Science.gov

Sample records for haematology oxygen transport

  1. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  2. Atomic transport of oxygen

    SciTech Connect

    Routbort, J.L.; Tomlins, G.W.

    1994-06-15

    Atomic transport of oxygen in nonstoichiometric oxides is an extremely important topic which overlaps science and technology. In many cases the diffusion of oxygen controls sintering, grain growth, and creep. High oxygen diffusivity is critical for efficient operation of many fuel cells. Additionally, oxygen diffusivities are an essential ingredient in any point defect model. Secondary Ion Mass Spectrometry (SIMS) is the most accurate modern technique to measure oxygen tracer diffusion. This paper briefly reviews the principles and applications of SIMS for the measurement of oxygen transport. Case studies are taken from recent work on ZnO and some high-temperature superconductors.

  3. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-07-01

    In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  5. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  6. Red blood cell transfusion and skeletal muscle tissue oxygenation in anaemic haematologic outpatients

    PubMed Central

    Gavric, Ana Ursula; Podbregar, Eva; Mozina, Hugon; Stefanovic, Sebastian

    2016-01-01

    Abstract Background Stored red blood cells (RBCs) accumulate biochemical and biophysical changes, known as storage lesion. The aim of this study was to re-challenge current data that anaemia in chronically anaemic haematology patients is not associated with low skeletal muscle tissue oxygen (StO2), and that RBC storage age does not influence the tissue response after ischaemic provocation, using near-infrared spectroscopy. Patients and methods Twenty-four chronic anaemic haematology patients were included. Thenar skeletal muscle StO2 was measured at rest (basal StO2), with vascular occlusion testing (upslope StO2, maximum StO2) before and after transfusion. Results Basal StO2 was low (53% ± 7%). Average RBC storage time was 10.5 ± 3.9 days. Effects of RBC transfusions were as follows: basal StO2 and upslope StO2 did not change significantly; maximum StO2 increased compared to baseline (64 ± 14% vs. 59 ± 10%, p = 0.049). Change of basal StO2, upslope StO2 and maximum StO2 was negatively related to age of RBCs. The decrease of maximum StO2 was predicted (sensitivity 70%, specificity 100%), after receiving RBCs ≥ 10days old. Discussion Resting skeletal muscle StO2 in chronic anaemic patients is low. RBC storage time affects skeletal muscle StO2 in the resting period and after ischaemic provocation. PMID:27904454

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  8. Oxygen Transport Membranes

    SciTech Connect

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  9. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  11. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with

  13. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  14. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  15. Transport properties of oxygen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1983-01-01

    Tables of viscosity, thermal conductivity, and thermal diffusivity of oxygen as a function of temperature and pressure from the triple point to 320 K and at pressures to 100 MPa are presented. Auxiliary tables in engineering units are also given. Viscosity and thermal conductivity are calculated from published correlations. Density and specific heat at constant pressure, required to calculate thermal diffusivity, are obtained from an equation of state. The Prandtl number can be obtained quite easily from the values tabulated.

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  18. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  19. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  20. Composite oxygen transport membrane

    DOEpatents

    Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.

    2016-11-08

    A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.

  1. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  2. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  3. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  5. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  6. Composite oxygen ion transport element

    DOEpatents

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  7. Catalyst containing oxygen transport membrane

    DOEpatents

    Lane, Jonathan A.; Wilson, Jamie R.; Christie, Gervase Maxwell; Petigny, Nathalie; Sarantopoulos, Christos

    2017-02-07

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  8. Catalyst containing oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  9. Oxygen Mass Transport in Stented Coronary Arteries.

    PubMed

    Murphy, Eoin A; Dunne, Adrian S; Martin, David M; Boyle, Fergal J

    2016-02-01

    Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation has significant effects on the oxygen transport into the arterial wall. Elucidating these effects is critical to optimizing future stent designs. In this study the most advanced oxygen transport model developed to date was assessed in two test cases and used to compare three coronary stent designs. Additionally, the predicted results from four simplified blood oxygen transport models are compared in the two test cases. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed in predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood flow produces significant errors in predicting the oxygen transport in arteries. This study can be used as a guide for all future numerical studies in this area and the advanced model could provide a powerful tool in aiding design of stents and other cardiovascular devices.

  10. Haematological cancers.

    PubMed

    Pearce, Lynne

    2016-07-27

    Essential facts Haematological malignancies are a diverse group of cancers that affect the blood, bone marrow and lymphatic systems. The main categories are lymphoma, leukaemia, myeloma, myelodysplastic syndromes and myeloproliferative neoplasms. In addition, there are subtypes of lymphoma and leukaemia, as well as more rare haematological cancers that have their own categories. There are also borderline conditions such as aplastic anaemia and other non-malignant bone marrow failure syndromes. The charity Bloodwise says 38,000 people in Britain are diagnosed every year with blood cancer or a related disorder, making it the country's fifth most common cancer.

  11. A new oxygen transport agent.

    PubMed

    Standl, Thomas

    2005-04-01

    Modern highly purified and chemically modified hemoglobin-based oxygen carriers (HBOC) are free of significant side effects on kidneys and coagulation, and they do not possess ABO antigens, allowing transfusion without knowledge of the respective blood group. Even at room air oxygen concentrations HBOC can compensate for intravascular volume deficits in hemorrhagic shock, including restoration of colloid osmotic pressure and organ perfusion, and deliver oxygen to organs and tissues during nearly complete blood exchange. In animal experiments and clinical trials all HBOC showed a vasoconstrictive side-effect which is mainly caused by nitric oxide scavenging, and to a lesser extent by reactive vasoconstriction because of precapillary oxygen off-loading. The study by Bjorkholm in this issue of the journal (see page 505) investigates the application of a moderate dose of the newly designed HBOC, MP4, in volunteers. MP4 has a high molecular size and a very low p50 resulting in a high oxygen affinity thus avoiding significant (pre)capillary oxygen off-loading. No significant rises in blood pressure or major laboratory abnormalities were seen after MP4 infusion. This new HBOC may be applicable in patients as a red blood substitute where vasoconstriction must be avoided. In addition, poststenotic tissue oxygenation might be a further indication. However, the number of treated volunteers and the infused dose of MP4 were both are very small. Therefore, one cannot draw conclusions on the safety, tolerability and efficacy of MP4 in terms of red cell replacement when large amounts of oxygen carriers are needed.

  12. Ceramic oxygen transport membrane array reactor and reforming method

    DOEpatents

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  13. Effect of 12-hour road transportation on physiological, immunological and haematological parameters in bulls housed at different space allowances.

    PubMed

    Gupta, S; Earley, B; Crowe, M A

    2007-05-01

    The effects of transporting Holstein Friesian bulls (n=72; bodyweight 403+/-3.5 kg) for 12h by road were examined. Adrenal, haematological and immune responses, body temperature and performance were recorded. The animals had been previously housed for 96 days at three space allowances (1.2, 2.7 or 4.2m(2) per bull). The bulls were allocated to one of two treatments: T (transport for 12h; n=16 per space allowance) and C (control; n=8 per space allowance). Basal cortisol plasma concentrations and interferon (IFN)-gamma production from cultured lymphocytes did not show any statistically significant difference (P>0.05) following the housing period. Removing bulls from their home pens and walking them to the pre-loading crush facility, loading onto the transporter, and unloading following the 12h road journey, significantly (P<0.001) increased plasma cortisol concentration. The bulls housed at 4.2m(2) had greater (P<0.05) plasma cortisol concentrations than bulls housed at 1.2m(2) at loading, unloading, or on return to the crush holding facility; those housed at 1.2m(2) had greater (P<0.05) plasma cortisol concentrations than bulls housed at 2.7 and 4.2m(2) in their home pens after transport. There was an increased (P<0.05) plasma cortisol response in the T than in the C bulls following adrenocorticotrophic hormone administration. Transport significantly reduced (P<0.05) IFN-gamma production, lymphocyte % and body weight and significantly increased (P<0.05) neutrophils, eosinophils, packed cell volume, red blood cell numbers and haemoglobin. In conclusion, housing bulls for 96 days in a range of space allowances did not affect basal cortisol response or immune function parameters. Whereas transport increased plasma cortisol and reduced the immune response in the short-term, the changes were transient and within normal physiological ranges, suggesting that 12h road transport had no adverse effect on welfare status over the longer term. Furthermore, transport of bulls

  14. Pre-analytical effects of pneumatic tube system transport on routine haematology and coagulation tests, global coagulation assays and platelet function assays.

    PubMed

    Le Quellec, Sandra; Paris, Mickaël; Nougier, Christophe; Sobas, Frédéric; Rugeri, Lucia; Girard, Sandrine; Bordet, Jean-Claude; Négrier, Claude; Dargaud, Yesim

    2017-05-01

    Pneumatic tube system (PTS) in hospitals is commonly used for the transport of blood samples to clinical laboratories, as it is rapid and cost-effective. The aim was to compare the effects on haematology samples of a newly acquired ~2km-long PTS that links 2 hospitals with usual transport (non-pneumatic tube system, NPTS). Complete blood cell count, routine coagulation assays, platelet function tests (PFT) with light-transmission aggregometry and global coagulation assays including ROTEM® and thrombin generation assay (TGA) were performed on blood samples from 30 healthy volunteers and 9 healthy volunteers who agreed to take aspirin prior to blood sampling. The turnaround time was reduced by 31% (p<0.001) with the use of PTS. No statistically significant difference was observed for most routine haematology assays including PFT, and ROTEM® analysis. A statistically significant, but not clinically relevant, shortening of the APTT after sample transport by PTS was found (mean±SD: 30s±1.8 vs. 29.5s±2.1 for NPTS). D-dimer levels were 7.4% higher after transport through PTS but were not discordant. A statistically significant increase of thrombin generation was found in both platelet poor- and platelet rich- plasma samples after PTS transport compared to NPTS transport. PTS is suitable for the transport of samples prior to routine haematology assays including PFT, but should not be used for samples intended for thrombin generation measurement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modeling Oxygen Transport in the Human Placenta

    NASA Astrophysics Data System (ADS)

    Serov, Alexander; Filoche, Marcel; Salafia, Carolyn; Grebenkov, Denis

    Efficient functioning of the human placenta is crucial for the favorable pregnancy outcome. We construct a 3D model of oxygen transport in the placenta based on its histological cross-sections. The model accounts for both diffusion and convention of oxygen in the intervillous space and allows one to estimate oxygen uptake of a placentone. We demonstrate the existence of an optimal villi density maximizing the uptake and explain it as a trade-off between the incoming oxygen flow and the absorbing villous surface. Calculations performed for arbitrary shapes of fetal villi show that only two geometrical characteristics - villi density and the effective villi radius - are required to predict fetal oxygen uptake. Two combinations of physiological parameters that determine oxygen uptake are also identified: maximal oxygen inflow of a placentone and the Damköhler number. An automatic image analysis method is developed and applied to 22 healthy placental cross-sections demonstrating that villi density of a healthy human placenta lies within 10% of the optimal value, while overall geometry efficiency is rather low (around 30-40%). In a perspective, the model can constitute the base of a reliable tool of post partum oxygen exchange efficiency assessment in the human placenta. Also affiliated with Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.

  16. VERTEX: manganese transport through oxygen minima

    NASA Astrophysics Data System (ADS)

    Martin, John H.; Knauer, George A.

    1984-01-01

    Manganese transport through a well-developed oxygen minimum was studied off central Mexico (18°N, 108°W) in October-November 1981 as part of the VERTEX (Vertical Transport and Exchange) research program. Refractory, leachable and dissolved Mn fractions associated with particulates caught in traps set at eight depths (120-1950 m) were analyzed. Particles entering the oxygen minimum had relatively large Mn loads; however, as the particulates sank further into the minimum, total Mn fluxes steadily decreased from 190 nmol m -2 day -1 at 120 m to 36 nmol m -2 day -1 at 400 m. Manganese fluxes then steadily increased in the remaining 800-1950 m, reaching rates of up to 230 nmol m -2 day -1 at 1950 m. Manganese concentrations were also measured in the water column. Dissolved Mn levels < 3.0 nmol kg -1 were consistently observed within the 150-600 m depth interval. In contrast, suspended particulate leachable Mn amounts were especially low at those depths, and never exceeded 0.04 nmol kg -1. The combined water column and particle trap data clearly indicate that Mn is released from particles as they sink through the oxygen minimum. Rate-of-change estimates based on trap flux data yield regeneration rates of up to 0.44 nmol kg -1 yr -1 in the upper oxygen minimum (120-200 m). However, only 30% of the dissolved Mn in the oxygen minimum appears to be from sinking particulate regeneration; the other 70% probably results from continental-slope-release-horizontal-transport processes. Dissolved Mn scavenges back onto particles as oxygen levels begin to increase with depth. Scavenging rates ranging from -0.03 to -0.09 nmol kg -1 yr -1 were observed at depths from 700 to 1950 m. These scavenging rates result in Mn residence times of 16-19 years, and scavenging rate constants on the order of 0.057 yr -1. Manganese removal via scavenging on sinking particles below the oxygen minimum is balanced by Mn released along continental boundaries and transported horizontally via advective

  17. Ceramic oxygen transport membrane array reactor and reforming method

    SciTech Connect

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  18. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  19. Oxygen Transport: A Simple Model for Study and Examination.

    ERIC Educational Resources Information Center

    Gaar, Kermit A., Jr.

    1985-01-01

    Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…

  20. Haematological problems in obstetrics.

    PubMed

    Rodger, Marc; Sheppard, Dawn; Gándara, Esteban; Tinmouth, Alan

    2015-07-01

    Physiologic changes occur during pregnancy, which influence normal haematologic values and impact the diagnosis and management of haematologic disease in pregnancy. Physiologic changes of pregnancy also commonly lead to mimicking symptoms of haematologic disease that may prompt investigations for haematologic disease. The toxicity and radiation associated with the diagnostic imaging and pharmacologic management of both benign and malignant haematological conditions during pregnancy present unique challenges. Strategies for diagnosis and treatment must weigh the benefits and risks to the mother while also taking foetal outcome into consideration. In this review, we highlight the common haematologic diseases encountered by obstetricians and try to provide guidance for the most prevalent diagnostic and therapeutic questions. At the other end of the spectrum, we also comment on less common but very challenging haematologic diseases in pregnancy that require multidisciplinary effort to arrive at difficult individual diagnostic and treatment decisions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Perfluorocarbon oxygen transport. A comparative study of four oxygenator designs.

    PubMed

    Ferguson, E R; Clymer, J J; Spruell, R D; Holman, W L

    1994-01-01

    Improvements made in current generation perfluorocarbon emulsions (PFCEs) warrant renewed interest in PFCEs as an oxygen (O2) carrying substance during cardiopulmonary bypass (CPB). Before embarking on in vivo studies of PFCEs during CPB, an in vitro study was designed to: 1) demonstrate increased O2 content attributable to PFCEs, and 2) compare O2 transfer to a PFCE crystalloid mixture by four oxygenator designs (one bubble oxygenator, two hollow fiber membrane oxygenators, and one silastic membrane oxygenator). A circuit was designed to circulate fluid between a deoxygenating device and a test oxygenator. In protocol I, either a crystalloid solution or a crystalloid PFCE mixture was circulated through bubble oxygenators at flows ranging from 0.5 to 3 l/min, and at temperatures of 4, 20, 30, or 40 degrees C. In protocol II, a crystalloid PFCE mixture was circulated at flows ranging from 0.5 to 6 l/min at temperatures of 4, 20, 30, or 40 degrees C. Four different oxygenator designs were compared using the in vitro test circuit. The comparison variables for protocols I and II were arterovenous oxygen (AVO2) difference and O2 transfer rate measured at each flow for each temperature. Protocol I showed that the AVO2 differences and O2 transfer rates were higher in the crystalloid PFCE mixture than in the crystalloid solution, although statistical comparison was precluded by the small sample size. In protocol II, the hollow fiber and silastic membrane oxygenators had higher (P < 0.05) AVO2 differences and oxygen transfer rates than the bubble oxygenators at all flows and temperatures tested. Future trials to evaluate PFCEs during cardiopulmonary bypass should use hollow fiber or silastic membrane oxygenators, rather than bubble oxygenators, to maximize transfer of O2 to the PFCE.

  2. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  3. Case-Based Learning of Blood Oxygen Transport

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…

  4. Case-Based Learning of Blood Oxygen Transport

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…

  5. Numerical study of oxygen transport in a carotid bifurcation

    NASA Astrophysics Data System (ADS)

    Tada, Shigeru

    2010-07-01

    This study investigates the oxygen mass transport in the region around the human carotid bifurcation, particularly addressing the effects of bifurcation geometry and pulsatile blood flow on the oxygen transport between the blood flow and artery wall tissue, coupled with the metabolic oxygen consumption and oxygen diffusion in the artery wall tissue. The temporal variations and spatial distributions of the oxygen tension are predicted quantitatively using a geometric model of the human carotid bifurcation and realistic blood flow waveforms. Results reveal that the flow separation at the outside wall of the sinus of the internal carotid artery (ICA) can markedly alter the flow pattern, oxygen tension and the oxygen wall flux. Results also clarify that the flow unsteadiness has a secondary effect on the oxygen tension inside the wall. The non-dimensional oxygen flux, the Sherwood number Sh, at the outside wall of the ICA sinus, takes markedly lower values of about 45 than at other sites because the rates of oxygen transport by the convective flow are reduced at the outside wall of the ICA sinus. The transverse distributions of the oxygen tension inside the artery wall show parabolic profiles having minima in the middle of the wall thickness, with the lowest value of 35 mmHg. These predicted distributions of the oxygen tension inside the wall closely resemble those obtained from experiments. The results demonstrate that hypoxic zones appear inside the artery walls at locations where atherosclerotic lesions are prone to develop.

  6. OXYGEN TRANSPORT IN THE MICROCIRCULATION AND ITS REGULATION

    PubMed Central

    Pittman, Roland N.

    2012-01-01

    Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium and cells. Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand and their regulation are decided. PMID:23025284

  7. Significance of oxygen transport through aquaporins.

    PubMed

    Zwiazek, Janusz J; Xu, Hao; Tan, Xiangfeng; Navarro-Ródenas, Alfonso; Morte, Asunción

    2017-01-12

    Aquaporins are membrane integral proteins responsible for the transmembrane transport of water and other small neutral molecules. Despite their well-acknowledged importance in water transport, their significance in gas transport processes remains unclear. Growing evidence points to the involvement of plant aquaporins in CO2 delivery for photosynthesis. The role of these channel proteins in the transport of O2 and other gases may also be more important than previously envisioned. In this study, we examined O2 permeability of various human, plant, and fungal aquaporins by co-expressing heterologous aquaporin and myoglobin in yeast. Two of the most promising O2-transporters (Homo sapiens AQP1 and Nicotiana tabacum PIP1;3) were confirmed to facilitate O2 transport in the spectrophotometric assay using yeast protoplasts. The over-expression of NtPIP1;3 in yeasts significantly increased their O2 uptake rates in suspension culture. In N. tabacum roots subjected to hypoxic hydroponic conditions, the transcript levels of the O2-transporting aquaporin NtPIP1;3 significantly increased after the seven-day hypoxia treatment, which was accompanied by the increase of ATP levels in the apical root segments. Our results suggest that the functional significance of aquaporin-mediated O2 transport and the possibility of controlling the rate of transmembrane O2 transport should be further explored.

  8. Significance of oxygen transport through aquaporins

    PubMed Central

    Zwiazek, Janusz J.; Xu, Hao; Tan, Xiangfeng; Navarro-Ródenas, Alfonso; Morte, Asunción

    2017-01-01

    Aquaporins are membrane integral proteins responsible for the transmembrane transport of water and other small neutral molecules. Despite their well-acknowledged importance in water transport, their significance in gas transport processes remains unclear. Growing evidence points to the involvement of plant aquaporins in CO2 delivery for photosynthesis. The role of these channel proteins in the transport of O2 and other gases may also be more important than previously envisioned. In this study, we examined O2 permeability of various human, plant, and fungal aquaporins by co-expressing heterologous aquaporin and myoglobin in yeast. Two of the most promising O2-transporters (Homo sapiens AQP1 and Nicotiana tabacum PIP1;3) were confirmed to facilitate O2 transport in the spectrophotometric assay using yeast protoplasts. The over-expression of NtPIP1;3 in yeasts significantly increased their O2 uptake rates in suspension culture. In N. tabacum roots subjected to hypoxic hydroponic conditions, the transcript levels of the O2-transporting aquaporin NtPIP1;3 significantly increased after the seven-day hypoxia treatment, which was accompanied by the increase of ATP levels in the apical root segments. Our results suggest that the functional significance of aquaporin-mediated O2 transport and the possibility of controlling the rate of transmembrane O2 transport should be further explored. PMID:28079178

  9. Capillary oxygen transport during severe hypoxia: role of hemoglobin oxygen affinity.

    PubMed

    Stein, J C; Ellsworth, M L

    1993-10-01

    The efficacy of an increased hemoglobin oxygen affinity [decreased oxygen half-saturation pressure of hemoglobin (P50)] on capillary oxygen transport was evaluated in the hamster retractor muscle under conditions of a severely limited oxygen supply resulting from the combined effects of a 40% reduction in systemic hematocrit and hypoxic ventilation (inspired oxygen fraction 0.1). Two groups of hamsters were utilized: one with a normal oxygen affinity (untreated; P50 = 26.1 +/- 2.4 Torr) and one with an increased oxygen affinity (treated; P50 = 15.7 +/- 1.4 Torr) induced by the chronic short-term administration of sodium cyanate. Using in vivo video microscopy and image analysis techniques, we determined oxygen saturation and associated hemodynamics at both ends of the capillary network. During hypoxic ventilation, the decrease in oxygen saturation across the network was 3.6% for untreated animals compared with 9.9% for treated animals. During hypoxia, estimated end-capillary PO2 was significantly higher in the untreated animals. These data indicate that, at the capillary level, a decreased P50 is advantageous for tissue oxygenation when oxygen supply is severely compromised, because normal oxygen losses in capillaries are maintained in treated but not in untreated animals. The data are consistent with the presence of a diffusion limitation for oxygen during severe hypoxia in animals with a normal hemoglobin oxygen affinity.

  10. Mathematical Model of Oxygen Transport in Tuberculosis Granulomas

    PubMed Central

    Datta, Meenal; Via, Laura E.; Chen, Wei; Baish, James W.; Xu, Lei; Barry, Clifton E.; Jain, Rakesh K.

    2016-01-01

    Pulmonary granulomas—the hallmark of Mycobacterium tuberculosis (MTB) infection—are dense cellular lesions that often feature regions of hypoxia and necrosis, partially due to limited transport of oxygen. Low oxygen in granulomas can impair the host immune response, while MTB are able to adapt and persist in hypoxic environments. Here, we used a physiologically based mathematical model of oxygen diffusion and consumption to calculate oxygen profiles within the granuloma, assuming Michaelis–Menten kinetics. An approximate analytical solution—using a priori and newly estimated parameters from experimental data in a rabbit model of tuberculosis—was able to predict the size of hypoxic and necrotic regions in agreement with experimental results from the animal model. Such quantitative understanding of transport limitations can inform future tuberculosis therapeutic strategies that may include adjunct host-directed therapies that facilitate oxygen and drug delivery for more effective treatment. PMID:26253038

  11. A 22-year experience in global transport extracorporeal membrane oxygenation.

    PubMed

    Coppola, Christopher P; Tyree, Melissa; Larry, Karen; DiGeronimo, Robert

    2008-01-01

    Transport extracorporeal membrane oxygenation (ECMO) is currently available at 12 centers. We report a 22-year experience from the only facility providing global transport ECMO. Indications for transport ECMO include lack of ECMO services, inability to transport conventionally, inability to wean from cardiopulmonary bypass, extracorporeal cardiopulmonary resuscitation, and need to move a patient on ECMO for specialized services such as organ transplantation. Retrospective database review of children undergoing inhouse and transport ECMO from 1985 to 2007. Sixty-eight children underwent transport ECMO. Fifty-six were transported on ECMO into our facility. The remaining 12 were moved between 2 outside locations. Ground vehicles and fixed-wing aircraft were used. Distance transported was 8 to 7500 miles (13-12070 km), mean 1380 miles (2220 km). There were 116 inhouse ECMO runs. No child died during transport. Survival to discharge after transport ECMO was 65% (44/68) and, for inhouse ECMO, was 70% (81/116). Transport ECMO is feasible and effective, with survival rates comparable to inhouse ECMO. We have used transport ECMO to help children at non-ECMO centers with pulmonary failure who have not improved with inhaled nitric oxide and high-frequency ventilation. We have also transported a child after extracorporeal cardiopulmonary resuscitation, which may represent an emerging indication for transport ECMO. Transport ECMO often is the only option for children too unstable for conventional transport or those already on ECMO and requiring a specialized service at another facility, such as organ transplantation.

  12. Analytical theory of oxygen transport in the human placenta.

    PubMed

    Serov, A S; Salafia, C M; Filoche, M; Grebenkov, D S

    2015-03-07

    We propose an analytical approach to solving the diffusion-convection equations governing oxygen transport in the human placenta. We show that only two geometrical characteristics of a placental cross-section, villi density and the effective villi radius, are needed to predict fetal oxygen uptake. We also identify two combinations of physiological parameters that determine oxygen uptake in a given placenta: (i) the maximal oxygen inflow of a placentone if there were no tissue blocking the flow and (ii) the ratio of transit time of maternal blood through the intervillous space to oxygen extraction time. We derive analytical formulas for fast and simple calculation of oxygen uptake and provide two diagrams of efficiency of oxygen transport in an arbitrary placental cross-section. We finally show that artificial perfusion experiments with no-hemoglobin blood tend to give a two-orders-of-magnitude underestimation of the in vivo oxygen uptake and that the optimal geometry for such setup alters significantly. The theory allows one to adjust the results of artificial placenta perfusion experiments to account for oxygen-hemoglobin dissociation. Combined with image analysis techniques, the presented model can give an easy-to-use tool for prediction of the human placenta efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    NASA Astrophysics Data System (ADS)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  14. Modeling oxygen transport in surgical tissue transfer.

    PubMed

    Matzavinos, Anastasios; Kao, Chiu-Yen; Green, J Edward F; Sutradhar, Alok; Miller, Michael; Friedman, Avner

    2009-07-21

    Reconstructive microsurgery is a clinical technique used to transfer large amounts of a patient's tissue from one location used to another in order to restore physical deformities caused by trauma, tumors, or congenital abnormalities. The trend in this field is to transfer tissue using increasingly smaller blood vessels, which decreases problems associated with tissue harvest but increases the possibility that blood supply to the transferred tissue may not be adequate for healing. It would thus be helpful to surgeons to understand the relationship between the tissue volume and blood vessel diameter to ensure success in these operations. As a first step towards addressing this question, we present a simple mathematical model that might be used to predict successful tissue transfer based on blood vessel diameter, tissue volume, and oxygen delivery.

  15. Oxygen Transport in Melts Based on V2O5

    NASA Astrophysics Data System (ADS)

    Klimashin, Anton; Belousov, Valery

    2016-02-01

    An oxygen ion transport model was developed for oxide melts based on V2O5. Within the framework of this model, the values of the parabolic rate constant of catastrophic oxidation of V2O5-deposited copper and the oxygen flux through the slags based on molten V2O5 were calculated and compared with experimental data. The calculated and experimental values are of the same order of magnitude which shows an adequacy of the model.

  16. The effect of body cooling on oxygen transport during exercise.

    PubMed

    Pendergast, D R

    1988-10-01

    The capability to transport oxygen to muscle limits the ability to exercise. The purpose of this review is to consider the effects of body cooling on the oxygen transport and therefore exercise capacity. Body cooling results in an increase in resting metabolism that is proportional to the decrease in core temperature (Tc). Furthermore, the energy cost of exercise is increased (10-40%) by a 0.5-1.5 degrees C decrease in Tc. The capability to supply oxygen to meet the increased cost of activity is also reduced by 10-40% for a decrease in Tc of 0.5-1.5 degrees C. The reduced oxygen delivery is a result of a combination of decreased respiratory effectiveness, cardiac function, and muscle blood flow. Other than at rest, cardiac output in air or water with and without body cooling increases similarly with oxygen consumption (6 1/1 O2). Body cooling does result in a reduction of maximal heart rate and cardiac output. We postulate that the primary limitation to oxygen transport is a persistent vasoconstriction mediated by the sympathetic system, to increase body insulation, that blunts the local metabolically mediated exercise hyperemia.

  17. Method measuring oxygen tension and transport within subcutaneous devices

    PubMed Central

    Weidling, John; Sameni, Sara; Lakey, Jonathan R. T.; Botvinick, Elliot

    2014-01-01

    Abstract. Cellular therapies hold promise to replace the implantation of whole organs in the treatment of disease. For most cell types, in vivo viability depends on oxygen delivery to avoid the toxic effects of hypoxia. A promising approach is the in situ vascularization of implantable devices which can mediate hypoxia and improve both the lifetime and utility of implanted cells and tissues. Although mathematical models and bulk measurements of oxygenation in surrounding tissue have been used to estimate oxygenation within devices, such estimates are insufficient in determining if supplied oxygen is sufficient for the entire thickness of the implanted cells and tissues. We have developed a technique in which oxygen-sensitive microparticles (OSMs) are incorporated into the volume of subcutaneously implantable devices. Oxygen partial pressure within these devices can be measured directly in vivo by an optical probe placed on the skin surface. As validation, OSMs have been incorporated into alginate beads, commonly used as immunoisolation devices to encapsulate pancreatic islet cells. Alginate beads were implanted into the subcutaneous space of Sprague–Dawley rats. Oxygen transport through beads was characterized from dynamic OSM signals in response to changes in inhaled oxygen. Changes in oxygen dynamics over days demonstrate the utility of our technology. PMID:25162910

  18. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  19. Modeling oxygen transport in a cylindrical bioartificial pancreas.

    PubMed

    Thrash, Marvin

    2010-01-01

    Encapsulated pancreatic islets in a cylindrical hollow fiber have been reported to reverse diabetes in test animals; however, for many of these animals, the effects have only been temporary. Oxygen deficiency within the fiber has been proposed as a cause of the observed loss of islet viability. A mathematical model of transport and reaction kinetics in a bioartificial pancreas (BAP) has been developed to calculate the oxygen concentration profiles in a cylindrical BAP. Simulation results indicate that hypoxic conditions will exist in large diameter fibers or fibers with islet concentrations >20,000 islets/ml. Moreover, our results show that a significant amount of oxygen is consumed in the tissue region surrounding the cylindrical BAP. Even if the islet survives in a low-oxygen environment, the insulin productivity will likely be reduced.

  20. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  1. Computation of the unsteady facilitated transport of oxygen in hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1990-01-01

    The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.

  2. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  3. Oxygen transport as a structure probe for heterogeneous polymeric systems

    NASA Astrophysics Data System (ADS)

    Hu, Yushan

    Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation

  4. Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives.

    PubMed

    Davis, R W; Kanatous, S B

    1999-05-01

    Unlike their terrestrial counterparts, marine mammals stop breathing and reduce their convective oxygen transport while performing activities (e.g. foraging, courtship, aggressive interactions, predator avoidance and migration) that require sustained power output during submergence. Since most voluntary dives are believed to remain aerobic, the goal of this study was to examine the potential importance of the dive response in optimizing the use of blood and muscle oxygen stores during dives involving different levels of muscular exertion. To accomplish this, we designed a numerical model based on Fick's principle that integrated cardiac output (Vb), regional blood flow, convective oxygen transport (Q(O2)), muscle oxymyoglobin desaturation and regional rates of oxygen consumption (VO2). The model quantified how the optimal matching or mismatching of QO2 to VO2 affected the aerobic dive limit (ADL). We chose an adult Weddell seal Leptonycotes weddellii on which to base our model because of available data on the diving physiology and metabolism of this species. The results show that the use of blood and muscle oxygen stores must be completed at the same time to maximize the ADL for each level of VO2. This is achieved by adjusting Vb (range 19-94 % of resting levels) and muscle QO2 according to the rate of muscle oxygen consumption (VMO2). At higher values of VMO2, Vb and muscle perfusion must increase to maintain an appropriate QO2/VO2 ratio so that available blood and muscle oxygen stores are depleted at the same time. Although the dive response does not sequester blood oxygen exclusively for brain and heart metabolism during aerobic dives, as it does during forced submersion, a reduction in Vb and muscle perfusion below resting levels is necessary to maximize the ADL over the range of diving VO2 (approximately 2-9 ml O2 min-1 kg-1). Despite the reduction in Vb, convective oxygen transport is adequate to maintain aerobic metabolism and normal function in the

  5. Strain effects on oxygen transport in tetragonal zirconium dioxide

    SciTech Connect

    Xian-Ming Bai; Yongfeng Zhang; Michael R. Tonks

    2013-11-01

    Temperature accelerated dynamics and molecular dynamics simulations are used to investigate the strain effects on oxygen interstitial and vacancy migration in tetragonal zirconium dioxide. At zero external strain, the anisotropic migration mechanisms of oxygen defects are characterized. At non-zero strains, both the crystal structure and defect migration barriers are modified by strain. Under compressive strains, the defect migration barrier increases with the increasing strain for both interstitials and vacancies. The crystal structure transforms from a tetragonal to a nearly cubic fluorite structure. Accordingly, the defect migration becomes nearly isotropic. Under dilative strains, the migration barrier first decreases then increases with increasing strain for both types of defects. The tetragonal phase transforms to a lower symmetry structure that is close to the orthorhombic phase. In turn, the defect migration becomes highly anisotropic. Under both compressive and dilative strains, interstitials respond to strain more strongly than vacancies. At small dilative strains, an oxygen interstitial has comparable diffusivity to a vacancy, suggesting that both types of defects can contribute to oxygen transport, if they are present. Although currently no previous result is available to validate oxygen interstitial diffusion behavior, the trend of strain effects on oxygen vacancy diffusion is in good agreement with available experimental and theoretical studies in the literature.

  6. Nonsteady State Oxygen Transport in Engineered Tissue: Implications for Design

    PubMed Central

    Ehsan, Seema M.

    2013-01-01

    Engineered tissue constructs are limited in size, and thus clinical relevance, when diffusion is the primary mode of oxygen transport. Understanding the extent of oxygen diffusion and cellular consumption is necessary for the design of engineered tissues, particularly those intended for implantation into hypoxic wound sites. This study presents a combined experimental and computation model to predict design constraints for cellularized fibrin tissues subjected to a step change in the oxygen concentration to simulate transplantation. Nonsteady state analysis of oxygen diffusion and consumption was used to estimate the diffusion coefficient of oxygen (mean±SD, 1.7×10−9±8.4×10−11 m2/s) in fibrin hydrogels as well as the Michaelis-Menten parameters, Vmax (1.3×10−17±9.2×10−19 mol·cell−1·s−1), and Km (8.0×10−3±3.5×0−3 mol/m3), of normal human lung fibroblasts. Nondimensionalization of the governing diffusion-reaction equation enabled the creation of a single dimensionless parameter, the Thiele modulus (φ), which encompasses the combined effects of oxygen diffusion, consumption, and tissue dimensions. Tissue thickness is the design parameter with the most pronounced influence on the distribution of oxygen within the system. Additionally, tissues designed such that φ<1 achieve a near spatially uniform and adequate oxygen concentration following the step change. Understanding and optimizing the Thiele modulus will improve the design of engineered tissue implants. PMID:23350630

  7. Effects of oxygen on exciton transport in zinc phthalocyanine layers

    NASA Astrophysics Data System (ADS)

    Kerp, H. R.; van Faassen, E. E.

    2000-12-01

    The effect of oxygen on the photovoltaic properties of organic solar cells consisting of zinc phthalocyanine and a perylene pigment has been investigated. Under solar illumination, it was possible to raise the short-circuit current by a factor of 1.5 when increasing the partial O 2 pressure threefold from atmospheric pressure in a surrounding gas atmosphere consisting of different oxygen:nitrogen ratios with a total pressure of 1 bar. On the other hand, the exciton diffusion length in ZnPc was observed to decrease at higher oxygen pressures, from which we conclude that the range of exciton transport in the ZnPc layer is limited by the presence of ionic impurities such as O 2-.

  8. Cerebral Oxygenation and Acceleration in Pediatric and Neonatal Interfacility Transport.

    PubMed

    Valente, Michael E; Sherif, Judy A; Azen, Colleen G; Pham, Phung K; Lowe, Calvin G

    2016-01-01

    The purpose of this study is to measure peak acceleration forces during interfacility transport; examine whether drops in cerebral oxygenation occurred; and test the associations between cerebral oxygenation, acceleration, and patient positioning. A cerebral oximeter (INVOS-5100C; Somanetics, Minneapolis, MN) monitored regional saturation of oxygen (rSO2 [cerebral oxygenation]) in pediatric and neonatal patients (N = 24) transported between facilities by ground ambulance, helicopter, or fixed wing aircraft. An accelerometer (GP1; SENSR, Georgetown, TX) bolted to the isolette or gurney recorded z-axis (aligned with the spine) accelerations. The z-axis peak accelerations (absolute values of g) by transport type were as follows: ground ambulance takeoff mean = 0.16 and landing mean = 0.08, helicopter takeoff mean = 0.16 and landing mean = 0.05, fixed wing aircraft takeoff mean = 0.14 and landing mean = 0.20. During takeoff, 2 of 7 patients in the head-to-front of vehicle position experienced rSO2 drop. During landing, 4 of 13 patients in the head-to-back of vehicle position experienced rSO2 drop. There were no significant associations of rSO2 drop during takeoff and landing with patient positioning or with z-axis peak acceleration. Acceleration forces of pediatric and neonatal interfacility transport are small and comparable in magnitude. The relationship between rSO2 drop and patient positioning was not significant in this pilot study. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  9. Reclaimed wastewater quality enhancement by oxygen injection during transportation.

    PubMed

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2011-01-01

    In-sewer treatments have been studied in sewer systems, but few have been carried out on reclaimed wastewater systems. A study of oxygen injection has been performed in a completely filled gravity pipe, 0.6 m in diameter and 62 km long, in cast iron with concrete inside coating, which is part of the reclaimed wastewater reuse scheme of Tenerife (Spain). A high pressure oxygen injection system was installed at 16.0 km from pipe inlet and a constant dosage of 30 mg/L O(2) has been injected during six months, under three different operational modes (low COD, 63 mg/L; high COD, 91 mg/L; and partially nitrified water). Oxygen has been consumed in nitrification and organic matter reduction. Generally, nitrification is clearly favored instead of the organic matter oxidation. Nitrification occurs, in general, with nitrite accumulation due to the presence of free ammonia above 1 mg/L. Denitrification is in all cases incomplete due to a limitation of easily biodegradable organic matter content, inhibiting the appearance of anaerobic conditions and sulfide generation. A notable reduction of organic matter parameters is achieved (TSS below 10 mg/L), which is significantly higher than that observed under the ordinary transport conditions without oxygen. This leads to a final cost reduction, and the oxygen injection system helps water reuse managers to maintain a final good water quality in the case of a treatment plant malfunction.

  10. Modeling of Oxygen Transport Across Tumor Multicellular Layers

    PubMed Central

    Braun, Rod D.; Beatty, Alexis L.

    2007-01-01

    Purpose Tumor oxygen level plays a major role in the response of tumors to different treatments. The purpose of this study was to develop a method of determining oxygen transport properties in a recently developed 3-D model of tumor parenchyma, the multicellular layer (MCL). Methods OCM-1 human choroidal melanoma cells were grown as 3-D MCL on collagen-coated culture plate inserts. A recessed-cathode oxygen microelectrode was used to measure oxygen tension (PO2) profiles across 8 different MCL from the free surface to the insert membrane. The profiles were fitted to four different one-dimensional diffusion models: 1-, 2-, and 3-region models with uniform oxygen consumption (q) in each region and a modified 3-region model with a central region where q=0 and PO2=0. Results Depending upon the presence of a central region of anoxia, the PO2 profiles were fitted best by either the two-region model or the modified 3-region model. Consumption of tumor cells near the insert membrane was higher than that of cells close to the free surface (33.1 ± 13.6 x 10−4 vs. 11.8 ± 6.7 x 10−4 mm Hg/μm2, respectively). Conclusions The model is useful for determining oxygenation and consumption in MCL, especially for cell lines that cannot be grown as spheroids. In the future, this model will permit the study of parameters important in tumor oxygenation in vitro. PMID:17196225

  11. Convection and hemoglobin-based oxygen carrier enhanced oxygen transport in a hepatic hollow fiber bioreactor.

    PubMed

    Sullivan, Jesse P; Harris, David R; Palmer, Andre F

    2008-01-01

    Hepatic hollow fiber bioreactors are a promising class of bioartificial liver assist device (BLAD). The development of this type of device is currently hindered by limited oxygen transport to cultured hepatocytes, due to low solubility of oxygen in aqueous media. In order to increase the oxygen spectrum to cultured hepatocytes housed within a hollow fiber bioreactor, several different engineering strategies were explored in this study. These included: supplementing the circulating media stream of the hollow fiber bioreactor with a hemoglobin-based oxygen carrier (bovine red blood cells) with defined oxygen binding and release kinetics and operating the bioreactor with media flow through the hollow fiber membrane into the extracapillary space (ECS). We hypothesize that these two strategies can be used to improve hepatocyte oxygenation and possibly attain an in vivo-like pO(2) spectrum, similar to that observed in vivo in the liver sinusoid. This work is significant, since provision of an in vivo-like pO(2) spectrum should create a fully functional BLAD that could potentially bridge thousands of liver failure patients towards native liver regeneration of damaged tissue or, if necessary, orthotopic liver transplantation.

  12. Oxygen transport properties estimation by DSMC-CT simulations

    SciTech Connect

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    2014-12-09

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.

  13. Effects of gemfibrozil on the oxygen transport properties of erythrocytes.

    PubMed Central

    Scatena, R; Nocca, G; Messana, I; De Sole, P; Baroni, S; Zuppi, C; Castagnola, M; Giardina, B

    1995-01-01

    1. In the present study we have investigated the effects of the relatively low plasma concentrations of gemfibrozil (GFZ) found in clinical practice on the oxygen dissociation curve (ODC) of erythrocytes. 2. ODCs were measured at 30 degrees C and 37 degrees C and at pH 7.4: a) both on HbA solution and erythrocytes incubated in vitro with gemfibrozil and clofibric acid; b) on erythrocytes from healthy volunteers treated with a single oral dose of gemfibrozil. 3. These experiments showed a significant drug-induced shift of the ODC towards lower O2 affinity values without any significant modification of metabolic parameters of erythrocytes such as intracellular pH and intraerythrocytic levels of ATP and DPG. 4. In our experimental conditions gemfibrozil appears to lower both in vitro and in vivo, the partial pressure of oxygen required to give 50% of the haemes saturated with oxygen (P50) of erythrocytes from the control value of 24 +/- 0.5 mm Hg to 29 +/- 0.5 mm Hg (mean +/- s.d.; P < 0.02 by ANOVA). 5. These data clearly indicate that therapeutic doses of gemfibrozil may influence the oxygen transport properties of red cells. This effect could have relevant pharmacological and toxicological implications. PMID:7756095

  14. [Plasmapheresis in haematology].

    PubMed

    Woźniak, Krzysztof; Urbanowska, Elżbieta; Snarski, Emilian

    2015-01-01

    Plasmapheresis also known as a therapeutic plasma exchange (TPE) is a procedure of plasma removal with it's ineligible plasma's component. Usually it is a supportive measure used simultaneously with the treatment, but in a few diseases, e.g. in trombotictrombocytopenic purpura (TTP), it is a first-choice treatment. During the plasmapheresis plasma is mostly replaced by 20% solution of albumin or combination of 20% solution of albumin and 0.9% solution of NaCl, however in some diseases fresh frozen plasma (FFP) is used. Plasmaphereses have found a wide application in different branches of medicine: hematology, neurology, nephrology, reumatology. Plasmapheresis is an invasive procedure, but when performed by qualified staff it is rather safe and serious complications are very rare.The most common complications of plasmapheresis are mild, usually caused by electrolyte disturbances (hypokalemia, hypokalcemia) or anticoagulation. More serious complication can be associated with FFP transfusion, extracorporeal circulation or presence of intravenous catheter. The latter one is usually necessary to perform the plasmapheresis. In haematology the most common indication for plasmapheresis is the supportive treatment of multiple myeloma. The procedure is performed in patients with high protein levels endangered with hyperviscosity syndrome. Less frequent indications to plasmapheresis in haematology are: Waldenström's macroblobulynaemia, idiopathic thrombocytopenic purpura (ITP), pure red cell aplasia (PRCA), polyneuropaties connected with haematological disorders. Supportive treatment of haemofagocytic syndrome (HLH--hemophagocytic lymphohistiocytosis) is one of the new indications. Plasmaphereses are used in treatment of about 150 different diseases and more and more new needs for this method are identified.

  15. Oxygen transport and consumption during experimental cardiopulmonary bypass using oxyfluor.

    PubMed

    Briceño, J C; Rincón, I E; Vélez, J F; Castro, I; Arcos, M I; Velásquez, C E

    1999-01-01

    To evaluate a perfluorocarbon based oxygen carrier (Oxyfluor), a porcine model of cardiopulmonary bypass (CPB) was implemented. Swine (30 kg) were subjected to 2 h of normothermic CPB using Oxyfluor (OF group, n = 8) or Ringer's lactate (RL group, n = 13) as the prime. Mean arterial pressure (MAP) was kept at 50 mm Hg, flow rate at 80 ml x min(-1) x kg(-1), and PaCO2 at 35 mm Hg. Hemodynamic, hematologic, fluid balance, and blood gasimetry variables were measured. Total body oxygen delivery (DO2), consumption (VO2), and the fractional contribution to delivery (FCD) and to consumption (FCC) of the red blood cells (RBC), PFC, and plasma phases were calculated. Mixed venous PO2 (PvO2) was significantly higher at 30 min and 1 h on CPB in the OF group than in the RL group. FCCRBC was significantly lower at 30 min, 1 h, and 90 min on CPB in the OF group than in the RL group. PvjO2, Ca-vO2, Ca-vj O2, and VO2 were slightly higher in the OF group than in the RL group. Tissue fluid accumulation was not alleviated with Oxyfluor, and tissue and brain acidosis were significantly increased in the OF group. This study presented evidence that Oxyfluor improved tissue oxygenation and total body oxygen consumption during experimental CPB. In addition, Oxyfluor reduced FCCRBC, increasing oxygen transport reserve of the RBC phase, which can be useful to reduce hypoxic events during CPB. Further research should be conducted to optimize PFC-OCs for use in CPB and to reduce secondary effects.

  16. Oxygen transport is not compromised at high temperature in pythons.

    PubMed

    Fobian, Dannie; Overgaard, Johannes; Wang, Tobias

    2014-11-15

    To evaluate whether the 'oxygen and capacity limited thermal tolerance' model (OCLTT) applies to an air-breathing ectothermic vertebrate, we measured oxygen uptake (V̇(O₂)), cardiac performance and arterial blood gases during a progressive rise of temperature from 30 to 40°C in the snake Python regius. V̇(O₂) of fasting snakes increased exponentially with temperature whereas V̇(O₂) of digesting snakes at high temperatures plateaued at a level 3- to 4-fold above fasting. The high and sustained aerobic metabolism over the entire temperature range was supported by pronounced tachycardia at all temperatures, and both fasting and digesting snakes maintained a normal acid-base balance without any indication of anaerobic metabolism. All snakes also maintained high arterial PO2, even at temperatures close to the upper lethal temperature. Thus, there is no evidence of a reduced capacity for oxygen transport at high temperatures in either fasting or digesting snakes, suggesting that the upper thermal tolerance of this species is limited by other factors.

  17. 78 FR 1765 - Requirements for Chemical Oxygen Generators Installed on Transport Category Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Federal Aviation Administration 14 CFR Part 25 RIN 2120-AK14 Requirements for Chemical Oxygen Generators... requirements for chemical oxygen generators installed on transport category airplanes so the generators are... Committee COG--Chemical Oxygen Generator LOARC--Lavatory Oxygen Aviation Rulemaking Committee SaO 2 --Blood...

  18. Severe repetitive exercise and haematological status.

    PubMed Central

    Ross, J. H.; Attwood, E. C.

    1984-01-01

    The effects of severe repetitive exercise on certain haematological measurements were studied. Decreases in haematocrit and haemoglobin (13% in one group of participants) took place during the first 2 weeks but not the third week of increasingly severe exertion and the reasons for this are discussed. Haemolysis probably plays only a small part and plasma volume expansion is likely to be the main cause of this phenomenon. It is suggested that there is no stimulus for the haemoglobin concentration to be increased to match the increased plasma volume as tissue oxygen tension is maintained satisfactorily. PMID:6462992

  19. Preanalytical phase of sport biochemistry and haematology.

    PubMed

    Banfi, G; Dolci, A

    2003-06-01

    Biochemistry and haematology are more and more important and sometimes crucial in sport medicine for diagnosing, controlling and preventing purposes. The analytical process and the global laboratory quality are heavily influenced by the preanalytical phase, including biological material collection, identification, storage and transport of the specimen, preparation for analyses of the specimen through centrifugation, freezing and thawing, aliquoting and sampling. The increasing interest of sport biochemistry should be linked to a knowledge of principal problems and pitfalls in the preanalytical phase of various parameters, commonly used in following training, diet, and performances of athletes, to avoid misinterpretation of data and to improve usefulness of biochemical investigations. We prepared a practical review of preanalytical aspects of principal analyses applied to the athletes. We include the choice of anticoagulant and its limits for haematological tests, the preparation and manipulation of specimens for hormonological investigation, especially for labile molecules, and for cardiac markers, lactate, cytokines, micronutrients, antioxidant molecules. Preanalytical phase of specimens different from blood are also showed, including urine and saliva, and some aspects of preparation of materials to be analyzed with molecular biology technology are treated. Stability of some analytes, when the parameter is fundamental for the clinical usefulness of the results, is supplied. Preparation of the subjects, however, including the possible influence of physical exercise and biological rhythms on the biochemical and haematological parameters, are not listed.

  20. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  1. System and method for temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  2. Oxygen transport variables in the identification and treatment of tissue hypoxia.

    PubMed

    Epstein, C D; Henning, R J

    1993-01-01

    Critically ill patients have greater than normal oxygen demands because of enhanced energy requirements placed on them by the stress of acute illness, blood and fluid loss, surgery, wound healing, and hospitalization. Early recognition of major alterations in oxygen transport variables, oxygen delivery, oxygen consumption, and the oxygen extraction ratio, by the critical care team assists in the prevention and treatment of tissue hypoxia in seriously ill and injured patients. Supranormal levels of oxygen delivery are required to meet these increased oxygen demands, to prevent tissue hypoxia, and to correct tissue oxygen debt. The critical care team should promptly determine the patient's oxygen transport variables on admission to the intensive care unit to provide a starting point for patient resuscitation. When deviations from supranormal values of oxygen transport variables in these patients are identified, specific interventions that improve oxygen delivery to peripheral tissues should be implemented and evaluated for their effectiveness in normalizing the oxygen extraction ratio. When serial measurements of oxygen delivery, oxygen consumption, and the oxygen extraction ratio follow each therapeutic intervention that is directed at increasing oxygen delivery, the survival rate of critically ill patients is significantly improved.

  3. The future of academic haematology.

    PubMed

    Hay, Deborah; Hatton, Christian S R; Weatherall, David J

    2017-03-01

    Recent advances in the basic medical sciences, particularly cell biology and genomics, have great promise for the future development of all aspects of haematological practice. They will also impinge on the hitherto neglected fields of haematology, including haematology involving the care of the rapidly increasing number of elderly patients and the complex problems of haematological practice in the developing countries. To obtain the maximum benefit from these new developments it will be necessary to review the patterns of training of haematologists of the future at every level. In short, it will be important to try to design and develop various career pathways for training haematologists including those who wish to work full time in basic research, combine research with clinical practice, or commit all their time to clinical work and teaching. © 2016 John Wiley & Sons Ltd.

  4. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOEpatents

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  5. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOEpatents

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  6. Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport.

    PubMed

    Spyrakis, Francesca; Bruno, Stefano; Bidon-Chanal, Axel; Luque, Francisco Javier; Abbruzzetti, Stefania; Viappiani, Cristiano; Dominici, Paola; Mozzarelli, Andrea

    2011-05-01

    Nonsymbiotic hemoglobins AHb1 and AHb2 discovered in Arabidopsis thaliana are likely to carry out distinct physiological roles, in consideration of their differences in sequence, structure, expression pattern, and tissue localization. Despite a relatively fast autoxidation in the presence of O(2) , we were able to collect O(2) -binding curves for AHb2 in the presence of a reduction enzymatic system. AHb2 binds O(2) noncooperatively with a p50 of 0.021 ± 0.003 Torr, a value consistent with a recently proposed role in O(2) transport. The analysis of the internal cavities derived from the structures sampled in molecular dynamics simulations confirms strong differences with AHb1, proposed to work as a NO deoxygenase in vivo. Overall, our results are consistent with a role for AHb2 as an oxygen carrier, as recently proposed on the basis of experiments on AHb2-overexpressing mutants of A. thaliana. Copyright © 2011 Wiley Periodicals, Inc.

  7. The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion: The Pathway for Oxygen.

    PubMed

    Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret

    2016-01-01

    The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.

  8. A model of oxygen transport in Pt/ceria catalysts from isotope exchange

    SciTech Connect

    Holmgren, A.; Andersson, B.; Duprez, D.

    1999-03-10

    From isotope oxygen exchange reactions and simulations of these experiments, the important steps in oxygen transport in Pt/ceria were distinguished and their rates were estimated. A Pt/alumina sample was also experimentally investigated for comparison. Oxygen surface diffusion as well as oxygen spillover from Pt to ceria was found to be fast in comparison with adsorption/desorption of oxygen on the metal and oxygen bulk diffusion. The exchange rate was found to be higher on a very-low-Pt-dispersion sample than on a high-dispersion sample, which in the model was explained by the different adsorption properties of oxygen.

  9. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  10. Haematological abnormalities in mitochondrial disorders.

    PubMed

    Finsterer, Josef; Frank, Marlies

    2015-07-01

    This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as 'definite', 'probable' or 'possible' according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. A total of 46 patients ('definite' = 5; 'probable' = 9; 'possible' = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. MID should be considered if a patient's abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem.

  11. Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics

    SciTech Connect

    Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; Allen, Todd R.

    2015-03-05

    In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO2-x, oxygen transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.

  12. Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics

    SciTech Connect

    Yu, Jianguo Bai, Xian-Ming; El-Azab, Anter; Allen, Todd R.

    2015-03-07

    Oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation, and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO{sub 2}) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo method has been used to investigate the kinetics of oxygen transport in UO{sub 2} under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable off-stoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO{sub 2−x}, oxygen transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO{sub 2+x}, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that di-interstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence, and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing an explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.

  13. Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics

    DOE PAGES

    Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; ...

