Science.gov

Sample records for hafnium sulfides

  1. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  2. SEPARATING HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Lister, B.A.J.; Duncan, J.F.; Hutcheon, J.M.

    1956-08-21

    Substantially complete separation of zirconium from hafnium may be obtained by elution of ion exchange material, on which compounds of the elements are adsorbed, with an approximately normal solution of sulfuric acid. Preferably the acid concentration is between 0.8 N amd 1.2 N, amd should not exceed 1.5 N;. Increasing the concentration of sulfate ion in the eluting solution by addition of a soluble sulfate, such as sodium sulfate, has been found to be advantageous. The preferred ion exchange materials are sulfonated polystyrene resins such as Dowex 50,'' and are preferably arranged in a column through which the solutions are passed.

  3. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  4. Hafnium germanium telluride

    PubMed Central

    Jang, Gyung-Joo; Yun, Hoseop

    2008-01-01

    The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. PMID:21202163

  5. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  6. Amphoteric Aqueous Hafnium Cluster Chemistry.

    PubMed

    Goberna-Ferrón, Sara; Park, Deok-Hie; Amador, Jenn M; Keszler, Douglas A; Nyman, May

    2016-05-17

    Selective dissolution of hafnium-peroxo-sulfate films in aqueous tetramethylammonium hydroxide enables extreme UV lithographic patterning of sub-10 nm HfO2 structures. Hafnium speciation under these basic conditions (pH>10), however, is unknown, as studies of hafnium aqueous chemistry have been limited to acid. Here, we report synthesis, crystal growth, and structural characterization of the first polynuclear hydroxo hafnium cluster isolated from base, [TMA]6 [Hf6 (μ-O2 )6 (μ-OH)6 (OH)12 ]⋅38 H2 O. The solution behavior of the cluster, including supramolecular assembly via hydrogen bonding is detailed via small-angle X-ray scattering (SAXS) and electrospray ionization mass spectrometry (ESI-MS). The study opens a new chapter in the aqueous chemistry of hafnium, exemplifying the concept of amphoteric clusters and informing a critical process in single-digit-nm lithography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Zirconium and hafnium in meteorites

    NASA Technical Reports Server (NTRS)

    Ehmann, W. D.; Chyi, L. L.

    1974-01-01

    The abundances of zirconium and hafnium have been determined in nine stony meteorites by a new, precise neutron-activation technique. The Zr/Hf abundance ratios for the chondrites vary in a rather narrow range, consistent with previously published observations from our group. Replicate analyses of new, carefully selected clean interior samples of the Cl chondrite Orgueil yield mean zirconium and hafnium abundances of 5.2 and 0.10 ppm, respectively. These abundances are lower than we reported earlier for two Cl chondrite samples which we now suspect may have suffered contamination. The new Cl zirconium and hafnium abundances are in closer agreement with predictions based on theories of nucleosynthesis than the earlier data.

  8. Zirconium and hafnium in meteorites

    NASA Technical Reports Server (NTRS)

    Ehmann, W. D.; Chyi, L. L.

    1974-01-01

    The abundances of zirconium and hafnium have been determined in nine stony meteorites by a new, precise neutron-activation technique. The Zr/Hf abundance ratios for the chondrites vary in a rather narrow range, consistent with previously published observations from our group. Replicate analyses of new, carefully selected clean interior samples of the Cl chondrite Orgueil yield mean zirconium and hafnium abundances of 5.2 and 0.10 ppm, respectively. These abundances are lower than we reported earlier for two Cl chondrite samples which we now suspect may have suffered contamination. The new Cl zirconium and hafnium abundances are in closer agreement with predictions based on theories of nucleosynthesis than the earlier data.

  9. Hafnium radioisotope recovery from irradiated tantalum

    DOEpatents

    Taylor, Wayne A.; Jamriska, David J.

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  10. THE FERROELECTRIC AND STRUCTURAL PROPERTIES OF HAFNIUM OXIDE COMPOUNDS,

    DTIC Science & Technology

    HAFNIUM COMPOUNDS, OXIDES), (* FERROELECTRICITY , HAFNIUM COMPOUNDS), (*CRYSTAL STRUCTURE, HAFNIUM COMPOUNDS), DIELECTRIC PROPERTIES, HYSTERESIS... FERROELECTRIC MATERIALS, SOLID SOLUTIONS, X RAY DIFFRACTION, CRYSTAL LATTICES, LOW TEMPERATURE, CALCIUM COMPOUNDS, STRONTIUM COMPOUNDS, LEAD COMPOUNDS, BARIUM COMPOUNDS

  11. Hafnium isotope stratigraphy of ferromanganese crusts

    USGS Publications Warehouse

    Lee, D.-C.; Halliday, A.N.; Hein, J.R.; Burton, K.W.; Christensen, J.N.; Gunther, D.

    1999-01-01

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in 87Sr/86Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  12. Hafnium isotope stratigraphy of ferromanganese crusts

    PubMed

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  13. Silver-hafnium braze alloy

    DOEpatents

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  14. Ferroelectricity in undoped hafnium oxide

    SciTech Connect

    Polakowski, Patrick; Müller, Johannes

    2015-06-08

    We report the observation of ferroelectric characteristics in undoped hafnium oxide thin films in a thickness range of 4–20 nm. The undoped films were fabricated using atomic layer deposition (ALD) and embedded into titanium nitride based metal-insulator-metal (MIM) capacitors for electrical evaluation. Structural as well as electrical evidence for the appearance of a ferroelectric phase in pure hafnium oxide was collected with respect to film thickness and thermal budget applied during titanium nitride electrode formation. Using grazing incidence X-Ray diffraction (GIXRD) analysis, we observed an enhanced suppression of the monoclinic phase fraction in favor of an orthorhombic, potentially, ferroelectric phase with decreasing thickness/grain size and for a titanium nitride electrode formation below crystallization temperature. The electrical presence of ferroelectricity was confirmed using polarization measurements. A remanent polarization P{sub r} of up to 10 μC cm{sup −2} as well as a read/write endurance of 1.6 × 10{sup 5} cycles was measured for the pure oxide. The experimental results reported here strongly support the intrinsic nature of the ferroelectric phase in hafnium oxide and expand its applicability beyond the doped systems.

  15. Formulation and method for preparing gels comprising hydrous hafnium oxide

    DOEpatents

    Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C

    2013-08-06

    Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.

  16. Thermal Expansion of Hafnium Carbide

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  17. Industrialization progress of high-purity hafnium for optical components

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zhang, Shunli; Zhang, Jiandong; Chen, Yang; Peng, Jiaqing

    2016-03-01

    Hafnium oxide, hafnium crystal bar and high-purity hafnium were prepared using extraction separation, reduction, electrolytic refining, iodide refining and electron beam melting process by General Research Institute for Nonferrous Metals. A hundreds-kilogram production line has been built. The purity of the high-purity hafnium was Zr/(Zr+Hf) <0.3wt% and Zr+Hf>99.99wt%, which enables a high laser induced damage threshold.

  18. Investigation of Melting Dynamics of Hafnium Clusters.

    PubMed

    Ng, Wei Chun; Lim, Thong Leng; Yoon, Tiem Leong

    2017-03-27

    Melting dynamics of hafnium clusters are investigated using a novel approach based on the idea of the chemical similarity index. Ground state configurations of small hafnium clusters are first derived using Basin-Hopping and Genetic Algorithm in the parallel tempering mode, employing the COMB potential in the energy calculator. These assumed ground state structures are verified by using the Low Lying Structures (LLS) method. The melting process is carried out either by using the direct heating method or prolonged simulated annealing. The melting point is identified by a caloric curve. However, it is found that the global similarity index is much more superior in locating premelting and total melting points of hafnium clusters.

  19. Hafnium transistor process design for neural interfacing.

    PubMed

    Parent, David W; Basham, Eric J

    2009-01-01

    A design methodology is presented that uses 1-D process simulations of Metal Insulator Semiconductor (MIS) structures to design the threshold voltage of hafnium oxide based transistors used for neural recording. The methodology is comprised of 1-D analytical equations for threshold voltage specification, and doping profiles, and 1-D MIS Technical Computer Aided Design (TCAD) to design a process to implement a specific threshold voltage, which minimized simulation time. The process was then verified with a 2-D process/electrical TCAD simulation. Hafnium oxide films (HfO) were grown and characterized for dielectric constant and fixed oxide charge for various annealing temperatures, two important design variables in threshold voltage design.

  20. Diffusion of hydrogen in hafnium and titanium

    NASA Astrophysics Data System (ADS)

    Katlinskii, V. M.; Kotlik, L. L.; Egorova, V. M.; Viktorova, A. M.

    1981-04-01

    We measured the coefficients of diffusion of hydrogen in the hydride phases of hafnium and titanium at 1073 1273°K on the basis of the solutions of Fick's second law for diffusion in a finite cylinder and in a sector of it.

  1. Selenium Sulfide

    MedlinePlus

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  2. Percolation conductivity in hafnium sub-oxides

    SciTech Connect

    Islamov, D. R. Gritsenko, V. A.; Cheng, C. H.; Chin, A.

    2014-12-29

    In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfO{sub x}, x < 2) leads to percolation charge transport in such dielectrics. Basing on the model of Éfros-Shklovskii percolation theory, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1–2 nm distributed onto non-stoichiometric HfO{sub x}. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfO{sub x}.

  3. Calibration of the lutetium-hafnium clock.

    PubMed

    Scherer, E; Munker, C; Mezger, K

    2001-07-27

    Well-defined constants of radioactive decay are the cornerstone of geochronology and the use of radiogenic isotopes to constrain the time scales and mechanisms of planetary differentiation. Four new determinations of the lutetium-176 decay constant (lambda176Lu) made by calibration against the uranium-lead decay schemes yield a mean value of 1.865 +/- 0.015 x 10(-11) year(-1), in agreement with the two most recent decay-counting experiments. Lutetium-hafnium ages that are based on the previously used lambda176Lu of 1.93 x 10(-11) to 1.94 x 10(-11) year(-1) are thus approximately 4% too young, and the initial hafnium isotope compositions of some of Earth's oldest minerals and rocks become less radiogenic relative to bulk undifferentiated Earth when calculated using the new decay constant. The existence of strongly unradiogenic hafnium in Early Archean and Hadean zircons implies that enriched crustal reservoirs existed on Earth by 4.3 billion years ago and persisted for 200 million years or more. Hence, current models of early terrestrial differentiation need revision.

  4. Steps Towards Large Scale Production of High-Spin Hafnium Isomers by Spallation Reactions

    DTIC Science & Technology

    2008-02-25

    production and accumulation of the nuclear isomer 178m2 Hafnium by spallation of hafnium targets with high-energy protons. The Hafnium yield will be...E.P. SHABALIN , Production of long–lived hafnium isomers in reactor irradiations, High Energy Density Physics 2 (2006) 48; [25] M.B. CHADWICK AND P.G...YOUNG, Calculations of the production cross–sections of high–spin isomeric states in Hafnium , Nuclear Science and Engineering 108 (1991) 117; [26

  5. Hafnium transistor design for neural interfacing.

    PubMed

    Parent, David W; Basham, Eric J

    2008-01-01

    A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.

  6. Internal dosimetry for inhalation of hafnium tritide aerosols.

    PubMed

    Inkret, W C; Schillaci, M E; Boyce, M K; Cheng, Y S; Efurd, D W; Little, T T; Miller, G; Musgrave, J A; Wermer, J R

    2001-01-01

    Metal tritides with low dissolution rates may have residence times in the lungs which are considerably longer than the biological half-time normally associated with tritium in body water, resulting in long-term irradiation of the lungs by low energy beta particles and bremsstrahlung X rays. Samples of hafnium tritide were placed in a lung simulant fluid to determine approximate lung dissolution rates. Hafnium hydride samples were analysed for particle size distribution with a scanning electron microscope. Lung simulant data indicated a biological dissolution half-time for hafnium tritide on the order of 10(5) d. Hafnium hydride particle sizes ranged between 2 and 10 microns, corresponding to activity median aerodynamic diameters of 5 to 25 microns. Review of in vitro dissolution data, development of a biokinetic model, and determination of secondary limits for 1 micron AMAD particles are presented and discussed.

  7. Nanoscale radiotherapy with hafnium oxide nanoparticles.

    PubMed

    Maggiorella, Laurence; Barouch, Gilles; Devaux, Corinne; Pottier, Agnès; Deutsch, Eric; Bourhis, Jean; Borghi, Elsa; Levy, Laurent

    2012-09-01

    There is considerable interest in approaches that could improve the therapeutic window of radiotherapy. In this study, hafnium oxide nanoparticles were designed that concentrate in tumor cells to achieve intracellular high-energy dose deposit. Conventional methods were used, implemented in different ways, to explore interactions of these high-atomic-number nanoparticles and ionizing radiation with biological systems. Using the Monte Carlo simulation, these nanoparticles, when exposed to high-energy photons, were shown to demonstrate an approximately ninefold radiation dose enhancement compared with water. Importantly, the nanoparticles show satisfactory dispersion and persistence within the tumor and they form clusters in the cytoplasm of cancer cells. Marked antitumor activity is demonstrated in human cancer models. Safety is similar in treated and control animals as demonstrated by a broad program of toxicology evaluation. These findings, supported by good tolerance, provide the basis for developing this new type of nanoparticle as a promising anticancer approach in human patients.

  8. Ferroelectricity in yttrium-doped hafnium oxide

    NASA Astrophysics Data System (ADS)

    Müller, J.; Schröder, U.; Böscke, T. S.; Müller, I.; Böttger, U.; Wilde, L.; Sundqvist, J.; Lemberger, M.; Kücher, P.; Mikolajick, T.; Frey, L.

    2011-12-01

    Structural and electrical evidence for a ferroelectric phase in yttrium doped hafnium oxide thin films is presented. A doping series ranging from 2.3 to 12.3 mol% YO1.5 in HfO2 was deposited by a thermal atomic layer deposition process. Grazing incidence X-ray diffraction of the 10 nm thick films revealed an orthorhombic phase close to the stability region of the cubic phase. The potential ferroelectricity of this orthorhombic phase was confirmed by polarization hysteresis measurements on titanium nitride based metal-insulator-metal capacitors. For 5.2 mol% YO1.5 admixture the remanent polarization peaked at 24 μC/cm2 with a coercive field of about 1.2 MV/cm. Considering the availability of conformal deposition processes and CMOS-compatibility, ferroelectric Y:HfO2 implies high scaling potential for future, ferroelectric memories.

  9. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of...

  10. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges...

  11. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  12. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  13. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... METAL POWDERS POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to...

  14. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... METAL POWDERS POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to...

  15. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  16. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  17. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  18. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... METAL POWDERS POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to...

  19. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  20. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  1. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 005 www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN SULFIDE ( CAS No . 7783 - 06 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been

  2. Handbook of Phase Transition Sulfides, Selenides and Tellurides,

    DTIC Science & Technology

    1984-07-01

    Hafnium Disulfide) ............................. A-95 HfS3 (HafniumtaTrisulfide) ........................... A-102 HgS ( Mercury Monosulfide or...A 060 CBr *cuu cu Pt CuBr Copper Sulphide .*- Substrate Pt cu 2-b S CuBr cu Fig. 8GALVANIC CELL I A-61 Cop r Selenide Above 1100, Cu2Se has a fcc...L, PR S*o LI*4E) Figure 2. Transmission spectrum of polycrystalline trigonal ... mercury sulfide. A-111 S. A-ill _t dielectric constant is calculated

  3. Ground-state structures of Hafnium clusters

    SciTech Connect

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  4. Hafnium isotope variations in oceanic basalts

    NASA Technical Reports Server (NTRS)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  5. Hafnium isotope variations in oceanic basalts

    NASA Technical Reports Server (NTRS)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  6. Some properties of RF sputtered hafnium nitride coatings

    NASA Technical Reports Server (NTRS)

    Aron, P. R.; Grill, A.

    1982-01-01

    Hafnium nitride coatings were deposited by reactive RF sputtering from a hafnium target in nitrogen and argon gas mixtures. The rate of deposition, composition, electrical resistivity and complex index of refraction were investigated as a function of target substrate distance and the fraction nitrogen, (fN2) in the sputtering atmosphere. The relative composition of the coatings is independent on fN2 for values above 0.1. The electric resistivity of the hafnium nitride films changes over 8 orders of magnitude when fN2 changes from 0.10 to 0.85. The index of refraction is almost constant at 2.8(1-0.3i) up to fN2 = 0.40 then decreases to 2.1(1 - 0.01i) for higher values of fN2.

  7. Use of Hafnium in Control Elements of Nuclear Reactors and Power Units

    NASA Astrophysics Data System (ADS)

    Shikov, A. K.; Bocharov, O. V.; Arzhakova, V. M.; Bezumov, V. N.; Perlovich, Yu. A.; Isaenkova, M. G.

    2003-07-01

    The expedience in the use of hafnium for control elements of a nuclear reactor is considered. The requirements of various producers on the chemical composition and mechanical properties of nuclear-purity hafnium are presented. Results of studies of the strain resistance and ductility characteristics of hafnium are discussed depending on the temperature and the deformation rate. The dependence of the hafnium hardness on the degree of deformation and on the annealing mode is presented. Results of a texture analysis are used to judge the effect of deformation and heat treatment on the anisotropy in the properties of hafnium. The developed process is used for the production of hafnium parts at VNIINM, i.e. hafnium plates are fabricated for the attachment unit of automatic control assemblies (ACA) for VVÉR-440 reactors.

  8. Corrosion and tribocorrosion of hafnium in simulated body fluids.

    PubMed

    Rituerto Sin, J; Neville, A; Emami, N

    2014-08-01

    Hafnium is a passive metal with good biocompatibility and osteogenesis, however, little is known about its resistance to wear and corrosion in biological environments. The corrosion and tribocorrosion behavior of hafnium and commercially pure (CP) titanium in simulated body fluids were investigated using electrochemical techniques. Cyclic polarization scans and open circuit potential measurements were performed in 0.9% NaCl solution and 25% bovine calf serum solution to assess the effect of organic species on the corrosion behavior of the metal. A pin-on-plate configuration tribometer and a three electrode electrochemical cell were integrated to investigate the tribocorrosion performance of the studied materials. The results showed that hafnium has good corrosion resistance. The corrosion density currents measured in its passive state were lower than those measured in the case of CP titanium; however, it showed a higher tendency to suffer from localized corrosion, which was more acute when imperfections were present on the surface. The electrochemical breakdown of the oxide layer was retarded in the presence of proteins. Tribocorrosion tests showed that hafnium has the ability to quickly repassivate after the oxide layer was damaged; however, it showed higher volumetric loss than CP titanium in equivalent wear-corrosion conditions. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1157-1164, 2014.

  9. Neutron Detection Utilizing Gadolinium Doped Hafnium Oxide Films

    DTIC Science & Technology

    2008-03-01

    emit low energy gamma rays, alpha particles, and neutron radiation . Many instruments capable of gamma detection have been available for decades...neutron detection because its interaction with neutrons creates fast electrons and gamma rays. Therefore, background gamma radiation causes a more...NEUTRON DETECTION UTILIZING GADOLINIUM DOPED HAFNIUM OXIDE FILMS THESIS Bryan D. Blasy, 2Lt

  10. Mineral resource of the month: zirconium and hafnium

    USGS Publications Warehouse

    Gambogi, Joseph

    2007-01-01

    Zirconium and hafnium are corrosion-resistant metals that are grouped in the same family as titanium on the periodic table. The two elements commonly occur in oxide and silicate minerals and have significant economic importance in everything from ink, ceramics and golf shoes to nuclear fuel rods.

  11. Article having an improved platinum-aluminum-hafnium protective coating

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)

    2005-01-01

    An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.

  12. Discovery of gallium, germanium, lutetium, and hafnium isotopes

    SciTech Connect

    Gross, J.L.; Thoennessen, M.

    2012-09-15

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  13. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  14. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  15. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  16. Effect of Copper Addition on Crystallization and Properties of Hafnium Containing HITPERM Alloys

    DTIC Science & Technology

    2010-05-01

    AFRL-RZ-WP-TP-2010-2190 EFFECT OF COPPER ADDITION ON CRYSTALLIZATION AND PROPERTIES OF HAFNIUM CONTAINING HITPERM ALLOYS (POSTPRINT) L...SUBTITLE EFFECT OF COPPER ADDITION ON CRYSTALLIZATION AND PROPERTIES OF HAFNIUM CONTAINING HITPERM ALLOYS (POSTPRINT) 5a. CONTRACT NUMBER In-house...8-98) Prescribed by ANSI Std. Z39-18 Effect of copper addition on crystallization and properties of hafnium containing HITPERM alloys „invited

  17. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  18. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    SciTech Connect

    Trbovich, M J; Barry, D P; Slovacek, R E; Danon, Y; Block, R C; Francis, N C; Lubert, M; Burke, J A; Drindak, N J; Lienweber, G; Ballad, R

    2007-02-06

    The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental

  19. Solvent extraction separation of hafnium with 4-methyl-3-pentene-2-one.

    PubMed

    Kalyanaraman, S; Khopkar, S M

    1978-07-01

    A new method for the extractive separation of hafnium from zirconium is presented. Zirconium is extracted with pure mesityl oxide from 4M nitric acid/4M sodium nitrate medium, followed by extraction of hafnium with mesityl oxide from 0.4M hydrochloric acid/2M ammonium thiocyanate medium. It is possible to accomplish clean separations of Hf from Zr in ratios from 1:20 to 1:200. The separation of hafnium from commonly associated elements such as scandium, yttrium, uranium, thorium, alkali and alkaline earth metals in 500:1 weight ratio to hafnium is also possible.

  20. Alternative Processing of High Temperature Hafnium and Zirconium Based Materials

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Gusman, Michael; Ellerby, Don; Irby, Edward; Johnson, Sylvia M.

    2003-01-01

    The behavior of refractory hafnium and zirconium based materials are being investigated at NASA Ames as part of ongoing research aimed at developing superior heat resistant materials for aerospace applications. Hafnium and zirconium diboride based materials have shown high temperature capabilities in simulated reentry environments indicating that these materials may successfully operate as reusable oxidation resistant components for leading edge applications. Due to the refractory nature of these materials, processing of fine-grained uniform microstructures poses a number of challenges. To better understand the process-property-microstructure relationship, processing of these materials has been carried out with conventional hot pressing in addition to the novel approach of Spark Plasma Sintering (SPS). The two processing methods are compared and contrasted in an evaluation of the sintering behavior of high temperature diboride based materials and preliminary physical and mechanical properties are presented.

  1. Alternative Processing of High Temperature Hafnium and Zirconium Based Materials

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Gusman, Michael; Ellerby, Don; Irby, Edward; Johnson, Sylvia M.

    2003-01-01

    The behavior of refractory hafnium and zirconium based materials are being investigated at NASA Ames as part of ongoing research aimed at developing superior heat resistant materials for aerospace applications. Hafnium and zirconium diboride based materials have shown high temperature capabilities in simulated reentry environments indicating that these materials may successfully operate as reusable oxidation resistant components for leading edge applications. Due to the refractory nature of these materials, processing of fine-grained uniform microstructures poses a number of challenges. To better understand the process-property-microstructure relationship, processing of these materials has been carried out with conventional hot pressing in addition to the novel approach of Spark Plasma Sintering (SPS). The two processing methods are compared and contrasted in an evaluation of the sintering behavior of high temperature diboride based materials and preliminary physical and mechanical properties are presented.

  2. Hydrothermal chemistry, structures, and luminescence studies of alkali hafnium fluorides.

    PubMed

    Underwood, Christopher C; McMillen, Colin D; Chen, Hongyu; Anker, Jeffery N; Kolis, Joseph W

    2013-01-07

    This paper describes the hydrothermal chemistry of alkali hafnium fluorides, including the synthesis and structural characterization of five new alkali hafnium fluorides. Two ternary alkali hafnium fluorides are described: Li(2)HfF(6) in space group P31m with a = 4.9748(7) Å and c = 4.6449(9) Å and Na(5)Hf(2)F(13) in space group C2/m with a = 11.627(2) Å, b = 5.5159(11) Å, and c = 8.4317(17) Å. Three new alkali hafnium oxyfluorides are also described: two fluoroelpasolites, K(3)HfOF(5) and (NH(4))(3)HfOF(5), in space group Fm3m with a = 8.9766(10) and 9.4144(11) Å, respectively, and K(2)Hf(3)OF(12) in space group R3m with a = 7.6486(11) Å and c = 28.802(6) Å. Infrared (IR) spectra were obtained for the title solids to confirm the structure solutions. Comparison of these materials was made based on their structures and synthesis conditions. The formation of these species in hydrothermal fluids appears to be dependent upon both the concentration of the alkali fluoride mineralizer solution and the reaction temperature. Both X-ray and visible fluorescence studies were conducted on compounds synthesized in this study and showed that fluorescence was affected by a variety of factors, such as alkali metal size, the presence/absence of oxygen in the compound, and the coordination environment of Hf(4+).

  3. Tunable electrical and optical properties of hafnium nitride thin films

    NASA Astrophysics Data System (ADS)

    Farrell, I. L.; Reeves, R. J.; Preston, A. R. H.; Ludbrook, B. M.; Downes, J. E.; Ruck, B. J.; Durbin, S. M.

    2010-02-01

    We report structural and electronic properties of epitaxial hafnium nitride films grown on MgO by plasma-assisted pulsed laser deposition. The electronic structure measured using soft x-ray absorption and emission spectroscopy is in excellent agreement with the results of a band structure calculation. We show that by varying the growth conditions we can extend the films' reflectance further toward the UV, and we relate this observation to the electronic structure.

  4. Phase transformations in some hafnium-tantalum-titanium-zirconium alloys

    SciTech Connect

    Ohriner, E.K.; Kapoor, D.

    1997-11-01

    Phase transformations in hafnium alloys are of interest as a means of achieving a material which exhibits flow softening and high localized strains during deformation at high strain rates. Hafnium transforms from a body-centered-cubic beta phase to a hexagonal alpha phase upon cooling below 1749{degrees}C. Hafnium-based alloys containing up to 17.5% Ti, up to 17.5% Ta, and up to 7.3% Zr by weight were button-arc melted and, in some cases, hot extruded to obtain a refined grain size. A number of alloys were shown to have beta solvus temperatures in the range of 1100 to 1300{degrees}C and showed evidence of a shear transformation upon water quenching. The Vickers microhardness of the quenched materials are typically above 350 HV as compared to 300 HV or less for materials with an alpha plus beta structure. Quenching dilatometry indicates a martensite start temperature of about 750{degrees}C for the Hf-7.5 Ta-10 Ti-1 Zr alloy and 800{degrees}C or more for the Hf-7.5 Ta-7.5 Ti-1 Zr alloy. Tensile tests at 1 s{sup {minus}1} strain rate show a constant ultimate tensile strength for temperatures up to 600{degrees}C for the above two alloys and a rapid decrease in strength with a further increase in temperature.

  5. Continuous ion exchange separation of zirconium and hafnium

    SciTech Connect

    Begovich, J.M.; Sisson, W.G.

    1981-01-01

    A pressurized continuous annular chromatograph (CAC) has been developed for truly continuous ion exchange preparative separations. This device utilizes a slowly rotating annular bed of sorbent material, fixed multiple feed points, and fixed withdrawal locations. Most of our investigations have been performed with a 28-cm-diam by 60-cm-long CAC, but a larger model has recently been designed and constructed. A detailed study has been made of the separation of copper, nickel, and cobalt components from a simulated carbonate leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Recent studies have investigated the ion exchange separation of zirconium and hafnium from a sulfate feed solution. Nuclear reactor-grade zirconium, containing < 0.01 wt % hafnium, and hafnium, containing < 1% zirconium, have been continuously prepared using cation exchange resin in the pressurized CAC. This device, because of its continuous feed and product withdrawal, its adaptability to largescale operations, and its ability to separate many components, is expected to make chromatography a more competitive process in the industrial sector.

  6. Hafnium trifluoromethanesulfonate (hafnium triflate) as a highly efficient catalyst for chemoselective thioacetalization and transthioacetalization of carbonyl compounds.

    PubMed

    Wu, Yan-Chao; Zhu, Jieping

    2008-12-05

    A range of carbonyl compounds including aliphatic and aromatic aldehydes and ketones were converted to the corresponding thioacetals in high yields in the presence of a catalytic amount of hafnium trifluoromethanesulfonate (0.1 mol %, room temperature). The mild conditions tolerated various sensitive functional and protecting groups and were racemization-free when applied to alpha-aminoaldehydes. Transacetalization and chemoselective thioacetalization of aromatic aldehydes in the presence of aliphatic aldehydes and ketones were also documented.

  7. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  8. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  9. SULFIDE MINERALS IN SEDIMENTS

    EPA Science Inventory

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  10. SULFIDE MINERALS IN SEDIMENTS

    EPA Science Inventory

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  11. Fused salt process for purifying zirconium and/or hafnium tetrachlorides

    SciTech Connect

    Lee, E.D.

    1991-04-23

    This patent describes a fused salt process for continuously purifying zirconium and/or hafnium tetrachloride dissolved in a molten bath in a vessel. It comprises: maintaining a mass of a suitable mixture of salts, including zirconium and/or hafnium tetrachloride; heating the mixture of salts to a temperature at or immediately below the vaporization temperature of the zirconium and/or hafnium tetrachloride at which temperature the mixture of salts is fused to form a molten, tetrachloride-dissolving bath; continuously introducing into the dissolving bath a zirconium and/or hafnium tetrachloride powder; heating a portion of the dissolving bath in situ to a temperature higher than the vaporization temperature of the zirconium and/or hafnium tetrachloride so as to vaporize the tetrachloride; internally circulating the dissolving bath whereby the portion of the dissolving bath at the high temperature circulate with the bath at the lower temperature.

  12. A simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.

    1972-01-01

    A simple analytical procedure is described for accurately and precisely determining the zirconium or hafnium content of molybdenum-base alloys. The procedure is based on the reaction of the reagent Arsenazo III with zirconium or hafnium in strong hydrochloric acid solution. The colored complexes of zirconium or hafnium are formed in the presence of molybdenum. Titanium or rhenium in the alloy have no adverse effect on the zirconium or hafnium complex at the following levels in the selected aliquot: Mo, 10 mg; Re, 10 mg; Ti, 1 mg. The spectrophotometric measurement of the zirconium or hafnium complex is accomplished without prior separation with a relative standard deviation of 1.3 to 2.7 percent.

  13. Hafnium carbamates and ureates: new class of precursors for low-temperature growth of HfO2 thin films.

    PubMed

    Pothiraja, Ramasamy; Milanov, Andrian P; Barreca, Davide; Gasparotto, Alberto; Becker, Hans-Werner; Winter, Manuela; Fischer, Roland A; Devi, Anjana

    2009-04-21

    Novel volatile compounds of hafnium, namely tetrakis-N,O-dialkylcarbamato hafnium(iv) [Hf((i)PrNC(O)O(i)Pr)(4)] () and tetrakis-N,N,N'-trialkylureato hafnium(iv) [Hf((i)PrNC(O)N-(Me)Et)(4)] (), have been synthesized through the simple insertion reaction of isopropyl isocyanate into hafnium isopropoxide and hafnium ethylmethylamide, respectively; based on the promising thermal properties, compound has been evaluated as a precursor for metalorganic chemical vapor deposition (MOCVD) of HfO(2) thin films, which resulted in the growth of stoichiometric and crystalline layers with a uniform morphology at temperature as low as 250 degrees C.

  14. Slow DNA Transport through Nanopores in Hafnium Oxide Membranes

    PubMed Central

    Bell, David C.; Cohen-Karni, Tzahi; Rosenstein, Jacob K.; Wanunu, Meni

    2016-01-01

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2–7 nm thick) free-standing hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with <2 nm diameter pores that last several hours, in which we observe >50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore. PMID:24083444

  15. Slow DNA transport through nanopores in hafnium oxide membranes.

    PubMed

    Larkin, Joseph; Henley, Robert; Bell, David C; Cohen-Karni, Tzahi; Rosenstein, Jacob K; Wanunu, Meni

    2013-11-26

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2-7 nm thick) freestanding hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with <2 nm diameter pores that last several hours, in which we observe >50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore.

  16. The abundances of zirconium and hafnium in the solar system

    NASA Technical Reports Server (NTRS)

    Ganapathy, R.; Papia, G. M.; Grossman, L.

    1976-01-01

    The concentrations of zirconium and hafnium have been determined in the Orgueil, Murchison, Allende, Bruderheim, and Alais meteorites by radiochemical neutron activation analysis. The mean Zr/Hf weight ratio in the first four of these meteorites is 31.3 (plus or minus 2.2), indicating no major fractionation of Zr from Hf. Alais contains anomalously high amounts of many refractory lithophile elements, including Zr and Hf. Orgueil contains 3.1 ppm Zr and 0.11 ppm Hf, corresponding to 9.0 and 0.16 atoms, respectively, relative to 1 million Si atoms.

  17. Phase transitions in ferroelectric silicon doped hafnium oxide

    NASA Astrophysics Data System (ADS)

    Böscke, T. S.; Teichert, St.; Bräuhaus, D.; Müller, J.; Schröder, U.; Böttger, U.; Mikolajick, T.

    2011-09-01

    We investigated phase transitions in ferroelectric silicon doped hafnium oxide (FE-Si:HfO2) by temperature dependent polarization and x-ray diffraction measurements. If heated under mechanical confinement, the orthorhombic ferroelectric phase reversibly transforms into a phase with antiferroelectric behavior. Without confinement, a transformation into a monoclinic/tetragonal phase mixture is observed during cooling. These results suggest the existence of a common higher symmetry parent phase to the orthorhombic and monoclinic phases, while transformation between these phases appears to be inhibited by an energy barrier.

  18. Radiochemical separation of zirconium and hafnium from other radionuclides.

    PubMed

    Hahn, R B

    1972-11-01

    Radiozirconium and radiohafnium may be separated from all other radionuclides except scandium and protactinium by precipitation with mandelic acid from 5-10 M hydrochloric acid, using commercial zirconyl chloride as carrier. Scandium and protactinium are removed by dissolving the precipitate in sodium carbonate, then adding barium nitrate to precipitate barium carbonate which acts as a scavenger. Zirconium mandelate is finally reprecipitated and the sample weighed and counted in this form. The method was checked by analysing commercial zirconyl chloride and standard rock samples for zirconium and hafnium by neutron-activation analysis.

  19. Hafnium carbide structural foams synthesized from polymer precursors

    NASA Astrophysics Data System (ADS)

    Fan, Haibo

    2005-11-01

    A study was conducted to investigate a new low cost approach to produce Hafnium Carbide (HfC) structural foams through the thermolysis and pyrolysis of polymer precursors. Hafnium carbide has a melting point of over 3900 °C, the highest melting point of any known binary alloy. HfC structural foams can be fabricated into high temperature components or used as a thermal insulation material. Current available methods for creating HfC structural foams are time consuming, expensive or the material produced lacks mechanical strength. The objectives of this research were to produce HfC foam through the thermolysis and pyrolysis of Hf containing polymer mixture, optimize the properties of the HfC foam, and develop a knowledge base of acceptable process parameters. With the proposed method, HfC foam was produced by mixing a hafnium containing Macromolecular Metal Complex (MMC) and carbon source polymers, followed by heat treating the mixture under vacuum. XRD analysis showed that the produced foam was largely composed of HfC, with small amounts of hafnium oxide. The foam total porosity was measured to be over 85%. The HfC lattice parameter was found to range from 0.4613 nm to 0.4647 nm. The HfC conversion mechanism was investigated using Residual Gas Analysis, where it was observed that polymer decomposition occurred from 80 through 550 °C and HfC conversion started around 1100 °C. The HfC foam mechanical properties and microstructure were improved by optimizing the process methods and parameters. The initial research yielded an HfC foam with a compression strength of 15.16 +/- 4.66 MPa and evenly distributed foam cells with diameter sizes up to 50 mum. Continued research showed that HfC foams with total porosity of about 85% (density 1.9g/cm 3), and a foam compression strength of 212 +/- 25MPa were achievable. The proposed methodology for synthesizing HfC foam was found to be simple, inexpensive and require less production time. The process can be controlled to produce

  20. The thermodynamic properties of crystalline pentasodium hafnium tris(phosphate)

    NASA Astrophysics Data System (ADS)

    Asabina, E. A.; Pet'kov, V. I.; Markin, A. V.; Smirnova, N. N.

    2009-07-01

    The temperature dependence of the heat capacity of crystalline pentasodium hafnium tris(phosphate) was studied over the temperature range 6-650 K. The experimental data were used to calculate the thermodynamic functions of Na5Hf(PO4)3 from 0 to 650 K and the fractal dimension at 20-50 K. The standard entropy of formation from simple substances at 298.15 K was calculated from the absolute entropy value. The thermodynamic properties of Na5M(PO4)3 (M = Ti, Zr, and Hf) phosphates were compared.

  1. The abundances of zirconium and hafnium in the solar system

    NASA Technical Reports Server (NTRS)

    Ganapathy, R.; Papia, G. M.; Grossman, L.

    1976-01-01

    The concentrations of zirconium and hafnium have been determined in the Orgueil, Murchison, Allende, Bruderheim, and Alais meteorites by radiochemical neutron activation analysis. The mean Zr/Hf weight ratio in the first four of these meteorites is 31.3 (plus or minus 2.2), indicating no major fractionation of Zr from Hf. Alais contains anomalously high amounts of many refractory lithophile elements, including Zr and Hf. Orgueil contains 3.1 ppm Zr and 0.11 ppm Hf, corresponding to 9.0 and 0.16 atoms, respectively, relative to 1 million Si atoms.

  2. Simultaneous determination of tantalum and hafnium in silicates by neutron activation analysis

    USGS Publications Warehouse

    Greenland, L.P.

    1968-01-01

    A neutron activation procedure suitable for the routine determination of tantalum and hafnium in silicates is described. The irradiated sample is fused with sodium peroxide and leached, and the insoluble hydroxides are dissolved in dilute hydrofluoric acid-hydrochloric acid. After LaF3 and AgCl scavenges, tantalum and hafnium are separated by anion exchange. Tantalum is obtained radiochemically pure; 233Pa and 95Zr contaminants in the hafnium fraction are resolved by ??-ray spectrometry. The chemical yield of the procedure is detemined after counting by re-irradiation. Values for the 8 U.S. Geological Survey standard rocks are reported. ?? 1968.

  3. Structure and Optical Properties of Nanocrystalline Hafnium Oxide Thin Films (PostPrint)

    DTIC Science & Technology

    2014-09-01

    AFRL-RX-WP-JA-2014-0214 STRUCTURE AND OPTICAL PROPERTIES OF NANOCRYSTALLINE HAFNIUM OXIDE THIN FILMS (POSTPRINT) Neil R. Murphy AFRL...OPTICAL PROPERTIES OF NANOCRYSTALLINE HAFNIUM OXIDE THIN FILMS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...publication is available at http://dx.doi.org/10.1016/j.optmat.2014.08.005 14. ABSTRACT Hafnium oxide (HfO2) films were grown by sputter-deposition by

  4. Hafnium-Based Contrast Agents for X-ray Computed Tomography.

    PubMed

    Berger, Markus; Bauser, Marcus; Frenzel, Thomas; Hilger, Christoph Stephan; Jost, Gregor; Lauria, Silvia; Morgenstern, Bernd; Neis, Christian; Pietsch, Hubertus; Sülzle, Detlev; Hegetschweiler, Kaspar

    2017-05-15

    Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.

