the search for long-term trends, the local dose rates are calculated first and in turn the net dose rates. So far, no change in the radiation levels was detected over the last 13 years outside of the fenced sites of the nuclear facilities and, especially, no artificial radioactivity was present that could not be explained by nuclear weapon tests or by the Chernobyl event.

  10. Features of Sources of Radiation in the Environment of Young Stars

    NASA Astrophysics Data System (ADS)

    Ismailov, N. Z.; Alimardanova, F. N.

    2010-02-01

    Using the results of broad-band ground-based and extra-atmospheric infrared photometric observations, we studied the spectral energy distributions of 87 young stars in the 0.36-100 μm range. Only 5 types of SED curves are met among the objects of our sample. We suggest to append the photometric classification scheme based on the IR spectra of young stars, earlier introduced by other authors. For some stars, we observe up to three wavelength intervals with excess radiation in the spectrum, which can be explained with the presence of additional thermal radiation sources in the system. The most probable temperatures of these sources are {˜}1500{-}2500 and 90{-}120 K.

  11. Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2015-01-01

    Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.

  12. A measurement of the radiation environment in the CDF tracking volume

    SciTech Connect

    R. J. Tesarek,S. D'Auria and A. Hocker

    2002-09-19

    We present direct measurements of the spatial distribution of both ionizing radiation and low energy neutrons (E{sub n} < 200 keV) inside the tracking volume of the collider detector at Fermilab (CDF). Two types of thermal luminescent dosimeters are used for these measurements. Data collected from exposures with different accelerator conditions allow us to separate the radiation fields into contributions from proton beam losses and from proton-antiproton collisions. Using a simple model of a power law in 1/r, where r is the distance from the beam axis we find the power depends on the distance from the interaction point along the beam axis with the range 1.5-2.0. Predictions based on this model show good qualitative agreement with initial measurements of the leakage currents in the low radius silicon detectors.

  13. Divergence in DNA photorepair efficiency among genotypes from contrasting UV radiation environments in nature.

    PubMed

    Miner, Brooks E; Kulling, Paige M; Beer, Karlyn D; Kerr, Benjamin

    2015-12-01

    Populations of organisms routinely face abiotic selection pressures, and a central goal of evolutionary biology is to understand the mechanistic underpinnings of adaptive phenotypes. Ultraviolet radiation (UVR) is one of earth's most pervasive environmental stressors, potentially damaging DNA in any organism exposed to solar radiation. We explored mechanisms underlying differential survival following UVR exposure in genotypes of the water flea Daphnia melanica derived from natural ponds of differing UVR intensity. The UVR tolerance of a D. melanica genotype from a high-UVR habitat depended on the presence of visible and UV-A light wavelengths necessary for photoenzymatic repair of DNA damage, a repair pathway widely shared across the tree of life. We then measured the acquisition and repair of cyclobutane pyrimidine dimers, the primary form of UVR-caused DNA damage, in D. melanica DNA following experimental UVR exposure. We demonstrate that genotypes from high-UVR habitats repair DNA damage faster than genotypes from low-UVR habitats in the presence of visible and UV-A radiation necessary for photoenzymatic repair, but not in dark treatments. Because differences in repair rate only occurred in the presence of visible and UV-A radiation, we conclude that differing rates of DNA repair, and therefore differential UVR tolerance, are a consequence of variation in photoenzymatic repair efficiency. We then rule out a simple gene expression hypothesis for the molecular basis of differing repair efficiency, as expression of the CPD photolyase gene photorepair did not differ among D. melanica lineages, in both the presence and absence of UVR.

  14. Effects of complex radiative and convective environments on the thermal biology of the white-crowned sparrow (Zonotrichia leucophrys gambelii).