    2015-03-05

    In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO2-x, oxygen transport is wellmore » described by the vacancy diffusion mechanism while in hyper-stoichiometric UO2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less

  14. Haematological manifestations of lupus

    PubMed Central

    Fayyaz, Anum; Igoe, Ann; Kurien, Biji T; Danda, Debashish; James, Judith A; Stafford, Haraldine A; Scofield, R Hal

    2015-01-01

    Our purpose was to compile information on the haematological manifestations of systemic lupus erythematosus (SLE), namely leucopenia, lymphopenia, thrombocytopenia, autoimmune haemolytic anaemia (AIHA), thrombotic thrombocytopenic purpura (TTP) and myelofibrosis. During our search of the English-language MEDLINE sources, we did not place a date-of-publication constraint. Hence, we have reviewed previous as well as most recent studies with the subject heading SLE in combination with each manifestation. Neutropenia can lead to morbidity and mortality from increased susceptibility to infection. Severe neutropenia can be successfully treated with granulocyte colony-stimulating factor. While related to disease activity, there is no specific therapy for lymphopenia. Severe lymphopenia may require the use of prophylactic therapy to prevent select opportunistic infections. Isolated idiopathic thrombocytopenic purpura maybe the first manifestation of SLE by months or even years. Some manifestations of lupus occur more frequently in association with low platelet count in these patients, for example, neuropsychiatric manifestation, haemolytic anaemia, the antiphospholipid syndrome and renal disease. Thrombocytopenia can be regarded as an important prognostic indicator of survival in patients with SLE. Medical, surgical and biological treatment modalities are reviewed for this manifestation. First-line therapy remains glucocorticoids. Through our review, we conclude glucocorticoids do produce a response in majority of patients initially, but sustained response to therapy is unlikely. Glucocorticoids are used as first-line therapy in patients with SLE with AIHA, but there is no conclusive evidence to guide second-line therapy. Rituximab is promising in refractory and non-responding AIHA. TTP is not recognised as a criteria for classification of SLE, but there is a considerable overlap between the presenting features of TTP and SLE, and a few patients with SLE have concurrent

  15. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation

    PubMed Central

    Gagnon, Louis; Smith, Amy F.; Boas, David A.; Devor, Anna; Secomb, Timothy W.; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans. PMID:27630556

  16. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    PubMed

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  17. The effect of myoglobin-facilitated oxygen transport on the basal metabolism of papillary muscle.

    PubMed Central

    Loiselle, D S

    1987-01-01

    A mathematical model of oxygen diffusion into cylindrical papillary muscles is presented. The model partitions total oxygen flux into its simple and myoglobin-facilitated components. The model includes variable sigmoidal, exponential, or hyperbolic functions relating oxygen partial pressure to both fractional myoglobin saturation and rate of oxygen consumption. The behavior of the model was explored for a variety of saturation- and consumption-concentration relations. Facilitation of oxygen transport by myoglobin was considerable as indexed both by the elevation of oxygen partial pressure on the longitudinal axis of the muscle and by the fraction of total oxygen flux at the muscle center contributed by oxymyoglobin. Despite its facilitation of oxygen flux at the muscle center, myoglobin made only a negligible contribution to the total oxygen consumption averaged over the muscle cross-section. Hence the presence of myoglobin fails to explain either the experimentally determined basal metabolism-muscle radius relation or the stretch effect observed in isolated papillary muscle. PMID:3607211

  18. Oxygen transport in an in-situ bioremediation application

    SciTech Connect

    Gupta, S.K.; Djafari, S.H.; Zhang, J.

    1995-11-01

    Contamination of groundwater and soils by toxic organic chemicals is widespread and poses serious health and environmental problems. The area under study is comprised of lagoons containing waste from former coking plant operations. The primary contaminants of concern in the waste are the polycyclic aromatic hydrocarbons (PAHs). Due to their hydrophobicity, these compounds tend to partition into hydrophobic adsorbents such as soil organic matter. In the presence of appropriate microorganisms, the biodegradation of higher molecular weight PAHs (with more than three benzene rings) is relatively slow, and generally involves cometabolism. The PAH compounds in general have been shown to be biodegradable and site-specific treatability tests have indicated that bioremediation has been effective in reducing PAH contamination levels at the study site. The subsurface permeability must be sufficient to allow for perfusion with solutions of oxygen and nutrients as required for biodegradation processes. Sources of oxygen that may e used include air (which has approximately 20% oxygen content), hydrogen peroxide (which releases oxygen through dissociation), and pure oxygen (industrially produced oxygen with greater than 90% purity). The stability of hydrogen peroxide in the presence of lagoon materials was evaluated during the predesign investigation conducted at the study site. The half-lives of hydrogen peroxide which were found to be between 20 minutes and 3 hours for the lagoon wastes, were determined to be marginal. Alternative oxygen sources considered included the use of air and pure oxygen.

  19. Modelling the effects of cerebral microvasculature morphology on oxygen transport

    PubMed Central

    Park, Chang Sub; Payne, Stephen J.

    2016-01-01

    The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex relationship between cerebral metabolic rate and transit time distribution, the transit times of all the possible pathways available dependent on network topology. In this paper, we extend a recently developed technique to solve for residue function, the amount of tracer left in the vasculature at any time, and transit time distribution in an existing model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory needed to solve for oxygen concentration followed by results of the simulations. It is found that oxygen extraction fraction, the fraction of oxygen removed from the blood in the capillary network by the tissue, and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. A sensitivity analysis on the mean and heterogeneity of the transit time distribution was able to quantify their respective contributions to oxygen extraction fraction and metabolic rate of oxygen. Mean transit time has a greater contribution than the heterogeneity for oxygen extraction fraction. This is found to be opposite for metabolic rate of oxygen. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating

  20. Modelling the effects of cerebral microvasculature morphology on oxygen transport.

    PubMed

    Park, Chang Sub; Payne, Stephen J

    2016-01-01

    The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex relationship between cerebral metabolic rate and transit time distribution, the transit times of all the possible pathways available dependent on network topology. In this paper, we extend a recently developed technique to solve for residue function, the amount of tracer left in the vasculature at any time, and transit time distribution in an existing model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory needed to solve for oxygen concentration followed by results of the simulations. It is found that oxygen extraction fraction, the fraction of oxygen removed from the blood in the capillary network by the tissue, and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. A sensitivity analysis on the mean and heterogeneity of the transit time distribution was able to quantify their respective contributions to oxygen extraction fraction and metabolic rate of oxygen. Mean transit time has a greater contribution than the heterogeneity for oxygen extraction fraction. This is found to be opposite for metabolic rate of oxygen. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating

  1. 49 CFR 175.34 - Exceptions for cylinders of compressed oxygen or other oxidizing gases transported within the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Exceptions for cylinders of compressed oxygen or... Exceptions for cylinders of compressed oxygen or other oxidizing gases transported within the State of Alaska. (a) Exceptions. When transported in the State of Alaska, cylinders of compressed oxygen or...

  2. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  3. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.

    PubMed

    Layton, Anita T; Laghmani, Kamel; Vallon, Volker; Edwards, Aurélie

    2016-12-01

    Sodium and its associated anions are the major determinant of extracellular fluid volume, and the reabsorption of Na(+) by the kidney plays a crucial role in long-term blood pressure control. The goal of this study was to investigate the extent to which inhibitors of transepithelial Na(+) transport (TNa) along the nephron alter urinary solute excretion and TNa efficiency and how those effects may vary along different nephron segments. To accomplish that goal, we used the multinephron model developed in the companion study (28). That model represents detailed transcellular and paracellular transport processes along the nephrons of a rat kidney. We simulated the inhibition of the Na(+)/H(+) exchanger (NHE3), the bumetanide-sensitive Na(+)-K(+)-2Cl(-) transporter (NKCC2), the Na(+)-Cl(-) cotransporter (NCC), and the amiloride-sensitive Na(+) channel (ENaC). Under baseline conditions, NHE3, NKCC2, NCC, and ENaC reabsorb 36, 22, 4, and 7%, respectively, of filtered Na(+) The model predicted that inhibition of NHE3 substantially reduced proximal tubule TNa and oxygen consumption (QO2 ). Whole-kidney TNa efficiency, as reflected by the number of moles of Na(+) reabsorbed per moles of O2 consumed (denoted by the ratio TNa/QO2 ), decreased by ∼20% with 80% inhibition of NHE3. NKCC2 inhibition simulations predicted a substantial reduction in thick ascending limb TNa and QO2 ; however, the effect on whole-kidney TNa/QO2 was minor. Tubular K(+) transport was also substantially impaired, resulting in elevated urinary K(+) excretion. The most notable effect of NCC inhibition was to increase the excretion of Na(+), K(+), and Cl(-); its impact on whole-kidney TNa and its efficiency was minor. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na(+) (increased) and K(+) (decreased) and to have only a minor impact on whole-kidney TNa and TNa/QO2 Overall, model predictions agree well with measured changes in Na(+) and K(+) excretion in response to

  4. Numerical model of fluid flow and oxygen transport in a radial-flow microchannel containing hepatocytes.

    PubMed

    Ledezma, G A; Folch, A; Bhatia, S N; Balis, U J; Yarmush, M L; Toner, M

    1999-02-01

    The incorporation of monolayers of cultured hepatocytes into an extracorporeal perfusion system has become a promising approach for the development of a temporary bioartificial liver (BAL) support system. In this paper we present a numerical investigation of the oxygen tension, shear stress, and pressure drop in a bioreactor for a BAL composed of plasma-perfused chambers containing monolayers of porcine hepatocytes. The chambers consist of microfabricated parallel disks with center-to-edge radial flow. The oxygen uptake rate (OUR), measured in vitro for porcine hepatocytes, was curve-fitted using Michaelis-Menten kinetics for simulation of the oxygen concentration profile. The effect of different parameters that may influence the oxygen transport inside the chambers, such as the plasma flow rate, the chamber height, the initial oxygen tension in the perfused plasma, the OUR, and K(m) was investigated. We found that both the plasma flow rate and the initial oxygen tension may have an important effect upon oxygen transport. Increasing the flow rate and/or the inlet oxygen tension resulted in improved oxygen transport to cells in the radial-flow microchannels, and allowed significantly greater diameter reactor without oxygen limitation to the hepatocytes. In the range investigated in this paper (10 microns < H < 100 microns), and for a constant plasma flow rate, the chamber height, H, had a negligible effect on the oxygen transport to hepatocytes. On the contrary, it strongly affected the mechanical stress on the cells that is also crucial for the successful design of the BAL reactors. A twofold decrease in chamber height from 50 to 25 microns produced approximately a fivefold increase in maximal shear stress at the inlet of the reactor from 2 to 10 dyn/cm2. Further decrease in chamber height resulted in shear stress values that are physiologically unrealistic. Therefore, the channel height needs to be carefully chosen in a BAL design to avoid deleterious hydrodynamic

  5. Water flow influences oxygen transport and photosynthetic efficiency in corals

    NASA Astrophysics Data System (ADS)

    Finelli, Christopher M.; Helmuth, Brian S. T.; Pentcheff, N. Dean; Wethey, David S.

    2006-03-01

    Recent studies indicate that the incidence and persistence of damage from coral reef bleaching are often highest in areas of restricted water motion, and that resistance to and recovery from bleaching is increased by enhanced water motion. We examined the hypothesis that water motion increases the efflux of oxygen from coral tissue thereby reducing oxidative stress on the photosynthetic apparatus of endosymbiotic zooxanthellae. We experimentally exposed colonies of Montastrea annularis and Agaricia agaricites to manipulations of water flow, light intensity, and oxygen concentration in the field using a novel mini-flume. We measured photosynthetic efficiency using a pulse amplitude modulated fluorometer to test the short-term response of corals to our manipulations. Under normal oxygen concentrations, A. agaricites showed a significant 8% increase in photosynthetic efficiency from 0.238 (± 0.032) in still water to 0.256 (± 0.037) in 15 cm s-1 flow, while M. annularis exhibited no detectable change. Under high-ambient oxygen concentrations, the observed effect of flow on A. agaricites was reversed: photosynthetic efficiencies showed a significant 11% decrease from 0.236 (± 0.056) in still water to 0.211 (± 0.048) in 15 cm s-1 flow. These results support the hypothesis that water motion helps to remove oxygen from coral tissues during periods of maximal photosynthesis. Flow mitigation of oxidative stress may at least partially explain the increased incidence and severity of coral bleaching in low flow areas and observations of enhanced recovery in high-flow areas.

  6. Experimental study of dissolved oxygen transport by regular waves through a perforated breakwater

    NASA Astrophysics Data System (ADS)

    Yin, Zegao; Yu, Ning; Liang, Bingchen; Zeng, Jixiong; Xie, Shaohua

    2016-02-01

    The perforated breakwater is an environmentally friendly coastal structure, and dissolved oxygen concentration levels are an important index to denote water quality. In this paper, oxygen transport experiments with regular waves through a vertical perforated breakwater were conducted. The oxygen scavenger method was used to reduce the dissolved oxygen concentration of inner water body with the chemicals Na2SO3 and CoCl2. The dissolved oxygen concentration and wave parameters of 36 experimental scenarios were measured with different perforated arrangements and wave conditions. It was found that the oxygen transfer coefficient through wave surface, K1 a 1, is much lower than the oxygen transport coefficient through the perforated breakwater, K2 a 2. If the effect of K1 a 1 is not considered, the dissolved oxygen concentration computation for inner water body will not be greatly affected. Considering the effect of a permeable area ratio a, relative location parameter of perforations δ and wave period T, the aforementioned data of 30 experimental scenarios, the dimensional analysis and the least squares method were used to derive an equation of K2 a 2 (K2 a 2=0.0042 a 0.5 δ 0.2 T -1). It was validated with 6 other experimental scenarios data, which indicates an approximate agreement. Therefore, this equation can be used to compute the DO concentration caused by the water transport through perforated breakwater.

  7. Temperature-dependent transport mechanisms through PE-CVD coatings: comparison of oxygen and water vapour

    NASA Astrophysics Data System (ADS)

    Kirchheim, D.; Wilski, S.; Jaritz, M.; Mitschker, F.; Gebhard, M.; Brochhagen, M.; Böke, M.; Benedikt, Jan; Awakowicz, P.; Devi, A.; Hopmann, Ch; Dahlmann, R.

    2017-10-01

    When it comes to thin coatings such as plasma-enhanced chemical vapour deposition or plasma-enhanced atomic layer deposition coatings on substrates of polymeric material, existing models often describe transport through these thin coatings as mainly driven by transport through defects of different sizes. However, temperature-dependent measurements of permeation could not confirm this hypothesis and instead gaseous transport through these thin coatings was found to more likely to occur through the molecular structure. This paper correlates existing transport models with data from oxygen transmission experiments and puts recent investigations for water vapour transmission mechanisms into context for a better understanding of gaseous transport through thin coatings.

  8. Oxygen Transport Characterization of a Human Model of Progressive Hemorrhage

    DTIC Science & Technology

    2010-01-01

    Continuous heart rate (HR) wasmeasured from a standard elec- trocardiogram (ECG). Continuous , beat-by-beat blood pressurewas measured noninvasively...breathing room air.15 2.7. Tissue oxygenation measurements Muscle tissue SO2 was measured using a near infrared spec- troscopy (NIRS) monitor developed...Non-invasive continuous finger blood pressure measurement during ortho- static stress compared to intra-arterial pressure. Cardiovasc Res 1990;24

  9. [Immuno-haematology and blood bank inventory and issue management].

    PubMed

    Madre, F; Benoist, F; Chandesris, C; Nicola, N

    2010-12-01

    Blood bank management must ensure the correct blood product issuance in the right time. For this purpose, patient clinical and immuno-haematological data have to be taken into consideration. Inventory composition, by blood group and phenotype, blood product providing possibilities and transport delays are determining factors. Finally, a good management relies also on the use of consensually written procedures and the monitoring of pertinent indicators. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  10. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  11. Regulation of blood oxygen transport in hibernating mammals.

    PubMed

    Revsbech, Inge G; Fago, Angela

    2017-03-21

    Along with the periodic reductions in O2 requirements of mammalian hibernators during winter, the O2 affinity of the blood of mammalian hibernators is seasonally regulated to help match O2 supply to consumption, contributing to limit tissue oxidative stress, particularly at arousals. Specifically, mammalian hibernators consistently show an overall increase in the blood-O2 affinity, which causes a decreased O2 unloading to tissues, while having similar or lower tissue O2 tensions during hibernation. This overview explores how the decreased body temperature and concentration of red blood cell 2,3-diphosphoglycerate (DPG) that occur in hibernation contribute separately or in combination to the concurrent increase in the O2 affinity of the hemoglobin, the O2 carrier protein of the blood. Most mammalian hemoglobins are responsive to changes in DPG concentrations, including that of the hibernating brown bear, although the smaller hibernators, such as golden-mantled ground squirrel, chipmunks, and dormice, have hemoglobins with low sensitivity to DPG. While the effect of DPG on oxygenation may vary, the decrease in body temperature invariably increases hemoglobin's O2 affinity in all hibernating species. However, the temperature sensitivity of hemoglobin oxygenation is low in hibernators compared to human, apparently due in part to endothermic allosteric quaternary transition in ground squirrels and dissociation of chloride ions in brown bears. A low heat of blood oxygenation in temporal heterotherms, like hibernators, may thus contribute to reduce heat loss, as found in regional heterotherms, like polar mammals, although the significance would be low in winter hibernation.

  12. Membrane Transport of Singlet Oxygen Monitored by Dipole Potential Measurements

    PubMed Central

    Sokolov, Valerij S.; Pohl, Peter

    2009-01-01

    Abstract The efficiency of photodynamic reactions depends on 1), the penetration depth of the photosensitizer into the membrane and 2), the sidedness of the target. Molecules which are susceptible to singlet oxygen (1O2) experience less damage when separated from the photosensitizer by the membrane. Since 1O2 lifetime in the membrane environment is orders of magnitude longer than the time required for nonexcited oxygen (O2) to cross the membrane, this observation suggests that differences between the permeabilities or membrane partition of 1O2 and O2 exist. We investigated this hypothesis by releasing 1O2 at one side of a planar membrane while monitoring the kinetics of target damage at the opposite side of the same membrane. Damage to the target, represented by dipole-modifying molecules (phloretin or phlorizin), was indicated by changes in the interleaflet dipole potential difference Δϕb. A simple analytical model allowed estimation of the 1O2 interleaflet concentration difference from the rate at which Δϕb changed. It confirmed that the lower limit of 1O2 permeability is ∼2 cm/s; i.e., it roughly matches O2 permeability as predicted by Overton's rule. Consequently, the membrane cannot act as a barrier to 1O2 diffusion. Differences in the reaction rates at the cytoplasmic and extracellular membrane leaflets may be attributed only to 1O2 quenchers inside the membrane. PMID:18931253

  13. Oxygen transport in unreduced, reduced and Rh(III)-doped CeO2 nanocrystals.

    PubMed

    Sayle, Thi X T; Parker, Stephen C; Sayle, Dean C

    2007-01-01

    Ceria, CeO2, based materials are a major (active) component of exhaust catalysts and promising candidates for solid oxide fuel cells. In this capacity, oxygen transport through the material is pivotal. Here, we explore whether oxygen transport is influenced (desirably increased) compared with transport within the bulk parent material by traversing to the nanoscale. In particular, atomistic models for ceria nanocrystals, including perfect: CeO2; reduced: CeO1.95 and doped: Rh0.1Ce0.9O1.95, have been generated. The nanocrystals were about 8 nm in diameter and each comprised about 16,000 atoms. Oxygen transport can also be influenced, sometimes profoundly, by microstructural features such as dislocations and grain-boundaries. However, these are difficult to generate within an atomistic model using, for example, symmetry operations. Accordingly, we crystallised the nanocrystals from an amorphous precursor, which facilitated the evolution of a variety of microstructures including: twin-boundaries and more general grain-boundaries and grain-junctions, dislocations and epitaxy, isolated and associated point defects. The shapes of the nanocrystals are in accord with HRTEM data and comprise octahedral morphologies with {111} surfaces, truncated by (dipolar) {100} surfaces together with a complex array of steps, edges and corners. Oxygen transport data was then calculated using these models and compared with data calculated previously for CeO1.97/ YSZ thin films and the (bulk) parent material, CeO197. Oxygen transport was calculated to increase in the order: CeO2 nanocrystal < (reduced) CeO1.95 nanocrystal approximately Rh0.1Ce0.9O1.95 nanocrystal < CeO1.97/YSZ thin film < (reduced) CeO1.97 (bulk) parent material; the mechanism was determined to be primarily vacancy driven. Our findings indicate that reducing one- (thin film) or especially three- (nanocrystal) dimensions to the nanoscale may prove deleterious to oxygen transport. Conversely, we observed dynamic evolution and

  14. Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport.

    PubMed

    Hoy, Julie A; Robinson, Howard; Trent, James T; Kakar, Smita; Smagghe, Benoit J; Hargrove, Mark S

    2007-08-03

    The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport "leghemoglobins" evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins.

  15. Plant Hemoglobins: A Molecular Fossil Record for the Evolutin of Oxygen Transport

    SciTech Connect

    Hoy,J.; Robinson, H.; Trent, lll, J.; Kakar, S.; Smagghe, B.; Hargrove, M.

    2007-01-01

    The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport 'leghemoglobins' evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins.

  16. Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains.

    PubMed

    Subczynski, Witold K; Widomska, Justyna; Wisniewska, Anna; Kusumi, Akihiro

    2007-01-01

    The discrimination by oxygen transport (DOT) method is a dual-probe saturation-recovery electron paramagnetic resonance approach in which the observable parameter is the spin-lattice relaxation time (T1) of lipid spin labels, and the measured value is the bimolecular collision rate between molecular oxygen and the nitroxide moiety of spin labels. This method has proven to be extremely sensitive to changes in the local oxygen diffusion-concentration product (around the nitroxide moiety) because of the long T1 of lipid spin labels (1-10 micros) and also because molecular oxygen is a unique probe molecule. Molecular oxygen is paramagnetic, small, and has the appropriate level of hydrophobicity that allows it to partition into various supramolecular structures such as different membrane domains. When located in two different membrane domains, the spin label alone most often cannot differentiate between these domains, giving very similar (indistinguishable) conventional electron paramagnetic resonance spectra and similar T1 values. However, even small differences in lipid packing in these domains will affect oxygen partitioning and oxygen diffusion, which can be easily detected by observing the different T1s from spin labels in these two locations in the presence of molecular oxygen. The DOT method allows one not only to distinguish between the different domains, but also to obtain the value of the oxygen diffusion-concentration product in these domains, which is a useful physical characteristic of the organization of lipids in domains. Profiles of the oxygen diffusion-concentration product (the oxygen transport parameter) in coexisting domains can be obtained in situ without the need for the physical separation of the two domains. Furthermore, under optimal conditions, the exchange rate of spin-labeled molecules between the two domains could be measured.

  17. A dynamic model of oxygen transport from capillaries to tissue with moving red blood cells.

    PubMed

    Lücker, Adrien; Weber, Bruno; Jenny, Patrick

    2015-02-01

    Most oxygen required to support the energy needs of vertebrate tissues is delivered by diffusion from microvessels. The presence of red blood cells (RBCs) makes blood flow in the microcirculation highly heterogeneous. Additionally, flow regulation mechanisms dynamically respond to changes in tissue energy demand. These spatiotemporal variations directly affect the supply of oxygen to parenchymal cells. Due to various limiting assumptions, current models of oxygen transport cannot fully capture the consequences of complex hemodynamic effects on tissue oxygenation and are often not suitable for studying unsteady phenomena. With our new approach based on moving RBCs, the impact of blood flow heterogeneity on oxygen partial pressure (Po2) in the tissue can be quantified. Oxygen transport was simulated using parachute-shaped solid RBCs flowing through a capillary. With the use of a conical tissue domain with radii 19 and 13 μm, respectively, our computations indicate that Po2 at the RBC membrane exceeds Po2 between RBCs by 30 mmHg on average and that the mean plasma Po2 decreases by 9 mmHg over 50 μm. These results reproduce well recent intravascular Po2 measurements in the rodent brain. We also demonstrate that instantaneous variations of capillary hematocrit cause associated fluctuations of tissue Po2. Furthermore, our results suggest that homogeneous tissue oxygenation requires capillary networks to be denser on venular side than on arteriolar side. Our new model for oxygen transport will make it possible to quantify in detail the effects of blood flow heterogeneity on tissue oxygenation in realistic capillary networks. Copyright © 2015 the American Physiological Society.

  18. A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function

    PubMed Central

    Safaeian, Navid; David, Tim

    2013-01-01

    The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging. PMID:23921901

  19. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model.

    PubMed

    Orcutt, Beth N; Wheat, C Geoffrey; Rouxel, Olivier; Hulme, Samuel; Edwards, Katrina J; Bach, Wolfgang

    2013-01-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass; yet, empirical analysis of reaction rates in basaltic crust is lacking. Here we report the first assessment of oxygen consumption in young (~8 Ma) and cool (<25 °C) basaltic crust, which we calculate from modelling dissolved oxygen and strontium pore water gradients in basal sediments collected during Integrated Ocean Drilling Program Expedition 336 to 'North Pond' on the western flank of the Mid-Atlantic Ridge. Dissolved oxygen is completely consumed within the upper to middle section of the sediment column, with an increase in concentration towards the sediment-basement interface, indicating an upward supply from oxic fluids circulating within the crust. A parametric reaction transport model of oxygen behaviour in upper basement suggests oxygen consumption rates of 1 nmol  cm(-3)ROCK d(-1) or less in young and cool basaltic crust.

  20. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor.

    PubMed

    Chen, Guo; Palmer, Andre F

    2009-04-15

    A mathematical model was developed to study O(2) transport in a convection enhanced hepatic hollow fiber (HF) bioreactor, with hemoglobin-based O(2) carriers (HBOCs) present in the flowing cell culture media stream of the HF lumen. In this study, four HBOCs were evaluated: PEG-conjugated human hemoglobin (MP4), human hemoglobin (hHb), bovine hemoglobin (BvHb) and polymerized bovine hemoglobin (PolyBvHb). In addition, two types of convective flow in the HF extra capillary space (ECS) were considered in this study. Starling flow naturally occurs when both of the ECS ports are closed. If one of the ECS ports is open, forced convective flow through the ECS will occur due to the imposed pressure difference between the lumen and ECS. This type of flow is referred to as cross-flow in this work, since some of the fluid entering the HF lumen will pass across the HF membrane and exit via the open ECS port. In this work, we can predict the dissolved O(2) concentration profile as well as the O(2) transport flux in an individual HF of the bioreactor by solving the coupled momentum and mass transport equations. Our results show that supplementation of the cell culture media with HBOCs can dramatically enhance O(2) transport to the ECS (containing hepatocytes) and lead to the formation of an in vivo-like O(2) spectrum for the optimal culture of hepatocytes. However, both Starling flow and cross-flow have a very limited effect on O(2) transport in the ECS. Taken together, this work represents a novel predictive tool that can be used to design or analyze HF bioreactors that expose cultured cells to defined overall concentrations and gradients of O(2).

  1. Oxygen transport and intracellular bioenergetics on stimulated cat skeletal muscle.

    PubMed

    Nioka, S; McCully, K; McClellan, G; Park, Jane; Chance, B

    2003-01-01

    A unique multiparameter recording of skeletal muscle bioenergetics, biochemistry and biomechanics has permitted determination of novel relationships among hemodynamics, cellular high-energy metabolites and mitochondrial bioenergetics in feline skeletal muscle. The study utilizes 31P NMR, NIR, and NADH fluorescence spectrophotometry, biochemical assays and muscle performance. Seven cats were anesthetized and mechanically ventilated. Calf muscles were stimulated through sciatic nerve electrical stimulation and tension was monitored by a strain gauge connected to the Achilles tendon. We stimulated the muscle to produce several workloads up to Vmax. We also changed FiO2 from normoxia to hypoxia for each %Vmax. From these results, the most sensitive indicators of cellular hypoxia leading to a reduction in muscle performance can be determined. Hemoglobin deoxygenation generally does not correlate with cellular hypoxia, although when the HbO2 drops below 30% saturation there is an increased incidence of cellular hypoxia. The [ADP], which is known to regulate mitochondrial function, has a close relation to the work, not to the hypoxia. On the other hand, the mitochondrial NADH does respond to cellular PO2. The degree of oxidation (NADH decrease) due to the ATP flux shifts with oxygen availability in mild to moderate hypoxia (at FiO2 down to 9%). As cellular hypoxia causes decreases in muscle performance (moderate to severe hypoxia), NADH is being reduced rather than oxidized with increasing workloads.

  2. Interhospital Transport System for Critically Ill Patients: Mobile Extracorporeal Membrane Oxygenation without a Ventilator

    PubMed Central

    Yeo, Hye Ju; Cho, Woo Hyun; Park, Jong Myung; Kim, Dohyung

    2017-01-01

    Background Extracorporeal membrane oxygenation (ECMO) has been successfully used as a method for the interhospital transportation of critically ill patients. In South Korea, a well-established ECMO interhospital transport system is lacking due to limited resources. We developed a simplified ECMO transport system without mechanical ventilation for use by public emergency medical services. Methods Eighteen patients utilized our ECMO transport system from December 2011 to September 2015. We retrospectively analyzed the indications for ECMO, the patient status during transport, and the patient outcomes. Results All transport was conducted on the ground by ambulance. The distances covered ranged from 26 to 408 km (mean, 65.9±88.1 km) and the average transport time was 56.1±57.3 minutes (range, 30 to 280 minutes). All patients were transported without adverse events. After transport, 4 patients (22.2%) underwent lung transplantation because of interstitial lung disease. Eight patients who had severe acute respiratory distress syndrome showed recovery of heart and lung function after ECMO therapy. A total of 13 patients (70.6%) were successfully taken off ECMO, and 11 patients (61.1%) survived. Conclusion Our ECMO transport system without mechanical ventilation can be considered a safe and useful method for interhospital transport and could be a good alternative option for ECMO transport in Korean hospitals with limited resources. PMID:28180097

  3. Oxygen transport in conscious newborn dogs during hypoxic hypometabolism.

    PubMed

    Rohlicek, C V; Saiki, C; Matsuoka, T; Mortola, J P

    1998-03-01

    We questioned whether the decrease in O2 consumption (VO2) during hypoxia in newborns is a regulated response or reflects a limitation in O2 availability. Experiments were conducted on previously instrumented conscious newborn dogs. VO2 was measured at a warm ambient temperature (30 degrees C, n = 7) or in the cold (20 degrees C, n = 6), while the animals breathed air or were sequentially exposed to 15 min of fractional inspired O2 (FIO2): 21, 18, 15, 12, 10, 8, and 6%. In normoxia, VO2 averaged 15 +/- 1 (SE) and 25 +/- 1 ml . kg-1 . min-1 in warm and cold conditions, respectively. In the warm condition, hypometabolism (i.e., hypoxic VO2 < normoxic VO2) occurred at FIO2 oxygenation. The results do not support the possibility that the hypoxic drop in VO2 in the newborn reflects a limitation in O2 availability. The results are compatible with the idea that the phenomenon is one of "regulated conformism" to hypoxia.

  4. Oxygen Transport Kinetics in Infiltrated SOFCs Cathode by Electrical Conductivity Relaxation Technique

    SciTech Connect

    Li, Yihong; Gerdes, Kirk; Liu, Xingbo

    2013-07-01

    Infiltration has attracted increasing attention as an effective technique to modify SOFC cathodes to improve cell electrochemical performance while maintaining material compatibility and long-term stability. However, the infiltrated material's effect on oxygen transport is still not clear and detailed knowledge of the oxygen reduction reaction in infiltrated cathodes is lacking. In this work, the technique of electrical conductivity relaxation (ECR) is used to evaluate oxygen exchange in two common infiltrated materials, Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9} and La{sub 0.6}Sr{sub 0.4}CoO{sub 3-δ}. The ECR technique is also used to examine the transport processes in a composite material formed with a backbone of La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-δ} and possessing a thin, dense surface layer composed of the representative infiltrate material. Both the surface oxygen exchange process and the oxygen exchange coefficient at infiltrate/LSCF interface are reported. ECR testing results indicate that the application of infiltrate under certain oxygen partial pressure conditions produces a measureable increase in the fitted oxygen exchange parameter. It is presently only possible to generate hypotheses to explain the observation. However the correlation between improved electrochemical performance and increased oxygen transport measured by ECR is reliably demonstrated. The simple and inexpensive ECR technique is utilized as a direct method to optimize the selection of specific infiltrate/backbone material systems for superior performance.

  5. Vasculature based model for characterizing the oxygen transport in skin tissues - analogy to the Weinbaum-Jiji bioheat equation

    NASA Astrophysics Data System (ADS)

    Ji, Yan; Liu, Jing

    Based on the conceptual three-layer microvascular structure of skin tissues proposed by Weinbaum et al. [20-25] and in analogy to the well known Weinbaum-Jiji (W-J) bioheat equation, a new oxygen transport model was established in this paper, which collectively included the contributions of the vascular geometry and the blood flow condition. The new one-dimensional three-layer oxygen transport model was then applied to predict the average oxygen concentration distribution in skin tissues and numerical solutions for the boundary value problem coupling the three layers were obtained. A simple expression for the tensor diffusivity (Deff) of oxygen transport over the deep tissue layer was presented, which was orders of magnitude higher than the intrinsic diffusivity (Dt) in tissue without blood flow. Effects of blood flow velocity and vascular geometry to the oxygen transport were investigated. Calculations indicated that the vascular geometry had significant effects on oxygen transport. The oxygen exchange between the arteries and veins was relatively small for the deep tissue layer. Further, the average oxygen concentration gradient appears low in intermediate layer due to large capillary perfusion. The theoretical results were implemented to interpret some previous experimental results and a better understanding on the oxygen transport across the vascularized living tissues was obtained. The strategy proposed in this paper may provide a feasible way to comprehensively characterize the oxygen transport behaviors in living tissues with real and complex vasculature.

  6. Is the mammalian cell plasma membrane a barrier to oxygen transport?

    PubMed Central

    1992-01-01

    Oxygen transport in the Chinese hamster ovary (CHO) plasma membrane has been studied by observing the collision of molecular oxygen with nitroxide radical spin labels placed in the lipid bilayer portion of the membrane at various distances from the membrane surface using the long-pulse saturation-recovery electron spin resonance (ESR) technique. The collision rate was estimated for 5-, 12-, and 16-doxylstearic acids from spin-lattice relaxation times (T1) measured in the presence and absence of molecular oxygen. Profiles of the local oxygen transport parameters across the membrane were obtained showing that the oxygen diffusion-concentration product is lower than in water for all locations at 37 degrees C. From oxygen transport parameter profiles, the membrane oxygen permeability coefficients were estimated according to the procedure developed earlier by Subczynski et al. (Subczynski, W. K., J. S. Hyde, and A. Kusumi. 1989. Proceedings of the National Academy of Sciences, USA. 86:4474-4478). At 37 degrees C, the oxygen permeability coefficient for the plasma membrane was found to be 42 cm/s, about two times lower than for a water layer of the same thickness as the membrane. The oxygen concentration difference across the CHO plasma membrane at physiological conditions is in the nanomolar range. It is concluded that oxygen permeation across the cell plasma membrane cannot be a rate-limiting step for cellular respiration. Correlations of the form PM = cKs between membrane permeabilities PM of small nonelectrolyte solutes of mol wt less than 50, including oxygen, and their partition coefficients K into hexadecane and olive oil are reported. Hexadecane: c = 26 cm/s, s = 0.95; olive oil: c = 23 cm/s, s = 1.56. These values of c and s differ from those reported in the literature for solutes of 50 less than mol wt less than 300 (Walter, A., and J. Gutknecht. 1986. Journal of Membrane Biology. 90:207-217). It is concluded that oxygen permeability through membranes can be

  7. Thermophysical properties and oxygen transport in (Thx,Pu1‑x)O2

    NASA Astrophysics Data System (ADS)

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; Grimes, R. W.

    2016-10-01

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1‑x)O2 (0 ≤ x ≤ 1) between 300–3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1‑x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Thx,Pu1‑x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1‑x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.

  8. Erythropoiesis-stimulating agents and other methods to enhance oxygen transport

    PubMed Central

    Elliott, S

    2008-01-01

    Oxygen is essential for life, and the body has developed an exquisite method to collect oxygen in the lungs and transport it to the tissues. Hb contained within red blood cells (RBCs), is the key oxygen-carrying component in blood, and levels of RBCs are tightly controlled according to demand for oxygen. The availability of oxygen plays a critical role in athletic performance, and agents that enhance oxygen delivery to tissues increase aerobic power. Early methods to increase oxygen delivery included training at altitude, and later, transfusion of packed RBCs. A breakthrough in understanding how RBC formation is controlled included the discovery of erythropoietin (Epo) and cloning of the EPO gene. Cloning of the EPO gene was followed by commercial development of recombinant human Epo (rHuEpo). Legitimate use of this and other agents that affect oxygen delivery is important in the treatment of anaemia (low Hb levels) in patients with chronic kidney disease or in cancer patients with chemotherapy-induced anaemia. However, competitive sports was affected by illicit use of rHuEpo to enhance performance. Testing methods for these agents resulted in a cat-and-mouse game, with testing labs attempting to detect the use of a drug or blood product to improve athletic performance (doping) and certain athletes developing methods to use the agents without being detected. This article examines the current methods to enhance aerobic performance and the methods to detect illicit use. PMID:18362898

  9. Thermophysical properties and oxygen transport in (Thx,Pu1−x)O2

    PubMed Central

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; Grimes, R. W.

    2016-01-01

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1−x)O2 (0 ≤ x ≤ 1) between 300–3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1−x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Thx,Pu1−x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1−x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder. PMID:27796314

  10. Thermophysical properties and oxygen transport in (Thx,Pu1-x)O2

    DOE PAGES

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...

    2016-10-31

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1–x)O2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1–x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increasemore » in oxygen diffusivity for (Thx,Pu1–x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1–x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less

  11. Regulation of ion transport across lamprey (Lampetra fluviatilis) erythrocyte membrane by oxygen tension.

    PubMed

    Virkki, L V; Salama, A; Nikinmaa, M

    1998-06-01

    We have measured the effects of oxygen tension on the transport of Na+, K+ and Cl- across the erythrocyte membrane of the lamprey Lampetra fluviatilis. The transport of each ion was affected by the oxygen tension of the medium. Hypoxic conditions (PO2 2 kPa) caused an increase in the acidification-induced influx of Na+ via Na+/H+ exchange. The influx of K+ was only slightly affected by the oxygenation of the medium. In contrast, the basal K+ efflux, measured using the radioactive isotope 43K, was markedly reduced by decreasing the oxygen tension of the medium, whereas the K+ flux in hypotonic medium was not affected. Only minor effects of hypoxic conditions on the influx of Cl- were observed in either isotonic or hypotonic conditions (there was a tendency for the isotonic influx to increase) or on the efflux in isotonic conditions. However, deoxygenation caused a marked reduction in the Cl- efflux in hypotonic conditions. The results show that oxygen tension has a marked effect on the pH and volume regulatory transport pathways of lamprey erythrocytes. For K+ and Cl-, the regulation appears to be asymmetric, i.e. influx and efflux are affected differently.

  12. Regulation of ion transport across lamprey (Lampetra fluviatilis) erythrocyte membrane by oxygen tension

    PubMed

    Virkki; Salama; Nikinmaa

    1998-05-21

    We have measured the effects of oxygen tension on the transport of Na+, K+ and Cl- across the erythrocyte membrane of the lamprey Lampetra fluviatilis. The transport of each ion was affected by the oxygen tension of the medium. Hypoxic conditions (PO2 2 kPa) caused an increase in the acidification-induced influx of Na+ via Na+/H+ exchange. The influx of K+ was only slightly affected by the oxygenation of the medium. In contrast, the basal K+ efflux, measured using the radioactive isotope 43K, was markedly reduced by decreasing the oxygen tension of the medium, whereas the K+ flux in hypotonic medium was not affected. Only minor effects of hypoxic conditions on the influx of Cl- were observed in either isotonic or hypotonic conditions (there was a tendency for the isotonic influx to increase) or on the efflux in isotonic conditions. However, deoxygenation caused a marked reduction in the Cl- efflux in hypotonic conditions. The results show that oxygen tension has a marked effect on the pH and volume regulatory transport pathways of lamprey erythrocytes. For K+ and Cl-, the regulation appears to be asymmetric, i.e. influx and efflux are affected differently.

  13. Experimental dissection of oxygen transport resistance in the components of a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Oh, Hwanyeong; Lee, Yoo il; Lee, Guesang; Min, Kyoungdoug; Yi, Jung S.

    2017-03-01

    Oxygen transport resistance is a major obstacle for obtaining high performance in a polymer electrolyte membrane fuel cell (PEMFC). To distinguish the major components that inhibit oxygen transport, an experimental method is established to dissect the oxygen transport resistance of the components of the PEMFC, such as the substrate, micro-porous layer (MPL), catalyst layer, and ionomer film. The Knudsen numbers are calculated to determine the types of diffusion mechanisms at each layer by measuring the pore sizes with either mercury porosimetry or BET analysis. At the under-saturated condition where condensation is mostly absent, the molecular diffusion resistance is dissected by changing the type of inert gas, and ionomer film permeation is separated by varying the inlet gas humidity. Moreover, the presence of the MPL and the variability of the substrate thickness allow the oxygen transport resistance at each component of a PEMFC to be dissected. At a low relative humidity of 50% and lower, an ionomer film had the largest resistance, while the contribution of the MPL was largest for the other humidification conditions.

  14. Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision

    PubMed Central

    Rintala, Eija; Wiebe, Marilyn G; Tamminen, Anu; Ruohonen, Laura; Penttilä, Merja

    2008-01-01

    Background The gene family of hexose transporters in Saccharomyces cerevisiae consists of 20 members; 18 genes encoding transporters (HXT1-HXT17, GAL2) and two genes encoding sensors (SNF3, RGT2). The effect of oxygen provision on the expression of these genes was studied in glucose-limited chemostat cultivations (D = 0.10 h-1, pH 5, 30°C). Transcript levels were measured from cells grown in five steady state oxygen levels (0, 0.5, 1, 2.8 and 20.9% O2), and from cells under conditions in which oxygen was introduced to anaerobic cultures or removed from cultures receiving oxygen. Results The expression pattern of the HXT gene family was distinct in cells grown under aerobic, hypoxic and anaerobic conditions. The transcription of HXT2, HXT4 and HXT5 was low when the oxygen concentration in the cultures was low, both under steady state and non-steady state conditions, whereas the expression of HXT6, HXT13 and HXT15/16 was higher in hypoxic than in fully aerobic or anaerobic conditions. None of the HXT genes showed higher transcript levels in strictly anaerobic conditions. Expression of HXT9, HXT14 and GAL2 was not detected under the culture conditions studied. Conclusion When oxygen becomes limiting in a glucose-limited chemostat cultivation, the glucose uptake rate per cell increases. However, the expression of none of the hexose transporter encoding genes was increased in anaerobic conditions. It thus seems that the decrease in the moderately low affinity uptake and consequently the relative increase of high affinity uptake may itself allow the higher specific glucose consumption rate to occur in anaerobic compared to aerobic conditions. PMID:18373847

  15. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  16. Blood Flow and Oxygen Transport Past an Elliptical Fiber in an Artificial Lung

    NASA Astrophysics Data System (ADS)

    Zierenberg, Jennifer; Fujioka, Hideki; Hirschl, Ronald; Bartlett, Robert; Grotberg, James

    2007-11-01

    Artificial lungs are currently being developed to serve as bridges to lung transplantation with circular fibers, which are permeable to oxygen, used as the transport surface. Blood flows across the fibers while oxygen flows through the fiber lumen. The present work investigates the novel approach of using elliptical fibers as the transport medium. Steady blood flow, modeled as a Casson fluid, and oxygen transport over a single fiber are investigated for varying elliptic aspect ratios (Ar=minor radius/major radius) and orientations to flow (φ). The parameters investigated are Re = 1, 5, 10; Ar = 0.25, 0.5, 0.75, 1; φ= 0^o, 15^o, 30^o, 45^o, 60^o, 75^o, 90^o; and Sc = 1000. The Casson properties of blood decrease the size and strength of recirculation(s) which when present are attached to the downstream side of the fiber. A maximum decrease of 24% in drag and an increase of 10% in transport are observed for Re = 5, Ar = 0.25 and φ= 0^o as compared to the circular fiber. The elliptic properties can thus aid in the design of artificial lungs.

  17. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    SciTech Connect

    Capece, Angela M. Shepherd, Joseph E.; Polk, James E.; Mikellides, Ioannis G.

    2014-04-21

    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungsten species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.

  18. Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod.

    PubMed

    Oellermann, Michael; Lieb, Bernhard; Pörtner, Hans-O; Semmens, Jayson M; Mark, Felix C

    2015-01-01

    The Antarctic Ocean hosts a rich and diverse fauna despite inhospitable temperatures close to freezing, which require specialist adaptations to sustain animal activity and various underlying body functions. While oxygen transport has been suggested to be key in setting thermal tolerance in warmer climates, this constraint is relaxed in Antarctic fishes and crustaceans, due to high levels of dissolved oxygen. Less is known about how other Antarctic ectotherms cope with temperatures near zero, particularly the more active invertebrates like the abundant octopods. A continued reliance on the highly specialised blood oxygen transport system of cephalopods may concur with functional constraints at cold temperatures. We therefore analysed the octopod's central oxygen transport component, the blue blood pigment haemocyanin, to unravel strategies that sustain oxygen supply at cold temperatures. To identify adaptive compensation of blood oxygen transport in octopods from different climatic regions, we compared haemocyanin oxygen binding properties, oxygen carrying capacities as well as haemolymph protein and ion composition between the Antarctic octopod Pareledone charcoti, the South-east Australian Octopus pallidus and the Mediterranean Eledone moschata. In the Antarctic Pareledone charcoti at 0°C, oxygen unloading by haemocyanin was poor but supported by high levels of dissolved oxygen. However, lower oxygen affinity and higher oxygen carrying capacity compared to warm water octopods, still enabled significant contribution of haemocyanin to oxygen transport at 0°C. At warmer temperatures, haemocyanin of Pareledone charcoti releases most of the bound oxygen, supporting oxygen supply at 10°C. In warm water octopods, increasing oxygen affinities reduce the ability to release oxygen from haemocyanin at colder temperatures. Though, unlike Eledone moschata, Octopus pallidus attenuated this increase below 15°C. Adjustments of haemocyanin physiological function and

  19. Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods

    SciTech Connect

    Qi, X.; Lin, Y.S.; Swartz, S.L.

    2000-03-01

    Dense perovskite-structured membranes with desired composition of La{sub 0.8}Sr{sub 0.2}Co{sub 0.6}Fe{sub 0.4}O{sub 3{minus}{delta}} (LSCF) were prepared from powders produced by four different methods. LSCF powders prepared by citrate, solid-state, and spray-pyrolysis methods had compositions close to the desired stoichiometry with a slight difference in cobalt concentration, whereas coprecipitated powders had a large strontium deficiency. The membrane composition was a determining factor that affected the electronic conductivity and therefore oxygen permeability. The membrane with a large strontium deficiency had much lower electronic conductivity and oxygen permeability (ionic conductivity) than the other three membranes with compositions close to the desired stoichiometry. The electronic conductivity of membranes prepared from citrate, solid-state, and spray-pyrolysis methods increases with the cobalt concentration of the membrane. For the three membranes with similar composition, the activation energy of oxygen flux decreases with increasing grain size. Oxygen pressure dependency of oxygen vacancy concentration is also influenced by the membrane microstructure and composition. LSCF membranes with same composition and similar microstructure should have similar electric and oxygen transport properties.

  20. Seasonal variations of haematological parameters in athletes.

    PubMed

    Banfi, Giuseppe; Lundby, Carsten; Robach, Paul; Lippi, Giuseppe

    2011-01-01

    The influence of training and competition workloads is crucial for evaluation of longitudinal haematological data in athletes. There are only a few papers on the variation of haematological parameters during long-lasting periods and, especially, during an entire competitive season. We summarized that some haematological parameters can be influenced by long-term training and competition periods. Haemoglobin (Hb) and haematocrit (Ht) are decreased during the more intense periods of training, throughout the season. In different sport disciplines, the decline of Hb ranges from 3 to 8% during the competition season, while the range of reticulocytes (Ret%) varies from 5 to 21%. Reticulocytes are also decreased after long periods of training and competitions, but their variation is not necessarily associated with that of Hb. The qualitative variations (trend of modifications) of haematological parameters are roughly independent of the sport discipline, but quantitatively (amount of modifications) dependent on sport discipline. The modifications are more evident in cycling, running, swimming than they are in football and rugby. The variations of haematological parameters within the same sport discipline are qualitatively concordant and quantitatively different among separate but consecutive competitive seasons. These findings are described in aerobic and team sports sportsmen. The definition of reliable reference ranges in sportsmen would only be possible by following the best laboratory practices. For antidoping purposes more studies investigating haematological modifications during the season are advisable.

  1. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    NASA Astrophysics Data System (ADS)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  2. O2 and CO2 glow-discharge-assisted oxygen transport through Ag

    NASA Astrophysics Data System (ADS)

    Outlaw, R. A.

    1990-08-01

    The permeation of oxygen through Ag normally occurs by a sequence of steps which include the initial dissociative adsorption of molecular oxygen at the upstream surface, the dissolution of the atoms into the bulk, and the subsequent migration of the atoms between octahedral sites of the lattice until they arrive at the vacuum interface downstream. The dissociative adsorption step, however, proceeds slowly, as indicated by the low sticking coefficient of O2 on Ag(10-6-10-3). The application of a dc field in 0.5 Torr of O2 (E/n˜10-14 V cm2) on the upstream side of a Ag membrane generated gas phase atomic oxygen that substantially enhanced the transport. The transport flux was observed to increase from a value of 4.4×1013 cm-2 s-1 to a glow discharge value of 2.83×1014 cm-2 s-1 at a membrane temperature of 650 °C. This suggests that the dissociative adsorption step limits the supply of oxygen atoms to the upstream side of the membrane. When the upstream O2 was replaced by an equal pressure of CO2, only a small permeation signal was observed, but the application of the glow discharge substantially increased the transport flux from 3.25×1012 cm-2 s-1 to 1.74×1014 cm-2 s-1. This method of separating O2 from a CO2 environment may be a possible mechanism for providing a supply of oxygen for astronauts in a manned mission to Mars.

  3. The realistic prediction of oxygen transport in a tissue-engineered scaffold by introducing time-varying effective diffusion coefficients.

    PubMed

    Kang, Tae-Yun; Kang, Hyun-Wook; Hwang, Chang Mo; Lee, Sang Jin; Park, Jaesung; Yoo, James J; Cho, Dong-Woo

    2011-09-01

    An adequate oxygen supply is one of the most important factors needed in order to regenerate or engineer thick tissues or complex organs. To devise a method for maximizing the amount of oxygen available to cells, it is necessary to understand and to realistically predict oxygen transport within an engineered tissue. In this study, we focused on the fact that oxygen transport through a tissue-engineered scaffold may vary with time as cells proliferate. To confirm this viewpoint, effective oxygen diffusion coefficients (D(e)(,)(s)) of scaffolds were deduced from experimental measurements and simulations of oxygen-concentration profiles were performed using these D(e)(,)(s) values in a two-dimensional (2-D) perfusion model. The results of this study indicate that higher porosity, hydraulic permeability and interconnectivity of scaffolds with no cells are responsible for the prominent diffusion capability quantified using D(e)(,)(s). On the other hand, the D(e)(,)(s) of scaffolds with cells has a negative linear relationship with cell density. Cell proliferation with time leads to a significant decrease in oxygen concentration in the 2-D perfusion model. This result demonstrates the gradual restriction of oxygen transport in a porous scaffold during cell culture. Therefore, the realistic prediction of oxygen transport using a time-varying D(e)(,)(s) will provide an appropriate basis for designing optimal transport networks within a thick scaffold. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    SciTech Connect

    Li YH, Gemmen R, Liu XB

    2010-06-01

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed

  5. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Li, Yihong; Gemmen, Randall; Liu, Xingbo

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed.

  6. Cyclic mechanical loading enables solute transport and oxygen supply in bone healing: an in vitro investigation.

    PubMed

    Witt, Florian; Duda, Georg N; Bergmann, Camilla; Petersen, Ansgar

    2014-02-01

    Bone healing is a complex process with an increased metabolic activity and consequently high demand for oxygen. In the hematoma phase, inflammatory cells and mesenchymal stromal cells (MSCs) are initially cut off from direct nutritional supply via blood vessels. Cyclic mechanical loading that occurs, for example, during walking is expected to have an impact on the biophysical environment of the cells but meaningful quantitative experimental data are still missing. In this study, the hypothesis that cyclic mechanical loading within a physiological range significantly contributes to oxygen transport into the fracture hematoma was investigated by an in vitro approach. MSCs were embedded in a fibrin matrix to mimic the hematoma phase during bone healing. Construct geometry, culture conditions, and parameters of mechanical loading in a bioreactor system were chosen to resemble the in vivo situation based on data from human studies and a well-characterized large animal model. Oxygen tension was measured before and after mechanical loading intervals by a chemical optical microsensor. The increase in oxygen tension at the center of the constructs was significant and depended on loading time with maximal values of 9.9%±5.1%, 14.8%±4.9%, and 25.3%±7.2% of normal atmospheric oxygen tension for 5, 15, and 30 min of cyclic loading respectively. Histological staining of hypoxic cells after 48 h of incubation confirmed sensor measurements by showing an increased number of normoxic cells with intermittent cyclic compression compared with unloaded controls. The present study demonstrates that moderate cyclic mechanical loading leads to an increased oxygen transport and thus to substantially enhanced supply conditions for cells entrapped in the hematoma. This link between mechanical conditions and nutrition supply in the early regenerative phases could be employed to improve the environmental conditions for cell metabolism and consequently prevent necrosis.

  7. Modeling of oxygen transport and cell killing in type-II photodynamic therapy.

    PubMed

    Gkigkitzis, Ioannis; Feng, Yuanming; Yang, Chunmei; Lu, Jun Q; Hu, Xin-Hua

    2012-01-01

    Photodynamic therapy (PDT) provides an effective option for treatment of tumors and other diseases in superficial tissues and attracts attention for in vitro study with cells. In this study, we present a significantly improved model of in vitro cell killing through Type-II PDT for simulation of the molecular interactions and cell killing in time domain in the presence of oxygen transport within a spherical cell. The self-consistency of the approach is examined by determination of conditions for obtaining positive definitive solutions of molecular concentrations. Decay constants of photosensitizers and unoxidized receptors are extracted as the key indices of molecular kinetics with different oxygen diffusion constants and permeability at the cell membrane. By coupling the molecular kinetics to cell killing, we develop a modeling method of PDT cytotoxicity caused by singlet oxygen and obtain the cell survival ratio as a function of light fluence or initial photosensitizer concentration with different photon density or irradiance of incident light and other parameters of oxygen transport. The results show that the present model of Type-II PDT yields a powerful tool to quantitate various events underlying PDT at the molecular and cellular levels and to interpret experimental results of in vitro cell studies. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  8. Emerging technologies for non-invasive quantification of physiological oxygen transport in plants.

    PubMed

    Chaturvedi, P; Taguchi, M; Burrs, S L; Hauser, B A; Salim, W W A W; Claussen, J C; McLamore, E S

    2013-09-01

    Oxygen plays a critical role in plant metabolism, stress response/signaling, and adaptation to environmental changes (Lambers and Colmer, Plant Soil 274:7-15, 2005; Pitzschke et al., Antioxid Redox Signal 8:1757-1764, 2006; Van Breusegem et al., Plant Sci 161:405-414, 2001). Reactive oxygen species (ROS), by-products of various metabolic pathways in which oxygen is a key molecule, are produced during adaptation responses to environmental stress. While much is known about plant adaptation to stress (e.g., detoxifying enzymes, antioxidant production), the link between ROS metabolism, O2 transport, and stress response mechanisms is unknown. Thus, non-invasive technologies for measuring O2 are critical for understanding the link between physiological O2 transport and ROS signaling. New non-invasive technologies allow real-time measurement of O2 at the single cell and even organelle levels. This review briefly summarizes currently available (i.e., mainstream) technologies for measuring O2 and then introduces emerging technologies for measuring O2. Advanced techniques that provide the ability to non-invasively (i.e., non-destructively) measure O2 are highlighted. In the near future, these non-invasive sensors will facilitate novel experimentation that will allow plant physiologists to ask new hypothesis-driven research questions aimed at improving our understanding of physiological O2 transport.

  9. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics.