  5. "Thermal Stability of Anodic Hafnium Oxide Nanotube Arrays"

    SciTech Connect

    Qiu, Xiaofeng; Howe, Jane Y; Mayer, Harry A; Paranthaman, Mariappan Parans; Tuncer, Enis

    2011-01-01

    Thermal stability of highly ordered Hafnium oxide, HfO2 nanotube arrays prepared through electrochemical anodization approach in the presence of ammonium fluoride is investigated in a temperature range of room temperature to 900 C in flowing Argon atmosphere. The formation of the HfO2 nanotube arrays was monitored by current density transient characteristics during anodization of hafnium metal foil. Morphologies of the as grown and post-annealed HfO2 nanotube arrays were analyzed by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Although monoclinic HfO2 is thermally stable up to 2000K in bulk, the morphology HfO2 nanotube arrays degraded at 900 C. Detailed X-ray photoelectron spectroscopy (XPS) study revealed that the thermal treatment significantly impact the composition and chemical environment of the core elements (Hf, O and F) of HfO2. Possible reasons for the degradation of the nanotube morphology were discussed based on XPS study and possible future improvements were suggested briefly.

  6. Zirconium and hafnium Salalen complexes in isospecific polymerisation of propylene.

    PubMed

    Press, Konstantin; Venditto, Vincenzo; Goldberg, Israel; Kol, Moshe

    2013-07-07

    The activity of dibenzylzirconium and dibenzylhafnium Salalen complexes in polymerisation of propylene with MAO as a cocatalyst is described. Three Salalen ligand precursors combining a bulky alkyl group (1-adamantyl) on the imine-side phenol and electron withdrawing halo groups of different sizes on the amine-side phenol were explored. All metal complexes were obtained as single diastereomers. An X-ray crystallographic structure of a hafnium complex of an additional ligand carrying the combination of tert-butyl and chloro substituted phenolates, 4-Hf, revealed a fac-mer wrapping of the Salalen ligand around the metal centre. All complexes led to active catalysts in propylene polymerisation and to isotactic polypropylene of high regioregularity. The zirconium complexes led to polypropylene having molecular weights of Mw = 132,000-200,000 and isotacticities of [mmmm] = 65.7-75.0%. The hafnium complexes led to polypropylene of higher molecular weights of Mw = 375,000-520,000 and higher stereoregularities of [mmmm] = 80.6-89.3%, the highest isotacticity obtained with 3-Hf.

  7. Studies on Optical and Electrical Properties of Hafnium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jayaraman, Venkatachalam; Sagadevan, Suresh; Sudhakar, Rajesh

    2017-03-01

    In this paper, the synthesis and physico-chemical properties of hafnium oxide nanoparticles (HfO2 NPs) are analyzed and reported. The synthesis was carried out by the precipitation route by using hafnium tetrachloride (HfCl4) as precursor material with potassium hydroxide (KOH) dissolved in Millipore water. In the precipitation technique, the chemical reaction is comparatively simple, low-cost and non-toxic compared to other synthetic methods. The synthesized HfO2 NPs were characterized by using powder x-ray diffraction (PXRD), ultraviolet-visible (UV-Vis) spectroscopy, Raman analysis, and high-resolution transmission electron microscopy (HRTEM). The monoclinic structure of the HfO2 NPs was resolved utilizing x-ray diffraction (XRD). The optical properties were studied from the UV-Vis absorption spectrum. The optical band gap of the HfO2NPs was observed to be 5.1 eV. The Raman spectrum shows the presence of HfO2 NPs. The HRTEM image showed that the HfO2 NPs were of spherical shape with an average particle size of around 28 nm. The energy-dispersive x-ray spectroscopy (EDS) spectrum obviously demonstrated the presence of HfO2 NPs. Analysis and studies on the dielectric properties of the HfO2 NPs such as the dielectric constant, the dielectric loss, and alternating current (AC) conductivity were carried out at varying frequencies and temperatures.

  8. Experimental Equation of State of Hafnium Metal to 210 GPa

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Montgomery, Jeffrey; Smith, Spencer; Tsoi, Georgiy

    The equation of state of hafnium metal has been measured using a platinum pressure marker to 210 GPa. Beveled diamonds with 35 micron central flats were used to compress a sample consisting of a mixture of platinum and hafnium that was packed with 6 nm diamond powder. It was hoped that this geometry would provide an alternative method of creating a second-stage pressure region to reach multi-megabar pressures. Powder diffraction patterns were collected across the high-pressure region using an x-ray beam collimated to 1x2 microns in a grid with a spacing of 1 micron. At the highest loads, a pressure gradient of 90 GPa was observed across the sample. This gradient allows for the construction of an equation of state over this range from data collected in only 3 minutes of synchrotron x-ray time. A new analysis program suite employing a measurement of spectral overlap has been developed to identify the multiple structures present, fit lattice parameters, and analyze the newly available gradient information. This work was supported by the Department of Energy (DOE) National Nuclear Security Administration under Grant Number DE-NA0002014.

  9. Studies on Optical and Electrical Properties of Hafnium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jayaraman, Venkatachalam; Sagadevan, Suresh; Sudhakar, Rajesh

    2017-07-01

    In this paper, the synthesis and physico-chemical properties of hafnium oxide nanoparticles (HfO2 NPs) are analyzed and reported. The synthesis was carried out by the precipitation route by using hafnium tetrachloride (HfCl4) as precursor material with potassium hydroxide (KOH) dissolved in Millipore water. In the precipitation technique, the chemical reaction is comparatively simple, low-cost and non-toxic compared to other synthetic methods. The synthesized HfO2 NPs were characterized by using powder x-ray diffraction (PXRD), ultraviolet-visible (UV-Vis) spectroscopy, Raman analysis, and high-resolution transmission electron microscopy (HRTEM). The monoclinic structure of the HfO2 NPs was resolved utilizing x-ray diffraction (XRD). The optical properties were studied from the UV-Vis absorption spectrum. The optical band gap of the HfO2NPs was observed to be 5.1 eV. The Raman spectrum shows the presence of HfO2 NPs. The HRTEM image showed that the HfO2 NPs were of spherical shape with an average particle size of around 28 nm. The energy-dispersive x-ray spectroscopy (EDS) spectrum obviously demonstrated the presence of HfO2 NPs. Analysis and studies on the dielectric properties of the HfO2 NPs such as the dielectric constant, the dielectric loss, and alternating current (AC) conductivity were carried out at varying frequencies and temperatures.

  10. Damage fluence at 1054 nm and 351 nm of coatings made with hafnium oxide evaporated from metallic hafnium

    SciTech Connect

    Smith, D.J.; Anzellotti, J.F.; Schmid, A.W.

    1995-12-31

    Hafnium oxide can be reactively deposited by e-beam evaporation directly from a metallic hafnium melt. Films produced in this manner can have low absorptive losses, low defect densities, and high damage thresholds. Evaporation of hafnia, in this form allows for more precise control of rate and variation of the vapor plume. Thus, multilayer films of metal-converted hafnia and conventionally deposited silicon dioxide can be used for designs that require precise control of optical thickness and a high degree of uniformity. One such design, a polarizing beam splitter used for the OMEGA Upgrade, was produced using the hafnia/silica combination. These coatings have stringent optical requirements, are placed in the stages of the laser with the highest fluence at 1054 nm, and are required to have a low net stress to produce low wavefront distortion. Hafnia/silica coatings are also more stable than other film combinations such as tantala/silica. Hafnia/silica films were investigated for other applications. A triple wavelength (351, 527, and 1054 nm) antireflection coating was developed for calorimeter absorption glass. The metal-converted hafnia is also used on selected transport mirrors used at 351 nm and angles of incidence up to 45{degrees}. Damage test results for 1054 nm, 1 ns, and 351 nm, 0.7 ns will be presented.

  11. Enrichment/isolation of phosphorylated peptides on hafnium oxide prior to mass spectrometric analysis.

    PubMed

    Rivera, José G; Choi, Yong Seok; Vujcic, Stefan; Wood, Troy D; Colón, Luis A

    2009-01-01

    Hafnium oxide (hafnia) exhibits unique enrichment properties towards phosphorylated peptides that are complementary to those of titanium oxide (titania) and zirconium oxide (zirconia) for use with mass spectrometric analysis in the field of proteomics.

  12. PROCESS OF RECOVERING ZIRCONIUM VALUES FROM HAFNIUM VALUES BY SOLVENT EXTRACTION WITH AN ALKYL PHOSPHATE

    DOEpatents

    Peppard, D.F.

    1960-02-01

    A process of separating hafnium nitrate from zirconium nitrate contained in a nitric acid solution by selectively. extracting the zirconium nitrate with a water-immiscible alkyl phosphate is reported.

  13. Dose estimate of inhaled hafnium tritide using the ICRP 66 lung model.

    PubMed

    Cheng, Yung-Sung; Zhou, Yue; Wang, Yang-Sheng; Inkret, William C; Wermer, Joseph R

    2002-06-01

    Metal tritide is widely used for research, purification, compression, and storage of tritium. The current understanding of metal tritide and its radiation dosimetry for internal exposure is limited, and ICRP publications do not provide the tritium dosimetry for hafnium tritide. The current radiation protection guidelines for metal tritide particles (including hafnium tritide) are based on the assumption that their biological behavior is similar to tritiated water, which is completely absorbed by the body. However, the solubility of metal tritide particles depends on the chemical form of the material. The biological half-live of hafnium tritide particles and the dosimetry of an inhalation exposure to those particles could be quite different from tritiated water. This paper describes experiments on the dissolution rate of hafnium tritide particles in a simulated lung fluid. The results showed that less than 1% of the tritium was dissolved in the simulated lung fluid for hafnium tritide particles after 215 d. The short-term and long-term dissolution half times were 46 and 4.28 x 10(5) d, respectively. This indicates that hafnium tritide is an extremely insoluble material. Self-absorption of beta rays in the hafnium tritide particles was estimated by a numerical method. The dose coefficients were calculated as a function of particle size using in vitro solubility data and a calculated self-absorption factor. The dose coefficient decreased with aerodynamic diameters in the range of 0.25 to 10 microm, mainly because the self-absorption factor decreased with increasing particle size. For a particle 1 microm in aerodynamic diameter, the dose coefficient of a hafnium tritide particle was about 10 times higher than that of tritiated water but was about 1.4 times lower than that calculated by ICRP Publication 71 for Type S tritiated particles. The ICRP estimate did not include a self-absorption factor and thus might have overestimated the dose. This finding has significant

  14. Simple spectrophotometric method for determination of zirconium or hafnium in selected molybdenum-base alloys.

    PubMed

    Dupraw, W A

    1972-06-01

    A simple analytical procedure is described for determining zirconium or hafnium in molybdenum-base alloys by formation of the Arsenazo III complex of zirconium or hafnium in 9 M hydrochloric acid medium. The absorbance is measured at 670 nm. Molybdenum (10 mg), titanium (1 mg), and rhenium (10 mg) have no adverse effect. No prior separation is needed. The relative standard deviation is 1.3-2.7%.

  15. Sulfide Mineralogy and Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  16. Effect of hafnium concentration on nuclear performance of blanket materials containing zirconium: a sensitivity analysis of TBR to hafnium content in lithium metazirconate

    NASA Astrophysics Data System (ADS)

    Cepraga, D. G.; Panini, G.; Diamanti, D.; Cambi, G.; Costa, M.; Cavallone, G.; Bruzzi, L.

    1994-09-01

    The reduction of hafnium content in blanket materials containing zirconium is costly. Therefore, a sensitivity analysis was performed to estimate the impact of hafnium content on nuclear properties of lithium metazirconate, a promising breeder material candidate for fusion reactors. This paper summarises the results of extensive shielding neutronic analysis and transmutation-activation calculations aiming to evaluate the tritium breeding ratio, the inventories of various radionuclides, and the surface γ-dose rate. Attention has been mainly focused on the activation inventory variations resulting from hafnium content in lithium metazirconate breeding material. Different design configurations including homogenised solid breeder mixtures of Li 2ZrO 3 and structural materials and a separate beryllium multiplierr zone have been assessed. Hf contents up to 3% have been assessed, resulting in a TBR reduction up to 10%. The Hf content provokes a noticeable increase of the level of the equivalent contact dose.

  17. Pressure-stabilized hafnium nitrides and their properties

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Oganov, Artem R.; Li, Xinfeng; Niu, Haiyang

    2017-01-01

    We report hafnium nitrides under pressure using first-principles evolutionary calculations. Metallic P 63/m m c -HfN (calculated Vickers hardness 23.8 GPa) is found to be more energetically favorable than NaCl-type HfN at zero and high pressure. Moreover, NaCl-type HfN actually undergoes a phase transition to P 63/m m c -HfN below 670 K at ambient pressure. HfN10, which simultaneously has infinite armchairlike polymeric N chains and N2 molecules in its crystal structure, is discovered to be stable at moderate pressure above 23 GPa and can be preserved as a metastable phase at ambient pressure. At ambient conditions (298 K, 0 GPa), the gravimetric energy densities and the volumetric energy densities of HfN10 are 2.8 kJ/g and 14.1 kJ/cm3, respectively.

  18. Hafnium zirconate gate dielectric for advanced gate stack applications

    NASA Astrophysics Data System (ADS)

    Hegde, R. I.; Triyoso, D. H.; Samavedam, S. B.; White, B. E.

    2007-04-01

    We report on the development of a hafnium zirconate (HfZrO4) alloy gate dielectric for advanced gate stack applications. The HfZrO4 and hafnium dioxide (HfO2) films were formed by atomic layer deposition using metal halides and heavy water as precursors. The HfZrO4 material properties were examined and compared with those of HfO2 by a wide variety of analytical methods. The dielectric properties, device performance, and reliability of HfZrO4 were investigated by fabricating HfZrO4/tantalum carbide (TaxCy) metal-oxide-semiconductor field effect transistor. The HfZrO4 dielectric film has smaller band gap, smaller and more uniform grains, less charge traps, and more uniform film quality than HfO2. The HfZrO4 dielectric films exhibited good thermal stability with silicon. Compared to HfO2, the HfZrO4 gate dielectric showed lower capacitance equivalent thickness value, higher transconductance, less charge trapping, higher drive current, lower threshold voltage (Vt), reduced capacitance-voltage (C-V ) hysteresis, lower interface state density, superior wafer level thickness uniformity, and longer positive bias temperature instability lifetime. Incorporation of zirconium dioxide (ZrO2) into HfO2 enhances the dielectric constant (k ) of the resulting HfZrO4 which is associated with structural phase transformation from mainly monoclinic to tetragonal. The tetragonal phase increases the k value of HfZrO4 dielectric to a large value as predicted. The improved device characteristics are attributed to less oxygen vacancy in the fine grained microstructure of HfZrO4 films.

  19. Interstellar hydrogen sulfide.

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  20. Interstellar hydrogen sulfide.

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  1. High P-T phase transitions and P-V-T equation of state of hafnium

    SciTech Connect

    Hrubiak, Rostislav; Drozd, Vadym; Karbasi, Ali; Saxena, Surendra K.

    2016-07-29

    We measured the volume of hafnium at several pressures up to 67 GPa and at temperatures between 300 to 780 K using a resistively heated diamond anvil cell with synchrotron x-ray diffraction at the Advanced Photon Source. The measured data allows us to determine the P-V-T equation of state of hafnium. The previously described [Xia et al., Phys. Rev. B 42, 6736-6738 (1990)] phase transition from hcp ({alpha}) to simple hexagonal ({omega}) phase at 38 GPa at room temperature was not observed even up to 51 GPa. The {omega} phase was only observed at elevated temperatures. Our measurements have also improved the experimental constraint on the high P-T phase boundary between the {omega} phase and high pressure bcc ({beta}) phase of hafnium. Isothermal room temperature bulk modulus and its pressure derivative for the {alpha}-phase of hafnium were measured to be B{sub 0} = 112.9{+-}0.5 GPa and B{sub 0}'=3.29{+-}0.05, respectively. P-V-T data for the {alpha}-phase of hafnium was used to obtain a fit to a thermodynamic P-V-T equation of state based on model by Brosh et al. [CALPHAD 31, 173-185 (2007)].

  2. RF-sputtered silicon and hafnium nitrides - Properties and adhesion to 440C stainless steel

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1983-01-01

    Silicon nitride and hafnium nitride coatings were deposited by reactive RF sputtering on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. Depositions were at two background pressures, 8 and 20 mtorr, and at two different fractions (f) of nitrogen in argon, 0.25 and 0.60, for hafnium nitride and at f = 0.25 for silicon nitride. The coatings and the interface between the coating and substrates were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. A Knoop microhardness of 1650 + or 100 kg/sq mm was measured for hafnium nitride and 3900 + or 500 kg/sq mm for silicon nitride. The friction coefficients between a 440C rider and the coatings were measured under lubricated conditions. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C.

  3. RF-sputtered silicon and hafnium nitrides - Properties and adhesion to 440C stainless steel

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1983-01-01

    Silicon nitride and hafnium nitride coatings were deposited by reactive RF sputtering on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. Depositions were at two background pressures, 8 and 20 mtorr, and at two different fractions (f) of nitrogen in argon, 0.25 and 0.60, for hafnium nitride and at f = 0.25 for silicon nitride. The coatings and the interface between the coating and substrates were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. A Knoop microhardness of 1650 + or 100 kg/sq mm was measured for hafnium nitride and 3900 + or 500 kg/sq mm for silicon nitride. The friction coefficients between a 440C rider and the coatings were measured under lubricated conditions. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C.

  4. RF sputtered silicon and hafnium nitrides: Properties and adhesion to 440C stainless steel

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1982-01-01

    Silicon nitride and hafnium nitride coatings were deposited by reactive RF sputtering on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. Depositions were at two background pressures, 8 and 20 mtorr, and at two different fractions (f) of nitrogen in argon, 0.25 and 0.60, for hafnium nitride and at f = 0.25 for silicon nitride. The coatings and the interface between the coating and substrates were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. A Knoop microhardness of 1650 + or - 100 kg/sq mm was measured for hafnium nitride and 3900 + or - 500 kg/sq mm for silicon nitride. The friction coefficients between a 440C rider and the coatings were measured under lubricated conditions. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C.

  5. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?

    PubMed Central

    2014-01-01

    Background Hafnium oxide, NBTXR3 nanoparticles were designed for high dose energy deposition within cancer cells when exposed to ionizing radiation. The purpose of this study was to assess the possibility of predicting in vitro the biological effect of NBTXR3 nanoparticles when exposed to ionizing radiation. Methods Cellular uptake of NBTXR3 nanoparticles was assessed in a panel of human cancer cell lines (radioresistant and radiosensitive) by transmission electron microscopy. The radioenhancement of NBTXR3 nanoparticles was measured by the clonogenic survival assay. Results NBTXR3 nanoparticles were taken up by cells in a concentration dependent manner, forming clusters in the cytoplasm. Differential nanoparticle uptake was observed between epithelial and mesenchymal or glioblastoma cell lines. The dose enhancement factor increased with increase NBTXR3 nanoparticle concentration and radiation dose. Beyond a minimum number of clusters per cell, the radioenhancement of NBTXR3 nanoparticles could be estimated from the radiation dose delivered and the radiosensitivity of the cancer cell lines. Conclusions Our preliminary results suggest a predictable in vitro biological effect of NBTXR3 nanoparticles exposed to ionizing radiation. PMID:24981953

  6. Oxidation Effect in Octahedral Hafnium Disulfide Thin Film.

    PubMed

    Chae, Sang Hoon; Jin, Youngjo; Kim, Tae Soo; Chung, Dong Seob; Na, Hyunyeong; Nam, Honggi; Kim, Hyun; Perello, David J; Jeong, Hye Yun; Ly, Thuc Hue; Lee, Young Hee

    2016-01-26

    Atomically smooth van der Waals materials are structurally stable in a monolayer and a few layers but are susceptible to oxygen-rich environments. In particular, recently emerging materials such as black phosphorus and perovskite have revealed stronger environmental sensitivity than other two-dimensional layered materials, often obscuring the interesting intrinsic electronic and optical properties. Unleashing the true potential of these materials requires oxidation-free sample preparation that protects thin flakes from air exposure. Here, we fabricated few-layer hafnium disulfide (HfS2) field effect transistors (FETs) using an integrated vacuum cluster system and study their electronic properties and stability under ambient conditions. By performing all the device fabrication and characterization procedure under an oxygen- and moisture-free environment, we found that few-layer AA-stacking HfS2-FETs display excellent field effect responses (Ion/Ioff ≈ 10(7)) with reduced hysteresis compared to the FETs prepared under ambient conditions. Oxidation of HfS2 occurs uniformly over the entire area, increasing the film thickness by 250% at a prolonged oxidation time of >120 h, while defects on the surface are the preferential initial oxidation sites. We further demonstrated that the stability of the device in air is significantly improved by passivating FETs with BN in a vacuum cluster.

  7. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?

    PubMed

    Marill, Julie; Anesary, Naeemunnisa Mohamed; Zhang, Ping; Vivet, Sonia; Borghi, Elsa; Levy, Laurent; Pottier, Agnes

    2014-06-30

    Hafnium oxide, NBTXR3 nanoparticles were designed for high dose energy deposition within cancer cells when exposed to ionizing radiation. The purpose of this study was to assess the possibility of predicting in vitro the biological effect of NBTXR3 nanoparticles when exposed to ionizing radiation. Cellular uptake of NBTXR3 nanoparticles was assessed in a panel of human cancer cell lines (radioresistant and radiosensitive) by transmission electron microscopy. The radioenhancement of NBTXR3 nanoparticles was measured by the clonogenic survival assay. NBTXR3 nanoparticles were taken up by cells in a concentration dependent manner, forming clusters in the cytoplasm. Differential nanoparticle uptake was observed between epithelial and mesenchymal or glioblastoma cell lines. The dose enhancement factor increased with increase NBTXR3 nanoparticle concentration and radiation dose. Beyond a minimum number of clusters per cell, the radioenhancement of NBTXR3 nanoparticles could be estimated from the radiation dose delivered and the radiosensitivity of the cancer cell lines. Our preliminary results suggest a predictable in vitro biological effect of NBTXR3 nanoparticles exposed to ionizing radiation.

  8. Scintillation Characterization of Doped Cesium Hafnium Chloride (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rowe, Emmanuel; Goodwin, Brandon; Bhattacharya, Pijush; Burger, Arnold; Stowe, Ashley; Cherepy, Nerine; Payne, Steve

    2016-09-01

    The scintillators currently providing the best energy resolution lower than 2.6% at 662 keV and sizes larger than 1 in. dia. 1 in. height are LaBr3(Ce) and SrI2(Eu). Despite energy resolution and decay time performance of LaBr3(Ce), the intrinsic radioactivity, due to naturally occurring 138La isotope in the matrix is a limitation for low count rate applications such as radioisotope identification of weak sources. Cesium Hafnium Chloride (CHC) is a high effective atomic number (Zeff=58) moderate density (3.86 g/cm3) scintillator for gamma spectroscopy, offering a cubic crystal structure, no intrinsic radioactivity, and highly proportional light yield, without intentional doping. CHC boasts a cubic crystal structure that is isostructural to K2HfCl6 and analogous to calcium fluoride with cesium ions in the fluorine ion position and the [HfCl6]2- octahedral replacing calcium ions. The scintillation of CHC is centered at 400 nm, with a principal decay time of 4.37 μs, a light yield of up to 54,000 photons/MeV and energy resolution of 3.3% at 662 keV and we report on the effects of doping on the scintillation properties of CHC.

  9. Intrinsic Defect Ferromagnetism: The case of Hafnium Oxide

    NASA Astrophysics Data System (ADS)

    Das Pemmaraju, Chaitanya

    2005-03-01

    In view of the recent experimental reports of intrinsic ferromagnetism in Hafnium Oxide (HfO2) thin film systems ootnotetextM. Venkatesan, C. B. Fitzgerald, J. M. D. Coey Nature 430, 630 (2004) Brief Communications, we carried out first principles investigations to look for magnetic structure in HfO2 possibly brought about by the presence of small concentrations of intrinsic point defects. Ab initio electronic structure calculations using Density Functional Theory (DFT) show that isolated cation vacancy sites in HfO2 lead to the formation of high spin defect states which couple ferromagnetically to each other. Interestingly, these high spin states are observed in the low symmetry monoclinic and tetragonal phases while the highly symmetric cubic flourite phase exhibits a non-magnetic ground state. Detailed studies of the electronic structure of cation vacancies in the three crystalline phases of Hafnia show that symmetry leading to orbitally degenerate defect levels is not a pre-requsite for ferromagnetism and that the interplay between Kinetic, Coulomb and Exchange energy together with favourable coupling to the Crystalline environment can lead to high spin ferromagnetic ground states even in extreme low symmetry systems like monoclinic HfO2. These findings open up a much wider class of systems to the possibility of intrinsic defect ferromagnetism.

  10. Ultrafast laser-triggered emission from hafnium carbide tips

    NASA Astrophysics Data System (ADS)

    Kealhofer, Catherine; Foreman, Seth M.; Gerlich, Stefan; Kasevich, Mark A.

    2012-07-01

    Electron emission from hafnium carbide (HfC) field emission tips induced by a sub-10-fs, 150-MHz repetition rate Ti:sapphire laser is studied. Two-photon emission is observed at low power with a moderate electric bias field applied to the tips. As the bias field and/or laser power is increased, the average current becomes dominated by thermally enhanced field emission due to laser heating: both the low thermal conductivity of HfC and the laser's high repetition rate can lead to a temperature rise of several hundred Kelvin at the tip apex. The contribution of current from a thermal transient at times shorter than the electron-phonon coupling time is considered in the context of the two-temperature model (TTM). Under the conditions of this experiment, the integrated current from the thermal transient is shown to be negligible in comparison with the two-photon emission. A finite element model of the laser heating and thermal conduction supports these conclusions and is also used to compare the nature of thermal effects in HfC, tungsten, and gold tips.

  11. Reinvestigation of high pressure polymorphism in hafnium metal

    SciTech Connect

    Pandey, K. K. Sharma, Surinder M.; Gyanchandani, Jyoti; Dey, G. K.; Somayazulu, M.; Sikka, S. K.

    2014-06-21

    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known α→ω structural transition at 38 ± 8 GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51 GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature α→ω transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure P{sub o} = 44.5 GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the α and ω phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  12. Thermal stability of an ultrathin hafnium oxide film on plasma nitrided Si(100)

    NASA Astrophysics Data System (ADS)

    Skaja, K.; Schönbohm, F.; Weier, D.; Lühr, T.; Keutner, C.; Berges, U.; Westphal, C.

    2013-10-01

    We report on the thermal stability of an ultrathin hafnium oxide film on a plasma nitrided Si(100) surface. The ultrathin silicon nitride buffer layer was produced by an ECR-plasma ion source. Onto this buffer layer a thin hafnium oxide film was prepared by electron beam evaporation. The thermal stability of the layer stack was checked by systematic annealing steps. A detailed angle resolved X-ray photoelectron spectroscopy study of the interfaces is presented. For chemical surface studies high-resolution spectra of the Si 2p and Hf 4f signals were taken. It is demonstrated that the thermal stability of hafnium oxide thin films can be increased by a smooth and homogenous buffer layer of silicon nitride.

  13. The Hot-Pressing of Hafnium Carbide (Melting Point, 7030 F)

    NASA Technical Reports Server (NTRS)

    Sanders, William A.; Grisaffe, Salvatore J.

    1960-01-01

    An investigation was undertaken to determine the effects of the hot-pressing variables (temperature, pressure, and time) on the density and grain size of hafnium carbide disks. The purpose was to provide information necessary for the production of high-density test shapes for the determination of physical and mechanical properties. Hot-pressing of -325 mesh hafnium carbide powder was accomplished with a hydraulic press and an inductively heated graphite die assembly. The ranges investigated for each variable were as follows: temperature, 3500 to 4870 F; pressure, 1000 to 6030 pounds per square inch; and time, 5 to 60 minutes. Hafnium carbide bodies of approximately 98 percent theoretical density can be produced under the following minimal conditions: 4230 F, 3500 pounds per square inch, and 15 minutes. Further increases in temperature and time resulted only in greater grain size.

  14. Cathodo- and photoluminescence increase in amorphous hafnium oxide under annealing in oxygen

    SciTech Connect

    Ivanova, E. V. Zamoryanskaya, M. V.; Pustovarov, V. A.; Aliev, V. Sh.; Gritsenko, V. A.; Yelisseyev, A. P.

    2015-04-15

    Cathodo- and photoluminescence of amorphous nonstoichiometric films of hafnium oxide are studied with the aim to verify the hypothesis that oxygen vacancies are responsible for the luminescence. To produce oxygen vacancies, hafnium oxide was enriched in surplus metal during synthesis. To reduce the oxygen concentration, the film was annealed in oxygen. A qualitative control of the oxygen concentration was carried out by the refractive index. In the initial, almost stoichiometric films we observed a 2.7-eV band in cathodoluminescence. Annealing in oxygen results in a considerable increase in its intensity, as well as in the appearance of new bands at 1.87, 2.14, 3.40, and 3.6 eV. The observed emission bands are supposed to be due to single oxygen vacancies and polyvacancies in hafnium oxide. The luminescence increase under annealing in an oxygen atmosphere may be a result of the emission quenching effect.

  15. Contamination of silicon dioxide films by aqueous zirconium and hafnium species

    NASA Astrophysics Data System (ADS)

    Lowalekar, V.; Raghavan, S.; Pandit, V.; Parks, H. G.; Jeon, J.

    2006-01-01

    Zirconium and hafnium oxides and silicates have emerged as potential replacements for SiO2 as gate dielectric material. Patterning of these materials by wet etching in fabrication areas originally designed for SiO2 gates may give rise to contamination of SiO2 by aqueous zirconium and hafnium species. This paper summarizes the work carried out to characterize the adsorption behavior of aqueous zirconium and hafnium species onto thermally grown silicon dioxide. Electrokinetic and adsorption measurements were carried out to understand the extent and nature of interaction. The adsorption of both Zr and Hf species showed a maximum at pH 5.5. Significant reduction in the adsorption of both Zr and Hf occurred upon addition of fluoride ions to the solution. Using appropriate speciation diagrams, an adsorption model has been developed to explain the experimental data.

  16. Composition and microstructure of zirconium and hafnium germanates obtained by different chemical routes

    SciTech Connect

    Utkin, A.V. Prokip, V.E.; Baklanova, N.I.

    2014-01-15

    The phase composition and morphology of zirconium and hafnium germanates synthesized by ceramic and co-precipitation routes were studied. The products were characterized using high-temperature X-ray diffraction analysis (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and thermal (TG/DTA) analysis. To investigate the phase composition and stoichiometry of compounds the unit cell parameters were refined by full-profile Rietveld XRD analysis. The morphology of products and its evolution during high-temperature treatment was examined by SEM analysis. It was stated that there is the strong dependence of the phase composition and morphology of products on the preparation route. The ceramic route requires a multi-stage high-temperature treatment to obtain zirconium and hafnium germanates of 95% purity or more. Also, there are strong diffusion limitations to obtain hafnium germanate Hf{sub 3}GeO{sub 8} by ceramic route. On the contrary, the co-precipitation route leads to the formation of nanocrystalline single phase germanates of stoichiometric composition at a relatively low temperatures (less than 1000 °C). The results of quantitative XRD analysis showed the hafnium germanates are stoichiometric compounds in contrast to zirconium germanates that form a set of solid solutions. This distinction may be related to the difference in the ion radii of Zr and Hf. - Graphical abstract: The phase composition and morphology of zirconium and hafnium germanates synthesized by ceramic and co-precipitation routes were studied. It was stated that there is the strong dependence of the phase composition and morphology of products on the preparation route. Display Omitted - Highlights: • Zr and Hf germanates were synthesized by ceramic and co-precipitation routes. • The morphology of products depends on the synthesis parameters. • Zirconium germanates forms a set of solid solutions. • Hafnium germanates are stoichiometric compounds.

  17. Sulfidation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Levard, C.; Michel, F. M.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies that exploit the properties of silver nanoparticles (Ag-NPs) raises questions concerning the impact of Ag on the environment. Ag-NPs are currently among the most widely used in the nanotechnology industry and the amount released into the environment is expected to increase along with production (1). When present in geochemical systems, Ag-NPs may undergo a variety of changes due to varying redox, pH, and chemical conditions. Expected changes range from surface modification (e.g., oxidation, sulfidation, chloridation etc.) to complete dissolution and re-precipitation. In this context, the focus of our work is on understanding the behavior of synthetic Ag-NPs with different particle sizes under varying conditions relevant to the environment. Sulfidation of Ag-NPs is of particular interest since it among the processes most likely to occur in aqueous systems, in particular under reducing conditions. Three sizes of Ag-NPs coated with polyvinyl pyrrolidone were produced using the polyol process (2) (7 ±1; 20 ±4, and 40 ±9 nm). Batch solutions containing the different Ag-NPs were subsequently reacted with Na2S solutions of different concentrations. The sulfidation process was followed step-wise for 24 hours and the corrosion products formed were characterized by electron microscopy (TEM/SEM), diffraction (XRD), and photo-electron spectroscopy (XPS). Surface charge (pHPZC) of the products formed during this process was also measured, as were changes in solubility and reactivity. Based on experimental observations we infer that the sulfidation process is the result of dissolution-precipitation and find that: (i) acanthite (Ag2S) is formed as a corrosion product; (ii) Ag-NPs aggregation increased with sulfidation rate; (iii) pHPZC increases with the rate of sulfidation; and (iv) the solubility of the corrosion products formed from sulfidation appears lower than that of non-sulfidated Ag-NPs. We observe size-dependent differences in

  18. Band gaps and dielectric constants of amorphous hafnium silicates: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Broqvist, Peter; Pasquarello, Alfredo

    2007-02-01

    Electronic band gaps and dielectric constants are obtained for amorphous hafnium silicates using first-principles methods. Models of amorphous (HfO2)x(SiO2)1-x for varying x are generated by ab initio molecular dynamics. The calculations show that the presence of Hf gives rise to low-lying conduction states which explain the experimentally observed nonlinear dependence of the band gap on hafnium content. Static dielectric constants are found to depend linearly on x, supporting recent experimental data.

  19. Effect of substrate temperature on structural and electrical properties of RF sputtered hafnium oxide thin films

    SciTech Connect

    Das, K. C.; Ghosh, S. P.; Tripathy, N.; Kar, J. P.; Bose, G.; Lee, T.; Myoung, J. M.

    2015-06-24

    In this work hafnium oxide thin films were deposited on p-type silicon substrate by Radio frequency magnetron sputtering at different substrate temperature ranging from room temperature to 300 °C. The structural and electrical properties of the sputtered films were investigated by x-ray diffraction, capacitance-voltage and current-voltage measurements. The XRD results show the formation monoclinic structure of the hafnium oxide thin films. The shifting of C-V curves towards negative voltage side depicts the increase in positive oxide charges with the rise of substrate temperature. Leakage current was found increased, when temperature enhanced from room temperature to 300 °C.

  20. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  1. Hafnium(IV) chloride complexes with chelating β-ketiminate ligands: Synthesis, spectroscopic characterization and volatility study.

    PubMed

    Patil, Siddappa A; Medina, Phillip A; Antic, Aleks; Ziller, Joseph W; Vohs, Jason K; Fahlman, Bradley D

    2015-09-05

    The synthesis and characterization of four new β-ketiminate hafnium(IV) chloride complexes dichloro-bis[4-(phenylamido)pent-3-en-2-one]-hafnium (4a), dichloro-bis[4-(4-methylphenylamido)pent-3-en-2-one]-hafnium (4b), dichloro-bis[4-(4-methoxyphenylamido)pent-3-en-2-one]-hafnium (4c), and dichloro-bis[4-(4-chlorophenylamido)pent-3-en-2-one]-hafnium (4d) are reported. All the complexes (4a-d) were characterized by spectroscopic methods ((1)H NMR, (13)C NMR, IR), and elemental analysis while the compound 4c was further examined by single-crystal X-ray diffraction, revealing that the complex is monomer with the hafnium center in octahedral coordination environment and oxygens of the chelating N-O ligands are trans to each other and the chloride ligands are in a cis arrangement. Volatile trends are established for four new β-ketiminate hafnium(IV) chloride complexes (4a-d). Sublimation enthalpies (ΔHsub) were calculated from thermogravimetric analysis (TGA) data, which show that, the dependence of ΔHsub on the molecular weight (4a-c) and inductive effects from chlorine (4d). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Superconductivity, structure visualization, mechanical strength promotion and Raman spectra of hafnium-doped-123-YBCO synthesized via urea precursor route

    NASA Astrophysics Data System (ADS)

    Elsabawy, Khaled M.

    2011-08-01

    The pure YBCO (YBa2Cu3O7) and its variant hafnium containing superconductors with general formula: Y1-xHfxBa2Cu3Oz, where x = 0.1, 0.2, and 0.4 mole, respectively, were synthesized by solution route using urea as precursor forming agent. X-ray measurements indicated that Hf4+ ions have a negligible effect on the main crystalline structure and substitute Y-sites successfully in lattice structure of 123-YBCO at low levels of hafnium doping (x = 0.1 → 0.2 mole). From SE-microscopy mapping and EDX elemental analysis Hf4+ was detected qualitatively with good approximation to the actual molar ratio but not observed at 123-YBCO grain boundaries which confirm that hafnium (IV) has diffused regularly into material bulk of superconducting 123-YBCO-phase at low levels of concentrations. Structure visualization of Hf-doped-123-YBCO was made to confirm success of hafnium substitutions inside crystal lattice on Y-sites of 123-YBCO superconductors. Hafnium dopings affected sharply on the main vibrating modes of YBCO regime particularly on the apical oxygen (O4) vibrational mode A1g. Magnetic susceptibility measurements proved that hafnium dopings have strong effect on the transport properties of YBCO-composites regime. Hafnium promotes mechanical tensile coefficient recording maxima 35.7 MPa for x = 0.4 mole.

  3. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; Sinnet, Brian; Morgenroth, Eberhard; Kaegi, Ralf

    2014-05-06

    Recent studies have documented that the sulfidation of silver nanoparticles (Ag-NP), possibly released to the environment from consumer products, occurs in anoxic zones of urban wastewater systems and that sulfidized Ag-NP exhibit dramatically reduced toxic effects. However, whether Ag-NP sulfidation also occurs under oxic conditions in the absence of bisulfide has not been addressed, yet. In this study we, therefore, investigated whether metal sulfides that are more resistant toward oxidation than free sulfide, could enable the sulfidation of Ag-NP under oxic conditions. We reacted citrate-stabilized Ag-NP of different sizes (10-100 nm) with freshly precipitated and crystalline CuS and ZnS in oxygenated aqueous suspensions at pH 7.5. The extent of Ag-NP sulfidation was derived from the increase in dissolved Cu(2+) or Zn(2+) over time and linked with results from X-ray absorption spectroscopy (XAS) analysis of selected samples. The sulfidation of Ag-NP followed pseudo first-order kinetics, with rate coefficients increasing with decreasing Ag-NP diameter and increasing metal sulfide concentration and depending on the type (CuS and ZnS) and crystallinity of the reacting metal sulfide. Results from analytical electron microscopy revealed the formation of complex sulfidation patterns that seemed to follow preexisting subgrain boundaries in the pristine Ag-NP. The kinetics of Ag-NP sulfidation observed in this study in combination with reported ZnS and CuS concentrations and predicted Ag-NP concentrations in wastewater and urban surface waters indicate that even under oxic conditions and in the absence of free sulfide, Ag-NP can be transformed into Ag2S within a few hours to days by reaction with metal sulfides.