    PubMed

    Wolf, B O; Wooden, K M; Walsberg, G E

    2000-02-01

    The energy budgets of small endotherms are profoundly affected by characteristics of the physical environment such as wind speed, air temperature and solar radiation. Among these, solar radiation represents a potentially very large heat load to small animals and may have an important influence on their thermoregulatory metabolism and heat balance. In this investigation, we examined the interactive effects of wind speed and irradiance on body temperature, thermoregulatory metabolism and heat balance in the white-crowned sparrow (Zonotrichia leucophrys gambelii). We measured changes in metabolic heat production by exposing birds to different wind speeds (0.25, 0.5, 1.0 and 2.0 m s(-1)) and irradiance combinations (<3 W m(-2) and 936+/-11 W m(-2); mean +/- s.d.) at an air temperature of 10 degrees C. Body temperature was not affected by wind speed, but was significantly higher in animals not exposed to simulated solar radiation compared with those exposed at most wind speeds. In the absence of solar radiation, metabolic heat production was strongly affected by wind speed and increased by 30 % from 122 to 159 W m(-2) as wind speed increased from 0.25 to 2.0 m s(-1). Metabolic heat production was even more strongly influenced by wind speed in the presence of simulated solar radiation and increased by 51% from 94 to 142 W m(-2) as wind speed increased from 0.25 to 2. 0 m s(-1). Solar heat gain was negatively correlated with wind speed and declined from 28 to 12 W m(-2) as wind speed increased from 0.25 to 2.0 m s(-1) and, at its maximum, equaled 11% of the radiation intercepted by the animal. The overall thermal impact of the various wind speed and irradiance combinations on the animal's heat balance was examined for each treatment. Under cold conditions, with no solar radiation present, an increase in wind speed from 0.25 to 2.0 m s(-1) was equivalent to a decrease in chamber air temperature of 12.7 degrees C. With simulated solar radiation present, a similar increase

  15. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment.

    PubMed Central

    Hastings, J W; Holzapfel, W H; Niemand, J G

    1986-01-01

    Of 113 lactobacilli isolated from radurized (5 kGy) minced meat, 7 Lactobacillus sake strains, 1 L. curvatus strain, and 1 L. farciminis strain were used for radiation resistance studies in a semisynthetic substrate (i.e., modified MRS broth). Five reference Lactobacillus spp., one Staphylococcus aureus strain, and one Salmonella typhimurium strain were used for comparative purposes. All L. sake isolates exhibited the phenomenon of being more resistant to gamma-irradiation in the exponential (log) phase than in the stationary phase of their growth cycles by a factor of 28%. Four references strains also exhibited this phenomenon, with L. sake (DSM 20017) showing a 68% increase in resistance in the log phase over the stationary phase. This phenomenon was not common to all bacteria tested and is not common to all strains with high radiation resistance. Four L. sake isolates and three reference strains were used in radiation sensitivity testing in a natural food system (i.e., meat). The bacteria were irradiated in minced meat and packaged under four different conditions (air, vacuum, CO2, and N2). Organisms exhibited the highest death rate (lowest D10 values [doses required to reduce the logarithm of the bacterial population by 1] ) under CO2 packaging conditions, but resistance to irradiation was increased under N2. The D10 values of the isolates were generally greater than those of the reference strains. The D10 values were also higher (approximately two times) in meat than in semisynthetic growth medium. PMID:3096207

  16. Grid2: A Program for Rapid Estimation of the Jovian Radiation Environment

    NASA Technical Reports Server (NTRS)

    Evans, R. W.; Brinza, D. E.

    2014-01-01

    Grid2 is a program that utilizes the Galileo Interim Radiation Electron model 2 (GIRE2) Jovian radiation model to compute fluences and doses for Jupiter missions. (Note: The iterations of these two softwares have been GIRE and GIRE2; likewise Grid and Grid2.) While GIRE2 is an important improvement over the original GIRE radiation model, the GIRE2 model can take as long as a day or more to compute these quantities for a complete mission. Grid2 fits the results of the detailed GIRE2 code with a set of grids in local time and position thereby greatly speeding up the execution of the model-minutes as opposed to days. The Grid2 model covers the time period from 1971 to 2050 and distances of 1.03 to 30 Jovian diameters (Rj). It is available as a direct-access database through a FORTRAN interface program. The new database is only slightly larger than the original grid version: 1.5 gigabytes (GB) versus 1.2 GB.

  17. Properties of b-flavored hadrons

    SciTech Connect

    Jaros, J.A.

    1983-10-01

    Experimental progress in the study of b-flavored hadrons is reviewed. The observation of the B meson, properties of hadronic B decays, semi-leptonic B decays, and the B lifetime are discussed. 30 references.

  18. Measurements of hadron form factors at BESIII

    NASA Astrophysics Data System (ADS)

    Morales, Cristina Morales

    2016-05-01

    BEPCII is a symmetric e+e--collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure hadron form factors both from direct e+e--annihilation and from initial state radiation processes. In this paper, results on e+e- → p p ¯ based on data collected by BESIII in 2011 and 2012 are presented. We also present preliminary results on e+e- → Λ Λ ¯ based on the same data samples at 4 center-of-mass energies. BESIII results obtained from e+e- → π+π- using the initial state radiation technique at the center-of-mass energy of 3.773 GeV are also summarized. Finally, expectations on the measurement of baryon electromagnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also explained.