    PubMed

    Muñoz-García, Ana B; Ritzmann, Andrew M; Pavone, Michele; Keith, John A; Carter, Emily A

    2014-11-18

    CONSPECTUS: Global advances in industrialization are precipitating increasingly rapid consumption of fossil fuel resources and heightened levels of atmospheric CO2. World sustainability requires viable sources of renewable energy and its efficient use. First-principles quantum mechanics (QM) studies can help guide developments in energy technologies by characterizing complex material properties and predicting reaction mechanisms at the atomic scale. QM can provide unbiased, qualitative guidelines for experimentally tailoring materials for energy applications. This Account primarily reviews our recent QM studies of electrode materials for solid oxide fuel cells (SOFCs), a promising technology for clean, efficient power generation. SOFCs presently must operate at very high temperatures to allow transport of oxygen ions and electrons through solid-state electrolytes and electrodes. High temperatures, however, engender slow startup times and accelerate material degradation. SOFC technologies need cathode and anode materials that function well at lower temperatures, which have been realized with mixed ion-electron conductor (MIEC) materials. Unfortunately, the complexity of MIECs has inhibited the rational tailoring of improved SOFC materials. Here, we gather theoretically obtained insights into oxygen ion conductivity in two classes of perovskite-type materials for SOFC applications: the conventional La1-xSrxMO3 family (M = Cr, Mn, Fe, Co) and the new, promising class of Sr2Fe2-xMoxO6 materials. Using density functional theory + U (DFT+U) with U-J values obtained from ab initio theory, we have characterized the accompanying electronic structures for the two processes that govern ionic diffusion in these materials: (i) oxygen vacancy formation and (ii) vacancy-mediated oxygen migration. We show how the corresponding macroscopic oxygen diffusion coefficient can be accurately obtained in terms of microscopic quantities calculated with first-principles QM. We find that the

  10. Development of a new interfacility extracorporeal membrane oxygenation transport program for pediatric lung transplantation evaluation

    PubMed Central

    Shepherd, Edward G.; Gee, Samantha W.

    2017-01-01

    Pediatric lung transplantation is a life-saving intervention for children with irreversible end-stage lung disease. Access to transplant can be limited by geographic isolation from a center or the presence of comorbidities affecting transplant eligibility. Extracorporeal membrane oxygenation (ECMO)-supported patients are an uncommon but historically high-risk cohort of patients considered for lung transplant. We report the development of a service at our center to provide transport services to our hospital for patients unable to wean from ECMO support at their local institution for the purpose of evaluation for lung transplantation by our program. We developed a process for pre-transport consultation by the lung transplant physician team, standardized hand-off tools and equipment lists, and procedures for transitioning patients to transport ECMO machinery. Four patients have been transported to date including fixed wing (FW) and helicopter transports. All patients were successfully transported with either none or minor complications. Transport of ECMO-supported patients is a feasible method to increase access of patients with irreversible lung injured patients to evaluation for lung transplant. PMID:28275613

  11. Role of reactive oxygen species in regulation of glucose transport in skeletal muscle during exercise.

    PubMed

    Katz, Abram

    2016-06-01

    Glucose derived from extracellular sources serves as an energy source in virtually all eukaryotic cells, including skeletal muscle. Its contribution to energy turnover increases with exercise intensity up to moderately heavy workloads. However, at very high workloads, the contribution of extracellular glucose to energy turnover is negligible, despite the high rate of glucose transport. Reactive oxygen species (ROS) are involved in the stimulation of glucose transport in isolated skeletal muscle preparations during intense repeated contractions. Consistent with this observation, heavy exercise is associated with significant production of ROS. However, during more mild to moderate stimulation or exercise conditions (in vitro, in situ and in vivo) antioxidants do not affect glucose transport. It is noteworthy that the production of ROS is limited or not observed under these conditions and that the concentration of the antioxidant used was extremely low. The results to date suggest that ROS involvement in activation of glucose transport occurs primarily during intense short-term exercise and that other mechanisms are involved during mild to moderate exercise. What remains puzzling is why ROS-mediated activation of glucose transport would occur under conditions where glucose transport is highest and utilization (i.e. phosphorylation of glucose by hexokinase) is low. Possibly ROS production is involved in priming glucose transport during heavy exercise to accelerate glycogen biogenesis during the initial recovery period after exercise, as well as altering other aspects of intracellular metabolism.

  12. Role of reactive oxygen species in regulation of glucose transport in skeletal muscle during exercise

    PubMed Central

    2016-01-01

    Abstract Glucose derived from extracellular sources serves as an energy source in virtually all eukaryotic cells, including skeletal muscle. Its contribution to energy turnover increases with exercise intensity up to moderately heavy workloads. However, at very high workloads, the contribution of extracellular glucose to energy turnover is negligible, despite the high rate of glucose transport. Reactive oxygen species (ROS) are involved in the stimulation of glucose transport in isolated skeletal muscle preparations during intense repeated contractions. Consistent with this observation, heavy exercise is associated with significant production of ROS. However, during more mild to moderate stimulation or exercise conditions (in vitro, in situ and in vivo) antioxidants do not affect glucose transport. It is noteworthy that the production of ROS is limited or not observed under these conditions and that the concentration of the antioxidant used was extremely low. The results to date suggest that ROS involvement in activation of glucose transport occurs primarily during intense short‐term exercise and that other mechanisms are involved during mild to moderate exercise. What remains puzzling is why ROS‐mediated activation of glucose transport would occur under conditions where glucose transport is highest and utilization (i.e. phosphorylation of glucose by hexokinase) is low. Possibly ROS production is involved in priming glucose transport during heavy exercise to accelerate glycogen biogenesis during the initial recovery period after exercise, as well as altering other aspects of intracellular metabolism. PMID:26791627

  13. Remote cannulation and extracorporeal membrane oxygenation transport is safe in a newly established program

    PubMed Central

    Grenda, David S.; Moll, Vanessa; Kalin, Craig M.

    2017-01-01

    Extracorporeal membrane oxygenation (ECMO) has become an increasingly utilized modality for the support of patients with severe cardiac or pulmonary dysfunction. Unfortunately, the costs and expertise required to maintain a formal ECMO program preclude the vast majority of hospitals from employing such technology routinely. These barriers to implementation of an effective ECMO program highlight the importance of the safe transport of patients in need of extracorporeal support. While many centers with extensive expertise in the management of patients on extracorporeal support have demonstrated their ability to transport those same patients, the ability of new ECMO programs to provide such transportation remains poorly studied. We established an ECMO program at our institution and immediately provided equipment and personnel to transport patients in need of or receiving extracorporeal support to our institution. Overall, we found that 13 out of 28 patients transported to our institution on ECMO or for consideration of ECMO support during the first 15 months of the program survived to hospital discharge. During that period, four incidents associated with patient transport occurred but none were related to ECMO support or adversely affected patient outcome. These observations demonstrate that new ECMO programs can safely and reliably transport patients on or in need of extracorporeal support. PMID:28275616

  14. Development of a new interfacility extracorporeal membrane oxygenation transport program for pediatric lung transplantation evaluation.

    PubMed

    Frazier, W Joshua; Shepherd, Edward G; Gee, Samantha W

    2017-02-01

    Pediatric lung transplantation is a life-saving intervention for children with irreversible end-stage lung disease. Access to transplant can be limited by geographic isolation from a center or the presence of comorbidities affecting transplant eligibility. Extracorporeal membrane oxygenation (ECMO)-supported patients are an uncommon but historically high-risk cohort of patients considered for lung transplant. We report the development of a service at our center to provide transport services to our hospital for patients unable to wean from ECMO support at their local institution for the purpose of evaluation for lung transplantation by our program. We developed a process for pre-transport consultation by the lung transplant physician team, standardized hand-off tools and equipment lists, and procedures for transitioning patients to transport ECMO machinery. Four patients have been transported to date including fixed wing (FW) and helicopter transports. All patients were successfully transported with either none or minor complications. Transport of ECMO-supported patients is a feasible method to increase access of patients with irreversible lung injured patients to evaluation for lung transplant.

  15. Remote cannulation and extracorporeal membrane oxygenation transport is safe in a newly established program.

    PubMed

    Grenda, David S; Moll, Vanessa; Kalin, Craig M; Blum, James M

    2017-02-01

    Extracorporeal membrane oxygenation (ECMO) has become an increasingly utilized modality for the support of patients with severe cardiac or pulmonary dysfunction. Unfortunately, the costs and expertise required to maintain a formal ECMO program preclude the vast majority of hospitals from employing such technology routinely. These barriers to implementation of an effective ECMO program highlight the importance of the safe transport of patients in need of extracorporeal support. While many centers with extensive expertise in the management of patients on extracorporeal support have demonstrated their ability to transport those same patients, the ability of new ECMO programs to provide such transportation remains poorly studied. We established an ECMO program at our institution and immediately provided equipment and personnel to transport patients in need of or receiving extracorporeal support to our institution. Overall, we found that 13 out of 28 patients transported to our institution on ECMO or for consideration of ECMO support during the first 15 months of the program survived to hospital discharge. During that period, four incidents associated with patient transport occurred but none were related to ECMO support or adversely affected patient outcome. These observations demonstrate that new ECMO programs can safely and reliably transport patients on or in need of extracorporeal support.

  16. PSYCHOLOGICAL ASPECTS OF HAEMATOLOGICAL MALIGNANCIES

    PubMed Central

    Kulhara, P.; Verma, S.C.; Bambery, P.; Nehra, R.

    1990-01-01

    SUMMMARY Sixty nine patients with various types of haematological malignancies were studied. Chronic myeloid leukaemia (n =32) was the commonest diagnosis. The patients were assessed on Hamilton Rating Scale for Depression, PGI-N2 Health Questionnaire and Presumptive Stressful Life Events Scale and those who had scores above the cut off points for Hamilton Rating Scale and/or PGI-N2 Health Questionnaire were assessed on Present State Examination. The patients were followed up at 3 and 6 months interval. At 3 months 51 patients were re-assessed whilst at 6 months only 26 could be re-evaluated. There were no significant changes in scores of Hamilton Rating scale and PGI-N2 Health Questionnaire at intake and subsequent follow-up assessments. No significant correlations between stressful life experience and severity of illness emerged. Twenty nine patients were interviewed on Present State Examination and of these 20 had diagnosable depressive neuroses- From consultation liaison psychiatric point of view, provision of psychiatric help to these patients is discussed. PMID:21927472

  17. Oxygen transport and pyrite oxidation in unsaturated coal-mine spoil

    USGS Publications Warehouse

    Guo, Weixing; Cravotta, Charles A.

    1996-01-01

    An understanding of the mechanisms of oxygen (02) transport in unsaturated mine spoil is necessary to design and implement effective measures to exclude 02 from pyritic materials and to control the formation of acidic mine drainage. Partial pressure of oxygen (Po2) in pore gas, chemistry of pore water, and temperature were measured at different depths in unsaturated spoil at two reclaimed surface coal mines in Pennsylvania. At mine 1, where spoil was loose, blocky sandstone, Po2 changed little with depth, decreasing from 21 volume percent (vol%) at the ground surface to a minimum of about 18 vol% at 10 m depth. At mine 2, where spoil was compacted, friable shale, Po2 decreased to less than 2 vol% at depth of about 10 m. Although pore-water chemistry and temperature data indicate that acid-forming reactions were active at both mines, the pore-gas data indicate that mechanisms for 0 2 transport were different at each mine. A numerical model was developed to simulate 02 transport and pyrite oxidation in unsaturated mine spoil. The results of the numerical simulations indicate that differences in 02 transport at the two mines can be explained by differences in the air permeability of spoil. Po2 changes little with depth if advective transport of 02 dominates as at mine 1, but decreases greatly with depth if diffusive transport of 02 dominates, as in mine 2. Model results also indicate that advective transport becomes significant if the air permeability of spoil is greater than 10-9 m2, which is expected for blocky sandstone spoil. In the advective-dominant system, thermally-induced convective air flow, as a consequence of the exothermic oxidation of pyrite, supplies the 02 to maintain high Po2 within the deep unsaturated zone.

  18. Impact of Incremental Perfusion Loss on Oxygen Transport in a Capillary Network Mathematical Model.

    PubMed

    Fraser, Graham M; Sharpe, Michael D; Goldman, Daniel; Ellis, Christopher G

    2015-07-01

    To quantify how incremental capillary PL, such as that seen in experimental models of sepsis, affects tissue oxygenation using a computation model of oxygen transport. A computational model was applied to capillary networks with dimensions 84 × 168 × 342 (NI) and 70 × 157 × 268 (NII) μm, reconstructed in vivo from rat skeletal muscle. FCD loss was applied incrementally up to ~40% and combined with high tissue oxygen consumption to simulate severe sepsis. A loss of ~40% FCD loss decreased median tissue PO2 to 22.9 and 20.1 mmHg in NI and NII compared to 28.1 and 27.5 mmHg under resting conditions. Increasing RBC SR to baseline levels returned tissue PO2 to within 5% of baseline. HC combined with a 40% FCD loss, resulted in tissue anoxia in both network volumes and median tissue PO2 of 11.5 and 8.9 mmHg in NI and NII respectively; median tissue PO2 was recovered to baseline levels by increasing total SR 3-4 fold. These results suggest a substantial increase in total SR is required in order to compensate for impaired oxygen delivery as a result of loss of capillary perfusion and increased oxygen consumption during sepsis. © 2015 John Wiley & Sons Ltd.

  19. Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Wu, D.; Davidson, M. R.; Hoflund, Gar B.

    1992-01-01

    The transport of oxygen through high-purity membranes of Ag (110), Ag (poly), Ag (nano), and Ag 2.0 Zr has been studied by an ultrahigh vacuum permeation method over the temperature range of 400-800 C. The data show that there are substantial deviations from ordinary diffusion-controlled transport. A surface limitation has been confirmed by glow-discharge studies where the upstream O2 supply has been partially converted to atoms, which, for the same temperature and pressure, gave rise to over an order of magnitude increase in transport flux. Further, the addition of 2.0 wt percent Zr to the Ag has provided increased dissociative adsorption rates, which, in turn, increased the transport flux by a factor of 2. It was also observed that below a temperature of 630 C, the diffusivity exhibits an increase in activation energy of over 4 kcal/mol, which has been attributed to trapping of the atomic oxygen and/or kinetic barriers at the surface and subsurface of the vacuum interface. Above 630 C, the activation barrier decreases to the accepted value of about 11 kcal/mol for Ag (poly), consistent with zero concentration at the vacuum interface.

  20. Oxygen depletion and formation of toxic gases following sea transportation of logs and wood chips.

    PubMed

    Svedberg, Urban; Petrini, Caroline; Johanson, Gunnar

    2009-11-01

    Several recent accidents with fatal outcomes occurring during discharge of logs and wood chips from ships in Swedish ports indicate the need to better understand the atmospheric conditions in holds and connecting stairways. The principal aim of the present study was to assess the air levels of oxygen and toxic gases in confined spaces following sea transportation of logs and wood chips. The focus of the study was the conditions in the stairways, as this was the location of the reported accidents. Forty-one shipments of logs (pulpwood) and wood chips carried by 10 different ships were investigated before discharge in ports in northern Sweden. A full year was covered to accommodate variations due to seasonal temperature changes. The time from completion of loading to discharge was estimated to be 37-66 h (mean 46 h). Air samples were collected in the undisturbed air of altogether 76 stairways before the hatch covers were removed. The oxygen level was measured on-site by handheld direct-reading multi-gas monitors. On 16 of the shipments, air samples were additionally collected in Tedlar bags for later analysis for carbon dioxide, carbon monoxide, and hydrocarbons by fourier transform infrared spectroscopy. The mean oxygen level was 10% (n = 76) but in 17% of the samples the oxygen level was 0%. The oxygen depletion was less pronounced during the cold season. The mean CO2 and CO levels were 7.5% (n = 26) and 46 p.p.m. (n = 28), respectively. More than 90% of the hydrocarbons were explained by monoterpenes, mainly alpha-pinene (mean 41 p.p.m., (n = 26). In conclusion, the measurements show that transport of logs and wood chips in confined spaces may result in rapid and severe oxygen depletion and CO(2) formation. Thus, apparently harmless cargoes may create potentially life-threatening conditions. The oxygen depletion and CO(2) formation are seemingly primarily caused by microbiological activity, in contrast to the oxidative processes with higher CO formation that

  1. Oxygen Depletion and Formation of Toxic Gases following Sea Transportation of Logs and Wood Chips

    PubMed Central

    Svedberg, Urban; Petrini, Caroline; Johanson, Gunnar

    2009-01-01

    Several recent accidents with fatal outcomes occurring during discharge of logs and wood chips from ships in Swedish ports indicate the need to better understand the atmospheric conditions in holds and connecting stairways. The principal aim of the present study was to assess the air levels of oxygen and toxic gases in confined spaces following sea transportation of logs and wood chips. The focus of the study was the conditions in the stairways, as this was the location of the reported accidents. Forty-one shipments of logs (pulpwood) and wood chips carried by 10 different ships were investigated before discharge in ports in northern Sweden. A full year was covered to accommodate variations due to seasonal temperature changes. The time from completion of loading to discharge was estimated to be 37–66 h (mean 46 h). Air samples were collected in the undisturbed air of altogether 76 stairways before the hatch covers were removed. The oxygen level was measured on-site by handheld direct-reading multi-gas monitors. On 16 of the shipments, air samples were additionally collected in Tedlar® bags for later analysis for carbon dioxide, carbon monoxide, and hydrocarbons by fourier transform infrared spectroscopy. The mean oxygen level was 10% (n = 76) but in 17% of the samples the oxygen level was 0%. The oxygen depletion was less pronounced during the cold season. The mean CO2 and CO levels were 7.5% (n = 26) and 46 p.p.m. (n = 28), respectively. More than 90% of the hydrocarbons were explained by monoterpenes, mainly α-pinene (mean 41 p.p.m., (n = 26). In conclusion, the measurements show that transport of logs and wood chips in confined spaces may result in rapid and severe oxygen depletion and CO2 formation. Thus, apparently harmless cargoes may create potentially life-threatening conditions. The oxygen depletion and CO2 formation are seemingly primarily caused by microbiological activity, in contrast to the oxidative processes with higher CO formation that

  2. Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon

    NASA Astrophysics Data System (ADS)

    Resplandy, L.; Keeling, R. F.; Stephens, B. B.; Bent, J. D.; Jacobson, A.; Rödenbeck, C.; Khatiwala, S.

    2016-11-01

    Despite its importance to the climate system, the ocean meridional heat transport is still poorly quantified. We identify a strong link between the northern hemisphere deficit in atmospheric potential oxygen (APO = O_2 + 1.1 × CO_2) and the asymmetry in meridional heat transport between northern and southern hemispheres. The recent aircraft observations from the HIPPO campaign reveal a northern APO deficit in the tropospheric column of -10.4 ± 1.0 per meg, double the value at the surface and more representative of large-scale air-sea fluxes. The global northward ocean heat transport asymmetry necessary to explain the observed APO deficit is about 0.7-1.1 PW, which corresponds to the upper range of estimates from hydrographic sections and atmospheric reanalyses.

  3. Hazardous off-gassing of carbon monoxide and oxygen depletion during ocean transportation of wood pellets.

    PubMed

    Svedberg, Urban; Samuelsson, Jerker; Melin, Staffan

    2008-06-01

    Five ocean vessels were investigated for the characterization and quantification of gaseous compounds emitted during ocean transportation of wood pellets in closed cargo hatches from Canada to Sweden. The study was initiated after a fatal accident with several injured during discharge in Sweden. The objective with the investigation was to better understand the off-gassing and issues related to workers' exposure. Air sampling was done during transport and immediately before discharge in the undisturbed headspace air above the wood pellets and in the staircase adjacent to each hatch. The samples were analyzed with Fourier transform infrared spectroscopy and direct reading instruments. The following compounds and ranges were detected in samples from the five ships: carbon monoxide (CO) 1460-14650 ppm, carbon dioxide (CO2) 2960-21570 ppm, methane 79.9-956 ppm, butane equivalents 63-842 ppm, ethylene 2-21.2 ppm, propylene 5.3-36 ppm, ethane 0-25 ppm and aldehydes 2.3-35 ppm. The oxygen levels were between 0.8 and 16.9%. The concentrations in the staircases were almost as high as in the cargo hatches, indicating a fairly free passage of air between the two spaces. A potentially dangerous atmosphere was reached within a week from loading. The conclusions are that ocean transportation of wood pellets in confined spaces may produce an oxygen deficient atmosphere and lethal levels of CO which may leak into adjacent access spaces. The dangerous combination of extremely high levels of CO and reduced oxygen produces a fast-acting toxic combination. Measurement of CO in combination with oxygen is essential prior to entry in spaces having air communication with cargo hatches of wood pellets. Forced ventilation of staircases prior to entry is necessary. Redesign, locking and labeling of access doors and the establishment of rigorous entry procedures and training of onboard crew as well as personnel boarding ocean vessels are also important.

  4. Hazardous Off-Gassing of Carbon Monoxide and Oxygen Depletion during Ocean Transportation of Wood Pellets

    PubMed Central

    Svedberg, Urban; Samuelsson, Jerker; Melin, Staffan

    2008-01-01

    Five ocean vessels were investigated for the characterization and quantification of gaseous compounds emitted during ocean transportation of wood pellets in closed cargo hatches from Canada to Sweden. The study was initiated after a fatal accident with several injured during discharge in Sweden. The objective with the investigation was to better understand the off-gassing and issues related to workers' exposure. Air sampling was done during transport and immediately before discharge in the undisturbed headspace air above the wood pellets and in the staircase adjacent to each hatch. The samples were analyzed with Fourier transform infrared spectroscopy and direct reading instruments. The following compounds and ranges were detected in samples from the five ships: carbon monoxide (CO) 1460–14650 ppm, carbon dioxide (CO2) 2960–21570 ppm, methane 79.9–956 ppm, butane equivalents 63–842 ppm, ethylene 2–21.2 ppm, propylene 5.3–36 ppm, ethane 0–25 ppm and aldehydes 2.3–35 ppm. The oxygen levels were between 0.8 and 16.9%. The concentrations in the staircases were almost as high as in the cargo hatches, indicating a fairly free passage of air between the two spaces. A potentially dangerous atmosphere was reached within a week from loading. The conclusions are that ocean transportation of wood pellets in confined spaces may produce an oxygen deficient atmosphere and lethal levels of CO which may leak into adjacent access spaces. The dangerous combination of extremely high levels of CO and reduced oxygen produces a fast-acting toxic combination. Measurement of CO in combination with oxygen is essential prior to entry in spaces having air communication with cargo hatches of wood pellets. Forced ventilation of staircases prior to entry is necessary. Redesign, locking and labeling of access doors and the establishment of rigorous entry procedures and training of onboard crew as well as personnel boarding ocean vessels are also important. PMID:18397907

  5. Simulation of oxygen carrier mediated oxygen transport to C3A hepatoma cells housed within a hollow fiber bioreactor.

    PubMed

    Sullivan, Jesse P; Gordon, Jason E; Palmer, Andre F

    2006-02-05

    A priori knowledge of the dissolved oxygen (O2) concentration profile within a hepatic hollow fiber (HF) bioreactor is important in developing an effective bioartificial liver assist device (BLAD). O2 provision is limiting within HF bioreactors and we hypothesize that supplementing a hepatic HF bioreactor's circulating media with bovine red blood cells (bRBCs), which function as an O2 carrier, will improve oxygenation. The dissolved O2 concentration profile within a single HF (lumen, membrane, and representative extra capillary space (ECS)) was modeled with the finite element method, and compared to experimentally measured data obtained on an actual HF bioreactor with the same dimensions housing C3A hepatoma cells. Our results (experimental and modeling) indicate bRBC supplementation of the circulating media leads to an increase in O2 consumed by C3A cells. Under certain experimental conditions (pO2,IN) = 95 mmHg, Q = 8.30 mL/min), the addition of bRBCs at 5% of the average in vivo human red blood cell concentration (% hRBC) results in approximately 50% increase in the O2 consumption rate (OCR). By simply adjusting the operating conditions (pO2,IN) = 25 mmHg, Q = 1.77 mL/min) and increasing bRBC concentration to 25% hRBC the OCR increase is approximately 10-fold. However, the improved O2 concentration profile experienced by the C3A cells could not duplicate the full range of in vivo O2 tensions (25-70 mmHg) typically experienced within the liver sinusoid with this particular HF bioreactor. Nonetheless, we demonstrate that the O2 transport model accurately predicts O2 consumption within a HF bioreactor, thus setting up the modeling framework for improving the design of future hepatic HF bioreactors. (c) 2005 Wiley Periodicals, Inc.

  6. Effects of myocardial infarction on the distribution and transport of nutrients and oxygen in porcine myocardium.

    PubMed

    Davis, Bryce H; Morimoto, Yoshihisa; Sample, Chris; Olbrich, Kevin; Leddy, Holly A; Guilak, Farshid; Taylor, Doris A

    2012-10-01

    One of the primary limitations of cell therapy for myocardial infarction is the low survival of transplanted cells, with a loss of up to 80% of cells within 3 days of delivery. The aims of this study were to investigate the distribution of nutrients and oxygen in infarcted myocardium and to quantify how macromolecular transport properties might affect cell survival. Transmural myocardial infarction was created by controlled cryoablation in pigs. At 30 days post-infarction, oxygen and metabolite levels were measured in the peripheral skeletal muscle, normal myocardium, the infarct border zone, and the infarct interior. The diffusion coefficients of fluorescein or FITC-labeled dextran (0.3-70 kD) were measured in these tissues using fluorescence recovery after photobleaching. The vascular density was measured via endogenous alkaline phosphatase staining. To examine the influence of these infarct conditions on cells therapeutically used in vivo, skeletal myoblast survival and differentiation were studied in vitro under the oxygen and glucose concentrations measured in the infarct tissue. Glucose and oxygen concentrations, along with vascular density were significantly reduced in infarct when compared to the uninjured myocardium and infarct border zone, although the degree of decrease differed. The diffusivity of molecules smaller than 40 kD was significantly higher in infarct center and border zone as compared to uninjured heart. Skeletal myoblast differentiation and survival were decreased stepwise from control to hypoxia, starvation, and ischemia conditions. Although oxygen, glucose, and vascular density were significantly reduced in infarcted myocardium, the rate of macromolecular diffusion was significantly increased, suggesting that diffusive transport may not be inhibited in infarct tissue, and thus the supply of nutrients to transplanted cells may be possible. in vitro studies mimicking infarct conditions suggest that increasing nutrients available to

  7. Impact of renal medullary three-dimensional architecture on oxygen transport

    PubMed Central

    Fry, Brendan C.; Edwards, Aurélie; Sgouralis, Ioannis

    2014-01-01

    We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (Po2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial Po2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal Po2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the

  8. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies

    PubMed Central

    Fraser, Graham M.; Goldman, Daniel; Ellis, Christopher G.

    2016-01-01

    Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices. PMID:27829071

  9. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies.

    PubMed

    Sové, Richard J; Fraser, Graham M; Goldman, Daniel; Ellis, Christopher G

    2016-01-01

    Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.

  10. Oxygen transport and consumption by suspended cells in microgravity: a multiphase analysis.

    PubMed

    Kwon, Ohwon; Devarakonda, Surendra B; Sankovic, John M; Banerjee, Rupak K

    2008-01-01

    A rotating bioreactor for the cell/tissue culture should be operated to obtain sufficient nutrient transfer and avoid damage to the culture materials. Thus, the objective of the present study is to determine the appropriate suspension conditions for the bead/cell distribution and evaluate oxygen transport in the rotating wall vessel (RWV) bioreactor. A numerical analysis of the RWV bioreactor is conducted by incorporating the Eulerian-Eulerian multiphase and oxygen transport equations. The bead size and rotating speed are the control variables in the calculations. The present results show that the rotating speed for appropriate suspensions needs to be increased as the size of the bead/cell increases: 10 rpm for 200 microm; 12 rpm for 300 microm; 14 rpm for 400 microm; 18 rpm for 600 microm. As the rotating speed and the bead size increase from 10 rpm/200 microm to 18 rpm/600 microm, the mean oxygen concentration in the 80% midzone of the vessel is increased by approximately 85% after 1-h rotation due to the high convective flow for 18 rpm/600 microm case as compared to 10 rpm/200 microm case. The present results may serve as criteria to set the operating parameters for a RWV bioreactor, such as the size of beads and the rotating speed, according to the growth of cell aggregates. In addition, it might provide a design parameter for an advanced suspension bioreactor for 3-D engineered cell and tissue cultures. (c) 2007 Wiley Periodicals, Inc.

  11. Large-eddy simulation of oxygen transport and depletion in waterbodies

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Piomelli, Ugo; Boegman, Leon

    2010-11-01

    Dissolved oxygen (DO) in water plays an important role in lake and marine ecosystems. Agricultural runoff may spur excessive plant growth on the water surface; when the plants die they sink to the bottom of the water bodies and decompose, consuming oxygen. Significant environmental (and economic) damage may result from the loss of aquatic life caused by the oxygen depletion. The study of DO transport and depletion dynamics in water bodies has, therefore, become increasingly important. We study this phenomenon by large-eddy simulations performed at laboratory scale. The equations governing the transport of momentum and of a scalar (the DO) in the fluid are coupled to a biochemical model for DO depletion in the permeable sediment bed [Higashino et al., Water Res. (38) 1, 2004)], and to an equation for the fluid transpiration in the porous medium. The simulations are in good agreement with previous calculations and experiments. We show that the results are sensitive to the biochemical and fluid dynamical properties of the sediment, which are very difficult to determine experimentally.

  12. The oxygen transport system of red blood cells during diabetic ketoacidosis and recovery.

    PubMed

    Ditzel, J; Standl, E

    1975-08-01

    Daily evaluations of 8 newly detected ketoacidotic diabetics showed the Bohr-effect of haemoglobin to be decreased by 50% while erythrocyte 2,3-DPG was decreased below 10 mumoles/g Hb. 2,3-DPG correlated strongly with pH during acidosis and with plasma inorganic phosphate (Pi) subsequently to the first insulin administration. Oxygen affinity of haemoglobin, measured as P50 act pH, was unchanged in ketoacidosis compared to the time, however, P50 act pH fell striking (p less than 0.001) and remained decreased up to 7 days depending upon the resynthesis of 2,3-DPG in relation to Pi. The Hill-coefeficient in reflecting the slope of the oxygen dissociation curve was diminished in ketoacidosis (p less than 0.005), and decreased further after pH-normalization (p less than 0.005). There was a close association of n with 2,3-DPG (p less than 0.001) and additionally with Pi at 2,3-DPG-levels below 10 mumoles/g Hb. Based on these findings a decreased erythrocyte oxygen release of one fifth during acidosis and more than one third after pH-correction can be hypothesised. In view of the intimate relation of Pi to the oxygen transport system it is suggesed that treatment of ketoacidosis should include Pi-sugstitution.

  13. Calculations of oxygen transport by red blood cells and hemoglobin solutions in capillaries.

    PubMed

    Vadapalli, Arjun; Goldman, Daniel; Popel, Aleksander S

    2002-05-01

    A theoretical model is developed to investigate the influence of hemoglobin-based oxygen carriers (HBOCs) on oxygen transport in capillary-size vessels. A discrete cell model is presented with red blood cells (RBCs) represented in their realistic parachute shape flowing in a single file through a capillary. The model includes the free and Hb-facilitated transport of O2 and Hb-O2 kinetics in the RBC and plasma, diffusion of free O2 in the suspending phase, capillary wall, interstitium and tissue. A constant tissue consumption rate is specified that drives the simultaneous release of O2 from RBC and plasma as the cells traverse the capillary. The model mainly focuses on low capillary hematocrits and studies the effect of free hemoglobin affinity, cooperativity and concentration. The results are expressed in the form of cell and capillary mass transfer coefficients, or inverse transport resistances, that relate the spatially averaged flux of O2 coming out of the RBC and capillary to a driving force for O2 diffusion. The results show that HBOCs at a concentration of 7 g/dl reduce the intracapillary transport resistance by as much as 60% when capillary hematocrit is 0.2. HBOCs with high O2 affinity unload most O2 at the venular end, while those with low affinity supply O2 at the arteriolar end. A higher cooperativity did not favor O2 delivery due to the large variation in the mass transfer coefficient values during O2 unloading. The mass transfer coefficients obtained will be used in simulations of O2 transport in complex capillary networks.

  14. Electron transport to oxygen mitigates against the photoinactivation of Photosystem II in vivo.

    PubMed

    Park, Y I; Chow, W S; Osmond, C B; Anderson, J M

    1996-10-01

    The role of electron transport to O2 in mitigating against photoinactivation of Photosystem (PS) II was investigated in leaves of pea (Pisum sativum L.) grown in moderate light (250 μmol m(-2) s(-1)). During short-term illumination, the electron flux at PS II and non-radiative dissipation of absorbed quanta, calculated from chlorophyll fluorescence quenching, increased with increasing O2 concentration at each light regime tested. The photoinactivation of PS II in pea leaves was monitored by the oxygen yield per repetitive flash as a function of photon exposure (mol photons m(-2)). The number of functional PS II complexes decreased nonlinearly with increasing photon exposure, with greater photoinactivation of PS II at a lower O2 concentration. The results suggest that electron transport to O2, via the twin processes of oxygenase photorespiration and the Mehler reaction, mitigates against the photoinactivation of PS II in vivo, through both utilization of photons in electron transport and increased nonradiative dissipation of excitation. Photoprotection via electron transport to O2 in vivo is a useful addition to the large extent of photoprotection mediated by carbon-assimilatory electron transport in 1.1% CO2 alone.

  15. Conditions for economic benefit by using lunar oxygen for earth-moon transportation systems

    NASA Astrophysics Data System (ADS)

    Reichert, M.; Lingner, S.; Seboldt, W.

    1992-08-01

    The paper considers the use of MOONLOX, lunar oxygen, for an earth-moon transportation system consisting of an aeroassisted orbital transfer vehicle and a lunar bus for lunar descent/ascent. Conditions for economic benefit are discussed, and the processing concept of a lunar oxygen plant based on fluorination is presented. It is contended that the necessary supply rate from earth from MOONLOX production must be smaller than a critical number for each considered MOONLOX-utilization scenario to yield a saving of mass launched into LEO (compared to a 'reference scenario' with an earth-derived propellant. The MOONLOX production costs must fall below the calculated upper limits (parametrically dependent of launch costs). It is inferred that for the MOONLOX production process by fluorination, fluorine recycling is highly desirable.

  16. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2016-05-01

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  17. Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction

    DOE PAGES

    Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; ...

    2015-09-21

    Ruddlesden-Popper structured oxides, general form An+1BnO3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2), and LaSr3Co1.5Fe1.5O10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO2 of 10-1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, and were found to have increased total oxygen vacancy concentration in the order La0.3Sr2.7CoFeO7-δ > LaSr3Co1.5Fe1.5O10-δmore » > LaSrCo0.5Fe0.5O4-δ, following the trend predicted for charge compensation upon increasing Sr2+/La3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less

  18. Effects of air bubbles and tube transportation on blood oxygen tension in arterial blood gas analysis.

    PubMed

    Lu, Jin Ying; Kao, Jau Tsuen; Chien, Tzu I; Lee, Tai Fen; Tsai, Keh Sung

    2003-04-01

    Pneumatic tube transport has been reported to aggravate the error in partial pressure of oxygen (PO(2)) measurements caused by air bubbles. The aim of this study was to clarify the effect of manual and pneumatic tube methods of sample transportation and different amounts of air bubbles on arterial blood gas analysis. Blood gas samples from 15 patients and a pooled wasted blood mixture with 3 different levels of PO(2) were analyzed to determine the effects of air bubbles and manual versus pneumatic tube transportation on PO(2) levels. PO(2) increased significantly in samples containing 10% air bubbles and was exaggerated by pneumatic tube transport (from 115.63 +/- 9.31 mm Hg to 180.51 +/- 11.29 mm Hg, p < 0.001). In samples with low PO(2) ( approximately 30 mm Hg), the measurement was not aberrant regardless of the method of transportation or the amount of air bubbles contained in the specimen. However, in samples with medium and high PO(2) (> 70 mm Hg), aberrances in measurements were noted even with only 0.5% air bubbles and regardless of whether the sample was transported by manual methods or pressurized tube. The increments of PO(2) correlated positively with the amount of air introduced into the specimens. Thus, the measured PO(2) increased 8.13 and 31.77 mm Hg when 0.5% and 10% air bubbles were introduced, respectively, to samples with medium PO(2) (p < 0.05). The interaction between the amount of air bubbles and the method of transportation was significant (p < 0.001). Trapped air in the syringe should be expelled as thoroughly as possible, since the presence of only 1% air bubbles can result in aberrance in PO(2) measurement. Samples for blood gas analysis should be carried in ambient pressure to the laboratory because pneumatic tube delivery systems significantly aggravate the air bubble-related aberrance in PO(2) measurement.

  19. Different working mechanisms for a graphene resistive memory based on oxygen-ion transport

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun

    2017-01-01

    A graphene sheet was used as one of the electrodes of a HfO2 metal-oxide-based resistive random access memory. We find dramatic differences in the device characteristics as voltages with opposite polarities are used to form the resistive memory devices. Using experimental measurements of the switching characteristics and the corresponding low and high resistance state, we compare the two different operating modes of a graphene-electrode-based resistive memory. Using a Raman raster scanning map, we verify that the transport direction of oxygen ions contributes to such dramatic differences in the device's switching characteristics.

  20. Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms

    SciTech Connect

    Eletskii, A.V.; Capitelli, M.; Celiberto, R.; Laricchiuta, A.

    2004-04-01

    Resonant charge-exchange cross sections and the relevant transport (diffusion) cross sections for excited states of nitrogen and oxygen atoms have been calculated. The calculation is performed using the asymptotic approach, based on the single-electron asymptotic representation of the electron wave function. The ground-state cross sections are in a good agreement with those calculated via comprehensive quantum chemical approach. The results of calculations demonstrate a reasonable accuracy and a high convenience of this approach in determination of cross sections for the manifold of excited states of atoms.

  1. Oxygen transport through polyethylene terephthalate (PET) coated with plasma-polymerized acetylene at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wemlinger, Erik; Pedrow, Patrick; Garcia-Pérez, Manuel; Sablani, Shyam

    2011-10-01

    Moser et al. have shown that oxygen transport through polyethyleneterephthalate (PET) is reduced by a factor of up to 120 when, at reduced pressure, hydrogenated amorphous carbon film with thickness less than 100 nm is applied to the PET substrate. Our work includes using atmospheric pressure cold plasma to grow a plasma-polymerized acetylene film on PET substrate and measuring reductions in oxygen transport. The reactor utilizes corona discharges and is operated at 60 Hz with a maximum voltage of 10 kV RMS. Corona streamers emanate from an array of needles with an average radius of curvature of 50 μm. The reactor utilizes a cylindrical reaction chamber with a vertical orientation such that argon carrier gas and acetylene precursor gas are introduced at the top then pass through the cold plasma activation zone and then through a grounded stainless steel mesh. Acetylene radicals are incident on the PET substrate and form plasma-polymerized acetylene film. Moser et al. have shown that oxygen transport through polyethyleneterephthalate (PET) is reduced by a factor of up to 120 when, at reduced pressure, hydrogenated amorphous carbon film with thickness less than 100 nm is applied to the PET substrate. Our work includes using atmospheric pressure cold plasma to grow a plasma-polymerized acetylene film on PET substrate and measuring reductions in oxygen transport. The reactor utilizes corona discharges and is operated at 60 Hz with a maximum voltage of 10 kV RMS. Corona streamers emanate from an array of needles with an average radius of curvature of 50 μm. The reactor utilizes a cylindrical reaction chamber with a vertical orientation such that argon carrier gas and acetylene precursor gas are introduced at the top then pass through the cold plasma activation zone and then through a grounded stainless steel mesh. Acetylene radicals are incident on the PET substrate and form plasma-polymerized acetylene film. E.M. Moser, R. Urech, E. Hack, H. Künzli, E. Müller, Thin

  2. [Oxygen-transporting function of the blood circulation system in sevoflurane anesthesia during myocardial revascularization under extracorporeal circulation].

    PubMed

    Skopets, A A; Lomivorotov, V V; Karakhalis, N B; Makarov, A A; Duman'ian, E S; Lomivorotova, L V

    2009-01-01

    The purpose of the study was to evaluate the efficiency of oxygen-transporting function of the circulatory system under sevoflurane anesthesia during myocardial revascularization operations under extracorporeal circulation. Twenty-five patients with coronary heart disease were examined. Mean blood pressure, heart rate, cardiac index, total peripheral vascular resistance index, pulmonary pressure, pulmonary wedge pressure, and central venous pressure were measured. Arterial and mixed venous blood oxygen levels, oxygen delivery and consumption index, arteriovenous oxygen difference, and glucose and lactate concentrations were calculated. The study has demonstrated that sevoflurane is an effective and safe anesthetic for myocardial revascularization operations in patients with coronary heart disease. The use of sevoflurane contributes to steady-state oxygen-transporting function of the circulatory system at all surgical stages.

  3. Oxygen transport properties estimation by classical trajectory-direct simulation Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    2015-05-01

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300-900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  4. Effects of autoregulation and CO2 reactivity on cerebral oxygen transport.

    PubMed

    Payne, S J; Selb, J; Boas, D A

    2009-11-01

    Both autoregulation and CO(2) reactivity are known to have significant effects on cerebral blood flow and thus on the transport of oxygen through the vasculature. In this paper, a previous model of the autoregulation of blood flow in the cerebral vasculature is expanded to include the dynamic behavior of oxygen transport through binding with hemoglobin. The model is used to predict the transfer functions for both oxyhemoglobin and deoxyhemoglobin in response to fluctuations in arterial blood pressure and arterial CO(2) concentration. It is shown that only six additional nondimensional groups are required in addition to the five that were previously found to characterize the cerebral blood flow response. A resonant frequency in the pressure-oxyhemoglobin transfer function is found to occur in the region of 0.1 Hz, which is a frequency of considerable physiological interest. The model predictions are compared with results from the published literature of phase angle at this frequency, showing that the effects of changes in breathing rate can significantly alter the inferred phase dynamics between blood pressure and hemoglobin. The question of whether dynamic cerebral autoregulation is affected under conditions of stenosis or stroke is then examined.

  5. Role of Membrane Lipids in the Regulation of Erythrocytic Oxygen-Transport Function in Cardiovascular Diseases

    PubMed Central

    Revin, Victor V.; Revina, Elvira S.; Martynova, Maria I.; Seikina, Angelina I.; Revina, Nadezhda V.; Imarova, Oksana G.; Solomadin, Ilia N.; Tychkov, Alexander Yu.; Zhelev, Nikolai

    2016-01-01

    The composition and condition of membrane lipids, the morphology of erythrocytes, and hemoglobin distribution were explored with the help of laser interference microscopy (LIM) and Raman spectroscopy. It is shown that patients with cardiovascular diseases (CVD) have significant changes in the composition of their phospholipids and the fatty acids of membrane lipids. Furthermore, the microviscosity of the membranes and morphology of the erythrocytes are altered causing disordered oxygen transport by hemoglobin. Basic therapy carried out with the use of antiaggregants, statins, antianginals, beta-blockers, and calcium antagonists does not help to recover the morphofunctional properties of erythrocytes. Based on the results the authors assume that, for the relief of the ischemic crisis and further therapeutic treatment, it is necessary to include, in addition to cardiovascular disease medicines, medication that increases the ability of erythrocytes' hemoglobin to transport oxygen to the tissues. We assume that the use of LIM and Raman spectroscopy is advisable for early diagnosis of changes in the structure and functional state of erythrocytes when cardiovascular diseases develop. PMID:27872848

  6. Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo

    SciTech Connect

    Bruno, Domenico; Frezzotti, Aldo Ghiroldi, Gian Pietro

    2015-05-15

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  7. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  8. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue.

    PubMed

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Yoo, James J; Cho, Dong-Woo

    2013-01-15

    Oxygen and nutrients cannot be delivered to cells residing in the interior of large-volume scaffolds via diffusion alone. Several efforts have been made to meet the metabolic needs of cells in a scaffold by constructing mass transport channels, particularly in the form of bifurcated networks. In contrast to progress in fabrication technologies, however, an approach to designing an optimal network based on experimental evaluation has not been actively reported. The main objective of this study was to establish a procedure for designing an effective microfluidic network system for a cell-seeded scaffold and to develop an experimental model to evaluate the design. We proposed a process to design a microfluidic network by combining an oxygen transport simulation with biomimetic principles governing biological vascular trees. The simulation was performed with the effective diffusion coefficient (D(e,s)), which was experimentally measured in our previous study. Porous scaffolds containing an embedded microfluidic network were fabricated using the lost mold shape-forming process and salt leaching method. The reliability of the procedure was demonstrated by experiments using the scaffolds. This approach established a practical basis for designing an effective microfluidic network in a cell-seeded scaffold.

  9. [Massage and sophrology workshops for haematology professionals].

    PubMed

    Bannier, Christine; Sachot, Claudine; Simon, Armelle

    2014-04-01

    In haematology, the caregivers are confronted with the death of patients and the distress of their families. It is a working environment in which it is essential for the professionals to be taken care of in order to optimise the care provided to patients. At Nantes general hospital, massage and sophrology workshops enable the caregivers to recharge their batteries.

  10. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity

    PubMed Central

    Gladwin, Mark T.; Schechter, Alan N.; Shelhamer, James H.; Pannell, Lewis K.; Conway, Deirdre A.; Hrinczenko, Borys W.; Nichols, James S.; Pease-Fye, Margaret E.; Noguchi, Constance T.; Rodgers, Griffin P.; Ognibene, Frederick P.

    1999-01-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of β-chain cysteine 93, raise the possibilty of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P50, did not respond to inhaled NO, either in controls or in individuals with sickle cell disease. At baseline, the arterial and venous levels of nitrosylated hemoglobin were not significantly different, but NO inhalation led to a dose-dependent increase in mean nitrosylated hemoglobin, and at the highest dosage, a significant arterial-venous difference emerged. The levels of nitrosylated hemoglobin are too low to affect overall hemoglobin oxygen affinity, but augmented NO transport to the microvasculature seems a promising strategy for improving microvascular perfusion. PMID:10510334

  11. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    DOE PAGES

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; ...

    2017-06-08

    A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less

  12. Oxygen transport and cardiovascular function at extreme altitude: lessons from Operation Everest II

    NASA Technical Reports Server (NTRS)

    Sutton, J. R.; Reeves, J. T.; Groves, B. M.; Wagner, P. D.; Alexander, J. K.; Hultgren, H. N.; Cymerman, A.; Houston, C. S.

    1992-01-01

    Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.

  13. Oxygen transport and cardiovascular function at extreme altitude: lessons from Operation Everest II

    NASA Technical Reports Server (NTRS)

    Sutton, J. R.; Reeves, J. T.; Groves, B. M.; Wagner, P. D.; Alexander, J. K.; Hultgren, H. N.; Cymerman, A.; Houston, C. S.

    1992-01-01

    Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.

  14. Modeling of ambient-meniscus melt interactions associated with carbon and oxygen transport in EFG of silicon ribbon

    SciTech Connect

    Kalejs, J.P.; Chin, L.Y.

    1982-06-01

    Impurity transport processes associated with interaction of reactive ambient gases and meniscus melt during growth of silicon ribbon by the edge-defined film-fed growth (EFG) technique have been investigated with the help of numerical solution of mass and momentum transport equations. The transport of oxygen and carbon is examined in detail. It is shown that oxygen transport from meniscus sources can account for the interstitial oxygen observed to be introduced into ribbon grown with Co/sub 2/ in the meniscus ambient. Growth speed is the process parameter that has the most pronounced influence on ribbon impurity levels when a source or sink for the impurity is present on the meniscus surface. 14 refs.

  15. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    PubMed Central

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163

  16. Oxygen and carbon dioxide transport in time-dependent blood flow past fiber rectangular arrays

    NASA Astrophysics Data System (ADS)

    Zierenberg, Jennifer R.; Fujioka, Hideki; Hirschl, Ronald B.; Bartlett, Robert H.; Grotberg, James B.

    2009-03-01

    The influence of time-dependent flows on oxygen and carbon dioxide transport for blood flow past fiber arrays arranged in in-line and staggered configurations was computationally investigated as a model for an artificial lung. Both a pulsatile flow, which mimics the flow leaving the right heart and passing through a compliance chamber before entering the artificial lung, and a right ventricular flow, which mimics flow leaving the right heart and directly entering the artificial lung, were considered in addition to a steady flow. The pulsatile flow was modeled as a sinusoidal perturbation superimposed on a steady flow while the right ventricular flow was modeled to accurately depict the period of flow acceleration (increasing flow) and deceleration (decreasing flow) during systole followed by zero flow during diastole. It was observed that the pulsatile flow yielded similar gas transport as compared to the steady flow, while the right ventricular flow resulted in smaller gas transport, with the decrease increasing with Re. The pressure drop across the fiber array (a measure of the resistance), work (an indicator of the work required of the right heart), and shear stress (a measure of potential blood cell activation and damage) are lowest for steady flow, followed by pulsatile flow, and then right ventricular flow. The pressure drop, work, shear stress, and Sherwood numbers (a measure of the gas transport efficiency) decrease with increasing porosity and are smaller for AR <1 as compared to AR >1 (AR is the distance between fibers in the flow direction/distance between fibers in direction perpendicular to flow), although for small porosities the Sherwood numbers are of similar magnitude. In general, for any fiber array geometry, high pressure drop, work, and shear stresses correlate with high Sherwood numbers, and low pressure drop, work, and shear stresses correlate with low Sherwood numbers creating a need for a compromise between pressure drop/work/shear stresses

  17. A computational model for simulating solute transport and oxygen consumption along the nephrons.

    PubMed

    Layton, Anita T; Vallon, Volker; Edwards, Aurélie

    2016-12-01

    The goal of this study was to investigate water and solute transport, with a focus on sodium transport (TNa) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (QO2 ) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in TNa may alter QO2 in different nephron segments and how shifting the TNa sites alters overall kidney QO2 Under baseline conditions, the model predicted a whole kidney TNa/QO2 , which denotes the number of moles of Na(+) reabsorbed per moles of O2 consumed, of ∼15, with TNa efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The TNa/QO2 ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where TNa/QO2 was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect TNa/QO2 in the proximal tubules but generally increases TNa/QO2 along downstream segments. The latter result can be attributed to the generally higher luminal [Na(+)], which raises paracellular TNa Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in QO2 under pathophysiological conditions. Copyright © 2016 the American Physiological Society.

  18. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    PubMed

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  19. The liquid-ordered phase in sphingomyelincholesterol membranes as detected by the discrimination by oxygen transport (DOT) method.

    PubMed

    Wisniewska, Anna; Subczynski, Witold K

    2008-01-01

    Membranes made from binary mixtures of egg sphingomyelin (ESM) and cholesterol were investigated using conventional and saturation-recovery EPR observations of the 5-doxylstearic acid spin label (5-SASL). The effects of cholesterol on membrane order and the oxygen transport parameter (bimolecular collision rate of molecular oxygen with the nitroxide spin label) were monitored at the depth of the fifth carbon in fluid- and gel-phase ESM membranes. The saturation-recovery EPR discrimination by oxygen transport (DOT) method allowed the discrimination of the liquid-ordered (l(o)), liquid-disordered (l(d)), and solid-ordered (s(o)) phases because the bimolecular collision rates of the molecular oxygen with the nitroxide spin label differ in these phases. Additionally, oxygen collision rates (the oxygen transport parameter) were obtained in coexisting phases without the need for their separation, which provides information about the internal dynamics of each phase. The addition of cholesterol causes a dramatic decrease in the oxygen transport parameter around the nitroxide moiety of 5-SASL in the l(o) phase, which at 50 mol% cholesterol becomes approximately 5 times smaller than in the pure ESM membrane in the l(d) phase, and approximately 2 times smaller than in the pure ESM membrane in the s(o) phase. The overall change in the oxygen transport parameter is as large as approximately 20-fold. Conventional EPR spectra show that 5-SASL is maximally immobilized at the phase boundary between regions with coexisting l(d) and l(o) phases or s(o) and l(o) phases and the region with a single l(o) phase. The obtained results allowed for the construction of a phase diagram for the ESM-cholesterol membrane.

  20. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Xu, Fei; Liu, Yijun

    2017-06-01

    The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  1. Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures

    DOE PAGES

    Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; ...

    2015-08-27

    Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation ofmore » the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.« less

  2. Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures

    SciTech Connect

    Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; Chu, Ying-Hao; Kalinin, Sergei V.

    2015-08-27

    Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation of the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.

  3. Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures.

    PubMed

    Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; Chu, Ying-Hao; Kalinin, Sergei V

    2015-10-14

    Development of new generation electronic devices necessitates understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation of the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite-cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.

  4. Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction

    SciTech Connect

    Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; McIntosh, Steven

    2015-09-21

    Ruddlesden-Popper structured oxides, general form An+1BnO3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2), and LaSr3Co1.5Fe1.5O10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO2 of 10-1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, and were found to have increased total oxygen vacancy concentration in the order La0.3Sr2.7CoFeO7-δ > LaSr3Co1.5Fe1.5O10-δ > LaSrCo0.5Fe0.5O4-δ, following the trend predicted for charge compensation upon increasing Sr2+/La3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.

  5. The genesis of ISOTT. International Society on Oxygen Transport to Tissue.

    PubMed

    Bruley, D F

    1998-01-01

    The International Society on Oxygen Transport to Tissue (ISOTT) was founded in April, 1973 by Drs. Duane F. Bruley and Haim I. Bicher. Dr. Bruley first wanted to sponsor an international symposium on oxygen transport to tissue to highlight the research activity between his group at Clemson University in Clemson, South Carolina and Dr. Melvin H. Knisely's group at the Medical College of South Carolina in Charleston, South Carolina. At the same time it was hoped to honor Dr. Knisely for his ingenious development of the Quartz Rod Crystal technique for observing blood flow in-vivo. In discussions with Dr. Knisely's wife, Verona, it was decided to sponsor a meeting that was jointly held at Clemson and Charleston. When Dr. Bicher returned from an extended trip abroad, he agreed to join the effort and he organized the program from the Medical College while Dr. Bruley handled all arrangements at Clemson University. After getting an overwhelming response to their initial call for papers from the international community, Drs. Bruley and Bicher made the decision to found an International Society. They then decided on a name, developed the society logo, assigned a mission, developed a charter, sketched the by-laws, and selected charter members to comprise the first international committee. The unique characteristics of the new society were to include a focus on inter and cross-disciplinary research involving theoretical and experimental investigations of oxygen transport to tissue. The intent was to bring life scientists and engineers together to examine the many complex phenomena of normal tissue growth and maintenance as well as tissue survival and repair under pathological conditions. Drs. Bruley and Bicher solicited Dr. Melvin Knisley as an honorary first President of the Society. At the meeting April 22-28, in Charleston/Clemson the first elected president was determined to be Dr. Melvin H. Kinsely. It was decided that in alternate years the meeting would be held in the

  6. Automated haematology analysis to diagnose malaria

    PubMed Central

    2010-01-01

    For more than a decade, flow cytometry-based automated haematology analysers have been studied for malaria diagnosis. Although current haematology analysers are not specifically designed to detect malaria-related abnormalities, most studies have found sensitivities that comply with WHO malaria-diagnostic guidelines, i.e. ≥ 95% in samples with > 100 parasites/μl. Establishing a correct and early malaria diagnosis is a prerequisite for an adequate treatment and to minimizing adverse outcomes. Expert light microscopy remains the 'gold standard' for malaria diagnosis in most clinical settings. However, it requires an explicit request from clinicians and has variable accuracy. Malaria diagnosis with flow cytometry-based haematology analysers could become an important adjuvant diagnostic tool in the routine laboratory work-up of febrile patients in or returning from malaria-endemic regions. Haematology analysers so far studied for malaria diagnosis are the Cell-Dyn®, Coulter® GEN·S and LH 750, and the Sysmex XE-2100® analysers. For Cell-Dyn analysers, abnormal depolarization events mainly in the lobularity/granularity and other scatter-plots, and various reticulocyte abnormalities have shown overall sensitivities and specificities of 49% to 97% and 61% to 100%, respectively. For the Coulter analysers, a 'malaria factor' using the monocyte and lymphocyte size standard deviations obtained by impedance detection has shown overall sensitivities and specificities of 82% to 98% and 72% to 94%, respectively. For the XE-2100, abnormal patterns in the DIFF, WBC/BASO, and RET-EXT scatter-plots, and pseudoeosinophilia and other abnormal haematological variables have been described, and multivariate diagnostic models have been designed with overall sensitivities and specificities of 86% to 97% and 81% to 98%, respectively. The accuracy for malaria diagnosis may vary according to species, parasite load, immunity and clinical context where the method is applied. Future

  7. Optical imaging measurements of oxygen transport fluctuations and gradients in tumor microvascular networks

    NASA Astrophysics Data System (ADS)

    Sorg, Brian S.; Hardee, Matthew E.; Moeller, Benjamin J.; Dewhirst, Mark W.