  4. Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles.

    PubMed

    Field, James A; Luna-Velasco, Antonia; Boitano, Scott A; Shadman, Farhang; Ratner, Buddy D; Barnes, Chris; Sierra-Alvarez, Reyes

    2011-09-01

    Nano-sized hafnium oxide (HfO(2)) particles are being considered for applications within the semiconductor industry. However, little is known about their cytotoxicity. The objective of this work was to assess several HfO(2) nanoparticles (NPs) samples for their acute cytotoxicity. Dynamic light scattering analysis of the samples indicated that the average particle size of the HfO(2) in aqueous dispersions was in the submicron range with a fraction of particles having nano-dimensions. The media used in the toxicity assays decreased or increased the average particle size of HfO(2) NPs due to dispersion or agglomeration. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed numerous surface contaminants on the NPs. Only one HfO(2) sample caused moderate cytotoxicity to human cell lines. The inhibitory sample caused a 50% response in the Live/Dead assay with HaCaT skin cells at 2200 mg L(-1); and a 50% response in the mitochondrial toxicity test at 300 mg L(-1). A microbial inhibition assay based on methanogenic activity also revealed that another HFO(2) sample caused moderate inhibition. The difference in toxicity between samples could not be attributed to size. Instead the difference in toxicity was likely due to differences in the contaminants of the HfO(2). The ToF-SIMS analysis indicated unique signatures of Br and P in the sample toxic to human cell lines suggesting a distinct synthesis was used for that sample which may have been accompanied by inhibitory impurities. The results taken as a whole indicate that HfO(2) itself is relatively non-toxic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  6. Measurement of L(III) Subshell Absorption Jump Parameters of Hafnium.

    PubMed

    Cengiz, E; Saritas, N; Dogan, M; Koksal, O K; Karabulut, K; Apaydin, G; Tirasoglu, E

    2015-12-01

    The L(III) subshell absorption jump ratio and jump factor of hafnium have been measured using two different ways which are X-ray attenuation method and Energy Dispersive X-ray Fluorescence technique. The results obtained both ways have been compared with theoretical values. They are in good agreement with each other.

  7. "Decarbonization" of an imino N-heterocyclic carbene via triple benzyl migration from hafnium

    USDA-ARS?s Scientific Manuscript database

    An imino N-heterocyclic carbene underwent three sequential benzyl migrations upon reaction with tetrabenzylhafnium, resulting in complete removal of the carbene carbon from the ligand. The resulting eneamido-amidinato hafnium complex showed alkene polymerization activity comparable to that of a prec...

  8. Neodymium and hafnium boundary contributions to seawater along the West Antarctic continental margin

    NASA Astrophysics Data System (ADS)

    Rickli, Jörg; Gutjahr, Marcus; Vance, Derek; Fischer-Gödde, Mario; Hillenbrand, Claus-Dieter; Kuhn, Gerhard

    2014-05-01

    Neodymium and hafnium isotopes and elemental concentrations (Sm, Nd, Hf, Zr) have been measured in three water column profiles south of the Antarctic Circumpolar Current in, and to the east of the Ross Sea, in conjunction with five bottom water samples from the Amundsen Sea Embayment.

  9. Separation of hafnium from zirconium in sulfuric acid solutions using pressurized ion exchange

    SciTech Connect

    Hurst, F.J.

    1981-01-01

    High-resolution pressurized ion exchange has been used successfully to study and separate hafnium and zirconium sulfate complexes by chromatographic elution from Dowex 50W-X8 (15 to 25 ..mu..m) resin with sulfuric acid solutions. Techniques were developed to continuously monitor the column effluents for zirconium and hafnium by reaction with fluorometric and colorimetric reagents. Since neither reagent was specific for either metal ion, peak patterns were initially identified by using the stable isotopes /sup 90/Zr and /sup 180/Hf as fingerprints of their elution position. Distribution ratios for both zirconium and hafnium decrease as the inverse fourth power of the sulfuric acid concentration below 2N and as the inverse second power at higher acid concentration. The hafnium-to-zirconium separation factor is approximately constant (approx. 8) over the 0.5 to 3N range. Under certain conditions, an unseparated fraction was observed that was not retained by the resin. The amount of this fraction which is thought to be a polymeric hydrolysis product appears to be a function of metal and sulfuric acid concentrations. Conditions are being sought to give the highest zirconium concentration and the lowest acid concentration that can be used as a feed material for commercial scale-up in the continuous annular chromatographic (CAC) unit without formation of the polymer.

  10. Tensile and stress-rupture behavior of hafnium carbide dispersed molybdenum and tungsten base alloy wires

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Titran, Robert H.

    1993-01-01

    The tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 microns in diameter, were determined over the temperature range from 1200 K to 1600 K. Three molybdenum alloy wires; Mo + 1.1w/o hafnium carbide (MoHfC), Mo + 25w/o W + 1.1w/o hafnium carbide (MoHfC+25W) and Mo + 45w/o W + 1.1w/o hafnium carbide (MoHfC+45W), and a W + 0.4w/o hafnium carbide (WHfC) tungsten alloy wire were evaluated. The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress rupture strength at temperatures above 1400 K. Theoretical calculations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due to the resistance to recrystallization imparted by the dispersoid.

  11. Electrochemical behavior of silver sulfide

    SciTech Connect

    Drouven, B.U.E.

    1982-01-01

    The electrochemical behavior of silver sulfide in sulfuric acid as well as in nitric acid was studied using electrodes made from synthetic silver sulfide. The primary techniques used were potentiostatic, potentiodynamic, galvanostatic and corrosion cell experiments. The cathodic reaction of silver sulfide produces silver and hydrogen sulfide. This reaction mechanism is a sequential two step charge transfer involving a single electron in each step. Silver ions are produced from silver sulfide upon applying an anodic potential. The dissolution rate of silver sulfide can be so high that the formation of silver sulfate occurs which partially covers the silver sulfide surface and inhibits a further rate increase. The sulfur from the silver sulfide will be oxidized at low overpotentials to elemental sulfur; at high overpotentials, the oxidation to sulfate or bisulfate is observed. The results suggest that the catalysis of chalcopyrite by the addition of silver ions is caused by the formation and subsequent dissolution of silver sulfide leaving a porous layer behind. The understanding of the reaction mechanism of silver sulfide dissolution and its optimization will significantly improve the economic evaluation of industrial processes using the catalyzed leaching of chalcopyrite. The present knowledge of the catalysis indicates that other ions may be substituted for silver ions which would increase the feasibility of hydrometallurgical processes.

  12. Sulfide detoxification in plant mitochondria.

    PubMed

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material. © 2015 Elsevier Inc. All rights reserved.

  13. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  14. Biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Sublette, K.L.; Rajganesh, B.; Woolsey, M.; Plato, A.

    1995-12-31

    Caustics are used in petroleum refinering to remove hydrogen sulfide from various hydrocarbon streams. Spent sulfidic caustics from two Conoco refineries have been successfully biotreated on bench and pilot scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate by Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic.

  15. Suicide with hydrogen sulfide.

    PubMed

    Sams, Ralph Newton; Carver, H Wayne; Catanese, Charles; Gilson, Thomas

    2013-06-01

    This presentation will address the recent rise of suicide deaths resulting from the asphyxiation by hydrogen sulfide (H2S) gas.Hydrogen sulfide poisoning has been an infrequently encountered cause of death in medical examiner practice. Most H2S deaths that have been reported occurred in association with industrial exposure.More recently, H2S has been seen in the commission of suicide, particularly in Japan. Scattered reports of this phenomenon have also appeared in the United States.We have recently observed 2 intentional asphyxial deaths in association with H2S. In both cases, the decedents committed suicide in their automobiles. They generated H2S by combining a sulfide-containing tree spray with toilet bowl cleaner (with an active ingredient of hydrogen chloride acid). Both death scenes prompted hazardous materials team responses because of notes attached to the victims' car windows indicating the presence of toxic gas. Autopsy findings included discoloration of lividity and an accentuation of the gray matter of the brain. Toxicology testing confirmed H2S exposure with the demonstration of high levels of thiosulfate in blood.In summary, suicide with H2S appears to be increasing in the United States.

  16. Immobilization mechanisms of deoxyribonucleic acid (DNA) to hafnium dioxide (HfO2) surfaces for biosensing applications.

    PubMed

    Fahrenkopf, Nicholas M; Rice, P Zachary; Bergkvist, Magnus; Deskins, N Aaron; Cady, Nathaniel C

    2012-10-24

    Immobilization of biomolecular probes to the sensing substrate is a critical step for biosensor fabrication. In this work we investigated the phosphate-dependent, oriented immobilization of DNA to hafnium dioxide surfaces for biosensing applications. Phosphate-dependent immobilization was confirmed on a wide range of hafnium oxide surfaces; however, a second interaction mode was observed on monoclinic hafnium dioxide. On the basis of previous materials studies on these films, DNA immobilization studies, and density functional theory (DFT) modeling, we propose that this secondary interaction is between the exposed nucleobases of single stranded DNA and the surface. The lattice spacing of monoclinic hafnium dioxide matches the base-to-base pitch of DNA. Monoclinic hafnium dioxide is advantageous for nanoelectronic applications, yet because of this secondary DNA immobilization mechanism, it could impede DNA hybridization or cause nonspecific surface intereactions. Nonetheless, DNA immobilization on polycrystalline and amorphous hafnium dioxide is predominately mediated by the terminal phosphate in an oriented manner which is desirable for biosensing applications.

  17. A rapid procedure for the simultaneous determination of zirconium and hafnium in high-temperature alloys by means of a spectrophotometric masking approach.

    PubMed

    Dulski, T R

    1982-06-01

    Data are presented for a refined spectrophotometric procedure for the simultaneous determination of zirconium and hafnium based on the combined effects of hydrogen peroxide, sodium sulphate, and excess of zirconium ion on the hafnium and zirconium complexes with Xylenol Orange in 0.2M perchloric acid. Isolation procedures for the hafnium/zirconium content of complex high-temperature alloys which result in an ionic substrate compatible with the spectrophotometric masking method were devised.

  18. Method of epitaxially depositing cadmium sulfide

    NASA Technical Reports Server (NTRS)

    Hawrylo, Frank Z. (Inventor)

    1980-01-01

    A single crystal layer of either cadmium sulfide or an alloy of cadmium sulfide and indium phosphide is epitaxially deposited on a substrate of cadmium sulfide by liquid phase epitaxy using indium as the solvent.

  19. Ultraviolet-assisted oxidation and nitridation of hafnium and hafnium aluminum alloys as potential gate dielectrics for metal oxide semiconductor applications

    NASA Astrophysics Data System (ADS)

    Essary, Chad Robert

    The continued miniaturization of silicon-based complimentary metal oxide semiconductor (CMOS) devices is pushing the limits of the silicon dioxide (SiO2) gate dielectric. As the channel widths are decreased to increase packing densities and functionality of new chips, proportional vertical scaling of the dielectric must be maintained to keep constant capacitances. Silicon dioxide is approaching its fundamental limit in which it can be used as the gate dielectric due to high leakage currents resulting from direct tunneling through the layer. In order for the continued use of current CMOS gate design, an alternative material with a higher dielectric constant must be found. Several materials have been proposed but are still not providing the electrical characteristics favorable for use in the devices due to problems with excessive leakage and hysteresis resulting from the quality of the film and oxygen defects. The goal of this study is to create higher quality films at lower processing temperatures with low leakage and less hysteresis than has been achieved with hafnium oxide films. This study first examines the formation of the interfacial layer in pulsed laser deposited hafnium oxide films to understand the kinetics behind its formation. The second section focuses on the oxidation of pulsed laser deposited (PLD) hafnium metal thin films using ultraviolet (UV) assisted post-deposition annealing. Another set of samples was deposited in an ammonia atmosphere in order to incorporate nitrogen into the films. Comparisons of microstructure and stoichiometry of oxidized hafnium and oxy-nitride films were made using x-ray photospectroscopy, variable angle spectroscopic ellipsometry, glancing angle x-ray spectroscopy, x-ray reflectivity, and atomic force microscopy. Analysis of the interface between the films and the silicon substrate was carried out using x-ray reflectivity. The electrical characteristics of the films were characterized using capacitance-voltage and current

  20. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-03-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  1. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-09-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  2. Effect of hafnium and titanium coated implants on several blood biochemical markers after osteosynthesis in rabbits.

    PubMed

    Yousef, Ashraf; Akhtyamov, Ildar; Shakirova, Faina; Zubairova, Lyaili; Gatina, Elmira; Aliev, Capital Ie Cyrilliclchin

    2014-01-01

    An experimental study comparing the dynamics of several biochemical markers before and after osteosynthesis, utilizing implants coated with titanium and hafnium nitrides and non-coated implants on rabbits' bones. The Study has been conducted on 30 rabbits of both sexes, at the age of 6-7 months, weighing 2526.5±74.4 gm. Animals underwent open osteotomy of the tibia in the middle third of the diaphysis followed by the intramedullary nailing. The level of alkaline phosphatase, calcium, phosphorus, total protein, glucose, ALT and AST were monitored for 60 days. the use of implants coated with titanium and hafnium nitrides, which have high strength, thermal and chemical stability, was not accompanied by the development of additional negative reactive changes compared to non-coated implants. Nanotechnology used in manufacturing bioinert coatings for implants for osteosynthesis, has made the post-operative period less complicated as reflected by less expressed changing in the markers of bone metabolism and hepatotoxicity.

  3. Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films.

    PubMed

    Shang, Jie; Xue, Wuhong; Ji, Zhenghui; Liu, Gang; Niu, Xuhong; Yi, Xiaohui; Pan, Liang; Zhan, Qingfeng; Xu, Xiao-Hong; Li, Run-Wei

    2017-06-01

    Flexible and transparent resistive switching memories are highly desired for the construction of portable and even wearable electronics. Upon optimization of the microstructure wherein an amorphous-nanocrystalline hafnium oxide thin film is fabricated, an all-oxide based transparent RRAM device with stable resistive switching behavior that can withstand a mechanical tensile stress of up to 2.12% is obtained. It is demonstrated that the superior electrical, thermal and mechanical performance of the ITO/HfOx/ITO device can be ascribed to the formation of pseudo-straight metallic hafnium conductive filaments in the switching layer, and is only limited by the choice of electrode materials. When the ITO bottom electrode is replaced with platinum metal, the mechanical failure threshold of the device can be further extended.

  4. Switching Kinetics in Nanoscale Hafnium Oxide Based Ferroelectric Field-Effect Transistors.

    PubMed

    Mulaosmanovic, Halid; Ocker, Johannes; Müller, Stefan; Schroeder, Uwe; Müller, Johannes; Polakowski, Patrick; Flachowsky, Stefan; van Bentum, Ralf; Mikolajick, Thomas; Slesazeck, Stefan

    2017-02-01

    The recent discovery of ferroelectricity in thin hafnium oxide films has led to a resurgence of interest in ferroelectric memory devices. Although both experimental and theoretical studies on this new ferroelectric system have been undertaken, much remains to be unveiled regarding its domain landscape and switching kinetics. Here we demonstrate that the switching of single domains can be directly observed in ultrascaled ferroelectric field effect transistors. Using models of ferroelectric domain nucleation we explain the time, field and temperature dependence of polarization reversal. A simple stochastic model is proposed as well, relating nucleation processes to the observed statistical switching behavior. Our results suggest novel opportunities for hafnium oxide based ferroelectrics in nonvolatile memory devices.

  5. Hafnium-an optical hydrogen sensor spanning six orders in pressure.

    PubMed

    Boelsma, C; Bannenberg, L J; van Setten, M J; Steinke, N-J; van Well, A A; Dam, B

    2017-06-05

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material.

  6. Synthesis and characterization of hafnium oxide films for thermo and photoluminescence applications.

    PubMed

    Mendoza, J Guzmán; Frutis, M A Aguilar; Flores, G Alarcón; Hipólito, M García; Maciel Cerda, A; Azorín Nieto, J; Montalvo, T Rivera; Falcony, C

    2010-01-01

    Hafnium oxide (HfO(2)) films were deposited by the ultrasonic spray pyrolysis process. The films were synthesized from hafnium chloride as raw material in deionized water as solvent and were deposited on corning glass substrates at temperatures from 300 to 600 degrees C. For substrate temperatures lower than 400 degrees C the deposited films were amorphous, while for substrate temperatures higher than 450 degrees C, the monoclinic phase of HfO(2) appeared. Scanning electron microscopy showed that the film's surface resulted rough with semi-spherical promontories. The films showed a chemical composition close to HfO(2), with an Hf/O ratio of about 0.5. UV radiation was used in order to achieve the thermoluminescent characterization of the films; the 240 nm wavelength induced the best response. In addition, preliminary photoluminescence spectra, as a function of the deposition temperatures, are shown. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes

    NASA Astrophysics Data System (ADS)

    Starschich, S.; Griesche, D.; Schneller, T.; Waser, R.; Böttger, U.

    2014-05-01

    Ferroelectric hafnium oxide films were fabricated by chemical solution deposition with a remnant polarization of >13 μC/cm2. The samples were prepared with 5.2 mol. % yttrium-doping and the thickness varied from 18 nm to 70 nm. The hafnium oxide layer was integrated into a metal-insulator-metal capacitor using platinum electrodes. Due to the processing procedure, no thickness dependence of the ferroelectric properties was observed. To confirm the ferroelectric nature of the deposited samples, polarization, capacitance, and piezoelectric displacement measurements were performed. However, no evidence of the orthorhombic phase was found which has been proposed to be the non-centrosymmetric, ferroelectric phase in HfO2.

  8. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide

    SciTech Connect

    Starschich, S.; Böttger, U.; Menzel, S.

    2016-01-18

    The wake-up effect which is observed in ferroelectric hafnium oxide is investigated in yttrium doped hafnium oxide prepared by chemical solution deposition. It can be shown that not the amount of cycles but the duration of the applied electrical field is essential for the wake-up. Temperature dependent wake-up cycling in a range of −160 °C to 100 °C reveals a strong temperature activation of the wake-up, which can be attributed to ion rearrangement during cycling. By using asymmetrical electrodes, resistive valence change mechanism switching can be observed coincident with ferroelectric switching. From the given results, it can be concluded that redistribution of oxygen vacancies is the origin of the wake-up effect.

  9. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes

    SciTech Connect

    Starschich, S.; Griesche, D.; Schneller, T.; Böttger, U.; Waser, R.

    2014-05-19

    Ferroelectric hafnium oxide films were fabricated by chemical solution deposition with a remnant polarization of >13 μC/cm{sup 2}. The samples were prepared with 5.2 mol. % yttrium-doping and the thickness varied from 18 nm to 70 nm. The hafnium oxide layer was integrated into a metal-insulator-metal capacitor using platinum electrodes. Due to the processing procedure, no thickness dependence of the ferroelectric properties was observed. To confirm the ferroelectric nature of the deposited samples, polarization, capacitance, and piezoelectric displacement measurements were performed. However, no evidence of the orthorhombic phase was found which has been proposed to be the non-centrosymmetric, ferroelectric phase in HfO{sub 2}.

  10. The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor

    NASA Astrophysics Data System (ADS)

    Imel, G. R.; Hart, P. R.

    1996-05-01

    The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.

  11. Hafnium--an optical hydrogen sensor spanning six orders in pressure

    NASA Astrophysics Data System (ADS)

    Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N.-J.; van Well, A. A.; Dam, B.

    2017-06-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material.

  12. Properties of tungsten-rhenium and tungsten-rhenium with hafnium carbide

    NASA Astrophysics Data System (ADS)

    Leonhardt, Todd

    2009-07-01

    Historically, tungsten-25wt.% rhenium alloy has been manufactured into wire for the thermocouple market, but recent demands for high-temperature structural components have forced the development of novel processing techniques for tungsten-rhenium and tungsten-rhenium with hafnium carbide. With a melting temperature of 3,050°C, and a recrystallization temperature near 1,900°C, tungsten-rhenium alloys are being used in aerospace, temperature measuring, and friction stir welding applications. The mechanical properties and microstructures of tungsten-25wt.% rhenium and tungsten-25wt.% rhenium with hafnium carbide are reported at ambient temperature, 1,371°C, and 1,926°C, after processing by three methods: hot isostatic pressing, swaging, and extrusion.

  13. Electrodeposition of hafnium coatings from molten CsCl-HfCl{sub 4}

    SciTech Connect

    Kuznetsov, S.A.; Glagolevskaya, A.L.; Kuznetsova, S.V.

    1992-04-20

    The electrode processes in the CsCl-HfCl{sub 4} melt were examined by potentiodynamic and potentiostatic methods with the use of P-5827 and PI-50.1.1 potentiostats. The potential sweep rates were varied form 0.005 to 1.0 V/sec. The recorders were KSP-4 and LKD-4-003 potentiometers and a PO-5122 oscillographic polarograph. The electrochemical cell was the traditional one for electrochemical studies. The reference electrode was Ag/NaCl-KCl-AgCl (2 mass %). The mass loss in the hafnium anode was used to determine the anode current yield and the mean degree of oxidation for the hafnium ion entering the melt. The anode products were identified by X-ray methods with a DRON-2 diffractometer and also by thermographic and chemical analysis. 15 refs., 4 figs., 1 tab.

  14. Hafnium oxide thin films studied by time differential perturbed angular correlations

    NASA Astrophysics Data System (ADS)

    Dey, C. C.; Dey, S.; Bedi, S. C.; Das, S. K.; Lorenz, M.; Grundmann, M.; Vogt, J.; Butz, T.

    2011-06-01

    We report on the study of hafnium oxide thin films grown by pulsed laser deposition at various partial oxygen pressures by Time Differential Perturbed Angular Correlations using the nuclear probe 181Hf(β-)181Ta to determine the nuclear quadrupole interaction (NQI), and by x-ray diffraction. The samples were neutron activated and measured at room temperature as received as well as after annealing in air. All spectra exhibited two to three inequivalent probe sites, even after annealing. At 0.3 mbar oxygen partial pressure and annealing for 5 hs at 1073 K the majority (88%) of the sites exhibited NQI parameters as reported for the bulk monoclinic phase [ωQ = 125.4(2) Mrad/s, η = 0.335(5)]. We can exclude amorphous as well as cubic and tetragonal hafnium oxide phases in the annealed samples. There was no indication of room-temperature ferromagnetism.

  15. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide

    NASA Astrophysics Data System (ADS)

    Starschich, S.; Menzel, S.; Böttger, U.

    2016-01-01

    The wake-up effect which is observed in ferroelectric hafnium oxide is investigated in yttrium doped hafnium oxide prepared by chemical solution deposition. It can be shown that not the amount of cycles but the duration of the applied electrical field is essential for the wake-up. Temperature dependent wake-up cycling in a range of -160 °C to 100 °C reveals a strong temperature activation of the wake-up, which can be attributed to ion rearrangement during cycling. By using asymmetrical electrodes, resistive valence change mechanism switching can be observed coincident with ferroelectric switching. From the given results, it can be concluded that redistribution of oxygen vacancies is the origin of the wake-up effect.

  16. Hafnium nitride buffer layers for growth of GaN on silicon

    DOEpatents

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  17. Dose assessment for inhaling hafnium particles based on laboratory rats study.

    PubMed

    Zhou, Y; Cheng, Y S

    2003-04-01

    Internal radiation from inhalation of hafnium tritide aerosols may be a significant radiation protection problem encountered by nuclear facility workers. Based on experimental results of the rat intratracheally instilled with hafnium tritide particles and on a self-absorption factor of beta particles determined by a numerical method, a biokinetic model was developed for inhaled particles of hafnium tritide. Results show that lung burdens of the tritide are well represented by a two-component exponential equation; biological half-lives derived for the retention of 3H in lung were 4.9 d and 1,257 d for the short- and long-term clearance, respectively. The tritium clearance rate via urine or feces was described by bi-phase exponential components. At the end of the experiment (180 d after instillation), only approximately 30% of the initial lung burden of 3H had been eliminated, of which approximately 98% was excreted via feces and 2% in urine, but none through exhaled air. Results also showed that a large percentage (70%) of the hafnium tritide initially present in lung still remained in the organ 6 mo after the exposure. The calculation of the radiation dose indicates that the cumulative dose to the lung directly from the tritide particles was approximately 10(6) times the lung dose from the dissolved tritium in the lung region. The committed effective dose to the lung was estimated to be 5.41 x 10(-10) Sv Bq(-1), which is over 99% of that to the whole body. The dose to the liver was 6.00 x 10(-15) Sv Bq(-1). This information will be useful in developing new guidelines for radiation protection purposes.

  18. Investigation of the gate oxide leakage current of low temperature formed hafnium oxide films

    NASA Astrophysics Data System (ADS)

    Verrelli, E.; Tsoukalas, D.

    2013-03-01

    In this work, low temperature physically deposited hafnium oxide films are investigated in terms of their electrical properties through measurements and analysis of leakage currents in order to understand the defect's behavior in this dielectric material. Two extreme conditions will be presented and discussed: the first one concerns the use of a nearly trap-free hafnium oxide layer, while the second one concerns the use of a hafnium oxide film with a very large amount of electrically active traps. Particular emphasis is given to the detection and comparison of the shallow and deep traps that are responsible for the room temperature leakage of these films. It is shown that by modifying the amount of traps in the hafnium oxide layer, achieved by changing the deposition conditions, the trap's energy location is heavily influenced. The nearly trap-free sample exhibits Ohmic conduction at low fields (with activation energies in the range 16-33 meV for low temperatures and 0.13-0.14 eV for higher than ambient temperatures), Poole-Frenkel conduction at high fields (trap depth in the range 0.23-0.38 eV), while at low temperatures and high fields, the Fowler-Nordheim tunneling is identified (estimated barrier height of 1.9 eV). The charge-trap sample on the other hand exhibits Ohmic conduction at low fields (activation energies in the range 0.26-0.32 eV for higher than ambient temperatures), space charge limited current conduction at intermediate fields (exponent n = 3), while at high fields the Poole-Frenkel conduction appears (trap depth in the range 1.63-1.70 eV).

  19. Field method for sulfide determination

    SciTech Connect

    Wilson, B L; Schwarser, R R; Chukwuenye, C O

    1982-01-01

    A simple and rapid method was developed for determining the total sulfide concentration in water in the field. Direct measurements were made using a silver/sulfide ion selective electrode in conjunction with a double junction reference electrode connected to an Orion Model 407A/F Specific Ion Meter. The method also made use of a sulfide anti-oxidant buffer (SAOB II) which consists of ascorbic acid, sodium hydroxide, and disodium EDTA. Preweighed sodium sulfide crystals were sealed in air tight plastic volumetric flasks which were used in standardization process in the field. Field standards were prepared by adding SAOB II to the flask containing the sulfide crystals and diluting it to the mark with deionized deaerated water. Serial dilutions of the standards were used to prepare standards of lower concentrations. Concentrations as low as 6 ppB were obtained on lake samples with a reproducibility better than +- 10%.

  20. CO assisted N2 functionalization activated by a dinuclear hafnium complex: a DFT mechanistic exploration.

    PubMed

    Ma, Xuelu; Zhang, Xin; Zhang, Wenchao; Lei, Ming

    2013-01-21

    In this paper, the reaction mechanisms of CO assisted N(2) cleavage and functionalization activated by a dinuclear hafnium complex are studied using a density function theory (DFT) method. Several key intermediates (Ia, Ib, Ic and Id) with axial/equatorial N=C=O coordination structures are found to be of importance along reaction pathways of CO assisted N(2) functionalization, which could provide a profound theoretical insight into the C-N bond formation and N-N bond cleavage. There are two different attack directions to insert the first CO molecule into the Hf-N bonds of the dinuclear hafnium complex, which lead to C-N bond formation. The calculated results imply that CO insertion into the Hf(1)-N(3) bond (Path A1) reacts more easily than that into the Hf(2)-N(3) bond (Path A3). But for the insertion of the second CO insertion to give 2A, there are two possibilities (Path A1 and Path A2) according to this insertion being after/before N-N bond cleavage. Two pathways (Path A1 and Path A2) are proved to be possible to form final dinitrogen functionalized products (oxamidide 2A, 2B and 2C) in this study, which explain the formation of different oxamidide isomers in CO assisted N(2) functionalization activated by a dinuclear hafnium complex.

  1. Radiation effects on the electrical properties of hafnium oxide based MOS capacitors.

    SciTech Connect

    Petrosky, J. C.; McClory, J. W.; Bielejec, Edward Salvador; Foster, J. C.

    2010-10-01

    Hafnium oxide-based MOS capacitors were investigated to determine electrical property response to radiation environments. In situ capacitance versus voltage measurements were analyzed to identify voltage shifting as a result of changes to trapped charge with increasing dose of gamma, neutron, and ion radiation. In situ measurements required investigation and optimization of capacitor fabrication to include dicing, cleaning, metalization, packaging, and wire bonding. A top metal contact of 200 angstroms of titanium followed by 2800 angstroms of gold allowed for repeatable wire bonding and proper electrical response. Gamma and ion irradiations of atomic layer deposited hafnium oxide on silicon devices both resulted in a midgap voltage shift of no more than 0.2 V toward less positive voltages. This shift indicates recombination of radiation induced positive charge with negative trapped charge in the bulk oxide. Silicon ion irradiation caused interface effects in addition to oxide trap effects that resulted in a flatband voltage shift of approximately 0.6 V also toward less positive voltages. Additionally, no bias dependent voltage shifts with gamma irradiation and strong oxide capacitance room temperature annealing after ion irradiation was observed. These characteristics, in addition to the small voltage shifts observed, demonstrate the radiation hardness of hafnium oxide and its applicability for use in space systems.

  2. Oxygen and nitrogen diffusion in α-hafnium from first principles

    NASA Astrophysics Data System (ADS)

    O'Hara, Andrew; Demkov, Alexander A.

    2014-05-01

    We use a combination of density functional theory and multistate diffusion formalism to analyze the diffusion of oxygen and nitrogen in technologically important hafnium metal. Comparing the local density approximation and the Perdew-Burke-Ernzerhof version of the generalized gradient approximation, we find that a better description of the hafnium lattice in the latter results in the correct sequence of stable and transition states for oxygen interstitials leading to essentially quantitative agreement with experiment. For oxygen diffusion, we find an isotropic temperature-dependent diffusion coefficient of D =0.082e-2.04/kBTcm2s-1 utilizing interstitial sites with hexahedral and octahedral coordination. For the diffusivity of nitrogen, we find that an additional stable interstitial site, the crowdion site, exists and that the diffusion coefficient is D =0.15e-2.68/kBTcm2s-1. Our results also reproduce the experimental observation that nitrogen diffusivity is lower than that of oxygen in hafnium.

  3. X-Ray diffraction study of KTiOPO{sub 4} single crystals doped with hafnium

    SciTech Connect

    Novikova, N. E. Verin, I. A.; Sorokina, N. I.; Alekseeva, O. A.; Orlova, E. I.; Voronkova, V. I.

    2011-05-15

    Single crystals of KTi{sub 1-x}Hf{sub x}OPO{sub 4} (x = 0.015(2), 0.035(1), and 0.128(1) are reinvestigated by precision X-ray diffraction at room temperature. It is found that the implantation of hafnium atoms in the crystal structure of KTiOPO{sub 4} does not lead to significant changes in the framework and affects only the positions of the potassium atoms in the channel. Our studies reveal the displacements of the potassium atoms from their main and additional positions in the structure of pure KTP in all three structures studied. The largest displacements from the K1 Prime and K1 Double-Prime additional positions are observed in the structure with x = 0.035. At this hafnium concentration, the occupancy of the main positions of potassium atoms decreases and the occupancy of the additional positions increases in relation to those in KTP. This redistribution of potassium atoms enhances the nonuniformity of distribution of the electron density in the vicinity of their positions, which is probably responsible for the increase in the nonlinear susceptibility of KTP crystals that contain 3.5% hafnium in relation to crystals of pure KTP.

  4. RF sputtered silicon and hafnium nitrides as applied to 440C steel

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1984-01-01

    Silicon nitride and hafnium nitride coatings were deposited on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. The coatings and the interface between the coating and substrate were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. Oxide was found at all interfaces with an interface width of at least 600 A for the oxidized substrates and at least 300 A for the unoxidized substrates. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C. Coatings of both nitrides deposited at 8 mtorr were found to have increased adhesion to both oxidized and unoxidized 440C over those deposited at 20 mtorr.

  5. Hafnium metallocene compounds used as cathode interfacial layers for enhanced electron transfer in organic solar cells.

    PubMed

    Park, Keunhee; Oh, Seungsik; Jung, Donggeun; Chae, Heeyeop; Kim, Hyoungsub; Boo, Jin-Hyo

    2012-01-09

    We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A metallocene compound consists of a transition metal and two cyclopentadienyl ligands coordinated in a sandwich structure. For the fabrication of the OSCs, poly[3,4-ethylenedioxythiophene]:poly(styrene sulfonate), poly(3-hexylthiophene-2,5-diyl) + 66-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl)hafnium(IV) dichloride, and aluminum were deposited as a hole transport layer, an active layer, a cathode interfacial layer, and a cathode, respectively. The hafnium metallocene compound cathode interfacial layer improved the performance of OSCs compared to that of OSCs without the interfacial layer. The current density-voltage characteristics of OSCs with an interfacial layer thickness of 0.7 nm and of those without an interfacial layer showed power conversion efficiency [PCE] values of 2.96% and 2.34%, respectively, under an illumination condition of 100 mW/cm2 (AM 1.5). It is thought that a cathode interfacial layer of an appropriate thickness enhances the electron transfer between the active layer and the cathode, and thus increases the PCE of the OSCs.

  6. Hafnium metallocene compounds used as cathode interfacial layers for enhanced electron transfer in organic solar cells

    PubMed Central

    2012-01-01

    We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A metallocene compound consists of a transition metal and two cyclopentadienyl ligands coordinated in a sandwich structure. For the fabrication of the OSCs, poly[3,4-ethylenedioxythiophene]:poly(styrene sulfonate), poly(3-hexylthiophene-2,5-diyl) + [6,6]-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl)hafnium(IV) dichloride, and aluminum were deposited as a hole transport layer, an active layer, a cathode interfacial layer, and a cathode, respectively. The hafnium metallocene compound cathode interfacial layer improved the performance of OSCs compared to that of OSCs without the interfacial layer. The current density-voltage characteristics of OSCs with an interfacial layer thickness of 0.7 nm and of those without an interfacial layer showed power conversion efficiency [PCE] values of 2.96% and 2.34%, respectively, under an illumination condition of 100 mW/cm2 (AM 1.5). It is thought that a cathode interfacial layer of an appropriate thickness enhances the electron transfer between the active layer and the cathode, and thus increases the PCE of the OSCs. PMID:22230259

  7. On the phase formation of sputtered hafnium oxide and oxynitride films

    SciTech Connect

    Sarakinos, K.; Music, D.; Mraz, S.; Baben, M. to; Jiang, K.; Nahif, F.; Braun, A.; Zilkens, C.; Schneider, J. M.; Konstantinidis, S.; Renaux, F.; Cossement, D.; Munnik, F.

    2010-07-15

    Hafnium oxynitride films are deposited from a Hf target employing direct current magnetron sputtering in an Ar-O{sub 2}-N{sub 2} atmosphere. It is shown that the presence of N{sub 2} allows for the stabilization of the transition zone between the metallic and the compound sputtering mode enabling deposition of films at well defined conditions of target coverage by varying the O{sub 2} partial pressure. Plasma analysis reveals that this experimental strategy facilitates control over the flux of the O{sup -} ions which are generated on the oxidized target surface and accelerated by the negative target potential toward the growing film. An arrangement that enables film growth without O{sup -} ion bombardment is also implemented. Moreover, stabilization of the transition sputtering zone and control of the O{sup -} ion flux without N{sub 2} addition is achieved employing high power pulsed magnetron sputtering. Structural characterization of the deposited films unambiguously proves that the phase formation of hafnium oxide and hafnium oxynitride films with the crystal structure of HfO{sub 2} is independent from the O{sup -} bombardment conditions. Experimental and theoretical data indicate that the presence of vacancies and/or the substitution of O by N atoms in the nonmetal sublattice favor the formation of the cubic and/or the tetragonal HfO{sub 2} crystal structure at the expense of the monoclinic HfO{sub 2} one.

  8. RF sputtered silicon and hafnium nitrides as applied to 440C steel

    SciTech Connect

    Grill, A.; Aron, P.R.

    1984-03-01

    Silicon nitride and hafnium nitride coatings were deposited on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. The coatings and the interface between the coating and substrate were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. Oxide was found at all interfaces with an interface width of at least 600 A for the oxidized substrates and at least 300 A for the unoxidized substrates. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C. Coatings of both nitrides deposited at 8 mtorr were found to have increased adhesion to both oxidized and unoxidized 440C over those deposited at 20 mtorr.

  9. Sulfide Mineral Surfaces

    SciTech Connect

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  10. Development and characterization of ultrathin hafnium titanates as high permittivity gate insulators

    NASA Astrophysics Data System (ADS)

    Li, Min

    High permittivity or high-kappa materials are being developed for use as gate insulators for future ultrascaled metal oxide semiconductor field effect transistors (MOSFETs). Hafnium containing compounds are the leading candidates. Due to its moderate permittivity, however, it is difficult to achieve HfO2 gate structures with an EOT well below 1.0 nm. One approach to increase HfO2 permittivity is combining it with a very high-kappa material, such as TiO2. In this thesis, we systematically studied the electrical and physical characteristics of high-kappa hafnium titanates films as gate insulators. A series of HfxTi1-xO2 films with well-controlled composition were deposited using an MOCVD system. The physical properties of the films were analyzed using a variety of characterization techniques. X-ray micro diffraction indicates that the Ti-rich thin film is more immune to crystallization. TEM analysis showed that the thick stoichiometric HfTiO 4 film has an orthorhombic structure and large anisotropic grains. The C-V curves from the devices with the hafnium titanates films displayed relatively low hysteresis. In a certain composition range, the interfacial layer (IL) EOT and permittivity of HfxTi1-x O2 increases linearly with increasing Ti. The charge is negative for HfxTi1-xO2/IL and positive for Si/IL interface, and the magnitude increases as Hf increases. For ultra-thin films (less than 2 nm EOT), the leakage current increases with increasing HE Moreover, the Hf-rich sample has weaker temperature dependence of the current. In the MOSFET devices with the hafnium titanates films, normal transistor characteristics were observed, also electron mobility degradation. Next, we investigated the effects that different pre-deposition surface treatments, including HF dipping, NH3 surface nitridation, and HfO2 deposition, have on the electrical properties of hafnium titanates. Surface nitridation shows stronger effect than the thin HfO2 layer. The nitrided samples displayed a

  11. Volcanogenic Massive Sulfide Deposit Density

    USGS Publications Warehouse

    Mosier, Dan L.; Singer, Donald A.; Berger, Vladimir I.