  19. Preliminary Assessment of Potential Habitat Composites' Durability when Exposed to a Long-Term Radiation Environment and Micrometeoroid Impacts

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Graves, Russell; Golden, John; Atwell, William; O'Rouke, Mary Jane; Hill, Charles; Alred, John

    2011-01-01

    NASA's exploration goals include extending human presence beyond low earth orbit (LEO). As a result, habitation for crew is a critical requirement for meeting this goal. However, habitats are very large structures that contain a multitude of subsystems to sustain human life over long-durations in space, and one of the key challenges has been keeping weight to a minimum in order to reduce costs. Thus, light-weight and multifunctional structural materials are of great interest for habitation. NASA has started studying polymeric composite materials as potential lightweight and multifunctional structural materials for use in long-duration spaceflight. However, little is known about the survivability of these materials when exposed to the space environment outside of LEO for long durations. Thus, a study has been undertaken to investigate the durability of composite materials when exposed to long-duration radiation. Furthermore, as an addition to the primary study, a secondary preliminary investigation has been started on the micrometeoroid and orbital debris (MMOD) susceptibility of these materials after radiation exposure. The combined effects of radiation and MMOD impacts are the focus of this paper.

  20. A Monte Carlo-based radiation safety assessment for astronauts in an environment with confined magnetic field shielding.

    PubMed

    Geng, Changran; Tang, Xiaobin; Gong, Chunhui; Guan, Fada; Johns, Jesse; Shu, Diyun; Chen, Da

    2015-12-01

    The active shielding technique has great potential for radiation protection in space exploration because it has the advantage of a significant mass saving compared with the passive shielding technique. This paper demonstrates a Monte Carlo-based approach to evaluating the shielding effectiveness of the active shielding technique using confined magnetic fields (CMFs). The International Commission on Radiological Protection reference anthropomorphic phantom, as well as the toroidal CMF, was modeled using the Monte Carlo toolkit Geant4. The penetrating primary particle fluence, organ-specific dose equivalent, and male effective dose were calculated for particles in galactic cosmic radiation (GCR) and solar particle events (SPEs). Results show that the SPE protons can be easily shielded against, even almost completely deflected, by the toroidal magnetic field. GCR particles can also be more effectively shielded against by increasing the magnetic field strength. Our results also show that the introduction of a structural Al wall in the CMF did not provide additional shielding for GCR; in fact it can weaken the total shielding effect of the CMF. This study demonstrated the feasibility of accurately determining the radiation field inside the environment and evaluating the organ dose equivalents for astronauts under active shielding using the CMF.

  1. Quark-Hadron Duality in Electron Scattering

    SciTech Connect

    W. Melnitchouk

    2000-09-01

    Quark-hadron duality addresses some of the most fundamental issues in strong interaction physics, in particular the nature of the transition from the perturbative to non-perturbative regions of QCD. I summarize recent developments in quark-hadron duality in lepton-hadron scattering, and outline how duality can be studied at future high-luminosity facilities such as Jefferson Lab at 12 GeV, or an electron-hadron collider such as EPIC.

  2. Stratospheric Radiation Environment measurements, calibrations and pattern recognition by CERN MEDIPIX-2 and TIMEPIX Radiation Imaging Detectors on ESA BEXUS campaigns

    NASA Astrophysics Data System (ADS)

    Urbar, J.; Jakubek, J.; Scheirich, J.

    2009-12-01

    Results of the first two experiments using a MEDIPIX-2 and TIMEPIX detector for cosmic ray imaging in stratospheric environment are presented. The detecting device was based on hybrid pixel detector of MEDIPIX-2/TIMEPIX developed at CERN with USB interface developed at Institute of Experimental and Applied Physics of Czech Technical University in Prague. The detector was used in its tracking mode allowing it to operate as an ''active nuclear emulsion'' The actual flight time of BEXUS7 on 8th October 2008 was over 4 hours, with 2 hours at stable floating altitude of 26km. The flight opportunity was provided by Education dept. of European Space Agency (ESA) and Eurolaunch (Collaboration of SSC and DLR, German Space Agency). The motivation was to check proper calibration by detecting height-dependent profiles of ionizing radiation, also testing detector endurance and performance. BEXUS is quite ideal platform for such in-situ measurements. Not only because of the high altitudes reached, but also due to its slow ascent velocity for statistically relevant sampling of the ambient environment. Detector performance was evaluated for further design implications of advanced concept focusing on Cosmic Ray Induced Ionization rate measurements prepared for flight with additional instrumentation in October 2009 on BEXUS8. The preliminary results of the second campaign to be presented in scope of the outcomes of first campaign.