    2006-02-01

    It is well established that hypoxia can influence tumor biology and physiology, gene expression, metastatic potential, treatment efficacy, and patient survival. Most human solid tumors have been shown to have some hypoxic regions, thus there is a strong motivation to understand the various causes of hypoxia. One key to understanding tumor hypoxia involves the study of oxygen transport to tumors, and the connection between hypoxia, tumor microvasculature, and the tumor microenvironment. Recent research has suggested that the causes of tumor hypoxia are much more complex than indicated by the classical paradigms ("chronic" and "acute" hypoxia), and several potential factors have been identified. Two such factors are temporal fluctuations in tissue pO II and longitudinal gradients in oxygen transport. Research has shown the existence of low frequency (<2 cycles per minute) fluctuations in tumor pO II without cessation of blood flow that can lead to transient hypoxia. In addition, longitudinal gradients in tumor pO II along the arteriolar afferent direction have been documented in window chamber tumors. However, the causes of the pO II temporal fluctuations and longitudinal gradients are not exactly known, and the clinical significance of these observations is not well understood. In this preliminary study, we demonstrate the potential of optical imaging measurements of hemoglobin saturation to add new information in these areas. Slow temporal fluctuations of hemoglobin saturation (HbSat) and gradients in the average HbSat were observed in some 4T1 mouse mammary carcinoma microvessels. With additional research, the mechanisms behind these phenomena and insights into their clinical significance may be revealed.

  8. Basic Regulatory Principles of Escherichia coli's Electron Transport Chain for Varying Oxygen Conditions

    PubMed Central

    Henkel, Sebastian G.; Beek, Alexander Ter; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M. Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions. PMID:25268772

  9. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions.

    PubMed

    Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.

  10. Phenotypic plasticity in blood–oxygen transport in highland and lowland deer mice

    PubMed Central

    Tufts, Danielle M.; Revsbech, Inge G.; Cheviron, Zachary A.; Weber, Roy E.; Fago, Angela; Storz, Jay F.

    2013-01-01

    SUMMARY In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude environments. We conducted a common-garden breeding experiment to assess whether altitude-related physiological differences were attributable to developmental plasticity and/or physiological plasticity during adulthood. Under conditions prevailing in their native habitats, high-altitude deer mice from the Rocky Mountains exhibited a number of pronounced hematological differences relative to low-altitude conspecifics from the Great Plains: higher hemoglobin concentrations, higher hematocrits, higher erythrocytic concentrations of 2,3-diphosphoglycerate (an allosteric regulator of hemoglobin–oxygen affinity), lower mean corpuscular hemoglobin concentrations and smaller red blood cells. However, these differences disappeared after 6 weeks of acclimation to normoxia at low altitude. The measured traits were also indistinguishable between the F1 progeny of highland and lowland mice, indicating that there were no persistent differences in phenotype that could be attributed to developmental plasticity. These results indicate that the naturally occurring hematological differences between highland and lowland mice are environmentally induced and are largely attributable to physiological plasticity during adulthood. PMID

  11. Biogenic oxygen from Earth transported to the Moon by a wind of magnetospheric ions

    NASA Astrophysics Data System (ADS)

    Terada, Kentaro; Yokota, Shoichiro; Saito, Yoshifumi; Kitamura, Naritoshi; Asamura, Kazushi; Nishino, Masaki N.

    2017-01-01

    For five days of each lunar orbit, the Moon is shielded from solar wind bombardment by the Earth's magnetosphere, which is filled with terrestrial ions. Although the possibility of the presence of terrestrial nitrogen and noble gases in lunar soil has been discussed based on their isotopic composition 1 , complicated oxygen isotope fractionation in lunar metal 2,3 (particularly the provenance of a 16O-poor component) re­mains an enigma 4,5 . Here, we report observations from the Japanese spacecraft Kaguya of significant numbers of 1-10 keV O+ ions, seen only when the Moon was in the Earth's plasma sheet. Considering the penetration depth into metal of O+ ions with such energy, and the 16O-poor mass-independent fractionation of the Earth's upper atmosphere 6 , we conclude that biogenic terrestrial oxygen has been transported to the Moon by the Earth wind (at least 2.6 × 104 ions cm‑2 s‑1) and implanted into the surface of the lunar regolith, at around tens of nanometres in depth 3,4 . We suggest the possibility that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar surface.

  12. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron.

    PubMed

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2017-03-23

    Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂(-)), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂(-)) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂(-), ONO₂(-), and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂(-) in the macula densa on tubuloglomerular feedback.

  13. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    NASA Astrophysics Data System (ADS)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; Strydom, Gerhard; Windes, William E.

    2017-09-01

    For the next generation of nuclear reactors, HTGRs specifically, an unlikely air ingress warrants inclusion in the license applications of many international regulators. Much research on oxidation rates of various graphite grades under a number of conditions has been undertaken to address such an event. However, consequences to the reactor result from the microstructural changes to the graphite rather than directly from oxidation. The microstructure is inherent to a graphite's properties and ultimately degradation to the graphite's performance must be determined to establish the safety of reactor design. To understand the oxidation induced microstructural change and its corresponding impact on performance, a thorough understanding of the reaction system is needed. This article provides a thorough review of the graphite-molecular oxygen reaction in terms of kinetics, mass and energy transport, and structural evolution: all three play a significant role in the observed rate of graphite oxidation. These provide the foundations of a microstructurally informed model for the graphite-molecular oxygen reaction system, a model kinetically independent of graphite grade, and capable of describing both the observed and local oxidation rates under a wide range of conditions applicable to air-ingress.

  14. ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES

    SciTech Connect

    G. Maxwell Christie; Troy M. Raybold

    2003-06-10

    Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

  15. Effect on Oxygen Cost of Transport from 8-Weeks of Progressive Training with Barefoot Running.

    PubMed

    Tam, N; Tucker, R; Astephen Wilson, J L; Santos-Concejero, J

    2015-11-01

    Popular interest in barefoot running has emerged as a result of its alleged performance and injury prevention benefits. Oxygen cost of transport (COT) improvements from barefoot running, however, remains equivocal. The aim of this study was to determine the influence of an 8-week progressive barefoot training program on COT and associated spatiotemporal variables. 15 male runners participated in this study. Variables such as oxygen uptake, biomechanical and spatiotemporal characteristics of gait, including ground contact (GC) and swing time; stride length and frequency and ankle plantar-dorsiflexion were measured pre- and post-intervention. The COT did not differ between barefoot and shod running either pre- or post-training. Improved barefoot COT (p<0.05) but not shod was found between pre- and post-training. Biomechanical differences between barefoot and shod conditions persisted over the training period. A decrease in barefoot COT was associated with a decrease in GC time (p=0.003, r=0.688) and a small increase in stride frequency (p=0.030; r=0.569). Ground contact time and stride frequency, previously associated with COT, only partly contribute (32% - Stride frequency and 47% - GC time) to a decrease in COT after barefoot training. Thus other physiological and biomechanical variables must influence the improvement in COT after a barefoot training intervention.

  16. Oxygen solubility and transport in Li–air battery electrolytes: Establishing criteria and strategies for electrolyte design

    DOE PAGES

    Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.; ...

    2017-02-15

    Li–air or Li–oxygen batteries promise significantly higher energies than existing commercial battery technologies, yet their development has been hindered by a lack of suitable electrolytes. In this article, we evaluate the physical properties of varied electrolyte compositions to form generalized criteria for electrolyte design. We show that oxygen transport through non-aqueous electrolytes has a critical impact on the discharge rate and capacity of Li–air batteries. Through experiments and molecular dynamics simulations, we highlight that the choice of salt species and concentration have an outsized influence on oxygen solubility, while solvent choice is the major influence on oxygen diffusivity. The stabilitymore » of superoxide reaction intermediates, key to the oxygen reduction mechanism, is also affected by variations in salt concentration and the choice of solvent. The importance of reactant transport is confirmed through Li–air cell discharge, which demonstrates good agreement between the observed and calculated mass transport-limited currents. Furthermore, these results showcase the impact of electrolyte composition on transport in metal–air batteries and provide guiding principles and simulation-based tools for future electrolyte design.« less

  17. Oxygen adsorption and electronic transport properties of Fe-substituted YBaCo{sub 4}O{sub 7} compounds

    SciTech Connect

    Hao, Haoshan; He, Qinglin; Cheng, Yongguang; Zhao, Limin

    2014-05-01

    Graphical abstract: - Highlights: • The conduction mechanism of YBaCo{sub 4}O{sub 7} system was established. • The effect of Fe substitution on the electronic transport was discussed. • The effect of oxygen adsorption/desorption processes on the transport properties was investigated. - Abstract: YBaCo{sub 4−x}Fe{sub x}O{sub 7} (0.0 ≤ x ≤ 0.8) samples were prepared by the solid-state reaction method and the effect of Fe substitution and oxygen adsorption/desorption on the electronic transport properties was investigated from room temperature to 900 °C. Fe for Co substitution results in a slight decline in the oxygen storage capacity at lower temperature (200–400 °C) and an increase of the phase-decomposition temperature at higher temperature (700–900 °C). Both the hole concentration and mobility are reduced in the Fe-containing compositions. Electrical resistivity, Seebeck coefficient, and conduction activation energy increase with the increasing Fe content. A close correlativity between oxygen adsorption and electronic transport behavior was observed in YBaCo{sub 4−x}Fe{sub x}O{sub 7} system. Oxygen adsorption decreases the electrical resistivity and Seebeck coefficients because of the increase of hole concentration at lower temperature and the phase decomposition at higher temperature.

  18. Imaging features of haematological malignancies of kidneys.

    PubMed

    Sandrasegaran, K; Menias, C O; Verma, S; Abdelbaki, A; Shaaban, A; Elsayes, K M

    2016-03-01

    Haematological malignancies are relatively uncommon neoplasms of kidneys. Nevertheless, the incidence of these neoplasms is increasing, partly due to more widespread use of computed tomography and magnetic resonance imaging. This article discusses the clinical and imaging features of renal lymphoma, leukaemia, extra-osseous multiple myeloma, and post-transplant lymphoproliferative disorder. Although there is overlap of imaging features with other more common malignancies, such as transitional and renal cell cancers, the combination of imaging findings and the appropriate clinical picture should allow the radiologist to raise a provisional diagnosis of a haematological neoplasm. This has management implications including the preference for image-guided core biopsies and a shift towards medical rather than surgical therapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes

    SciTech Connect

    Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E.; Christie, G. Maxwell; Raybold, Troy M.

    2001-11-06

    Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can

  20. Oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.

    1996-12-31

    This project emphasizes CO2-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems, CO2 transportation, and options for the long-term sequestration Of CO2. The intent is to quantify the CO2 budget, or an ``equivalent CO2`` budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, bituminous coal feed, and low-pressure glycol sulfur removal, followed by Claus/SCOT treatment, to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO2 release rate of 0.801 kg/kV-Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H2S recovery, followed by either low-pressure glycol or membrane CO2 recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H2S recovery and a fuel cell as the topping cycle, with no shift stages. From the IGCC plant, a 500-km pipeline takes the CO2 to geological sequestering. For the optimal CO2 recovery case, the net electric power production was reduced by 37.6 MW from the base case, with a CO2 release rate of 0.277 kg/kWhe (when makeup power was considered). In a comparison of air-blown and oxygen-blown CO2-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, while the cost for oxygen-blown IGCC was 58.29 mills/kWh. For the optimal cases employing glycol CO2 recovery, there was no clear advantage; the cost for air-blown IGCC was 95.48 mills/kWh, and the cost for the oxygen-blown IGCC was slightly lower, at 94.55 mills/kWh.

  1. Reactive oxygen intermediates produced by photosynthetic electron transport are enhanced in short-day grown plants.

    PubMed

    Michelet, Laure; Krieger-Liszkay, Anja

    2012-08-01

    Leaves of tobacco plants grown in short days (8h light) generate more reactive oxygen species in the light than leaves of plants grown in long days (16h light). A two fold higher level of superoxide production was observed even in isolated thylakoids from short day plants. By using specific inhibitors of photosystem II and of the cytochrome b(6)f complex, the site of O(2) reduction could be assigned to photosystem I. The higher rate of O(2) reduction led to the formation of a higher proton gradient in thylakoids from short day plants. In the presence of an uncoupler, the differences in O(2) reduction between thylakoids from short day and long day plants were abolished. The pigment content and the protein content of the major protein complexes of the photosynthetic electron transport chain were unaffected by the growth condition. Addition of NADPH, but not of NADH, to coupled thylakoids from long day plants raised the level of superoxide production to the same level as observed in thylakoids from short day plants. The hypothesis is put forward that the binding of an unknown protein permits the higher rate of pseudocyclic electron flow in thylakoids from short-day grown plants and that this putative protein plays an important role in changing the proportions of linear, cyclic and pseudocyclic electron transport in favour of pseudocyclic electron transport. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The Effect of Inspired Oxygen Concentration and Transportation Time on Arterial Hemoglobin Oxygen Saturation During Transport from the Operating Room to the Postanesthesia Care UnitCare Unit

    DTIC Science & Technology

    1996-08-14

    oxygen to all ambulatory patients recovering from general anesthesia. The second study involved 71 healthy pediatric patients undergoing general...Male/Female 7. ASA Status (I, II, III) _ 8. Anesthetic Agent Enflurane Halothane Desflurane Isoflurane Nitrous oxide Propofol 9. Narcotic

  3. Meditation for adults with haematological malignancies.

    PubMed

    Salhofer, Ines; Will, Andrea; Monsef, Ina; Skoetz, Nicole

    2016-02-03

    Malignant neoplasms of the lymphoid or myeloid cell lines including lymphoma, leukaemia and myeloma are referred to as haematological malignancies. Complementary and alternative treatment options such as meditation practice or yoga are becoming popular by treating all aspects of the disease including physical and psychological symptoms. However, there is still unclear evidence about meditation's effectiveness, and how its practice affects the lives of haematologically-diseased patients. This review aims to assess the benefits and harms of meditation practice as an additional treatment to standard care for adults with haematological malignancies. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, Issue 8, 2015), MEDLINE (1950 to August 2015), databases of ongoing trials, the metaRegister of Controlled Trials (mRCT) (http://www.controlled-trials.com/mrct/), conference proceedings of annual meetings of: the American Society of Hematology; American Society of Clinical Oncology; European Hematology Association; European Congress for Integrative Medicine; and Global Advances in Health and Medicine (2010 to 2015). We included randomised controlled trials (RCTs) using meditation practice for adult patients with haematological malignancies. Two review authors independently extracted data from eligible studies and assessed the risk of bias according to predefined criteria. We evaluated quality of life and depression. The other outcomes of overall survival, anxiety, fatigue, quality of sleep and adverse events could not be evaluated, because they were not assessed in the included trial. We included only one small trial published as an abstract article. The included study investigated the effects of meditation practice on patients newly hospitalised with acute leukaemia. Ninety-one participants enrolled in the study, but only 42 participants remained in the trial throughout the six-month follow-up period and were eligible for analysis. There was no

  4. Reverse Engineering of Oxygen Transport in the Lung: Adaptation to Changing Demands and Resources through Space-Filling Networks

    PubMed Central

    Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter

    2010-01-01

    The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052

  5. Simulating unsteady transport of nitrogen, biochemical oxygen demand, and dissolved oxygen in the Chattahoochee River downstream from Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.

    1985-01-01

    As part of an intensive water-quality assessment of the Chattahoochee River, repetitive water-quality measurements were made at 12 sites along a 69-kilometer reach of the river downstream of Atlanta, Georgia. Concentrations of seven constituents (temperature, dissolved oxygen, ultimate carbonaceous biochemical oxygen demand (BOD), organic nitrogen, ammonia, nitrite, and nitrate) were obtained during two periods of 36 hours, one starting on August 30, 1976, and the other starting on May 31, 1977. The study reach contains one large and several small sewage outfalls and receives the cooling water from two large powerplants. An unsteady water-quality model of the Lagrangian type was calibrated using the 1977 data and verified using the 1976 data. The model provided a good means of interpreting these data even though both the flow and the pollution loading rates were highly unsteady. A kinetic model of the cascade type accurately described the physical and biochemical processes occurring in the river. All rate coefficients, except reaeration coefficients and those describing the resuspension of BOD, were fitted to the 1977 data and verified using the 1976 data. The study showed that, at steady low flow, about 38 percent of the BOD settled without exerting an oxygen demand. At high flow, this settled BOD was resuspended and exerted an immediate oxygen demand. About 70 percent of the ammonia extracted from the water column was converted to nitrite, but the fate of the remaining 30 percent is unknown. Photosynthetic production was not an important factor in the oxygen balance during either run.

  6. The importance of conceptual models in the reactive transport simulation of oxygen ingress in sparsely fractured crystalline rock.

    PubMed

    Macquarrie, K T B; Mayer, K U; Jin, B; Spiessl, S M

    2010-03-01

    Redox evolution in sparsely fractured crystalline rocks is a key, and largely unresolved, issue when assessing the geochemical suitability of deep geological repositories for nuclear waste. Redox zonation created by the influx of oxygenated waters has previously been simulated using reactive transport models that have incorporated a variety of processes, resulting in predictions for the depth of oxygen penetration that may vary greatly. An assessment and direct comparison of the various underlying conceptual models are therefore needed. In this work a reactive transport model that considers multiple processes in an integrated manner is used to investigate the ingress of oxygen for both single fracture and fracture zone scenarios. It is shown that the depth of dissolved oxygen migration is greatly influenced by the a priori assumptions that are made in the conceptual models. For example, the ability of oxygen to access and react with minerals in the rock matrix may be of paramount importance for single fracture conceptual models. For fracture zone systems, the abundance and reactivity of minerals within the fractures and thin matrix slabs between the fractures appear to provide key controls on O(2) attenuation. The findings point to the need for improved understanding of the coupling between the key transport-reaction feedbacks to determine which conceptual models are most suitable and to provide guidance for which parameters should be targeted in field and laboratory investigations.

  7. [Positive results with haematology webcasting for junior doctors].

    PubMed

    Raaschou-Jensen, Klas; Thomsen, Rasmus Heje; Gang, Anne Ortved; Do, Thrung; Aagaard, Thomas; Niemann, Carsten; Bjerrum, Ole Weis

    2016-01-11

    Webcasting is an educational activity where the teacher and the participants are separated in space and time when using modern information technology. It is widely used for all learning levels and in all educational forms of haematology training in Europe. A working group in the Education Council of internal medicine, haematology in the eastern part of Denmark initiated a project with webcasting from local haematological departments. The aim of the education project was to contribute to spreading knowledge and support the training of specialist in haematology. Our experience is hereby reported.

  8. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil

    PubMed Central

    Shimamura, Satoshi; Yamamoto, Ryo; Nakamura, Takuji; Shimada, Shinji; Komatsu, Setsuko

    2010-01-01

    Background and Aims Aerenchyma provides a low-resistance O2 transport pathway that enhances plant survival during soil flooding. When in flooded soil, soybean produces aerenchyma and hypertrophic stem lenticels. The aims of this study were to investigate O2 dynamics in stem aerenchyma and evaluate O2 supply via stem lenticels to the roots of soybean during soil flooding. Methods Oxygen dynamics in aerenchymatous stems were investigated using Clark-type O2 microelectrodes, and O2 transport to roots was evaluated using stable-isotope 18O2 as a tracer, for plants with shoots in air and roots in flooded sand or soil. Short-term experiments also assessed venting of CO2 via the stem lenticels. Key Results The radial distribution of the O2 partial pressure (pO2) was stable at 17 kPa in the stem aerenchyma 15 mm below the water level, but rapidly declined to 8 kPa at 200–300 µm inside the stele. Complete submergence of the hypertrophic lenticels at the stem base, with the remainder of the shoot still in air, resulted in gradual declines in pO2 in stem aerenchyma from 17·5 to 7·6 kPa at 13 mm below the water level, and from 14·7 to 6·1 kPa at 51 mm below the water level. Subsequently, re-exposure of the lenticels to air caused pO2 to increase again to 14–17 kPa at both positions within 10 min. After introducing 18O2 gas via the stem lenticels, significant 18O2 enrichment in water extracted from roots after 3 h was confirmed, suggesting that transported O2 sustained root respiration. In contrast, slight 18O2 enrichment was detected 3 h after treatment of stems that lacked aerenchyma and lenticels. Moreover, aerenchyma accelerated venting of CO2 from submerged tissues to the atmosphere. Conclusions Hypertrophic lenticels on the stem of soybean, just above the water surface, are entry points for O2, and these connect to aerenchyma and enable O2 transport into roots in flooded soil. Stems that develop aerenchyma thus serve as a ‘snorkel’ that enables O2 movement

  9. Study of oxygen transport in Ba2YCu3O7 - delta using a solid-state electrochemical cell

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Eugene J. M.; Chang, Bertha P.

    1988-04-01

    A solid-state electrochemical oxygen concentration cell with yttria-stabilized zirconia (YSZ) as electrolyte was employed to study oxygen transport in Ba2YCu3O7-δ . On one side of the YSZ [a single-crystal wafer oriented in the (100) plane], reference and counter electrodes were fabricated from sputtered Au. A ceramic pellet of Ba2YCu3O7-δ was pressed against the other side of the electrolyte. Using this cell, it was possible to electrochemically drive oxygen into and out of the Ba2YCu3O7-δ oxide electrode under controlled conditions. Current versus time and open circuit potential recovery data were analyzed according to various models. The diffusivity of oxygen in 94% dense Ba2YCu3O7-δ was estimated to ≂5×10-8 cm2 s-1 at 550 °C.

  10. On the effect of serum on the transport of reactive oxygen species across phospholipid membranes.

    PubMed

    Szili, Endre J; Hong, Sung-Ha; Short, Robert D

    2015-06-24

    The transport of plasma generated reactive oxygen species (ROS) across a simple phospholipid membrane mimic of a (real) cell was investigated. Experiments were performed in cell culture media (Dulbecco's modified Eagle's medium, DMEM), with and without 10% serum. A (broad spectrum) ROS reporter dye, 2,7-dichlorodihydrofluorescein (DCFH), was used to detect the generation of ROS by a helium (He) plasma jet in DMEM using free DCFH and with DCFH encapsulated inside phospholipid membrane vesicles dispersed in DMEM. The authors focus on the concentration and on the relative rates (arbitrary units) for oxidation of DCFH [or the appearance of the oxidized product 2,7-dichlorofluorescein (DCF)] both in solution and within vesicles. In the first 1 h following plasma exposure, the concentration of free DCF in DMEM was ~15× greater in the presence of serum (cf. to the serum-free DMEM control). The DCF in vesicles was ~2× greater in DMEM containing serum compared to the serum-free DMEM control. These data show that serum enhances plasma ROS generation in DMEM. As expected, the role of the phospholipid membrane was to reduce the rate of oxidation of the encapsulated DCFH (with and without serum). And the efficiency of ROS transport into vesicles was lower in DMEM containing serum (at 4% efficiency) when compared to serum-free DMEM (at 32% efficiency). After 1 h, the rate of DCFH oxidation was found to have significantly reduced. Based upon a synthesis of these data with results from the open literature, the authors speculate on how the components of biological fluid and cellular membranes might affect the kinetics of consumption of plasma generated ROS.

  11. Normal State Transport in Superconducting Yttrium BARIUM(2) COPPER(3) OXYGEN(7-DELTA) and Semiconducting Praseodymium BARIUM(2) COPPER(3) OXYGEN(7-DELTA)

    NASA Astrophysics Data System (ADS)

    Browning, Valerie Michelle

    1995-01-01

    The discovery, in 1986, of materials with superconducting transition temperatures well above 77 K has generated a renewed interest in potential applications for superconductors. Unfortunately, the widespread use of high temperature superconductors (HTS) has not been realized due to their poor performance in terms of electrical and physical properties. Although the mechanism of high temperature superconductivity remains a mystery, it is hoped that an understanding of the HTS will result in the ability to engineer better quality materials. The normal state of the HTS exhibits several features which are considered unusual. Among these features are a linear temperature dependence of the resistivity and a temperature dependent Hall effect. It is believed that knowledge of the normal state transport properties of the HTS is crucial to understanding superconductivity in these materials. In an effort to better understand the normal state of the these materials, the transport properties of single crystal samples of two members of the superconducting RBa_2Cu_3O _{7-delta} ("123") family were studied (R = yttrium and many of the rare earth elements). Resistivity, Hall effect, and magnetoresistance measurements were performed on a detwinned single crystal sample of YBa_2Cu_3 _{7-delta} (Y 123). Measurements were repeated after various oxygen anneals to study the effects of oxygen inhomogeneities on the sample's transport properties. These results indicate that oxygen inhomogeneities strongly influence the transport properties of this system. A model is presented which takes into account oxygen defects in calculating the resistivity and Hall coefficient. Of the rare earth elements that will form the 123 structure, only PrBa_2Cu _3O_{7-delta} (Pr 123) does not superconduct. Pr 123 exhibits a non-metallic temperature dependent resistivity as opposed to the metallic resistivity exhibited by the superconducting 123 family members. Magnetotransport and magnetization measurements

  12. Reactive transport modeling of dissolved oxygen migration and consumption in a sedimentary basins affected by a deglaciation event

    NASA Astrophysics Data System (ADS)

    Bea, S. A.; Mayer, K. U.; MacQuarrie, K. T.

    2012-12-01

    In intracratonic sedimentary basins, geochemical conditions are currently reducing at depth. Deep groundwater flow systems are driven primarily by salinity differences, topographic gradients and recharge derived from precipitation; these systems are also influenced by the hydrostratigraphy of the basin. However, during periods of glacial melt water production (i.e., deglaciation events), the melting of ice sheets may alter the patterns of freshwater infiltration, potentially resulting in enhanced recharge of glacial melt water containing relatively high concentrations of dissolved oxygen. Reactive transport modeling can be used to understand the evolution of geochemical conditions and redox-buffering capacity of these formations. Dissolved oxygen will interact with reduced mineral phases that are present in the sedimentary units (e.g., chlorite) or with solid organic matter causing oxygen consumption. Processes included in the model are density-driven flow and transport, vertical mechanical deformation, as well as chemical reactions (aqueous complexation, mineral dissolution and precipitation including evaporites, sulfates and carbonates, cation-exchange, redox processes involving the decomposition of organic matter, dissolution of Fe-bearing minerals, biotite and chlorite, and the oxidation of ferrous iron and sulfide). Transient boundary conditions are imposed in the upper part of the model to mimic ice sheet advance and retreat. Simulation results indicate that the presence of dense brines at depth results in low groundwater velocities during glacial meltwater infiltration, restricting the ingress of oxygenated waters in the basin. In addition, due to the abundance of reduced mineral phases and solid organic matter in these formations, geochemical processes causing oxygen consumption are restricted to shallow aquifers, further limiting the ingress of oxygenated waters to the first 100 m in the main aquifers (i.e., sandstones) and 50 m in the carbonates aquifers

  13. The transport properties of oxygen vacancy-related polaron-like bound state in HfOx

    PubMed Central

    Wang, Zhongrui; Yu, HongYu; Su, Haibin

    2013-01-01

    The oxygen vacancy-related polaron-like bound state migration in HfOx accounting for the observed transport properties in the high resistance state of resistive switching is investigated by the density functional theory with hybrid functional. The barrier of hopping among the threefold oxygen vacancies is strongly dependent on the direction of motion. Especially, the lowest barrier along the <001> direction is 90 meV, in agreement with the experimental value measured from 135 K to room temperature. This hopping mainly invokes the z-directional motion of hafnium and threefold oxygen atoms in the vicinity of the oxygen vacancy resulted from the synergized combination of coupled phonon modes. In the presence of surface, the lowest barrier of hopping between the surface oxygen vacancies is 360 meV along the <101> direction, where the significant surface perpendicular motion of hafnium and twofold oxygen atoms surrounding the oxygen vacancy is identified to facilitate this type of polaron-like bound state migration. Thus, the migration on the surfaces could be more important at the high temperature. PMID:24317593

  14. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain.

    PubMed

    Kozuleva, Marina A; Ivanov, Boris N

    2016-07-01

    The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP(+) under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes.

    PubMed

    Malandrino, Andrea; Noailly, Jérôme; Lacroix, Damien

    2011-08-01

    Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such

  16. Modeling oxygen and carbon dioxide transport and exchange using a closed loop circulatory system.

    PubMed

    Carlson, Brian E; Anderson, Joseph C; Raymond, Gary M; Dash, Ranjan K; Bassingthwaighte, James B

    2008-01-01

    The binding and buffering of O2 and CO2 in the blood influence their exchange in lung and tissues and their transport through the circulation. To investigate the binding and buffering effects, a model of blood-tissue gas exchange is used. The model accounts for hemoglobin saturation, the simultaneous binding of O2, CO2, H+, 2,3-DPG to hemoglobin, and temperature effects. Invertible Hill-type saturation equations facilitate rapid calculation of respiratory gas redistribution among the plasma, red blood cell and tissue that occur along the concentration gradients in the lung and in the capillary-tissue exchange regions. These equations are well-suited to analysis of transients in tissue metabolism and partial pressures of inhaled gas. The modeling illustrates that because red blood cell velocities in the flowing blood are higher than plasma velocities after a transient there can be prolonged differences between RBC and plasma oxygen partial pressures. The blood-tissue gas exchange model has been incorporated into a higher level model of the circulatory system plus pulmonary mechanics and gas exchange using the RBC and plasma equations to account for pH and CO2 buffering in the blood.

  17. Beta-thalassaemia trait: haematological parameters.

    PubMed

    Yousafzai, Yasar M; Khan, Shahtaj; Raziq, Fazle

    2010-01-01

    Beta-Thalassaemia syndromes are a group of hereditary disorders characterised by a genetic deficiency in the synthesis of beta-globin chains due to a defect in beta-globin genes. The objective of this study was to determine the haematological features of beta-thalassaemia trait (BTT). and to determine the sensitivity of Mean Corpuscular Volume (MCV), Mean Corpuscular Haemoglobin (MCH) and Mentzer Index (ML) as a screening tool for beta-thalassaemia trait. A descriptive study was conducted in Hayatabad Medical Complex, Peshawar from May 2009 to May 2010 with 203 subjects having BTT. Blood samples were collected in EDTA anti-coagulated tubes. RBC indices were taken as part of complete blood count (CBC) by haematology analyser, and Haemoglobin (Hb) electrophoresis was done to determine the HbA2 percentage. The data was collected and analysed on statistical software for demographic details, RBC indices and HbA2 levels. Out of 203 patients, 92 (45%) were males and 111 (55%) were females. Most patients tested were in the 15-45 year age group. One-hundred-sixty (79%) patients had anaemia. MCV was lower than 76 fl in all the cases. Mean MCV was 59.1 fl. MCH was low, the mean MCH being 19.3 g/dl. MCH < 26 gave sensitivity of 99% in detecting BTT. We calculated MI for these cases and found out that it was < 12 in 75% of cases and < 15 in 197 (97%). Beta-thalassaemia traits present with a microcytic hypochromic blood picture, detected on simple haematology analysers as low MCV and MCH and MI which provide a useful screening tool for beta-thalassaemia trait.

  18. Cutaneous aspergillosis in patients with haematological malignancies.

    PubMed

    D'Antonio, D; Pagano, L; Girmenia, C; Parruti, G; Mele, L; Candoni, A; Ricci, P; Martino, P

    2000-05-01

    The aim of the present study was to evaluate skin infections caused by Aspergillus in patients with haematological malignancies. Fifteen cases of cutaneous aspergillosis are reported, 12 of which occurred among 4448 consecutive patients with acute leukaemia. Cutaneous involvement occurred in 4% of patients with documented Aspergillus infection. Primary cutaneous aspergillosis was diagnosed in five cases. Infection was fatal in 11 of 15 cases; the absence of additional sites of infection other than cutis at presentation appeared to be the only factor related to a favourable outcome.

  19. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue.

    PubMed

    Lücker, Adrien; Secomb, Timothy W; Weber, Bruno; Jenny, Patrick

    2017-04-01

    Oxygen transport to parenchymal cells occurs mainly at the microvascular level and depends on convective RBC flux, which is proportional in an individual capillary to the product of capillary hematocrit and RBC velocity. This study investigates the relative influence of these two factors on tissue PO2 . A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity, and RBC flow on tissue oxygenation around capillaries. Predicted tissue PO2 levels are compared with a detailed computational model. Hematocrit is shown to have a larger influence on tissue PO2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained, and the discrepancies are explained. Significant dependence of MTCs on RBC velocity at low hematocrit is demonstrated. For a given RBC flux in a capillary, the PO2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing IVR to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as those that occur in functional hyperemia in the brain. © 2016 John Wiley & Sons Ltd.

  20. 76 FR 12556 - Airworthiness Directives; Various Transport Category Airplanes Equipped With Chemical Oxygen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... Category Airplanes Equipped With Chemical Oxygen Generators Installed in a Lavatory AGENCY: Federal... affected airplanes identified above. This AD requires modifying the chemical oxygen generators in the lavatory. This AD was prompted by reports that the current design of these oxygen generators presents a...

  1. Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids.

    PubMed

    Kozuleva, Marina A; Ivanov, Boris N

    2010-07-01

    The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP(+). The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 microM in the absence of NADP(+) increased the proportion of oxygen reduction by Fd from 25-35 to 40-60% in different experiments. This proportion decreased with increasing light intensity. When NADP(+) was added in the presence of 15 microM Fd, which was optimal for the NADP(+) reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP(+) and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.

  2. Multimodality imaging of osseous involvement In haematological malignancies

    PubMed Central

    Krajewski, Katherine M; Jagannathan, Jyothi P; Shinagare, Atul B; Braschi-Amirfarzan, Marta; Tirumani, Sree H; Ramaiya, Nikhil H

    2016-01-01

    The purpose of this article is to provide a comprehensive review of the imaging features of osseous involvement in haematological malignancies. Osseous involvement can be seen in various haematological malignancies including lymphomas, plasma cell neoplasms, leukaemias and myeloproliferative neoplasms. Imaging plays a crucial role in initial diagnosis, staging and in the assessment of treatment response in these patients. PMID:26781757

  3. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies.

    PubMed

    Zierenberg, Jennifer R; Fujioka, Hideki; Cook, Keith E; Grotberg, James B

    2008-06-01

    The influence of time-dependent flows on oxygen transport from hollow fibers was computationally and experimentally investigated. The fluid average pressure drop, a measure of resistance, and the work required by the heart to drive fluid past the hollow fibers were also computationally explored. This study has particular relevance to the development of an artificial lung, which is perfused by blood leaving the right ventricle and in some cases passing through a compliance chamber before entering the device. Computational studies modeled the fiber bundle using cylindrical fiber arrays arranged in in-line and staggered rectangular configurations. The flow leaving the compliance chamber was modeled as dampened pulsatile and consisted of a sinusoidal perturbation superimposed on a steady flow. The right ventricular flow was modeled to depict the period of rapid flow acceleration and then deceleration during systole followed by zero flow during diastole. Experimental studies examined oxygen transfer across a fiber bundle with either steady, dampened pulsatile, or right ventricular flow. It was observed that the dampened pulsatile flow yielded similar oxygen transport efficiency to the steady flow, while the right ventricular flow resulted in smaller oxygen transport efficiency, with the decrease increasing with Re. Both computations and experiments yielded qualitatively similar results. In the computational modeling, the average pressure drop was similar for steady and dampened pulsatile flows and larger for right ventricular flow while the pump work required of the heart was greatest for right ventricular flow followed by dampened pulsatile flow and then steady flow. In conclusion, dampening the artificial lung inlet flow would be expected to maximize oxygen transport, minimize work, and thus improve performance.

  4. A potentiostatic study of oxygen transport through poly(2-ethoxyethyl methacrylate-co-2,3-dihydroxypropylmethacrylate) hydrogel membranes.

    PubMed

    Compañ, Vicente; Tiemblo, Pilar; García, F; García, J M; Guzmán, Julio; Riande, Evaristo

    2005-06-01

    The oxygen permeability and diffusion coefficients of hydrogel membranes prepared with copolymers of 2-ethoxyethyl methacrylate (EEMA)/2,3-dihydroxypropylmethacrylate (MAG) with mole fraction of the second monomer in the range between 0 and 0.75 are described. Values of the permeability and diffusion coefficients of oxygen are determined by using electrochemical procedures involving the measurement of the steady-state current in membranes prepared by radical polymerization of the monomers. The results obtained for the transport properties were analyzed taking into account the fractional free volumes, the cohesive energy densities and the glass transition temperatures of the hydrogels.

  5. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    NASA Astrophysics Data System (ADS)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  6. A survey of Australian haematology reference intervals.

    PubMed

    Sinclair, Leanne; Hall, Sara; Badrick, Tony

    2014-10-01

    This study was designed to create a snapshot of Australian haematology reference intervals (RIs) in use, in particular red cell parameters. We present an analysis of survey results conducted across Australian laboratories between November 2012 and January 2013.All Australian laboratories enrolled in the Royal College of Pathologists of Australasia Quality Assurance Program (RCPA QAP) were invited to participate in the December 2012 Survey Monkey survey, with a response from 85 laboratories (17%) received. The scope included laboratory demographics (location, size/throughput, and network), RIs in use for the full blood count and selected derived parameters, their frequency of revision, source and statistical approach for derivation. Further questions related to uncertainty of measurement, pregnancy values, paediatric/adult cut-off, haematology profiles reported and the use of extended parameters.There is more consistency with some upper and lower limits than others, and wide ranges for reported uncertainty of measurement (UM). There is no apparent consistency with RIs used for particular instruments and technologies. When laboratories change their RIs, most obtain them from a text book, paper or another laboratory and have difficulty in determining the source. If they do determine their own, most don't have a standard operating procedure and calculations are not consistent in terms of sample size and statistical methods used.We have presented evidence of the wide variations in RIs used in Australian laboratories and that arguably these do not differ significantly from each other. The paediatric age cut-off requires standardisation.

  7. Proliferative kidney disease in rainbow trout (Oncorhynchus mykiss) under intensive breeding conditions: Pathogenesis and haematological and immune parameters.

    PubMed

    Palikova, Miroslava; Papezikova, Ivana; Markova, Zdenka; Navratil, Stanislav; Mares, Jan; Mares, Lukas; Vojtek, Libor; Hyrsl, Pavel; Jelinkova, Eva; Schmidt-Posthaus, Heike

    2017-03-06

    Proliferative kidney disease (PKD) is an endoparasitic disease of salmonid fish caused by Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea). This study presents a comprehensive view on PKD development in rainbow trout (Oncorhynchus mykiss) reared at an intensive fish breeding facility, with focus on mortality, pathology/histopathology, haematological findings and immune functions. Diseased and reference fish were sampled monthly and time course of natural infection was followed up from the onset of clinical signs (September 2014) to full recovery (January 2015). PKD- associated cumulative mortality was 30% with a peak value in October, while immunohistochemical testing indicated a continuous significant decrease in T. bryosalmonae numbers from September to December; with no parasites detected in January. During peak clinical infection, a significant decrease in red blood cell counts, haematocrit values, haemoglobin concentration, along with a reduction in lymphocytes and a significant phagocyte elevation corresponding with an increase in phagocyte oxidative burst were measured in comparison to control animals. Complement activity and total immunoglobulin plasma concentrations were also elevated, though only during the initial monitoring period (September). Individuals surviving PKD, recovered and were able to fully regenerate both renal structure and haematopoietic parameters to normal levels. Changes in the red blood cell parameters indicate anaemia and a decreased oxygen transportation capacity during the clinical disease phase. Together with an increased oxygen demand at higher temperatures and decreased oxygen solubility this could lead to decompensation and elevated mortality. The stimulation of immune parameters, and especially oxidative phagocytic burst, is likely to have had a strong effect on both, regeneration and elimination of the pathogenic agent.

  8. Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport

    PubMed Central

    Lin, Ping-Chang; Kreutzer, Ulrike; Jue, Thomas

    2007-01-01

    Current theory of respiratory control invokes a role of myoglobin (Mb)-facilitated O2 diffusion in regulating the intracellular O2 flux, provided Mb diffusion can compete effectively with free O2 diffusion. Pulsed-field gradient NMR methods have now followed gradient-dependent changes in the distinct 1H NMR γ CH3 Val E11 signal of MbO2 in perfused rat myocardium to obtain the endogenous Mb translational diffusion coefficient (DMb) of 4.24 × 10−7 cm2 s−1 at 22°C. The DMb matches precisely the value predicted by in vivo NMR rotational diffusion measurements of Mb and shows no orientation preference. Given values in the literature for the Krogh's free O2 diffusion coefficient (K0), myocardial Mb concentration and a partial pressure of O2 that half saturates Mb (P50), the analysis yields an equipoise diffusion PO2 of 1.77 mmHg, where Mb and free O2 contribute equally to the O2 flux. In the myocardium, Mb-facilitated O2 diffusion contributes increasingly more than free O2 diffusion when the PO2 falls below 1.77 mmHg. In skeletal muscle, the PO2 must fall below 5.72 mmHg. Altering the Mb P50 induces modest change. Mb-facilitated diffusion has a higher poise in skeletal muscle than in myocardium. Because the basal PO2 hovers around 10 mmHg, Mb does not have a predominant role in facilitating O2 transport in myocardium but contributes significantly only when cellular oxygen falls below the equipoise diffusion PO2. PMID:17038435

  9. Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport.

    PubMed

    Lin, Ping-Chang; Kreutzer, Ulrike; Jue, Thomas

    2007-01-15

    Current theory of respiratory control invokes a role of myoglobin (Mb)-facilitated O2 diffusion in regulating the intracellular O2 flux, provided Mb diffusion can compete effectively with free O2 diffusion. Pulsed-field gradient NMR methods have now followed gradient-dependent changes in the distinct 1H NMR gamma CH3 Val E11 signal of MbO2 in perfused rat myocardium to obtain the endogenous Mb translational diffusion coefficient (D(Mb)) of 4.24 x 10(-7) cm2 s(-1) at 22 degrees C. The D(Mb) matches precisely the value predicted by in vivo NMR rotational diffusion measurements of Mb and shows no orientation preference. Given values in the literature for the Krogh's free O2 diffusion coefficient (K0), myocardial Mb concentration and a partial pressure of O2 that half saturates Mb (P50), the analysis yields an equipoise diffusion P(O2) of 1.77 mmHg, where Mb and free O2 contribute equally to the O2 flux. In the myocardium, Mb-facilitated O2 diffusion contributes increasingly more than free O2 diffusion when the P(O2) falls below 1.77 mmHg. In skeletal muscle, the P(O2) must fall below 5.72 mmHg. Altering the Mb P50 induces modest change. Mb-facilitated diffusion has a higher poise in skeletal muscle than in myocardium. Because the basal P(O2) hovers around 10 mmHg, Mb does not have a predominant role in facilitating O2 transport in myocardium but contributes significantly only when cellular oxygen falls below the equipoise diffusion P(O2).

  10. Dicarboxylate carrier-mediated glutathione transport is essential for reactive oxygen species homeostasis and normal respiration in rat brain mitochondria

    PubMed Central

    Kamga, Christelle K.; Zhang, Shelley X.

    2010-01-01

    Glutathione transport into mitochondria is mediated by oxoglutarate (OGC) and dicarboxylate carrier (DIC) in the kidney and liver. However, transport mechanisms in brain mitochondria are unknown. We found that both carriers were expressed in the brain. Using cortical mitochondria incubated with physiological levels of glutathione, we found that butylmalonate, a DIC inhibitor, reduced mitochondrial glutathione to levels similar to those seen in mitochondria incubated without extramitochondrial glutathione (59% of control). In contrast, phenylsuccinate, an OGC inhibitor, had no effect (97% of control). Additional experiments with DIC and OGC short hairpin RNA in neuronal-like PC12 cells resulted in similar findings. Significantly, DIC inhibition resulted in increased reactive oxygen species (ROS) content in and H2O2 release from mitochondria. It also led to decreased membrane potential, increased basal respiration rates, and decreased phosphorus-to-oxygen (P/O) ratios, especially when electron transport was initiated from complex I. Accordingly, we found that DIC inhibition impaired complex I activity, but not those for complexes II and III. This impairment was not associated with dislodgment of complex subunits. These results suggest that DIC is the main glutathione transporter in cortical mitochondria and that DIC-mediated glutathione transport is essential for these mitochondria to maintain ROS homeostasis and normal respiratory functions. PMID:20538765

  11. The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carriers.

    PubMed

    McCarthy, M R; Vandegriff, K D; Winslow, R M

    2001-08-30

    We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.

  12. Scaling laws for oxygen transport across the space-filling system of respiratory membranes in the human lung

    NASA Astrophysics Data System (ADS)

    Hou, Chen

    Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.

  13. Indirect Liquefaction of Biomass to Transportation Fuels Via Mixed Oxygenated Intermediates

    SciTech Connect

    Tan, Eric C.D.

    2016-11-14

    This paper presents a comparative techno-economic analysis of four emerging conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The processing steps include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation.

  14. Sources and transport of sediment, nutrients, and oxygen-demanding substances in the Minnesota River basin, 1989-92

    USGS Publications Warehouse

    Payne, G.A.

    1994-01-01

    The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.

  15. The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes.

    PubMed

    Shi, Yanuo; Bork, Alexander Hansen; Schweiger, Sebastian; Rupp, Jennifer Lilia Marguerite

    2015-07-01

    Understanding 'electro-chemo-mechanics' in oxygen ion conducting membranes represents a foundational step towards new energy devices such as micro fuel cells and oxygen or fuel separation membranes. For ionic transport in macro crystalline electrolytes, doping is conventionally used to affect oxygen ionic association/migration energies. Recently, tuning ionic transport in films through lattice strain conveyed by substrates or heterostructures has generated much interest. However, reliable manipulation of strain states to twist the ionic conduction in real micro energy devices remains intractable. Here, we demonstrate that the oxygen ionic conductivity clearly correlates with the compressive strain energy acting on the near order of the electrolyte lattices by comparing thin-film ceria-based membrane devices against substrate-supported flat structures. It is possible to capitalize on this phenomenon with a smart choice of strain patterns achieved through microelectrode design. We highlight the importance of electro-chemo-mechanics in the electrolyte material for the next generation of solid-state energy conversion microdevices.

  16. The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading

    NASA Astrophysics Data System (ADS)

    Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.

    2017-10-01

    Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.

  17. Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion.

    PubMed

    Galbusera, F; Cioffi, M; Raimondi, M T; Pietrabissa, R

    2007-08-01

    This work presents a computational model of tissue growth under interstitial perfusion inside a tissue engineering bioreactor. The model accounts both for the cell population dynamics, using a model based on cellular automata, and for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Lattice-Boltzmann equation and the convection-diffusion equation. The conditions of static culture versus perfused culture were compared, by including the population dynamics along with oxygen diffusion, convective transport and consumption. The model is able to deal with arbitrary complex geometries of the spatial domain; in the present work, the domain modeled was the void space of a porous scaffold for tissue-engineered cartilage. The cell population dynamics algorithm provided results which qualitatively resembled population dynamics patterns observed in experimental studies, and these results were in good quantitative agreement with previous computational studies. Simulation of oxygen transport and consumption showed the fundamental contribution of convective transport in maintaining a high level of oxygen concentration in the whole spatial domain of the scaffold. The model was designed with the aim to be computationally efficient and easily expandable, i.e. to allow straightforward implementability of further models of complex biological phenomena of increasing scientific interest in tissue engineering, such as chemotaxis, extracellular matrix deposition and effect of mechanical stimulation.

  18. Peromyscus leucopus mice: a potential animal model for haematological studies.

    PubMed

    Sun, Yu; Desierto, Marie J; Ueda, Yasutaka; Kajigaya, Sachiko; Chen, Jichun; Young, Neal S

    2014-10-01

    Peromyscus leucopus mice share physical similarities with laboratory mice Mus musculus (MM) but have higher agility and longer lifespan. We compared domesticated P. leucopus linville (PLL) and M. musculus C57BL/6 (MMB6) mice for cellular composition of peripheral blood (PB), bone marrow (BM) and spleen. PLL mice had significantly fewer platelets and significantly more monocytes in the blood, and notably fewer megakaryocytes in the BM. Spleens of PLL mice were significantly smaller, with 50% fewer cells and reduced 'red pulp'. There was no obvious haematological change in PLL mice between 2-8 and 16-26 months of age, except for a significant increase in blood monocytes. Cellular reactive oxygen species (ROS) content showed no change with age but differed significantly between different cell types. Treating two to eight month-old PLL mice with antioxidant N-acetylcysteine in drinking water for three months did not affect cellular ROS content, but increased blood leucocytes especially the concentration of monocytes. The low platelets, low megakaryocytes, high monocytes and low splenic erythropoiesis in PLL mice resemble human measurements better than the values seen in MMB6.

  19. Peromyscus leucopus mice: a potential animal model for haematological studies

    PubMed Central

    Sun, Yu; Desierto, Marie J; Ueda, Yasutaka; Kajigaya, Sachiko; Chen, Jichun; Young, Neal S

    2014-01-01

    Peromyscus leucopus mice share physical similarities with laboratory mice Mus musculus (MM) but have higher agility and longer lifespan. We compared domesticated P. leucopus linville (PLL) and M. musculus C57BL/6 (MMB6) mice for cellular composition of peripheral blood (PB), bone marrow (BM) and spleen. PLL mice had significantly fewer platelets and significantly more monocytes in the blood, and notably fewer megakaryocytes in the BM. Spleens of PLL mice were significantly smaller, with 50% fewer cells and reduced ‘red pulp’. There was no obvious haematological change in PLL mice between 2–8 and 16–26 months of age, except for a significant increase in blood monocytes. Cellular reactive oxygen species (ROS) content showed no change with age but differed significantly between different cell types. Treating two to eight month-old PLL mice with antioxidant N-acetylcysteine in drinking water for three months did not affect cellular ROS content, but increased blood leucocytes especially the concentration of monocytes. The low platelets, low megakaryocytes, high monocytes and low splenic erythropoiesis in PLL mice resemble human measurements better than the values seen in MMB6. PMID:25116892

  20. Oxygen transport and mixing dynamics in thin films of aerotactic bacteria

    NASA Astrophysics Data System (ADS)

    Alizadeh Pahlavan, Amir; Saintillan, David

    2010-11-01

    We investigate the dynamics in suspensions of aerotactic bacteria using two different kinetic models: a gradient-detecting model, in which the bacteria detect the local oxygen gradients instantaneously, and a run-and-tumble model, in which the bacteria change their run-and-tumble frequency based on the recent temporal changes in the oxygen field. Using three-dimensional numerical simulations, we study the behavior of such suspensions in thin liquid films surrounded by oxygen baths on both sides. As the bacteria consume the dissolved oxygen, gradients form causing them to swim towards the free surfaces where the oxygen concentration is higher. In very thin films, a high oxygen concentration is observed in the liquid as a result of diffusion from the surfaces, but as the film thickness increases, a depletion layer forms in the center. The formation of this low-oxygen region is associated with the emergence of large-scale instabilities in the suspensions that enhance oxygen mixing into the liquid. These instabilities are accompanied by the formation of large plumes of high bacterial density. The bacterial migration towards the free surfaces is found to be slower in the run-and-tumble model.

  1. Haematological analysis conducted at the departure of the Tour de France 2001.

    PubMed

    Robinson, N; Schattenberg, L; Zorzoli, M; Mangin, P; Saugy, M

    2005-04-01

    Since the introduction of blood analysis performed before major cycling events in 1997, there have been discussions concerning the quality of the results. The aim of our study therefore was to measure blood samples and compare the results obtained on the field with those obtained in the laboratory. For this it was necessary to have blood samples analysed with different instruments to determine the exactness of the results and evaluate the performances of these instruments in order to validate the haematological testing used to reveal athletes abusing recombinant erythropoietin. We report on the haematological analysis of 177 professional cyclists who took part in the Tour de France 2001. All the blood samples were withdrawn in the morning between 7 and 9 am in Dunkerque (France) and were analysed immediately with a transportable analyser. Then the samples were flown to Lausanne (Switzerland) and were reanalysed in two independent ISO 17 025 accredited laboratories with three different analysers. The results confirmed that the most effective haematological follow-up should be performed under standardized pre-analytical conditions and with identical analysers of the same manufacturer to avoid too many variations notably on the haematocrit level and the reticulocyte count. Furthermore, this study suggests that analyses performed on the site are good and could enable the federations to perform a urinary test to detect rhEPO abuse right after the blood analysis. This time saving is essential to fight efficiently recombinant erythropoietin doping, because the half life of the hormone is very short.

  2. Influence of plasma DNA on acid-base balance, blood gas measurement, and oxygen transport in health and stroke.

    PubMed

    Konorova, Irina L; Veiko, Natalya N; Novikov, Viktor E

    2008-08-01

    Hyperoxia and alkalemia, as a result of pulmonary hyperventilation and elevation of plasma DNA (pDNA), are seen during the first 24 h after ischemic stroke. In this study we have examined the correlation between pDNA and these blood parameters in health and stroke. Acid-base equilibrium, oxygen status, hemoglobin affinity to oxygen and concentration of pDNA in arterial blood were measured after the intravenous injection of homologous long-chain DNA to healthy rats and rats subjected to common carotid arterial occlusion. In addition the effect of adding homologous DNA to human and rat venous blood samples was studied in vitro. Hyperoxia, alkalemia, and an increase in hemoglobin affinity to oxygen were seen in rats with artificial stroke. A marked decrease in pulmonary hyperventilation and hemoglobin affinity to oxygen was observed after injection of homologous genomic DNA (10(-6) g/mL of blood). After the DNA injection, blood gas measurement and concentration of pDNA were correlated. Addition of DNA at a concentration of 10(-7) g/mL to venous blood samples in vitro increased oxygen saturation that disappeared when the dose of the DNA increased 10-fold. Thus, a change of pDNA concentration or size can alter acid-base equilibrium, oxygen status, and oxygen transport. These results may be important for a better understanding of the mechanisms of stroke and other diseases associated with the elevation of pDNA concentration, and they open the possibility of new therapeutic approaches.

  3. Severe malaria in immigrant haematological patient

    PubMed Central

    Vázquez-Sánchez, R.; Martínez-Núñez, M.E.; Molina-García, T.

    2015-01-01

    Severe malaria is a life-threatening condition caused by Plasmodium falciparum. Rupture of red blood cells when merozoites release to the bloodstream is responsible for the clinical manifestations, febrile fever reaching 39 °C, and other unspecific symptoms. P. falciparum is considered as the worst form of malaria. Moreover, this species has cytoadherence to red blood cells. This can lead to an organic dysfunction. People coming from hyper endemic areas have developed a partial immunity, but immunodepressed people are a group with a greater risk. Due to the high mortality rate associated to this disease, early diagnosis and a prompt treatment implementation are essential. However, the missed or delayed diagnosis is one of the major reasons of reaching a severe malaria disease. This case reflects the complexity of the diagnosis in an immigrant and immunodepressed patient with a haematological neoplasm with a severe infection by P. falciparum due to the unspecified symptoms and the overlapping of the same. PMID:26793463

  4. Haematological abnormalities in systemic lupus erythematosus.

    PubMed

    Aleem, Aamer; Al Arfaj, Abdurahman Saud; khalil, Najma; Alarfaj, Husain

    2014-01-01

    This study was conducted to evaluate the frequency and pattern of haematological abnormalities (HA) in SLE patients at the time of diagnosis and last follow-up, and their relationship with organ involvement. This retrospective study included patients who were diagnosed and treated for SLE from 1982 to 2008 at King Khalid University hospital, Riyadh. Demographic and haematological parameters at diagnosis and the last follow-up, disease manifestations, organ involvement and clinical hematological complications were recorded. Association of HA with organ involvement was explored by multivariate analysis. A total of 624 patients (90.7% females, mean age 34.3±11.9 years) were studied. HA were present in 516 (82.7 %) patients at the time of diagnosis. Anemia was the most frequent HA in 63.0% patients followed by lymphopenia in 40.3%, leukopenia in 30.0%, thrombocytopenia in 10.9% and autoimmune hemolytic anemia (AIHA) in 4.6% patients. Deep vein thrombosis and pulmonary embolism were diagnosed in 7.4% and 2.6% patients respectively. After a mean follow-up of 9.3±5.3 years, 329/491 (67%) patients still had some HA present. Anemia remained the most common abnormality (51.7% patients) followed by lymphopenia in 33.1%, and thrombocytopenia in 4.8% patients. Leucopenia was associated with oral ulcers (p=0.021) and alopecia (p=0.031), anemia with renal disease (p=0.017), AIHA with neurological involvement (p=0.003), elevated IgG with malar rash (p=0.027), and low C3 with serositis (p=0.026). HA are very common at the time of diagnosis and during follow-up in SLE, and some of these abnormalities are associated with organ damage. This information may help in better management planning of SLE patients.