    2007-01-01

    A mineral-deposit density model for volcanogenic massive sulfide deposits was constructed from 38 well-explored control areas from around the world. Control areas contain at least one exposed volcanogenic massive sulfide deposit. The control areas used in this study contain 150 kuroko, 14 Urals, and 25 Cyprus massive sulfide subtypes of volcanogenic massive sulfide deposits. For each control area, extent of permissive rock, number of exposed volcanogenic massive sulfide deposits, map scale, deposit age, and deposit density were determined. The frequency distribution of deposit densities in these 38 control areas provides probabilistic estimates of the number of deposits for tracts that are permissive for volcanogenic massive sulfide deposits-90 percent of the control areas have densities of 100 or more deposits per 100,000 square kilometers, 50 percent of the control areas have densities of 700 or more deposits per 100,000 square kilometers, and 10 percent of the control areas have densities of 3,700 or more deposits per 100,000 square kilometers. Both map scale and the size of the control area are shown to be predictors of deposit density. Probabilistic estimates of the number of volcanogenic massive sulfide deposits can be made by conditioning the estimates on sizes of permissive area. The model constructed for this study provides a powerful tool for estimating the number of undiscovered volcanogenic massive sulfide deposits when conducting resource assessments. The value of these deposit densities is due to the consistency of these models with the grade and tonnage and the descriptive models. Mineral-deposit density models combined with grade and tonnage models allow reasonable estimates of the number, size, and grades of volcanogenic massive sulfide deposits to be made.

  12. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    PubMed

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (<5 V) pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  13. Sulfides and oxides in comets

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1988-01-01

    Metal abundances associated with Sun-grazing P/comet Ikeya-Seki 1965f, the mineralogy of chrondritic interplanetary dust particles and cosmochemical affinities of Co, V, Cr, and Ni in extraterrestrial materials and probable vaporization data for nonsilicate minerals are used to evaluate the putative dearth of nonsilicates in short-period comets. It is concluded that sulfides and oxides are common, albeit minor, constituents of these comets. Sulfides and oxides can form in situ during perihelion passage in the nucleus of active short-period comets by sulfidation of Mg, Fe-silicates.

  14. Sulfides and oxides in comets

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1988-01-01

    Metal abundances associated with Sun-grazing P/comet Ikeya-Seki 1965f, the mineralogy of chrondritic interplanetary dust particles and cosmochemical affinities of Co, V, Cr, and Ni in extraterrestrial materials and probable vaporization data for nonsilicate minerals are used to evaluate the putative dearth of nonsilicates in short-period comets. It is concluded that sulfides and oxides are common, albeit minor, constituents of these comets. Sulfides and oxides can form in situ during perihelion passage in the nucleus of active short-period comets by sulfidation of Mg, Fe-silicates.

  15. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1987-01-06

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  16. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1987-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  17. Prevention of sulfide oxidation in sulfide-rich waste rock

    NASA Astrophysics Data System (ADS)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  18. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  19. Hydrogen sulfide in signaling pathways.

    PubMed

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  20. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  1. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  2. Study on the formation of self-assembled monolayers on sol-gel processed hafnium oxide as dielectric layers.

    PubMed

    Ting, Guy G; Acton, Orb; Ma, Hong; Ka, Jae Won; Jen, Alex K-Y

    2009-02-17

    High dielectric constant (k) metal oxides such as hafnium oxide (HfO2) have gained significant interest due to their applications in microelectronics. In order to study and control the surface properties of hafnium oxide, self-assembled monolayers (SAMs) of four different long aliphatic molecules with binding groups of phosphonic acid, carboxylic acid, and catechol were formed and characterized. Surface modification was performed to improve the interface between metal oxide and top deposited materials as well as to create suitable dielectric properties, that is, leakage current and capacitance densities, which are important in organic thin film transistors. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle goniometry, atomic force microscopy (AFM), and simple metal-HfO2-SAM-metal devices were used to characterize the surfaces before and after SAM modification on sol-gel processed hafnium oxide. The alkylphosphonic acid provided the best monolayer formation on sol-gel processed hafnium oxide to generate a well-packed, ultrathin dielectric exhibiting a low leakage current density of 2x10(-8) A/cm2 at an applied voltage of -2.0 V and high capacitance density of 0.55 microF/cm2 at 10 kHz. Dialkylcatechol showed similar characteristics and the potential for using the catechol SAMs to modify HfO2 surfaces. In addition, the integration of this alkylphosphonic acid SAM/hafnium oxide hybrid dielectric into pentacene-based thin film transistors yields low-voltage operation within 1.5 V and improved performance over bare hafnium oxide.

  3. Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization.

    PubMed

    Papendorf, Benjamin; Nonnenmacher, Katharina; Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf

    2011-04-04

    The present study focuses on the synthesis and ceramization of novel hafnium-alkoxide-modified silazanes as well as on their microstructure evolution at high temperatures. The synthesis of hafnia-modified polymer-derived SiCN ceramic nanocomposites is performed via chemical modification of a polysilazane and of a cyclotrisilazane, followed by cross-linking and pyrolysis in argon atmosphere. Spectroscopic investigation (i.e., NMR, FTIR, and Raman) shows that the hafnium alkoxide reacts with the N-H groups of the cyclotrisilazane; in the case of polysilazane, reactions of N-H as well as Si-H groups with the alkoxide are observed. Consequently, scanning and transmission electron microscopy studies reveal that the ceramic nanocomposites obtained from cyclotrisilazane and polysilazane exhibited markedly different microstructures, which is a result of the different reaction pathways of the hafnium alkoxide with cyclotrisilazane and with polysilazane. Furthermore, the two prepared ceramic nanocomposites are unexpectedly found to exhibit extremely different high-temperature behavior with respect to decomposition and crystallization; this essential difference is found to be related to the different distribution of hafnium throughout the ceramic network in the two samples. Thus, the homogeneous distribution of hafnium observed in the polysilazane-derived ceramic leads to an enhanced thermal stability with respect to decomposition, whereas the local enrichment of hafnium within the matrix of the cyclotrisilazane-based sample induces a pronounced decomposition upon annealing at high temperatures. The results indicate that the chemistry and architecture of the precursor has a crucial effect on the microstructure of the resulting ceramic material and consequently on its high-temperature behavior. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Long period gratings coated with hafnium oxide by plasma-enhanced atomic layer deposition for refractive index measurements.

    PubMed

    Melo, Luis; Burton, Geoff; Kubik, Philip; Wild, Peter

    2016-04-04

    Long period gratings (LPGs) are coated with hafnium oxide using plasma-enhanced atomic layer deposition (PEALD) to increase the sensitivity of these devices to the refractive index of the surrounding medium. PEALD allows deposition at low temperatures which reduces thermal degradation of UV-written LPGs. Depositions targeting three different coating thicknesses are investigated: 30 nm, 50 nm and 70 nm. Coating thickness measurements taken by scanning electron microscopy of the optical fibers confirm deposition of uniform coatings. The performance of the coated LPGs shows that deposition of hafnium oxide on LPGs induces two-step transition behavior of the cladding modes.

  5. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Hafnium Oxide Microspheres via the Internal Gelation Process

    SciTech Connect

    Collins, Jack Lee; Hunt, Rodney Dale; Simmerman, S. G.

    2009-02-01

    A simple test-tube methodology was used to determine optimum process parameters for preparing hydrous hafnium oxide microspheres by the internal gelation process. Broth formulations of hafnyl chloride [HfOCl{sub 2}], hexamethylenetetramine, and urea were found that can be used to prepare hydrous hafnium oxide gel spheres in the temperature range of 70-90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations in order to equate the test-tube gelation times with actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broths.

  6. Characterization of hafnium based high-k thin films for solid state transistor gate application deposited by CVD and PECVD using hafnium(IV) tert-butoxide

    NASA Astrophysics Data System (ADS)

    Bhandari, Harish Babu

    Silicon dioxide, the standard gate oxide in MOS transistors for the last three decades, has reached its scaling limit due to an unacceptably high tunneling current at thicknesses < 1.0 nm. Hafnium oxide (HfO 2) and hafnium silicate (HfSixOy), based on their high dielectric constants and thermodynamic stability on Si, are the two most promising materials to replace SiO2 as a gate oxide. Metalorganic chemical vapor deposition (MOCVD) of HfO2 and HfSixO y, and their characterization, has been studied to better understand their physical and chemical properties to suit their application as a high-kappa replacement to SiO2. Hafnium oxide and HfSixOy thin films were deposited in a custom built PECVD reactor on Si (100) using hafnium (IV) tert-butoxide (HTB), oxygen and silane at substrate temperatures of 30°, 150°, 250° and 410°C. The thermally and plasma deposited HfSixOy films showed a composition of (HfO2)0.84(SiO 2)0.16 and (HfO2)0.11(SiO2) 0.88, respectively. Plasma silicates demonstrated higher silicon (˜24 at.%) incorporation due to better dissociation of SiH4 and HTB. HfO2 and HfSixOy films were also deposited with different oxygen precursors (O2, N2O, H2O, O2 plasma, or N2O plasma). Thermally deposited HfSi xOy films using O2 and N2O showed precursor desorption at higher temperatures resulting in lower deposition rates, whereas the H2O deposited film showed a decrease in deposition rate with temperature, suggesting a different mechanism. In situ ATR-FTIR was conducted on adsorbed and liquid HTB to study the reaction pathway of the HTB molecule during CVD reaction. By comparing experimental ATR-FTIR spectra with theoretical frequencies calculated using density functional theory, it was concluded that the HTB molecule undergoes chemisorptive adsorption at 100°C and bridges to Si via a bidentate attachment. Angle-resolved XPS measurements were performed for HfO2/Si (100) samples placed in wet and dry environments to study the effect of H 2O on interface

  7. Inter-Diffusion of Copper and Hafnium as Studied by X-Ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearson, Justin Seth

    The purpose of this study is to investigate the interdiffusion of copper and hafnium. Thin films (thicknesses ranging from 100 nm to 150 nm) of hafnium were deposited on a silicon substrate. About 80 nm of copper was then deposited on such samples. High purity samples have been used in this investigation. The deposition of the elements was done by the e-beam technique. The interfaces thus formed were annealed for a fixed time (30 minutes) at temperatures of 100, 200, and 300°C. The samples were characterized in situ by the x-ray photoelectron spectroscopy technique. To carry out the depth profiling of these samples a controlled amount of the over layer was removed and the spectral data were acquired. The argon ion sputtering technique was used to sputter the layers away. Spectral data in the copper 2p and hafnium 4f regions were investigated. The atomic concentration of the constituents as a function of depth across the interface was determined by analyzing the areas under the curves. The depth profiling data thus obtained was analyzed by the Matano-Boltzmann's procedure. For this analysis the Matano plane was determined based on the criteria of equal area on each side of the interface. The Fick's Law second law was used to calculate the interdiffuison coefficient for each of these interfaces. The interdiffusion coefficient as a function of temperature was determined from these analyses. From these coefficients the activation energy and the pre-exponential factor was determined by using the Arrhenius plot. The activation energy was found to be 0.128 eV/atom and the pre-exponential factor was 3.33E-14 cm2/s. The results from this investigation will be useful in the application of Cu/Hf interface in design and fabrication of semiconductor devices.

  8. Prediction of stable hafnium carbides: Stoichiometries, mechanical properties, and electronic structure

    NASA Astrophysics Data System (ADS)

    Zeng, Qingfeng; Peng, Junhui; Oganov, Artem R.; Zhu, Qiang; Xie, Congwei; Zhang, Xiaodong; Dong, Dong; Zhang, Litong; Cheng, Laifei

    2013-12-01

    We have performed a search for stable compounds in the hafnium-carbon (Hf-C) system at ambient pressure using a variable-composition ab initio evolutionary algorithm implemented in the uspex code. In addition to the well-known HfC, we predicted two additional thermodynamically stable compounds Hf3C2 and Hf6C5. The structure of Hf6C5 with space group C2/m contains 22 atoms in the conventional cell, and this prediction revives the earlier proposal by Gusev and Rempel [Phys. Status Solidi A 135, 15 (1993), 10.1002/pssa.2211350102]. The stable structure of Hf3C2 also has space group C2/m and is more energetically favorable than the Immm ,P3¯m1,P2, and C2221 structures put forward by Gusev and Rempel [Phys. Status Solidi A 135, 15 (1993), 10.1002/pssa.2211350102]. The dynamical and mechanical stabilities of the newly predicted structures have been verified by calculations of their phonons and elastic constants. Structural vacancies are found in the ordered defective rock-salt-type HfC. Chemical bonding, band structure, and Bader charges are presented and are discussed. All three compounds are weak metals with increasing metallicity as the vacancy concentration increases. The mechanical properties of the hafnium carbides nonlinearly decrease with increasing vacancy concentration, indicating the defect tolerance of this refractory compound. It is, therefore, possible to tune the hardness, ductility, and electrical conductivity by varying the stoichiometry of the hafnium carbides.

  9. Zirconium(IV)- and hafnium(IV)-catalyzed highly enantioselective epoxidation of homoallylic and bishomoallylic alcohols.

    PubMed

    Li, Zhi; Yamamoto, Hisashi

    2010-06-16

    In this report, zirconium(IV)- and hafnium(IV)-bishydroxamic acid complexes were utilized in the highly enantioselective epoxidation of homoallylic alcohols and bishomoallylic alcohols, which used to be quite difficult substrates for other types of asymmetric epoxidation reactions. The performance of the catalyst was improved by adding polar additive and molecular sieves. For homoallylic alcohols, the reaction could provide epoxy alcohols in up to 83% yield and up to 98% ee, while, for bishomoallylic alcohols, up to 79% yield and 99% ee of epoxy alcohols rather than cyclized tetrahydrofuran compounds could be obtained in most cases.

  10. Zirconium(IV) and Hafnium(IV)-Catalyzed Highly Enantioselective Epoxidation of Homoallylic and Bishomoallylic Alcohols

    PubMed Central

    Li, Zhi; Yamamoto, Hisashi

    2010-01-01

    In this report, zirconium(IV) and hafnium(IV)-bishydroxamic acid complexes were utilized in the highly enantioselective epoxidation of homoallylic alcohols and bishomoallylic alcohols, which used to be quite difficult substrates for other types of asymmetric epoxidation reactions. The performance of the catalyst was improved by adding polar additive and molecular sieves. For homoallylic alcohols, the reaction could provide epoxy alcohols in up to 81% yield and up to 98% ee, while for bishomoallylic alcohols, up to 75% yield and 99% ee of epoxy alcohols rather than cyclize compounds could be obtained in most cases. PMID:20481541

  11. Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Dayu; Müller, J.; Xu, Jin; Knebel, S.; Bräuhaus, D.; Schröder, U.

    2012-02-01

    Silicon doped hafnium oxide thin films were recently discovered to exhibit ferroelectricity. In the present study, metal-ferroelectric-metal capacitors with Si:HfO2 thin films as ferroelectric material and TiN as electrodes have been characterized with respect to capacitance and current density as functions of temperature and applied voltage. Polarity asymmetry of the frequency dependent coercive field was explained by interfacial effects. No ferroelectric-paraelectric phase transition was observed at temperatures up to 478 K. Clear distinctions between current evolutions with or without polarization switching were correlated to the time competition between the measurement and the response of relaxation mechanisms.

  12. Effect of Hafnium Impurities on the Magnetoresistance of {YBa}2{Cu}3{O}_{7-δ }

    NASA Astrophysics Data System (ADS)

    Savich, S. V.; Samoylov, A. V.; Kamchatnaya, S. N.; Goulatis, I. L.; Vovk, R. V.; Chroneos, A.; Solovjov, A. L.; Omelchenko, L. V.

    2017-02-01

    In the present study, we investigate the influence of the hafnium (Hf) impurities on the magnetoresistance of {YBa}2{Cu}3{O}_{7-δ } ceramic samples in the temperature interval of the transition to the superconducting state in constant magnetic field up to 12 T. The cause of the appearance of low- temperature "tails" (paracoherent transitions) on the resistive transitions, corresponding to different phase regimes of the vortex matter state is discussed. At temperatures higher than the critical temperature ( T > T_c), the temperature dependence of the excess paraconductivity can be described within the Aslamazov-Larkin theoretical model of the fluctuation conductivity for layered superconductors.

  13. Multimode resistive switching in nanoscale hafnium oxide stack as studied by atomic force microscopy

    SciTech Connect

    Hou, Y. E-mail: lfliu@pku.edu.cn; Celano, U.; Vandervorst, W.; Goux, L.; Degraeve, R.; Jurczak, M.; Liu, L. E-mail: lfliu@pku.edu.cn; Cheng, Y.; Kang, J.

    2016-07-11

    The nanoscale resistive switching in hafnium oxide stack is investigated by the conductive atomic force microscopy (C-AFM). The initial oxide stack is insulating and electrical stress from the C-AFM tip induces nanometric conductive filaments. Multimode resistive switching can be observed in consecutive operation cycles at one spot. The different modes are interpreted in the framework of a low defect quantum point contact theory. The model implies that the optimization of the conductive filament active region is crucial for the future application of nanoscale resistive switching devices.

  14. Application of the Zr/Hf ratio in the determination of hafnium in geochemical samples by high-resolution inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Ya Xuan; Li, Qing Xia; Ma, Na; Sun, Xiao Ling; Bai, Jin Feng; Zhang, Qin

    2014-12-02

    Hafnium content and its change are of significance in geochemistry and cosmochemistry; however, the determination of hafnium has always been problematic in analytical chemistry. In this paper, a new idea is proposed for the determination of hafnium in geochemical samples, including rocks, soils, and stream sediments. Through the comparison of two conventional open-type acid digestion methods (HF-HNO3-HClO4 and HF-HNO3-H2SO4), it was found that although neither of these methods could fully digest the zirconium and hafnium in a sample, the zirconium and hafnium digestion behaviors in one sample were consistent in the 60 experimental geochemical reference materials with different properties, so the experimentally determined Zr/Hf ratio in solution could be used to calculate the hafnium content in a sample. In addition, possible mass spectral interferences during the determination of zirconium and hafnium by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) were studied, and it was found that the mass spectral interferences of the selected isotopes (90)Zr and (178)Hf could be neglected. The mass spectral behaviors of (90)Zr and (178)Hf were also very consistent during the determination by HR-ICPMS. Since the hafnium content was calculated using the ratio value, all of the errors (including the errors in weighing process, the accidental errors during operation and the instrument fluctuation in the determination) of the Zr/Hf ratio could be effectively reduced or even eliminated. The relative standard deviation of the actual samples was lower than 3.2%, and the detection limit of the method (considering the dilution effect and matrix effect during measurement of the Zr/Hf ratio and zirconium content) was 0.04 μg/g. The proposed method could satisfy the requirement for the determination of hafnium in geochemical samples.

  15. A Reaction Involving Oxygen and Metal Sulfides.

    ERIC Educational Resources Information Center

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  16. A Reaction Involving Oxygen and Metal Sulfides.

    ERIC Educational Resources Information Center

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  17. Sulfide Stability of Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Caiazza, C. M.; Righter, K.; Gibson, E. K., Jr.; Chesley, J. T.; Ruiz, J.

    2004-01-01

    The isotopic system, 187Re 187Os, can be used to determine the role of crust and mantle in magma genesis. In order to apply the system to natural samples, we must understand variations in Re/Os concentrations. It is thought that low [Os] and [Re] in basalts can be attributed to sulfide (FeS) saturation, as Re behaves incompatibly to high degrees of evolution until sulfide saturation occurs [1]. Previous work has shown that lunar basalts are sulfide under-saturated, and mid-ocean ridge, ocean-island and Martian (shergottites) basalts are saturated [2,3]. However, little is known about arc basalts. In this study, basaltic rocks were analyzed across the Trans-Mexican Volcanic Belt.

  18. Trapping of hydrogen in hafnium-based high kappa dielectric thin films for advanced CMOS applications

    NASA Astrophysics Data System (ADS)

    Ukirde, Vaishali

    In recent years, advanced high kappa gate dielectrics are under serious consideration to replace SiO2 and SiON in semiconductor industry. Hafnium-based dielectrics such as hafnium oxides, oxynitrides and Hf-based silicates/nitrided silicates are emerging as some of the most promising alternatives to SiO2/SiON gate dielectrics in complementary metal oxide semiconductor (CMOS) devices. Extensive efforts have been taken to understand the effects of hydrogen impurities in semiconductors and its behavior such as incorporation, diffusion, trapping and release with the aim of controlling and using it to optimize the performance of electronic device structures. In this dissertation, a systematic study of hydrogen trapping and the role of carbon impurities in various alternate gate dielectric candidates, HfO2/Si, HfxSi1-xO2/Si, HfON/Si and HfON(C)/Si is presented. It has been shown that processing of high kappa dielectrics may lead to some crystallization issues. Rutherford backscattering spectroscopy (RBS) for measuring oxygen deficiencies, elastic recoil detection analysis (ERDA) for quantifying hydrogen and nuclear reaction analysis (NRA) for quantifying carbon, X-ray diffraction (XRD) for measuring degree of crystallinity and X-ray photoelectron spectroscopy (XPS) were used to characterize these thin dielectric materials. ERDA data are used to characterize the evolution of hydrogen during annealing in hydrogen ambient in combination with preprocessing in oxygen and nitrogen.

  19. Evaluation of hafnium-carbide wafers for use in a solar calorimeter

    SciTech Connect

    Laug, K.K.

    1996-03-01

    The Solar Propulsion Group (SPG) at Phillips Laboratory will determine the efficiency of transferring heat from sunlight to a gas using carbon wafers. There will be a series of tests using a calorimeter containing porous carbon and hafnium carbide coated carbon wafers that will absorb the sunlight and transfer the heat to the gas passing through them. We had half the wafers coated with hafnium carbide to prevent carbon loss in a hydrogen rich atmosphere at high temperatures. They will degrade with each test if they are not suitably coated. We conducted a wafer bakeout test to determine if they were suitable for the calorimeter testing, and to develop a baseline for degradation checks to be conducted throughout the calorimeter test series. The preliminary results indicate that the wafers will be unaffected by the environment in the calorimeter. We developed a weight baseline to use in checking the integrity of the wafers throughout the calorimeter testing. The experiments talked about in this paper are not bi-modal in the strictest sense; a single unit supplying both power and propulsion to the spacecraft or satellite. However, in the future, we may find the solar/laser thermal propulsion system that the wafers fit into lends itself to both power and propulsion in a single unit. Therefore, the information is pertinent to this forum. {copyright} {ital 1996 American Institute of Physics.}

  20. Microstructure and optical properties of Pr3+-doped hafnium silicate films

    PubMed Central

    2013-01-01

    In this study, we report on the evolution of the microstructure and photoluminescence properties of Pr3+-doped hafnium silicate thin films as a function of annealing temperature (TA). The composition and microstructure of the films were characterized by means of Rutherford backscattering spectrometry, spectroscopic ellipsometry, Fourier transform infrared absorption, and X-ray diffraction, while the emission properties have been studied by means of photoluminescence (PL) and PL excitation (PLE) spectroscopies. It was observed that a post-annealing treatment favors the phase separation in hafnium silicate matrix being more evident at 950°C. The HfO2 phase demonstrates a pronounced crystallization in tetragonal phase upon 950°C annealing. Pr3+ emission appeared at TA = 950°C, and the highest efficiency of Pr3+ ion emission was detected upon a thermal treatment at 1,000°C. Analysis of the PLE spectra reveals an efficient energy transfer from matrix defects towards Pr3+ ions. It is considered that oxygen vacancies act as effective Pr3+ sensitizer. Finally, a PL study of undoped HfO2 and HfSiOx matrices is performed to evidence the energy transfer. PMID:23336520

  1. Effect of hafnium and titanium coated implants on several blood biochemical markers after osteosynthesis in rabbits

    PubMed Central

    Yousef, Ashraf; Akhtyamov, Ildar; Shakirova, Faina; Zubairova, Lyaili; Gatina, Elmira; Aliev, Еlchin

    2014-01-01

    Purpose: An experimental study comparing the dynamics of several biochemical markers before and after osteosynthesis, utilizing implants coated with titanium and hafnium nitrides and non-coated implants on rabbits’ bones. Materials and methods: The Study has been conducted on 30 rabbits of both sexes, at the age of 6-7 months, weighing 2526.5±74.4 gm. Animals underwent open osteotomy of the tibia in the middle third of the diaphysis followed by the intramedullary nailing. The level of alkaline phosphatase, calcium, phosphorus, total protein, glucose, ALT and AST were monitored for 60 days. Results: the use of implants coated with titanium and hafnium nitrides, which have high strength, thermal and chemical stability, was not accompanied by the development of additional negative reactive changes compared to non-coated implants. Conclusion: Nanotechnology used in manufacturing bioinert coatings for implants for osteosynthesis, has made the post-operative period less complicated as reflected by less expressed changing in the markers of bone metabolism and hepatotoxicity. PMID:25419385

  2. Molecular structure, vibrational, HOMO-LUMO, MEP and NBO analysis of hafnium selenite

    NASA Astrophysics Data System (ADS)

    Yankova, Rumyana; Genieva, Svetlana; Dimitrova, Ginka

    2017-08-01

    In hydrothermal condition hafnium selenite with estimated chemical composition Hf(SeO3)2·n(H2O) was obtained and characterized by powder X-Ray diffraction, IR spectroscopy and thermogravimetrical analysis. The composition of the obtained crystalline phase was established as dihydrate of tetraaqua complex of the hafnium selenite [Hf(SeO3)2(H2O)4]·2H2O. The results of the thermogravimetrical analysis are shown that the two hydrated water molecules are released in the temperature interval 80-110°C, while the four coordinated water molecules - at 210-300°C. By DFT method, with Becke's three parameter exchange-functional combined with gradient-corrected correlation functional of Lee, Yang and Parr and 6-31G(d), 6-311 + G(d,p) basis sets and LANL2DZ for Hf atom were calculated the molecular structure, vibrational frequencies and thermodynamic properties of the structure. The UV-Vis spectra and electronic properties are presented. The energy and oscillator strength calculated by time-dependent density functional theory corresponds well with the experimental ones. Molecular electrostatic potential (MEP) was performed. Mulliken population analysis on atomic charges was also calculated. The stability and intramolecular interactions are interpreted by NBO analysis.

  3. Effect of initial sulfide concentration on sulfide and phenol oxidation under denitrifying conditions.

    PubMed

    Beristain-Cardoso, Ricardo; Texier, Anne-Claire; Sierra-Alvarez, Reyes; Razo-Flores, Elías; Field, Jim A; Gómez, J

    2009-01-01

    The objective of this work was to evaluate the effect of the initial sulfide concentration on the kinetics and metabolism of phenol and sulfide in batch bioassays using nitrate as electron acceptor. Complete oxidation of sulfide (20 mg L(-1) of S(2-)) and phenol (19.6 mg L(-1)) was linked to nitrate reduction when nitrate was supplemented at stoichiometric concentrations. At 32 mg L(-1) of sulfide, oxidation of sulfide and phenol by the organo-lithoautotrophic microbial culture was sequential; first sulfide was rapidly oxidized to elemental sulfur and afterwards to sulfate; phenol oxidation started once sulfate production reached a maximum. When the initial sulfide concentration was increased from 20 to 26 and finally to 32 mg L(-1), sulfide oxidation was inhibited. In contrast phenol consumption by the denitrifying culture was not affected. These results indicated that sulfide affected strongly the sulfide oxidation rate and nitrate reduction.

  4. Selected rare earth sulfides in thermoelectric applications

    SciTech Connect

    Raag, V.; Borodovsky, Y.

    1981-01-01

    This paper discusses preliminary results on the preparation and the measurement of thermoelectric properties of various rare earth sulfides of the stoichiometry R/sub 2/S/sub 3/. A preparation method that enables the rapid and predictable preparation of the sulfides has been discussed, along with some preliminary results on the measurement of thermoelectric properties of these sulfides.

  5. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.808 Section 250.808... Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown, as defined in § 250.490 of this...

  6. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  7. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  8. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  9. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  10. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  11. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  12. Nanostructured metal sulfides for energy storage

    NASA Astrophysics Data System (ADS)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-08-01

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  13. Nanostructured metal sulfides for energy storage.

    PubMed

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-07

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  14. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  15. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  16. Allyl sulfides modify cell growth.

    PubMed

    Knowles, L M; Milner, J A

    2000-01-01

    Extensive evidence points to the ability of allyl sulfides from garlic to suppress tumor proliferation both in vitro and in vivo. This antineoplastic effect is generally greater for lipid-soluble than water-soluble allyl sulfides. Both concentration and duration of exposure can increase the antiproliferative effects of lipid- and water-soluble allyl sulfides. Part of their antiproliferative effects may relate to an increase in membrane fluidity and a suppression of integrin glycoprotein IIb-IIIa mediated adhesion. Alterations in cholesterol, arachidonic acid, phospholipids and/or thiols may account for these changes in membrane function. Allyl sulfides are also recognized for their ability to suppress cellular proliferation by blocking cells in the G2/M phase and by the induction of apoptosis. This increase in the G2/M and apoptotic cell populations correlates with depressed p34cdc2 kinase activity, increased histone acetylation, increased intracellular calcium and elevated cellular peroxide production. While impressive pre-clinical data exist about the antineoplastic effects of allyl sulfur compounds, considerably more attention needs to be given to their effects in humans. The composition of the entire diet and a host of genetic/epigenetic factors will likely determine the true benefits that might arise from allyl sulfur compounds from garlic and other Allium foods.

  17. p-Chlorophenyl methyl sulfide

    Integrated Risk Information System (IRIS)

    p - Chlorophenyl methyl sulfide ; CASRN 123 - 09 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for N

  18. Effect of hafnium doping on density of states in dual-target magnetron co-sputtering HfZnSnO thin film transistors

    SciTech Connect

    Huang, Chuan-Xin; Li, Jun Fu, Yi-Zhou; Jiang, Xue-Yin; Zhang, Jian-Hua; Zhang, Zhi-Lin

    2015-11-23

    This study investigates the effect of hafnium doping on the density of states (DOSs) in HfZnSnO thin film transistors fabricated by dual-target magnetron co-sputtering system. The DOSs is extracted by temperature-dependent field-effect measurements, and they decrease from 1.1 × 10{sup 17} to 4.6 × 10{sup 16 }eV/cm{sup 3} with increasing the hafnium concentrations. The behavior of DOSs for the increasing hafnium concentration HfZnSnO thin film transistors can be confirmed by both the reduction of ΔV{sub T} under bias stress and the trapping charges calculated by capacitance voltage measurements. It suggests that the reduction in DOSs due to the hafnium doping is closely related with the bias stability and thermal stability.

  19. Biogeochemistry of dissolved hydrogen sulfide species and carbonyl sulfide in the western North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Radford-Knȩry, Joël; Cutter, Gregory A.

    1994-12-01

    The biogeochemistry of total sulfide dissolved in the open ocean is a poorly understood component of the global sulfur cycle. Here, the cycling of total sulfide was examined in the western North Atlantic Ocean using specially developed sampling and analytical methods. Total sulfide (particulate + dissolved sulfide) concentrations ranged from <2-550 pmol/L; concentrations were highest in the mixed layer and decreased with depth. Significant levels (up to 19 pmol/L) of free sulfide (uncomplexed sulfide) were determined in the top 50 m of the water column. Sources of total sulfide were examined. In particular, the rate of carbonyl sulfide (OCS) hydrolysis was redetermined under oceanographic conditions, and the depth distribution of OCS was examined. The patterns of near-surface enrichment (up to 150 pmol/L) and depletion at depth observed in OCS depth profiles suggest in situ production of OCS. To quantify the sources and sinks of total sulfide in the mixed layer of the Sargasso Sea, a budget was constructed. The rate of total sulfide production was 5.5 pmol L-1 h-1 (OCS hydrolysis + atmospheric input), and total sulfide removal rate was 115 pmol L -1 h-1 (oxidation + particulate sinking). The significant difference between the known sources and sinks indicates that other processes are important for the cycling of sulfide. Similarities in the depth distribution of total sulfide and chlorophyll a, and results from recent laboratory experiments argue strongly in favor of biological involvement in the production of total sulfide in the open ocean.

  20. Composition effects on mechanical properties of tungsten-rhenium-hafnium-carbon alloys

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.

    1973-01-01

    The mechanical properties of rod and sheet fabricated from arc melted W-4Re-Hf-C alloys containing up to about 0.8 mol percent hafnium carbide (HfC) were evaluated in the as-worked condition. The DBTT's of electropolished bend and tensile specimens were independent of HfC content in this range but dependent on excess Hf or C above that required for stoichiometric HfC. Low temperature ductility was a maximum at Hf contents slightly in excess of stoichiometric. Variations in high temperature strength were also dependent on excess Hf and C. Maximum creep strengthening also occurred at Hf contents in excess of stoichiometric. Analysis of extracted second phase particles indicated that creep strength was reduced by increasing WC content in the HfC particles.

  1. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex.

    PubMed

    Knobloch, Donald J; Lobkovsky, Emil; Chirik, Paul J

    2010-01-01

    Molecular nitrogen (N(2)) and carbon monoxide (CO) have the two strongest bonds in chemistry and present significant challenges in developing new transformations that exploit these two abundant feedstocks. At the core of this objective is the discovery of transition-metal compounds that promote the six-electron reductive cleavage of N(2) at ambient temperature and pressure and also promote new nitrogen-element bond formation. Here we show that an organometallic hafnium compound induces N(2) cleavage on the addition of CO, with a simultaneous assembly of new nitrogen-carbon and carbon-carbon bonds. Subsequent addition of a weak acid liberates oxamide, which demonstrates that an important agrochemical can be synthesized directly from N(2) and CO. These studies introduce an alternative paradigm for N(2) cleavage and functionalization in which the six-electron reductive cleavage is promoted by both the transition metal and the incoming ligand, CO, used for the new bond formations.

  2. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Dayu; Xu, Jin; Li, Qing; Guan, Yan; Cao, Fei; Dong, Xianlin; Müller, Johannes; Schenk, Tony; Schröder, Uwe

    2013-11-01

    Hafnium oxide based ferroelectric thin films have shown potential as a promising alternative material for non-volatile memory applications. This work reports the switching stability of a Si-doped HfO2 film under bipolar pulsed-field operation. High field cycling causes a "wake-up" in virgin "pinched" polarization hysteresis loops, demonstrated by an enhancement in remanent polarization and a shift of negative coercive voltage. The rate of wake-up is accelerated by either reducing the frequency or increasing the amplitude of the cycling field. We suggest de-pinning of domains due to reduction of the defect concentration at bottom electrode interface as origin of the wake-up.

  3. Calculations of the production cross sections of high-spin isomeric states in hafnium

    SciTech Connect

    Chadwick, M.B. ); Young, P.G. )

    1991-06-01

    This paper reports on the {sup 178}Hf(16{sup +}) isometric state that has a 31-yr half-life and could pose serious radioactive activation problems in nuclear fusion reactors if its production in 14-MeV neutron induced reactions is significant. The relatively high excitation energy (2.447 MeV) of this state causes it to lie in the continuum region. If rotational band members above this state were populated in a reaction, they would gamma cascade into it. While the existence of such levels can be justified theoretically, they have not been experimentally resolved; therefore, it is necessary to reconstruct the rotational levels built on the isomeric state. Using preequilibrium and compound nucleus theories, the cross sections for this and other hafnium isomeric states are calculated and compared with experimental measurements where available.

  4. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy

    SciTech Connect

    Burger, Arnold; Rowe, Emmanuel; Groza, Michael; Morales Figueroa, Kristle; Cherepy, Nerine J.; Beck, Patrick R.; Hunter, Steven; Payne, Stephen A.

    2015-10-05

    We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent light yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.

  5. Stress-rupture strength and microstructural stability of tungsten-hafnium-carbon-wire reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    Tungsten-hafnium-carbon - superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100- and 1000-hr rupture strengths calculated for 70 vol. % fiber composites based on test data at 1090C (2000F) were 420 and 280 MN/m2 (61,000 and 41,000 psi, respectively). The investigation indicated that, with better quality fibers, composites having 100- and 1000-hr rupture strengths of 570 and 370 MN/m2 (82,000 and 54,000 psi, respectively), may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for 1000 hr or more at 1090C (2000F).

  6. Comparison of the synthesis of Ge nanocrystals in hafnium aluminum oxide and silicon oxide matrices.

    PubMed

    Chew, H G; Zheng, F; Choi, W K; Chim, W K; Fitzgerald, E A; Foo, Y L

    2009-02-01

    Growth of germanium (Ge) nanocrystals in silicon (Si) oxide and hafnium aluminum oxide (HfAlO) is examined. In Si oxide, nanocrystals were able to form at annealing temperatures of 800 degrees C to 1000 degrees C. Nanocrystals formed at 800 degrees C were round and approximately 8 nm in diameter, at 900 degrees C they become facetted and at 1000 degrees C they become spherical again. In HfAlO, at 800 degrees C nanocrystals formed are relatively smaller (approximately 3 nm in diameter) and lower in density. While at 900 degrees C and 1000 degrees C, nanocrystals did not form due to out-diffusion of Ge. Different nanocrystal formation characteristics in the matrices are attributed to differences in their crystallization temperatures.

  7. Pyroelectric response in crystalline hafnium zirconium oxide (Hf 1- x Zr x O 2 ) thin films

    DOE PAGES

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; ...

    2017-02-13

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm-2K-1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarization (x = 0, 0.91, 1).

  8. Sub-10 nm low current resistive switching behavior in hafnium oxide stack

    SciTech Connect

    Hou, Y. E-mail: lfliu@pku.edu.cn; Celano, U.; Xu, Z.; Vandervorst, W.; Goux, L.; Fantini, A.; Degraeve, R.; Youssef, A.; Jurczak, M.; Liu, L. E-mail: lfliu@pku.edu.cn; Cheng, Y.; Kang, J.

    2016-03-21

    In this letter, a tip-induced cell relying on the conductive atomic force microscope is proposed. It is verified as a referable replica of an integrated resistive random access memory (RRAM) device. On the basis of this cell, the functionality of sub-10 nm resistive switching is confirmed in hafnium oxide stack. Moreover, the low current switching behavior in the sub-10 nm dimension is found to be more pronounced than that of a 50 × 50 nm{sup 2} device. It shows better ON/OFF ratio and low leakage current. The enhanced memory performance is ascribed to a change in the shape of the conductive filament as the device dimensions are reduced to sub-10 nm. Therefore, device downscaling provides a promising approach for the resistance optimization that benefits the RRAM array design.

  9. The effect of twinning on the work hardening behavior in Hafnium

    SciTech Connect

    Cerreta, E. K.; Gray, G. T. , III; Yablinsky, C.

    2004-01-01

    In many HCP metals, both twinning and slip are known to be important modes of deformation. However, the interaction of the two mechanisms and their effect on work hardening is not well understood. In hafnium, twinning and work hardening rates increase with increasing strain, increasing strain rate, and decreasing temperature. At low strains and strain rates and at higher temperatures, slip dominates deformation and rates of work hardening are relatively lower. To characterize the interaction of slip and twinning, Hf specimens were prestrained quasi-statically in compression at 77K, creating specimens that were heavily twinned. These specimens were subsequently reloaded at room temperature. Twinning within the microstructures was characterized optically and using transmission electron microscopy. The interaction of slip with the twins was investigated as a function of prestrain and correlated with the observed rates of work hardening.

  10. Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films

    NASA Astrophysics Data System (ADS)

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; Henry, M. D.; Brumbach, M. T.; Ihlefeld, J. F.

    2017-02-01

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm-2 K-1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarization (x = 0, 0.91, and 1).