  3. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  4. Sudden Hadronization in Relativistic Nuclear Collisions

    SciTech Connect

    Rafelski, Johann; Letessier, Jean

    2000-11-27

    We formulate and study a mechanical instability criterion for sudden hadronization of dense matter fireballs formed in 158A GeV Pb-Pb collisions. Considering properties of quark-gluon matter and hadron gas we obtain the phase boundary between these two phases and demonstrate that the required deep quark-gluon-plasma supercooling prior to sudden hadronization has occurred.

  5. Personal Active Dosimeter for Space: the Light Observer for Radiation Environment (LORE) project

    NASA Astrophysics Data System (ADS)

    Narici, Livio

    Long permanence in space outside the protections of the Earth magnetic shield and atmosphere (during long journeys, and on the Moon or/and Mars) requires a careful monitoring of absorbed doses by each astronaut. This is of paramount importance for transient and cumulative effects mostly due to Solar Particle Events. Alarming features and the possibility of monitoring absorbed dose also discriminating the kind of incoming radiation will be needed. Stemming from our large experience in detector building, in modelling, in designing of the supporting electronic, from our payloads flown on satellites, MIR Station and ISS (Nina, Mita, SilEye, SilEye2, Alteino, Pamela, ALTEA) we are developping a personal active dosimeter with alarming and wireless features. The goal is a small object able to measure charged and neutral ionizing radiation (the possibility to insert a miniaturized gamma detector will be investigated) The device will feature portability (cigarette-box dimensions, rechargeable batteries), sensitivity to ions (H to above Fe), to hard X-rays, and possibly to gamma with the ability to detect and count neutrons. Flash memories should contain pre loaded tables and the real Time code to perform the real time operations and risk thresholds so to activate an alarm if/when needed. Whenever in range, the device will connect wirelessly to the main computer and send there the raw and pre-analyzed data for a complete monitoring and possible more sophisticated analyses. The two major novelties and challenges in this project are the miniaturization of the device, including the firmware, and the definition of the transfer function and of its uncertainties, linking measured data with real flux data. This will require the proper balancing among size, radiation discrimination ability and uncertainty minimization.

  6. Future hadron physics at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2005-09-01

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future--a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC--the level of needed R&D, the ILC costs, and the timing--Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINERvA and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  7. The very large hadron collider

    SciTech Connect

    1998-09-01

    This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.

  8. Key Issues in Hadronic Physics

    SciTech Connect

    Simon Capstick; et. Al.

    2000-12-01

    A group of fifty physicists met in Duck, NC, Nov. 6-9 to discuss the current status and future goals of hadronic physics. The main purpose of the meeting was to define the field by identifying its key issues, challenges, and opportunities. The conclusions, incorporating considerable input from the community at large, are presented in this white paper.

  9. Hadronic Interactions from Lattice QCD

    SciTech Connect

    Konstantinos Orginos

    2006-03-19

    In this talk I discuss a few recent results on lattice calculations of scattering lengths in hadronic processes. In particular, I present the scattering length of the pion-pion scattering in the I=2 channel and the nucleon-nucleon {sup 1}S{sub 0} channel and {sup 3}S{sub 1}-{sup 3}D{sub 1} coupled channels.

  10. Exciting Developments in Hadron Spectroscopy

    SciTech Connect

    Seth, Kamal K.

    2006-02-11

    There has been a renaissance in hadron spectroscopy during the last couple of years. Long lost states have been tracked down. Unexpected states are showing up all over, and numerous measurements with unprecedented precision are being reported. A review is presented.

  11. B physics at hadron colliders

    SciTech Connect

    Butler, J.N.; /Fermilab

    2005-09-01

    This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.

  12. Anomalous correlation between hadron and electromagnetic particles in hadron and gamma-ray families

    NASA Technical Reports Server (NTRS)

    Tamada, M.