  5. Oxygen Transport in a Three-Dimensional Microvascular Network Incorporated with Early Tumour Growth and Preexisting Vessel Cooption: Numerical Simulation Study

    PubMed Central

    Cai, Yan; Zhang, Jie; Wu, Jie; Li, Zhi-yong

    2015-01-01

    We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption within the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study. PMID:25695084

  6. Structural features and enhanced high-temperature oxygen ion transport in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}

    SciTech Connect

    Markov, Alexey A.; Shalaeva, Elizaveta V.; Tyutyunnik, Alexander P.; Kuchin, Vasily V.; Patrakeev, Mikhail V.; Leonidov, Ilya A.; Kozhevnikov, Victor L.

    2013-01-15

    Structural features, oxygen non-stoichiometry and transport properties are studied in the oxide series SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}, where x=0.2, 0.3 and 0.4. X-ray diffraction and electron microscopy data evidence formation of the inhomogeneous materials at x=0.3 and 0.4, which include phase constituents with a cubic perovskite and a double perovskite structure types. The composition, the amount and the typical grain size of the phase inhomogeneities are shown to depend both on doping and oxygen content. The increased oxygen-ion conductivity is observed in oxygen depleted materials, which is explained by the increase in the amount of cubic perovskite-like phase and development of interfacial pathways favorable for enhanced oxygen ion transport. - Graphical abstract: The structural studies, oxygen content and conductivity measurements suggest that oxygen depletion from the double perovskite phase constituent of SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}} for x>0.2 is accompanied by formation of pathways for fast ion transport. Black-Small-Square Highlights: Black-Right-Pointing-Pointer The double perovskite type regions are shown to exist in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}. Black-Right-Pointing-Pointer The oxygen depletion is accompanied with phase separation. Black-Right-Pointing-Pointer The phase separation favors formation of pathways for enhanced oxygen ion transport.

  7. Role of blood-oxygen transport in thermal tolerance of the cuttlefish, Sepia officinalis.

    PubMed

    Melzner, Frank; Mark, Felix C; Pörtner, Hans-Otto

    2007-10-01

    Mechanisms that affect thermal tolerance of ectothermic organisms have recently received much interest, mainly due to global warming and climate-change debates in both the public and in the scientific community. In physiological terms, thermal tolerance of several marine ectothermic taxa can be linked to oxygen availability, with capacity limitations in ventilatory and circulatory systems contributing to oxygen limitation at extreme temperatures. The present review briefly summarizes the processes that define thermal tolerance in a model cephalopod organism, the cuttlefish Sepia officinalis, with a focus on the contribution of the cephalopod oxygen-carrying blood pigment, hemocyanin. When acutely exposed to either extremely high or low temperatures, cuttlefish display a gradual transition to an anaerobic mode of energy production in key muscle tissues once critical temperatures (T(crit)) are reached. At high temperatures, stagnating metabolic rates and a developing hypoxemia can be correlated with a progressive failure of the circulatory system, well before T(crit) is reached. However, at low temperatures, declining metabolic rates cannot be related to ventilatory or circulatory failure. Rather, we propose a role for hemocyanin functional characteristics as a major limiting factor preventing proper tissue oxygenation. Using information on the oxygen binding characteristics of cephalopod hemocyanins, we argue that high oxygen affinities (= low P(50) values), as found at low temperatures, allow efficient oxygen shuttling only at very low venous oxygen partial pressures. Low venous PO(2)s limit rates of oxygen diffusion into cells, thus eventually causing the observed transition to anaerobic metabolism. On the basis of existing blood physiological, molecular, and crystallographical data, the potential to resolve the role of hemocyanin isoforms in thermal adaptation by an integrated molecular physiological approach is discussed.

  8. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation.

    PubMed

    Causin, Paola; Guidoboni, Giovanna; Malgaroli, Francesca; Sacco, Riccardo; Harris, Alon

    2016-06-01

    The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen ([Formula: see text]) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, [Formula: see text] is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the [Formula: see text] distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the [Formula: see text] profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the [Formula: see text] tension at the level of the retinal ganglion cells; and (3) arterial [Formula: see text

  9. A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane.

    PubMed

    Mould, R M; Robinson, C

    1991-07-05

    The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the light-driven import of the 23-kDa protein into isolated thylakoids is almost completely inhibited by electron transport inhibitors or by the ionophore nigericin but not by valinomycin. These compounds have similar effects in chloroplast import assays: precursors of both the 33- and 23-kDa proteins are imported and processed to intermediate forms in the stroma, but transport into the thylakoid lumen is blocked when electron transport is inhibited or nigericin is present. These results indicate that the transport of these proteins across the thylakoid membrane requires a protonmotive force and that the dominant component in this respect is the proton gradient and not the electrical potential.

  10. Stability of haematological parameters and its relevance on the athlete's biological passport model.

    PubMed

    Lombardi, Giovanni; Lanteri, Patrizia; Colombini, Alessandra; Lippi, Giuseppe; Banfi, Giuseppe

    2011-12-01

    The stability of haematological parameters is crucial to guarantee accurate and reliable data for implementing and interpreting the athlete's biological passport (ABP). In this model, the values of haemoglobin, reticulocytes and out-of-doping period (OFF)-score (Hb-60√Ret) are used to monitor the possible variations of those parameters, and also to compare the thresholds developed by the statistical model for the single athlete on the basis of its personal values and the variance of parameters in the modal group. Nevertheless, a critical review of the current scientific literature dealing with the stability of the haematological parameters included in the ABP programme, and which are used for evaluating the probability of anomalies in the athlete's profile, is currently lacking. In addition, we collected information from published studies, in order to supply a useful, practical and updated review to sports physicians and haematologists. There are some parameters that are highly stable, such as haemoglobin and erythrocytes (red blood cells [RBCs]), whereas others, (e.g. reticulocytes, mean RBC volume and haematocrit) appear less stable. Regardless of the methodology, the stability of haematological parameters is improved by sample refrigeration. The stability of all parameters is highly affected from high storage temperatures, whereas the stability of RBCs and haematocrit is affected by initial freezing followed by refrigeration. Transport and rotation of tubes do not substantially influence any haematological parameter except for reticulocytes. In all the studies we reviewed that used Sysmex instrumentation, which is recommended for ABP measurements, stability was shown for 72 hours at 4 ° C for haemoglobin, RBCs and mean curpuscular haemoglobin concentration (MCHC); up to 48 hours for reticulocytes; and up to 24 hours for haematocrit. In one study, Sysmex instrumentation shows stability extended up to 72 hours at 4 ° C for all the parameters. There are

  11. Influence of temperature on oxygen permeation through ion transport membrane to feed a biomass gasifier

    NASA Astrophysics Data System (ADS)

    Antonini, T.; Foscolo, P. U.; Gallucci, K.; Stendardo, S.

    2015-11-01

    Oxygen-permeable perovskite membranes with mixed ionic-electronic conducting properties can play an important role in the high temperature separation of oxygen from air. A detailed design of a membrane test module is presented, useful to test mechanical resistance and structural stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) capillary membrane in the reactor environment. Preliminary experimental results of membrane permeation tests highlight the positive effect of temperature on perovskite materials. This behaviour is also confirmed by a computational model of char combustion with oxygen permeated through the membrane module, when it is placed inside a gasifier reactor to provide the necessary input of heat to the gasification endothermic process. The results show that the temperature affects the oxygen permeation of the BSCF membrane remarkably.

  12. Genetic reference materials and their application to haematology.

    PubMed

    Hawkins, J R; Hawkins, M; Boyle, J; Gray, E; Matejtschuk, P; Metcalfe, P

    2010-07-01

    Genetic investigations are becoming increasingly useful and widespread in many areas of human health. However, there is a worldwide lack of certified reference materials for use in genetic testing, meaning that tests are being run without well validated controls and new assays are more difficult to develop and validate. We have responded to this challenge by starting a programme of developing genetic reference materials (GRMs) for international accreditation and worldwide distribution. Our approach has been to make materials for disorders where testing is commonplace and genotyping errors have been demonstrated. To ensure a continuing supply of DNA, cell lines are established from consenting, phenotypically well-characterised patients and are then grown up in bulk for genomic DNA extraction to yield up to 100 milligrams of DNA. In most cases the DNA is then formulated, freeze-dried and sealed in glass ampoules to ensure greater stability over time and obviate the need for chilled transportation. In this paper we explore the options and routes available to the production of DNA reference materials and describe the establishment of the first internationally recognised reference materials for human genomic DNA, with particular reference to some genetic tests carried out frequently within haematological and cardiovascular laboratories.

  13. Thermophysical properties and oxygen transport in the (Ux,Pu1-x)O2 lattice

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Murphy, S. T.; Rushton, M. J. D.; Grimes, R. W.

    2015-06-01

    Using molecular dynamics, the thermophysical properties of the (Ux,Pu1-x)O2 system have been investigated between 300 and 3200 K. The variation with temperature of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure, are explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's Law is approximately observed for the thermal expansion of the solid solutions below 2000 K. Deviation from Vegard's Law above this temperature occurs due to the different superionic transition temperatures of the solid solutions (2200-2900 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high Pu content. While oxygen diffusivity is higher in pure PuO2 than in pure UO2, lower oxygen defect enthalpies in (Ux,Pu1-x)O2 solid solutions cause higher oxygen mobility than would be expected by interpolation between the diffusivities of the end members. In comparison to UO2 and PuO2 there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (Ux,Pu1-x)O2. Comparison is made with previous work on (Ux,Th1-x)O2.

  14. Experimental Evaluation of Liquid Film Resistance in Oxygen Transport to Microbial Cells

    PubMed Central

    Borkowski, John D.; Johnson, Marvin J.

    1967-01-01

    A membrane probe was used to monitor the dissolved oxygen concentrations in continuous cultures of Candida utilis and Micrococcus roseus growing at low dissolved oxygen concentrations and various agitation levels. For the yeast fermentations, increasing the agitation level within the range of 0.1 to 0.3 w per liter lowered steady-state dissolved oxygen concentrations in the fermentor. The steady-state dissolved oxygen concentration in the fermentor was not influenced by the agitation level within the range of 0.3 to 1.8 w per liter. With M. roseus, no effect of agitation on steady-state dissolved oxygen concentrations in the fermentor was observed within the range of 0.1 to 1.8 w per liter. It was concluded that, under the conditions used, a measurable transfer barrier from the liquid to the yeast cells existed at agitation levels below 0.3 w per liter and that this barrier did not exist at agitation levels above 0.3 w per liter. The transfer barrier from the liquid to the yeast surface could be represented by a stagnant film of liquid 0.6 × 10-4 cm thick surrounding the cell at an agitation level of 0.10 w per liter. This film represented an oxygen concentration drop of 1.3 × 10-7 M from the bulk of the medium to the cells under the experimental conditions. PMID:16349771

  15. In vivo oxygen transport in the normal rabbit femoral arterial wall.

    PubMed Central

    Crawford, D W; Back, L H; Cole, M A

    1980-01-01

    In vivo measurements of tissue oxygen tension were made at 10-micrometer intervals through functioning in situ rabbit femoral arterial walls, using inhalation anesthesia and recessed microcathodes with approximately 4-micrometer external diameters. External environment was controlled with a superfusion well at 30 torr PO2, 35 torr PCO2. Blood pressure, gas tension levels, and blood pH were held within the normal range. Radial PO2 measurements closely fit a mathematical model for unidimensional diffusion into a thick-walled artery with uniform oxygen consumption, and the distances traversed fit measured dimensions of quick-frozen in vivo sections. Using standard values of diffusion and solubility coefficients, mean calculated medial oxygen consumption was 99 nl0/ml-s. Mural oxygen consumption appeared to be related linearly to mean tangential wall stress. Differences in experimental design and technique were compared with previous in vivo and in vitro measurements of wall oxygenation, and largely account for the varying results obtained. Control of environment external to the artery, and maintenance of normally flowing blood in the lumen in vivo appeared critical to an understanding of mural oxygenation in life. If the conditions of this experiment prevailed in arteries with thicker avascular layers, PO2 could have been 20 torr at approximately 156 micrometer and 10 torr at 168 micrometer from blood (average values). Images PMID:7410554

  16. Bedside calculation of hemodynamic parameters with a hand held programmable calculator. Part II: Programs for hemodynamic and oxygen transport parameters computation.

    PubMed

    Laurent, M

    1980-01-01

    Two programs calculating oxygen transport parameters and hemodynamic values respectively are described. They may be used indifferently with HP 67 or HP 97 Hewlett Packard calculators. (Acta anaesth. belg., 1980, 31, 53-59).

  17. The effect of in-plane arterial curvature on blood flow and oxygen transport in arterio-venous fistulae

    NASA Astrophysics Data System (ADS)

    Iori, F.; Grechy, L.; Corbett, R. W.; Gedroyc, W.; Duncan, N.; Caro, C. G.; Vincent, P. E.

    2015-03-01

    Arterio-Venous Fistulae (AVF) are the preferred method of vascular access for patients with end stage renal disease who need hemodialysis. In this study, simulations of blood flow and oxygen transport were undertaken in various idealized AVF configurations. The objective of the study was to understand how arterial curvature affects blood flow and oxygen transport patterns within AVF, with a focus on how curvature alters metrics known to correlate with vascular pathology such as Intimal Hyperplasia (IH). If one subscribes to the hypothesis that unsteady flow causes IH within AVF, then the results suggest that in order to avoid IH, AVF should be formed via a vein graft onto the outer-curvature of a curved artery. However, if one subscribes to the hypothesis that low wall shear stress and/or low lumen-to-wall oxygen flux (leading to wall hypoxia) cause IH within AVF, then the results suggest that in order to avoid IH, AVF should be formed via a vein graft onto a straight artery, or the inner-curvature of a curved artery. We note that the recommendations are incompatible—highlighting the importance of ascertaining the exact mechanisms underlying development of IH in AVF. Nonetheless, the results clearly illustrate the important role played by arterial curvature in determining AVF hemodynamics, which to our knowledge has been overlooked in all previous studies.

  18. Haematological and biochemical variations among eight sighthound breeds.

    PubMed

    Uhríková, I; Lačňáková, A; Tandlerová, K; Kuchařová, V; Řeháková, K; Jánová, E; Doubek, J

    2013-11-01

    The aim of the study was to compare the haematological and biochemical profiles of eight sighthound breeds. Samples were taken from 192 individuals of the sighthound breeds (Whippet, Greyhound, Italian Greyhound, Sloughi, Saluki, Borzoi, Pharaoh Hound and Azawakh). Routine haematological and biochemical examinations were performed and the results were evaluated statistically. There were significant differences in haematology and clinical biochemistry among the sighthound breeds. The most similar laboratory profile to Greyhounds was found in Whippets. Italian Greyhounds had significantly higher alanine aminotransferase activity than other sighthounds, except Pharaoh Hounds. Application of the Greyhound laboratory profile to other sighthounds is not recommended because of the frequent differences in haematological and clinical biochemical reference intervals. © 2013 Australian Veterinary Association.

  19. Trial of Haploidentical Stem Cell Transplantation for Haematological Cancers

    ClinicalTrials.gov

    2016-11-11

    Hodgkin's Lymphoma; Non-Hodgkin's Lymphoma; Acute Myeloid Leukaemia; Acute Lymphoblastic Leukaemia; Myelodysplastic Syndrome; Chronic Myeloid Leukaemia; Chronic Lymphocytic Leukaemia; Acquired Bone Marrow Failure Syndromes; Other Haematological Malignancies; Unrelated HSCT Indicated

  20. The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1- x Sr x Co y Fe1- y O3- δ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Marcano, D.; Mauer, G.; Sohn, Y. J.; Vaßen, R.; Garcia-Fayos, J.; Serra, J. M.

    2016-04-01

    La0.58Sr0.4Co0.2Fe0.8O3 - δ (LSCF) deposited on a metallic porous support by plasma spray-physical vapor deposition is a promising candidate for oxygen-permeation membranes. Ionic transport properties are regarded to depend on the fraction of perovskite phase present in the membrane. However, during processing, the LSCF powder decomposes into perovskite and secondary phases. In order to improve the ionic transport properties of the membranes, spraying was carried out at different oxygen partial pressures p(O2). It was found that coatings deposited at lower and higher oxygen partial pressures consist of 70% cubic/26% rhombohedral and 61% cubic/35% rhombohedral perovskite phases, respectively. During annealing, the formation of non-perovskite phases is driven by oxygen non-stoichiometry. The amount of oxygen added during spraying can be used to increase the perovskite phase fraction and suppress the formation of non-perovskite phases.

  1. Estimating reliable paediatric reference intervals in clinical chemistry and haematology.

    PubMed

    Ridefelt, Peter; Hellberg, Dan; Aldrimer, Mattias; Gustafsson, Jan

    2014-01-01

    Very few high-quality studies on paediatric reference intervals for general clinical chemistry and haematology analytes have been performed. Three recent prospective community-based projects utilising blood samples from healthy children in Sweden, Denmark and Canada have substantially improved the situation. The present review summarises current reference interval studies for common clinical chemistry and haematology analyses. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  2. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network.

    PubMed

    Luo, Xiaoyan; Holdcroft, Steven; Mani, Ana; Zhang, Yongming; Shi, Zhiqing

    2011-10-28

    The effect of ion exchange capacity (IEC) on the water sorption properties of high IEC, short side chain (SSC) PFSA ionomer membranes, and the relationships between water content, proton conductivity, proton mobility, water permeation, oxygen diffusion, and oxygen permeation are investigated. SSC PFSA ionomer membranes possessing 1.3, 1.4, and 1.5 mmol g(-1) IEC are compared to a series of long side chain (LSC) PFSA ionomer membranes ranging in IEC from 0.9 to 1.13 mmol g(-1). At 25 °C, fully-hydrated SSC ionomer membranes are characterized as possessing higher water contents (56-75 vol%), moderate λ values (15-18), high analytical acid concentrations (2-2.8 M), and moderate conductivity (88-115 mS/cm); but lower than anticipated effective proton mobility. Complementary measurements of water permeability, oxygen diffusion, and oxygen permeability also yield lower than expected values given their much higher water contents. Potential benefits afforded by reducing the side chain length of PFSA ionomer membranes, such as increased crystallinity, higher IEC, and high hydrated acid concentration are offset by a less-developed, frustrated hydrophilic percolation network, which provides a motivation for future improvements of transport properties for this class of material. This journal is © the Owner Societies 2011

  3. Atomic oxygen between 80 and 120 km: Evidence for a rapid spatial variation in vertical transport near the ionosphere

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Wasser, B.

    1977-01-01

    Analysis of OGO-6 OI green line photometer results was carried out for 8 cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. Results show a variation on a scale of 6 deg to 8 deg in latitude between regions where the emission rate increases rapidly between 90 and 95 km and regions where it increases slowly from 80 km to 95 km. Latitude-altitude maps of iso-emissivity contours and iso-density contours for oxygen concentration are presented. The latter are computed under 3 assumptions concerning excitation mechanisms. Comparisons of the spatial variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate on a scale of about 1000 km with regions of weak transport near 90 km. In the first case conversion of O to O3 at night appears to be overwhelmed by downward transport of O.

  4. Atomic oxygen between 80 and 120 km - Evidence for a latitudinal variation in vertical transport near the mesopause

    NASA Technical Reports Server (NTRS)

    Wasser, B.; Donahue, T. M.

    1979-01-01

    Analysis of the OGO 6 OI green line nightglow photometer experiment has been carried out for eight cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. The results obtained show that the vertical gradient of the emission rate between 95 and 80 km alternates between regions of very rapid variation and very slow variation spaced on a scale of 5-10 deg of latitude. Maps showing isoemissivity contours and isodensity contours for atomic oxygen concentration in vertical meridional planes are presented. The densities are computed under three assumptions concerning excitation mechanisms. Comparisons of the vertical variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate in latitude with regions of weak transport near 90 km. In the first case, conversion of O to O3 at night appears to be overwhelmed by downward transport of O.

  5. Atomic oxygen between 80 and 120 km - Evidence for a latitudinal variation in vertical transport near the mesopause

    NASA Technical Reports Server (NTRS)

    Wasser, B.; Donahue, T. M.

    1979-01-01

    Analysis of the OGO 6 OI green line nightglow photometer experiment has been carried out for eight cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. The results obtained show that the vertical gradient of the emission rate between 95 and 80 km alternates between regions of very rapid variation and very slow variation spaced on a scale of 5-10 deg of latitude. Maps showing isoemissivity contours and isodensity contours for atomic oxygen concentration in vertical meridional planes are presented. The densities are computed under three assumptions concerning excitation mechanisms. Comparisons of the vertical variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate in latitude with regions of weak transport near 90 km. In the first case, conversion of O to O3 at night appears to be overwhelmed by downward transport of O.

  6. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    PubMed

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales.

  7. [Significance of considering hemoglobin derivatives and acid-base balance in the evaluation of the blood oxygen-transport system].

    PubMed

    Matiushichev, V B; Shamratova, V G; Krapivko, Iu K

    2009-12-01

    Factor analysis was used to study the pattern of relationships of a number of hematological parameters in clinically healthy young subjects and in patients with moderate anemia. The level of total hemoglobin and the concentration of red blood cells were ascertained to control blood oxygen-transporting function in not full measure and these might be referred to as basic characteristics only conventionally. To clarify the picture, these criteria should be supplemented by the information on other parameters. It is concluded that the introduction of the ratio of a number of hemoglobin derivatives, blood oxygen regimen and acid-base balance can substantially increase the validity of clinical opinions as to this blood function.

  8. Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Hagedorn, N. H.

    1974-01-01

    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.

  9. Textured Nanoporous Mo:BiVO4 Photoanodes with High Charge Transport and Charge Transfer Quantum Efficiencies for Oxygen Evolution

    SciTech Connect

    Nair, Vineet; Perkins, Craig L.; Lin, Qiyin; Law, Matt

    2016-04-01

    We have developed a simple spin coating method to make high-quality nanoporous photoelectrodes of monoclinic BiVO4 and studied the ability of these electrodes to transport photogenerated carriers to oxidize sulfite and water. Samples containing molybdenum and featuring [001] out-of-plane crystallographic texture show a photocurrent and external quantum efficiency (EQE) for sulfite oxidation as high as 3.1 mA cm-2 and 60%, respectively, at 1.23 V versus reversible hydrogen electrode. By using an optical model of the electrode stack to accurately determine the fraction of electrode absorptance due to the BiVO4 active layer, we estimate that on average 70 +/- 5% of all photogenerated carriers escape recombination. A comparison of internal quantum efficiency as a function of film processing, illumination direction, and film thickness shows that electron transport is efficient and hole transport limits the photocurrent (hole diffusion length <40 nm). We find that Mo addition primarily improves electron transport and texturing mostly improves hole transport. Mo enhances electron transport by thinning the surface depletion layer or passivating traps and recombination centers at grain boundaries and interfaces, while improved hole transport in textured films may result from more efficient lateral hole extraction due to the texturing itself or the reduced density of deep gap states observed in photoemission measurements. Photoemission data also reveal that the films have bismuth-rich, vanadium- and oxygen-deficient surface layers, while ion scattering spectroscopy indicates a Bi-V-O surface termination. Without added catalysts, the plain BiVO4 electrodes oxidized water with an initial photocurrent and peak EQE of 1.7 mA cm-2 and 30%, respectively, which equates to a hole transfer efficiency to water of >64% at 1.23 V. The electrodes quickly photocorrode during water oxidation but show good stability during sulfite oxidation and indefinite stability in the dark. By improving

  10. Oxygen Dependence and Extravascular Transport of Hypoxia-Activated Prodrugs: Comparison of the Dinitrobenzamide Mustard PR-104A and Tirapazamine

    SciTech Connect

    Hicks, Kevin O. Myint, Hilary; Patterson, Adam V.; Pruijn, Frederik B.; Siim, Bronwyn G.; Patel, Kashyap; Wilson, William R.

    2007-10-01

    Purpose: To compare oxygen dependence and tissue transport properties of a new hypoxia-activated prodrug, PR-104A, with tirapazamine, and to evaluate the implications for antitumor activity when combined with radiotherapy. Methods and Materials: Oxygen dependence of cytotoxicity was measured by clonogenic assay in SiHa cell suspensions. Tissue transport parameters were determined using SiHa multicellular layers. Spatially resolved pharmacokinetic (PK) and pharmacodynamic (PD) models were developed to predict cell killing in SiHa tumors and tested by clonogenic assay 18 h after treatment with the corresponding phosphate ester, PR-104. Results: The K-value (oxygen concentration to halve cytotoxic potency) of PR-104A was 0.126 {+-} 0.021 {mu}M (10-fold lower than tirapazamine at 1.30 {+-} 0.28 {mu}M). The diffusion coefficient of PR-104A in multicellular layers (4.42 {+-} 0.15 x 10{sup -7} cm{sup 2} s{sup -1}) was lower than that of tirapazamine (1.30 {+-} 0.05 x 10{sup -6} cm{sup 2} s{sup -1}) but PK modeling predicted better penetration to hypoxic cells in tumors because of its slower metabolism. The tirapazamine PK/PD model successfully predicted the measured activity in combination with single-dose radiation against SiHa tumors, and the PR-104A model underpredicted the activity, which was greater for PR-104 than for tirapazamine (at equivalent host toxicity) both with radiation and as a single agent. Conclusion: PR-104/PR-104A has different PK/PD properties from tirapazamine and superior activity with single-dose radiotherapy against SiHa xenografts. We have inferred that PR-104A is better able to kill cells at intermediate partial pressure of oxygen in tumors than implied by the PK/PD model, most likely because of a bystander effect resulting from diffusion of its activated metabolites from severely hypoxic zones.

  11. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  12. Aerobic physical exercise for adult patients with haematological malignancies.

    PubMed

    Bergenthal, Nils; Will, Andrea; Streckmann, Fiona; Wolkewitz, Klaus-Dieter; Monsef, Ina; Engert, Andreas; Elter, Thomas; Skoetz, Nicole

    2014-11-11

    Although people with haematological malignancies have to endure long phases of therapy and immobility which is known to diminish their physical performance level, the advice to rest and avoid intensive exercises is still common practice. This recommendation is partly due to the severe anaemia and thrombocytopenia from which many patients suffer. The inability to perform activities of daily living restricts them, diminishes their quality of life and can influence medical therapy. To evaluate the efficacy, safety and feasibility of aerobic physical exercise for adults suffering from haematological malignancies. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2014, Issue 1) and MEDLINE (1950 to January 2014) as well as conference proceedings for randomised controlled trials (RCTs). We included RCTs comparing an aerobic physical exercise intervention, intending to improve the oxygen system, in addition to standard care with standard care only for adults suffering from haematological malignancies. We also included studies that evaluated aerobic exercise in addition to strength training. We excluded studies that investigated the effect of training programmes that were composed of yoga, tai chi chuan, qigong or similar types of exercise. We also excluded studies exploring the influence of strength training without additive aerobic exercise. Additionally, we excluded studies assessing outcomes without any clinical impact. Two review authors independently screened search results, extracted data and assessed the quality of trials. We used risk ratios (RRs) for adverse events and 100-day survival, standardised mean differences for quality of life (QoL), fatigue, and physical performance, and mean differences for anthropometric measurements. Our search strategies identified 1518 potentially relevant references. Of these, we included nine RCTs involving 818 participants. The potential risk of bias in these trials is unclear, due

  13. Two-dimensional concentration distribution of reactive oxygen species transported through a tissue phantom by atmospheric-pressure plasma-jet irradiation

    NASA Astrophysics Data System (ADS)

    Kawasaki, Toshiyuki; Sato, Akihiro; Kusumegi, Shota; Kudo, Akihiro; Sakanoshita, Tomohiro; Tsurumaru, Takuya; Uchida, Giichiro; Koga, Kazunori; Shiratani, Masaharu

    2016-07-01

    The two-dimensional concentration distribution of reactive oxygen species (ROSs) transported through an agarose-film tissue phantom by atmospheric-pressure plasma-jet irradiation is visualized using a KI-starch gel reagent. Oxygen addition to helium enhances ROS transportation through the film. A radial ROS distribution pattern at the plasma-irradiated film surface changes into a doughnut-shaped pattern after passing through the film. The ROS transportation speed is 0.14-0.2 mm/min. We suggest that there are two types of ROS transportation pathways in the plasma-irradiated film: linear and circular. The majority of ROSs are transported through the circular pathway. ROS concentration distributions changed markedly with irradiation distance. Diffusive ROS transportation due to a concentration gradient is negligible in plasma-irradiated films.

  14. Avoiding chromium transport from stainless steel interconnects into contact layers and oxygen electrodes in intermediate temperature solid oxide electrolysis stacks

    NASA Astrophysics Data System (ADS)

    Schlupp, Meike V. F.; Kim, Ji Woo; Brevet, Aude; Rado, Cyril; Couturier, Karine; Vogt, Ulrich F.; Lefebvre-Joud, Florence; Züttel, Andreas

    2014-12-01

    We investigated the ability of (La0.8Sr0.2)(Mn0.5Co0.5)O3-δ (LSMC) and La(Ni0.6Fe0.4)O3-δ (LNF) contact coatings to avoid the transport of Cr from steel interconnects to solid oxide electrolysis electrodes, especially to the anode. The transport of chromium from commercial Crofer 22 APU (ThyssenKrupp) and K41X (AISI441, Aperam Isbergues) steels through LSMC and LNF contact coatings into adjacent (La0.8Sr0.2)MnO3-δ (LSM) oxygen electrodes was investigated in an oxygen atmosphere at 700 °C. Chromium concentrations of up to 4 atom% were detected in the contact coatings after thermal treatments for 3000 h, which also lead to the presence of chromium in adjacent LSM electrodes. Introduction of a dense (Co,Mn)3O4 coating between steel and contact coating was necessary to prevent the diffusion of chromium into contact coatings and electrodes and should lead to extended stack performance and lifetime.

  15. Transport properties and metal-insulator transition in oxygen deficient LaNiO3: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Misra, D.; Kundu, T. K.

    2016-09-01

    Density functional theory with appropriate functional has been employed to investigate the metal to insulator transition in oxygen deficient LaNiO3-x (x = 0.0, 0.25, 0.5, 1.0) compounds. While the metallic nature of LaNiO3 is characterized by the low temperature Fermi liquid behavior of resistivity and a finite density of states at the Fermi level, the density of states and the transport properties clearly identify LaNiO2.75 as a semiconductor, and LaNiO2.5 as an insulator, which is followed by another insulator to semiconductor transition with further increase of x to ‘1’ in LaNiO2. This oxygen vacancy controlled metal to insulator transition is explained on the basis of non-adiabatic polaronic transport. From the covalency metric calculation of the chemical bonding and the Bader charge transfer analysis, this metal to insulator transition is attributed to the enhanced covalent part in the chemical bonding and reduced charge transfer from Ni to O atoms in LaNiO3-x compounds.

  16. 2017 Military Supplement Mini-Review: Perfluorocarbons, Oxygen Transport and Microcirculation in Low Flow States: In Vivo and In Vitro Studies.

    PubMed

    Filho, Ivo P Torres

    2017-09-19

    The in vivo study of microvascular oxygen transport requires accurate and challenging measurements of several mass transfer parameters. Although recommended, blood flow and oxygenation are typically not measured in many studies where treatments for ischemia are tested. Therefore, the aim of this communication is to briefly review cardinal aspects of oxygen transport, and the effects of perfluorocarbon treatment on blood flow and oxygenation based mostly on studies performed in our laboratory. Since physiologically relevant events in oxygen transport take place at the microvascular level, we implemented the phosphorescence quenching technique coupled with non-invasive intravital videomicroscopy for quantitative evaluation of these events in vivo. Rodent experimental models and various approaches have been employed to induce ischemia including hemorrhage, micro and macro-embolism, as well as microvessel occlusion. Measurements show decrease in microvascular blood flow as well as intravascular and tissue oxygen partial pressure (PO2) following these procedures. In order to minimize or reverse the effects of ischemia and hypoxia, artificial oxygen carriers such as different perfluorocarbons were tested. Well-defined end-points such as blood flow and tissue PO2 were measured since they have significant effect on tissue survival and outcome. In several cases, enhancement of flow and oxygenation could be demonstrated. Similar results were found in vitro: Perfluorocarbon emulsion mixed with blood (from healthy donors and sickle cell disease patients) enhanced oxygen transport. In summary, perfluorocarbons may provide beneficial effects in these models by mechanisms at the microvascular level including facilitated diffusion and bubble reabsorption leading to improved blood flow and oxygenation.

  17. A numerical transport model for oxygen- and nitrate-based respiration linked to substrate and nutrient availability in porous media

    NASA Astrophysics Data System (ADS)

    Widdowson, Mark A.; Molz, Fred J.; Benefield, Larry D.

    1988-09-01

    A model to simulate organic carbon biodegradation by facultative bacteria in saturated porous media using oxygen- and/or nitrate-based respiration is developed. Basic assumptions incorporated into the model concept include a simulated particle-bound microbial population comprised of heterotrophic, facultative bacteria in which metabolism is controlled by lack of either an organic carbon-electron donor source (substrate), electron acceptor (O2 and/or NO3-), or mineral nutrient (NH4+), or all three simultaneously. A system of nine coupled nonlinear equations is developed that describe the processes of transport, degradation, and microbial growth and decay. The solution technique is highly resistant to numerical dispersion and oscillation when applied to the advection-dispersion equation, even for large Peclet numbers (100). Microbial utilization of materials is assumed to occur by intrapore scale diffusion of materials across a diffusion boundary layer separating the particle-bound microcolonies of bacteria from the pore fluid. Denitrifying enzyme inhibition is modeled as a function of the oxygen concentration associated with the biomass. Simulations of oxygen-based, nitrate-based, and multiple-electron acceptor respiration are presented for a hypothetical experiment using kinetic parameter value estimates available from the literature.

  18. Microscopic insights into the pathways of mass transport in oxygen-induced reversible morphologic transformation of faceted rhenium surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, Wenhua; Bartynski, Robert

    2014-03-01

    The shape (morphology) of supported metal nanoparticles often varies under reaction conditions, which in turn can induce changes in their catalytic activity. Faceted metal surfaces, free of any support materials, can be used as model catalysts or templates for synthesizing new catalysts due to their well-defined facet structures and controlled facet sizes on the nanometer scale. Here we present reversible morphology changes on a faceted Re(11 2 1) single crystal surface under ultra-high vacuum (UHV) conditions, which are controlled by tuning adsorbed oxygen coverage, using low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). We find microscopic structural connections between the various morphologies on the faceted Re(11 2 1) surface, which provide a natural explanation for the mass transport pathways in the structural evolution. Our findings motivate a more detailed future exploration of oxygen-induced morphology transitions on catalytically active metal single crystal surfaces, which is of importance for development of new catalysts operating under oxygen rich conditions. Work supported by the U.S. Department of EnOffice of Basic Energy Sciences (Grant No. DE-FG02-93ER14331).

  19. Symmetry breaking in nanostructure development of carbogenic molecular sieves: Effects of morphological pattern formation on oxygen and nitrogen transport

    SciTech Connect

    Kane, M.S.; Goellner, J.F.; Foley, H.C.

    1996-08-01

    A comprehensive study has been undertaken to establish the primary factors that control transport of oxygen and nitrogen in polymer-derived carbogenic molecular sieves (CMS). Characterization of the nanostructure of CMS derived from poly(furfuryl alcohol) (PFA) indicates that significant physical and chemical reorganization occurs as a function of synthesis temperature. Spectroscopic measurements show a drastic decrease in oxygen and hydrogen functionality with increasing pyrolysis temperature. Structural reorganization and elimination of these heteroatoms lead to a measurable increase in the unpaired electron density in these materials. High-resolution transmission electron microscopy and powder neutron diffraction are used to probe the corresponding changes in the physical structural features in the CMS. These indicate that as the pyrolysis temperature is increased, the structure of the CMS transforms from one that is disordered and therefore highly symmetric to one that is more ordered on a length scale of 15 {Angstrom} and hence less symmetric. This structural transformation process, one of symmetry breaking and pattern formation, if often observed in other nonlinear dissipative systems, but not in solids. Symmetry breaking provides the driving force for these high-temperature reorganizations, but unlike most dissipative systems, these less-symmetric structures remain frozen in place when energy is no longer applied. The impact of these nanostructural reorganizations on the molecular sieving character of the CMS is studied in terms of the physical separation of oxygen and nitrogen. 40 refs., 14 figs., 3 tabs.

  20. Misconceptions concerning the behavior, fate and transport of the fuel oxygenates TBA and MTBE

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Sloan, R.

    2003-04-01

    The release of gasoline from underground storage tanks and the subsequent appearance of dissolved constituents in drinking water has focused attention on the use of MTBE in reformulated fuels. Natural biodegradation of MTBE in soil, photo-oxidation in the atmosphere or chemical oxidation during remediation of gasoline releases can produce the intermediate tertiary butyl alcohol (TBA). TBA is also a fuel oxygenate and can be found as a co-product in MTBE synthesized from methanol and TBA. Because the physical properties of ethers and alcohols differ somewhat from the predominant hydrocarbon compounds in gasoline, misconceptions have developed about the behavior of fuel oxygenates in storage and in the subsurface. Critical review of several misconceptions about MTBE and TBA in gasoline reveals the concepts were conceived to rationalize early field observations and/or incomplete data sets. Closer scrutiny, in light of recent laboratory investigations, field data, case studies and world literature, clarifies these misconceptions and assumptions about the behavior of ether oxygenates and their degradation products in the environment. Commonly held misconceptions focus on four general areas of fuel and fuel oxygenate management: storage/dispensing, hydrology, remediation, and health effects. Storage/dispensing misconceptions address materials stability to ethers and alcohols in fuel and the environmental forensics of fuel systems failure. Groundwater and hydrology misconceptions deal with plume dynamics and the impact of fuel on drinking water resources. Remediation misconceptions focus on the performance of traditional hydrocarbon remediation technologies, recent developments in biodegradation and natural attenuation, drivers of remedial design and remediation costs. Health effects misconceptions address both acute and chronic exposure risk evaluations by national and international health agencies. Generally MTBE and TBA are manageable by the same processes and

  1. Cardiac output and regional oxygen transport in the acutely hypoxic conscious sheep.

    PubMed

    Nesarajah, M S; Matalon, S; Krasney, J A; Farhi, L E

    1983-08-01

    We have studied the effects of severe acute hypoxemia (PaO2 = 25 torr) on cardiac output (Q), heart rate (HR), left ventricular contractility ((dP/dt)max/P), intravascular pressures and blood flow to the heart, brain, abdominal viscera, skin and respiratory and non-respiratory muscles in twelve conscious ewes that breathed a mixture of 8% O2 and 92% N2 for 20 min. Q, HR, (dP/dt)max/P) and systemic and pulmonary arterial pressures increased. Total peripheral resistance decreased while pulmonary vascular resistance remained unchanged. Coronary, cerebral, respiratory and nonrespiratory muscle and adrenal flows increased, in association with a decrease in regional vascular resistances, while the flows to the kidney and other abdominal viscera remained unchanged. The concentration of total plasma catecholamines doubled, indicating that the sympathetic nervous system plays a major role in the hemodynamic response to this level of hypoxia. Increased oxygen delivery to the heart (31%) and respiratory muscles (44%) were brought about by increases in both the magnitude and the redistribution of Q, the latter being the more important of the two mechanisms. In contrast, both mechanisms contributed equally to the amount of oxygen delivered to the brain and nonrespiratory muscles. We concluded that in acute hypoxemia, both the increase in Q and its regional redistribution contribute to the delivery of oxygen to the various tissues.

  2. The effects of convection and oxygen presence on thermal testing of thin-shelled transportation packages

    SciTech Connect

    Feldman, M.R.

    1995-11-01

    Several experiments were performed in an attempt to determine the effects of both convection and oxygen levels during hypothetical thermal accident testing of thin-shelled Celotex{trademark}-based packages in furnaces. Obsolete DT-22 packages were used and experiments were performed in two separate furnaces, one gas-fired and one electric, each of which has previously been used for this type of testing. Oxygen levels were varied and measured in the gas-fired furnace, while the electric furnace was operated in a standard manner. The gas-fired furnace is constructed so as to induce a very strong convective field within. After testing, the packages were evaluated by several methods to determine the effects of the thermal testing on the package. In general, there were no differences found for the packages tested in the two different furnaces or for packages tested in the same furnace under different conditions. Therefore, after careful consideration, it is concluded that thermal testing can still be performed in electric furnaces in which the oxygen supply is not refurbished and there is no forced convection heat transfer.

  3. Gas-liquid slug-flow oxygen transport and non-invasive biomass estimation in hollow-fiber reactors

    SciTech Connect

    Smith, W.J.

    1989-01-01

    Maintenance of non-limiting concentrations of dissolved gases at the surface of a particulate biocatalyst is a formidable barrier to the development of ultra-compact bioreactors. The method proposed here for supplying dissolved gases resembles the microcirculation of vertebrates. In the microcirculation, two phases, oxygen-rich hemoglobin-packed erythrocytes and nutrient-rich plasma, pass alternately through the capillaries. In slug-flow membrane bioreactors, two phases, oxygen-rich gas bubbles and slugs of aqueous nutrient medium, flow alternately on one side of a semipermeable membrane while cells grow on the opposite side. Protein synthesis rates were measured for Bacillus licheniformis 749C cultures immobilized in slug-flow hollow-fiber membrane reactors. The cultures required oxygen for growth and protein synthesis. A mathematical model of slug-flow identified the operating conditions corresponding to either continuous or periodic oxygen supply within the reactors. Synthesis rates within the slug-flow reactors were higher than those predicted by the model; the model apparently underestimated concentrations of soluble nutrients in the biomass. Non-invasive estimates of the total immobilized biomass are needed to monitor and control the biomass density, and hence the transport properties of the biomass phase. Investigators have used two non-invasive methods: in situ monitoring of an aggregate property, such as electrical conductivity; and inferential estimates based on substrate consumption and metabolic models. Techniques were developed to estimate immobilized biomass concentrations and growth rates from sulfur mass balances. Additionally, global mass balances showed that time-averaged biomass specific growth rates can be estimated from effluent concentrations of any substrate with a finite yield coefficient.

  4. Spleen in haematological malignancies: spectrum of imaging findings

    PubMed Central

    Saboo, S S; Krajewski, K M; O'Regan, K N; Giardino, A; Brown, J R; Ramaiya, N; Jagannathan, J P

    2012-01-01

    Imaging morphology and metabolic activity of splenic lesions is of paramount importance in patients with haematological malignancies; it can alter tumour staging, treatment protocols and overall prognosis. CT, MRI and positron emission tomography (PET)/CT have been shown to be powerful tools for the non-invasive assessment of splenic involvement in various haematological malignancies. Since many haematological malignancies and non-neoplastic conditions can involve the spleen and imaging manifestations can overlap, imaging and clinical findings outside of the spleen should be looked for to narrow the differential diagnosis; confirmation can be obtained by pathological findings. Radiologists should be familiar with the cross-sectional imaging patterns of haematological malignancies involving the spleen as well as non-neoplastic splenic findings common in these patients to facilitate their care and follow-up. This pictorial review provides the common and uncommon imaging appearances and complications of various haematological malignancies involving the spleen on CT, MRI and PET/CT, and common pitfalls in diagnosis. PMID:22096219

  5. Haematological Reference Intervals in a Multiethnic Population

    PubMed Central

    Ambayya, Angeli; Su, Anselm Ting; Osman, Nadila Haryani; Nik-Samsudin, Nik Rosnita; Khalid, Khadijah; Chang, Kian Meng; Sathar, Jameela; Rajasuriar, Jay Suriar; Yegappan, Subramanian

    2014-01-01

    Introduction Similar to other populations, full blood count reference (FBC) intervals in Malaysia are generally derived from non-Malaysian subjects. However, numerous studies have shown significant differences between and within populations supporting the need for population specific intervals. Methods Two thousand seven hundred twenty five apparently healthy adults comprising all ages, both genders and three principal races were recruited through voluntary participation. FBC was performed on two analysers, Sysmex XE-5000 and Unicel DxH 800, in addition to blood smears and haemoglobin analysis. Serum ferritin, soluble transferrin receptor and C-reactive protein assays were performed in selected subjects. All parameters of qualified subjects were tested for normality followed by determination of reference intervals, measures of central tendency and dispersion along with point estimates for each subgroup. Results Complete data was available in 2440 subjects of whom 56% (907 women and 469 men) were included in reference interval calculation. Compared to other populations there were significant differences for haemoglobin, red blood cell count, platelet count and haematocrit in Malaysians. There were differences between men and women, and between younger and older men; unlike in other populations, haemoglobin was similar in younger and older women. However ethnicity and smoking had little impact. 70% of anemia in premenopausal women, 24% in postmenopausal women and 20% of males is attributable to iron deficiency. There was excellent correlation between Sysmex XE-5000 and Unicel DxH 800. Conclusion Our data confirms the importance of population specific haematological parameters and supports the need for local guidelines rather than adoption of generalised reference intervals and cut-offs. PMID:24642526

  6. Zygomycosis in Immunocompromised non-Haematological Patients

    PubMed Central

    Petrikkos, George; Drogari-Apiranthitou, Miranda

    2011-01-01

    Zygomycoses caused by fungi of the mucorales order (mucormycoses) are emerging fungal diseases with a high fatality rate. The most important risk factors include neutropenia or functional neutropenia, diabetic ketoacidosis, iron overload, major trauma, prolonged use of corticosteroids, illicit intravenous drug (ID) use, neonatal prematurity, malnourishment, and maybe a previous exposure to antifungal agents with no activity against zygomycetes, such as voriconazole and echinocandins. A high index of suspicion is crucial for the diagnosis, as prompt and appropriate management can considerably reduce morbidity and mortality. Suspicion index can be increased through recognition of the differential patterns of clinical presentation. In the non- haematological immunocompromised patients, mucormycosis can manifest in various clinical forms, depending on the underlying condition: mostly as rhino-orbital or rhino-cerebral in diabetes patients, pulmonary infection in patients with malignancy or solid organ transplantation, disseminated infection in iron overloaded or deferoxamine treated patients, cerebral - with no sinus involvement - in ID users, gastrointestinal in premature infants or malnourishment, and cutaneous after direct inoculation in immunocompetent individuals with trauma or burns. Treating a patient’s underlying medical condition and reducing immunosuppression are essential to therapy. Rapid correction of metabolic abnormalities is mandatory in cases such as uncontrolled diabetes, and corticosteroids or other immunosuppressive drugs should be discontinued where feasible. AmphotericinB or its newer and less toxic lipid formulations are the drugs of choice regarding antifungal chemotherapy, while extensive surgical debridement is essential to reduce infected and necrotic tissue. A high number of cases could be prevented through measures including diabetes control programmes and proper pre- and post-surgical hygiene. PMID:21625316

  7. Oxygen, water, and sodium chloride transport in soft contact lenses materials.

    PubMed

    Gavara, Rafael; Compañ, Vicente

    2017-11-01

    Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.

  8. Effects of furnace pressure on oxygen and carbon coupled transport in an industrial directional solidification furnace for crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Qi, Xiaofang; Liu, Lijun; Ma, Wencheng

    2017-06-01

    Transient global simulations were carried out to study the effects of the furnace pressure on oxygen (O) and carbon (C) coupled transport in an industrial directional solidification (DS) furnace for silicon ingots. The global simulations of impurity transport, taking into account the O and C impurity segregation, chemical reaction on the graphite surface, evaporation of SiO and dissolution of CO at the melt-gas surface, were based on a fully coupled calculation of the thermal and flow fields of the DS furnace. It was found that the furnace pressure affects the intensity and structure of argon flow above the melt surface, which further influences the O and C impurities transport in the DS furnace. The O concentration in the grown ingot decreases with the decreasing furnace pressure. While the C concentration first decreases, and then increases when the pressure is smaller than 200 mbar due to the strong diffusion effect of the CO through the gap between crucible and cover. The numerical predictions of O and C concentrations agree well with the experimental measurements.

  9. Investigating atmospheric transport processes using cosmogenic 35S and oxygen isotopic anomaly (Δ17O) in sulfate

    NASA Astrophysics Data System (ADS)

    Hill-Falkenthal, J. C.; Pandey, A.; Coupal, E.; Kim, S. D.; Dominguez, G.; Thiemens, M. H.

    2010-12-01

    Sulfate aerosols have been recognized to possess hazardous impact on both climate and human health. Improved understanding of the SO2 residence time and sulfate aerosol transport is needed for assessing its influences on climate. Cosmogenically produced 35S (half-life~87 days)1 measurements have been used to understand the atmospheric transport process, boundary layer dynamics and its effect on the tropospheric SO2 oxidation rate constant. Our method involves determining 35S in gaseous SO2 and aerosol sulfate samples collected twice a week at Scripps Institute of Oceanography Pier (La Jolla, CA) for a year along with the determination of oxygen isotopes in both coarse and fine particle samples. The oxygen isotopes measurement in sulfate and 35S measurements were done by isotope ratio mass spectrometry and low-noise liquid scintillation spectroscopy2, respectively. The data show that 35S activity is significantly different for coarse and fine particles, with the latter possessing higher activity as it is mainly produced from the gas phase oxidation of SO2 at higher altitude. The fluctuation in 35S activity in fine particles indicates mixing of air masses from higher altitude. The coarse particles show nearly constant 35S activity which is either due to the constant uptake rate of SO2 by sea salt aerosol or the coagulation of fine particles together. The normalized activity 35S/S is about 5 times higher in both coarse and fine particles during Santa Ana wind event. Santa Ana wind is characterized by low humidity (<20%) and relatively high temperature and may have an impact on SO2 oxidation. We are investigating the sulfate oxygen isotope signature and the correlation between oxygen anomaly and 35S activity in sulfate. 1. Lal D., P. K. Malhotra, and B. Peters, On the production of radioisotopes in the atmosphere by cosmic radiation and their application in meteorology, J. Atmos. AndTerrest. Phys. 12, 306, 1958 2. Brother, L.A., G. Dominguez, A. Abramian, A. Corbin

  10. Visualizing dissolved oxygen transport for liquid ventilation in an in vitro model of the human airways

    NASA Astrophysics Data System (ADS)

    Janke, T.; Bauer, K.

    2017-04-01

    Up until to now, the measurement of dissolved oxygen concentrations during liquid ventilation is limited to the determination of averaged concentrations of the liquid entering or leaving the body. The work presented in this paper aims to extend the possible measurement techniques in the research of liquid ventilation. Therefore optical measurements of the dissolved oxygen concentration, using a luminescent sensor dye, are performed. The preparation of a suitable sensor liquid, based on the metal complex Dichlorotris(1,10)-(phenanthroline)ruthenium(II), is presented. A transparent simplified human lung geometry is used for conducting the experiments. Inspiratory as well as expiratory flow at three different constant flow rates is investigated, covering the flow regimes \\text{Re}=83 -333 and \\text{Pe}=33 300 -133 000. The applied measurement technique is capable to reveal distinctive concentration patterns during inspiration and expiration caused by the laminar flow characteristics. Allowing a sufficiently long flow duration, local concentration inhomogeneities disappear and an exponential rise and decay of the mean values can be observed for inspiration and expiration.

  11. Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2010-01-01

    Natural selection often promotes evolutionary innovation by coopting preexisting genes for new functions, and this process may be greatly facilitated by gene duplication. Here we report an example of cooptive convergence where paralogous members of the globin gene superfamily independently evolved a specialized O2 transport function in the two deepest branches of the vertebrate family tree. Specifically, phylogenetic evidence demonstrates that erythroid-specific O2 transport hemoglobins evolved independently from different ancestral precursor proteins in jawed vertebrates (gnathostomes) and jawless fish (cyclostomes, represented by lamprey and hagfish). A comprehensive phylogenetic analysis of the vertebrate globin gene superfamily revealed that the erythroid hemoglobins of cyclostomes are orthologous to the cytoglobin protein of gnathostome vertebrates, a hexacoordinate globin that has no O2 transport function and that is predominantly expressed in fibroblasts and related cell types. The phylogeny reconstruction also revealed that vertebrate-specific globins are grouped into four main clades: (i) cyclostome hemoglobin + cytoglobin, (ii) myoglobin + globin E, (iii) globin Y, and (iv) the α- and β-chain hemoglobins of gnathostomes. In the hemoglobins of gnathostomes and cyclostomes, multisubunit quaternary structures provide the basis for cooperative O2 binding and allosteric regulation by coupling the effects of ligand binding at individual subunits with interactions between subunits. However, differences in numerous structural details belie their independent origins. This example of convergent evolution of protein function provides an impressive demonstration of the ability of natural selection to cobble together complex design solutions by tinkering with different variations of the same basic protein scaffold. PMID:20660759

  12. Adjustments in oxygen transport during head-out immersion in water at different temperatures.

    PubMed

    Choukroun, M L; Varene, P

    1990-04-01

    Respiratory gas exchange was investigated in human subjects immersed up to the shoulders in water at different temperatures (Tw = 25, 34, and 40 degrees C). Cardiac output (Qc) and pulmonary tissue volume (Vti) were measured by a rebreathing technique with the inert gas Freon 22, and O2 consumption (VO2) was determined by the closed-circuit technique. Arterial blood gases (PaO2, PaCO2) were analyzed by a micromethod, and alveolar gas (PAO2) was analyzed during quiet breathing with a mass spectrometer. The findings were as follows. 1) Immersion in a cold bath had no significant effect on Qc compared with the value measured at Tw = 34 degrees C, whereas immersion in a hot bath led to a considerable increase in Qc. Vti was not affected by immersion at any of the temperatures tested. 2) A large rise in metabolic rate VO2 was only observed at Tw = 25 degrees C (P less than 0.001). 3) Arterial blood gases were not significantly affected by immersion, whatever the water temperature. 4) O2 transport during immersion is affected by two main factors: hydrostatic pressure and temperature. Above neutral temperature, O2 transport is improved because of the marked increase in Qc resulting from the combined actions of hydrostatic counter pressure and body heating. Below neutral temperature, O2 transport is altered; an increase in O2 extraction of the tissue is even calculated.

  13. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport.

    PubMed

    Amadei, Carlo Alberto; Montessori, Andrea; Kadow, Julian P; Succi, Sauro; Vecitis, Chad D

    2017-04-06

    Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photoreduction and sonication techniques and were quantitatively correlated, offering a valuable tool for accelerating characterization. Chemical GO modification allows for fine control of GO oxidation state, allowing control of GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOALs characterized by different GOAL chemistry and morphology and indicates that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (thousands of square nanometers) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GOAL and can be used to rationally design more effective and efficient GO membranes.