  11. Characterization of a Novel Hafnium-Based X-ray Contrast Agent.

    PubMed

    Frenzel, Thomas; Bauser, Marcus; Berger, Markus; Hilger, Christoph Stephan; Hegele-Hartung, Christa; Jost, Gregor; Neis, Christian; Hegetschweiler, Kaspar; Riefke, Björn; Suelzle, Detlev; Pietsch, Hubertus

    2016-12-01

    Characterization of BAY-576, a new x-ray contrast agent which is not based on iodine, but rather on the heavy metal hafnium. Compared with iodine, hafnium provides better x-ray absorption in the energy range of computed tomography (CT) and allows images of comparable quality to be acquired at a significantly reduced radiation dose. A range of standard methods were used to explore the physicochemistry of BAY-576 as well as its tolerability in in vitro assays, its pharmacokinetics and toxicology in rats, and its performance in CT imaging in rabbits. BAY-576 is an extraordinarily stable chelate with a metal content of 42% (wt/wt) and with excellent water solubility. Formulations of 300 mg Hf/mL exhibited viscosity (3.3-3.6 mPa) and osmolality (860-985 mOsm/kg) in the range of nonionic x-ray agents. No relevant effects on erythrocytes, the coagulation, or complement system or on a panel of 87 potential biological targets were observed. The compound did not bind to plasma proteins of a number of species investigated. After intravenous injection in rats, it was excreted fast and mainly via the kidneys. Its pharmacokinetics was comparable to known extracellular contrast agents. A dose of 6000 mg Hf/kg, approximately 10 to 20 times the expected diagnostic dose, was well tolerated by rats with only moderate adverse effects. Computed tomography imaging in rabbits bearing a tumor in the liver demonstrated excellent image quality when compared with iopromide at the same contrast agent dose in angiography during the arterial phase. At 70% of the radiation dose, BAY-576 provided a contrast-to-noise ratio of the tumor, which was equivalent to iopromide at 100% radiation dose. The profile of BAY-576 indicates its potential as the first compound in a new class of noniodine x-ray contrast agents, which can contribute to the reduction of the radiation burden in contrast-enhanced CT imaging.

  12. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon.

    PubMed

    Kemp, A I S; Hawkesworth, C J; Paterson, B A; Kinny, P D

    2006-02-02

    It is thought that continental crust existed as early as 150 million years after planetary accretion, but assessing the rates and processes of subsequent crustal growth requires linking the apparently contradictory information from the igneous and sedimentary rock records. For example, the striking global peaks in juvenile igneous activity 2.7, 1.9 and 1.2 Gyr ago imply rapid crustal generation in response to the emplacement of mantle 'super-plumes', rather than by the continuous process of subduction. Yet uncertainties persist over whether these age peaks are artefacts of selective preservation, and over how to reconcile episodic crust formation with the smooth crustal evolution curves inferred from neodymium isotope variations of sedimentary rocks. Detrital zircons encapsulate a more representative record of igneous events than the exposed geology and their hafnium isotope ratios reflect the time since the source of the parental magmas separated from the mantle. These 'model' ages are only meaningful if the host magma lacked a mixed or sedimentary source component, but the latter can be diagnosed by oxygen isotopes, which are strongly fractionated by rock-hydrosphere interactions. Here we report the first study that integrates hafnium and oxygen isotopes, all measured in situ on the same, precisely dated detrital zircon grains. The data reveal that crust generation in part of Gondwana was limited to major pulses at 1.9 and 3.3 Gyr ago, and that the zircons crystallized during repeated reworking of crust formed at these times. The implication is that the mechanisms of crust formation differed from those of crustal differentiation in ancient orogenic belts.

  13. Work functions of hafnium nitride thin films as emitter material for field emitter arrays

    SciTech Connect

    Gotoh, Yasuhito Fujiwara, Sho; Tsuji, Hiroshi

    2016-05-15

    The work functions of hafnium nitride thin films prepared by radio-frequency magnetron sputtering were investigated in vacuum, before and after surface cleaning processes, with a view of improving the properties of as-fabricated field emitter arrays comprising hafnium nitride emitters. The measurement of the work function was first performed for the as-deposited films and then for films subjected to surface cleaning process, either thermal treatment or ion bombardment. Thermal treatment at a maximum temperature of 300 °C reduced the work function by 0.7 eV. Once the film was heated, the work function maintained the reduced value, even after cooling to room temperature. A little change in the work function was observed for the second and third thermal treatments. The ion bombardment was conducted by exposing the sample to a thin plasma for different sample bias conditions and processing times. When the sample was biased at −10 V, the work function decreased by 0.6 eV. The work function reduction became saturated in the early stage of the ion bombardment. When the sample was biased at −50 V, the work function exhibited different behaviors, that is, first it decreased rapidly and then increased in response to the increase in processing time. The lowest attainable work function was found to be 4.00 eV. It should be noted that none of the work function values reported in this paper were obtained using surfaces that were demonstrated to be free from oxygen contamination. The present results suggest that the current–voltage characteristics of a field emitter array can be improved by a factor of 25–50 by the examined postprocesses.

  14. Rhenium(IV) sulfide nanotubes.

    PubMed

    Brorson, Michael; Hansen, Thomas W; Jacobsen, Claus J H

    2002-10-02

    Rhenium(IV) sulfide, ReS(2), has been prepared with nanotubular morphology by carbon nanotube templating. A multiwall carbon nanotube material was impregnated with solutions of NH(4)ReO(4) or ReCl(5), followed by drying and sulfidation with H(2)S at 1000 degrees C. The composite material synthesized was characterized by high-resolution transmission electron microscopy and X-ray powder diffraction. Like previously described MS(2) nanotube compounds, ReS(2) has a layered structure consisting of S-M-S layers. Re atoms in ordinary ReS(2) are octahedrally coordinated with S, and tetranuclear metal clusters are present as a consequence of metal-metal bonds.

  15. Marine diagenesis of hydrothermal sulfide

    SciTech Connect

    Moammar, M.O.

    1985-01-01

    An attempt is made to discuss the artificial and natural oxidation and hydrolysis of hydrothermal sulfide upon interaction with normal seawater. Synthetic and natural ferrosphalerite particles used in kinetic oxidation and hydrolysis studies in seawater develop dense, crystalline coatings consisting of ordered and ferrimagnetic delta-(Fe, Zn)OOH. Due to the formation of this reactive diffusion barrier, the release of Zn into solution decreases rapidly, and sulfide oxidation is reduced to a low rate determined by the diffusion of oxygen through the oxyhydroxide film. This also acts as an efficient solvent for ions such as Zn/sup 2 +/, Ca/sup 2 +/, and possibly Cd/sup 2 +/, which contribute to the stabilization of the delta-FeOOH structure. The oxidation of sulfide occurs in many seafloor spreading areas, such as 21/sup 0/N on the East Pacific Ridge. In these areas the old surface of the sulfide chimneys are found to be covered by an orange stain, and sediment near the base of nonactive vents is also found to consist of what has been referred to as amorphous iron oxide and hydroxide. This thesis also discusses the exceedingly low solubility of zinc in seawater, from delta-(Fe, Zn)OOH and the analogous phase (zinc-ferrihydroxide) and the zinc exchange minerals, 10-A manganate and montmorillonite. The concentrations of all four are of the same magnitude (16, 36.4, and 12 nM, respectively) as the zinc concentration in deep ocean water (approx. 10 nM), which suggests that manganates and montmorillonite with iron oxyhydroxides control zinc concentration in the deep ocean.

  16. Metal sulfide for battery applications

    NASA Astrophysics Data System (ADS)

    Guidotti, Ronald A.

    1988-08-01

    A number of metal sulfides can be used in batteries as a cathode (reducible) material as part of an electrochemical couple to provide energy. There are a number of physical and chemical characteristics that can be evaluated for screening potential candidates for use in batteries. These include: cell potential vs. Li, thermal and chemical stability, electrical conductivity, allotropic form (phase), reaction kinetics during discharge, type of discharge mechanism, and material rechargeability. These are reviewed in general, with emphasis on sulfides of copper, iron, and molybdenum which are currently being used as cathodes in Li and Li-alloy batteries. The presence of impurities can adversely impact performance when naturally occurring sulfide minerals are used for battery applications. Sandia National Laboratories uses natural pyrite (FeS2) for its high-temperature, thermally activated Li(Si)/FeS2 batteries. The purification and processing procedures for the FeS2 involves both chemical and physical methods. Flotation was found to yield comparable results as HF leaching for removal of silica, but without the negative health and environmental concerns associated with this technique.

  17. Sulfide-driven microbial electrosynthesis.

    PubMed

    Gong, Yanming; Ebrahim, Ali; Feist, Adam M; Embree, Mallory; Zhang, Tian; Lovley, Derek; Zengler, Karsten

    2013-01-02

    Microbial electrosynthesis, the conversion of carbon dioxide to organic molecules using electricity, has recently been demonstrated for acetogenic microorganisms, such as Sporomusa ovata. The energy for reduction of carbon dioxide originates from the hydrolysis of water on the anode, requiring a sufficiently low potential. Here we evaluate the use of sulfide as an electron source for microbial electrosynthesis. Abiotically oxidation of sulfide on the anode yields two electrons. The oxidation product, elemental sulfur, can be further oxidized to sulfate by Desulfobulbus propionicus, generating six additional electrons in the process. The eight electrons generated from the combined abiotic and biotic steps were used to reduce carbon dioxide to acetate on a graphite cathode by Sporomusa ovata at a rate of 24.8 mmol/day · m(2). Using a strain of Desulfuromonas as biocatalyst on the anode resulted in an acetate production rate of 49.9 mmol/day · m(2), with a Coulombic efficiency of over 90%. These results demonstrate that sulfide can serve effectively as an alternative electron donor for microbial electrosynthesis.

  18. Sulfide-Driven Microbial Electrosynthesis

    SciTech Connect

    Gong, YM; Ebrahim, A; Feist, AM; Embree, M; Zhang, T; Lovley, D; Zengler, K

    2013-01-01

    Microbial electrosynthesis, the conversion of carbon dioxide to organic molecules using electricity, has recently been demonstrated for acetogenic microorganisms, such as Sporomusa ovata. The energy for reduction of carbon dioxide originates from the hydrolysis of water on the anode, requiring a sufficiently low potential. Here we evaluate the use of sulfide as an electron source for microbial electrosynthesis. Abiotically oxidation of sulfide on the anode yields two electrons. The oxidation product, elemental sulfur, can be further oxidized to sulfate by Desulfobulbus propionicus, generating six additional electrons in the process. The eight electrons generated from the combined abiotic and biotic steps were used to reduce carbon dioxide to acetate on a graphite cathode by Sporomusa ovata at a rate of 24.8 mmol/day.m(2). Using a strain of Desulfuromonas as biocatalyst on the anode resulted in an acetate production rate of 49.9 mmol/day.m(2), with a Coulombic efficiency of over 90%. These results demonstrate that sulfide can serve effectively as an alternative electron donor for microbial electrosynthesis.

  19. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    PubMed

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-30

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  20. The Triboluminescence of Zinc Cadmium Sulfide

    DTIC Science & Technology

    1978-11-01

    W£rA0fe4 5^5 /KD-AtW Sis TECHNICAL REPORT ARBRL-TR-02124 THE TRIBOLUMINESCENCE OF ZINC CADMIUM SULFIDE Carmen M. Cialella TECHNICAL James...THE TRIBOLUMINESCENCE OF ZINC CADMIUM SULFIDE READ INSTRUCTIONS BEFORE COMPLETING FORM 3. RECIPIENT’S CATALOG NUMBER 5. TYPE OF REPORT & PERIOD...and tested. This report presents subsequent efforts to determine the light output of the TL phosphor. Zinc Cadmium Sulfide (ZnCdS] as a function of

  1. Aminopyridinate-FI hybrids, their hafnium and titanium complexes, and their application in the living polymerization of 1-hexene.

    PubMed

    Haas, Isabelle; Dietel, Thomas; Press, Konstantin; Kol, Moshe; Kempe, Rhett

    2013-10-11

    Based on two well-established ligand systems, the aminopyridinato (Ap) and the phenoxyimine (FI) ligand systems, new Ap-FI hybrid ligands were developed. Four different Ap-FI hybrid ligands were synthesized through a simple condensation reaction and fully characterized. The reaction of hafnium tetrabenzyl with all four Ap-FI hybrid ligands exclusively led to mono(Ap-FI) complexes of the type [(Ap-FI)HfBn2 ]. The ligands acted as tetradentate dianionic chelates. Upon activation with tris(pentafluorophenyl)borane, the hafnium-dibenzyl complexes led to highly active catalysts for the polymerization of 1-hexene. Ultrahigh molecular weights and extremely narrow polydispersities support the living nature of this polymerization process. A possible deactivation product of the hafnium catalysts was characterized by single-crystal X-ray analysis and is discussed. The coordination modes of these new ligands were studied with the help of model titanium complexes. The reaction of titanium(IV) isopropoxide with ligand 1 led to a mono(Ap-FI) complex, which showed the desired fac-mer coordination mode. Titanium (IV) isopropoxide reacted with ligand 4 to give a complex of the type [(ApH-FI)2 Ti(OiPr)2 ], which featured the ligand in its monoanionic form. The two titanium complexes were characterized by X-ray crystal-structure analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ion-bombardment-induced reduction in vacancies and its enhanced effect on conductivity and reflectivity in hafnium nitride films

    NASA Astrophysics Data System (ADS)

    Gu, Zhiqing; Wang, Jiafu; Hu, Chaoquan; Zhang, Xiaobo; Dang, Jianchen; Zhang, Sam; Gao, Jing; Wang, Xiaoyi; Chen, Hong; Zheng, Weitao

    2016-08-01

    Although the role of ion bombardment on electrical conductivity and optical reflectivity of transition metal nitrides films was reported previously, the results were controversial and the mechanism was not yet well explored. Here, we show that proper ion bombardment, induced by applying the negative bias voltage ( V b), significantly improves the electrical conductivity and optical reflectivity in rocksalt hafnium nitride films regardless of level of stoichiometry (i.e., in both near-stoichiometric HfN1.04 and over-stoichiometric HfN1.17 films). The observed improvement arises from the increase in the concentration of free electrons and the relaxation time as a result of reduction in nitrogen and hafnium vacancies in the films. Furthermore, HfN1.17 films have always much lower electrical conductivity and infrared reflectance than HfN1.04 films for a given V b, owing to more hafnium vacancies because of larger composition deviation from HfN exact stoichiometry (N:Hf = 1:1). These new insights are supported by good agreement between experimental results and theoretical calculations.

  3. Sensitized photooxidation of dissolved sulfides in water

    SciTech Connect

    Brewer, T.F.; Curtis, J.G.; Marchand, E.A.; Adams, V.D.; Middlebrooks, E.J.

    1994-12-31

    A byproduct of the enhanced recovery of petroleum is flood water that is often contaminated with soluble sulfides. The ability of methylene blue (MB) and riboflavin (RF) to sensitize dissolved sulfides for photooxidation was investigated. Both MB and RF were found to be effective sensitizers for the oxidation of sulfide in water. MB-dosed batch reactors consistently reduced initial sulfide concentrations of 100 mg/l to less than 10--15 mg/l in less than one hour under artificial lighting (91% sunlight corrected fluorescent tubes) at a pH = 10 and MB = 1mg/l. Preliminary experiments have shown approximately 80--85% of the removed sulfide is accounted for as accumulated sulfate. RF is also effective at enhancing the removal of sulfide, but experiments similar to those conducted for NM revealed that RF-dosed reactors required approximately 2--3 times longer to achieve sulfide removal comparable to MB (1mg/l), even with an RF concentration of 20 mg/l. The primary product in RF-sensitized photooxidation of dissolved sulfides is also sulfate, with approximately 75-80% of removed sulfide recovered as sulfate. First order plots of experimental data yield reaction rate constants of k = 0.0097 min{sup {minus}1} for RF, and k = 0.0273 min{sup {minus}1} for MB.

  4. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility.

    PubMed

    Ma, Rui; Levard, Clément; Michel, F Marc; Brown, Gordon E; Lowry, Gregory V

    2013-03-19

    Environmental transformations of nanoparticles (NPs) affect their properties and toxicity potential. Sulfidation is an important transformation process affecting the fate of NPs containing metal cations with an affinity for sulfide. Here, the extent and mechanism of sulfidation of ZnO NPs were investigated, and the properties of resulting products were carefully characterized. Synchrotron X-ray absorption spectroscopy and X-ray diffraction analysis reveal that transformation of ZnO to ZnS occurs readily at ambient temperature in the presence of inorganic sulfide. The extent of sulfidation depends on sulfide concentration, and close to 100% conversion can be obtained in 5 days given sufficient addition of sulfide. X-ray diffraction and transmission electron microscopy showed formation of primarily ZnS NPs smaller than 5 nm, indicating that sulfidation of ZnO NPs occurs by a dissolution and reprecipitation mechanism. The solubility of partially sulfidized ZnO NPs is controlled by the remaining ZnO core and not quenched by a ZnS shell formed as was observed for partially sulfidized Ag NPs. Sulfidation also led to NP aggregation and a decrease of surface charge. These changes suggest that sulfidation of ZnO NPs alters the behavior, fate, and toxicity of ZnO NPs in the environment. The reactivity and fate of the resulting <5 nm ZnS particles remains to be determined.

  5. Synthesis and Optical Properties of Sulfide Nanoparticles Prepared in Dimethylsulfoxide

    SciTech Connect

    Li, Yuebin; Ma, Lun; Zhang, Xing; Joly, Alan G.; Liu, Zuli; Chen, Wei

    2008-11-01

    Many methods have been reported for the formation of sulfide nanoparticles by the reaction of metallic salts with sulfide chemical sources in aqueous solutions or organic solvents. Here, we report the formation of sulfide nanoparticles in dimethylsulfoxide (DMSO) by boiling metallic salts without sulfide sources. The sulfide sources are generated from the boiling of DMSO and react with metallic salts to form sulfide nanoparticles. In this method DMSO functions as a solvent and a sulfide source as well as a stabilizer for the formation of the nanoparticles. The recipe is simple and economical making sulfide nanoparticles formed in this way readily available for many potential applications.

  6. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Provisions § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration... the potassium ferricyanide titration method for the determination of sulfide in wastewaters...

  7. Hydrogen sulfide and vascular relaxation.

    PubMed

    Sun, Yan; Tang, Chao-Shu; DU, Jun-Bao; Jin, Hong-Fang

    2011-11-01

    To review the vasorelaxant effects of hydrogen sulfide (H(2)S) in arterial rings in the cardiovascular system under both physiological and pathophysiological conditions and the possible mechanisms involved. The data in this review were obtained from Medline and Pubmed sources from 1997 to 2011 using the search terms "hydrogen sulfide" and "vascular relaxation". Articles describing the role of hydrogen sulfide in the regulation of vascular activity and its vasorelaxant effects were selected. H(2)S plays an important role in the regulation of cardiovascular tone. The vasomodulatory effects of H(2)S depend on factors including concentration, species and tissue type. The H(2)S donor, sodium hydrosulfide (NaHS), causes vasorelaxation of rat isolated aortic rings in a dose-dependent manner. This effect was more pronounced than that observed in pulmonary arterial rings. The expression of K(ATP) channel proteins and mRNA in the aortic rings was increased compared with pulmonary artery rings. H(2)S is involved in the pathogenesis of a variety of cardiovascular diseases. Downregulation of the endogenous H(2)S pathway is an important factor in the pathogenesis of cardiovascular diseases. The vasorelaxant effects of H(2)S have been shown to be mediated by activation of K(ATP) channels in vascular smooth muscle cells and via the induction of acidification due to activation of the Cl(-)/HCO(3)(-) exchanger. It is speculated that the mechanisms underlying the vasoconstrictive function of H(2)S in the aortic rings involves decreased NO production and inhibition of cAMP accumulation. H(2)S is an important endogenous gasotransmitter in the cardiovascular system and acts as a modulator of vascular tone in the homeostatic regulation of blood pressure.

  8. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  9. Lithium-cupric sulfide cell

    SciTech Connect

    Cuesta, A.J.; Bump, D.D.

    1980-01-01

    Lithium cells have become the primary power source for cardiac pacemakers due to their reliability and longevity at low current drain rates. A lithium-cupric sulfide cell was developed which makes maximum use of the shape of a pacemaker's battery compartment. The cell has a stable voltage throughout 90% of its lifetime. It then drops to a second stable voltage before depletion. The voltage drop creates a small decrease in pacemaker rate, which alerts the physician to replace the pacemaker. No loss of capacity due to self-discharge as been seen to date, and cells have proven to be safe under extreme conditions. 2 refs.

  10. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  11. Medical Functions of Hydrogen Sulfide.

    PubMed

    Olas, Beata

    2016-01-01

    Hydrogen sulfide (H(2)S) is a gasomediator synthesized from L- and D-cysteine in various tissues. It is involved in a number of physiological and pathological processes. H(2)S exhibits antiatherosclerotic, vasodilator, and proangiogenic properties, and protects the kidney and heart from damage following ischemia/reperfusion injury. H(2)S donors may be natural or synthetic, and may be used for the safe treatment of a wide range of diseases. This review article summarizes the current state of knowledge of the therapeutic function of H(2)S.

  12. Internal correction of hafnium oxide spectral interferences and mass bias in the determination of platinum in environmental samples using isotope dilution analysis.

    PubMed

    Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio

    2009-05-01

    A method has been developed for the accurate determination of platinum by isotope dilution analysis, using enriched (194)Pt, in environmental samples containing comparatively high levels of hafnium without any chemical separation. The method is based on the computation of the contribution of hafnium oxide as an independent factor in the observed isotope pattern of platinum in the spiked sample. Under these conditions, the ratio of molar fractions between natural abundance and isotopically enriched platinum was independent of the amount of hafnium present in the sample. Additionally, mass bias was corrected by an internal procedure in which the regression variance was minimised. This was possible as the mass bias factor for hafnium oxide was very close to that of platinum. The final procedure required the measurement of three platinum isotope ratios (192/194, 195/194 and 196/194) to calculate the concentration of platinum in the sample. The methodology has been validated using the reference material "BCR-723 road dust" and has been applied to different environmental matrices (road dust, air particles, bulk wet deposition and epiphytic lichens) collected in the Aspe Valley (Pyrenees Mountains). A full uncertainty budget, using Kragten's spreadsheet method, showed that the total uncertainty was limited only by the uncertainty in the measured isotope ratios and not by the uncertainties of the isotopic composition of platinum and hafnium.

  13. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats

    NASA Technical Reports Server (NTRS)

    Miller, Scott R.; Bebout, Brad M.

    2004-01-01

    Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II.

  14. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment.

    PubMed

    Chen, Min-Hua; Hanagata, Nobutaka; Ikoma, Toshiyuki; Huang, Jian-Yuan; Li, Keng-Yuan; Lin, Chun-Pin; Lin, Feng-Huei

    2016-06-01

    Recently, photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. However, the optical approach of PDT is limited by tissue penetration depth of visible light. In this study, we propose that a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which is a material to yield large quantities of ROS inside the cells when the nanoparticles are bombarded with high penetrating power of ionizing radiation. Hf:HAp nanoparticles are generated by wet chemical precipitation with total doping concentration of 15mol% Hf(4+) relative to Ca(2+) in HAp host material. The results show that the HAp particles could be successfully doped with Hf ions, resulted in the formation of nano-sized rod-like shape and with pH-dependent solubility. The impact of ionizing radiation on Hf:HAp nanoparticles is assessed by using in-vitro and in-vivo model using A549 cell line. The 2',7'-dichlorofluorescein diacetate (DCFH-DA) results reveal that after being exposed to gamma rays, Hf:HAp could significantly lead to the formation of ROS in cells. Both cell viability (WST-1) and cytotoxicity (LDH) assay show the consistent results that A549 lung cancer cell lines are damaged with changes in the cells' ROS level. The in-vivo studies further demonstrate that the tumor growth is inhibited owing to the cells apoptosis when Hf:HAp nanoparticles are bombarded with ionizing radiation. This finding offer a new therapeutic method of interacting with ionizing radiation and demonstrate the potential of Hf:HAp nanoparticles in tumor treatment, such as being used in a palliative treatment after lung surgical procedure. Photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. Unfortunately, the approach of PDT is usually limited to the treatment of systemic disease and deeper tumor, due to the limited tissue penetration depth of visible

  15. Catalyst and process for oxidizing hydrogen sulfide

    SciTech Connect

    Hass, R.H.; Ward, J.W.

    1984-04-24

    Catalysts comprising bismuth and vanadium components are highly active and stable, especially in the presence of water vapor, for oxidizing hydrogen sulfide to sulfur or SO/sub 2/. Such catalysts have been found to be especially active for the conversion of hydrogen sulfide to sulfur by reaction with oxygen or SO/sub 2/.

  16. Ammonia and hydrogen sulfide removal using biochar

    USDA-ARS?s Scientific Manuscript database

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  17. The role of hydrogen sulfide in burns.

    PubMed

    Akter, Farhana

    2016-05-01

    Hydrogen sulfide is a novel gasotransmitter that has been shown to play a major role in regulating vascular tone. However, the role of hydrogen sulfide in inflammation, sepsis and burns has only recently been studied. In animal studies, hydrogen sulfide has been shown to play a role in both promoting and inhibiting inflammation. Understanding the role of H2S in sepsis and shock is particularly important due to the high mortality associated with both conditions. In animal sepsis models, hydrogen sulfide appears to increase survival. Severe burns are associated with an inflammatory response that causes increased permeability and edema. Currently, there are few studies that have examined the exact role of hydrogen sulfide in burns. However, the role of hydrogen sulfide in inflammation enables us to hypothesize its role in burns. This review highlights the role of hydrogen sulfide in the mechanisms of action underlying inflammation, wound healing and sepsis as well as examining the potential role of hydrogen sulfide in burns. The authors of this article hope that this review will stimulate research to discover the exact role of this fascinating molecule in burns.

  18. Ferrous and Sulfide Treatment of Electroplating Wastewater.

    DTIC Science & Technology

    chromium contaminants and the precipitation of heavy metal contaminants from contaminated electroplating wastewater. The wastewater is first adjusted...to a pH of from about 8 to 10 and then treated with sodium sulfide to provide sulfide ions to effect precipitation of heavy metal contaminants followed

  19. Synthesis of magnetic rhenium sulfide composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tang, Naimei; Tu, Weixia

    2009-10-01

    Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe 3O 4 and ReS 2 in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g -1 at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.

  20. Hydrogen sulfide pollution in wastewater treatment facilities

    SciTech Connect

    AlDhowalia, K.H. )

    1987-01-01

    The hydrogen sulfide (H{sub 2}S) found in wastewater collection systems and wastewater treatment facilities results from the bacterial reduction of the sulfate ion (SO{sub 4}). Hydrogen sulfide is a gas that occurs both in the sewer atmosphere and as a dissolved gas in the wastewater. When raw wastewater first enters the wastewater treatment facility by gravity most of the hydrogen sulfide is in the gaseous phase and will escape into the atmosphere at the inlet structures. Also some of the dissolved hydrogen sulfide will be released at points of turbulance such as at drops in flow, flumes, or aeration chambers. Several factors can cause excessive hydrogen sulfide concentrations in a sewerage system. These include septic sewage, long flow times in the sewerage system, high temperatures, flat sewer grades, and poor ventilation. These factors are discussed in this paper.

  1. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  2. Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors.

    PubMed

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; Kumari, Niru; Davila, Noraica; Strachan, John Paul; Vine, David; Kilcoyne, A L David; Nishi, Yoshio; Williams, R Stanley

    2016-12-27

    Transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory because of their favorable operating power, endurance, speed, and density. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physicochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.

  3. Carrier Transport at Metal/Amorphous Hafnium-Indium-Zinc Oxide Interfaces.

    PubMed

    Kim, Seoungjun; Gil, Youngun; Choi, Youngran; Kim, Kyoung-Kook; Yun, Hyung Joong; Son, Byoungchul; Choi, Chel-Jong; Kim, Hyunsoo

    2015-10-14

    In this paper, the carrier transport mechanism at the metal/amorphous hafnium-indium-zinc oxide (a-HIZO) interface was investigated. The contact properties were found to be predominantly affected by the degree of interfacial reaction between the metals and a-HIZO; that is, a higher tendency to form metal oxide phases leads to excellent Ohmic contact via tunneling, which is associated with the generated donor-like oxygen vacancies. In this case, the Schottky-Mott theory is not applicable. Meanwhile, metals that do not form interfacial metal oxide, such as Pd, follow the Schottky-Mott theory, which results in rectifying Schottky behavior. The Schottky characteristics of the Pd contact to a-HIZO can be explained in terms of the barrier inhomogeneity model, which yields a mean barrier height of 1.40 eV and a standard deviation of 0.14 eV. The work function of a-HIZO could therefore be estimated as 3.7 eV, which is in good agreement with the ultraviolet photoelectron spectroscopy (3.68 eV). Our findings will be useful for establishing a strategy to form Ohmic or Schottky contacts to a-HIZO films, which will be essential for fabricating reliable high-performance electronic devices.

  4. Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium.

    PubMed

    Chirik, Paul J

    2007-01-07

    The rich chemistry of substituted bis(cyclopentadienyl)zirconium and hafnium complexes bearing side-on coordinated dinitrogen ligands is highlighted in this Perspective. Our studies in this area were initially motivated by the desire to understand side-on vs. end-on dinitrogen coordination in bimetallic zirconocene and hafnocene N2 compounds. In the cases where eta2,eta2-dinitrogen compounds were isolated, both structural and computational data have established significant imido character in the metal-nitrogen bonds. This additional bonding interaction, which is diminished in end-on complexes bearing both terminal and bridging N2 ligands, facilitates dinitrogen functionalization by non-polar reagents including dihydrogen, carbon-hydrogen bonds and weak Brønsted acids such as water and ethanol. In hafnocene chemistry, where unwanted side-on, end-on isomerization is suppressed, cycloaddition of phenylisocyanate to coordinated N2 has also been accomplished. For N-H bond forming reactions involving H2, kinetic measurements, in addition to isotopic labelling and computational studies, are consistent with dinitrogen functionalization by 1,2-addition involving a highly ordered, four-centred transition structure.

  5. Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition.

    PubMed

    Huang, Fei; Chen, Xing; Liang, Xiao; Qin, Jun; Zhang, Yan; Huang, Taixing; Wang, Zhuo; Peng, Bo; Zhou, Peiheng; Lu, Haipeng; Zhang, Li; Deng, Longjiang; Liu, Ming; Liu, Qi; Tian, He; Bi, Lei

    2017-02-01

    Owing to their prominent stability and CMOS compatibility, HfO2-based ferroelectric films have attracted great attention as promising candidates for ferroelectric random-access memory applications. A major reliability issue for HfO2 based ferroelectric devices is fatigue. So far, there have been a few studies on the fatigue mechanism of this material. Here, we report a systematic study of the fatigue mechanism of yttrium-doped hafnium oxide (HYO) ferroelectric thin films deposited by pulsed laser deposition. The influence of pulse width, pulse amplitude and temperature on the fatigue behavior of HYO during field cycling is studied. The temperature dependent conduction mechanism is characterized after different fatigue cycles. Domain wall pinning caused by carrier injection at shallow defect centers is found to be the major fatigue mechanism of this material. The fatigued device can fully recover to the fatigue-free state after being heated at 90 °C for 30 min, confirming the shallow trap characteristic of the domain wall pinning defects.

  6. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure.

    PubMed

    Zerr, Andreas; Miehe, Gerhard; Riedel, Ralf

    2003-03-01

    High-pressure synthesis is a powerful method for the preparation of novel materials with high elastic moduli and hardness. Additionally, such materials may exhibit interesting thermal, optoelectronic, semiconductuing, magnetic or superconducting properties. Here, we report on the high-pressure synthesis of zirconium and hafnium nitrides with the stoichiometry M3N4, where M = Zr, Hf. Synthesis experiments were performed in a laser-heated diamond anvil cell at pressures up to 18 GPa and temperatures up to 3,000 K. We observed formation of cubic Zr3N4 and Hf3N4 (c-M3N4) with a Th3P4-structure, where M-cations are eightfold coordinated by N anions. The c-M3N4 phases are the first binary nitrides with such a high coordination number. Both compounds exhibit high bulk moduli around 250 GPa, which indicates high hardness. Moreover, the new nitrides, c-Zr3N4 and c-Hf3N4, may be the first members of a larger group of transition metal and/or lanthanide nitrides with interesting ferromagnetic or superconducting behaviour.

  7. Dry Sliding Wear Behavior of Hafnium-Based Bulk Metallic Glass at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Keshri, Anup Kumar; Behl, Lovish; Lahiri, Debrupa; Dulikravich, George S.; Agarwal, Arvind

    2016-09-01

    Dry sliding wear behavior of hafnium-based bulk metallic glass was studied at two loads (5 and 15 N) and two temperatures (298 and 673 K) using aluminum oxide (Al2O3) ball as a wear counterpart. At 5 N load, wear reduced by ~71% on increasing the temperature from 298 to 673 K. At a higher load of 15 N, the weight loss reduction was much lower (45%) on increasing the temperature from 298 to 673 K. Decreased wear weight loss on increasing the temperature was attributed to the increased hardness of the Hf-based metallic glass at high temperatures. Micro-hardness of the alloy at 293 K was found to be 636 Hv, which gradually increased to 655 Hv on annealing at 673 K. Improvement in the hardness at elevated temperature is attributed to: (1) free volume annihilation, (2) surface oxide formation and (3) nano-crystallites precipitation. Reduced wear at elevated temperature resulted in smaller volume of debris generation that restricted three-body wear to obtain lower coefficient of friction (COF) (0.25-0.35) compared to COF (0.65-0.75) at room temperature.

  8. Optical reflectivity and hardness improvement of hafnium nitride films via tantalum alloying

    NASA Astrophysics Data System (ADS)

    Gu, Zhiqing; Huang, Haihua; Zhang, Sam; Wang, Xiaoyi; Gao, Jing; Zhao, Lei; Zheng, Weitao; Hu, Chaoquan

    2016-12-01

    It is found that incorporation of tantalum in a hafnium nitride film induces a tunable optical reflectivity and improves the hardness. The underlying mechanism can be illustrated by a combination of experiments and first-principles calculations. It is shown that the evolution of optical reflectivity and the increase in hardness arise from the formation of Hf1-xTaxN solid solutions and the resulting changes in the electronic structure. The increase in infrared reflectance originates from the increase in concentration of free electrons (n) because Ta (d3s2) has one more valence electron than Hf (d2s2). The sharp blue-shift in cutoff wavelength is attributed to the increase in n and the appearance of t2g → eg interband absorption. These results suggest that alloying of a second transition metal renders an effective avenue to improve simultaneously the optical and mechanical properties of transition metal nitride films. This opens up a door in preparing high-reflectance yet hard films.

  9. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    DOE PAGES

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test themore » quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.« less

  10. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    SciTech Connect

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test the quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.

  11. Arc Jet Testing of Hafnium Diboride Based Ultra High Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Ellerby, Don; Beckman, Sarah; Irby, Edward; Squire, Tom; Olejniczak, Joe; Johnson, Sylvia M.; Gusman, Michael; Gasch, Matthew

    2003-01-01

    Hafnium Diboride (HFB,) based materials have shown promise for use in a number of high temperature aerospace applications, including rocket nozzles and as leading edges on hypersonic reentry vehicles. The stability of the materials in relevant environments is key to determining their suitability for a particular application. In this program we have been developing HfB2/SiC materials for use as sharp leading edges. The program as a whole included processing and characterization of the HfBJSiC materials. The specific work discussed here will focus on studies of the materials oxidation behavior in simulated reentry environments through arc jet testing. Four flat face models were tested to examine the influence of heat flux and stagnation pressure on the materials oxidation behavior. The results from arc jet testing of two HfB2/SiC cone models will also be discussed. Each cone model was run multiple times with gradually increasing heat fluxes. Total run times on a single cone model exceeded 80 minutes. For both the flat face and cone models surface temperatures well in excess of 2200 C were measured. Post test microstructural examination of the models and correlations with measured temperatures will be discussed.

  12. Tailoring the index of refraction of nanocrystalline hafnium oxide thin films

    SciTech Connect

    Vargas, Mirella; Murphy, N. R.; Ramana, C. V.

    2014-03-10

    Hafnium oxide (HfO{sub 2}) films were grown by sputter-deposition by varying the growth temperature (T{sub s} = 25–700 °C). HfO{sub 2} films grown at T{sub s} < 200 °C were amorphous, while those grown at T{sub s} ≥ 200 °C were monoclinic, nanocrystalline with (1{sup ¯}11) texturing. X-ray reflectivity (XRR) analyses indicate that the film-density (ρ) increases with increasing T{sub s}. The index of refraction (n) profiles derived from spectroscopic ellipsometry analyses follow the Cauchy dispersion relation. Lorentz-Lorenz analysis (n{sub (λ)} = 550 nm) and optical-model adopted agree well with the XRR data/analyses. A direct T{sub s}-ρ-n relationship suggests that tailoring the optical quality is possible by tuning T{sub s} and the microstructure of HfO{sub 2} films.

  13. Measurement and Simulation of Thermal Conductivity of Hafnium-Aluminum Thermal Neutron Absorber Material

    NASA Astrophysics Data System (ADS)

    Guillen, Donna Post; Harris, William H.

    2016-09-01

    A metal matrix composite (MMC) material composed of hafnium aluminide (Al3Hf) intermetallic particles in an aluminum matrix has been identified as a promising material for fast flux irradiation testing applications. This material can filter thermal neutrons while simultaneously providing high rates of conductive cooling for experiment capsules. The purpose of this work is to investigate effects of Hf-Al material composition and neutron irradiation on thermophysical properties, which were measured before and after irradiation. When performing differential scanning calorimetry (DSC) on the irradiated specimens, a large exotherm corresponding to material annealment was observed. Therefore, a test procedure was developed to perform DSC and laser flash analysis (LFA) to obtain the specific heat and thermal diffusivity of pre- and post-annealment specimens. This paper presents the thermal properties for three states of the MMC material: (1) unirradiated, (2) as-irradiated, and (3) irradiated and annealed. Microstructure-property relationships were obtained for the thermal conductivity. These relationships are useful for designing components from this material to operate in irradiation environments. The ability of this material to effectively conduct heat as a function of temperature, volume fraction Al3Hf, radiation damage, and annealing is assessed using the MOOSE suite of computational tools.

  14. Extraction chromatographic separations of tantalum and tungsten from hafnium and complex matrix constituents.

    PubMed

    Snow, Mathew S; Finck, Martha R; Carney, Kevin P; Morrison, Samuel S

    2017-02-10

    Tantalum (Ta), hafnium (Hf), and tungsten (W) analyses from complex matrices require high purification of these analytes from each other and major/trace matrix constituents, however, current state-of-the-art Ta/Hf/W separations rely on traditional anion exchange approaches that show relatively similar distribution coefficient (Kd) values for each element. This work reports an assessment of three commercially available extraction chromatographic resins (TEVA, TRU, and UTEVA) for Ta/Hf/W separations. Batch contact studies show differences in Ta/Hf and Ta/W Kd values of up to 10(6) and 10(4) (respectively), representing an improvement of a factor of 100 and 300 in Ta/Hf and Ta/W Kd values (respectively) over AG1×4 resin. Variations in the Kd values as a function of HCl concentration for TRU resin show that this resin is well suited for Ta/Hf/W separations, with Ta/Hf, Ta/W, and W/Hf Kd value improvements of 10, 200, and 30 (respectively) over AG1×4 resin. Analyses of digested soil samples (NIST 2710a) using TRU resin and tandem TEVA-TRU columns demonstrate the ability to achieve extremely high purification (>99%) of Ta and W from each other and Hf, as well as enabling very high purification of Ta and W from the major and trace elemental constituents present in soils using a single chromatographic step.