    1985-01-01

    Correlations between hadrons and electromagnetic particles were studied in the hadron-gamma families observed in the Chacaltaya emulsion chamber experiment. It is found that there exist a number of hadrons which associate electromagnetic showers in extraordinarily close vicinity. The probability to have such a large number of hadrons associating electromagnetic showers, expected from background calculation, is found to be negligibly small and it means there exists anomalous correlation between hadrons and electromagnetic particles in the characteristic spread of atmospheric electromagnetic cascade.

  13. Does solar radiation affect the growth of tomato seeds relative to their environment?

    NASA Technical Reports Server (NTRS)

    Holzer, Kristi

    1995-01-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as I plan to note growth in artificial verses natural environment as the basic experiment.

  14. Does solar radiation affect the growth of tomato seeds relative to their environment?

    SciTech Connect

    Holzer, K.

    1995-09-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as the authors plans to note growth in artificial verses natural environment as the basic experiment.

  15. Solar ultraviolet-B radiation in urban environments: the case of Baltimore, Maryland.

    PubMed

    Heisler, Gordon M; Grant, Richard H; Gao, Wei; Slusser, James R

    2004-01-01

    Ultraviolet-B radiation (UV-B, 280-320 nm) has important effects in urban areas, including those on human health. Broadband UV-B radiation is monitored in Baltimore, MD, as part of the Baltimore Ecosystem Study, a long-term ecological research program. We compare broadband UV-B irradiance in Baltimore with UV-B at two nearby locations: a more rural station 64 km southeast and a suburban station 42 km southwest. The monitoring station in Baltimore is on the roof of a 33-m-tall building; there are no significant obstructions to sky view. The U.S. Department of Agriculture UV-B Monitoring and Research Program provided all sensors, which were calibrated at the National Oceanic and Atmospheric Administration Central UV Calibration Facility. UV-B irradiances at the three sites generally were similar. Over all conditions, Baltimore and the suburban site measured 3.4% less irradiance than the rural site. This difference is within the anticipated +/-3% calibration uncertainty of the pyranometers. On 59 days with cloud-free conditions at all three sites, average differences in measured UV-B among the three sites were even smaller; Baltimore measured 1.2% less irradiance than the rural site. High aerosol optical thickness strongly reduced daily UV-B dose, whereas [SO2] had no influence. Surface O3 increased with increasing UV-B dose when [NO2] exceeded 10 ppb.

  16. Polyethylene as a Radiation Shielding Standard in SimulatedCosmic-Ray Environments

    SciTech Connect

    Guetersloh, Stephen B.; Zeitlin, Cary; Heilbronn, Lawrence H.; Miller, Jack; Komiyama, Tatsudo; Fukumura, A.; Iwata, Y.; Murakami, T.; Bhattacharya M.

    2006-08-19

    Radiation risk management for human space missions dependson accurate modeling of high-energy heavy ion transport in matter. Theprocess of nuclear fragmentation can play a key role in reducing both thephysical dose and the biological effectiveness of the radiationencountered in deep space. Hydrogenous materials and light elements areexpected to be more effective shields against the deleterious effects ofGalactic Cosmic Rays (GCR) than aluminum, which is used in currentspacecraft hulls. NASA has chosen polyethylene, CH2, as the referencematerial for accelerator-based radiation testing of multi-functioncomposites that are currently being developed. A detailed discussion ofthe shielding properties of polyethylene under a variety of relevantexperimental conditions is presented, along with Monte Carlo simulationsof the experiments and other Monte Carlo calculations in which the entireGCR flux is simulated. The Monte Carlo results are compared to theaccelerator data and we assess the usefulness of 1 GeV/amu 56Fe as aproxy for GCR heavy ions. We conclude that additional accelerator-basedmeasurements with higher beam energies would be useful.

  17. Molecular environment, reverberation, and radiation from the pulsar wind nebula in CTA 1

    NASA Astrophysics Data System (ADS)

    Martín, Jonatan; Torres, Diego F.; Pedaletti, Giovanna

    2016-07-01

    We estimate the molecular mass around CTA 1 using data from Planck and the Harvard CO survey. We observe that the molecular mass in the vicinity of the complex is not enough to explain the TeV emission observed by VERITAS, even under favorable assumptions for the cosmic ray acceleration properties of the supernova remnant. This supports the idea that the TeV emission comes from the pulsar wind nebula (PWN). Here, we model the spectrum of the PWN at possible different stages of its evolution, including both the dynamics of the PWN and the supernova remnant and their interaction via the reverse shock. We have included in the model the energy lost via radiation by particles and the particles escape when computing the pressure produced by the gas. This leads to an evolving energy partition, since for the same instantaneous sharing of the injection of energy provided by the rotational power, the field and the particles are affected differently by radiation and losses. We present the model, and study in detail how the spectrum of a canonical isolated PWN is affected during compression and re-expansion and how this may impact on the CTA 1 case. By exploring the phase-space of parameters that lead to radii in agreement with those observed, we then analyse different situations that might represent the current stage of the CTA 1 PWN, and discuss caveats and requirements of each one.