  14. Using oxygen-18 to study DOC transport in a macroporous forest soil

    NASA Astrophysics Data System (ADS)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Barth, Johannes A. C.; Sanda, Martin; Marx, Anne; Jankovec, Jakub

    2017-04-01

    Quantitative prediction of water movement and fluxes of dissolved substances such as organic carbon at both the hillslope and the catchment scales remains a challenge due to complex boundary conditions and soil spatial heterogeneity. In this study, water molecule 18O/16O ratios (expressed as δ18O) and dissolved organic carbon (DOC) concentrations in stormflow were analyzed using a physically-based modeling approach. A one-dimensional dual-continuum vertical flow and transport model was used to simulate the subsurface transport processes in a macroporous forest hillslope soil over a period of 2.5 years. The 18O isotope was used as a conservative natural tracer to contrast the behavior of DOC that undergoes complex transformations in the soil environment. The model was applied to describe the transformation of input signals of δ18O and DOC into output signals observed in the hillslope stormflow. To quantify uncertainty associated with the model parameterization, Monte Carlo analysis in conjunction with Latin hypercube sampling was performed. δ18O variations in hillslope discharge and in soil pore water were predicted reasonably well. Despite the complex nature of microbial transformations that caused uncertainty in model parameters and subsequent prediction of DOC transport, the simulated temporal patterns of DOC concentration in stormflow showed similar behavior to that reflected in the observed DOC fluxes. Due to preferential flow, the contribution of the hillslope DOC export was higher than the amounts that are usually found in the available literature.

  15. Haematology of the racing Thoroughbred in Australia 2: haematological values compared to performance.

    PubMed

    Revington, M

    1983-04-01

    Eight hundred and sixteen blood samples were collected from Thoroughbred racehorses at the race track, 1 to 3 h before racing, and subjected to routine haematological examination. Attempts were made to correlate the haemogram with subsequent performance. Races were classified according to age, class and distance, and performances were grouped according to distance from the winner. Intra- and interclass comparisons were made but no relationship emerged between racing performance and the haemogram. The haemograms of individual horses on different occasions were compared with subsequent performance, but no consistent or significant relationships were apparent. The extent of the rise in red and white cell parameters between horses at rest and immediately before racing were examined as indicators of performance, but no correlations found. It was concluded that under the conditions of this survey no relationship existed between the haemogram of the Thoroughbred racehorse and its racing performance.

  16. Re-evaluation of the H+/site ratio of mitochondrial electron transport with the oxygen pulse technique.

    PubMed

    Brand, M D; Reynafarje, B; Lehninger, A L

    1976-09-25

    The number of protons ejected per pair of electrons passing each energy-conserving site in the electron transport chain (the H+/site ratio) has been investigated in rat liver mitochondria by means of the oxygen pulse technique introduced by Mitchell and Moyle (1967) (Biochem. J. 105, 1147-1162). The usual H+/site values of 2.0 observed by this method were found to be substantially underestimated as a result of the influx of phosphate into the mitochondria. This was shown by three different kinds of experiments. 1. Addition of N-ethylmaleimide or mersalyl, inhibitors of mitochondrial phosphate transport, increased the H+/site ratio from 2.0 to 3.0. The dependence of this effect on the concentration of either inhibitor was identical with that for inhibition of phosphate transport. Added phosphate diminished the H+/site ratio to values below 2.0 in the absence of N-ethylmaleimide. N-Ethylmaleimide protected the elevated H+/site ratio of 3.0 against the deleterious effect of added phosphate, but did not prevent a lowering effect of weak acid anions such as 3-hydroxybutyrate. 2. Prior washing of mitochondria to remove the endogenous phosphate that leaks out during the anaerobic preincubation led to H+/site ratios near 3.0, which were not increased by N-ethylmaleimide. Addition of low concentrations of phosphate to such phosphate-depleted mitochondria decreased the H+/site ratio to 2.0; addition of N-ethylmaleimide returned the ratio to 3.0. 3. Lowering the temperature to 5 degrees, which slows down phosphate transport, led to H+/site values of 3.0 even in the absence of N-ethylmaleimide. The H+/site ratio of 3.0 observed in the absence of phosphate movements was not dependent on any narrowly limited set of experimental conditions. It occurred with either Ca2+ or K+ (in the presence of valinomycin) as mobile permeant cation. It was independent of the concentration of succinate, oxygen, mitochondria, or rotenone, additions of Ca2+, Li+, or Na+ and was independent of

  17. Spectroscopic investigation of oxygen- and water-induced electron trapping and charge transport instabilities in n-type polymer semiconductors.

    PubMed

    Di Pietro, Riccardo; Fazzi, Daniele; Kehoe, Tom B; Sirringhaus, Henning

    2012-09-12

    We present an optical spectroscopy study on the role of oxygen and water in electron trapping and storage/bias-stress degradation of n-type polymer field-effect transistors based on one of the most widely studied electron transporting conjugated polymers, poly{[N,N9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bisthiophene)} (P(NDI2OD-T2)). We combine results obtained from charge accumulation spectroscopy, which allow optical quantification of the concentration of mobile and trapped charges in the polymer film, with electrical characterization of P(NDI2OD-T2) organic field-effect transistors to study the mechanism for storage and bias-stress degradation upon exposure to dry air/oxygen and humid nitrogen/water environments, thus separating the effect of the two molecules and determining the nature of their interaction with the polymer. We find that the stability upon oxygen exposure is limited by an interaction between the neutral polymer and molecular oxygen leading to a reduction in electron mobility in the bulk of the semiconductor. We use density functional theory quantum chemical calculations to ascribe the drop in mobility to the formation of a shallow, localized, oxygen-induced trap level, 0.34 eV below the delocalized lowest unoccupied molecular orbital of P(NDI2OD-T2). In contrast, the stability of the polymer anion against water is limited by two competing reactions, one involving the electrochemical oxidation of the polymer anion by water without degradation of the polymer and the other involving a radical anion-catalyzed chemical reaction of the polymer with water, in which the electron can be recycled and lead to further degradation reactions, such that a significant portion of the film is degraded after prolonged bias stressing. Using Raman spectroscopy, we have been able to ascribe this to a chemical interaction of water with the naphthalene diimide unit of the polymer. The degradation mechanisms identified here

  18. Normal and clinical haematology of captive cranes (Gruiformes).

    PubMed

    Hawkey, C; Samour, J H; Ashton, D G; Hart, M G; Cindery, R N; Ffinch, J M; Jones, D M

    1983-01-01

    Fall blood counts on 56 clinically normal cranes of nine different species have provided reference values for the interpretation of haematological changes in 13 cranes presenting with abnormal clinical signs. Hypochromic anaemia, heterophilia and lymphocytosis were found in birds with probable Mycobacterium avium infection and heterophilia and lymphocytosis in birds with bumblefoot, arthritis, nephrosis and cardiac myopathy. In several of the cases with heterophilia and lymphocytosis the fibrinogen level was also raised. A senile bird with thickened heart valves showed macrocytosis. The potential diagnostic value of clinical haematology in cranes is discussed.

  19. Autoimmune haematological disorders in two Italian children with Kabuki syndrome.

    PubMed

    Giordano, Paola; Lassandro, Giuseppe; Sangerardi, Maria; Faienza, Maria Felicia; Valente, Federica; Martire, Baldassarre

    2014-01-25

    Kabuki syndrome (also called Niikawa-Kuroki syndrome) is a rare genetic disease described for the first time in Japan, characterised by anomalies in multiple organ systems and often associated with autoimmune disorders and impaired immune response. We herein report the clinical history, the therapeutic approach and the outcome of two children with Kabuki syndrome who developed autoimmune haematological disorders (haemolytic anaemia and immune thrombocytopenia). Factors regarding differential diagnosis and interventions in better management of this syndrome and its complications are discussed. This is the first report of Italian children with autoimmune haematological disorders complicating Kabuki syndrome.

  20. Decreases in Maximal Oxygen Uptake Following Long-duration Spaceflight: Role of Convective and Diffusive O2 Transport Mechanisms.

    PubMed

    Ade, Carl J; Broxterman, Ryan M; Moore, Alan; Barstow, Thomas J

    2017-02-02

    We have previously predicted that the decrease in maximal oxygen uptake (VO2max) that accompanies time in microgravity reflects decrements in both convective and diffusive O2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O2 transport (QO2) and O2 diffusing capacity (DO2) following long duration spaceflight. In 9 astronauts, resting hemoglobin concentration ([Hb]), VO2max, maximal cardiac output (QTmax), and differences in arterial and venous O2 contents (CaO2-CvO2) were obtained retrospectively for International Space Station Increments 19 through 33 (April 2009-November 2012). QO2 and DO2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. VO2max significantly decreased from pre- to post-flight (-53.9 ± 45.5%, P =0.008). The significant decrease in Q ̇_Tmax (-7.8±9.1%, P =0.05), despite an unchanged [Hb] resulted in a significantly decreased QO2 (-11.4±10.5%, P = 0.02). DO2 significantly decreased from pre- to post-flight by -27.5±24.5% (P =0.04), as did the peak CaO2-CvO2 (-9.2±7.5%, P =0.007). Using linear regression analysis, changes in VO2max were significantly correlated with changes in DO2 (R2=0.47; P = 0.04). These data suggest that space flight decreases both convective and diffusive O2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O2 transport pathway.

  1. Integrated device for the measurement of systemic and local oxygen transport during physical exercise.

    PubMed

    Pollonini, Luca; Re, Rebecca; Simpson, Richard J; Dacso, Clifford C

    2012-01-01

    Current methods for monitoring exercise exertion rely upon heart rate monitors, which represent a crude and lagging indicator of conditioning. The rationale for the present study is that both systemic and local metabolic mechanisms are responsible for physical performance, and therefore they should be simultaneously quantified to achieve an objective assessment of human conditioning. We propose a compact, wearable near-infrared spectroscopy (NIRS) device integrated with electrocardiography (ECG) and photoplethysmography (PPG) to simultaneously assess the cardiovascular and local response to exercise. The system was tested on subjects performing a graded maximal exercise by comparing our readings with metabolic variables measured with respiratory gas analysis. We found strong correlations between local deoxyhemoglobin concentration [HHb], heart rate and oxygen uptake, as well as between oxyhemoglobin concentration [HbO(2)] and stroke volume. This study shows that combined NIRS, ECG and PPG measurements yield useful information to understand the interplay between systemic and local muscular responses to exercise.

  2. Reversible modulation of electric transport properties by oxygen absorption and releasing on Nb:SrTiO{sub 3} surface

    SciTech Connect

    Lu, H. X.; Liu, Y. B.; Chen, Y. S. Wang, J.; Shen, B. G.; Sun, J. R.

    2014-11-07

    Pt Schottky contacts on (001)-orientated Nb-doped SrTiO{sub 3} (NSTO) in both ambient air and vacuum were investigated by the conductive atomic force microscope. The co-existed TiO{sub 2} and SrO termination layers were identified on the terrace-structured NSTO surface, where the former possessed a higher forward current than the latter. In ambient air, the barrier height of Pt/NSTO Schottky junction exhibited periodical variation with cyclic terrace plane and step sites, whereas it became homogeneous in ambient vacuum. We suggested that the oxygen absorption and releasing of surface dangling bonds were the origin for reversible changes in transport properties, which indicates a feasible approach for the surface modulation and band structure tailoring of NSTO based heterojunctions.

  3. Enhanced Nitrogen Loss by Eddy-Induced Vertical Transport in the Offshore Peruvian Oxygen Minimum Zone

    PubMed Central

    Callbeck, Cameron M.; Lavik, Gaute; Stramma, Lothar; Kuypers, Marcel M. M.; Bristow, Laura A.

    2017-01-01

    The eastern tropical South Pacific (ETSP) upwelling region is one of the ocean’s largest sinks of fixed nitrogen, which is lost as N2 via the anaerobic processes of anammox and denitrification. One-third of nitrogen loss occurs in productive shelf waters stimulated by organic matter export as a result of eastern boundary upwelling. Offshore, nitrogen loss rates are lower, but due to its sheer size this area accounts for ~70% of ETSP nitrogen loss. How nitrogen loss and primary production are regulated in the offshore ETSP region where coastal upwelling is less influential remains unclear. Mesoscale eddies, ubiquitous in the ETSP region, have been suggested to enhance vertical nutrient transport and thereby regulate primary productivity and hence organic matter export. Here, we investigated the impact of mesoscale eddies on anammox and denitrification activity using 15N-labelled in situ incubation experiments. Anammox was shown to be the dominant nitrogen loss process, but varied across the eddy, whereas denitrification was below detection at all stations. Anammox rates at the eddy periphery were greater than at the center. Similarly, depth-integrated chlorophyll paralleled anammox activity, increasing at the periphery relative to the eddy center; suggestive of enhanced organic matter export along the periphery supporting nitrogen loss. This can be attributed to enhanced vertical nutrient transport caused by an eddy-driven submesoscale mechanism operating at the eddy periphery. In the ETSP region, the widespread distribution of eddies and the large heterogeneity observed in anammox rates from a compilation of stations suggests that eddy-driven vertical nutrient transport may regulate offshore primary production and thereby nitrogen loss. PMID:28122044

  4. Enhanced Nitrogen Loss by Eddy-Induced Vertical Transport in the Offshore Peruvian Oxygen Minimum Zone.

    PubMed

    Callbeck, Cameron M; Lavik, Gaute; Stramma, Lothar; Kuypers, Marcel M M; Bristow, Laura A

    2017-01-01

    The eastern tropical South Pacific (ETSP) upwelling region is one of the ocean's largest sinks of fixed nitrogen, which is lost as N2 via the anaerobic processes of anammox and denitrification. One-third of nitrogen loss occurs in productive shelf waters stimulated by organic matter export as a result of eastern boundary upwelling. Offshore, nitrogen loss rates are lower, but due to its sheer size this area accounts for ~70% of ETSP nitrogen loss. How nitrogen loss and primary production are regulated in the offshore ETSP region where coastal upwelling is less influential remains unclear. Mesoscale eddies, ubiquitous in the ETSP region, have been suggested to enhance vertical nutrient transport and thereby regulate primary productivity and hence organic matter export. Here, we investigated the impact of mesoscale eddies on anammox and denitrification activity using 15N-labelled in situ incubation experiments. Anammox was shown to be the dominant nitrogen loss process, but varied across the eddy, whereas denitrification was below detection at all stations. Anammox rates at the eddy periphery were greater than at the center. Similarly, depth-integrated chlorophyll paralleled anammox activity, increasing at the periphery relative to the eddy center; suggestive of enhanced organic matter export along the periphery supporting nitrogen loss. This can be attributed to enhanced vertical nutrient transport caused by an eddy-driven submesoscale mechanism operating at the eddy periphery. In the ETSP region, the widespread distribution of eddies and the large heterogeneity observed in anammox rates from a compilation of stations suggests that eddy-driven vertical nutrient transport may regulate offshore primary production and thereby nitrogen loss.

  5. Apoplasmic Barriers and Oxygen Transport Properties of Hypodermal Cell Walls in Roots from Four Amazonian Tree Species1

    PubMed Central

    De Simone, Oliviero; Haase, Karen; Müller, Ewald; Junk, Wolfgang J.; Hartmann, Klaus; Schreiber, Lukas; Schmidt, Wolfgang

    2003-01-01

    The formation of suberized and lignified barriers in the exodermis is suggested to be part of a suite of adaptations to flooded or waterlogged conditions, adjusting transport of solutes and gases in and out of roots. In this study, the composition of apoplasmic barriers in hypodermal cell walls and oxygen profiles in roots and the surrounding medium of four Amazon tree species that are subjected to long-term flooding at their habitat was analyzed. In hypodermal cell walls of the deciduous tree Crateva benthami, suberization is very weak and dominated by monoacids, 2-hydroxy acids, and ω-hydroxycarboxylic acids. This species does not show any morphological adaptations to flooding and overcomes the aquatic period in a dormant state. Hypodermal cells of Tabernaemontana juruana, a tree which is able to maintain its leaf system during the aquatic phase, are characterized by extensively suberized walls, incrusted mainly by the unsaturated C18 ω-hydroxycarboxylic acid and the α,ω-dicarboxylic acid analogon, known as typical suberin markers. Two other evergreen species, Laetia corymbulosa and Salix martiana, contained 3- to 4-fold less aliphatic suberin in the exodermis, but more than 85% of the aromatic moiety of suberin are composed of para-hydroxybenzoic acid, suggesting a function of suberin in pathogen defense. No major differences in the lignin content among the species were observed. Determination of oxygen distribution in the roots and rhizosphere of the four species revealed that radial loss of oxygen can be effectively restricted by the formation of suberized barriers but not by lignification of exodermal cell walls. PMID:12746526

  6. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    PubMed

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase.

  7. Closed-loop real-time simulation model of hemodynamics and oxygen transport in the cardiovascular system

    PubMed Central

    2013-01-01

    Background Computer technology enables realistic simulation of cardiovascular physiology. The increasing number of clinical surgical and medical treatment options imposes a need for better understanding of patient-specific pathology and outcome prediction. Methods A distributed lumped parameter real-time closed-loop model with 26 vascular segments, cardiac modelling with time-varying elastance functions and gradually opening and closing valves, the pericardium, intrathoracic pressure, the atrial and ventricular septum, various pathological states and including oxygen transport has been developed. Results Model output is pressure, volume, flow and oxygen saturation from every cardiac and vascular compartment. The model produces relevant clinical output and validation of quantitative data in normal physiology and qualitative directions in simulation of pathological states show good agreement with published data. Conclusion The results show that it is possible to build a clinically relevant real-time computer simulation model of the normal adult cardiovascular system. It is suggested that understanding qualitative interaction between physiological parameters in health and disease may be improved by using the model, although further model development and validation is needed for quantitative patient-specific outcome prediction. PMID:23842033

  8. Mechanisms of photodoping in oxygen-deficient YBa2Cu3Ox films studied by in situ transport measurements

    NASA Astrophysics Data System (ADS)

    Stockinger, C.; Markowitsch, W.; Lang, W.; Kula, W.; Sobolewski, Roman

    1998-04-01

    In situ studies of the superconducting and normal-state transport properties in partially oxygen-depleted, metallic YBa2Cu3Ox (Tc,mid~52 K) thin films exposed to long-term white-light illumination (photodoping) are reported. We observed that the effects of photoexcitation strongly depended on the temperature at which the photodoping was performed. The Hall number increased during the illumination in the entire tested temperature range from 70 to 290 K, with the strongest increase near room temperature, whereas, the Hall mobility increased steadily only upon low-temperature illumination. At temperatures above 250 K, it showed an abrupt initial increase followed by a long-term decrease. At high temperatures, the Hall quantities react on the impact of light excitation independently from each other, which strongly suggests that both the photoassisted oxygen ordering and charge-transfer mechanisms contribute to photodoping, the former acting mainly on the mobility, while the latter on the density of charge carriers. The photoinduced enhancement of the superconducting transition temperature Tc exhibited essentially the same temperature dependence as the enhancement of the Hall number, being largest (ΔTc~2.6 K) for the illumination performed at high temperatures. Thus, the Tc enhancement results from the change of the density more likely than of the mobility of the charge carriers.

  9. Closed-loop real-time simulation model of hemodynamics and oxygen transport in the cardiovascular system.

    PubMed

    Broomé, Michael; Maksuti, Elira; Bjällmark, Anna; Frenckner, Björn; Janerot-Sjöberg, Birgitta

    2013-07-10

    Computer technology enables realistic simulation of cardiovascular physiology. The increasing number of clinical surgical and medical treatment options imposes a need for better understanding of patient-specific pathology and outcome prediction. A distributed lumped parameter real-time closed-loop model with 26 vascular segments, cardiac modelling with time-varying elastance functions and gradually opening and closing valves, the pericardium, intrathoracic pressure, the atrial and ventricular septum, various pathological states and including oxygen transport has been developed. Model output is pressure, volume, flow and oxygen saturation from every cardiac and vascular compartment. The model produces relevant clinical output and validation of quantitative data in normal physiology and qualitative directions in simulation of pathological states show good agreement with published data. The results show that it is possible to build a clinically relevant real-time computer simulation model of the normal adult cardiovascular system. It is suggested that understanding qualitative interaction between physiological parameters in health and disease may be improved by using the model, although further model development and validation is needed for quantitative patient-specific outcome prediction.

  10. Transport Measurements on NEODYMIUM(1.85) CERIUM(.15) Copper OXYGEN(4-DELTA) Thin Films

    NASA Astrophysics Data System (ADS)

    Kussmaul, Andreas

    1992-01-01

    This work describes the synthesis and the study of the transport properties of thin films of Nd _{1.85}Ce_{.15 }CuO_{4-delta} carried out respectively at the IBM T. J. Watson Research Center in collaboration with Dr. A. Gupta, and at the Francis Bitter National Magnet Laboratory under the direction of Dr. P. M. Tedrow. The thin films were prepared by laser ablation of a stoichiometric target on heated substrates in a reactive ambient. The influence of the deposition parameters was studied, and the use of a nitreous oxide ambient was found to yield a clear improvement of the sample quality. The transport properties of the films were measured at low temperatures and in high magnetic fields. Non superconducting samples showed a strong, highly anisotropic, negative magnetoresistance that is consistent with two dimensional weak-localization. Superconducting samples show two dimensional fluctuation effects above T_{c}. The theory of fluctuations in a magnetic field was used to extract the position of H_{c2} (in the perpendicular direction) in the broad and almost featureless resistive transition, and the extracted values were fit to the theory of dirty superconductors. The angular dependence of the resistive transition was studied close to T _{c} and found to be somewhat better described by a two-dimensional model. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  11. Recovery of blood flow and oxygen transport after temporary ischemia of rat liver.

    PubMed

    Kazuo, H; Nishida, T; Seiyama, A; Ueshima, S; Hamada, E; Ito, T; Matsuda, H

    1998-07-01

    Hepatic tissue perfusion and O2 supply after ischemia are indispensable for recovery of cellular functions, but few studies have been performed regarding the recovery of tissue blood flow and O2 transport. After 5, 15, and 30 min of ischemia of rat livers, hepatic tissue perfusion, hepatic arterial and portal blood flow, plasma PO2, and O2 transport parameters were measured. Hepatic tissue blood flow and erythrocyte velocity in the sinusoids showed biphasic recoveries after temporal ischemia for 5, 15, and 30 min. The first peak in the flow appeared at 3-4 min after the initiation of tissue perfusion, and the second peak appeared at approximately 20 min, irrespective of the ischemic period. Hepatic blood flow during the initial increase contained relatively low O2-saturated blood compared with that in the second increase. Livers that had been subjected to a prior hepatic artery ligation only showed the first peak at approximately 4 min. The first increase in hepatic blood flow corresponded to the peak in the portal venous flow, and the second increase corresponded to that of the hepatic artery. These results suggested that hepatic microcirculation after temporary hepatic ischemia showed biphasic recoveries because of different restoration patterns of the portal vein and hepatic artery.

  12. Optical methods for correction of oxygen-transport characteristics of blood and their biomedical applications

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Akulich, N. V.; Marochkov, A. V.; Laskina, O. V.; Mit'kovskaya, N. P.

    2010-07-01

    We have carried out a comprehensive analysis of the spectral characteristics of blood and blood components, gas-exchange and oximetry parameters for venous and arterial blood, central hemodynamic parameters, and the results of a complete blood count and chemistry panel before and after extracorporeal UV irradiation of the blood (UBI, ultraviolet blood irradiation) or intravenous exposure of blood to low-intensity emission from an He-Ne laser (LBI, laser blood irradiation). We have demonstrated the possibility of correcting the oxygentransport characteristics of blood by laser optical methods based on photodissociation of blood oxyhemoglobin. We have shown that the therapeutic effects initiated both by UBI and LBI are based on a single mechanism: a change in the balance between production of active oxygen species and their inhibition by antioxidants. The data obtained are of interest not only for studying the primary (molecular) mechanisms of action for photohemotherapy and their effect on processes occurring in the living body, but also can provide a basis for designing next-generation laser optical instruments and for development of not yet existing methods for assessing the therapeutic efficacy of photohemotherapy.

  13. Visualization of oxygen transportation in microcirculation by sidestream dark-field oximetry

    NASA Astrophysics Data System (ADS)

    Kurata, Tomohiro; Takahashi, Minori; Oda, Shigeto; Kawahira, Hiroshi; Ohnishi, Takashi; Haneishi, Hideaki

    2017-02-01

    The sidestream dark-field (SDF) imaging allows direct visualization of red blood cells in microvessels near tissue surfaces. We have developed an image-based oximetry method using two-band images obtained by SDF imaging (SDF oximetry) and a trial SDF device with light-emitting diodes to obtain band images. In this study, we propose a technique of producing oxygen saturation (SO2) maps from SDF images and perform animal experiments in vivo. To produce SO2 maps, we use spectral analysis using two band images obtained with our SDF device. As an image processing, the combination of both the Hessian-based and pixel value-based techniques as blood vessel extraction from an SDF image is used. From the experiment with the surface of rat small intestines, we can produce SO2 maps and find that the map represents arterioles and venules those were determined based on the blood ow from SDF images. Moreover, we find the variation of SO2 along a blood vessel running direction.

  14. Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant.

    PubMed

    Jiang, Hong Sheng; Yin, Li Yan; Ren, Na Na; Zhao, Su Ting; Li, Zhi; Zhi, Yongwei; Shao, Hui; Li, Wei; Gontero, Brigitte

    2017-03-01

    The rapid growth in silver nanoparticles (AgNPs) commercialization has increased environmental exposure, including aquatic ecosystem. It has been reported that the AgNPs have damaging effects on photosynthesis and induce oxidative stress, but the toxic mechanism of AgNPs is still a matter of debate. In the present study, on the model aquatic higher plant Spirodela polyrhiza, we found that AgNPs affect photosynthesis and significantly inhibit Photosystem II (PSII) maximum quantum yield (Fv/Fm) and effective quantum yield (ΦPSII). The changes of non-photochemical fluorescence quenching (NPQ), light-induced non-photochemical fluorescence quenching [Y(NPQ)] and non-light-induced non-photochemical fluorescence quenching [Y(NO)] showed that AgNPs inhibit the photo-protective capacity of PSII. AgNPs induce reactive oxygen species (ROS) that are mainly produced in the chloroplast. The activity of ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) was also very sensitive to AgNPs. The internalized Ag, regardless of whether the exposure was Ag(+ )or AgNPs had the same capacity to generate ROS. Our results support the hypothesis that intra-cellular AgNP dissociate into high toxic Ag(+). Rubisco inhibition leads to slowing down of CO2 assimilation. Consequently, the solar energy consumption decreases and then the excess excitation energy promotes ROS generation in chloroplast.

  15. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    PubMed Central

    Yang, Sang Mo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Won Noh, Tae; Kalinin, Sergei V.; MacManus-Driscoll, Judith L.

    2015-01-01

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. By using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness. PMID:26446866

  16. Proline Modulates the Trypanosoma cruzi Resistance to Reactive Oxygen Species and Drugs through a Novel D, L-Proline Transporter

    PubMed Central

    Sayé, Melisa; Miranda, Mariana R.; di Girolamo, Fabio; de los Milagros Cámara, María; Pereira, Claudio A.

    2014-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, has a metabolism largely based on the consumption of glucose and proline. This amino acid is essential for host cells infection and intracellular differentiation. In this work we identified a proline transporter (TcAAAP069) by yeasts complementation assays and overexpression in Trypanosoma cruzi epimastigotes. TcAAAP069 is mono-specific for proline but presents an unusual feature; the lack of stereospecificity, because it is competitively inhibited by the D- enantiomer. Parasites overexpressing TcAAAP069 have an increased intracellular proline concentration, 2.6-fold higher than controls, as a consequence of a higher proline transport rate. Furthermore, augmented proline concentration correlates with an improved resistance to trypanocidal drugs and also to reactive oxygen species including hydrogen peroxide and nitric oxide, emulating natural physiological situations. The IC50s for nifurtimox, benznidazole, H2O2 and NO. were 125%, 68%, 44% and 112% higher than controls, respectively. Finally, proline metabolism generates a higher concentration (48%) of ATP in TcAAAP069 parasites. Since proline participates on essential energy pathways, stress and drug resistance responses, these results provide a novel target for the development of new drugs for the treatments for Chagas' disease. PMID:24637744

  17. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    SciTech Connect

    Yang, Sangmo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Noh, Tae Won; Kalinin, Sergei V.; MacManus-Driscoll, Judith L.

    2015-10-08

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. By using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.

  18. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    DOE PAGES

    Yang, Sangmo; Lee, Shinbuhm; Jian, Jie; ...

    2015-10-08

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. Bymore » using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.« less

  19. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films.

    PubMed

    Yang, Sang Mo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Noh, Tae Won; Kalinin, Sergei V; MacManus-Driscoll, Judith L

    2015-10-08

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. By using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.

  20. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.

    PubMed

    Gusdon, Aaron M; Fernandez-Bueno, Gabriel A; Wohlgemuth, Stephanie; Fernandez, Jenelle; Chen, Jing; Mathews, Clayton E

    2015-09-10

    Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.

  1. Oxygen consumption and active sodium and chloride transport in bovine tracheal epithelium.

    PubMed Central

    Durand, J; Durand-Arczynska, W; Schoenenweid, F

    1986-01-01

    The O2 consumption (Jr) and the short-circuit current (Ji) were measured simultaneously in bovine tracheal epithelium in vitro. In this tissue, Ji is the sum of two active transport processes, Cl- secretion and Na+ absorption. Jr was determined from the decrease of PO2 in the incubation solution, at 37 +/- 0.05 degrees C and at a PO2 around 600 torr. Microbial contamination and leaks of dissolved O2 from the solution never exceeded 4% of the rate of PO2 decrease due to the O2 consumption of the tissue. Ji and Jr were stable over 5 h of incubation under standard conditions. Ji was 106 +/- 4 nequiv min-1 cm-2 and Jr was 39.8 +/- 1.1 nmol O2 min-1 cm-2 (mean +/- S.E., n = 46). Ji was varied with several agents known to affect ion transport across the tracheal epithelium. Na+ absorption was inhibited partly with amiloride or completely following Na+ substitution with choline. Cl- secretion was selectively suppressed by furosemide. Ji was also reduced to a very low level, using ouabain or K+ suppression to inhibit the Na+-K+-ATPase. All these manoeuvres resulted in significant reductions of both Ji and Jr. Basal Jr was not affected when Ji was modified. A plot of the relative change in suprabasal Jr versus the relative change of Ji gave a straight line (r = 0.98, n = 60). A plot using absolute values yielded a stoichiometric ratio of 13.9 ions per O2 molecule, for Na+ as well as for Cl-. The stoichiometric ratio was also calculated for each experiment. Its mean value was 14.9 ions per O2 molecule. The population of the ratios was widely dispersed, but this was explained as a predictable statistical phenomenon. PMID:3723416

  2. Convective and Diffusive O2 Transport Components of Peak Oxygen Uptake Following Long-duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Ade, Carl J.; Moore, A. D.

    2014-01-01

    Spaceflight reduces aerobic capacity and may be linked with maladaptations in the O2 transport pathway. The aim was to 1) evaluate the cardiorespiratory adaptations following 6 months aboard the International Space Station and 2) model the contributions of convective (Q (raised dot) O2) and peripheral diffusive (DO2) components of O2 transport to changes in peak O2 uptake (V (raised dot) O2PEAK). To date, 1 male astronaut (XX yrs) completed an incremental exercise test to measure V (raised dot) O2PEAK prior to and 2 days post-flight. Cardiac output (Q (raised dot) ) was measured at three submaximal work rates via carbon dioxide rebreathing. The Q (raised dot) :V (raised dot) O2 relationship was extrapolated to V (raised dot) O2PEAK to determine Q (raised dot) PEAK. Hemoglobin concentration was measured at rest via a venous blood sample. These measurements were used to model the changes in Q (raised dot) O2 and DO2 using Fick's principle of mass conservation and Law of Diffusion as established by Wagner and colleagues (Annu. Rev. Physiol 58: 21-50, 1996 and J. Appl. Physiol. 73: 1067-1076, 1992). V (raised dot) O2PEAK decreased postflight from 3.72 to 3.45 l min-1, but Q (raised dot) PEAK increased from 24.5 to 27.7 l min-1. The decrease in V (raised dot) O2PEAK post-flight was associated with a 21.2% decrease in DO2, an 18.6% decrease in O2 extraction, but a 3.4% increase in Q (raised dot) O2. These preliminary data suggest that long-duration spaceflight reduces peripheral diffusing capacity and that it largely contributes to the post-flight decrease in aerobic capacity.

  3. Economical Speed and Energetically Optimal Transition Speed Evaluated by Gross and Net Oxygen Cost of Transport at Different Gradients

    PubMed Central

    Abe, Daijiro; Fukuoka, Yoshiyuki; Horiuchi, Masahiro

    2015-01-01

    The oxygen cost of transport per unit distance (CoT; mL·kg-1·km-1) shows a U-shaped curve as a function of walking speed (v), which includes a particular walking speed minimizing the CoT, so called economical speed (ES). The CoT-v relationship in running is approximately linear. These distinctive walking and running CoT-v relationships give an intersection between U-shaped and linear CoT relationships, termed the energetically optimal transition speed (EOTS). This study investigated the effects of subtracting the standing oxygen cost for calculating the CoT and its relevant effects on the ES and EOTS at the level and gradient slopes (±5%) in eleven male trained athletes. The percent effects of subtracting the standing oxygen cost (4.8 ± 0.4 mL·kg-1·min-1) on the CoT were significantly greater as the walking speed was slower, but it was not significant at faster running speeds over 9.4 km·h-1. The percent effect was significantly dependent on the gradient (downhill > level > uphill, P < 0.001). The net ES (level 4.09 ± 0.31, uphill 4.22 ± 0.37, and downhill 4.16 ± 0.44 km·h-1) was approximately 20% slower than the gross ES (level 5.15 ± 0.18, uphill 5.27 ± 0.20, and downhill 5.37 ± 0.22 km·h-1, P < 0.001). Both net and gross ES were not significantly dependent on the gradient. In contrast, the gross EOTS was slower than the net EOTS at the level (7.49 ± 0.32 vs. 7.63 ± 0.36 km·h-1, P = 0.003) and downhill gradients (7.78 ± 0.33 vs. 8.01 ± 0.41 km·h-1, P < 0.001), but not at the uphill gradient (7.55 ± 0.37 vs. 7.63 ± 0.51 km·h-1, P = 0.080). Note that those percent differences were less than 2.9%. Given these results, a subtraction of the standing oxygen cost should be carefully considered depending on the purpose of each study. PMID:26383249

  4. Curriculum Design of a Flipped Classroom to Enhance Haematology Learning

    ERIC Educational Resources Information Center

    Porcaro, Pauline A.; Jackson, Denise E.; McLaughlin, Patricia M.; O'Malley, Cindy J.

    2016-01-01

    A common trend in higher education is the "flipped" classroom, which facilitates active learning during class. The flipped approach to teaching was instituted in a haematology "major" class and the students' attitudes and preferences for the teaching materials were surveyed. The curriculum design was explicit and involved four…

  5. Design and implementation of a web-enabled haematological system.

    PubMed

    Gortzis, Lefteris; Koubias, Stavros; Nikiforidis, George

    2004-09-01

    This paper describes the design and the implementation of a web-enabled integrated haematological system, named e-HS. The proposed system runs on a set of distributed network nodes providing useful haematological services. These services include patient-oriented data management, digitized histopathological slides (DHS) acquisition, teleconsulting facilities, etc. The objective of e-HS is to supply web-enabled services according to haematological requirements, implement a distributed storage scheme for DHS, and provide a common database containing all haematological laboratory results by using eXtensible Markup Language (XML) and web technologies. Our implementation can be accessible to every authorized physician at the distributed nodes without any additional software. The only software required for the user is the widely used browser (e.g. MS Internet Explorer v 3.02 or higher). Besides, by using a self-explaining user interfaces and HTML-techniques, such as hyperlinks, the necessary amount of training at the physicians-side is reduced to a minimum. A first implementation of the e-HS, has been established at the Medical Physics Department of the University of Patras (master node of the system), and has been tested with success by the medical staff of the Hospital Departments of the University of Patras and Thessalonica that served as distributed nodes of the system.

  6. Curriculum Design of a Flipped Classroom to Enhance Haematology Learning

    ERIC Educational Resources Information Center

    Porcaro, Pauline A.; Jackson, Denise E.; McLaughlin, Patricia M.; O'Malley, Cindy J.

    2016-01-01

    A common trend in higher education is the "flipped" classroom, which facilitates active learning during class. The flipped approach to teaching was instituted in a haematology "major" class and the students' attitudes and preferences for the teaching materials were surveyed. The curriculum design was explicit and involved four…

  7. Iron-induced reactive oxygen species mediate transporter DMT1 endocytosis and iron uptake in intestinal epithelial cells.

    PubMed

    Esparza, Andrés; Gerdtzen, Ziomara P; Olivera-Nappa, Alvaro; Salgado, J Cristian; Núñez, Marco T

    2015-10-15

    Recent evidence shows that iron induces the endocytosis of the iron transporter dimetal transporter 1 (DMT1) during intestinal absorption. We, and others, have proposed that iron-induced DMT1 internalization underlies the mucosal block phenomena, a regulatory response that downregulates intestinal iron uptake after a large oral dose of iron. In this work, we investigated the participation of reactive oxygen species (ROS) in the establishment of this response. By means of selective surface protein biotinylation of polarized Caco-2 cells, we determined the kinetics of DMT1 internalization from the apical membrane after an iron challenge. The initial decrease in DMT1 levels in the apical membrane induced by iron was followed at later times by increased levels of DMT1. Addition of Fe(2+), but not of Cd(2+), Zn(2+), Cu(2+), or Cu(1+), induced the production of intracellular ROS, as detected by 2',7'-dichlorofluorescein (DCF) fluorescence. Preincubation with the antioxidant N-acetyl-l-cysteine (NAC) resulted in increased DMT1 at the apical membrane before and after addition of iron. Similarly, preincubation with the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) resulted in the enhanced presence of DMT1 at the apical membrane. The decrease of DMT1 levels at the apical membrane induced by iron was associated with decreased iron uptake rates. A kinetic mathematical model based on operational rate constants of DMT1 endocytosis and exocytosis is proposed. The model qualitatively captures the experimental observations and accurately describes the effect of iron, NAC, and DMSO on the apical distribution of DMT1. Taken together, our data suggest that iron uptake induces the production of ROS, which modify DMT1 endocytic cycling, thus changing the iron transport activity at the apical membrane. Copyright © 2015 the American Physiological Society.

  8. Haematology patients' desire to access metropolitan hospital expertise.

    PubMed

    McGrath, Pam

    2016-06-01

    Objective To date, there is limited research to inform an understanding of cancer patients' choice as to location of treatment. This paper makes a contribution by providing findings on a group of regional, rural and remote cancer patients, namely those diagnosed with a haematological malignancy, who have to relocate for specialist care in Queensland, Australia. Methods A descriptive qualitative method was used based on 45 in-depth interviews with haematology patients living in Queensland who were supported by the Leukaemia Foundation of Queensland. Results Four key factors were found to affect the decision making of patients who prefer to travel to metropolitan hospitals for specialist haematology treatments, namely access to own doctor, bonds and familiarity with metropolitan staff, desire for 'quality' specialist care and a distrust of local clinical care and, for some, the absence of usual barriers to visiting the metropolitan area. Conclusions There are a group of patients who have experiences that lead them to distrust non-metropolitan hospitals and motivate them to travel long distances to attend specialist treating centres for 'quality' care. The literature affirms the concerns of this group. It is the hope and expectation in publishing this article that these patients' concerns will be taken into consideration in the development of health services and policy so that eventually all regional, rural and remote patients will be provided with equitable choice with regard to the location of accessing specialist care. What is known about the topic? The literature on haematology patients' experiences with and preferences for local verses metropolitan hospital treatment is limited. What does this paper add? To date, research on relocation for specialist treatment has documented the hardships for both patients and their families associated with distance from major treating hospitals. Although affirming the difficulties associated with travel and the desire of most

  9. Haematological parameters in Umbrina cirrosa (Teleostei, Sciaenidae): a comparison between diploid and triploid specimens.

    PubMed

    Ballarin, Loriano; Dall'Oro, Manuela; Bertotto, Daniela; Libertini, Angelo; Francescon, Antonia; Barbaro, Alvise

    2004-05-01

    Haematological features were compared between diploid and triploid specimens of the ray-finned fish Umbrina cirrosa. No significant differences between diploids and triploids were reported in haematocrit and total haemoglobin concentration, but erythrocytes and thrombocytes were significantly greater in size in triploids. Glycaemia was significantly lower in diploids, whereas triploid erythrocytes were more resistant to osmotic stress. In triploids, a greater fraction of leukocytes was positive for alkaline phosphatase activity, when stimulated with Bacillus clausii spores, otherwise no significant increase of oxygen consumption was observed in triploid leukocytes after stimulation, based on assays for superoxide anions. Triploids were characterized by a lower concentration of circulating blood cells with a lower surface/volume ratio when compared with diploids. These features may lead to a general disadvantage of triploids in withstanding stress conditions: a situation that needs to be taken into account in aquaculture practice.

  10. Bacillus cereus bacteraemia: comparison between haematologic and nonhaematologic patients.

    PubMed

    Tusgul, S; Prod'hom, G; Senn, L; Meuli, R; Bochud, P-Y; Giulieri, S G

    2017-01-01

    Bacillus cereus bacteraemia can be severe, especially among patients with haematologic malignancy. We retrospectively reviewed first episodes of true B. cereus bacteraemia (more than one positive bottle plus signs of infection) at our institution between 1997 and 2013 with the aim to compare haematologic versus nonhaematologic patients and analyse episodes with complicated outcome. Among 56 episodes of positive-blood cultures for B. cereus, 21 were considered significant. Median age was 54 years (range 23-82 years). Ten patients (48%) had a haematologic malignancy; all were neutropenic at the time of B. cereus bacteraemia. Nonhaematologic patients were either intravenous drug users (n = 3, 14%), polytraumatized (n = 3, 14%) or had multiple chronic comorbidities (n = 5, 24%). Most episodes were hospital acquired (15, 71%). Sources of bacteraemia were intravascular catheter (n = 11, 52%), digestive tract (n = 6, 29%), drug injection (n = 3, 14%) and wound (n = 1, 5%). Adequate antibiotic therapy was provided to 18 patients (86%) during a median of 17 days (range 2-253 days). The intravascular catheter was removed in eight cases (42%). Three haematologic patients had a complicated course with neurologic complications (meningoencephalitis and cerebral abscesses). Complications appeared to be associated with catheter infection (100% of complicated cases vs. 29% of noncomplicated cases). In conclusion, B. cereus bacteraemia can have a complicated course in a subset of patients, mainly those with haematologic malignancy. Catheter infection may be associated with a worse outcome with frequent neurologic complications.

  11. Thermophysical properties and oxygen transport in (Thx,Pu1-x)O2

    SciTech Connect

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; Grimes, R. W.

    2016-10-31

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1–x)O2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1–x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Thx,Pu1–x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1–x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.

  12. A compartment model of alveolar-capillary oxygen diffusion with ventilation-perfusion gradient and dynamics of air transport through the respiratory tract.

    PubMed

    Jaworski, Jacek; Redlarski, Grzegorz

    2014-08-01

    This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level.

  13. Fraction of Inspired Oxygen Delivered by Elisée™ 350 Turbine Transport Ventilator With a Portable Oxygen Concentrator in an Austere Environment.

    PubMed

    d'Aranda, Erwan; Bordes, Julien; Bourgeois, Boris; Clay, Jared; Esnault, Pierre; Cungi, Pierre-Julien; Goutorbe, Philippe; Kaiser, Eric; Meaudre, Eric

    2016-01-01

    Management of critically ill patients in austere environments is a logistic challenge. Availability of oxygen cylinders for the mechanically ventilated patient may be difficult in such a context. One solution is to use a ventilator able to function with an oxygen concentrator (OC). We tested two Elisée™ 350 ventilators paired with SeQual Integra 10-OM oxygen concentrators (OC) (Chart Industries, http://www .chartindustries.com) and evaluated the delivered fraction of inspired oxygen (Fio2). Ventilators were connected to a test lung and Fio2 was measured and indicated by the ventilator. Continuous oxygen was generated by the OC from 0.5L/min to 10L/min, and administered by the specific inlet port of the ventilator. Several combinations of ventilator settings were evaluated to determine the factors affecting the delivered Fio2. The Elisée 350 turbine ventilator is able to deliver a high Fio2 when functioning with an OC. However, modifications of the ventilator settings such as an increase in minute ventilation, inspiratory-to-expiratory ratio, and positive end-expiratory pressure affect delivered Fio2 despite steady-state oxygen flow from the concentrator. OCs provide an alternative to oxygen cylinders for delivering high Fio2 with a turbine ventilator. Nevertheless, Fio2 must be monitored continuously, since it decreases when minute ventilation is increased. 2016.

  14. Defects, stoichiometry, and electronic transport in SrTiO3-δ epilayers: A high pressure oxygen sputter deposition study

    NASA Astrophysics Data System (ADS)

    Ambwani, P.; Xu, P.; Haugstad, G.; Jeong, J. S.; Deng, R.; Mkhoyan, K. A.; Jalan, B.; Leighton, C.

    2016-08-01

    SrTiO3 is not only of enduring interest due to its unique dielectric, structural, and lattice dynamical properties, but is also the archetypal perovskite oxide semiconductor and a foundational material in oxide heterostructures and electronics. This has naturally focused attention on growth, stoichiometry, and defects in SrTiO3, one exciting recent development being such precisely stoichiometric defect-managed thin films that electron mobilities have finally exceeded bulk crystals. This has been achieved only by molecular beam epitaxy, however (and to a somewhat lesser extent pulsed laser deposition (PLD)), and numerous open questions remain. Here, we present a study of the stoichiometry, defects, and structure in SrTiO3 synthesized by a different method, high pressure oxygen sputtering, relating the results to electronic transport. We find that this form of sputter deposition is also capable of homoepitaxy of precisely stoichiometric SrTiO3, but only provided that substrate and target preparation, temperature, pressure, and deposition rate are carefully controlled. Even under these conditions, oxygen-vacancy-doped heteroepitaxial SrTiO3 films are found to have carrier density, mobility, and conductivity significantly lower than bulk. While surface depletion plays a role, it is argued from particle-induced X-ray emission (PIXE) measurements of trace impurities in commercial sputtering targets that this is also due to deep acceptors such as Fe at 100's of parts-per-million levels. Comparisons of PIXE from SrTiO3 crystals and polycrystalline targets are shown to be of general interest, with clear implications for sputter and PLD deposition of this important material.

  15. The Ca2+/Mn2+-transporting SPCA2 pump is regulated by oxygen and cell density in colon cancer cells.

    PubMed

    Jenkins, James; Papkovsky, Dmitri B; Dmitriev, Ruslan I

    2016-08-15

    The mammalian SPCA1 and SPCA2 ATPases localize in membranes of the secretory pathway and transport ions of Ca(2+) and Mn(2+) The role of tissue-specific SPCA2 isoform, highly expressed in lungs, mammary gland and gastrointestinal tract, is poorly understood. To elucidate the function of SPCA2, we studied human colon cancer HCT116 cells, grown under ambient and decreased O2 levels. We found that in contrast with other Ca(2+)-ATPase isoforms the expression of SPCA2 was up-regulated under hypoxia (3% O2), in both adherent (2D) and spheroid (3D) cultures. In spheroids, experiencing lowest O2 levels (30-50 μM, measured by phosphorescence lifetime imaging microscopy), we observed lower staining with reactive oxygen species (ROS)-specific fluorescent probe, which correlated with increased SPCA2. However, SPCA2 expression was up-regulated in cells exposed to reactive oxygen and nitrogen species donors, and when grown at higher density. We noticed that the culture exposed to hypoxia showed overall increase in S phase-positive cells and hypothesized that SPCA2 up-regulation under hypoxia can be linked to Mn(2+)-dependent cell cycle arrest. Consequently, we found that SPCA2-transfected cells display a higher number of cells entering S phase. Altogether, our results point at the important role of SPCA2 in regulation of cell cycle in cancer cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Lon-Mediated Proteolysis of the FeoC Protein Prevents Salmonella enterica from Accumulating the Fe(II) Transporter FeoB under High-Oxygen Conditions

    PubMed Central

    Kim, Hyunkeun; Lee, Hwiseop

    2014-01-01

    The Salmonella Feo system consists of the FeoA, FeoB, and FeoC proteins and mediates ferrous iron [Fe(II)] import. FeoB is an inner membrane protein that, along with contributions from two small hydrophilic proteins, FeoA and FeoC, transports Fe(II). We previously reported that FeoC binds to and protects the FeoB transporter from FtsH-mediated proteolysis. In the present study, we report proteolytic regulation of FeoC that occurs in an oxygen-dependent fashion. While relatively stable under low-oxygen conditions, FeoC was rapidly degraded by the Lon protease under high-oxygen conditions. The putative Fe-S cluster of FeoC seemed to function as an oxygen sensor to control FeoC stability, as evidenced by the finding that mutation of the putative Fe-S cluster-binding site greatly increased FeoC stability under high-oxygen conditions. Salmonella ectopically expressing the feoB and feoC genes was able to accumulate FeoB and FeoC only under low-oxygen conditions, suggesting that FeoC proteolysis prevents Salmonella from accumulating the FeoB transporter under high-oxygen conditions. Finally, we propose that Lon-mediated FeoC proteolysis followed by FtsH-mediated FeoB proteolysis helps Salmonella to avoid uncontrolled Fe(II) uptake during the radical environmental changes encountered when shifting from low-iron anaerobic conditions to high-iron aerobic conditions. PMID:25313398

  17. Effects of oil on internal gas transport, radial oxygen loss, gas films and bud growth in Phragmites australis

    PubMed Central

    Armstrong, Jean; Keep, Rory; Armstrong, William

    2009-01-01

    Background and Aims Oil pollution of wetlands is a world-wide problem but, to date, research has concentrated on its influences on salt marsh rather than freshwater plant communities. The effects of water-borne light oils (liquid paraffin and diesel) were investigated on the fresh/brackish wetland species Phragmites australis in terms of routes of oil infiltration, internal gas transport, radial O2 loss (ROL), underwater gas films and bud growth. Methods Pressure flow resistances of pith cavities of nodes and aerenchyma of leaf sheaths, with or without previous exposure to oil, were recorded from flow rates under applied pressure. Convective flows were measured from living excised culms with oiled and non-oiled nodes and leaf sheaths. The effect of oil around culm basal nodes on ROL from rhizome and root apices was measured polarographically. Surface gas films on submerged shoots with and without oil treatment were recorded photographically. Growth and emergence of buds through water with and without an oil film were measured. Key Results Internodes are virtually impermeable, but nodes of senesced and living culms are permeable to oils which can block pith cavity diaphragms, preventing flows at applied pressures of 1 kPa, natural convective transport to the rhizome, and greatly decreasing ROL to phyllospheres and rhizospheres. Oil infiltrating or covering living leaf sheaths prevents humidity-induced convection. Oil displaces surface gas films from laminae and leaf sheaths. Buds emerge only a few centimetres through oil and die. Conclusions Oil infiltrates the gas space system via nodal and leaf sheath stomata, reducing O2 diffusion and convective flows into the rhizome system and decreasing oxygenation of phyllospheres and rhizospheres; underwater gas exchange via gas films will be impeded. Plants can be weakened by oil-induced failure of emerging buds. Plants will be most at risk during the growing season. PMID:18996951

  18. GASP - THERMODYNAMIC AND TRANSPORT PROPERTIES OF HELIUM, METHANE, NEON, NITROGEN, CARBON MONOXIDE, CARBON DIOXIDE, OXYGEN, AND ARGON

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1994-01-01

    A computer program, GASP, has been written to calculate the thermodynamic and transport properties of argon, carbon dioxide, carbon monoxide, fluorine, methane, neon, nitrogen, and oxygen. GASP accepts any two of pressure, temperature, or density as input. In addition, entropy and enthalpy are possible inputs. Outputs are temperature, density, pressure, entropy, enthalpy, specific heats, expansion coefficient, sonic velocity, viscosity, thermal conductivity, and surface tension. A special technique is provided to estimate the thermal conductivity near the thermodynamic critical point. GASP is a group of FORTRAN subroutines. The user typically would write a main program that invoked GASP to provide only the described outputs. Subroutines are structured so that the user may call only those subroutines needed for his particular calculations. Allowable pressures range from 0.l atmosphere to 100 to l,000 atmospheres, depending on the fluid. Similarly, allowable pressures range from the triple point of each substance to 300 degrees K to 2000 degrees K, depending on the substance. The GASP package was developed to be used with heat transfer and fluid flow applications. It is particularly useful in applications of cryogenic fluids. Some problems associated with the liquefication, storage, and gasification of liquefied natural gas and liquefied petroleum gas can also be studied using GASP. This program is written in FORTRAN IV for batch execution and is available for implementation on IBM 7000 series computers. GASP was developed in 1971.

  19. GASP - THERMODYNAMIC AND TRANSPORT PROPERTIES OF HELIUM, METHANE, NEON, NITROGEN, CARBON MONOXIDE, CARBON DIOXIDE, OXYGEN, AND ARGON

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1994-01-01

    A computer program, GASP, has been written to calculate the thermodynamic and transport properties of argon, carbon dioxide, carbon monoxide, fluorine, methane, neon, nitrogen, and oxygen. GASP accepts any two of pressure, temperature, or density as input. In addition, entropy and enthalpy are possible inputs. Outputs are temperature, density, pressure, entropy, enthalpy, specific heats, expansion coefficient, sonic velocity, viscosity, thermal conductivity, and surface tension. A special technique is provided to estimate the thermal conductivity near the thermodynamic critical point. GASP is a group of FORTRAN subroutines. The user typically would write a main program that invoked GASP to provide only the described outputs. Subroutines are structured so that the user may call only those subroutines needed for his particular calculations. Allowable pressures range from 0.l atmosphere to 100 to l,000 atmospheres, depending on the fluid. Similarly, allowable pressures range from the triple point of each substance to 300 degrees K to 2000 degrees K, depending on the substance. The GASP package was developed to be used with heat transfer and fluid flow applications. It is particularly useful in applications of cryogenic fluids. Some problems associated with the liquefication, storage, and gasification of liquefied natural gas and liquefied petroleum gas can also be studied using GASP. This program is written in FORTRAN IV for batch execution and is available for implementation on IBM 7000 series computers. GASP was developed in 1971.

  20. Increased red cell rigidity might affect retinal capillary blood flow velocity and oxygen transport efficiency in type II diabetes.

    PubMed

    Chung, T W; Liu, A G; Yu, J H

    1993-01-01

    Retinal capillary blood flow velocity, oxygen transport efficiency (TE) and rheological properties of the blood were measured from twenty-two type II diabetes patients and nineteen normal subjects. The results showed that diabetic patients had increased plasma viscosity (P < 0.01). Also, for both shear rates of 225 sec-1 and 450 sec-1, they had increased blood viscosity (P < 0.002, both), red cell rigidity (Tk) (P < 0.002 and P < 0.001, respectively), but lower values of TE (P < 0.001, both), and of retinal capillary blood flow velocity (P < 0.005). Furthermore, TE was linearly correlated with Tk for both shear rates of all subjects (r = -0.80, gamma = 225 sec-1, P < 0.001; r = -0.84, gamma = 450 sec-1, P < 0.001). The impaired rheological properties of blood and red cell rigidity might result in both reduced capillary blood flow velocity and lower values of TE, which then possibly contribute to the deterioration of retinopathy or microangiopathy in diabetic patients.