  15. Separation of trace level hafnium from tungsten: a step toward solving an astronomical puzzle.

    PubMed

    Maji, Samir; Lahiri, Susanta; Wierczinski, Birgit; Korschinek, Gunther

    2006-04-01

    182Hf (T(1/2) = 9 x 10(6) y) is believed to be formed by pure r-process during a supernova explosion, and therefore, the search for minute traces of 182Hf in the earth's crust is of great interest. Only accelerator mass spectrometry (AMS) is well suited for detecting such low levels of 182Hf. But any attempt to measure 182Hf by AMS must ensure that the sample is free from its naturally occurring stable isobar 182W. A simple method for separation of tungsten and hafnium has been developed using radiometric simulation followed by checking the decontamination of tungsten from Hf in a synthetic sample by AMS. The separation studies were performed by a liquid-liquid extraction technique using tri-n-octylamine (TOA) as the organic reagent. It has been found that a very high separation factor (1.6 x 10(6)) can be achieved when 0.3 M TOA diluted in cyclohexane is used as the organic phase and 6 M HCl (in the presence of small amount of H2O2) is used as the aqueous phase.

  16. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites.

    PubMed

    Bizzarro, Martin; Baker, Joel A; Haack, Henning; Ulfbeck, David; Rosing, Minik

    2003-02-27

    The 176Lu to 176Hf decay series has been widely used to understand the nature of Earth's early crust-mantle system. The interpretation, however, of Lu-Hf isotope data requires accurate knowledge of the radioactive decay constant of 176Lu (lambda176Lu), as well as bulk-Earth reference parameters. A recent calibration of the lambda176Lu value calls for the presence of highly unradiogenic hafnium in terrestrial zircons with ages greater than 3.9 Gyr, implying widespread continental crust extraction from an isotopically enriched mantle source more than 4.3 Gyr ago, but does not provide evidence for a complementary depleted mantle reservoir. Here we report Lu-Hf isotope measurements of different Solar System objects including chondrites and basaltic eucrites. The chondrites define a Lu-Hf isochron with an initial 176Hf/177Hf ratio of 0.279628 +/- 0.000047, corresponding to lambda176Lu = 1.983 +/- 0.033 x 10-11 yr-1 using an age of 4.56 Gyr for the chondrite-forming event. This lambda176Lu value indicates that Earth's oldest minerals were derived from melts of a mantle source with a time-integrated history of depletion rather than enrichment. The depletion event must have occurred no later than 320 Myr after planetary accretion, consistent with timing inferred from extinct radionuclides.

  17. Temperature effect on electrospinning of nanobelts: the case of hafnium oxide

    NASA Astrophysics Data System (ADS)

    Su, Yurong; Lu, Bingan; Xie, Yizhu; Ma, Ziwei; Liu, Lixin; Zhao, Haiting; Zhang, Jia; Duan, Huigao; Zhang, Hongliang; Li, Jian; Xiong, Yuqing; Xie, Erqing

    2011-07-01

    Electrospinning is a convenient and versatile method for fabricating different kinds of one-dimensional nanostructures such as nanofibres, nanotubes and nanobelts. Environmental parameters have a great influence on the electrospinning nanostructure. Here we report a new method to fabricate hafnium oxide (HfO2) nanobelts. HfO2 nanobelts were prepared by electrospinning a sol-gel solution with the implementation of heating and subsequent calcination treatment. We investigate the temperature dependence of the products by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and energy-dispersive x-ray (EDX) spectroscopy. The heating temperature of spinning ambient is found to be crucial to the formation of HfO2 nanobelts. By tuning the temperature, the morphological transformation of HfO2 from nanowires to nanobelts was achieved. It was found that the rapid evaporation of solvent played an important role in the formation process of HfO2 nanobelts. It is shown that nanobelts can only be obtained with the temperature higher than 50 °C and they are in the high quality monoclinic phase. A possible growth mechanism of the nanobelts based on phase separation is proposed. The enhanced photoluminescence (PL) of HfO2:Eu3 + nanobelts is also illustrated.

  18. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  19. Compounds between the dioxides of hafnium and zirconium and the oxides of strontium and barium

    SciTech Connect

    Gerasimyuk, G.I.; Lopato, L.M.; Shevchenko, A.V.; Zaitseva, Z.A.

    1985-12-01

    The goal of the paper is the synthesis and study of the properties of compounds in the system HfO/sub 2/ (ZrO2)-SrO(BaO). These compounds form in the region of high alkaline-earth content. The phase composition of the samples was studied by x-ray and petrographic analyses on a DRON-1.5 unit at room temperature. It was established from the studies that, independent of the means of sample preparation, there form on interaction of the dioxides of hafnium and zirconium with the oxides of strontium in the region of high SrO content the compounds Sr/sub 4/HF/sub 3/O/sub 10/, Sr/sub 4/Zr/sub 3/O/sub 10/, Sr/sub 3/Hf/sub 2/O/sub 7/, Sr/sub 3/Zr/sub 2/O/sub 7/, Sr/sub 2/HfO/sub 4/, and Sr/sub 2/ZrO/sub 4/. The unit-cell parameters and crystal-optical characteristics of the compounds synthesized were determined.

  20. Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors

    SciTech Connect

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; Kumari, Niru; Davila, Noraica; Strachan, John Paul; Vine, David; Kilcoyne, A. L. David; Nishi, Yoshio; Williams, R. Stanley

    2016-12-27

    Due to the favorable operating power, endurance, speed, and density., transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physiocochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.

  1. Novel synthesis of hafnium oxide nanoparticles by precipitation method and its characterization

    SciTech Connect

    Ramadoss, Ananthakumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae

    2012-09-15

    Highlights: ► HfO{sub 2} NPs were prepared by precipitation method. ► XRD and Raman analysis revealed the presence of monoclinic phase. ► The average particle size of HfO{sub 2} NPs is 20 nm. ► The method is a simple, low cost and eco-friendly approach. -- Abstract: Hafnium oxide nanoparticles (HfO{sub 2} NPs) have been successfully synthesized by means of a novel precipitation method and were characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FESEM), UV–visible, Fourier transform infrared (FTIR) and laser Raman spectroscopy. The XRD and Raman analysis revealed the presence of pure monoclinic HfO{sub 2} NPs. FESEM image showed that the HfO{sub 2} NPs were of spherical shape with an average particle size of about 20 nm. The optical band gap of the HfO{sub 2} NPs was found to be 6.12 eV. Advantages of this method were simple and low cost of synthesis of HfO{sub 2} NPs includes the small and narrow particle size distribution.

  2. Measurement and Simulation of Thermal Conductivity of Hafnium-Aluminum Thermal Neutron Absorber Material

    SciTech Connect

    Guillen, Donna Post; Harris, William H.

    2016-05-11

    A metal matrix composite (MMC) material comprised of hafnium aluminide (Al3Hf) intermetallic particles in an aluminum matrix has been identified as a promising material for fast-flux irradiation testing applications. This material can filter thermal neutrons while simultaneously providing high rates of conductive cooling for experiment capsules. Our purpose is to investigate effects of Hf-Al material composition and neutron irradiation on thermophysical properties, which were measured before and after irradiation. When performing differential scanning calorimetry (DSC) on the irradiated specimens, a large exotherm corresponding to material annealment was observed. Thus, a test procedure was developed to perform DSC and laser flash analysis (LFA) to obtain the specific heat and thermal diffusivity of pre- and post-annealment specimens. This paper presents the thermal properties for three states of the MMC material: (1) unirradiated, (2) as-irradiated, and (3) irradiated and annealed. Microstructure-property relationships were obtained for the thermal conductivity. These relationships are useful for designing components from this material to operate in irradiation environments. Furthermore, the ability of this material to effectively conduct heat as a function of temperature, volume fraction Al3Hf, radiation damage and annealing is assessed using the MOOSE suite of computational tools.

  3. Measurement and Simulation of Thermal Conductivity of Hafnium-Aluminum Thermal Neutron Absorber Material

    DOE PAGES

    Guillen, Donna Post; Harris, William H.

    2016-05-11

    A metal matrix composite (MMC) material comprised of hafnium aluminide (Al3Hf) intermetallic particles in an aluminum matrix has been identified as a promising material for fast-flux irradiation testing applications. This material can filter thermal neutrons while simultaneously providing high rates of conductive cooling for experiment capsules. Our purpose is to investigate effects of Hf-Al material composition and neutron irradiation on thermophysical properties, which were measured before and after irradiation. When performing differential scanning calorimetry (DSC) on the irradiated specimens, a large exotherm corresponding to material annealment was observed. Thus, a test procedure was developed to perform DSC and laser flashmore » analysis (LFA) to obtain the specific heat and thermal diffusivity of pre- and post-annealment specimens. This paper presents the thermal properties for three states of the MMC material: (1) unirradiated, (2) as-irradiated, and (3) irradiated and annealed. Microstructure-property relationships were obtained for the thermal conductivity. These relationships are useful for designing components from this material to operate in irradiation environments. Furthermore, the ability of this material to effectively conduct heat as a function of temperature, volume fraction Al3Hf, radiation damage and annealing is assessed using the MOOSE suite of computational tools.« less

  4. Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Wan, Yimao; Cui, Yanfeng; Chen, Yifeng; Verlinden, Pierre; Cuevas, Andres

    2017-01-01

    This paper investigates the application of hafnium oxide (HfO2) thin films to crystalline silicon (c-Si) solar cells. Excellent passivation of both n- and p-type crystalline silicon surfaces has been achieved by the application of thin HfO2 films prepared by atomic layer deposition. Effective surface recombination velocities as low as 3.3 and 9.9 cm s-1 have been recorded with 15 nm thick films on n- and p-type 1 Ω cm c-Si, respectively. The surface passivation by HfO2 is activated at 350 °C by a forming gas anneal. Capacitance voltage measurement shows an interface state density of 3.6 × 1010 cm-2 eV-1 and a positive charge density of 5 × 1011 cm-2 on annealed p-type 1 Ω cm c-Si. X-ray diffraction unveils a positive correlation between surface recombination and crystallinity of the HfO2 and a dependence of the crystallinity on both annealing temperature and film thickness. In summary, HfO2 is demonstrated to be an excellent candidate for surface passivation of crystalline silicon solar cells.

  5. Ferroelectric transistors with monolayer molybdenum disulfide and ultra-thin aluminum-doped hafnium oxide

    NASA Astrophysics Data System (ADS)

    Yap, Wui Chung; Jiang, Hao; Liu, Jialun; Xia, Qiangfei; Zhu, Wenjuan

    2017-07-01

    In this letter, we demonstrate ferroelectric memory devices with monolayer molybdenum disulfide (MoS2) as the channel material and aluminum (Al)-doped hafnium oxide (HfO2) as the ferroelectric gate dielectric. Metal-ferroelectric-metal capacitors with 16 nm thick Al-doped HfO2 are fabricated, and a remnant polarization of 3 μC/cm2 under a program/erase voltage of 5 V is observed. The capability of potential 10 years data retention was estimated using extrapolation of the experimental data. Ferroelectric transistors based on embedded ferroelectric HfO2 and MoS2 grown by chemical vapor deposition are fabricated. Clockwise hysteresis is observed at low program/erase voltages due to slow bulk traps located near the 2D/dielectric interface, while counterclockwise hysteresis is observed at high program/erase voltages due to ferroelectric polarization. In addition, the endurances of the devices are tested, and the effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, are observed. Reliable writing/reading in MoS2/Al-doped HfO2 ferroelectric transistors over 2 × 104 cycles is achieved. This research can potentially lead to advances of two-dimensional (2D) materials in low-power logic and memory applications.

  6. The molecular frame electric dipole moment and hyperfine interactions in hafnium fluoride, HfF.

    PubMed

    Le, Anh; Steimle, Timothy C; Skripnikov, Leonid; Titov, Anatoly V

    2013-03-28

    The (1,0) [17.9]2.5-X(2)Δ(3∕2) band of hafnium monofluoride (HfF) has been recorded using high-resolution laser-induced fluorescence spectroscopy both field-free and in the presence of a static electric field. The field-free spectra of (177)HfF, (179)HfF, and (180)HfF were modeled to generate a set of fine and hyperfine parameter for the X(2)Δ(3∕2)(v = 0) and [17.9]2.5 (v = 1) states. The observed optical Stark shifts for the (180)HfF isotopologue were analyzed to produce the molecular frame electric dipole moments of 1.66(1) D and 0.419(7) D for the X(2)Δ(3∕2) and [17.9]2.5 state, respectively. Both the generalized effective core potential and all-electron four component approaches were used in ab initio calculations to predict the properties of ground state HfF including equilibrium distance, dipole moments, quadrupole coupling, and magnetic hyperfine constants.

  7. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation.

  8. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Luminescent zinc sulfide. 73.2995 Section 73.2995... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity. The color additive luminescent zinc sulfide is zinc sulfide containing a copper activator. Following...

  9. 40 CFR 425.04 - Applicability of sulfide pretreatment standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide gas. (3) The characteristics of the receiving POTWs headworks, preliminary and primary... opportunities for release of hydrogen sulfide gas. (4) The occurrence of any prior sulfide related interference... the sulfide pretreatment standards of this part should not apply to a new source planning to discharge...

  10. 40 CFR 425.04 - Applicability of sulfide pretreatment standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide gas. (3) The characteristics of the receiving POTWs headworks, preliminary and primary... opportunities for release of hydrogen sulfide gas. (4) The occurrence of any prior sulfide related interference... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability of sulfide...

  11. 40 CFR 425.04 - Applicability of sulfide pretreatment standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide gas. (3) The characteristics of the receiving POTWs headworks, preliminary and primary... opportunities for release of hydrogen sulfide gas. (4) The occurrence of any prior sulfide related interference... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability of sulfide...

  12. 40 CFR 425.04 - Applicability of sulfide pretreatment standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide gas. (3) The characteristics of the receiving POTWs headworks, preliminary and primary... opportunities for release of hydrogen sulfide gas. (4) The occurrence of any prior sulfide related interference... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability of sulfide...

  13. 40 CFR 425.04 - Applicability of sulfide pretreatment standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide gas. (3) The characteristics of the receiving POTWs headworks, preliminary and primary... opportunities for release of hydrogen sulfide gas. (4) The occurrence of any prior sulfide related interference... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability of sulfide...

  14. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    SciTech Connect

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  15. [Hydrogen sulfide and penile erection].

    PubMed

    Huang, Yi-Ming; Cheng, Yong; Jiang, Rui

    2012-09-01

    Hydrogen sulfide (H2S) is the third type of active endogenous gaseous signal molecule following nitric oxide (NO) and carbon monoxide (CO). In mammalians, H2S is mainly synthesized by two proteases, cystathionine-beta-synthase (CBS) and cystathionine-gamma-lyase (CSE). H2S plays an essential function of physiological regulation in vivo, and promotes penile erection by acting on the ATP-sensitive potassium channels to relax the vascular smooth muscle as well as by the synergistic effect with testosterone and NO to relax the corpus cavernosum smooth muscle (CCSM). At present, the selective phosphodiesterase type 5 (PDE5) inhibitor is mainly used for the treatment of erectile dysfunction (ED), but some ED patients fail to respond. Therefore, further studies on the mechanism of H2S regulating penile erection may provide a new way for the management of erectile dysfunction.

  16. Metal hydrogen sulfide superconducting temperature

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-01-01

    Éliashberg theory is generalized to the electronphonon (EP) systems with the not constant density of electronic states. The phonon contribution to the anomalous electron Green's function (GF) is considered. The generalized Éliashberg equations with the variable density of electronic states are resolved for the hydrogen sulphide SH3 phase under pressure. The dependence of both the real and the imaginary part of the order parameter on the frequency in the SH3 phase is obtained. The Tc = 177 K value in the hydrogen sulfide SH3 phase at the pressure P = 225 GPa has been defined. The results of the solution of the Eliashberg equations for the Im-3m (170 GPa), Im-3m (200 GPa) and R3m (120 GPa) phases are presented. A peak value Tc = 241 K of the superconducting transition temperature has been predicted.

  17. Redox biochemistry of hydrogen sulfide.

    PubMed

    Kabil, Omer; Banerjee, Ruma

    2010-07-16

    H(2)S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of gamma-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H(2)S production in the vasculature. However, patients with inherited deficiency in gamma-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxidative phosphorylation while also exposing cytochrome c oxidase to this metabolic poison. This report focuses on the biochemistry of H(2)S biogenesis and clearance, on the molecular mechanisms of its action, and on its varied biological effects.

  18. Suicide by hydrogen sulfide inhalation.

    PubMed

    Bott, Eleanor; Dodd, Malcolm

    2013-03-01

    The authors report a case of suicide by hydrogen sulfide in Australia. A young woman was located in a car wearing protective eyewear. A tub of foamy yellow substance and a quantity of hydrochloric acid and lime sulfur were also located in the rear of the vehicle. Morphological findings at autopsy were nonspecific. Toxicologic analysis of a specimen of leg blood detected elevated levels of methemoglobin. If Australia follows a similar trend to Japan and the United States, it is possible that incidences of such cases will rise, probably because of Internet dissemination. From a public health perspective, emergency service providers and forensic case workers should be aware of the potential hazards to themselves and others when dealing with such cases.

  19. Microbial control of hydrogen sulfide production

    SciTech Connect

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J.

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  20. Copper-catalyzed asymmetric oxidation of sulfides.

    PubMed

    O'Mahony, Graham E; Ford, Alan; Maguire, Anita R

    2012-04-06

    Copper-catalyzed asymmetric sulfoxidation of aryl benzyl and aryl alkyl sulfides, using aqueous hydrogen peroxide as the oxidant, has been investigated. A relationship between the steric effects of the sulfide substituents and the enantioselectivity of the oxidation has been observed, with up to 93% ee for 2-naphthylmethyl phenyl sulfoxide, in modest yield in this instance (up to 30%). The influence of variation of solvent and ligand structure was examined, and the optimized conditions were then used to oxidize a number of aryl alkyl and aryl benzyl sulfides, producing sulfoxides in excellent yields in most cases (up to 92%), and good enantiopurities in certain cases (up to 84% ee).

  1. Nanostructured lead sulfide: synthesis, structure and properties

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Gusev, A. I.; Rempel, A. A.

    2016-07-01

    The theoretical and experimental results of recent studies dealing with nanostructured lead sulfide are summarized and analyzed. The key methods for the synthesis of nanostructured lead sulfide are described. The crystal structure of PbS in nanopowders and nanofilms is discussed. The influence of the size of nanostructure elements on the optical and thermal properties of lead sulfide is considered. The dependence of the band gap of PbS on the nanoparticle (crystallite) size for powders and films is illustrated. The bibliography includes 222 references.

  2. Structural studies in limestone sulfidation

    SciTech Connect

    Fenouil, Laurent A.

    1993-05-01

    This study investigates the sulfidation of limestone at high temperatures (700--900°C) as the first step in the design of a High-Temperature Coal-Gas Clean-Up system using millimeter-size limestone particles. Several workers have found that the rate of this reaction significantly decreases after an initial 10 to 15% conversion of CaCO3 to CaS. The present work attempts to explain this feature. It is first established that millimeter-size limestone particles do not sinter at temperatures up to the CaCO3 calcination point (899°C at 1.03 bar CO2} partial pressure). It is then shown that CaS sinters rapidly at 750 to 900°C if CO2 is present in the gas phase. Scanning Electron Microscope (SEM) photographs and Electron Dispersive Spectroscopy (EDS) data reveal that the CaS product layer sinters and forms a quasi-impermeable coating around the CaCO3 grains that greatly hinders more H2S from reaching the still unreacted parts of the stone. Moreover, most of the pores initially present within the limestone structure begin to disappear or, at least, are significantly reduced in size. From then on, subsequent conversion is limited by diffusion of H2S through the CaS layer, possibly by S2- ionic diffusion. The kinetics is then adequately described by a shrinking-core model, in which a sharp front of completely converted limestone is assumed to progress toward the center of the pellet. Finally, experimental evidence and computer simulations using simple sintering models suggest that the CaS sintering, responsible for the sharp decrease in the sulfidation rate, is surface-diffusion controlled.

  3. Routes to new hafnium(IV) tetraaryl porphyrins and crystal structures of unusual phosphate-, sulfate-, and peroxide-bridged dimers.

    PubMed

    Falber, Alexander; Todaro, Louis; Goldberg, Israel; Favilla, Michael V; Drain, Charles Michael

    2008-01-21

    New routes for the synthesis of mono tetraaryl porphyrinato hafnium(IV) complexes, Hf(IV)Por(L)(2), are reported, where the secondary ligands, L, are determined by the method of purification. These synthetic routes cater to the solubility of the macrocycles and provide access to Hf(IV) complexes of meso tetraaryl porphyrins bearing diverse functional groups such as phenyl, tolyl, pyridyl, pentafluorophenyl, and carboxyphenyl. The latter three derivatives significantly expand the repertoire of hafnium porphyrinates. One route refluxes the porphyrin with HfCl(4) in 1-chloronaphthalene or in a mixed solvent of 1-chloronaphthalene and o-cresol. A second, solventless method is also reported wherein the porphyrin is mixed with Hf(cp)(2)Cl(2) and heated to give the metalated porphyrin in good yields. Simultaneous purification and formation of stable porphyrinato hafnium(IV) diacetate complexes, Hf(Por)OAc(2), is accomplished by elution over silica gel using 3-5% acetic acid in the eluent. Exchange of the acetate ligands for other oxo-bearing ligands can be nearly quantitative, such as p-aminobenzoate (PABA), pentanoate (pent), or octanoate (oct). Notably, we find that two to three of a variety of small multitopic dianions such as peroxo (O(2)(-2)), SO(4)(-2), and HPO(4)(-2) serve to bridge between two Hf(Por) moieties to form stable dimers. The crystal structures of this library of Hf(Por) complexes are reported, and we note that careful analysis of crystallography data reveals (Por)Hf(micro-eta(2)-O(2))(2)Hf(Por) rather than four bridging oxo or hydroxy ions.

  4. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m.

    PubMed Central

    Kanagawa, T; Mikami, E

    1989-01-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day. PMID:2930168

  5. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m

    SciTech Connect

    Kanagawa, T.; Mikami, E.

    1989-03-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  6. Investigation on laboratory and pilot-scale airlift sulfide oxidation reactor under varying sulfide loading rate.

    PubMed

    Pokasoowan, Chanya; Kanitchaidecha, Wilawan; K C, Bal Krishna; Annachhatre, Ajit P

    2009-01-01

    Airlift bioreactor was established for recovering sulfur from synthetic sulfide wastewater under controlled dissolved oxygen condition. The maximum recovered sulfur was 14.49 g/day when sulfide loading rate, dissolved oxygen (DO) and pH values were 2.97 kgHS(-)/m(3)-day, 0.2-1.0 mg/L and 7.2-7.8, respectively. On the other hand, the increase in recovered sulfur reduced the contact surface of sulfide oxidizing bacteria which affects the recovery process. This effect caused to reduce the conversion of sulfide to sulfur. More recovered sulfur was produced at high sulfide loading rate due to the change of metabolic pathway of sulfide-oxidizing bacteria which prevented the toxicity of sulfide in the culture. The maximum activity in this system was recorded to be about 3.28 kgS/kgVSS-day. The recovered sulfur contained organic compounds which were confirmed by the results from XRD and CHN analyzer. Afterwards, by annealing the recovered sulfur at 120 degrees C for 24 hrs under ambient Argon, the percentage of carbon reduced from 4.44% to 0.30%. Furthermore, the percentage of nitrogen and hydrogen decreased from 0.79% and 0.48% to 0.00% and 0.14%, respectively. This result showed the success in increasing the purity of recovered sulfur by using the annealing technique. The pilot-scale biological sulfide oxidation process was carried out using real wastewater from Thai Rayon Industry in Thailand. The airlift reactor successfully removed sulfide more than 90% of the influent sulfide at DO concentration of less than 0.1 mg/L, whereas the elementary sulfur production was 2.37 kgS/m(3)-day at sulfide loading rate of 2.14 kgHS(-)/m(3)-day. The sulfur production was still increasing as the reactor had not yet reached its maximum sulfide loading rate.

  7. Measurement of two-state energy landscapes on amorphous hafnium diboride surface by direct observation of dynamics

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Mallek, Justin; Cloud, Andrew; Abelson, John; Girolami, Gregory; Lyding, Joseph; Gruebele, Martin

    2014-03-01

    Direct visualization of free energy landscape for individual Cooperatively Rearranging Regions (CRRs) is important in glassy dynamics, both for the bulk and the surface. We used scanning tunneling microscopy to track individual CRRs on amorphous hafnium diboride surface, temporally from microseconds to hours with sub-nanometer spatial resolution. CRRs have a diameter of ~5 atoms and mostly relax in a two-state fashion. From single cluster tunneling current traces, we can reconstruct local free energy landscapes, complete with energy difference, barrier height, a numerically defined reaction corrdinate and shape of the free energy minima.

  8. Effect of nitrogen on tensile properties and structures of T-111 (tantalum, 8 percent tungsten, 2 percent hafnium) tubing

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Metroka, R. R.

    1973-01-01

    The effect of controlled nitrogen additions was evaluated on the mechanical properties of T-111 (Ta-8W-2Hf) fuel pin cladding material proposed for use in a lithium-cooled nuclear reactor concept. Additions of 80 to 1125 ppm nitrogen resulted in increased strengthening of T-111 tubular section test specimens at temperatures of 25 to 1200 C. Homogeneous distributions of up to 500 ppm nitrogen did not seriously decrease tensile ductility. Both single and two-phase microstructures, with hafnium nitride as the second phase, were evaluated in this study.

  9. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.

    PubMed

    De Gusseme, Bart; De Schryver, Peter; De Cooman, Michaël; Verbeken, Kim; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2009-01-01

    The emission of hydrogen sulfide into the atmosphere of sewer systems induces the biological production of sulfuric acid, causing severe concrete corrosion. As a possible preventive solution, a microbial consortium of nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) was enriched in a continuously stirred tank reactor in order to develop a biological technique for the removal of dissolved sulfide. The consortium, dominated by Arcobacter sp., was capable of removing 99% of sulfide. Stable isotope fractioning of the sulfide indicated that the oxidation was a biological process. The capacity of the NR-SOB consortium for rapid removal of sulfide was demonstrated by using it as an inoculum in synthetic and real sewage. Removal rates up to 52 mg sulfide-S g VSS(-1) h(-1) were achieved, to our knowledge the highest removal rate reported so far for freshwater species in the absence of molecular oxygen. Further long-term incubation experiments revealed the capacity of the bacteria to oxidize sulfide without the presence of nitrate, suggesting that an oxidized redox reserve is present in the culture.

  10. Ridding Groundwater of Hydrogen Sulfide. Part 1.

    ERIC Educational Resources Information Center

    Lochrane, Thomas G.

    1979-01-01

    This article is the first in a series reviewing the problems associated with hydrogen sulfide in drinking water sources. Discussion centers on identification of a cost-effective balance between aeration and chlorination treatment operations. (AS)

  11. Ridding Groundwater of Hydrogen Sulfide. Part 1.

    ERIC Educational Resources Information Center

    Lochrane, Thomas G.

    1979-01-01

    This article is the first in a series reviewing the problems associated with hydrogen sulfide in drinking water sources. Discussion centers on identification of a cost-effective balance between aeration and chlorination treatment operations. (AS)

  12. [Fatal outcome of an hydrogen sulfide poisoning].

    PubMed

    Querellou, E; Jaffrelot, M; Savary, D; Savry, C; Perfus, J-P

    2005-10-01

    We report a case of fatal outcome poisoning by massive exposure to hydrogen sulfide of a sewer worker. This rare event was associated with a moderate intoxication of two members of the rescue team. The death was due to asystole and massive lung oedema. Autopsy analysis showed diffuse necrotic lesions in lungs. Hydrogen sulfide is a direct and systemic poison, produced by organic matter decomposition. The direct toxicity mechanism is still unclear. The systemic toxicity is due to an acute toxicity by oxygen depletion at cellular level. It is highly diffusable and potentially very dangerous. At low concentration, rotten egg smell must trigger hydrogen sulfide suspicion since at higher concentration it is undetectable, making intoxication possible. In case of acute intoxication, there is an almost instantaneous cardiovascular failure and a rapid death. Hydrogen sulfide exposure requires prevention measures and more specifically the use of respiratory equipment for members of the rescue team.

  13. Hydrogen sulfide in hemostasis: friend or foe?

    PubMed

    Olas, Beata

    2014-06-25

    Hydrogen sulfide (H2S) is a well known toxic gas that is synthesized from the amino acids: cysteine (Cys) and homocysteine (Hcy) by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and mercaptopyruvate sulfurtransferase (3-MST). Hydrogen sulfide, like carbon monoxide (CO) or nitric oxide (NO) is a signaling molecule in different biological systems, including the cardiovascular system. Moreover, hydrogen sulfide plays a role in the pathogenesis of various cardiovascular diseases. It modulates different elements of hemostasis (activation of blood platelet, and coagulation process) as well as proliferation and apoptosis of vascular smooth muscle cells. However, the biological role and the therapeutic potential of H2S is not clear. This review summarizes the different functions of hydrogen sulfide in hemostasis.

  14. Oxygen in activator centers of zinc sulfide

    SciTech Connect

    Golobeva, N.P.; Fok, M.V.

    1986-05-01

    The authors observed the sensitized luminescence of Tm and Dy without addition of Cu and Ag in samples which had been obtained by the sulfonation of zinc sulfide in hydrogen sulfide; the zinc sulfide has a copper concentration below 5.10/sup -6/ mass %. In this case the excitation can be transmitted from the ZnS lattice to the rare-earth activators mainly through defects including oxygen. The following conclusions were made. In the case of activated ZnS, oxygen is present in formations accounting for the excitation and luminescence of a number of luminophors. When an activator is introduced in the region of ZnS layer faults, where also the oxygen must be located, the positioning of the faults in close vicinity is facilitated even when the oxygen concentration of the ZnS is low. All this must be considered when models of luminescence centers of zinc sulfide are developed.

  15. Benzylene-linked [PNP] scaffolds and their cyclometalated zirconium and hafnium complexes.

    PubMed

    Sietzen, Malte; Batke, Sonja; Antoni, Patrick W; Wadepohl, Hubert; Ballmann, Joachim

    2017-05-09

    The benzylene-linked [PNP] scaffolds HN(CH2-o-C6H4PPh2)2 ([A]H) and HN(C6H4-o-CH2PPh2)2 ([B]H) have been used for the synthesis of zirconium and hafnium complexes. For both ligands, the dimethylamides [A]M(NMe2)3 ([A]1-M) and [B]M(NMe2)3 ([B]1-M) were prepared and converted to the iodides [A]MI3 ([A]2-M) and [B]MI3 ([B]2-M) (M = Zr, Hf). Starting from these iodides, the corresponding benzyl derivatives [A]MBn3 ([A]3-M) and [B]MBn3 ([B]3-M) (M = Zr, Hf) were obtained via reaction with Bn2Mg(OEt2)2. For zirconium, the benzylic ligand positions in [A]3-Zr and [B]3-Zr were found to cyclometalate readily, which led to the corresponding κ(4)-[PCNP]ZrBn2 complexes [A]4-Zr and [B]4-Zr. As these complexes failed to hydrogenate cleanly, cyclometalated derivatives with only one alkyl substituent were targeted and the mixed benzyl chlorides κ(4)-[PCNP]MBnCl ([B]5-M, M = Zr, Hf) were obtained in the case of ligand [B]. Upon hydrogenation of [B]5-Zr, the η(6)-tolyl complex [B]Zr(η(6)-C7H8)Cl ([B]6-Zr) was generated cleanly, but the corresponding hafnium complex [B]5-Hf was found to decompose unselectively in the presence of H2. Using a closely related carbazole-based [PNP] ligand, Gade and co-workers have shown recently that zirconium η(6)-arene complexes similar to [B]6-Zr may serve as zirconium(ii) synthons, namely when reacted with 2,6-Dipp-NC (L) or pyridine (py). Both these substrates were shown to react cleanly with [B]6-Zr, which led to the formation of the bis-isocyanide complex [B]ZrCl(L)2 ([B]7-Zr) and the 2,2'-bipyridine derivative [B]ZrCl(bipy) ([B]8-Zr), respectively. Upon reaction of [B]Zr(η(6)-C7H8)Cl ([B]6-Zr) with NaBEt3H, the cyclometalated derivative κ(4)-[PCNP]Zr(η(6)-C7H8) ([B]9-Zr) was isolated. In an attempt to synthesise terminal hydrides, complexes [A]MI3 ([A]2-M) were treated with KBEt3H, which led to the isolation of the cyclometalated hydrido complexes κ(4)-[PCNP]M(H)(κ(3)-Et3BH) ([A]10-M; M = Zr, Hf) featuring a κ(3)-bound triethyl

  16. Preparation of octahydro- and tetrahydro-[1,10]phenanthroline zirconium and hafnium complexes for olefin polymerization.

    PubMed

    Hwang, Eun Yeong; Park, Geun Ho; Lee, Chun Sun; Kang, Yi Young; Lee, Junseong; Lee, Bun Yeoul

    2015-02-28

    Post-metallocenes were constructed for olefin polymerization using 1,2,3,4,7,8,9,10-octahydro[1,10]phenanthroline and 1,2,3,4-tetrahydro[1,10]phenanthroline derivatives. A series of zirconium complexes - LZrCl2(NHMe2)2 [L = 2,9-H2-C12H12N2 (4), 2,9-Me2-C12H12N2 (5), 2,9-nBu2-C12H12N2 (6), and 2,9-iPr2-C12H12N2 (7)] - and hafnium complexes - LHfCl2(NHMe2)2 [L = 2,9-H2-C12H12N2 (8), 2,9-Me2-C12H12N2 (9), 2,9-nBu2-C12H12N2 (10), and 2,9-iPr2-C12H12N2 (11)] - were synthesized via the reaction of octahydro[1,10]phenanthrolines (2,9-R2-C12H12(NH)2) with (Me2N)2MCl2 (DME). The reaction of 2,9-R2-C12H12(NH)2 with (PhCH2)2ZrCl2 in the presence of a small amount of THF afforded a series of THF adduct analogs, i.e., LZrCl2(THF)2 [L = 2,9-H2-C12H12N2 (12), 2,9-Me2-C12H12N2 (13), 2,9-nBu2-C12H12N2 (14), and 2,9-iPr2-C12H12N2 (15)]. The treatment of 12 and 13 with excess Me3Al resulted in the formation of unexpected complexes, i.e., (η(4)-LAlMe2)ZrCl2(Me) [L = 2,9-H2-C12H12N2 (16) and 2,9-Me2-C12H12N2 (17)], in which the Me2Al unit forms a five-membered ring through binding with the two nitrogen donors and the MeCl2Zr unit slips to an η(4)-binding mode containing the N-C-C-N fragment. The treatment of tetrahydro[1,10]phenanthrolines [2,9-R2-C12NH9(NH)] with M(CH2Ph)4 afforded tribenzyl zirconium complexes LZr(CH2Ph)3 - [L = 2,9-Me2-C12NH9N (18) and 2,9-nBu2-C12NH9N (19)] - and hafnium complexes - LHf(CH2Ph)3 [L = 2,9-Me2-C12NH9N (20), 2,9-nBu2-C12NH9N (21), and 2,9-iPr2-C12NH9N (22)]. The structures of 4, 5, 12, 17, and 22 were elucidated by X-ray crystallography. The newly prepared complexes were screened for ethylene/1-octene copolymerization activity: 12 and 16 were potent catalysts (activities of 74 × 10(6) g mol-Zr h(-1) at ∼120 °C under 30 bar ethylene) for the production of wax-like low-molecular weight polyethylene (Mn: ∼5000), which is widely used in industry.

  17. Mechanism of activation of a hafnium pyridyl-amide olefin polymerization catalyst: ligand modification by monomer.

    PubMed

    Froese, Robert D J; Hustad, Phillip D; Kuhlman, Roger L; Wenzel, Timothy T

    2007-06-27

    We have investigated the olefin polymerization mechanism of hafnium catalysts supported by a pyridyl-amide ligand with an ortho-metalated naphthyl group. Ethylene-alpha-olefin copolymers from these catalysts have broad molecular weight distributions that can be fit to a bimodal distribution. We propose a unique mechanism to explain this behavior involving monomer modification of the catalyst, which generates multiple catalyst species when multiple monomers are present. More specifically, we present evidence that the hafnium alkyl cation initially undergoes monomer insertion into the Hf-naphthyl bond, which permanently modifies the ligand to generate new highly active olefin polymerization catalysts. Under ethylene/octene copolymerization conditions, a plurality of new catalysts is formed in relative proportion to the respective monomer concentrations. Due to the asymmetry of the metal complex, two "ethylene-inserted" and eight "octene-inserted" isomers are possible, but it is a useful approximation to consider only one of each in the polymerization behavior. Consequently, gel permeation chromatography data for the polymers can be fit to a bimodal distribution having a continuous shift from a predominantly low molecular weight fraction to predominantly higher molecular weight fraction as [octene]/[ethylene] is increased. Theoretical calculations show that such insertions into the Hf-aryl bond have lower barriers than corresponding insertions into the Hf-alkyl bond. The driving forces for this insertion into the Hf-aryl bond include elimination of an eclipsing H-H interaction and formation of a stabilizing Hf-arene interaction. These new "monomer-inserted catalysts" have no beta-agostic interaction, very weak olefin binding, and olefin-insertion transition states which differ on the two sides by more than 4 kcal/mol. Thus, the barrier to site epimerization is very low and high polymerization rates are possible even when the chain wags prior to every insertion

  18. Structural, optical and electrical properties of yttrium-doped hafnium oxide nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Kongu, Abhilash

    Hafnium oxide (HfO2) has emerged as the most promising high-k dielectric for Metal-Oxide-Semiconductor (MOS) devices and has been highlighted as the most suitable dielectric materials to replace silicon oxide because of its comprehensive performance. In the present research, yttrium-doped HfO2 (YDH) thin films were fabricated using RF magnetron sputter deposition onto Si (100) and quartz with a variable thickness. Cross-sectional scanning electron microscopy coupled with Filmetrics revealed that film thickness values range from 700 A° to 7500 A°. Electrical properties such as AC Resistivity and current-voltage (I-V) characteristics of YDH films were studied. YDH films that were relatively thin (<1500 A°) crystallized in monoclinic phase while thicker films crystallized in cubic phase. The band gap (Eg) of the films was calculated from the optical measurements. The band gap was found to be ˜5.60 eV for monoclinic while it is ˜6.05 eV for cubic phase of YDH films. Frequency dependence of the electrical resistivity (rhoac) and the total conductivity of the films were measured. Resistivity decreased (by three orders of magnitude) with increasing frequency from 100 Hz to 1 MHz, attributed due to the hopping mechanism in YDH films. Whereas, while rhoac˜1O-m at low frequencies (100 Hz), it decreased to ˜ 104 O-cm at higher frequencies (1 MHz). Aluminum (Al) metal electrodes were deposited to fabricate a thin film capacitor with YDH layer as dielectric film thereby employing Al-YDH-Si capacitor structure. The results indicate that the capacitance of the films decrease with increasing film thickness. A detailed analysis of the electrical characteristics of YDH films is presented.

  19. The energy landscape of glassy dynamics on the amorphous hafnium diboride surface

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Mallek, Justin; Cloud, Andrew N.; Abelson, John R.; Girolami, Gregory S.; Lyding, Joseph; Gruebele, Martin

    2014-11-01

    Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB2 glass surface, two-state hopping of 1-2 nm diameter cooperatively rearranging regions or "clusters" occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunneling spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB2 has a very high bulk glass transition temperature Tg, and we observe no three-state hopping or sequential two-state hopping previously seen on lower Tg glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how "mixed" features can show up in surface dynamics of glasses.