  18. Degradation of Silicone Oils Exposed to Geostationary Environment Components: Ultraviolet Radiations and Electron Flux

    NASA Astrophysics Data System (ADS)

    Jochem, H.; Rejsek-Riba, V.; Maerten, E.; Baceiredo, A.; Remaury, S.

    Degradation of polydimethylsiloxane and vinyl-terminated polydimethylsiloxane oils exposed to UV radiation or 1.25 MeV electron flux was investigated using EPR, GC Headspace, NMR, GPC and UV-vis-NIR spectroscopy. To examine the influence of synthetic method, these two oils were prepared by ring opening polymerization using either an inorganic initiator KOH or an organic catalyst N-Heterocyclic carbene. Under UV radiation, any chemical change is observed for polydimethylsiloxane, whereas vinyl-terminated polydimethylsiloxane presents a decrease of vinyl functions and an increase of chain length. Both polydimethylsiloxane and vinyl terminated polydimethylsiloxane demonstrated a degradation of thermo-optical properties, more significant for oils synthesized with organic catalyst. By improving oil purification, the degradation of thermo-optical properties can be reduced. Effects of electron flux are similar for each oil, thus independently of synthetic method and end functions. Electron flux generates important chemical damages initiated by homolytic chain scissions. Radical recombination produces gases (methane and ethane), new functions (Si-H) and bonds across silicone chains leading to a solid state material. Crosslinking of chains occurs by formation of R-Si-(O)3 and Si-CH2-Si groups. Silyl radicals are trapped in the polymer network and can be detected even 1 week after the end of irradiation.

  19. Radioimmunotherapy in a radiation oncology environment: Building a multi-specialty team

    SciTech Connect

    Macklis, Roger M. . E-mail: macklir@ccf.org

    2006-10-01

    Radioimmunotherapy (RIT) is a new branch of radiation medicine in which antibodies specific for tumor-associated antigens are linked to radioactive atoms to provide biologically targeted short-range molecular radiotherapy. Two such biologically targeted radiopharmaceuticals have been approved for commercial use in the last few years. Y-90 ibritumomab tiuxetan (Zevalin) and I-131 tositumomab (Bexxar) both recognize the CD-20 surface antigen found on normal and malignant B cells. Both of these compounds produce impressive clinical results when used in the management of indolent, refractory, and transformed CD-20+ B-cell non-Hodgkin's lymphoma, but the unsealed sources involved in this class of compounds also require new types of patient care coordination and patient/environmental safety procedures. Because these multifunctional compounds are ideally administered through a multi-departmental team approach, the planning process to initiate and direct such a team is quite important. This article reviews some of the key processes that may be necessary to establish a successful clinical RIT team. The manuscript highlights the important roles that Radiation oncology team members may play in this multi-department enterprise.

  20. Characterization of the Radiation Environment During and Following Operation of the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Riso, Victoria; Pace, D. C.; Cooper, C. M.

    2015-11-01

    A survey of the gamma ray spectrum throughout the machine hall of the DIII-D tokamak provides a detailed mapping of its energy and temporal evolution. Engineering issues related to the structural effects of radiation produced by a fusion power plant will significantly affect the cost-effectiveness of the resulting energy. While existing magnetic confinement facilities produce considerably less neutron and gamma radiation than that expected from a power plant-scale facility, it remains useful to examine the latent gamma spectrum of the surrounding structures. The DIII-D tokamak produces ~1016 neutrons per run day (resulting primarily from beam-target DD fusion), with ~75 run days per year, leading to the activation of support structures with a short half-life. Measurements are made using bismuth germinate scintillator detectors operated in pulse height analysis mode. These detectors are placed throughout the machine hall and acquire gamma data both during experiments and for some time afterward. Results of these surveys from the 2015 experiments will be presented. Supported in part by US DOE under DE-FC02-04ER54698.