  1. Anisotropy of the Transport Properties in Yttrium BARIUM(2) COPPER(3) OXYGEN(7-DELTA) (110) Thin Films

    NASA Astrophysics Data System (ADS)

    Wu, Judy Zhihong

    The anisotropy of the transport properties was studied systematically on high-quality epitaxial YBCO (110) thin-films obtained by both dc magnetron-sputtering and pulsed laser-ablation on single crystal (110) SrTiO _3 substrates. These films have in-plane alignment of the c-axis of YBCO, which is essential to the transport study of the anisotropy between the ab-plane and the c-axis. Along the c-axis, rho shows a semiconductor-like upturn as T decreases and a metallic T-linear behavior along the Cu-O plane. This confirms the correlation between the semiconductor-like rho along the c-axis and slight oxygen -deficiency in YBCO. As point-defects are introduced into the thin-film by the 200 keV proton-irradiation, the rho-anisotropy dramatically changes. Along the Cu-O planes, these defects contribute only a residual rho as in normal metals. Along the c-axis, rho is significantly reduced. A "phase transition" from semiconductor-like to metal-like is completed at a low proton dose of 6times10 ^{14} ions/cm^2 , where little effect is observed on T_ {c} and rho_{ab }. This suggests that the unusual normal-state transport properties are irrelevant to the mechanism of HTS. In the superconducting state, the J_ {c,trans} has been measured as functions of T, H, and the direction of H. The T-dependence along the Cu-O plane fits the vortex-glass model while along the c-axis, it fits the Josephson tunnel-junction model. This observation implies that the extrinsic weak-link effect determines J_{c,trans} along the Cu-O plane while the intrinsic tunnelling of the charge carriers limits J_{c,trans } along the c-axis. Similar measurements have also been conducted on YBCO a-, c-, and (113)-oriented thin films. Intrinsic pinning is the strongest pinning effect in YBCO despite the orientation of the film. J _{c}-anisotropy in different field directions is due to the anisotropy of the pinning-effect. The surface pinning-effect is observed (for the first time) on YBCO. It becomes visible

  2. Moral distress in nurses in oncology and haematology units.

    PubMed

    Lazzarin, Michela; Biondi, Andrea; Di Mauro, Stefania

    2012-03-01

    One of the difficulties nurses experience in clinical practice in relation to ethical issues in connection with young oncology patients is moral distress. In this descriptive correlational study, the Moral Distress Scale-Paediatric Version (MDS-PV) was translated from the original language and tested on a conventional sample of nurses working in paediatric oncology and haematology wards, in six north paediatric hospitals of Italy. 13.7% of the total respondents claimed that they had changed unit or hospital due to moral distress. The items with the highest mean intensity in the sample were almost all connected with medical and nursing competence and have considerably higher values than frequency. The instrument was found to be reliable. The results confirmed the validity of the MDS-PV (Cronbach's alpha = 0.959). This study represents the first small-scale attempt to validate MDS-PV for use in paediatric oncology-haematology nurses in Italy.

  3. Next-generation sequencing - feasibility and practicality in haematology.

    PubMed

    Kohlmann, Alexander; Grossmann, Vera; Nadarajah, Niroshan; Haferlach, Torsten

    2013-03-01

    Next-generation sequencing platforms have evolved to provide an accurate and comprehensive means for the detection of molecular mutations in heterogeneous tumour specimens. Here, we review the feasibility and practicality of this novel laboratory technology. In particular, we focus on the utility of next-generation sequencing technology in characterizing haematological neoplasms and the landmark findings in key haematological malignancies. We also discuss deep-sequencing strategies to analyse the constantly increasing number of molecular markers applied for disease classification, patient stratification and individualized monitoring of minimal residual disease. Although many facets of this assay need to be taken into account, amplicon deep-sequencing has already demonstrated a promising technical performance and is being continuously developed towards routine application in diagnostic laboratories so that an impact on clinical practice can be achieved.

  4. External quality assessment scheme for haematology in Germany.

    PubMed

    Heller, S

    1995-01-01

    Quality control in haematology is performed in Germany for 20 years. Both cell count, haemoglobin measurement and differential count on smear with morphology exercise and probably diagnosis will be demanded by the participants. Until now this quality control is not mandatory, even efforts are done to change this circumstance, given by the main input of diagnostic value due to haematology results. So this regulation will be changed very soon, in order to submit haematological laboratories to governmental control, effected by the BAK (Bundesärztekammer), as already is done in clinical chemistry. For this EQA the participants cannot expected any financial support by any organization, nor public health, nor private assurance. The role of referee laboratories and reference values as well as difficulties for the adequate reference material are discussed. For the differential count other limits have to be established: recognition of pathological blood films is one of the most important point (in sense of morphological exercise) to ensure broad knowledge of "flag interpretation". Since the last year quality control for reticulocyte count and flow cytometry for immune status and leukemia-differentiation has been established.

  5. Impact of an antimicrobial stewardship program on critical haematological patients.

    PubMed

    Ruiz-Ramos, Jesus; Frasquet, Juan; Poveda-Andrés, Jose Luis; Romá, Eva; Salavert-Lleti, Miguel; Castellanos, Álvaro; Ramirez, Paula

    2017-07-01

    Antimicrobial Stewardship Programs (ASPs) have appeared as very useful tools in order to improve the use of antimicrobial agents. The objective of this study is to assess the impact of an ASP on haematological patients hospitalized in an Intensive Care Unit (ICU). A quasi-experimental pre-post intervention study, which included haematological patients admitted to an ICU and assessed by the ASP program during 3 years. The impact of the program on patient evolution was assessed by comparison between the previous period and the intervention period in terms of mortality, mean stay, number of re-hospitalizations, and duration of mechanical ventilation for intubated patients. The ASP team assessed 324 antimicrobial agents in 169 patients; they recommended 121 modifications, including 55 treatment discontinuations. Compared with the pre-intervention period, there were no significant differences in the variables assessed. No variation was observed in colonization by multi-resistant bacteria. The implementation of an APS on critical haematological patients will lead to a relevant number of treatment modifications, without any impact on the clinical evolution of patients. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-02-01

    This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-05-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  8. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  9. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham

    2006-06-30

    A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

  11. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2006-05-01

    In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

  12. Haematology and Serum Biochemistry Parameters and Variations in the Eurasian Beaver (Castor fiber)

    PubMed Central

    Girling, Simon J.; Campbell-Palmer, Roisin; Pizzi, Romain; Fraser, Mary A.; Cracknell, Jonathan; Arnemo, Jon; Rosell, Frank

    2015-01-01

    Haematology parameters (N = 24) and serum biochemistry parameters (N = 35) were determined for wild Eurasian beavers (Castor fiber), between 6 months – 12 years old. Of the population tested in this study, N = 18 Eurasian beavers were from Norway and N = 17 originating from Bavaria but now living extensively in a reserve in England. All blood samples were collected from beavers via the ventral tail vein. All beavers were chemically restrained using inhalant isoflurane in 100% oxygen prior to blood sampling. Results were determined for haematological and serum biochemical parameters for the species and were compared between the two different populations with differences in means estimated and significant differences being noted. Standard blood parameters for the Eurasian beaver were determined and their ranges characterised using percentiles. Whilst the majority of blood parameters between the two populations showed no significant variation, haemoglobin, packed cell volume, mean cell haemoglobin and white blood cell counts showed significantly greater values (p<0.01) in the Bavarian origin population than the Norwegian; neutrophil counts, alpha 2 globulins, cholesterol, sodium: potassium ratios and phosphorus levels showed significantly (p<0.05) greater values in Bavarian versus Norwegian; and potassium, bile acids, gamma globulins, urea, creatinine and total calcium values levels showed significantly (p<0.05) greater values in Norwegian versus Bavarian relict populations. No significant differences were noted between male and female beavers or between sexually immature (<3 years old) and sexually mature (≥3 years old) beavers in the animals sampled. With Eurasian beaver reintroduction encouraged by legislation throughout Europe, knowledge of baseline blood values for the species and any variations therein is essential when assessing their health and welfare and the success or failure of any reintroduction program. This is the first study to produce base

  13. Haematology and Serum Biochemistry Parameters and Variations in the Eurasian Beaver (Castor fiber).

    PubMed

    Girling, Simon J; Campbell-Palmer, Roisin; Pizzi, Romain; Fraser, Mary A; Cracknell, Jonathan; Arnemo, Jon; Rosell, Frank

    2015-01-01

    Haematology parameters (N = 24) and serum biochemistry parameters (N = 35) were determined for wild Eurasian beavers (Castor fiber), between 6 months - 12 years old. Of the population tested in this study, N = 18 Eurasian beavers were from Norway and N = 17 originating from Bavaria but now living extensively in a reserve in England. All blood samples were collected from beavers via the ventral tail vein. All beavers were chemically restrained using inhalant isoflurane in 100% oxygen prior to blood sampling. Results were determined for haematological and serum biochemical parameters for the species and were compared between the two different populations with differences in means estimated and significant differences being noted. Standard blood parameters for the Eurasian beaver were determined and their ranges characterised using percentiles. Whilst the majority of blood parameters between the two populations showed no significant variation, haemoglobin, packed cell volume, mean cell haemoglobin and white blood cell counts showed significantly greater values (p<0.01) in the Bavarian origin population than the Norwegian; neutrophil counts, alpha 2 globulins, cholesterol, sodium: potassium ratios and phosphorus levels showed significantly (p<0.05) greater values in Bavarian versus Norwegian; and potassium, bile acids, gamma globulins, urea, creatinine and total calcium values levels showed significantly (p<0.05) greater values in Norwegian versus Bavarian relict populations. No significant differences were noted between male and female beavers or between sexually immature (<3 years old) and sexually mature (≥3 years old) beavers in the animals sampled. With Eurasian beaver reintroduction encouraged by legislation throughout Europe, knowledge of baseline blood values for the species and any variations therein is essential when assessing their health and welfare and the success or failure of any reintroduction program. This is the first study to produce base

  14. Dual-Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide.

    PubMed

    Garcia-Fayos, Julio; Balaguer, María; Serra, José M

    2015-12-21

    Dual-phase membranes are appealing candidates for oxygen transport membranes owing to their unique combination of ambipolar electron-ion transport and endurance. However, O2 separation in industrial environments demands very high stability and effectiveness in the presence of CO2- and SO2-bearing process gases. Here, the composition of dual-phase membranes based on NiFe2O4-Ce(0.8) Tb(0.2)O(2-δ) (NFO-CTO) was optimized and the effective performance of catalytically-activated membranes was assessed in presence of CO2 and SO2. Further insight into the limiting mechanisms in the permeation was gained through electrical conductivity studies, permeation testing in several conditions and impedance spectroscopy analysis. The dual-phase membranes were prepared by one-pot sol-gel method and their permeability increases with increasing fluorite content. An O2 flux of 0.25 (ml min(-1)  cm(-2)) mm at 1000 °C was obtained for a thick self-standing membrane with 40:60 NFO/CTO composition. An in-depth study mimicking typical harsh conditions encountered in oxyfuel flue gases was performed on a 50:50 NFO/CTO membrane. CO2 content as well as SO2 presence in the sweep gas stream were evaluated in terms of O2 permeation. O2 fluxes of 0.13 and 0.09 mL min(-1)  cm(-2) at 850 °C were obtained for a 0.59 mm thick membrane under CO2 and 250 ppm SO2 in CO2 sweep conditions, respectively. Extended periods at work under CO2- and SO2-containing atmospheres revealed good permeation stability over time. Additionally, XRD, backscattered electrons detector (BSD)-SEM, and energy-dispersive X-ray spectroscopy (EDS) analysis of the spent membrane confirmed material stability upon prolonged exposure to SO2.

  15. Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase: a novel biotechnology-based blood substitute that transports both oxygen and carbon dioxide and also acts as an antioxidant.

    PubMed

    Bian, Yuzhu; Rong, Zhixia; Chang, Thomas Ming Swi

    2012-02-01

    Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase (PolyHb-SOD-CAT-CA) is a therapeutic antioxidant that also transports both oxygen and carbon dioxide. This is formed by crosslinking Hb with SOD, CAT, and CA using glutaraldehyde. Crosslinking stroma-free Hb from red blood cell (RBC) reduces CA activity to 55%. Addition of more CA resulted in a preparation with the same CA activity as RBC. PolyHb in the complex acts as a buffer to prevent large pH changes as carbon dioxide is converted to carbonic acid. We then prepare and optimize a novel PolyHb-SOD-CAT-CA, a therapeutic antioxidant that also transports both oxygen and carbon dioxide.

  16. Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase: a novel biotechnology-based blood substitute that transports both oxygen and carbon dioxide and also acts as an antioxidant.

    PubMed

    Bian, Yuzhu; Rong, Zhixia; Chang, Thomas Ming Swi

    2011-06-01

    Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase (PolyHb-SOD-CAT-CA) is a therapeutic antioxidant that also transports both oxygen and carbon dioxide. This is formed by crosslinking Hb with SOD, CAT, and CA using glutaraldehyde. Crosslinking stroma free Hb from red blood cell (rbc) reduces CA activity to 55%. Addition of more CA resulted in a preparation with the same CA activity as RBC. PolyHb in the complex acts as a buffer to prevent large pH changes as carbon dioxide is converted to carbonic acid. We then prepare and optimize a novel PolyHb-SOD-CAT-CA, a therapeutic antioxidant that also transports both oxygen and carbon dioxide.

  17. Haematological values of Udah and Yankasa sheep in the Northern Guinea savanna of Nigeria.

    PubMed

    Saror, D I; Schillhorn van Veen, T W

    1977-11-01

    Haematological values of Yankasa and Udah sheep were determined in three clinically healthy flocks and a fourth flock with mixed helminthiasis, predominantly haemonchosis. Values for Hb, PCV, RBC and WBC from the healthy flocks were similar. They were, however, lower than reported values for sheep in temperate zones except the WBC values which were higher. These parameters were lower in the infected flock and had a wider spread. It was concluded that haematological values from the clinically healthy flocks could serve as a baseline for interpreting haematological data from diseased local sheep. It is suggested that management and health status are more important than breed for differences in haematological values.

  18. Development of a Minimal-Bulk Oxygen Delivery Product to Enhance Survival During Hemorrhagic Shock/Studies Regarding the Use of Perfluorocarbon- Derived Intravascular Microbubbles from Oxygen Transport

    DTIC Science & Technology

    2009-07-01

    TREATED PIGS A few minu tes after th e Hextend infusion was initiated, th e arterial pr essures started to incr ease gradually as demonstrated in Figure...Until the end of treatment both panels displays SAP (systolic arterial pressure) and DAP (diastolic arterial pr essure ) as mean ± SE, after...toxicity, high pressu re nervous syndrome, work to lerance at pr essure , hyperbaric oxygen treatment for decompression sickness and clinical use

  19. Conducting Membranes: Unprecedented Perovskite Oxyfluoride Membranes with High-Efficiency Oxygen Ion Transport Paths for Low-Temperature Oxygen Permeation (Adv. Mater. 18/2016).

    PubMed

    Zhu, Jiawei; Liu, Gongping; Liu, Zhengkun; Chu, Zhenyu; Jin, Wanqin; Xu, Nanping

    2016-05-01

    Perovskite oxyfluoride (ABO3-δ Fγ ) membranes for low-temperature oxygen permeation are reported by W. Jin and co-workers. As described on page 3511, using mixed ionic and electronic conducting (MIEC) oxides, this new type of membrane outperforms current state-of-the-art MIEC membranes and satisfies commercial requirements at low temperatures (<923 K). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Assessment of suspended-sediment transport, bedload, and dissolved oxygen during a short-term drawdown of Fall Creek Lake, Oregon, winter 2012-13

    USGS Publications Warehouse

    Schenk, Liam N.; Bragg, Heather M.

    2014-01-01

    The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.

  1. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia.

    PubMed

    van Duin, Adri C T; Merinov, Boris V; Jang, Seung Soon; Goddard, William A

    2008-04-10

    We present the ReaxFF reactive force field developed to provide a first-principles-based description of oxygen ion transport through yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) membranes. All parameters for ReaxFF were optimized to reproduce quantum mechanical (QM) calculations on relevant condensed phase and cluster systems. We validated the use of ReaxFF for fuel cell applications by using it in molecular dynamics (MD) simulations to predict the oxygen ion diffusion coefficient in yttria-stabilized zirconia as a function of temperature. These values are in excellent agreement with experimental results, setting the stage for the use of ReaxFF to model the transport of oxygen ions through the YSZ electrolyte for SOFC. Because ReaxFF descriptions are already available for some catalysts (e.g., Ni and Pt) and under development for other high-temperature catalysts, we can now consider fully first-principles-based simulations of the critical functions in SOFC, enabling the possibility of in silico optimization of these materials. That is, we can now consider using theory and simulation to examine the effect of materials modifications on both the catalysts and transport processes in SOFC.

  2. Amelioration of hypoxia-induced striatal 5-HT(2A) receptor, 5-HT transporter and HIF1 alterations by glucose, oxygen and epinephrine in neonatal rats.

    PubMed

    Anju, T R; Paulose, C S

    2011-09-20

    Alterations in neurotransmitters and its receptors expression induce brain injury during neonatal hypoxic insult. Molecular processes regulating the serotonergic receptors play an important role in the control of respiration under hypoxic insult. The present study focused on the serotonergic regulation of neonatal hypoxia and its resuscitation methods. Receptor binding assays and gene expression studies were done to evaluate the changes in 5HT(2A) receptors and its transporter in the corpus striatum of hypoxic neonatal rats and hypoxic rats resuscitated with glucose, oxygen and epinephrine. Total 5HT and 5HT(2A) receptor number was increased in hypoxic neonates along with an up regulation of 5HT(2A) receptor and 5HT transporter gene. The enhanced striatal 5HT(2A) receptors modulate the ventilatory response to hypoxia. Immediate glucose resuscitation was found to ameliorate the receptor and transporter alterations. Hypoxia induced ATP depletion mediated reduction in blood glucose levels can be encountered by glucose administration and oxygenation helps in overcoming the anaerobic condition. The adverse effect of immediate oxygenation and epinephrine supplementation was also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

  3. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  4. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures.

    PubMed

    Bonde, C; Noraberg, J; Noer, H; Zimmer, J

    2005-01-01

    Organotypic hippocampal slice cultures represent a feasible model for studies of cerebral ischemia and the role of ionotropic glutamate receptors in oxygen-glucose deprivation-induced neurodegeneration. New results and a review of existing data are presented in the first part of this paper. The role of glutamate transporters, with special reference to recent results on inhibition of glutamate transporters under normal and energy-failure (ischemia-like) conditions is reviewed in the last part of the paper. The experimental work is based on hippocampal slice cultures derived from 7 day old rats and grown for about 3 weeks. In such cultures we investigated the subfield neuronal susceptibility to oxygen-glucose deprivation, the type of induced cell death and the involvement of ionotropic glutamate receptors. Hippocampal slice cultures were also used in our studies on glutamate transporters reviewed in the last part of this paper. Neurodegeneration was monitored and/or shown by cellular uptake of propidium iodide, loss of immunocytochemical staining for microtubule-associated protein 2 and staining with Fluoro-Jade B. To distinguish between necrotic vs. apoptotic neuronal cell death we used immunocytochemical staining for active caspase-3 (apoptosis indicator) and Hoechst 33342 staining of nuclear chromatin. Our experimental studies on oxygen-glucose deprivation confirmed that CA1 pyramidal cells were the most susceptible to this ischemia-like condition. Judged by propidium iodide uptake, a selective CA1 lesion, with only minor affection on CA3, occurred in cultures exposed to oxygen-glucose deprivation for 30 min. Nuclear chromatin staining by Hoechst 33342 and staining for active caspase-3 showed that oxygen-glucose deprivation induced necrotic cell death only. Addition of 10 microM of the N-methyl-D-aspartate glutamate receptor antagonist MK-801, and 20 microM of the non-N-methyl-D-aspartate glutamate receptor antagonist 2,3-dihyroxy-6-nitro-7-sulfamoyl

  5. Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism

    PubMed Central

    Zeis, Bettina; Lamkemeyer, Tobias; Paul, Rüdiger J; Nunes, Frank; Schwerin, Susanne; Koch, Marita; Schütz, Wolfgang; Madlung, Johannes; Fladerer, Claudia; Pirow, Ralph

    2009-01-01

    Background Freshwater planktonic crustaceans of the genus Daphnia show a remarkable plasticity to cope with environmental changes in oxygen concentration and temperature. One of the key proteins of adaptive gene control in Daphnia pulex under hypoxia is hemoglobin (Hb), which increases in hemolymph concentration by an order of magnitude and shows an enhanced oxygen affinity due to changes in subunit composition. To explore the full spectrum of adaptive protein expression in response to low-oxygen conditions, two-dimensional gel electrophoresis and mass spectrometry were used to analyze the proteome composition of animals acclimated to normoxia (oxygen partial pressure [Po2]: 20 kPa) and hypoxia (Po2: 3 kPa), respectively. Results The comparative proteome analysis showed an up-regulation of more than 50 protein spots under hypoxia. Identification of a major share of these spots revealed acclimatory changes for Hb, glycolytic enzymes (enolase), and enzymes involved in the degradation of storage and structural carbohydrates (e.g. cellubiohydrolase). Proteolytic enzymes remained constitutively expressed on a high level. Conclusion Acclimatory adjustments of the D. pulex proteome to hypoxia included a strong induction of Hb and carbohydrate-degrading enzymes. The scenario of adaptive protein expression under environmental hypoxia can be interpreted as a process to improve oxygen transport and carbohydrate provision for the maintenance of ATP production, even during short episodes of tissue hypoxia requiring support from anaerobic metabolism. PMID:19383146

  6. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  7. The Perspectives of Haematological Cancer Patients on Tissue Banking.

    PubMed

    Turon, Heidi; Waller, Amy; Clinton-McHarg, Tara; Boyes, Allison; Fleming, Jennifer; Marlton, Paula; Harrison, Simon J; Sanson-Fisher, Rob

    2016-01-01

    A high level of support for tissue banking has been identified amongst both the general public and patients. However, much debate remains about the regulatory framework of tissue banks. This study explored the views of haematological cancer patients regarding tissue banking and how tissue banks should operate. Haematological cancer patients from three outpatient clinics in Australia completed a questionnaire examining their preferences for tissue banking as well as items about their sociodemographic characteristics, disease and treatment history. The majority of participants (95%) reported being willing to allow their leftover tissue to be used for medical research. Three quarters (76%) supported the idea of their medical record being linked to their tissue sample, and 77% preferred a blanket (one-off) consent model for future research use of their tissue sample. Only 57 (27%) participants had been asked to give a tissue sample for research, 98% of whom gave permission. The majority of haematological cancer patients are willing to donate their leftover tissue to a tissue bank and have their medical records linked to tissue samples and prefer a one-off consent process. These novel data from potential donors inform the debate about how tissue banks might operate. Strategic Research Partnership Grant from the Cancer Council NSW to the Newcastle Cancer Control Collaborative (New-3C) and infrastructure funding from the Hunter Medical Research Institute (HMRI). A.W. is supported by an Australian Research Council DECRA fellowship (DE150101262). T.C.M. was supported by a Leukaemia Foundation of Queensland Post-Doctoral Fellowship. A.B. is supported by National Health and Medical Research Council (APP1073317) and Cancer Institute NSW (13/ECF/1-37) Early Career Fellowships.

  8. Pitfalls in the use of multicolour flow cytometry in haematology.

    PubMed

    Johansson, Ulrika; Macey, Marion

    2011-07-01

    Multicolour flow cytometry in haematology has developed considerably in recent years. The ability to analyse eight or more colours of fluorescence on millions of cells in a matter of minutes has enabled the provision of rapid and reliable measures of minimal residual disease for clinicians. The use of multicolour analysis has also enabled more specific characterisation of presenting leukaemias and lymphomas. However, there has not been a concomitant increase in the knowledge and experience of the flow cytometrists to deal with certain problems associated with this more complex analysis.

  9. Haematological complications in otherwise healthy children hospitalized for varicella.

    PubMed

    Elena, Bozzola; Anna, Quondamcarlo; Andrzej, Krzysztofiak; Elisabetta, Pandolfi; Laura, Lancella; Alberto, Tozzi

    2011-02-11

    Although varicella is commonly regarded as a mild childhood disease, complications may occur and frequently require hospitalization. The aim of this study was to establish the type and frequency of varicella complications among hospitalized paediatric patients over a 4.5-year period. This analysis included the medical charts of 306 patients admitted to the Infectious Disease Unit, Children Hospital Bambino Gesù, Roma, Italy from 2006 to 2010 for varicella disease. The most common complications were haematological disorders (41.5%) followed by neurological ones (23.5%). Varicella vaccination in childhood immunization program must be increased. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Haematological abnormalities in acute pancreatitis. A prospective study.

    PubMed Central

    Murphy, D.; Imrie, C. W.; Davidson, J. F.

    1977-01-01

    Twenty-five patients with acute pancreatitis were studied prospectively in the first week of their admission using haematological and coagulation tests. Platelet counts initially fell and later returned to admission levels. Rising levels of plasma fibrinogen were recorded. The kaolin cephalin clotting time was shorter than its control in twenty-one patients. Eighteen patients had elevated fibrinogen degradation products and fourteen had a positive ethanol gelation test. It is suggested that by taking into account the results in series of individual patients a degree of intravascular coagulation may be a common feature of acute pancreatitis. In one patient (presented in detail) strong evidence for disseminated intravascular coagulation was found PMID:887529

  11. Communication during haematological consultations; patients' preferences and professionals' performances.

    PubMed

    van Bruinessen, Inge R; van der Hout, Lotte E; van Weel-Baumgarten, Evelyn M; Gouw, Hans; Zijlstra, Josée M; van Dulmen, Sandra

    2016-06-01

    Many patients with haematological malignancies experience barriers in clinical communication. Reaching effective communication is of great importance as it has been linked to a range of improved patient outcomes such as satisfaction, compliance to treatment, perceived quality of life and physical and mental health. To get a better understanding how communication in haematological consultations can be improved, the current study focussed on patients' preferences and perceived performances regarding the communicative behaviour of their health care professional. Secondly, the mediation of an online communication tool for patients was analysed. Within a controlled pre- post-test design, 78 datasets of clinical consultations could be analysed. Patients considered both affective and instrumental communication aspects important. The affective communication behaviour of the health care professional met the patients' pre-visit preferences well. In the information exchange, more variability and discrepancies were found. Overall, the online intervention did not seem to influence the patients' perceived communication performance of their health care professional much. To further improve the communication during clinical consultations, health care professionals should inquire about patients' expectations, especially during the exchange of information and advices. At the same time, patients should be supported to express their preferences at the start of the consultation. The study was registered in the Netherlands Trial Register, number 3779.

  12. Immunophenotyping of posttraumatic neutrophils on a routine haematology analyser.

    PubMed

    Groeneveld, Kathelijne Maaike; Heeres, Marjolein; Leenen, Loek Petrus Hendrikus; Huisman, Albert; Koenderman, Leo

    2012-01-01

    Flow cytometry markers have been proposed as useful predictors for the occurrence of posttraumatic inflammatory complications. However, currently the need for a dedicated laboratory and the labour-intensive analytical procedures make these markers less suitable for clinical practice. We tested an approach to overcome these limitations. Neutrophils of healthy donors were incubated with antibodies commonly used in trauma research: CD11b (MAC-1), L-selectin (CD62L), FcγRIII (CD16), and FcγRII (CD32) in active form (MoPhab A27). Flow cytometric analysis was performed both on a FACSCalibur, a standard flow cytometer, and on a Cell-Dyn Sapphire, a routine haematology analyser. There was a high level of agreement between the two types of analysers, with 41% for FcγRIII, 80% for L-selectin, 98% for CD11b, and even a 100% agreement for active FcγRII. Moreover, analysis on the routine haematology analyser was possible in less than a quarter of the time in comparison to the flow cytometer. Analysis of neutrophil phenotype on the Cell-Dyn Sapphire leads to the same conclusion compared to a standard flow cytometer. The markedly reduced time necessary for analysis and reduced labour intensity constitutes a step forward in implementation of this type of analysis in clinical diagnostics in trauma research. Copyright © 2012 Kathelijne Maaike Groeneveld et al.

  13. Potential risk factors for haematological cancers in semiconductor workers.

    PubMed

    Lee, K; Kim, S-G; Kim, D

    2015-10-01

    There has recently been increased interest in cancer incidence in electronics workers. To determine the cancer incidence ratio in electronics workers and the potential factors affecting the risk for development of cancer. Epidemiological study performed in electronics workers who were employed between 1999 and 2008 in South Korea. Cancer incidence ratio was analysed with respect to departments, divisions, job titles, gender, age, hepatitis B and C virus infection and work duration. We compared the incidence of haematological cancer in this cohort with that expected in the general population. The study population was 56283. Overall, the standardized incidence ratio (SIR) for haematological cancer was 0.85. In particular, the SIR for leukaemia was 0.86 and for non-Hodgkin lymphoma (NHL) was 0.93, which were not statistically significant. The SIR for NHL was significantly increased [SIR 5.23, 95% confidence interval (CI) 1.31-20.95] in female office workers. We also found that the SIR for NHL was significantly increased in female workers who tested positive for hepatitis virus infection (SIR 7.69, 95% CI 1.08-54.60). The raised SIR for NHL among female workers was due to potential risk factors such as hepatitis virus infection although additional research and an ongoing, long-term, prospective epidemiological cohort study is needed. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Screening haematology patients for carbapenem-resistant Klebsiella pneumoniae

    PubMed Central

    Kilgour, Elizabeth; Dunn, Caroline; Thomas, Linda; Fox, Richard; Mitchell, Lindsay; Paterson, Pamela

    2013-01-01

    Following a cluster of haematology patients with carbapenem-resistant Klebsiella pneumoniae (CRKP) septicaemia, we initiated screening for rectal carriage of CRKP and multidrug-resistant K. pneumoniae (MDRKP) in this patient group. Haematology inpatients submit a rectal swab once weekly. When plated onto chromogenic Brilliance™ UTI Agar (Oxoid), and incubated overnight with a 10 µg ertapenem disc (Oxoid), K. pneumoniae is identified and semi-automated antibiotic susceptibility testing is performed using the Vitek 2 analyser (Biomerieux). When no zone of inhibition occurs, immediate intervention through patient isolation and enhanced environmental cleaning can be instigated to control further spread while empirical antibiotic prescribing is adapted to take account of identified resistances. Over 2 years, six patients with CRKP and 20 patients with MDRKP were identified. These isolates were resistant to first-line empirical treatment choices for neutropenic sepsis and presented a clinical risk of treatment failure for sepsis post cytotoxic chemotherapy. We describe how this rectal screening methodology was developed and how the results influenced appropriate antibiotic prescribing, patient placement in single rooms and the cleaning of the ward environment to prevent person-to-person transmission of MDRKP and CRKP.

  15. Follow up study of haematological effects in workers exposed to 2-methoxyethanol

    PubMed Central

    Shih, T; Hsieh, A; Chen, Y; Liao, G; Chen, C; Chou, J; Liou, S

    2003-01-01

    Aims: To examine the association between 2-methoxyethanol (2-ME) exposure and haematological effects, as well as the recovery from these haematological effects with continuous reduction in exposure to 2-ME. Methods: Twenty nine exposed and 90 non-exposed workers were recruited. Haematological parameters, eight hour full shift personal exposure to 2-ME, and urinary 2-methoxyacetic acid (MAA) were repeatedly measured in three consecutive surveys within six months. Results: Results of haematological examination in the first exposure survey showed that haemoglobin, packed cell volume, and red blood cell count in the male exposed workers were significantly lower than those in the comparison workers. The frequency of anaemia in the exposed group (42%) was significantly higher than that in the comparison group (3%). The haematological effects were significantly associated with the urinary MAA of exposed workers. The haematological effects had returned to normal in the first follow up survey 2.5 months later, when a reduction in 2-ME exposure was noted. Haematological results of the second follow up examination six months later remained normal. The mean airborne exposure of 2-ME in the three surveys dropped from 35.7 to 2.65, then to 0.55 ppm. The mean urinary MAA of exposed workers in the three surveys was reduced from 57.7 to 24.6, then to 13.5 mg/g creatinine (n = 29). The reduction in exposure through both inhalation and potential dermal contact with 2-ME might account for the haematological recovery. Conclusion: 2-ME is a haematological toxin which leads to anaemia in exposed workers. However, the toxic haematological effects of 2-ME persist for only a short period of time after cessation or reduction of exposure. PMID:12554841

  16. Oxidation of sitosterol and transport of its 7-oxygenated products from different tissues in humans and ApoE knockout mice.

    PubMed

    Schött, Hans-Frieder; Baumgartner, Sabine; Husche, Constanze; Luister, Alexandra; Friedrichs, Silvia; Miller, Charlotte M; McCarthy, Florence O; Plat, Jogchum; Laufs, Ulrich; Weingärtner, Oliver; Lütjohann, Dieter

    2017-05-01

    The most common phytosterols in the human diet are sitosterol and campesterol, which originate exclusively from plant derived food. These phytosterols are taken up by NPC1L1 transport from the intestine into the enterocytes together with cholesterol and other xenosterols. Phytosterols are selectively pumped back from the enterocytes into the intestinal lumen and on the liver site from hepatocytes into bile by heterodimeric ABCG5/G8 transporters. Like cholesterol, both phytosterols are prone to ring and side chain oxidation. It could be shown that oxyphytosterols, found in atherosclerotic tissue, are most likely of in situ oxidation (Schött et al.; Biochem. Biophys. Res. Commun. 2014 Apr 11;446(3):805-10). However, up to now, the entire mechanism of phytosterol oxidation is not clearly understood. Here, we provide further information about the oxidation of sitosterol and the transport of its oxidation products out of tissue. Our survey includes data of 104 severe aortic stenosis patients that underwent an elective aortic valve cusp replacement. We studied their phytosterol concentrations, as well as absolute and substrate corrected oxyphytosterol levels in plasma and valve cusp tissue. In addition, we also examined phytosterol and oxyphytosterol concentrations in plasma and tissues (from brain and liver) of 10 male ApoE knockout mice. The ratio of 7-oxygenated-sitosterol-to-sitosterol exceeds the ratio for 7-oxygenated-campesterol-to-campesterol in plasma and tissue of both humans and mice. This finding indicates that sitosterol is oxidized to a higher amount than campesterol and that a selective oxidative mechanism might exist which can differentiate between certain phytosterols. Secondly, the concentrations of oxyphytosterols found in plasma and tissue support the idea that oxysitosterols are preferably transported out of individual tissues. Selective oxidation of sitosterol and preferred transport of sitosterol oxidation products out of tissue seem to be a

  17. Standardization of haematology critical results management in adults: an International Council for Standardization in Haematology, ICSH, survey and recommendations.

    PubMed

    Keng, T B; De La Salle, B; Bourner, G; Merino, A; Han, J-Y; Kawai, Y; Peng, M T; McCafferty, R

    2016-10-01

    These recommendations are intended to develop a consensus in the previously published papers as to which parameters and what values should be considered critical. A practical guide on the standardization of critical results management in haematology laboratories would be beneficial as part of good laboratory and clinical practice and for use by laboratory-accrediting agencies. A working group with members from Europe, America, Australasia and Asia was formed by International Council for Standardization in Haematology. A pattern of practice survey of 21 questions was distributed in 2014, and the data were collected electronically by Survey Monkey. The mode, or most commonly occurring value, was selected as the threshold for the upper and lower alert limits for critical results reporting. A total of 666 laboratories submitted data to this study and, of these, 499 submitted complete responses. Full blood count critical results alert thresholds, morphology findings that trigger critical result notification, critical results alert list, notification process and maintenance of critical results management protocol are described. This international survey provided a snapshot of the current practice worldwide and has identified the existence of considerable heterogeneity of critical results management. The recommendations in this study represent a consensus of good laboratory practice. They are intended to encourage the implementation of a standardized critical results management protocol in the laboratory. © 2016 John Wiley & Sons Ltd.

  18. Transport and Distribution of Hydroxyl Radicals and Oxygen Atoms from H2O Photodissociation in the Inner Coma of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Wei, Chen-En; Wu, Jong-Shinn; Lo, Ming-Chung; Liao, Ying; Thomas, Nicolas

    2016-03-01

    With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.

  19. Pulsed laser-induced oxygen deficiency at TiO{sub 2} surface: Anomalous structure and electrical transport properties

    SciTech Connect

    Nakajima, Tomohiko; Tsuchiya, Tetsuo; Kumagai, Toshiya

    2009-09-15

    We have studied pulsed laser-induced oxygen deficiencies at rutile TiO{sub 2} surfaces. The crystal surface was successfully reduced by excimer laser irradiation, and an oxygen-deficient TiO{sub 2-{delta}} layer with 160 nm thickness was formed by means of ArF laser irradiation at 140 mJ/cm{sup 2} for 2000 pulses. The TiO{sub 2-{delta}} layer fundamentally maintained a rutile structure, though this structure was distorted by many stacking faults caused by the large oxygen deficiency. The electrical resistivity of the obtained TiO{sub 2-{delta}} layer exhibited unconventional metallic behavior with hysteresis. A metal-insulator transition occurred at 42 K, and the electrical resistivity exceeded 10{sup 4} OMEGA cm below 42 K. This metal-insulator transition could be caused by bipolaronic ordering derived from Ti-Ti pairings that formed along the stacking faults. The constant magnetization behavior observed below 42 K is consistent with the bipolaronic scenario that has been observed previously for Ti{sub 4}O{sub 7}. These peculiar electrical properties are strongly linked to the oxygen-deficient crystal structure, which contains many stacking faults formed by instantaneous heating during excimer laser irradiation. - Graphical abstract: A pulsed laser-irradiated TiO{sub 2-{delta}} substrate showed an unconventional metallic phase, with hysteresis over a wide range of temperatures and a metal-insulator transition at 42 K.

  20. Electrical Transport Properties of Epitaxial and Granular Oriented Yttrium BARIUM(2) COPPER(3) OXYGEN(7-DELTA) Thin Films

    NASA Astrophysics Data System (ADS)

    Jones, Edwin Clay

    1992-01-01

    Strong correlations between the Hall coefficient R_{H}, the transition temperature T_{c}, and the critical current density J_{c} were established in a series of epitaxial YBa_2Cu_3O_ {7-delta} thin films as a function of oxygen deficiency delta. Steady increases in R_{H} with delta suggests that dexoygenation reduces the density of states which, according to BCS theory, should lead to corresponding decreases in T_ {c}. In contrast, two well known plateaus occurring at 90K and 60K were observed in T _{c} vs. delta . Others have ascribed these plateaus to either electronic phenomena or oxygen clustering. We find that in the 90K plateau, the critical current density J _{c}(delta ,H = 0) decreased with delta and extrapolates toward zero at the edge of the plateau, while the relative field dependence of J_ {c}(delta,H) is independent of delta. Furthermore, a fluctuation analysis of the resistive transitions indicates a constant upper critical field B_{ c2}(0) = 110T across this plateau. These observations suggest that the oxygen clustering/percolation scenario occurs on the 90K plateau. Moreover, computer simulations showed this oxygen clustering/percolation picture to be a plausible explanation for the occasional observation of a sign reversal of R _{H} near T _{c}. For large oxygen deficiencies (delta > 0.5) and for the granular oriented YBa_2Cu_3O _{7-delta} thin films, rapid decreases in J_{c} with applied field were observed which is reminiscent of the conventional granular alloys. In addition, the self -field critical current densities J_{c} behaved as SNS weak link systems in a Josephson mixed state. In sum, due to the short coherence length xi in these materials, many properties formerly believed to be "intrinsic" in nature are apparently "extrinsic" in nature.

  1. GDNF pre-treatment aggravates neuronal cell loss in oxygen-glucose deprived hippocampal slice cultures: a possible effect of glutamate transporter up-regulation.

    PubMed

    Bonde, C; Sarup, A; Schousboe, A; Gegelashvili, G; Noraberg, J; Zimmer, J

    2003-01-01

    Besides its neurotrophic and neuroprotective effects on dopaminergic neurons and spinal motoneurons, glial cell line-derived neurotrophic factor (GDNF) has potent neuroprotective effects in cerebral ischemia. The protective effect has so far been related to reduced activation of N-methyl-D-aspartate receptors (NMDAr). This study tested the effects of GDNF on glutamate transporter expression, with the hypothesis that modulation of glutamate transporter activity would affect the outcome of cerebral ischemia. Organotypic hippocampal slice cultures, derived from 1-week-old rats, were treated with 100 ng/ml GDNF for either 2 or 5 days, followed by Western blot analysis of NMDAr subunit 1 (NR1) and two glutamate transporter subtypes, GLAST and GLT-1. After 5-day exposure to GDNF, expression of GLAST and GLT-1 was up-regulated to 169 and 181% of control values, respectively, whereas NR1 was down-regulated to 64% of control. However, despite these changes that potentially would support neuronal resistance to excitotoxicity, the long-term treatment with GDNF was found to aggravate the neuronal damage induced by oxygen-glucose deprivation (OGD). The increased cell death, assessed by propidium iodide (PI) uptake, occurred not only among the most susceptible CA1 pyramidal cells, but also in CA3 and fascia dentata. Given that glutamate transporters are able to release glutamate by reversed action during energy failure, it is suggested that the observed increase in OGD-induced cell death in the GDNF-pretreated cultures was caused by the build-up of excitotoxic concentrations of extracellular glutamate released through the glutamate transporters, which were up-regulated by GDNF. Although the extent and consequences of glutamate release via reversal of GLAST and GLT-1 transporters seem to vary in different energy failure models, the present findings should be taken into account in clinical trials of GDNF.

  2. Pathogenetic determinants in Kawasaki disease: the haematological point of view.

    PubMed

    Del Principe, Domenico; Pietraforte, Donatella; Gambardella, Lucrezia; Marchesi, Alessandra; Tarissi de Jacobis, Isabella; Villani, Alberto; Malorni, Walter; Straface, Elisabetta

    2017-04-01

    Kawasaki disease is a multisystemic vasculitis that can result in coronary artery lesions. It predominantly affects young children and is characterized by prolonged fever, diffuse mucosal inflammation, indurative oedema of the hands and feet, a polymorphous skin rash and non-suppurative lymphadenopathy. Coronary artery involvement is the most important complication of Kawasaki disease and may cause significant coronary stenosis resulting in ischemic heart disease. The introduction of intravenous immunoglobulin decreases the incidence of coronary artery lesions to less than 5%. The etiopathogenesis of this disease remains unclear. Several lines of evidence suggest that an interplay between a microbial infection and a genetic predisposition could take place in the development of the disease. In this review, we summarize the state of the art of pathogenetic mechanisms of Kawasaki disease underscoring the relevance of haematological features as a novel field of investigation.

  3. Recent advances in T-cell immunotherapy for haematological malignancies.

    PubMed

    Rouce, Rayne H; Sharma, Sandhya; Huynh, Mai; Heslop, Helen E

    2017-03-01

    In vitro discoveries have paved the way for bench-to-bedside translation in adoptive T cell immunotherapy, resulting in remarkable clinical responses in a variety of haematological malignancies. Adoptively transferred T cells genetically modified to express CD19 CARs have shown great promise, although many unanswered questions regarding how to optimize T-cell therapies for both safety and efficacy remain. Similarly, T cells that recognize viral or tumour antigens though their native receptors have produced encouraging clinical responses. Honing manufacturing processes will increase the availability of T-cell products, while combining T-cell therapies has the ability to increase complete response rates. Lastly, innovative mechanisms to control these therapies may improve safety profiles while genome editing offers the prospect of modulating T-cell function. This review will focus on recent advances in T-cell immunotherapy, highlighting both clinical and pre-clinical advances, as well as exploring what the future holds.

  4. [Managing of platelet transfusion refractoriness of haematological malignancies. Experience IPC-EFSAM].

    PubMed

    Dettori, I; Ladaique, P

    2014-11-01

    The platelet refractoriness is a complication of transfusion treatments potentially dramatic in onco-haematology. Chemo-treatment of haematological malignancies or packs of allogeneic bone marrow transplants require iterative platelet transfusion requirements. The discovery of a platelet refractoriness along with its support should be the most reactive as possible but also adapted to the cause. In the case of allo-immunization, it may be expected. The purpose of this presentation is to recall the different etiologies and perform a feedback on the support transfusion platelet of onco-haematology adult patients at Institut Paoli-Calmettes (IPC) in partnership with the EFSAM.

  5. Evaluation of haematological, biochemical and histopathological parameters of transgenic rabbits.

    PubMed

    Jurcik, R; Suvegova, K; Hanusova, E; Massanyi, P; Ryban, L; Chrenek, P

    2007-11-01

    The aim of our study was to compare the hFVIII mRNA expression in different organs, pathological changes and selected haematological and biochemical blood parameters between transgenic and non-transgenic rabbits from F3 generation. Selected physiological parameters of 3- to 4-month-old transgenic rabbits from F3 generation carrying human factor VIII gene (hFVIII) were analysed and compared with those of non-transgenic ones. Before slaughtering, the blood for haematological and biochemical analysis was taken from the central ear artery. Pathological and histological examination of vital organs and RT-PCR analysis of several tissue organs of transgenic and non-transgenic animals were performed after slaughtering. Except for the mammary gland tissue, slight hfVIII mRNA expression in the spleen, lung and brain and none expression in the liver, kidney, skeletal muscle and heart of rabbits were recorded. pathological examination of vital organs showed some pathological changes in both transgenic and non-transgenic rabbits which were confirmed by histological qualitative evaluations. Statistically significant lower values of blood haemoglobin in blood of transgenic (11.86+/-0.86) animals compared with non-transgenic (12.41+/-1.02, P<0.05) ones and lower parameters of HCT (39.22+/-2.44 versus 40.89+/-2.26, P<0.01) in blood of transgenic rabbits were observed. Parameters of WBC, RBC and PLT showed no significant differences between the analysed groups. All biochemical serum parameters of transgenic rabbits were higher in comparison with non-transgenic ones. Significant differences were found in the concentration of the urea, AST and GMT between transgenic and non-transgenic animals (P<0.001) and in the total protein content, the difference was significant at P<0.05. In conclusion, our results showed that no considerable impact on the general health was found in transgenic rabbits.

  6. Effect of oxygen content on transport and magnetic properties of PrBaCo{sub 2}O{sub 5.50+δ}

    SciTech Connect

    Zhang, Xue; Wang, Xiao-Ming; Wei, Heng-Wei; Lin, Xiao-Huan; Wang, Chun-Hai; Zhang, Yan; Chen, Chinping; Jing, Xi-Ping

    2015-05-15

    Samples of PrBaCo{sub 2}O{sub 5.50+δ} (δ = −0.15–0.14), synthesized by solid-state reactions, were investigated to ascertain oxygen compositional effects on transport/magnetic properties. Resistivity decreases with increasing oxygen content, indicative of p-type conduction. A metal-insulator transition was observed at 330 K only for sample PrBaCo{sub 2}O{sub 5.52}, coinciding with phase transition and spin-state transition of Co{sup 3+}. When δ deviates from zero, samples show insulator–insulator transitions, although for sample δ = 0.14, no transition occurs but only semi-conductive behavior appears. Electronic transport is governed by the hopping mechanism at lower temperatures and thermal activation at higher temperatures. All samples underwent paramagnetic–ferromagnetic–antiferromagnetic transitions, except PrBaCo{sub 2}O{sub 5.64}, which only went through a paramagnetic–ferromagnetic transition. The ferromagnetic state for δ < 0 originates with the Co{sup 3+}/Co{sup 2+} super-exchange interaction; for δ > 0, it stems from the Co{sup 3+}/Co{sup 4+} double exchange interaction.

  7. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco

    2016-07-01

    Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring

  8. Ionic Conductivity of Mesostructured Yttria-Stabilized Zirconia Thin Films with Cubic Pore Symmetry—On the Influence of Water on the Surface Oxygen Ion Transport.

    PubMed

    Elm, Matthias T; Hofmann, Jonas D; Suchomski, Christian; Janek, Jürgen; Brezesinski, Torsten

    2015-06-10

    Thermally stable, ordered mesoporous thin films of 8 mol % yttria-stabilized zirconia (YSZ) were prepared by solution-phase coassembly of chloride salt precursors with an amphiphilic diblock copolymer using an evaporation-induced self-assembly process. The resulting material is of high quality and exhibits a well-defined three-dimensional network of pores averaging 24 nm in diameter after annealing at 600 °C for several hours. The wall structure is polycrystalline, with grains in the size range of 7 to 10 nm. Using impedance spectroscopy, the total electrical conductivity was measured between 200 and 500 °C under ambient atmosphere as well as in dry atmosphere for oxygen partial pressures ranging from 1 to 10(-4) bar. Similar to bulk YSZ, a constant ionic conductivity is observed over the whole oxygen partial pressure range investigated. In dry atmosphere, the sol-gel derived films have a much higher conductivity, with different activation energies for low and high temperatures. Overall, the results indicate a strong influence of the surface on the transport properties in cubic fluorite-type YSZ with high surface-to-volume ratio. A qualitative defect model which includes surface effects (annihilation of oxygen vacancies as a result of water adsorption) is proposed to explain the behavior and sensitivity of the conductivity to variations in the surrounding atmosphere.

  9. [Studies of the blood antioxidant system and oxygen-transporting properties of human erythrocytes during 105-day isolation].

    PubMed

    Brazhe, N A; Baĭzhumanov, A A; Parshina, E Iu; Iusipovich, A I; Akhalaia, M Ia; Iarlykova, Iu V; Labetskaia, O I; Ivanova, S M; Morukov, B V; Maksimov, G V

    2011-01-01

    Effects of strict 105-d isolation on blood antioxidant status, erythrocyte membrane processes and oxygen-binding properties of hemoglobin were studied in 6 male volunteers (25 to 40 y.o.) in ground-based simulation of a mission to Mars (experiment Mars-105). The parameters were measured using venous blood samples collected during BDC, on days 35, 70 and 105 of the experiment and on days 7 and 14-15 after its completion. Methods of biochemistry (determination of enzyme activity and thin-layer chromatography) and biophysical (laser interference microscopy, Raman spectroscopy) showed changes in relative content of lipid and phospholipid fractions suggesting growth of membrane microviscosity and increase in TBA-AP (active products of lipids peroxidation interacting with thiobarbituric acid). A significant increase in glucose-6-phosphate dehydrogenase and superoxide dismutase activities against reduction of catalase activity points to both reparative processes in erythrocytes and disbalance between the number of evolving active forms of oxygen and antioxidant protection mechanisms in cells. Hemoglobin sensitivity of oxygen and blood level of oxyhemoglobin were found to increase, too. It is presumed that adaptation of organism to stresses experienced during and after the experiment may destroy balance of the antioxidant protection systems which is conducive to oxidation of membrane phospholipids, alteration of their content, increase of membrane microviscosity and eventual failure of the gas-exchange function of erythrocytes.

  10. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    PubMed

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures.

  11. Increased blood oxygen affinity during digestion in the snake Python molurus.

    PubMed

    Overgaard, Johannes; Wang, Tobias

    2002-11-01

    Many snakes exhibit large increases in metabolic rate during digestion that place extensive demands on efficient oxygen transport. In the present study, we describe blood oxygen affinity following three weeks of fasting and 48 h after feeding in the Burmese python (Python molurus). We also report simultaneous measurements of arterial blood gases and haematological parameters. Arterial blood was obtained from chronically implanted catheters, and blood oxygen-dissociation curves were constructed from oxygen content measurements at known oxygen partial pressure (P(O(2))) values at 2% and 5% CO(2). Arterial pH remained constant at approximately 7.6 after feeding, but digestion was associated with an approximately 6 mmol l(-1) increase in [HCO(3)(-)], while CO(2) partial pressure (P(CO(2))) increased from 2.21+/-0.13 kPa in fasted animals to 2.89+/-0.17 kPa at 48 h after feeding. Blood oxygen affinity in vivo was predicted on the basis of pH in vivo and the blood oxygen-dissociation curves obtained in vitro. The blood oxygen affinity in vivo increased during digestion, with P(50) values decreasing from 4.58+/-0.11 kPa to 3.53+/-0.24 kPa. This increase was associated with a significant decrease in the red blood cell [NTP]/[Hb(4)] ratio (relationship between the concentrations of organic phosphates and total haemoglobin) and a significant decrease in mean cellular haemoglobin content, which is indicative of swelling of the red blood cells. Our data for blood oxygen affinity and arterial oxygen levels, together with previously published values of oxygen uptake and blood flows, allow for a quantitative evaluation of oxygen transport during digestion. This analysis shows that a large part of the increased metabolism during digestion is supported by an increased venous extraction, while arterial P(O(2)) (Pa(O(2))) and haemoglobin saturation do not vary with digestive status. Thus, we predict that venous P(O(2)) (Pv(O(2))) is reduced from a fasting value of 5.2 kPa to 1.6 k

  12. Transportation

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G.

    1986-01-01

    A summary of tether transportation is given. Four steps were used over a period of time. First, theoretical engineering feasibility and technology requirements were determined. Then the survivors of that effort went into step two in the analysis of promising candidates. Those survivors went into the third phase which is engineering design and cost benefits. Survivors entered into the demonstration mission definition phase. Transportation studies have covered two kinds of deployments. First, steady state deployment was studied. Like the TSS, it's nearly vertical. It takes a long time to deploy and involves relatively high tether tension. Secondly, dynamic deployment was studied. Deployment started in an almost horizontal direction under a very shallow angle which allows a high deployment rate under very low tension. Momentum transfer here occurs by libration. Specific payloads were used to study tethered transportation benefits. Four transportation concepts were studied with regard to cost benefits. A tethered orbiter deboost from the space station, an OTV boost up from the Space Station, a science platform on a tether with a possible micro-g lab moving in between platform and station, and a tethered boost of payloads fromthe orbiter are the four concepts. These benefits are examined in detail.

  13. Oxygen sensing and signaling.

    PubMed

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.

  14. [TRANSPORT OF OXYGEN DURING GEOMETRICAL RECONSTRUCTION OF THE LEFT VENTRICLE IN CONJUNCTION WITH CORONARY ARTERY BYPASS GRAFTING AND USING OF HIGH THORACIC EPIDURAL ANESTHESIA AS A MAJOR COMPONENT OF GENERAL ANAESTHESIA].

    PubMed

    Zatevahina, M V; Farzutdinov, A F; Rahimov, A A; Makrushin, I M; Kvachantiradze, G Y

    2015-01-01

    The purpose of the study is to examine the perioperative dynamics of strategic blood oxygen transport indicators: delivery (DO2), consumption (VO2), the coefficient of oxygen uptake (CUO2) and their composition, as well as the dynamics of blood lactate indicators in patients with ischaemic heart disease (IHD) who underwent surgery under cardiopulmonary bypass with high thoracic epidural anaesthesia (HTEA) as the main component of anesthesia. Research was conducted in 30 patients with a critical degree of operational risk, during the correction of post-infarction heart aneurysmn using the V. Dor method in combination with coronary artery bypass grafting. The strategic blood oxygen transport indicators (delivery, consumption and the oxygen uptake coefficient) showed a statistically significant decrease compared to the physiological norm and to the initial data at two points of the research: the intubation of the trachea and during cardiopulmonary bypass. The system components of oxygen were influenced at problematic stages by the dynamics of SvO2 (increase), AVD (decrease), hemodilution withe fall of the HIb- in the process of JR in the persence of superficial hypothermia. The maintenance of optimal CA in the context of HTEA, combined with a balanced volemic load and a minimized cardiotonic support ensured the stabilisation of strategic blood oxygen transport indicators aithe postperfusion stage and during the immediate postoperative period The article is dedicated to the study of strategic blood oxygen transport indicators and their components during the operation of geometric reconstruc-tion of the left ventricle combined with coronary artery-bypass using cardiopulmonary bypass and with high thoracic epidural anesthesia as the main component of general anaesthesia. The analysis has covered the stagewise delivery dynamics, consumption and the oxygen uptake coefficient at II stages of the operation and of the immediate postoperative period. The study has ident (fled

  15. First experience with the deltastream® DP3 in venovenous extracorporeal membrane oxygenation and air-supported inter-hospital transport

    PubMed Central

    Lunz, Dirk; Philipp, Alois; Judemann, Katrin; Amann, Matthias; Foltan, Maik; Schmid, Christof; Graf, Bernhard; Zausig, York A.