  20. Electronic States of Hafnium and Vanadium oxide in Silicon Gate Stack Structure

    NASA Astrophysics Data System (ADS)

    Zhu, Chiyu; Tang, Fu; Liu, Xin; Yang, Jialing; Nemanich, Robert

    2010-03-01

    Vanadium oxide (VO2) is a narrow band gap material with a metal-insulator transition (MIT) at less than 100C. Hafnium oxide (HfO2) is currently the preferred high-k material for gate dielectrics. To utilize VO2 in a charge storage device, it is necessary to understand the band relationships between VO2, HfO2, and Si substrate. In this study, a 2nm thick VO2 layer is embedded in a dielectric stack structure between an oxidized n-type Si(100) surface and a 2nm HfO2 layer. The in situ experiments are carried out in an UHV multi-chamber system. After each growth step, the surface is characterized using XPS and UPS. After the initial plasma cleaning and oxidation treatment the Si substrate displayed essentially flat bands at the surface. After deposition of the VO2 layer, the Si 2p peak shifted to lower binding energy, and the Si 2p associated with the SiO2 layer also was shifted, indicating an internal field in the SiO2. The VO2 valence band maximum (VBM) was identified at 0.6 eV below the Fermi level (EF). This ultra thin VO2 exhibits the metal-insulator transition at a temperature higher than thicker films. As a comparison, a 100nm thick film of VO2 on Si showed a MIT at 60C. After the HfO2 deposition, the Si 2p substrate feature returned to the initial value indicating a return to flat band conditions. The UPS indicated the VBM of HfO2 at 4.0 eV below EF. This work is supported by the NSF (DMR-0805353).

  1. Effect of Nitrate on Biogenic Sulfide Production

    PubMed Central

    Jenneman, Gary E.; McInerney, M. J.; Knapp, Roy M.

    1986-01-01

    The addition of 59 mM nitrate inhibited biogenic sulfide production in dilute sewage sludge (10% [vol/vol]) amended with 20 mM sulfate and either acetate, glucose, or hydrogen as electron donors. Similar results were found when pond sediment or oil field brines served as the inoculum. Sulfide production was inhibited for periods of at least 6 months and was accompanied by the oxidation of resazurin from its colorless reduced state to its pink oxidized state. Lower amounts of nitrate (6 or 20 mM) and increased amounts of sewage sludge resulted in only transient inhibition of sulfide production. The addition of 156 mM sulfate to bottles with 59 mM nitrate and 10% (vol/vol) sewage sludge or pond sediment resulted in sulfide production. Nitrate, nitrite, and nitrous oxide were detected during periods where sulfide production was inhibited, whereas nitrate, nitrite, and nitrous oxide were below detectable levels at the time sulfide production began. The oxidation of resazurin was attributed to an increase in nitrous oxide which persisted in concentration of about 1.0 mM for up to 5 months. The numbers of sulfate-reducing organisms decreased from 106 CFU ml−1 sludge to less than detectable levels after prolonged incubation of oxidized bottles. The addition of 10 mM glucose to oxidized bottles after 14.5 weeks of incubation resulted in rereduction of the resazurin and subsequent sulfide production. The prolonged inhibition of sulfide production was attributed to an increase in oxidation-reduction potential due to biogenic production of nitrous oxide, which appeared to have a cytotoxic effect on sulfate-reducing populations. PMID:16347078

  2. The subchronic oral toxicity of polyphenylene sulfide.

    PubMed

    Thomas, W C; Kirwin, C J; Wazeter, F X; Jessup, D C

    1984-02-01

    Polyphenylene sulfide was offered to Charles River CD rats for 6 months in the diet at concentrations of 0.00, 0.50, 2.75 and 5.00% (w/w). In this study, animals of both sexes consumed polyphenylene sulfide for 6 months without exhibiting compound-related effects. Parameters studied were: body weight, hematology, clinical chemistry, urinalysis, organ weights, gross pathology and histopathology.

  3. Development of Zinc Sulfide Seeker Window Material

    DTIC Science & Technology

    2007-11-02

    currently valid OMB control number. 1. REPORT DATE 15 JAN 2005 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Development of...contrasting to the currently used THAAD sapphire window and validate the predictions for an alternate seeker window material, multispectral zinc...and validate the capability of multispectral zinc sulfide seeker window material. The use of zinc sulfide as a replacement window for the current

  4. Upper critical field of copper molybdenum sulfide

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.

    1978-01-01

    The upper critical field of sintered and sputtered copper molybdenum sulfide Cu(x)Mo6S8 was measured and found to exceed the Werthamer, Helfand, and Hohenberg (1966) value for a type II superconductor characterized by dirty limit, weak isotropic electron phonon coupling, and no paramagnetic limiting. It is suggested that the enhancement results from anisotropy or clean limit or both. Other ternary molybdenum sulfides appear to show similar anomalies.

  5. The Search for Interstellar Sulfide Grains

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, Scott

    2010-01-01

    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  6. Upper critical field of copper molybdenum sulfide

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.

    1978-01-01

    The upper critical field of sintered and sputtered copper molybdenum sulfide Cu(x)Mo6S8 was measured and found to exceed the Werthamer, Helfand, and Hohenberg (1966) value for a type II superconductor characterized by dirty limit, weak isotropic electron phonon coupling, and no paramagnetic limiting. It is suggested that the enhancement results from anisotropy or clean limit or both. Other ternary molybdenum sulfides appear to show similar anomalies.

  7. Effects of trimethylaluminium and tetrakis(ethylmethylamino) hafnium in the early stages of the atomic-layer-deposition of aluminum oxide and hafnium oxide on hydroxylated GaN nanoclusters.

    PubMed

    León-Plata, Paola A; Coan, Mary R; Seminario, Jorge M

    2013-10-01

    We calculate the interactions of two atomic layer deposition (ALD) reactants, trimethylaluminium (TMA) and tetrakis(ethylmethylamino) hafnium (TEMAH) with the hydroxylated Ga-face of GaN clusters when aluminum oxide and hafnium oxide, respectively, are being deposited. The GaN clusters are suitable as testbeds for the actual Ga-face on practical GaN nanocrystals of importance not only in electronics but for several other applications in nanotechnology. We find that TMA spontaneously interacts with hydroxylated GaN; however it does not follow the atomic layer deposition reaction path unless there is an excess in potential energy introduced in the clusters at the beginning of the optimization, for instance, using larger bond lengths of various bonds in the initial structures. TEMAH also does not interact with hydroxylated GaN, unless there is an excess in potential energy. The formation of a Ga-N(CH3)(CH2CH3) bond during the ALD of HfO2 using TEMAH as the reactant without breaking the Hf-N bond could be the key part of the mechanism behind the formation of an interface layer at the HfO2/GaN interface.

  8. Photooxidation of methyl sulfide, ethyl sulfide, and methanethiol

    SciTech Connect

    Grosjean, D.

    1984-06-01

    Products of sunlight-irradiated mixtures of oxides of nitrogen and alkyl sulfides (RSR, R = CH/sub 3/, C/sub 2/H/sub 5/) and methanethiol (CH/sub 3/SH) in air include formaldehyde (R = CH/sub 3/), acetaldehyde and PAN (R = C/sub 2/H/sub 5/), sulfur dioxide, and alkyl nitrates (RONO/sub 2/) as well as particulate alkanesulfonic acids (RSO/sub 2/OH) and inorganic sulfate. The nature and yields of gaseous and particulate products are discussed in terms of OH-initiated reaction pathways, including C-S bond scission, and subsequent reactions of alkythiyl radicals (RS), including those leading to photolabile RSNO and stable RSNO/sub 2/ products for which indirect evidence is presented. SO/sub 2/ yields are found to vary according to the relative importance of the competing pathways RS + O/sub 2/ (a) and RS + NO/sub 2/ (b), for which a ratio k/sub b/ / k/sub a/ approx. 2 x 10/sup 6/ is derived from data for irradiated RSR-NO/sub x/, RSH-Cl/sub 2/, and RSH-Cl/sub 2/-NO/sub 2/ mixtures.

  9. Sulindac sulfide--induced stimulation of eryptosis.

    PubMed

    Zbidah, Mohanad; Lupescu, Adrian; Yang, Wenting; Bosc, Anastasia; Jilani, Kashif; Shaik, Nazneen; Lang, Florian

    2012-01-01

    Sulindac sulfide, a non-steroidal anti-inflammatory drug (NSAID), stimulates apoptosis of tumor cells and is thus effective against malignancy. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, an apoptosis-like suicidal erythrocyte death, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the cell surface. Stimulators of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)](i)) and ceramide formation. The present study explored, whether sulindac sulfide stimulates eryptosis. [Ca(2+)](i) was estimated from Fluo-3 fluorescence, cell volume from forward scatter, phosphatidylserine-exposure from binding of fluorescent annexin-V, hemolysis from hemoglobin release, and ceramide abundance utilizing fluorescent antibodies. A 48 h exposure to sulindac sulfide (≤ 20 µM) was followed by significant increase of [Ca(2+)](i), enhanced ceramide abundance, decreased forward scatter and increased percentage of annexin-V-binding erythrocytes. Sulindac sulfide triggered slight but significant hemolysis. Removal of extracellular Ca(2+) significantly blunted, but did not abrogate the effect of sulindac sulfide (20 µM) on annexin-V-binding. Sulindac sulfide stimulates the suicidal death of erythrocytes or eryptosis, an effect paralleled by Ca(2+)-entry, ceramide formation, cell shrinkage and phosphatidylserine-exposure. Copyright © 2012 S. Karger AG, Basel.

  10. Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide.

    PubMed

    Chmura, Amanda J; Davidson, Matthew G; Frankis, Catherine J; Jones, Matthew D; Lunn, Matthew D

    2008-03-21

    Under solvent-free conditions (at 130 degrees C), zirconium and hafnium amine tris(phenolate) alkoxides are extremely active, well-controlled, single-site initiators for the ring-opening polymerization of rac-lactide, yielding highly heterotactic polylactide.

  11. Gondwanan basement terranes of the Variscan-Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes

    NASA Astrophysics Data System (ADS)

    Henderson, Bonnie J.; Collins, William Joseph; Murphy, James Brendan; Gutierrez-Alonso, Gabriel; Hand, Martin

    2016-06-01

    Iberia, Avalonia and the "Armorican" terranes form key constituents of the Variscan-Appalachian orogen, but their Neoproterozoic origins along the northern Gondwanan margin continue to be strongly debated. Here, we present a new detrital zircon U-Pb-Hf dataset from Neoproterozoic-Silurian sedimentary sequences in NW Iberia and Avalonia, in conjunction with the comprehensive existing datasets from potential source cratons, to demonstrate that the provenance of each terrane is relatively simple and can be traced back to three major cratons. The enigmatic Tonian-Stenian detrital zircons in autochthonous Iberian rocks were derived from the Saharan metacraton in the latest Neoproterozoic-early Cambrian. Avalonia is commonly considered to have been derived from the Amazonian margin of Gondwana, but the hafnium isotopic characteristics of the detrital zircon grains in early Neoproterozoic rocks bear much stronger similarities to Baltica. The hafnium isotopic array also suggests the early Avalonian oceanic arc was built on a sliver of "Grenvillian-type crust" (~ 2.0-1.0 Ga) possibly of Baltican affinity at ~ 800 Ma, prior to accretion with a continental margin at ~ 640 Ma. The Upper Allochthon of Iberia is frequently linked to the West African Craton in the late Neoproterozoic-early Cambrian, however the hafnium isotopic array presented here does not support this connection; rather it is more similar to the hafnium array from Avalonia. The Armorican terranes have strong detrital zircon isotopic links to the West African Craton during the late Neoproterozoic-Cambrian.

  12. Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework.

    PubMed

    Cliffe, Matthew J; Castillo-Martínez, Elizabeth; Wu, Yue; Lee, Jeongjae; Forse, Alexander C; Firth, Francesca C N; Moghadam, Peyman Z; Fairen-Jimenez, David; Gaultois, Michael W; Hill, Joshua A; Magdysyuk, Oxana V; Slater, Ben; Goodwin, Andrew L; Grey, Clare P

    2017-04-19

    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.

  13. Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework

    PubMed Central

    2017-01-01

    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed “double cluster” (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal–organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal–organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials. PMID:28343394

  14. Synthesis of a base-free hafnium nitride from N2 cleavage: a versatile platform for dinitrogen functionalization.

    PubMed

    Semproni, Scott P; Chirik, Paul J

    2013-07-31

    The synthesis and characterization of a metastable, base-free isocyanato dihafnocene μ-nitrido complex from CO-induced dinitrogen cleavage is described. The open coordination site at hafnium suggested the possibility of functionalization of the nitrogen atom by cycloaddition and insertion chemistry. Addition of the strained, activated alkyne, cyclooctyne, resulted in N-C bond formation by cycloaddition. The alkyne product is kinetically unstable engaging the terminal hafnocene isocyanate and promoting deoxygenation and additional N-C bond formation resulting in a substituted cyanamide ligand. Group transfer between hafnium centers was observed upon treatment with Me3SiCl resulting in bridging carbodiimidyl ligands. Amidinato-type ligands, [NC(R)N](3-) were prepared by addition of either cyclohexyl or isobutyronitrile to the base free dihafnocene μ-nitrido complex, which also engages in additional N-C bond formation with the terminal isocyanate to form bridging ureate-type ligands. Heterocummulenes also proved reactive as exposure of the nitride complex to CO2 resulted in deoxygenation and N-C bond formation to form isocyanate ligands. With substituted isocyanates, cycloaddition to the dihafnocene μ-nitrido was observed forming ureate ligands, which upon thermolysis isomerize to bridging carbodiimides. Taken together, these results establish the base free dihafnocene μ-nitrido as a versatile platform to synthesize organic molecules from N2 and carbon monoxide.

  15. Transformation Temperatures, Shape Memory and Magnetic Properties of Hafnium Modified Ti-Ta Based High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Khan, W. Q.; Wang, Q.; Jin, X.

    2017-02-01

    In this study the modification effect of Hf content on the shape memory properties and magnetic permeability of a 75.5-77Ti-20Ta-3-4.5Hf alloy system has been systematically studied by DSC, three-point bend test, vector network analyzer and XRD. The martensitic transformation temperature, heat of reaction and recovery strain increases with the increase of hafnium and tantalum content. A stable high temperature shape memory effect was observed (Ms = 385-390 °C) during the two thermal cycles between 20 °C and 725 °C. Transformation temperatures and heats of reaction were determined by DSC measurements. Recovery strain was determined by three-point bend testing. Also an alloy, 70Ti-26Ta-4Hf, with higher tantalum content was produced to observe the effect of Ta on the shape memory properties. Permeability increases gradually from 1.671 to 1.919 with increasing content of hafnium modification and remains stable in the frequency range of 450 MHz to 1 GHz.

  16. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.

    PubMed

    Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L

    2014-03-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Photocatalytic decomposition of hydrogen sulfide on cadmium and zinc sulfides immobilized on a cation exchange film

    SciTech Connect

    Makhmadmurodov, A.; Gruzdkov, Y.A.; Parmon, V.N.; Savinov, E.N.

    1986-08-01

    The photocatalytic decomposition of hydrogen sulfide on cadmium, zinc, and tin sulfides, immobilized on a polymer, was studied. Activation of the photocatalyst by finely divided particles of Pd and Pt was used. A quantum yield of 9.5% was achieved.

  18. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  19. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  20. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    PubMed

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.

  1. Hydrogen Sulfide as a Gasotransmitter

    PubMed Central

    Gadalla, Moataz M.; Snyder, Solomon H.

    2010-01-01

    Nitric oxide (NO) and carbon monoxide (CO) are well established as messenger molecules throughout the body, gasotransmitters, based on striking alterations in mice lacking the appropriate biosynthetic enzymes. Hydrogen sulfide (H2S) is even more chemically reactive, but till recently there was little definitive evidence for its physiologic formation. Cystathionine β-synthase (CBS, EC 4.2.1.22), and Cystathionine γ-lyase (CSE; EC 4.4.1.1), also known as cytathionase, can generate H2S from cyst(e)ine. Very recent studies with mice lacking these enzymes have established that CSE is responsible for H2S formation in the periphery, while in the brain CBS is the biosynthetic enzyme. Endothelial-derived relaxing factor (EDRF) activity is reduced 80% in the mesenteric artery of mice with deletion of CSE, establishing H2S as a major physiologic EDRF. H2S appears to signal predominantly by S-sulfhydrating cysteines in its target proteins, analogous to S-nitrosylation by NO. Whereas S-nitrosylation typically inhibits enzymes, S-sulfhydration activates them. S-nitrosylation basally affects 1–2% of its target proteins, while 10–25% of H2S target proteins are S-sulfhydrated. In summary, H2S appears to be a physiologic gasotransmitter of comparable importance to NO and CO. PMID:20067586

  2. Thermal decomposition of mercuric sulfide

    SciTech Connect

    Leckey, J.H.; Nulf, L.E.

    1994-10-28

    The rate of thermal decomposition of mercuric sulfide (HgS) has been measured at temperatures from 265 to 345 C. These data have been analyzed using a first-order chemical reaction model for the time dependence of the reaction and the Arrhenius equation for the temperature dependence of the rate constant. Using this information, the activation energy for the reaction was found to be 55 kcal/mol. Significant reaction vessel surface effects obscured the functional form of the time dependence of the initial portion of the reaction. The data and the resulting time-temperature reaction-rate model were used to predict the decomposition rate of HgS as a function of time and temperature in thermal treatment systems. Data from large-scale thermal treatment studies already completed were interpreted in terms of the results of this study. While the data from the large-scale thermal treatment studies were consistent with the data from this report, mass transport effects may have contributed to the residual amount of mercury which remained in the soil after most of the large-scale runs.

  3. Hydrogen sulfide and translational medicine

    PubMed Central

    Guo, Wei; Cheng, Ze-yu; Zhu, Yi-zhun

    2013-01-01

    Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S is a signaling molecule without definite effect. The use of existing H2S donors is limited because of the instant release and short lifetime of H2S. Thus, translational medicine involving the sustained and controlled release of H2S is of great value for both scientific and clinical uses. H2S donation can be manipulated by different ways, including where H2S is given, how H2S is donated, or the specific structures of H2S-releasing drugs and H2S donor molecules. This review briefly summarizes recent progress in research on the physiological and pathological functions of H2S and H2S-releasing drugs, and suggests hope for future investigations. PMID:24096643

  4. Experimental simulations of sulfide formation in the solar nebula.

    PubMed

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  5. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  6. Sulfide Consumption in Sulfurimonas denitrificans and Heterologous Expression of Its Three Sulfide-Quinone Reductase Homologs.

    PubMed

    Han, Yuchen; Perner, Mirjam

    2016-04-01

    Sulfurimonas denitrificans is a sulfur-oxidizing epsilonproteobacterium. It has been reported to grow with sulfide and to harbor genes that encode sulfide-quinone reductases (SQRs) (catalyze sulfide oxidation). However, the actual sulfide concentrations at which S. denitrificans grows and whether its SQRs are functional remain enigmatic. Here, we illustrate the sulfide concentrations at which S. denitrificans exhibits good growth, namely, 0.18 mM to roughly 1.7 mM. Around 2.23 mM, sulfide appears to inhibit growth. S. denitrificans harbors three SQR homolog genes on its genome (Suden_2082 for type II SQR, Suden_1879 for type III SQR, and Suden_619 for type IV SQR). They are all transcribed in S. denitrificans. According to our experiments, they appear to be loosely bound to the membrane. Each individual S. denitrificans SQR was heterologously expressed in the Rhodobacter capsulatus SB1003 sqr deletion mutant, and all exhibited SQR activities individually. This suggests that all of these three genes encode functional SQRs. This study also provides the first experimental evidence of a functional bacterial type III SQR. Although the epsilonproteobacterium Sulfurimonas denitrificans has been described as using many reduced sulfur compounds as electron donors, there is little knowledge about its growth with sulfide. In many bacteria, the sulfide-quinone reductase (SQR) is responsible for catalyzing sulfide oxidation. S. denitrificans has an array of different types of sqr genes on its genome and so do several other sulfur-oxidizing Epsilonproteobacteria. However, whether these SQRs are functional has remained unknown. Here, we shed light on sulfide metabolism in S. denitrificans. Our study provides the first experimental evidence of active epsilonproteobacterial SQRs and also gives the first report of a functional bacterial type III SQR. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Surface modifications of steels to improve corrosion resistance in sulfidizing-oxidizing environments

    NASA Astrophysics Data System (ADS)

    Behrani, Vikas

    Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind

  8. A study of the stability of cadmium sulfide/copper sulfide and cadmium sulfide copper-indium-diselenide solar cells

    NASA Astrophysics Data System (ADS)

    Noel, G.; Richard, N.; Gaines, G.

    1984-08-01

    Groups of high efficiency cadmium sulfide/copper sulfide solar cells were exposed to combinations of stresses designed to isolate and accelerate intrinsic degradation mechanisms. Stresses included elevated temperature, illumination intensity, and cell loading conditions. All stress exposures and tests were conducted in a benign (high purity argon) atmosphere. Two primary intrinsic modes of degradation were identified: degradation of the open circuit voltage under continuous illumination and nonzero loading was found to be self recovering upon interruption of illumination or upon shorting or reverse biasing the cells. It was attributed to traps in the depletion region. Recovery from decay of light generated current was not spontaneous but could be partially accomplished by annealing in a reducing (hydrogen) environment. It was attributed to changes in the stoichiometry of the copper sulfide under the influence of electric fields and currents.

  9. Deposition and characterization of titanium dioxide and hafnium dioxide thin films for high dielectric applications

    NASA Astrophysics Data System (ADS)

    Yoon, Meeyoung

    The industry's demand for higher integrated circuit density and performance has forced the gate dielectric layer thickness to decrease rapidly. The use of conventional SiO2 films as gate oxide is reaching its limit due to the rapid increase in tunneling current. Therefore, a need for a high dielectric material to produce large oxide capacitance and low leakage current has emerged. Metal-oxides such as titanium dioxide (TiO2) and hafnium dioxide (HfO2) are attractive candidates for gate dielectrics due to their electrical and physical properties suitable for high dielectric applications. MOCVD of TiO2 using titanium isopropoxide (TTIP) precursor on p-type Si(100) has been studied. Insertion of a TiO x buffer layer, formed by depositing metallic Ti followed by oxidation, at the TiO2/Si interface has reduced the carbon contamination in the TiO2 film. Elemental Ti films, analyzed by in-situ AES, were found to grow according to Stranski-Krastanov mode on Si(100). Carbon-free, stoichiometric TiO2 films were successfully produced on Si(100) without any parasitic SiO2 layers at the TiO 2/Si interface. Electron-beam deposition of HfO2 films on Si(100) has also been investigated in this work. HfO2 films are formed by depositing elemental Hf on Si(100) and then oxidizing it either in O2 or O 3. XPS results reveal that with oxidation Hf(4f) peak shifts +3.45eV with 02 and +3.65eV with O3 oxidation. LEED and AFM studies show that the initially ordered crystalline Hf becomes disordered after oxidation. The thermodynamic stability of HfO2 films on Si has been studied using a unique test-bed structure of Hf/O3/Si. Post-Oxidation of Layer Deposition (POLD) has been employed to produce HfO2 films with a desired thickness. XPS results indicate that stoichiometric HfO 2 films were successfully produced using the POLD process. The investigation of the growth and thin film properties of TiO 2 and HfO2 using oxygen and ozone has laid a foundation for the application of these metal

  10. Hafnium in peralkaline and peraluminous boro-aluminosilicate glass, and glass subcomponents: a solubility study.

    SciTech Connect

    Davis, Linda L.; Darab, John G.; Qian, Maoxu; Zhao, Donggao; Palenik, Christopher S.; Li, Hong; Strachan, Denis M.; Li, Liyu

    2003-10-15

    A relationship between the solubility of hafnia (HfO2) and the host glass composition was explored by determining the solubility limits of HfO2 in peralkaline and peraluminous borosilicate glasses in the system SiO2-Al2O3-B2O3-Na2O, and in glasses in the system SiO2-Na2O-Al2O3 in air at 1450 C. The only Hf-bearing phase to crystallize in the peralkaline borosilicate melts is hafnia, while in the boron-free melts sodium-hafnium silicates crystallize. All peraluminous borosilicate melts crystallize hafnia, but the slightly peraluminous glasses also have sector-zoned hafnia crystals that contain Al and Si. The more peraluminous borosilicate glasses also crystallize a B-containing mullite. The general morphology of the hafnia crystals changes as peralkalinity (Na2O/(Na2O+Al2O3)) decreases, as expected in melts with increasing viscosity. In all of the glasses with Na2O > Al2O3, the solubility of hafnia is linearly and positively correlated with Na2O/(Na2O + Al2O3) or Na2O - Al2O3 (excess sodium), despite the presence of 5 to 16 mol% B2O3. The solubility of hafnia is higher in the sodium-aluminum borosilicate glasses than in the sodium-aluminosilicate glasses, suggesting that the boron is enhancing the effect that excess sodium has on the incorporation of Hf into the glass structure. The results of this solubility study are compared to other studies of high-valence cation solubility in B-free silicate melts. From this, for peralkaline B-bearing glasses, it is shown that, although the solubility limits are higher, the solution behavior of hafnia is the same as in B-free silicate melts previously studied. By comparison, also, it is shown that in peraluminous melts, there must be a different solution mechanism for hafnia: different than for peralkaline sodium-aluminum borosilicate glasses and different than for B-free silicate melts studied by others.

  11. Hafnium dioxide gate dielectrics, metal gate electrodes, and phenomena occurring at their interfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, James Kenyon, III

    As metal-oxide-semiconductor field-effect transistor (MOSFET) gate lengths scale down below 45 nm, the gate oxide thickness approaches 1 nm equivalent oxide thickness. At this thickness, conventional silicon dioxide (SiO 2) gate dielectrics suffer from excessive gate leakage. Higher permittivity dielectrics are required to counter the increase in gate leakage. Hafnium dioxide (HfO2) has emerged as a promising dielectric candidate. HfO2 films deposited using metal organic chemical vapor deposition are being studied to determine the impact of process and annealing conditions on the physical and electrical properties of the gate dielectric. This study indicates that deposition and annealing temperatures influence the microstructure, density, impurity concentration, chemical environment of the impurities, and band-gap of the HfO2 dielectric. Correlations of the electrical and physical properties of the films indicate that impurities in the form of segregated carbon clusters, and low HfO2 density are detrimental to the leakage properties of the gate dielectric. Additionally, as the HfO2 thickness scales, the additional series capacitance due to poly-silicon depletion plays a larger roll in reducing the total gate capacitance. To solve this problem, high performance bulk MOSFETs will require dual metal gate electrodes possessing work functions near the silicon band edges for optimized drive current. This investigation evaluates TiN, Ta-Si-N, Ti-Al-N, WN, TaN, TaSi, Ir and IrO2 electrodes as candidate electrodes on HfO2 dielectrics. The metal-dielectric compatibility was studied by annealing the gate stacks at different temperatures. The physical stability and effective work functions of metal electrodes on HfO2 are discussed. Finally, Fermi level pinning of the metal is a barrier to identifying materials with appropriate threshold voltages. The contributions to the Fermi level pinning of platinum electrodes on HfO2 gate dielectrics are investigated by examining the

  12. The energy landscape of glassy dynamics on the amorphous hafnium diboride surface

    SciTech Connect

    Nguyen, Duc; Girolami, Gregory S.; Mallek, Justin; Cloud, Andrew N.; Abelson, John R.; Lyding, Joseph; Gruebele, Martin

    2014-11-28

    Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB{sub 2} glass surface, two-state hopping of 1–2 nm diameter cooperatively rearranging regions or “clusters” occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunneling spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB{sub 2} has a very high bulk glass transition temperature T{sub g}, and we observe no three-state hopping or sequential two-state hopping previously seen on lower T{sub g} glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how “mixed” features can show up in surface dynamics of glasses.

  13. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    NASA Astrophysics Data System (ADS)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  14. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, Janne; Albarède, Francis

    2008-01-01

    New bulk Hf and Pb isotope data were obtained for 63 leached single zircons from Jack Hills (JH), Western Australia, using solution chemistry and, respectively, MC-ICP MS and ICP-MS. With the exception of one "young" zircon at 3.32 Ga, the remainder of the selected grains were previously dated at > 3.9 Ga by ion-microprobe. This work extends and complements the solution chemistry data of Harrison et al. [Harrison, T.M., Blichert-Toft, J., Müller, W., Albarède, F., Holden, P., Mojzsis, S.J., 2005. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947-1950.] but uses bulk rather than in situ Pb-Pb ages to interpret the Hf isotope data. This larger data set is used to explore whether the host rocks of the JH zircons formed as a succession of pulses or rather as a single event, and to calculate the age and assess the nature of their crustal protolith. We find that the parent granites of the JH zircons analyzed here formed during a single pulse 4.1 ± 0.1 Ga ago by the remelting of a 4.30-4.36 Ga old protolith. Monte Carlo modeling indicates that the 176Lu/ 177Hf ratios of this material (< 0.01) are unlike the ratios of modern-type oceanic crust and island arc rocks but rather fit a tonalite-trondhjemite-granodiorite (TTG) source. TTGs themselves derived their inordinately enriched character from a basaltic progenitor which corresponds to the missing enriched reservoir identified by the 143Nd- 144Nd, 142Nd- 144Nd, and 176Hf/ 177Hf systematics of Archean rocks. We speculate that crystallization of the magma ocean in the presence of garnet left the upper mantle and an early basaltic crust enriched in incompatible elements. Reaction of this early crust with the overlying hydrosphere and subsequent foundering into the mantle gave rise at ˜ 4.3 Ga to the TTG protolith of the JH granites. Dating the onset of plate tectonics therefore depends on whether TTGs can be considered as subduction zone magmas or not.

  15. The Molecular Frame Electric Dipole Moment and Hyperfine Interactions in Hafnium Fluoride, HfF

    NASA Astrophysics Data System (ADS)

    Le, Anh; Steimle, Timothy C.; Skripnikov, Leonid; Titov, Anatoly V.

    2013-06-01

    The identification of HfF^{+} as a possible candidate for a d_{e}} measurement has stimulated new interest in the spectroscopy of both HfF^{+} and neutral HfF. Studies of the neutral are relevant because photoionization schemes can be used to produce the cations. More importantly, computational methodologies used to predict the electronic wavefunction of HfF^{+} can be effectively assessed by making a comparison of predicted and experimental properties of the neutral, which are more readily determinable. The (1,0)[17.9]2.5 -X^{2}Δ_{3/2} band of hafnium monofluoride (HfF) has been recorded using high-resolution laser-induced fluorescence spectroscopy both field-free and in the presence of a static electric field. The field-free spectra of ^{177}HfF, ^{179}HfF, and ^{180}HfF were model to generate a set of fine and hyperfine parameters for the X^{2}Δ_{3/2} (v=0) and [17.9]2.5 (v=1) states. The observed optical Stark shifts for the ^{180}HfF isotopologue were analyzed to produce the molecular frame electric dipole moments of 1.66(1)D and 0.419(7)D for the X^{2}Δ_{3/2} and [17.9]2.5 states, respectively. A two-step ab initio calculation consisting of a two-component generalized relativistic effective core potential calculation (GRECP) followed by a restoration of the proper four-component wavefunction was performed to predict the properties of ground state HfF. B. J. Barker, I. O. Antonov, V. E. Bondybey, and M. C. Heaven, J. Chem. Phys., 134, 201102 (2011). K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell and J. Ye, Chem. Phys. Lett., 546, 1 (2012). M. Grau, A. E. Leanhardt, H. Loh, L. C. Sinclair, R. P. Stutz, T. S. Yahn, and E. A. Cornell, J. Mol. Spectroc., 272, 32 (2012). H. Loh, R. P. Stutz, T. S. Yahn, H. Looser, R. W. Field, and E. A. Cornell, J. Mol. Spectroc.,276-277, 49 (2012).

  16. [Sulfide removal from wastewater by nanoscale iron].

    PubMed

    Xi, Hong-bo; Yang, Qi; Shang, Hai-tao; Hao, Chun-bo; Li, Zhi-ling

    2008-09-01

    Influencing factors, adsorption isotherm, adsorption kinetics and preliminary discussion on the mechanism of sulfide adsorption by nanoscale iron prepared in laboratory were studied using manual simulation sulfide wastewater. Experimental results indicate that the removal efficiency of S2- increases with increasing iron dosage and decreases with increasing initial S2- concentration and pH values. The removal efficiency of S2- is 100% when initial concentration is less than 100 mg x L(-1) and are 87.34%, 65.80% and 44.61% at pH 2, 7 and 13. The temperature at 25 degrees C favors the maximum adsorption of S2- with 19.17 mg x g(-1) of equilibrium adsorption quantity and the adsorption capacity decreas at higher or lower temperature. The adsorption data fit well to the Langmuir equation and the Freundlich equation. The sulfide adsorption follows the pseudo second order equation with the maximum initial sorption rate(h) is 1.575 3 mg x (g x mg)(-1) at 25 degrees C and the adsorption rate constant increases with the increasing of temperature. The activation energy(Ea) is 8.22 kJ x mol(-1). The mechanism of sulfide removal is being sorbed onto the iron nanoparticles via formation of surface compleses, FeOSH and iron sulfides (FeS, FeS2, FeSn).

  17. Hydrogen sulfide: neurochemistry and neurobiology.

    PubMed

    Qu, K; Lee, S W; Bian, J S; Low, C-M; Wong, P T-H

    2008-01-01

    Current evidence suggests that hydrogen sulfide (H2S) plays an important role in brain functions, probably acting as a neuromodulator as well as an intracellular messenger. In the mammalian CNS, H2S is formed from the amino acid cysteine by the action of cystathionine beta-synthase (CBS) with serine (Ser) as the by-product. As CBS is a calcium and calmodulin dependent enzyme, the biosynthesis of H2S should be acutely controlled by the intracellular concentration of calcium. In addition, it is also regulated by S-adenosylmethionine which acts as an allosteric activator of CBS. H2S, as a sulfhydryl compound, has similar reducing properties as glutathione. In neurons, H2S stimulates the production of cAMP probably by direct activation of adenylyl cyclase and thus activate cAMP-dependent processes. In astrocytes, H2S increases intracellular calcium to an extent capable of inducing and propagating a "calcium wave", which is a form of calcium signaling among these cells. Possible physiological functions of H2S include potentiating long-term potentials through activation of the NMDA receptors, regulating the redox status, maintaining the excitatory/inhibitory balance in neurotransmission, and inhibiting oxidative damage through scavenging free radicals and reactive species. H2S is also involved in CNS pathologies such as stroke and Alzheimer's disease. In stroke, H2S appears to act as a mediator of ischemic injuries and thus inhibition of its production has been suggested to be a potential treatment approach in stroke therapy.

  18. Hydrogen Sulfide Inhibits Amyloid Formation

    PubMed Central

    2015-01-01

    Amyloid fibrils are large aggregates of misfolded proteins, which are often associated with various neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and vascular dementia. The amount of hydrogen sulfide (H2S) is known to be significantly reduced in the brain tissue of people diagnosed with Alzheimer’s disease relative to that of healthy individuals. These findings prompted us to investigate the effects of H2S on the formation of amyloids in vitro using a model fibrillogenic protein hen egg white lysozyme (HEWL). HEWL forms typical β-sheet rich fibrils during the course of 70 min at low pH and high temperatures. The addition of H2S completely inhibits the formation of β-sheet and amyloid fibrils, as revealed by deep UV resonance Raman (DUVRR) spectroscopy and ThT fluorescence. Nonresonance Raman spectroscopy shows that disulfide bonds undergo significant rearrangements in the presence of H2S. Raman bands corresponding to disulfide (RSSR) vibrational modes in the 550–500 cm–1 spectral range decrease in intensity and are accompanied by the appearance of a new 490 cm–1 band assigned to the trisulfide group (RSSSR) based on the comparison with model compounds. The formation of RSSSR was proven further using a reaction with TCEP reduction agent and LC-MS analysis of the products. Intrinsic tryptophan fluorescence study shows a strong denaturation of HEWL containing trisulfide bonds. The presented evidence indicates that H2S causes the formation of trisulfide bridges, which destabilizes HEWL structure, preventing protein fibrillation. As a result, small spherical aggregates of unordered protein form, which exhibit no cytotoxicity by contrast with HEWL fibrils. PMID:25545790

  19. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Xiao; Yang, Jianping; Chou, Shu-Lei; Liu, Hua Kun; Zhang, Wei-Xian; Zhao, Dongyuan; Dou, Shi Xue

    2015-10-01

    Sodium-metal sulfide battery holds great promise for sustainable and cost-effective applications. Nevertheless, achieving high capacity and cycling stability remains a great challenge. Here, uniform yolk-shell iron sulfide-carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of ~545 mA h g-1 over 100 cycles at 0.2 C (100 mA g-1), delivering ultrahigh energy density of ~438 Wh kg-1. The proven conversion reaction between sodium and iron sulfide results in high capacity but severe volume changes. Nanostructural design, including of nanosized iron sulfide yolks (~170 nm) with porous carbon shells (~30 nm) and extra void space (~20 nm) in between, has been used to achieve excellent cycling performance without sacrificing capacity. This sustainable sodium-iron sulfide battery is a promising candidate for stationary energy storage. Furthermore, this spatially confined sulfuration strategy offers a general method for other yolk-shell metal sulfide-carbon composites.

  20. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries.

    PubMed

    Wang, Yun-Xiao; Yang, Jianping; Chou, Shu-Lei; Liu, Hua Kun; Zhang, Wei-Xian; Zhao, Dongyuan; Dou, Shi Xue

    2015-10-28

    Sodium-metal sulfide battery holds great promise for sustainable and cost-effective applications. Nevertheless, achieving high capacity and cycling stability remains a great challenge. Here, uniform yolk-shell iron sulfide-carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of ∼ 545 mA h g(-1) over 100 cycles at 0.2 C (100 mA g(-1)), delivering ultrahigh energy density of ∼ 438 Wh kg(-1). The proven conversion reaction between sodium and iron sulfide results in high capacity but severe volume changes. Nanostructural design, including of nanosized iron sulfide yolks (∼ 170 nm) with porous carbon shells (∼ 30 nm) and extra void space (∼ 20 nm) in between, has been used to achieve excellent cycling performance without sacrificing capacity. This sustainable sodium-iron sulfide battery is a promising candidate for stationary energy storage. Furthermore, this spatially confined sulfuration strategy offers a general method for other yolk-shell metal sulfide-carbon composites.

  1. Recent findings on sinks for sulfide in gravity sewer networks.

    PubMed

    Nielsen, A H; Hvitved-Jacobsen, T; Vollertsen, J

    2006-01-01

    Sulfide buildup in sewer networks is associated with several problems, including health impacts, corrosion of sewer structures and odor nuisance. In recent years, significant advances in the knowledge of the major processes governing sulfide buildup in sewer networks have been made. This paper summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However, sulfide emission and thereby potential hydrogen sulfide buildup in the sewer atmosphere is of particular importance in sewers constructed with large diameter pipes, in sewers constructed with steep slopes and in sewers conveying low pH wastewater. Precipitation of metal sulfides is only important when the sulfide concentration in the wastewater is low; i.e. less than 1 g Sm(-3).