    2013-01-01

    OBJECTIVES Based on continuous technical innovations and recent research, extracorporeal membrane oxygenation (ECMO) has become a promising tool in the treatment of patients with acute (cardio)pulmonary failure. Nevertheless, any extracorporeal technique requires a high degree of experience and knowledge, so that a restriction to specialized centres seems to be reasonable. As a consequence of this demand, the need for inter-hospital transfer of patients with severely impaired (cardio)pulmonary function is rising. Unfortunately, most of the ECMO devices used in the clinical setting are not suitable for inter-hospital transport because of their size, weight or complexity. In this article, we describe our first experiences with the airborne transport of 6 patients on a new portable, miniaturized and lightweight extracorporeal circulation system, the Medos deltastream® DP3. METHODS Six patients suffering acute respiratory failure were taken on venovenous ECMO (DP3) out-of-centre and transferred to the University Medical Center Regensburg by helicopter. All cardiorespiratory-relevant parameters of the patients and the technical functioning of the device were continuously monitored and documented. RESULTS Implantation of the device and air-supported transport were performed without any technical complications. The patients were transported from a distance of 66–178 km, requiring a time of 40–120 min. With the help of the new deltastream® DP3 ECMO device, a prompt stabilization of the cardiopulmonary function could be achieved in all patients. One patient was under ongoing cardiopulmonary resuscitation by the time our ECMO team arrived at the peripheral hospital and died shortly after arrival in the central emergency ward. CONCLUSIONS Our experience shows that the deltastream® DP3 is an absolutely reliable and safe ECMO device that could gain growing importance in the field of airborne transportation of patients on ECMO due to its unsophisticated, miniaturized and

  16. Effects of reduction in floor space during crating on haematological indices in broilers.

    PubMed

    Bedánová, Iveta; Voslárová, Eva; Vecerek, Vladimír; Pistĕková, Vladimíra; Chloupek, Petr

    2006-01-01

    In the perspective of animal protection and welfare, the most common and potentially the most frightening events encountered by the domestic fowl are procedures connected with transport. This study provides an evidence that reduction in floor space during crating, which is approximately 10% above requirements given to EEC Directives (accompanied with mixed social and heat stress due to high animal density), induces markedly elevated stress in broilers which is manifested by changes in haematological indices. The experiment was performed on ROSS 308 broilers (total number 70, mean body weight 3.05 kg). At 42 days of age, the broilers were crated for 2-hours either with reduction in floor space to 115 cm2/kg (S115) or 105 cm2/kg (S105) of body weight. The total erythrocyte and leukocyte count, haematocrit, haemoglobin, MCV (mean cell value), MCH (mean cell haemoglobin) and MCHC (mean cell haemoglobin concentration) values were monitored and differential leukocyte count was assessed 20 h following crating. When compared with uncrated control, S105 broilers exhibited highly significant increase in haemoglobin level, MCH and MCHC values, significant increase in MCV values and significant decrease in total erythrocyte count. S115 broilers did not manifest any significant changes in haematological parameters compared with control. When compared with S115 broilers, S105 broilers manifested significantly elevated haemoglobin level and MCV values, highly significantly elevated MCH and MCHC values and depressed erythrocyte count. It follows from results that the reduction in floor space to 115 cm2/kg for 2 hours did not induce any significant changes in both total and differential leukocyte counts in blood of broilers when compared with control chickens. However, reduction in floor space to 105 cm2/kg resulted in highly significant increase in heterophil counts and subsequently also HLR (heterophil/lymphocyte ratio) was significantly elevated. When compared S105 and S115

  17. Study of transport of oxygen and water vapour between cells in valve regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Culpin, Barry; Peters, Ken

    Valve-regulated lead-acid batteries are maintenance free, safer, office compatible, and have higher volume efficiency than conventional designs. They are universally used in telecommunications and uninterruptible power supply systems. With the electrolyte immobilized in the separator or as a gel, it is feasible for a monobloc battery to have cells that are not fully sealed from one another, that is to have a common gas space, with certain attendant benefits. This study demonstrates that small differences in the saturation level, acid strength or operating temperature of the cells in such designs can initiate a cycle that may subsequently result in failure if the movement of oxygen and water vapour between cells is unrestricted. Cells that are initially out-of-balance will go further out-of-balance at an ever-increasing rate. This situation can also arise in monobloc designs with sealed cells if the intercell seal is inadequate or incomplete. Battery failure is associated with a re-distribution of water between the cells with some drying out and having high impedance. The preferential oxygen absorption in those cells produces heavily sulfated negative plates. Results on batteries tested under a range of overcharge conditions and temperatures are presented to illustrate these effects. The rate at which the cycle occurs depends on the initial relative density of the acid, the temperature or saturation imbalance between the cells, and the size of the interconnecting gas space. Batteries operating under a continuous cycling regime, particularly those with high overcharge currents and voltages that generate large volumes of oxygen, are more prone to this type of failure mode than batteries operating under low overcharge, intermittent cycling, or float conditions.

  18. Transportability

    DTIC Science & Technology

    2013-04-25

    psi). (g) Maximum axle load (pneumatic tires) - 2,268 kg (5,000 lb). (h) Maximum wheel load (pneumatic tires) - 1,134 kg (2,500 lb). (i...survivability following the shock or vibration environment induced. Vehicles not typically transported with payload such as wreckers, truck tractors ...combination weight rating (GCWR) means the value specified by the manufacturer as the loaded weight of the combination vehicle. (d) Gross axle weight

  19. Transportation

    DTIC Science & Technology

    2007-01-01

    International (cont.) European Commission – Directorate General for Energy and Transport, Brussels, Belgium Headquarters Netherlands Customs ...100,000 by 2014. As a result of these challenges and due to the increase in intermodal freight traffic, a customer /client relationship has...increase by 50% domestically and 110% internationally by 2016 (CRS, 2007). United Parcel Service (UPS), FedEx, and DHL currently control the package

  20. Haematological cancers: improving outcomes. A summary of updated NICE service guidance in relation to Specialist Integrated Haematological Malignancy Diagnostic Services (SIHMDS).

    PubMed

    Snowden, John A; O'Connell, Susan; Hawkins, James; Dalley, Chris; Jack, Andrew; Mannari, Deepak; McNamara, Chris; Scott, Mike; Shenton, Geoff; Soilleux, Elizabeth; Macbeth, Fergus

    2017-04-07

    Haematological malignancies are a diverse group of cancers that affect the blood, bone marrow and lymphatic systems. Laboratory diagnosis of haematological malignancies is dependent on combining several technologies, including morphology, immunophenotyping, cytogenetics and molecular genetics correlated clinical details and classification according to the current WHO guidelines. The concept of the Specialised Integrated Haematological Malignancy Diagnostic Services (SIHMDS) has evolved since the UK National Institute for Health and Care Excellence (NICE) Improving Outcomes Guidance (IOG) in 2003 and subsequently various models of delivery have been established. As part of the 2016 update to the NICE IOG, these models were systematically evaluated and recommendations produced to form the basis for quality standards for future development of SIHMDS. We provide a summary of the systematic review and recommendations. Although the recommendations pertain to the UK National Health Service (NHS), they have relevance to the modern delivery of diagnostic services internationally.

  1. Diffusion of a multi-species component and its role in oxygen and water transport in silicates

    NASA Technical Reports Server (NTRS)

    Zhang, Youxue; Stolper, E. M.; Wasserburg, G. J.

    1991-01-01

    The diffusion of a multispecies component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. A diffusion equation is derived that incorporates the diffusive fluxes of all species contributing to the component's concentration. The effect of speciation on diffusion is investigated experimentally by measuring concentration profiles of all species developed during diffusion experiments. Data on water diffusion in rhyolitic glasses indicate that H2O molecules predominate over OH groups as the diffusing species at very low to high water concentrations. A simple theoretical relationship is drawn between the effective total oxygen diffusion coefficient and the total water concentration of silicates at low water content.

  2. Diffusion of a multi-species component and its role in oxygen and water transport in silicates

    NASA Technical Reports Server (NTRS)

    Zhang, Youxue; Stolper, E. M.; Wasserburg, G. J.

    1991-01-01

    The diffusion of a multispecies component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. A diffusion equation is derived that incorporates the diffusive fluxes of all species contributing to the component's concentration. The effect of speciation on diffusion is investigated experimentally by measuring concentration profiles of all species developed during diffusion experiments. Data on water diffusion in rhyolitic glasses indicate that H2O molecules predominate over OH groups as the diffusing species at very low to high water concentrations. A simple theoretical relationship is drawn between the effective total oxygen diffusion coefficient and the total water concentration of silicates at low water content.

  3. Population based haematology reference ranges for old people in rural South-West Uganda.

    PubMed

    Mugisha, Joseph O; Seeley, Janet; Kuper, Hannah

    2016-09-07

    Haematology reference values are needed to interpret haematology results and make clinical decisions, but these have not been established for old people in sub-Saharan Africa. The objective of this study was to establish haematology reference values for people aged 50 years and above in Uganda, to compare the haematology reference values for those aged 65 years and over with those less than 65 years and to compare these haematology reference values with established haematology reference values for old people from high income countries. A total of 1449 people aged 50 years and above were recruited from the Medical Research Council/Uganda Virus Research Institute general population cohort between January 2012 and January 2013 (response rate 72.3 %). From the blood samples collected, we did haematology, HIV testing and malaria tests. We also obtained stool samples and tested them for hookworm infection. Questionnaire data were obtained through interviews. In the analysis, we excluded those with HIV infection, malaria infection, hookworm infection and those not feeling well at the time of recruitment. Medians and reference ranges for 12 haematology parameters were determined, based on the Clinical Laboratory and Standards institute's guidelines. In total, 903 people aged 50 years and above were included in the analysis with the majority 545 (60.3 %) being female. Men had significant difference in median haemoglobin, haematocrit, erythrocytes counts and white blood cells counts, which were higher than those of women. Women had significant difference in mean platelet counts and neutrophil percentages which were higher than those of men. Comparing those aged 65+ and those aged less than 65 years, the following parameters were significantly lower in those aged above 65 years: haemoglobin, haematocrit, erythrocytes counts, platelets and mean corpuscular volume. Compared to the reference intervals from old people in high income countries, all the haematology

  4. Haematology in the Republic of Macedonia: present situation and brief history.

    PubMed

    Panovska-Stavridis, I; Cevreska, L

    2013-01-01

    The development of clinical haematology in Macedonia has taken place over the past nine decades. The greatest expansion of its development took place in the second half of the 20th century. The oficial start of clinical haematology dates from 1956, when the Department of Haematology was founded within the framework of the Internal Medicine Clinic in Skopje. In the beginning, haematology represented a form of virtual sub-specialty, but its expansion was so progressive and rapid that it reached the highest peaks of Yugoslav haematology in those times. The period from 1968 to 1979 was a period of integral development of haematology and blood-transfusion science in Macedonia. Nowadays, the autonomous Public Health Institution, the University Hematology Clinic, is a unique healthcare, educational and scientific establishment in the Republic of Macedonia in its field of work. The diagnostics algorithm comprises cyto-morphologic and cyto-chemical analysis, through immunologic characterization with the assistance of a flow cytometer, to sophisticated molecular analysis for detecting genetic abnormalities. The therapeutic approach is based upon modern poly-haemotherapeutic protocols, application of monoclonal antibodies, immuno-modulatory agents, molecular target therapy and the use of alogeneic and autologous transplantation of fresh bone-marrow and frozen haemopoietic stem-cells. The current motto of the Haematology Clinic is: always help those who seek help, provide precise and early diagnostics, and apply all up-to-date therapeutic strategies, scientific research, continual education and day-to-day implementation of the latest achievements in the field of haematology in daily practice.

  5. Normal and clinical haematology of greater and lesser flamingos (Phoenicopterus roseus and Phoeniconaias minor).

    PubMed

    Hawkey, C M; Hart, M G; Samour, H J

    1985-10-01

    Normal haematological reference values were obtained for Greater and Lesser flamingos (Phoenicopterus roseus, Phoeniconaias minor). Statistically significant differences in the total white cell count and the absolute heterophil count were found in the two species. The reference values were used to identify abnormalities in the blood of five sick birds. Three of these were anaemic, all showed red cell hypochromia and four had heterophilia. The findings suggested that haematological testing is of potential diagnostic value in the species.

  6. Utility of haematological parameters and C-reactive protein in the detection of neonatal sepsis.

    PubMed

    Manucha, V; Rusia, U; Sikka, M; Faridi, M M A; Madan, N

    2002-10-01

    To evaluate various haematological parameters, individually and in combination, to formulate a haematological scoring system (HSS, defined by Rodwell et al.), which can then be used to screen for sepsis in neonates who are clinically suspected of infection.1 The study cohort consisted of 150 neonates (from birth to 3 days old) with clinically suspected infection. Blood was collected by peripheral venepuncture in all neonates. A complete blood count, differential leucocyte count, total leucocyte count (TLC), total neutrophil count (TNC), immature neutrophil count, band form count and platelet count were performed. Immature total neutrophil count (I/T) and immature/mature neutrophil count (I/M) ratios were then obtained. C-reactive protein (CRP) was measured semiquantitatively and blood culture and antibiotic sensitivity were performed in each case. The haematological parameters were compared individually and in combination (by HSS) with CRP. Twenty-one (14%) neonates had blood culture proven sepsis. On evaluation of various haematological parameters, TLC < 10 x 109/L, TNC < 8 x 109/L, I/M > 0.25, I/T > 0.14, band count > 15% and platelet count < 150 x 109 were found to have optimal sensitivities and negative predictive values (NPV). Using these values, an HSS was formulated. A haematological score > or = 3 had a sensitivity of 86% and NPV of 96%. C-reactive protein as a single test had a sensitivity of 76% and NPV of 96%. A combination of CRP with haematological parameters decreased the sensitivity and NPV of the HSS. A haematological score can be obtained by a complete blood count and examination of peripheral blood smear, thus permitting an objective assessment of haematological changes that occur in a neonate suspected of sepsis. C-reactive protein does not have any advantage over HSS, either as a single test or in combination.

  7. Electronic Transport Properties of the PrAlO3/SrTiO3 Interface: Effects of Oxygen Pressure

    NASA Astrophysics Data System (ADS)

    Mozaffari, Shirin; Monti, Mark C.; Guchhait, Samaresh; Paster, Jeremy W.; Tennant, Daniel M.; Markert, John T.

    2015-03-01

    We explored the electronic and magnetic behavior of epitaxial PrAlO3 films on TiO2-terminated SrTiO3 (PAO/STO) substrates grown by pulsed laser deposition at various oxygen pressures. We report structural (x-ray and AFM), electronic (van der Pauw resistivity, magnetoresistance (MR), and Hall effect), and magnetic data for PAO films grown in 10-3-10-6 torr O2. Resistivity data exhibit metallic behavior from 300 K down to 100-150 K (75 K; 40 K) for the interface grown in 10-3 (10-4; 10-5) torr O2, and semiconducting behavior below that. One 10-3 torr O2 interface shows typical behavior for current parallel to atomic terraces, and a resistance anomaly in the range 50-100 K for current perpendicular to step edges. MR data for all 10-3-10-4 torr O2 samples show a small (<=0.5%) positive MR at low fields, and a larger negative MR (2-30%) at high fields; for 10-5 torr O2, the MR is positive up to 9 tesla. Sheet resistivity for the 10-6 torr O2 interface is anomalously low, suggesting a thick conducting layer. Hall effect data exhibit several variations in the carrier density. We discuss these data considering intrinsic charge transfer, oxygen vacancies and interstitials, and cation interdiffusion.

  8. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport.

    PubMed Central

    Brouwer, Marius; Hoexum Brouwer, Thea; Grater, Walter; Brown-Peterson, Nancy

    2003-01-01

    The blue crab, Callinectes sapidus, which uses the copper-dependent protein haemocyanin for oxygen transport, lacks the ubiquitous cytosolic copper-dependent enzyme copper/zinc superoxide dismutase (Cu,ZnSOD) as evidenced by undetectable levels of Cu,ZnSOD activity, protein and mRNA in the hepatopancreas (the site of haemocyanin synthesis) and gills. Instead, the crab has an unusual cytosolic manganese SOD (cytMnSOD), which is retained in the cytosol, because it lacks a mitochondrial transit peptide. A second familiar MnSOD is present in the mitochondria (mtMnSOD). This unique phenomenon occurs in all Crustacea that use haemocyanin for oxygen transport. Molecular phylogeny analysis suggests the MnSOD gene duplication is as old as the origin of the arthropod phylum. cytMnSOD activity in the hepatopancreas changes during the moulting cycle of the crab. Activity is high in intermoult crabs and non-detectable in postmoult papershell crabs. mtMnSOD is present in all stages of the moulting cycle. Despite the lack of cytCu,ZnSOD, crabs have an extracellular Cu,ZnSOD (ecCu,ZnSOD) that is produced by haemocytes, and is part of a large, approx. 160 kDa, covalently-linked protein complex. ecCu,ZnSOD is absent from the hepatopancreas of intermoult crabs, but appears in this tissue at premoult. However, no ecCu,ZnSOD mRNA can be detected, suggesting that the protein is recruited from the haemolymph. Screening of different taxa of the arthropod phylum for Cu,ZnSOD activity shows that those crustaceans that use haemoglobin for oxygen transport have retained cytCu,ZnSOD. It appears, therefore, that the replacement of cytCu,ZnSOD with cytMnSOD is part of an adaptive response to the dynamic, haemocyanin-linked, fluctuations in copper metabolism that occur during the moulting cycle of the crab. PMID:12769817

  9. Strengthening medical education in haematology and blood transfusion: postgraduate programmes in Tanzania.

    PubMed

    Makani, Julie; Lyimo, Magdalena; Magesa, Pius; Roberts, David J

    2017-04-03

    Haematology and blood transfusion, as a clinical and laboratory discipline, has a far-reaching impact on healthcare both through direct patient care as well as provision of laboratory and transfusion services. Improvement of haematology and blood transfusion may therefore be significant in achieving advances in health in Africa. In 2005, Tanzania had one of the lowest distributions of doctors in the world, estimated at 2·3 doctors per 100 000 of population, with only one haematologist, a medical doctor with postgraduate medical education in haematology and blood transfusion. Here, we describe the establishment and impact of a postgraduate programme centred on Master of Medicine and Master of Science programmes to build the capacity of postgraduate training in haematology and blood transfusion. The programme was delivered through Muhimbili University of Health and Allied Sciences (MUHAS) with partnership from visiting medical and laboratory staff from the UK and complemented by short-term visits of trainees from Tanzania to Haematology Departments in the UK. The programme had a significant impact on the development of human resources in haematology and blood transfusion, successfully training 17 specialists with a significant influence on delivery of health services and research. This experience shows how a self-sustaining, specialist medical education programme can be developed at low cost within Lower and Middle Income Countries (LMICs) to rapidly enhance delivery of capacity to provide specialist services.

  10. Haematological abnormalities in oral lichen planus, candidiasis, leukoplakia and non-specific stomatitis.

    PubMed

    Challacombe, S J

    1986-02-01

    A series of 322 patients presenting with non-ulcerative conditions of the oral mucosa was examined for haematological abnormalities. The series was divided into 5 major groups--lichen planus (103 patients), candidiasis (50), leukoplakia (30), stomatitis or glossitis (66), and a miscellaneous group (73). The prevalence of anaemia, and deficiences in iron, folate and vitamin B12 in each group were compared with that found in 100 controls. The prevalence of anaemia in the series as a whole was not significantly increased, but the prevalences of sideropenia (14.0%), folate deficiency (4.7%) and vitamin B12 deficiency (3.1%) were increased as compared with controls. The prevalence of a haematological abnormality was increased in patients with lichen planus (18/103 p less than 0.05), stomatitis (15/66 p less than 0.01) and particularly in patients with Candidiasis (18/50 p less than 0.001). In the stomatitis group, approximately 45% of the male patients were found to have some haematological deficiency compared with less than 20% of the female patients. The increased prevalence of haematological deficiences suggests that patients presenting with non-ulcerative conditions of the oral mucosa (particularly candidiasis and non-specific stomatitis) should be screened haematologically and that, in some patients with candidiasis, haematological deficiencies may predispose towards candidal infection.

  11. Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs

    PubMed Central

    Ponsuksili, Siriluck; Reyer, Henry; Trakooljul, Nares; Murani, Eduard

    2016-01-01

    Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value > 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes. PMID:27434032

  12. Strengthening medical education in haematology and blood transfusion: postgraduate programmes in Tanzania

    PubMed Central

    Makani, Julie; Lyimo, Magdalena; Magesa, Pius; Roberts, David J.

    2017-01-01

    Summary Haematology and blood transfusion, as a clinical and laboratory discipline, has a far-reaching impact on healthcare both through direct patient care as well as provision of laboratory and transfusion services. Improvement of haematology and blood transfusion may therefore be significant in achieving advances in health in Africa. In 2005, Tanzania had one of the lowest distributions of doctors in the world, estimated at 2·3 doctors per 100 000 of population, with only one haematologist, a medical doctor with postgraduate medical education in haematology and blood transfusion. Here, we describe the establishment and impact of a postgraduate programme centred on Master of Medicine and Master of Science programmes to build the capacity of postgraduate training in haematology and blood transfusion. The programme was delivered through Muhimbili University of Health and Allied Sciences (MUHAS) with partnership from visiting medical and laboratory staff from the UK and complemented by short-term visits of trainees from Tanzania to Haematology Departments in the UK. The programme had a significant impact on the development of human resources in haematology and blood transfusion, successfully training 17 specialists with a significant influence on delivery of health services and research. This experience shows how a self-sustaining, specialist medical education programme can be developed at low cost within Lower and Middle Income Countries (LMICs) to rapidly enhance delivery of capacity to provide specialist services. PMID:28369755

  13. Arsenic antisite and oxygen incorporation trends in GaAs grown by water-mediated close-spaced vapor transport

    NASA Astrophysics Data System (ADS)

    Boucher, Jason; Boettcher, Shannon

    2017-03-01

    Close-spaced vapor transport (CSVT) provides a plausible path to lower the costs of GaAs deposition as it uses only solid precursors and provides precursor utilization in principle approaching 100%. However, the use of H2O as a transport agent causes O to be incorporated in CSVT films, and O has been associated with a number of electrically active defect centers in GaAs, which decrease minority carrier lifetimes. Using deep-level transient spectroscopy, we study the effect of H2O concentration and substrate temperature on electron trap concentrations in n-type GaAs. We find that the most-prominent O-related center (ELO) typically has a much higher concentration than the center usually associated with As antisites (EL2), but that overall defect concentrations can be as low as those in films deposited by common vapor phase techniques. The trends with increasing H2O concentration suggest that ELO is most likely a defect complex with two As antisites. We also consider the optimal conditions for achieving high growth rates and low defect concentrations using CSVT. The results of this study have implications for the future CSVT growth using halide transport agents, where the ELO defect would be eliminated but EL2 might have a higher concentration.

  14. The story of oxygen.

    PubMed

    Heffner, John E

    2013-01-01

    The history of oxygen from discovery to clinical application for patients with chronic lung disease represents a long and storied journey. Within a relatively short period, early investigators not only discovered oxygen but also recognized its importance to life and its role in respiration. The application of oxygen to chronic lung disease, however, took several centuries. In the modern era, physiologists pursued the chemical nature of oxygen and its physiologic interaction with cellular metabolism and gas transport. It took brazen clinicians, however, to pursue oxygen as a therapeutic resource for patients with chronic lung disease because of the concern in the 20th century of the risks of oxygen toxicity. Application of ambulatory oxygen devices allowed landmark investigations of the long-term effects of continuous oxygen that established its safety and efficacy. Although now well established for hypoxic patients, many questions remain regarding the benefits of oxygen for varying severity and types of chronic lung disease.

  15. The impact of vegetarianism on some haematological parameters.

    PubMed

    Obeid, Rima; Geisel, Jürgen; Schorr, Heike; Hübner, Ulrich; Herrmann, Wolfgang

    2002-01-01

    Subjects adopting a vegetarian diet are liable to vitamin B12 and iron deficiencies. Co-existing vitamin B12 and iron deficiencies may give an equivocal haematological picture, which may, in turn, delay making an early diagnosis. The current work was undertaken to investigate some haematological parameters in relation to vitamin B12 and iron status in vegetarians. Twenty-nine vegans, 64 lacto- and lacto-ovo-vegetarians, in addition to 20 occasional meat eaters, were enrolled for this study. The total group included 49 males and 64 females aged [mean (SD) = 46(15) yr]. Complete blood count, methylmalonic acid (MMA), homocysteine (HCY), ferritin, and transferrin concentrations and percentage transferrin saturation were assayed, using conventional methods. Vegans displayed the highest MMA and HCY levels (median MMA = 708 nmol L(-1); HCY = 12.8 micromol L(-1)). A lower lymphocyte count and a higher mean corpuscular volume (MCV) were found in vegans compared with lacto- or lacto-ovo-vegetarians (median = 1.51 x 10(9) vs. 1.83 x 10(9) L(-1); 92 vs. 89 fL, respectively). Vitamin B12-deficient subjects in the higher range of transferrin saturation percentage had higher MCV than vitamin B12-deficient subjects in the lower transferrin saturation range (mean MCV = 92 vs. 89 fL). A lower platelet count was found in the highest quartile of MMA (mean = 211 x 10(9) L(-1)) and in the highest quartile of HCY (mean = 215 x 10(9) L(-1)), compared with the other quartiles. Lower lymphocyte and platelet counts and higher MCV were found in subjects with elevated MMA and HCY, compared to those with normal metabolites. Factors that explained the variations in MCV were red blood cell count, ferritin, transferrin saturation, and methylmalonic acid levels. vitamin B12 and iron status were compromised by a vegetarian diet. Variations in mean corpuscular volume were determined by iron and vitamin B12 status. Lower lymphocyte and platelet count were accompanied by metabolic evidence that

  16. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation.

    PubMed

    Dal-Cim, Tharine; Martins, Wagner C; Thomaz, Daniel T; Coelho, Victor; Poluceno, Gabriela Godoy; Lanznaster, Débora; Vandresen-Filho, Samuel; Tasca, Carla I

    2016-05-01

    Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.

  17. Structure and transport in high pressure oxygen sputter-deposited BaSnO{sub 3−δ}

    SciTech Connect

    Ganguly, Koustav; Ambwani, Palak; Xu, Peng; Jeong, Jong Seok; Mkhoyan, K. Andre; Leighton, C. E-mail: leighton@umn.edu; Jalan, Bharat E-mail: leighton@umn.edu

    2015-06-01

    BaSnO{sub 3} has recently been identified as a high mobility wide gap semiconductor with significant potential for room temperature oxide electronics. Here, a detailed study of the high pressure oxygen sputter-deposition, microstructure, morphology, and stoichiometry of epitaxial BaSnO{sub 3} on SrTiO{sub 3}(001) and MgO(001) is reported, optimized conditions resulting in single-phase, relaxed, close to stoichiometric films. Most significantly, vacuum annealing is established as a facile route to n-doped BaSnO{sub 3−δ}, leading to electron densities above 10{sup 19} cm{sup −3}, 5 mΩ cm resistivities, and room temperature mobility of 20 cm{sup 2} V{sup −1} s{sup −1} in 300-Å-thick films on MgO(001). Mobility limiting factors, and the substantial scope for their improvement, are discussed.

  18. Effect of electron-transport inhibitors on the generation of reactive oxygen species by pea mitochondria during succinate oxidation.

    PubMed

    Popov, V N; Ruuge, E K; Starkov, A A

    2003-07-01

    The effect of inhibitors of the cytochrome pathway and alternative oxidase on the rate of respiration and generation of reactive oxygen species by pea mitochondria was studied. Respiration of mitochondria from pea cotyledons was inhibited by 70-80% by salicylhydroxamate (SHAM). The rate of hydrogen peroxide production by pea cotyledon mitochondria during succinate oxidation was 0.15 nmol/min per mg protein. SHAM considerably accelerated the hydrogen peroxide production. The SHAM-dependent H2O2 production was stimulated by 2 micro M antimycin A and inhibited by 5 mM KCN and 1 micro M myxothiazol. The study of the rate of O2*- generation by pea mitochondria using EPR spin traps and epinephrine oxidation showed that H2O2 accumulation can be accounted for by a significant increase in the rate of O2*- production.

  19. A Highly Efficient Sandwich-Like Symmetrical Dual-Phase Oxygen-Transporting Membrane Reactor for Hydrogen Production by Water Splitting.

    PubMed

    Fang, Wei; Steinbach, Frank; Cao, Zhongwei; Zhu, Xuefeng; Feldhoff, Armin

    2016-07-18

    Water splitting coupled with partial oxidation of methane (POM) using an oxygen-transporting membrane (OTM) would be a potentially ideal way to produce high-purity hydrogen as well as syngas. Over the past decades, substantial efforts have been devoted to the development of supported membranes with appropriate configurations to achieve considerable performance improvements. Herein, we describe the design of a novel symmetrical membrane reactor with a sandwich-like structure, whereby a largescale production (>10 mL min(-1)  cm(-2) ) of hydrogen and syngas can be obtained simultaneously on opposite sides of the OTM. Furthermore, this special membrane reactor could regenerate the coke-deactivated catalyst in situ by water steam in a single unit. These results represent an important first step in the development of membrane separation technologies for the integration of multiple chemical processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent.

    PubMed

    Savitch, Leonid V; Ivanov, Alexander G; Krol, Marianna; Sprott, David P; Oquist, Gunnar; Huner, Norman P A

    2010-09-01

    Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21  kPa O2-dependent and 2  kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2  kPa O2-dependent electron sink and only 15% by the photorespiratory (21  kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent.

  1. [Studies on evaluation of the oxygen transport system function with multistage treadmill stress testing: comparison between normal control subjects and patients with coronary heart disease].

    PubMed

    Doba, N; Kushiro, T; Tomiyama, H; Hayashida, N; Yamashina, A; Abe, H; Hinohara, S

    1989-07-01

    The oxygen transport system (OTS) function was evaluated with multistage treadmill stress testing on 171 normal control subjects and 80 patients with coronary heart disease (CHD). After Bruce's definition, OTS function was expressed with functional aerobic impairment (FAI), left ventricular impairment (LVI) or myocardial aerobic impairment (MAI), heart rate impairment (HRI) or chronotropic reserve impairment (CRI) and peripheral circulatory impairment (PCI). All subjects were monitored on heart rate, blood pressure, electrocardiogram and endtidal O2 and CO2 before and every one minute during the symptom limited maximal stress testing. Seventy three of 80 coronary patients were subjected to the coronary arteriography and were classified into four groups; 31 with single vessel disease (SVD), 20 with double vessel disease (DVD), 15 with triple vessel disease (TVD) and 7 with A-C bypass surgery. Comparison between normal control subjects and the CHD patients with regard to the relation of age and VO2max derived from the linear regression analysis disclosed the identical age-related decrease in VO2max in both groups. The age corrected VO2max in the CHD patients, however, was 2.2 METS less than that of normal control subjects. Therefore, the level of VO2max in CHD patients was determined not only by disease, but also by ageing process itself. Comparisons among three CHD groups with regard to FAI, LVI, HRI and PCI clearly demonstrated different functional impairments paralleling to the severity of the disease process. On the other hand, the patients with A-C bypass surgery revealed almost identical functional impairment to the patients with SVD. In conclusion, these simple and noninvasive evaluations of the oxygen transport system could give us valuable informations reasonably differentiating the clinical status of the patients with CHD.

  2. Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors.

    PubMed

    Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J

    2013-07-24

    In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

  3. Characteristics of invasive aspergillosis in neutropenic haematology patients (Sousse, Tunisia).

    PubMed

    Gheith, Soukeina; Saghrouni, Fatma; Bannour, Wadiaa; Ben Youssef, Yosra; Khelif, Abderrahim; Normand, Anne-Cécile; Ben Said, Moncef; Piarroux, Renaud; Njah, Mansour; Ranque, Stéphane

    2014-06-01

    Although scarce, available data suggest that the epidemiology of invasive aspergillosis (IA) in North Africa differs from northern countries, where more than 80 % is caused by Aspergillus fumigatus. This study aimed at describing the epidemiology of IA in the region of Sousse, Tunisia, and at assessing the usefulness of the available diagnostic tools. For 2 years, clinical and mycological data were prospectively collected from 175 neutropenia episodes of 91 patients hospitalised in the haematology department at the Farhat Hached hospital in Sousse (Tunisia). Screening for galactomannan antigen was positive in 40 % of neutropenia episodes; Aspergillus PCR was positive in 42 % of the tested sera. Nine patients were classified as probable and two as possible IA according to the EORTC/MSG criteria. Twelve patients who prematurely died, had no CT scan and could not be classified. Fifty-six Aspergillus spp. were isolated in 53 (6.5 %) sputa collected from 35 (20 %) patients. The following species were identified with MALDI-TOF mass spectrometry and DNA sequencing: A. niger, 35 %; A. flavus, 38 %; A. tubingensis, 19 %; A. fumigatus, 4 %; A. westerdijkiae, 2 % and A. ochraceus, 2 %. Our findings highlight the epidemiological features of IA in Tunisia, which is characterised by the predominance of Aspergillus spp. from sections Nigri and Flavi.

  4. Outbreak of Pseudomonas aeruginosa bacteraemia in a haematology department.

    PubMed

    Rasmussen, Benjamin Schnack; Christensen, Nikolas; Sørensen, Jan; Rosenvinge, Flemming S; Kolmos, Hans Jørn; Skov, Marianne N

    2015-04-01

    Infection by Pseudomonas aeruginosa represents a major cause of morbidity and mortality among immunocompromised patients. In Denmark, an increase in P. aeruginosa isolates from blood cultures from a haematology department prompted a hygienic audit in 2007. Blood cultures that tested positive for P. aeruginosa were collected from the laboratory information system (MADS, Skejby Hospital, Aarhus, Denmark). Environmental samples were obtained from shower heads in the department. The genotype was established by pulse field gel electrophoresis (PFGE). An audit was conducted during the outbreak and 12 months later. The audits were conducted by the method of direct observation. Several PFGE types were involved with no clear association to isolates from environmental samples. The audit revealed poor hygiene related to the handling of central venous catheters. After optimising catheter hygiene, the number of P. aeruginosa bacteraemia cases fell significantly. Since no clear association between patient and environmental genotype was established, it was suspected that central venous catheters were the main portal of entry. This was further supported by a simultaneous decline in bacteraemia cases with coagulase-negative staphylococci. Though several hygienic precautions were taken, the increased focus on disinfection of hubs and injection ports was presumably the more important element. not relevant. not relevant.

  5. Guide-lines for near patient testing: haematology.

    PubMed

    1995-12-01

    These guide-lines provide a framework for the local arrangement of near patient testing (NPT) services for haematology tests. The guidance may be applied to medical and surgical units within hospitals (e.g. ITU, renal dialysis units, casualty) as well as general practitioners' surgeries, for blood counts and coagulation testing. The professional head of the central laboratory must take responsibility for all aspects of the NPT service, although there should be full discussion with the clinical departments involved and joint ownership of the results. NPT operators must be trained and accredited by the central laboratory. Equipment selected should normally have received a satisfactory evaluation report from the Medical Devices Agency (MDA), and should generate results that are comparable with those of the central laboratory. If a full MDA operation evaluation has not been performed, the purchaser should perform a local assessment according to the protocol in this document. The suitability of the equipment, imprecision, and comparability must be studied. The NPT equipment must be properly maintained and calibrated, and a record of patient identity, date and time of testing, reagent lot numbers, and operator must be kept. The central laboratory must participate in a suitable external quality assessment programme (EQA), and provide systems for EQA and internal quality control (IQC) of the NPT site.

  6. Guidelines on Vaccinations in Paediatric Haematology and Oncology Patients

    PubMed Central

    Cesaro, Simone; Giacchino, Mareva; Fioredda, Francesca; Barone, Angelica; Battisti, Laura; Bezzio, Stefania; Frenos, Stefano; De Santis, Raffaella; Livadiotti, Susanna; Marinello, Serena; Zanazzo, Andrea Giulio; Caselli, Désirée

    2014-01-01

    Objective. Vaccinations are the most important tool to prevent infectious diseases. Chemotherapy-induced immune depression may impact the efficacy of vaccinations in children. Patients and Methods. A panel of experts of the supportive care working group of the Italian Association Paediatric Haematology Oncology (AIEOP) addressed this issue by guidelines on vaccinations in paediatric cancer patients. The literature published between 1980 and 2013 was reviewed. Results and Conclusion. During intensive chemotherapy, vaccination turned out to be effective for hepatitis A and B, whilst vaccinations with toxoid, protein subunits, or bacterial antigens should be postponed to the less intensive phases, to achieve an adequate immune response. Apart from varicella, the administration of live-attenuated-virus vaccines is not recommended during this phase. Family members should remain on recommended vaccination schedules, including toxoid, inactivated vaccine (also poliomyelitis), and live-attenuated vaccines (varicella, measles, mumps, and rubella). By the time of completion of chemotherapy, insufficient serum antibody levels for vaccine-preventable diseases have been reported, while immunological memory appears to be preserved. Once immunological recovery is completed, usually after 6 months, response to booster or vaccination is generally good and allows patients to be protected and also to contribute to herd immunity. PMID:24868544

  7. Thrombopoietin-receptor agonists in haematological disorders: the Danish experience.

    PubMed

    Gudbrandsdottir, Sif; Frederiksen, Henrik; Hasselbalch, Hans

    2012-01-01

    The objective of this study was to investigate the use of thrombopoietin-receptor agonists (TPO-ra) in patients with refractory primary immune thrombocytopenia (ITP) as well as off-label use of TPO-ra in Danish haematology departments. Hospital medical records from 32 of the 39 patients having received TPO-ra from 2009 to 1 May 2011 were available for data collection and included in the study. Of these patients, 15 received TPO-ra for refractory primary ITP, 7 for secondary ITP (chronic lymphatic leukaemia, systemic lupus erythematosus, Evans syndrome, human immunodeficiency virus and celiac disease) and 10 were treated for non-ITP (chemotherapy-induced, acute myeloid leukaemia, myelodysplastic syndrome, hereditary spherocytosis and suspected chemically induced thrombocytopenia). Initial response to TPO-ra defined as platelet counts >30 × 10(9)/l after 4 weeks of treatment was found in 59% of primary ITP patients, 57% of patients with secondary ITP and 40% of patients with non-ITP. There were four deaths in the cohort, three of which were related to pre-existing medical conditions. Otherwise adverse effects were in general mild. This Danish retrospective registration study has demonstrated that in the off-protocol setting, the use of TPO-ra is associated with response rates largely similar to those seen in previous protocol-monitored studies and no new adverse events were reported.

  8. Curriculum Design of a Flipped Classroom to Enhance Haematology Learning

    NASA Astrophysics Data System (ADS)

    Porcaro, Pauline A.; Jackson, Denise E.; McLaughlin, Patricia M.; O'Malley, Cindy J.

    2016-06-01

    A common trend in higher education is the "flipped" classroom, which facilitates active learning during class. The flipped approach to teaching was instituted in a haematology `major' class and the students' attitudes and preferences for the teaching materials were surveyed. The curriculum design was explicit and involved four major components (1) the preparation of the students; (2) the weekly pre-class work; (3) the in-class active learning strategies and (4) closing the learning loop using formative quizzes. Each of these components is discussed in detail and was informed by sound pedagogical strategies. Several different sources of information and several freely available software tools to engage the students are discussed. Two iterations are reported here, with improved pass rate for the final examination from 47 to 48 % in the traditional class to 56-65 % in the flipped classroom approach. The majority of students (93 and 89 %) came to the class prepared, after viewing the screencasts and engaged fully with the activities within the face-to-face time. The students perceived that solving case studies (93 %) was the most beneficial activity for their learning and this was closely followed by the production of essay plans (71 %). The majority of students recommended that this approach be repeated the following year (69 and 75 %).

  9. Guidelines for point-of-care testing: haematology.

    PubMed

    Briggs, Carol; Guthrie, David; Hyde, Keith; Mackie, Ian; Parker, Norman; Popek, Mary; Porter, Neil; Stephens, Clare

    2008-09-01

    This guideline provides a framework for the arrangement of point-of-care testing (POCT) services, previously known as near patient testing (patient self-testing not covered). POCT is defined as any analytical test performed outside the laboratory. Primary users are often non-laboratory healthcare workers. The guidance applies to units within hospitals as well as general practioner surgeries, community clinics and pharmacies. The head of the haematology laboratory or a point of care coordinator must take responsibility for all aspects of the POCT service, including quality and training. Depending on the size and nature of the POCT practice, a local POCT manager may also be required. Equipment selected should have received a successful independent performance evaluation. If an independent evaluation has not been performed the purchaser should assess the device according to the protocol in this document. POCT devices should generate results that are comparable to those of the local laboratory. An accredited external quality assessment programme and internal quality control system must be established. Manufacturers promoting POCT devices designed for non-laboratory sites, e.g. pharmacies, should undertake training and annual competency assessment, perhaps using a web-based system. A diagram to illustrate the stages for the implementation of a POCT service is illustrated.

  10. Automated detection of malaria with haematology analyzer Sysmex XE-2100.

    PubMed

    Mohapatra, Sarita; Samantaray, Jyotish C; Arulselvi, S; Panda, Jitender; Munot, Khushboo; Saxena, Renu

    2011-01-01

    Diagnosis of malaria is usually made by microscopy [Giemsa, Acridine Orange (AO), and Quantitative Buffy Coat (QBC) assay], which requires expertise. Currently, automated haematology analyzers are being used for complete blood count (CBC), in all acute febrile and non-febrile illnesses which simultaneously detects malaria. The normal scattergram by the analyzer (Sysmex 2100) comprises of five parameters i.e. lymphocytes (pink), monocytes (green), neutrophils (blue), eosinophils (red) with a space between the neutrophil and eosinophil populations. We carried out a prospective study to compare the efficacy of Sysmex XE-2100 (Sysmex Corporation, Kobe) for detection of malaria in comparison to other conventional techniques. 430 cases were analyzed for malaria by microscopy (QBC, AO, Giemsa), ICT (Immunochromatography) and flowcytometric analyzer (Sysmex XE-2100). The abnormal scattergrams were observed as double neutrophil, double eosinophil, grey zone, extended neutrophil zone with a decrease space between eosinophil and neutrophil, and a combination of above patterns. Out of 70 positive cases [49/70 (70%) P. vivax, 18/70 (25.7%) P. falciparum, and 3/70 (4.2%) both P. vivax and P. falciparum], 52 showed abnormal scattergrams by the analyzer. The sensitivity and specificity of hematology analyzer found to be 74.2% and 88%, respectively. Flowcytometric analyzer is a rapid, high throughput device which needs less expertization for the diagnosis of malaria. Hence, it can be used in the diagnostic laboratories as an early modality for diagnosis of malaria in suspected as well as clinically in apparent cases.

  11. Current status of chimeric antigen receptor therapy for haematological malignancies.

    PubMed

    Maude, Shannon; Barrett, David M

    2016-01-01

    The field of adoptive cell transfer includes chimeric antigen receptor (CAR) engineered T cells, constructs that emerged from basic research into principles of immunology and have transformed into clinically effective therapies for haematological malignancies. T cells engineered to express these artificial receptors hold great promise, but also carry significant risk. While permanent genetic modification of mature T cells appears safe, modulating their in vivo function is difficult, partly because the robust response can trigger other arms of the immune system. Suicide systems and toxicity management with cytokine blockade or signal transduction modulators have emerged as a new frontier in this field, a far cry from early problems getting CAR T cells to work at all. Currently, clinical trials in patients with relapsed or refractory B cell malignancies treated with CD19-specific CAR T cells have induced durable remissions in adults and children. Results from these trials indicate that more work needs to be done to understand biomarkers of efficacy, the role of T cell persistence and how to integrate this care into standard practice. Cell therapy will not be a 'one size fits all' class of medicine, and here we will discuss the development of this therapy and important questions for its future. © 2015 John Wiley & Sons Ltd.

  12. Splenectomy in haematology--a 5-year single centre experience.

    PubMed

    Wood, Lucille; Baker, Peter M; Martindale, Anna; Jacobs, Peter

    2005-12-01

    To define indications and outcome in haematologic cases undergoing splenectomy. A retrospective review of clinical records from consecutive patients having open or laparoscopic removal of the spleen in an academic centre in the private sector. Endpoints were survival, operating time, spleen size, histopathology, requirements for blood or related products complications and average costs. In the total group (n = 69) there were two deaths. Referrals were for immune thrombocytopaenia (41%), acquired haemolytic anaemia (10%), myeloproliferative syndrome (9%), acute or chronic leukaemia (19%), lymphoma (13%) and a miscellaneous group (8%), comprising cholelithiasis, aplasia or as a diagnostic procedure for otherwise unexplained splenomegaly. An open midline approach was predicated by spleens greater than twice normal size and a history of any bleeding disorder. Here the mean operating time was 83 min (range 40-295) whereas for laparoscopy this was 251 min (range 181-272). Careful stratification between the two options facilitated optimum haemostasis and consequently reduced requirement for packed red cells and platelets. Neither underlying pathology nor the choice of treatment influenced morbidity or mortality. Overall local experience is consistent with published international standards of surgical practice. Outcome is directly proportional to the number of each procedure carried out by a single team, observance of consistent protocols for preoperative evaluation and standardized proactive management through the recovery period.

  13. Guidelines on vaccinations in paediatric haematology and oncology patients.

    PubMed

    Cesaro, Simone; Giacchino, Mareva; Fioredda, Francesca; Barone, Angelica; Battisti, Laura; Bezzio, Stefania; Frenos, Stefano; De Santis, Raffaella; Livadiotti, Susanna; Marinello, Serena; Zanazzo, Andrea Giulio; Caselli, Désirée

    2014-01-01

    Vaccinations are the most important tool to prevent infectious diseases. Chemotherapy-induced immune depression may impact the efficacy of vaccinations in children. A panel of experts of the supportive care working group of the Italian Association Paediatric Haematology Oncology (AIEOP) addressed this issue by guidelines on vaccinations in paediatric cancer patients. The literature published between 1980 and 2013 was reviewed. During intensive chemotherapy, vaccination turned out to be effective for hepatitis A and B, whilst vaccinations with toxoid, protein subunits, or bacterial antigens should be postponed to the less intensive phases, to achieve an adequate immune response. Apart from varicella, the administration of live-attenuated-virus vaccines is not recommended during this phase. Family members should remain on recommended vaccination schedules, including toxoid, inactivated vaccine (also poliomyelitis), and live-attenuated vaccines (varicella, measles, mumps, and rubella). By the time of completion of chemotherapy, insufficient serum antibody levels for vaccine-preventable diseases have been reported, while immunological memory appears to be preserved. Once immunological recovery is completed, usually after 6 months, response to booster or vaccination is generally good and allows patients to be protected and also to contribute to herd immunity.

  14. Clinical haematology of the great bustard (Otis tarda).

    PubMed

    Jimenez, A; Barrera, R; Sanchez, J; Cuenca, R; Rodriguez, J; Andres, S; Mane, M C

    1991-12-01

    The haematological parameters of healthy great bustards (Otis tarda L.) have been determined. The values obtained were red cell count (3.0 x 10(12) +/- 0.2 x 10(12/)1), white cell count (33.0 x 10(9) +/- 2.6 x 10(9)/1), haematocrit value (0.51 +/- 0.01 1/1), haemoglobin (13.0 +/- 0.3 g/dl), mean corpuscular volume (178.7 +/- 12.5 fl), mean cell haemoglobin concentration (25.0 +/- 0.6 g/dl), mean corpuscular haemoglobin (42.5 +/- 3.2 pg), differential white cell count: heterophils (22.5 x 10(9) +/- 0.7 x 10(9)/1), lymphocytes (6.0 x 10(9)+/-0.7 x 10(9)/1), eosinophils (2.7 x 10(9) +/- 0.3 x 10(9)/1) and monocytes (1.8 x 10(9)+/-0.2 x 10(9)/1).

  15. Molecular Dynamics Simulation of Thermal Transport in UO2 Containing Uranium, Oxygen, and Fission-product Defects

    NASA Astrophysics Data System (ADS)

    Liu, X.-Y.; Cooper, M. W. D.; McClellan, K. J.; Lashley, J. C.; Byler, D. D.; Bell, B. D. C.; Grimes, R. W.; Stanek, C. R.; Andersson, D. A.

    2016-10-01

    Uranium dioxide (UO2 ) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defect type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO2 +x and ZrO2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes

  16. Molecular dynamics simulation of thermal transport in UO2 containing uranium, oxygen, and fission-product defects

    DOE PAGES

    Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James; ...

    2016-10-25

    Uranium dioxide (UO2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defect type,more » rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO2+x and ZrO2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel

  17. Magnetic, specific heat and electrical transport properties of oxygen-deficient nanosized rutile TiO2‑δ

    NASA Astrophysics Data System (ADS)

    Tran, Vinh Hung; Thi Quynh Hoa, Nguyen

    2017-03-01

    An oxygen-deficient nanosized {{TiO}}2-δ , δ ∼ 0.7 sample was synthesized by a solvothermal method, and was characterized to have both ∼3 nm amorphous solid and ∼36–46 nm diameter rutile nanowires. Physical properties of the sample were investigated by measuring magnetic, specific heat, electrical resistance and magnetoresitance properties. DC magnetization M(H) data confirm ferromagnetic behavior previously reported for undoped TiO2. Furthermore, M(T) dependence follows the power-law relation M{(T)\\propto (1-T/{T}C)}β in the near-critical regime, yielding Curie temperature {T}C ∼ 415 K and critical exponent β = 0.2. Moreover, our results of AC magnetic susceptibility measurements suggest an additional phase transition at {T}* ∼ 310 K, presumably due to spin orientation. The metallic-like electrical resistance exhibits a distinct drop below {T}* with a strong thermal hysteresis in the temperature range 225–275 K. Specific heat in the temperature range 20–300 K is well described by the sum of contributions from acoustic phonons with Debye temperature 605 K and optical phonons with Einstein temperature 113 K. Below 10 K the specific heat divulges a large excess, which can be interpreted as an additional contribution originating from soft potentials.

  18. Effect of silver nanoparticles' generation routes on the morphology, oxygen, and water transport properties of starch nanocomposite films

    NASA Astrophysics Data System (ADS)

    Cheviron, Perrine; Gouanvé, Fabrice; Espuche, Eliane

    2015-09-01

    A strategy involving the preparation of silver nanoparticles in a biodegradable polymer stemming from an ex situ or an in situ method using a green chemistry process is reported. The influence of the reducing agent concentration and the silver nanoparticles' generation route were investigated on the structure, the morphology, and the properties of the nanocomposite films. Two distinct silver nanoparticle populations in size were highlighted from the ex situ route (diameter around 5 nm for the first one and from 20 to 50 nm for the second one), whereas one population was highlighted from the in situ route (around 10 nm). No modification on the crystalline structure of the starch matrix was observed in presence of silver. Crystalline silver nanoparticles were obtained only from the in situ generation route. The decrease of the water sorption and the improvement of water and oxygen barrier properties were found to be not dependent on the reducing agent concentration but mainly on the crystalline structure of the silver nanoparticles associated to the presence of strong interface between the silver nanoparticles and the starch polymer matrix.

  19. Dose-ranging study of the performance of the natural oxygen transporter HEMO2 Life in organ preservation.

    PubMed

    Mallet, Vanessa; Dutheil, Delphine; Polard, Valérie; Rousselot, Morgane; Leize, Elisabeth; Hauet, Thierry; Goujon, Jean Michel; Zal, Franck

    2014-08-01

    The intensity of ischemia-reperfusion injury of the donor organ during the preservation phase and after anastomosis is acknowledged as being a key factor for long-term graft outcome. We previously showed that the addition of 5 g/L of the natural oxygen carrier HEMO2 Life was beneficial for the cold static preservation of kidney grafts in both University of Wisconsin (UW) and histidine-tryptophan-ketoglutarate solutions. Herein, we refined these findings by evaluating HEMO2 Life at various dose levels in UW, both in vitro with endothelial cells and in vivo in a pig kidney autotransplantation preclinical model. We showed in vitro that cells were significantly better preserved with HEMO2 Life in a dose-dependent manner, with benefits in terms of survival, metabolic activity, and cellular integrity. In vivo, serum creatinine measurements at reperfusion confirmed the important benefits of HEMO2 Life treatment on function recovery at the dose levels of 1, 2, and 5 g/L. Likewise, histological analysis of kidney parenchyma biopsies from day 7 confirmed the superiority of HEMO2 Life-supplemented UW over UW alone, and there was no difference between the doses. Three months' follow-up confirmed the trend of the first 2 weeks, with creatinine and fibrosis levels similar to those in pretransplant kidneys. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Safety of transport and hyperbaric oxygen treatment in critically-ill patients from Padua hospitals into a centrally-located, stand-alone hyperbaric facility.

    PubMed

    Bosco, Gerardo; Garetto, Giacomo; Rubini, Alessandro; Paoli, Antonio; Dalvi, Prachiti; Mangar, Devanand; Camporesi, Enrico M

    2016-09-01

    Some patients admitted to the intensive care unit (ICU) might require repetitive hyperbaric oxygen treatment (HBOT) while receiving critical care. In such cases, the presence of a hyperbaric chamber located inside or near an ICU is preferable; however, this set-up is not always possible. In Padua, the "Associazione Tecnici IPerbarici" hyperbaric centre is a stand-alone facility outside of a hospital. Despite this, selected ICU patients receive HBOT at this facility. We retrospectively reviewed the medical records from 2003 to 2013 of 75 consecutive, critically-ill patients, 28 of whom were initially intubated and mechanically ventilated whilst undergoing HBOT. We evaluated the methods adopted in Padua to guarantee the safety and continuity of care during transfer for and during HBOT in this specially-equipped multiplace chamber. The 75 patients collectively received 315 HBOT sessions, 192 of which were with the patients intubated and mechanically ventilated. The diagnoses ranged from necrotizing fasciitis to post-surgical sepsis and intracranial abscess. We obtained full recovery for 73 patients. Two deaths were recorded not in close time relation to HBOT. With meticulous monitoring, efficient transport and well-trained personnel, the risks associated with transportation and HBOT can be acceptable for the referring physician.

  1. Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture.

    PubMed

    Lin, Ping-Chang; Kreutzer, Ulrike; Jue, Thomas

    2007-04-01

    Pulsed field gradient NMR methods have determined the temperature-dependent diffusion of myoglobin (Mb) in perfused rat myocardium. Mb diffuses with an averaged translational diffusion coefficient (DMb) of 4.24-8.37x10(-7)cm2/s from 22 degrees C to 40 degrees C and shows no orientation preference over a root mean-square displacement of 2.5-3.5 microm. The DMb agrees with the value predicted by rotational diffusion measurements. Based on the DMb, the equipoise diffusion PO2, the PO2 in which Mb-facilitated and free O2 diffusion contribute equally to the O2 flux, varies from 2.72 to 0.15 in myocardium and from 7.27 to 4.24 mmHg in skeletal muscle. Given the basal PO2 of approximately 10 mmHg, the Mb contribution to O2 transport appears insignificant in myocardium. In skeletal muscle, Mb-facilitated diffusion begins to contribute significantly only when the PO2 approaches the P50. In marine mammals, the high Mb concentration confers a predominant role for Mb in intracellular O2 transport under all physiological conditions. The Q10 of the DMb ranges from 1.3 to 1.6. The Mb diffusion data indicate that the postulated gel network in the cell must have a minimum percolation cutoff size exceeding 17.5 A and does not impose tortuosity within the diffusion root mean-square displacement. Moreover, the similar Q10 for the DMb of solution versus cell Mb suggests that any temperature-dependent alteration of the postulated cell matrix does not significantly affect protein mobility.

  2. Survival for patients with rare haematologic malignancies: Changes in the early 21st century.

    PubMed

    Pulte, Dianne; Weberpals, Janick; Jansen, Lina; Luttmann, Sabine; Holleczek, Bernd; Nennecke, Alice; Ressing, Meike; Katalinic, Alexander; Brenner, Hermann

    2017-10-01

    Population-level survival has improved for common haematologic malignancies in the early 21st century. However, relatively few population-level data are available for rare haematologic malignancies. Data were extracted from 12 cancer registries in Germany and the Surveillance, Epidemiology and End Results database in the United States (US). Cases of haematologic malignancies with an incidence of less than 1 per 100,000 were selected for analysis. Period analysis was used to determine 5-year relative survival (RS) for the years 2003-2012, and modelled period analysis was used to determine changes in survival between 2003-2007 and 2008-2012. Seven individual haematologic malignancies which met criteria were identified. Overall 5-year age-adjuste