  2. Preparation of silver-activated zinc sulfide thin films

    NASA Technical Reports Server (NTRS)

    Feldman, C.; Swindells, F. E.

    1968-01-01

    Silver improves luminescence and reduces contamination of zinc sulfide phosphors. The silver is added after the zinc sulfide phosphors are deposited in thin films by vapor evaporation, but before calcining, by immersion in a solution of silver salt.

  3. Labile sulfide and sulfite in phytochelatin complexes

    SciTech Connect

    Eannetta, N.T.; Steffens, J.C. )

    1989-04-01

    Heavy metals such as cadmium induce tomato cell cultures to synthesize the metal binding polypeptides ({gamma}-Glu-Cys){sub 3} and ({gamma}-Glu-Cys){sub 4}-Gly (phytochelatins). Tomato cells selected for growth on normally lethal concentrations of CdCl{sub 2} synthesize higher quantities of these polypeptides. Cd{sup r} cells are not cross-resistant to other heavy metals, and recent work suggests that metal detoxification by these peptides may be Cd-specific. The occurrence of labile sulfur as a component of the metal complex raises questions concerning possible functions of phytochelatins besides that of Cd binding. The presence of acid-labile sulfide ion in phytochelatin complexes has been reported by several groups. We report the additional finding that labile sulfite is also present in these complexes and in higher amounts than sulfide. Sulfide and sulfite are both released from the metal binding complex by acidification or by treatment with EDTA.

  4. Evolution of sulfide mineralization on Mars

    SciTech Connect

    Burns, R.G.; Fisher, D.S. )

    1990-08-30

    The presence of komatiitic igneous rocks on Marks, based on geochemical evidence from SNC meteorites and Viking X ray fluorescence analyses of the regolith, suggests that massive and disseminated iron sulfide mineralization occurs near the Martian surface. Analogies are drawn between possible ultramafic Fe-Ni sulfides on Mars and terrestrial pyrrhotite-pentlandite ore deposits associated with Archean komatiites formed during early crustal development on Earth. Partial melting of the mantle as a result of high radiogenic heat production then, extrusion of turbulent high-temperature ultramafic lavas, segregation of immiscible FeS melts during cooling, gravitational settling and fractional crystallization of sulfide minerals in magma chambers or lava flows produced massive and disseminated sulfide mineralization associated with terrestrial komatiites. Comparable processes probably occurred on Mars where, on account of the inferred higher Fe/(Fe + Mg) ratio of the X ray mantle (estimated to contain {approximately}4.5 wt % S), iron-rich basaltic magmas were produced by partial melting at depths and temperatures exceeding 165 km and 1,400{degree}C, respectively. Adiabatic diapiric emplacement of these iron-rich, very low viscosity basaltic melts transported significant concentrations of dissolved sulfur as S{sup 2{minus}} and HS{sup {minus}} from the mantle. Ensuing sulfide mineralization may have been either thinly disseminated within ultramafic lavas erupting over large areas of Mars or concentrated locally at the base of structural depressions. Cumulate ore deposits several meters thick may occur at the base of intrusions or in near-surface magma chambers. The evidence for insignificant plate tectonic activity on Mars and minimal interactions of Martian mantle with crust, hydrosphere and atmosphere has restricted the evolution of sulfide ore deposits there.

  5. Sulfide and methane production in sewer sediments.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Ganigué, Ramon; Werner, Ursula; Sharma, Keshab R; Yuan, Zhiguo

    2015-03-01

    Recent studies have demonstrated significant sulfide and methane production by sewer biofilms, particularly in rising mains. Sewer sediments in gravity sewers are also biologically active; however, their contribution to biological transformations in sewers is poorly understood at present. In this study, sediments collected from a gravity sewer were cultivated in a laboratory reactor fed with real wastewater for more than one year to obtain intact sediments. Batch test results show significant sulfide production with an average rate of 9.20 ± 0.39 g S/m(2)·d from the sediments, which is significantly higher than the areal rate of sewer biofilms. In contrast, the average methane production rate is 1.56 ± 0.14 g CH4/m(2)·d at 20 °C, which is comparable to the areal rate of sewer biofilms. These results clearly show that the contributions of sewer sediments to sulfide and methane production cannot be ignored when evaluating sewer emissions. Microsensor and pore water measurements of sulfide, sulfate and methane in the sediments, microbial profiling along the depth of the sediments and mathematical modelling reveal that sulfide production takes place near the sediment surface due to the limited penetration of sulfate. In comparison, methane production occurs in a much deeper zone below the surface likely due to the better penetration of soluble organic carbon. Modelling results illustrate the dependency of sulfide and methane productions on the bulk sulfate and soluble organic carbon concentrations can be well described with half-order kinetics.

  6. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  7. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  8. Formation and characterization of the oxygen-rich hafnium dioxygen complexes: OHf(eta2-O2)(eta2-O3), Hf(eta2-O2)3, and Hf(eta2-O2)4.

    PubMed

    Gong, Yu; Zhou, Mingfei

    2007-09-20

    Hafnium atom oxidation by dioxygen molecules has been investigated using matrix isolation infrared absorption spectroscopy. The ground-state hafnium atom inserts into dioxygen to form primarily the previously characterized HfO(2) molecule in solid argon. Annealing allows the dioxygen molecules to diffuse and react with HfO(2) to form OHf(eta(2)-O(2))(eta(2)-O(3)), which is characterized as a side-on bonded oxo-superoxo hafnium ozonide complex. Under visible light (532 nm) irradiation, the OHf(eta(2)-O(2))(eta(2)-O(3)) complex either photochemically rearranges to a more stable Hf(eta(2)-O(2))(3) isomer, a side-on bonded di-superoxo hafnium peroxide complex, or reacts with dioxygen to form an unprecedented homoleptic tetra-superoxo hafnium complex: Hf(eta(2)-O(2))(4). The Hf(eta(2)-O(2))(4) complex is determined to possess a D(2d) geometry with a tetrahedral arrangement of four side-on bonded O(2) ligands around the hafnium atom, which thus presents an 8-fold coordination. These oxygen-rich complexes are photoreversible; that is, formation of Hf(eta(2)-O(2))(3) and Hf(eta(2)-O(2))(4) is accompanied by demise of OHf(eta(2)-O(2))(eta(2)-O(3)) under visible (532 nm) light irradiation and vice versa with UV (266 nm) light irradiation.

  9. Acute inhalation toxicity of carbonyl sulfide

    SciTech Connect

    Benson, J.M.; Hahn, F.F.; Barr, E.B.

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  10. Classification of polytype structures of zinc sulfide

    SciTech Connect

    Laptev, V.I.

    1994-12-31

    It is suggested that the existing classification of polytype structures of zinc sulfide be supplemented with an additional criterion: the characteristic of regular point systems (Wyckoff positions) including their type, number, and multiplicity. The consideration of the Wyckoff positions allowed the establishment of construction principles of known polytype series of different symmetries and the systematization (for the first time) of the polytypes with the same number of differently packed layers. the classification suggested for polytype structures of zinc sulfide is compact and provides a basis for creating search systems. The classification table obtained can also be used for numerous silicon carbide polytypes. 8 refs., 4 tabs.

  11. Modeling of Sulfide Microenvironments on Mars

    NASA Technical Reports Server (NTRS)

    Schwenzer, S. P.; Bridges, J. C.; McAdam, A.; Steer, E. D.; Conrad, P. G.; Kelley, S. P.; Wiens, R. C.; Mangold, N.; Grotzinger, J.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.

    2016-01-01

    Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.

  12. Evolution of sulfide mineralization on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1990-01-01

    It has been previously suggested, on the basis of compositional and petrographic similarities noted between komatites, SNC meteorites, and the silicate portion of the Martian regolith fines, that iron-sulfide ore deposites may exist on Mars. This paper examines the possible locations of Archean-type sulfide and related ore deposits on Mars, their evolution, and the emplacement mechanisms for the ore deposit. The clues to these questions are deduced by applying to Mars the temporal patterns of ore distribution on earth and the experimental observations on sulfur solubility in basaltic melts.

  13. Sulfide Inclusions in Electroslag Remelted Steels.

    DTIC Science & Technology

    1981-01-01

    8089 6ASS ACUET NTO TEC C MDEDP FMTRA EC F01/SULFIDE INCLUSIONS I N ELECTROSLAG REMELTED STEELS (U)~JAN 1 40BOLDY, T FUJII, D R PoI RIER DAAGA6-78-C...NATIONAL BUREAU Of SIAND1ARDS 1963-A A): D O C AMMRC TR 81-4 SULFIDE INCLUSIONS P ELECTROSLAG REMELTED STEELS January 1981 M. D . Boldy, T. Fujii, D . R...Approved for public release; distribution unlimited. ELECT S APR8 1981D S[tE TED Prepared for D ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown

  14. Metal hydrogen sulfide superconducting temperature calculation

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-07-01

    Éliashberg theory is generalized to the electron-phonon (EP) systems with the not constant density of electronic states. The phonon contribution to the anomalous electron Green's function (GF) is considered. The generalized Éliashberg equations with the variable density of electronic states are resolved for the hydrogen sulfide SH3 phase under pressure. The dependence of both the real and the imaginary part of the order parameter on the frequency in the SH3 phase is obtained. The Tc = 177 K value in the hydrogen sulfide SH3 phase at the pressure been defined. P = 225 GPa has been defined.

  15. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the eye. (e) Exemption from certification. Certification of this color additive is not necessary for... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity. The color additive luminescent zinc sulfide is zinc sulfide containing a copper activator. Following...

  16. 21 CFR 73.2995 - Luminescent zinc sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the eye. (e) Exemption from certification. Certification of this color additive is not necessary for... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity. The color additive luminescent zinc sulfide is zinc sulfide containing a copper activator. Following...

  17. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sulfide detection device. 872.1870 Section 872...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1870 Sulfide detection device. (a) Identification. A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe...

  18. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Sulfide detection device. 872.1870 Section 872...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1870 Sulfide detection device. (a) Identification. A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe...

  19. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sulfide detection device. 872.1870 Section 872...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1870 Sulfide detection device. (a) Identification. A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe...

  20. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Sulfide detection device. 872.1870 Section 872...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1870 Sulfide detection device. (a) Identification. A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe...

  1. Application of principle component analysis-artificial neural network for simultaneous determination of zirconium and hafnium in real samples.

    PubMed

    Abbaspour, A; Baramakeh, L

    2006-05-15

    Determination of zirconium and hafnium were done by applying singular value decomposition and a feed forward Neural Network Algorithm with back propagation of error. The determination of trace amounts of mixtures of Zr(IV) and Hf(IV) in various matrices (river, tap and industrial wastewater) were investigated by PC-ANN using the complexes formed between Alizarin Red S, Zr and Hf. The results showed that measurement is possible in the ranges of 0.03-3.4 and 0.2-7.0 microg ml-1 for Zr(IV) and Hf(IV), respectively. The detection limits were 0.02 and 0.08 microg ml-1 for Zr(IV) and Hf(IV), respectively. The results also show very good agreement between true and predicted concentration values and have the ability to use in routine analysis.

  2. Tetra­kis(8-quinolinolato-κ2 N,O)hafnium(IV) dimethyl­formamide solvate monohydrate

    PubMed Central

    Viljoen, Johannes A.; Visser, Hendrik G.; Roodt, Andreas

    2010-01-01

    In the title compound, [Hf(C9H6NO)]·C3H7NO·H2O, the hafnium(IV) atom is coordinated by four 8-quinolinolate (Ox) ligands, forming a slightly distorted square-anti­prismatic coordination polyhedron. The crystal packing is controlled by O—H⋯O and C—H⋯O hydrogen-bonding inter­actions and π–π inter­actions between quinoline ligands of neighbouring mol­ecules. The inter­planar distances vary between 3.150 (1) and 3.251 (2) Å, while centroid–centroid distances vary from 3.589 (1) to 4.1531 (1) Å. PMID:21579072

  3. Exchange coupling of a perpendicular ferromagnet to a half-metallic compensated ferrimagnet via a thin hafnium interlayer

    NASA Astrophysics Data System (ADS)

    Borisov, Kiril; Atcheson, Gwenaël; D'Arcy, Gavin; Lau, Yong-Chang; Coey, J. M. D.; Rode, Karsten

    2017-09-01

    A thin Hafnium film is shown to act both as an effective diffusion barrier for manganese at a thickness of 0.7 nm and as an effective exchange coupling layer in a sandwich structure with perpendicular magnetic anisotropy. The two magnetic layers are Co20Fe60B20 and the low moment ferrimagnet Mn2RuxGa (MRG). The relative orientation of the magnetic layers changes sign at the compensation temperature of MRG. The exchange energy reaches 0.11 mJ m-2 for the thinnest Hf interlayers. Ruthenium, the usual metal of choice for coupling ferromagnetic layers in thin film heterostructures, cannot be used with the zero-moment half metal MRG because of Ru interdiffusion. Due to its large coercivity near compensation, the MRG can potentially act as an effective source of exchange pinning.

  4. Selective-area growth of vertically oriented GaN nanostructures with a hafnium pre-orienting layer

    NASA Astrophysics Data System (ADS)

    Bae, S.-Y.; Lekhal, K.; Lee, H.-J.; Mitsunari, T.; Min, J.-W.; Lee, D.-S.; Kushimoto, M.; Honda, Y.; Amano, H.

    2017-06-01

    Severe melt-back etching has forced the epitaxy of GaN on Si to use an AlN buffer layer for growing high-quality two-dimensional layers, despite its high resistivity. Herein, we report a metal-based pre-orienting layer (POL) for growing GaN nanostructures (NSs) to replace the traditional AlN buffer layer. Two metals, titanium (Ti) and hafnium (Hf), were evaluated as POLs. We succeeded in fabricating arrays of GaN NSs with highly preferred orientation using selective-area growth. The crystallographic phase of the POLs critically affected the evolved orientation of the crystals. Photoluminescence measurements revealed that GaN NSs with Hf-based POLs were of reasonably high quality. We believe that this result will facilitate broader III-V semiconductor applications using alternative substrates moving beyond conventional Si-based optoelectronics.

  5. A search for long-lived radionuclides produced by fast-neutron irradiations of copper, silver, europium, terbium, and hafnium

    SciTech Connect

    Meadows, J.W.; Smith, D.L.; Greenwood, L.R; Haight, R.C.; Ikeda, Y.; Konno, C.; Los Alamos National Lab., NM; Japan Atomic Energy Research Inst., Tokai, Ibaraki )

    1989-01-01

    Identical sample packets, each containing samples of elemental copper, silver, europium, terbium, and hafnium, as well as titanium, iron and nickel as dosimeters, have been irradiated in three distinct accelerator neutron fields as part of an interlaboratory research collaboration to search for the production of long-lived radionuclides for fusion waste disposal applications. This paper is a progress report on this project. To date, we have detected the following activities, and have obtained preliminary experimental cross section values for several of these: Ag-106m,108m,110m; Eu-150m,152g,154; Tb-158,160; and Hf-175,178m2,179m2,181. 11 refs., 1 fig., 4 tabs.

  6. Coexistence of bipolar and threshold resistive switching in TiO2 based structure with embedded hafnium nanoparticles

    NASA Astrophysics Data System (ADS)

    Michelakaki, Irini; Bousoulas, Panagiotis; Stathopoulos, Spyros; Boukos, Nikos; Tsoukalas, Dimitris

    2017-02-01

    The coexistence of nonvolatile memory switching and volatile threshold switching in a single device is of importance for suppressing the sneak-path currents in crossbar resistive memory architectures. This study demonstrates that the combination of a thin film of TiO2 with hafnium nanoparticles in Au/Ti/TiO2/Hf nanoparticles/Au device configuration enables conversion between memory switching and volatile threshold switching by adjusting the current compliance through the materials stack. The presence of hexagonal closed packed Hf nanoparticles, a synthesis of which has not been reported before, is critical for the device operation that exhibits beneficial features as it is forming free and operates at low voltage and power consumption. Analysis of measured current-voltage (I-V) characteristics reveal a filamentary nature of switching phenomena and present operating similarities with electrochemical metallization cells suggesting that Hf metal atoms and not only oxygen vacancies are responsible for conductive filament formation.

  7. Experimental and first-principles studies on the elastic properties of α-hafnium metal under pressure

    SciTech Connect

    Qi, Xintong; Wang, Xuebing; Chen, Ting; Li, Baosheng

    2016-03-30

    Compressional and shear wave velocities of the α phase of hafnium have been measured up to 10.4 GPa at room temperature using ultrasonic interferometry in a multi-anvil apparatus. A finite strain equation of state analysis yielded Ks0 = 110.4 (5) GPa, G0 = 54.7(5) GPa,Ks0' = 3.7 and G0' = 0.6 for the elastic bulk and shear moduli and their pressure derivatives at ambient conditions. Complementary to the experimental data, the single crystal elastic constants, elastic anisotropy and the unit cell axial ratio c/a of α-hafnium at high pressures were investigated by Density Functional Theory (DFT) based first principles calculations. A c/a value of 1.605 is predicted for α-Hf at 40 GPa, which is in excellent agreement with previous experimental results. The low-pressure derivative of the shear modulus observed in our experimental data up to 10 GPa was found to originate from the elastic constant C44 which exhibits negligible pressure dependence within the current experimental pressure range. At higher pressures (>10 GPa), C44 was predicted to soften and the shear wave velocity νS trended to decrease with pressure, which can be interpreted as a precursor to the α-ω transition similar to that observed in other group IV elements (titanium and zirconium). Here, the acoustic velocities, bulk and shear moduli, and the acoustic Debye temperature (θD = 240.1 K) determined from the current experiments were all compared well with those predicted by our theoretical DFT calculations.

  8. Experimental and first-principles studies on the elastic properties of α-hafnium metal under pressure

    DOE PAGES

    Qi, Xintong; Wang, Xuebing; Chen, Ting; ...

    2016-03-30

    Compressional and shear wave velocities of the α phase of hafnium have been measured up to 10.4 GPa at room temperature using ultrasonic interferometry in a multi-anvil apparatus. A finite strain equation of state analysis yielded Ks0 = 110.4 (5) GPa, G0 = 54.7(5) GPa,Ks0' = 3.7 and G0' = 0.6 for the elastic bulk and shear moduli and their pressure derivatives at ambient conditions. Complementary to the experimental data, the single crystal elastic constants, elastic anisotropy and the unit cell axial ratio c/a of α-hafnium at high pressures were investigated by Density Functional Theory (DFT) based first principles calculations.more » A c/a value of 1.605 is predicted for α-Hf at 40 GPa, which is in excellent agreement with previous experimental results. The low-pressure derivative of the shear modulus observed in our experimental data up to 10 GPa was found to originate from the elastic constant C44 which exhibits negligible pressure dependence within the current experimental pressure range. At higher pressures (>10 GPa), C44 was predicted to soften and the shear wave velocity νS trended to decrease with pressure, which can be interpreted as a precursor to the α-ω transition similar to that observed in other group IV elements (titanium and zirconium). Here, the acoustic velocities, bulk and shear moduli, and the acoustic Debye temperature (θD = 240.1 K) determined from the current experiments were all compared well with those predicted by our theoretical DFT calculations.« less

  9. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    SciTech Connect

    Miao, Yinbin; Mo, Kun; Cui, Bai; Chen, Wei-Ying; Miller, Michael K.; Powers, Kathy A.; McCreary, Virginia; Gross, David; Almer, Jonathan; Robertson, Ian M.; Stubbins, James F.

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.

  10. Esterase Activated Carbonyl Sulfide/Hydrogen Sulfide (H2S) Donors.

    PubMed

    Chauhan, Preeti; Bora, Prerona; Ravikumar, Govindan; Jos, Swetha; Chakrapani, Harinath

    2017-01-06

    Hydrogen sulfide (H2S) is a mediator of a number of cellular processes, and modulating cellular levels of this gas has emerged as an important therapeutic area. Localized generation of H2S is thus very useful but highly challenging. Here, we report pivaloyloxymethyl-based carbonothioates and carbamothioates that are activated by the enzyme, esterase, to generate carbonyl sulfide (COS), which is hydrolyzed to H2S.

  11. Formation of selenide, sulfide or mixed selenide-sulfide films on metal or metal coated substrates

    DOEpatents

    Eser, Erten; Fields, Shannon

    2012-05-01

    A process and composition for preventing cracking in composite structures comprising a metal coated substrate and a selenide, sulfide or mixed selenide sulfide film. Specifically, cracking is prevented in the coating of molybdenum coated substrates upon which a copper, indium-gallium diselenide (CIGS) film is deposited. Cracking is inhibited by adding a Se passivating amount of oxygen to the Mo and limiting the amount of Se deposited on the Mo coating.

  12. Visible-Light-Triggered Uncaging of Carbonyl Sulfide for Hydrogen Sulfide (H2S) Release.

    PubMed

    Sharma, Ajay Kumar; Nair, Mrutyunjay; Chauhan, Preeti; Gupta, Kavya; Saini, Deepak K; Chakrapani, Harinath

    2017-09-05

    Generation of hydrogen sulfide (H2S) is challenging and few methods are capable of localized delivery of this gas. Here, a boron dipyrromethene-based carbamothioate (BDP-H2S) that is uncaged by visible light of 470 nm to generate carbonyl sulfide (COS), which is rapidly hydrolyzed to H2S in the presence of carbonic anhydrase, a widely prevalent enzyme, is reported.

  13. Experimental study of photon induced gamma emission of hafnium-178(m2) by nuclear spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Zoita, Nicolae Catalin

    The induced release of the energy stored in nuclear isomers in the form of an incoherent gamma burst is of great scientific and technological importance. Powerful sources of induced gamma-ray radiation could be obtained, which would be an intermediary step to the development of a gamma-ray laser. High-energy nuclear isomers with very long lifetimes of the order of years and higher can serve as good active media. For instance, a macroscopic sample of 178Hfm2 isomer stores about 1 GJ/g as excitation energy of the isomeric state. Photonuclear reactions induced by real or virtual photons are the most promising mechanisms to release the energy stored by 178Hfm2 nuclei. The isomeric nucleus is excited to an intermediate level from which cascade to the ground state emitting gamma-photons. The nuclear level density approaches one per keV at those excitation energies. Experimental investigations by nuclear spectroscopy methods conducted in this work revealed that the decay of 178Hfm2 is accelerated when the energies of the incident photons were tuned at about 20,825 keV, 11.15 keV or near the L3 photoionization threshold of atomic hafnium at 9561 keV. In the first case, the presumed mechanism was the direct photoexcitation of the m2 isomeric nucleus to a trigger level at about 2466.9 keV. There was a strong decay branch from this trigger level to the 11- level of the 8 - band that caused the accelerated emission of gamma photons from many of the transitions detected in the unperturbed spontaneous decay. In the second case, a trigger level at about 2457.2 keV, that meant 11.15 keV above the 16+ isomeric level, was mediating the energy release. The direct transition from this level to ground state was observed. Other branches of its decay enhanced the gamma-emission of the ground state band (GSB) members. In the third case, complex electron bridging mechanisms were implied when incident X-ray photons were tuned at energies near the L3 photoionization threshold. Those

  14. Platinum metals in magmatic sulfide ores

    USGS Publications Warehouse

    Naldrett, A.J.; Duke, J.M.

    1980-01-01

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. Copyright ?? 1980 AAAS.

  15. REACTION PROCESSES OF ARSENIC IN SULFIDIC SOLUTIONS

    EPA Science Inventory

    The fate of arsenic in the environment is fundamentally linked to its speciation. Arsenic in aerobic environments is predominantly arsenate, however under reducing conditions arsenite species dominate. In anoxic or sulfidic environments thioarsenite ((As(OH)x(SH)yz-) species alon...

  16. Comparison of Hydrogen Sulfide Analysis Techniques

    ERIC Educational Resources Information Center

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  17. REACTION PROCESSES OF ARSENIC IN SULFIDIC SOLUTIONS

    EPA Science Inventory

    The fate of arsenic in the environment is fundamentally linked to its speciation. Arsenic in aerobic environments is predominantly arsenate, however under reducing conditions arsenite species dominate. In anoxic or sulfidic environments thioarsenite ((As(OH)x(SH)yz-) species alon...

  18. Comparison of Hydrogen Sulfide Analysis Techniques

    ERIC Educational Resources Information Center

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  19. Optical investigation of polyphenylene sulfide composite

    NASA Astrophysics Data System (ADS)

    Rahate, A. S.; Nemade, K. R.; Waghuley, S. A.

    2013-06-01

    The synthesis of Polyphenylene sulfide (PPS) composite is done through chemical route using AlCl3 as Lewis acid. The Lewis acid/monomer stichometric ratio was taken to 99:1. To know the optical properties of composite, UV-VIS spectroscopy employed for the manipulation of optical properties such as extinction coefficient, optical conductivity, real dielectric constant, and imaginary dielectric constant.

  20. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.504 Section 250.504 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... § 250.490 of this part), the lessee shall take appropriate precautions to protect life and property...

  1. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.604 Section 250.604 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... § 250.490 of this part), the lessee shall take appropriate precautions to protect life and property...

  2. Monitoring sulfide and sulfate-reducing bacteria

    SciTech Connect

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  3. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.504 Section 250.504 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... equipment and flow lines, circulating the well, swabbing, and pulling tubing, pumps, and packers. The...

  4. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.504 Section 250.504 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... equipment and flow lines, circulating the well, swabbing, and pulling tubing, pumps, and packers. The...

  5. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.504 Section 250.504 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... equipment and flow lines, circulating the well, swabbing, and pulling tubing, pumps, and packers. The...

  6. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.604 Section 250.604 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... equipment and flow lines, circulating the well, swabbing, and pulling tubing, pumps and packers. The...

  7. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.604 Section 250.604 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... equipment and flow lines, circulating the well, swabbing, and pulling tubing, pumps and packers. The...

  8. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.604 Section 250.604 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... equipment and flow lines, circulating the well, swabbing, and pulling tubing, pumps and packers. The...

  9. METHOD OF OBTAINING SULFIDES OF ORGANOFLUOROSILICON COMPOUNDS,

    DTIC Science & Technology

    are subjected to interaction with unsaturated sulfides in the presence of a solution of chloroplatinic acid in isopropyl alcohol with heating up to 40-150C. (Author)...and also as additives to lubricating oils , antioxidants, and vulcanization accelerators. The method consists of the following: Fluorohydride silanes

  10. New Sulfide Derivatives of Vegetable Oils

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils containing sulfide group were synthesized using a UV initiated thiol-ene reaction. The reaction involved addition of butyl thiol to the double bonds of the vegetable oil without the presence of a solvent. The effects of temperature, reaction time, type of vegetable oil, thiol to veg...

  11. Nucleation of mercury sulfide by dealkylation

    PubMed Central

    Enescu, Mironel; Nagy, Kathryn L.; Manceau, Alain

    2016-01-01

    Metal sulfide minerals are assumed to form naturally at ambient conditions via reaction of a metallic element with (poly)sulfide ions, usually produced by microbes in oxygen-depleted environments. Recently, the formation of mercury sulfide (β-HgS) directly from linear Hg(II)-thiolate complexes (Hg(SR)2) in natural organic matter and in cysteine solutions was demonstrated under aerated conditions. Here, a detailed description of this non-sulfidic reaction is provided by computations at a high level of molecular-orbital theory. The HgS stoichiometry is obtained through the cleavage of the S-C bond in one thiolate, transfer of the resulting alkyl group (R’) to another thiolate, and subsequent elimination of a sulfur atom from the second thiolate as a thioether (RSR’). Repetition of this mechanism leads to the formation of RS-(HgS)n-R chains which may self-assemble in parallel arrays to form cinnabar (α-HgS), or more commonly, quickly condense to four-coordinate metacinnabar (β-HgS). The mechanistic pathway is thermodynamically favorable and its predicted kinetics agrees with experiment. The results provide robust theoretical support for the abiotic natural formation of nanoparticulate HgS under oxic conditions and in the absence of a catalyst, and suggest a new route for the (bio)synthesis of HgS nanoparticles with improved technological properties. PMID:27991599

  12. Microaeration reduces hydrogen sulfide in biogas

    USDA-ARS?s Scientific Manuscript database

    Although there are a variety of biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, all require some level of chemical or water inputs and maintenance. In practice, managing biogas H2S remains a significant challenge for agricultural digesters where labor and opera...

  13. Nucleation of mercury sulfide by dealkylation

    NASA Astrophysics Data System (ADS)

    Enescu, Mironel; Nagy, Kathryn L.; Manceau, Alain

    2016-12-01

    Metal sulfide minerals are assumed to form naturally at ambient conditions via reaction of a metallic element with (poly)sulfide ions, usually produced by microbes in oxygen-depleted environments. Recently, the formation of mercury sulfide (β-HgS) directly from linear Hg(II)-thiolate complexes (Hg(SR)2) in natural organic matter and in cysteine solutions was demonstrated under aerated conditions. Here, a detailed description of this non-sulfidic reaction is provided by computations at a high level of molecular-orbital theory. The HgS stoichiometry is obtained through the cleavage of the S-C bond in one thiolate, transfer of the resulting alkyl group (R’) to another thiolate, and subsequent elimination of a sulfur atom from the second thiolate as a thioether (RSR’). Repetition of this mechanism leads to the formation of RS-(HgS)n-R chains which may self-assemble in parallel arrays to form cinnabar (α-HgS), or more commonly, quickly condense to four-coordinate metacinnabar (β-HgS). The mechanistic pathway is thermodynamically favorable and its predicted kinetics agrees with experiment. The results provide robust theoretical support for the abiotic natural formation of nanoparticulate HgS under oxic conditions and in the absence of a catalyst, and suggest a new route for the (bio)synthesis of HgS nanoparticles with improved technological properties.

  14. Atomic layer deposition of metal sulfide materials.

    PubMed

    Dasgupta, Neil P; Meng, Xiangbo; Elam, Jeffrey W; Martinson, Alex B F

    2015-02-17

    CONSPECTUS: The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application

  15. Atomic layer deposition of metal sulfide materials

    DOE PAGES

    Dasgupta, Neil P.; Meng, Xiangbo; Elam, Jeffrey W.; ...

    2015-01-12

    The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivatingmore » interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application space

  16. Oxygen Demand of Fresh and Stored Sulfide Solutions and Sulfide-Rich Constructed Wetland Effluent.

    PubMed

    Chan, Carolyn; Farahbakhsh, Khosrow

    2015-08-01

    This study investigated the contribution of hydrogen sulfide to biological oxygen demand (BOD5) and chemical oxygen demand (COD) in wastewater effluents, and documented the effect of storage times and conditions on the BOD5 and COD of pH-adjusted sodium sulfide solutions as well as graywater wetland effluent. Initial COD measurements of sulfide solutions were 84-89% of the theoretical oxygen demand (ThOD), 1.996 mg O2/mg S, whereas unseeded BOD5 measurements were 55-77%. For sulfide solutions, all storage conditions led to declines of >15% (COD, BOD5), and >31% (sulfide). For wetland effluent, storage without headspace was effective in reducing COD losses (3.7%), compared to storage with headspace (17%), and affected changes in turbidity, UVA-254 and pH. The results suggest that storage times and conditions should be controlled and reported when reporting BOD5 and COD of sulfide-rich samples. Wetland models representing sulfate reduction as a method of COD removal may need to be reconsidered.

  17. Analog Experiments on Sulfide Foams in Magmatic Ore Deposits

    NASA Astrophysics Data System (ADS)

    Leitch, A. M.; Dahn, D.; Zavala, K.

    2009-05-01

    Metal sulfides form as an immiscible phase from silicate magmas. Dynamic mingling and unmingling of the two phases is important for the development of economic deposits: mingling promotes enrichment of the sulfide in valuable metals, and subsequent unmingling generates massive sulfide. Analog experiments were carried out to investigate mingling processes in immiscible systems, using oil, water and small beads to represent magma, sulfide liquid and silicate crystals. Stirring or injection led to the formation of a foam of analog sulfide droplets within an analog silicate framework. We propose that the partial collapse of such a foam explains massive sulfide lenses at the Voisey's Bay magmatic sulfide deposit, and that crystallization of silicate crystals in the remaining foam walls generates 'net-textured' ores. In the experiments, solid particles had a profound effect on unmingling: analog sulfide droplets were stably contained within analog crystal-rich magma and did not coalesce. We therefore suggest that 'net' and 'leopard' textures in disseminated sulfides indicate mingling of sulfide with crystal-poor magma, whereas isolated disseminated patches of sulfide indicate mingling with a crystal-rich magma.

  18. Study on the sulfidation behavior of smithsonite

    NASA Astrophysics Data System (ADS)

    Wu, Dandan; Wen, Shuming; Deng, Jiushuai; Liu, Jian; Mao, Yingbo

    2015-02-01

    Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pHIEP of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, CS in the solution declined from 1000 × 10-6 mol/L to 1.4 × 10-6 mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S2- and CO32- ions.

  19. Iron sulfide minerals in Black Sea sediments

    NASA Astrophysics Data System (ADS)

    Franke, C.; Robin, E.; Henkel, S.; Kasten, S.; Bleil, U.

    2009-04-01

    This study presents an integrated geochemical, environmental magnetic, and electron microscopic approach to better understand the physicochemical processes in deep sea sediments from the northwestern Black Sea. The investigated gravity core GC 214 was retrieved in 2007 during RV Meteor cruise M72/1 west of the Crimean Peninsula in a water depth of 1686 mbsf. Geochemical analyses of the pore water and solid phase indicate non-steady state sedimentation. The oxygen-depleted water column conditions, anaerobic oxidation of methane (AOM) and related microbially-driven sulfate reduction favor a highly complex iron sulfide mineral assemblage in the sediment column. The detailed magnetic susceptibility and remanence measurements indicate an irregularly stratified depth profile showing intervals of particularly high values. Further environmental magnetic analyses depict strongly elevated coercivities for those depth horizons, suggesting greigite as one of the main magnetic carrier minerals. Automated chemical classification (ACC), using electron dispersive spectrometer (EDS) attached to a JEOL840 scanning electron microscope (SEM), on dispersed particle samples permitted the identification of greigite (Fe3S4) next to pyrrhotite (Fe7S8), pyrite (FeS2) and monosulfides (FeS), but also allowed for the absolute quantification of the various mineral phases. These analyses were carried out on magnetic extracts and density separates to be able to calculate budgets between the different present iron sulfides. We obtained excellent correlations between the different iron sulfide concentrations and the magnetic signal. Additional analyses on polished sections yield inside into the details of the sulfidization pathways along the depth profile of the sediment sequence and help to develop a more general process model for this particular geochemical (paleo-)environment. Keywords: Black Sea, iron sulfides, environmental magnetism, anaerobic oxidation of methane (AOM), scanning electron

  20. Oxidation of hydrogen sulfide by human liver mitochondria.

    PubMed

    Helmy, Nada; Prip-Buus, Carina; Vons, Corinne; Lenoir, Véronique; Abou-Hamdan, Abbas; Guedouari-Bounihi, Hala; Lombès, Anne; Bouillaud, Frédéric

    2014-09-15

    Hydrogen sulfide (H2S) is the third gasotransmitter discovered. Sulfide shares with the two others (NO and CO) the same inhibiting properties towards mitochondrial respiration. However, in contrast with NO or CO, sulfide at concentrations lower than the toxic (μM) level is an hydrogen donor and a substrate for mitochondrial respiration. This is due to the activity of a sulfide quinone reductase found in a large majority of mitochondria. An ongoing study of the metabolic state of liver in obese patients allowed us to evaluate the sulfide oxidation capacity with twelve preparations of human liver mitochondria. The results indicate relatively high rates of sulfide oxidation with a large variability between individuals. These observations made with isolated mitochondria appear in agreement with the main characteristics of sulfide oxidation as established before with the help of cellular models.

  1. Sulfide in surface waters of the western Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Krahforst, Christian F.

    1988-11-01

    Using newly developed techniques, some preliminary data on hydrogen sulfide in surface waters of the western Atlantic have been obtained. Concentrations of total sulfide range from <0.1 to 1.1 nmol/L, and vary on a diel basis. At these concentrations, sulfide may affect the cycling of several trace metals via the formation of stable complexes. Production of sulfide in oxygenated seawater may occur through the hydrolysis of carbonyl sulfide or by sulfate reduction within macroscopic particles in the water column. Removal mechanisms can include oxidation, complexation with particulate trace metals, and metal sulfide precipitation. However, the temporal and spatial distributions suggest a complex set of processes governing the behavior of sulfide in the surface ocean.

  2. Sulfide elimination by intermittent nitrate dosing in sewer sediments.

    PubMed

    Liu, Yanchen; Wu, Chen; Zhou, Xiaohong; Zhu, David Z; Shi, Hanchang

    2015-01-01

    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards, and requires expensive programs for its prevention. The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments. The study was carried out based on lab-scale experiments and batch tests using real sewer sediments. The intermittent nitrate dosing mode and the optimal control condition were investigated. The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment. The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide) ratio with slight excess nitrate is necessary for optimal conditions of efficient sulfide control with lower carbon source loss. The optimal control condition is feasible for the sulfide elimination in sewer systems.

  3. Salen complexes of zirconium and hafnium: synthesis, structural characterization, controlled hydrolysis, and solvent-free ring-opening polymerization of cyclic esters and lactides.

    PubMed

    Saha, Tanmoy Kumar; Ramkumar, Venkatachalam; Chakraborty, Debashis

    2011-04-04

    Dinuclear salen compounds of zirconium and hafnium are efficient initiators for the solvent-free ring-opening polymerization of cyclic ester monomers and lactides. There is a correlation between the theoretical and experimental number-average molecular weights (M(n)'s) in these polymerizations. Polymerization of β-butyrolactone gives poly(3-hydroxybutyrate) with a good M(n) and molecular weight distribution.

  4. Observation by EPR of trivalent hafnium in LuPO/sub 4/, YPO/sub 4/, and ScPO/sub 4/

    SciTech Connect

    Abraham, M.M.; Boatner, L.A.; Ramey, J.O.

    1985-09-15

    Recent EPR studies of the 4d/sup 1/ configuration ion Zr/sup 3 +/ in the tetragonal-symmetry orthophosphate hosts LuPO/sub 4/, YPO/sub 4/, and ScPO/sub 4/, have led to additional investigations of d/sup 1/ configuration ions associated with unusual valence states of other elements. Single crystals of LuPO/sub 4/, YPO/sub 4/, and ScPO/sub 4/ doped with hafnium were grown and the electron paramagnetic resonance (EPR) spectrum of the 5d/sup 1/ ion Hf /sup 3 +/ was observed in all three cases. EPR signals due to trivalent hafnium were only observed, however, when the doped samples were gamma irradiated at 77 K and maintained at 77 K during the EPR observations. Since there are two odd isotopes of hafnium with different nuclear spins and different natural abundances, identification of the spectrum of Hf /sup 3 +/ was straightforward. Since Hf /sup 3 +/ represents such an unusual valence for hafnium in the solid state, however, this identification was unequivocally verified by preparing crystals doped with isotopically enriched /sup 179/Hf. The spectroscopic splitting factors, g/sub parallel/ and g/sub perpendicular/, and the parallel magnetic hyperfine constants A/sub parallel/ of /sup 177/Hf and /sup 179/Hf were obtained for Hf /sup 3 +/ in all three hosts. A determination of the hyperfine parameters with the applied magnetic field oriented in the perpendicular direction was not carried out due to quadrupole effects. As in the case of Zr/sup 3 +/, the observed electronic g values for Hf /sup 3 +/ could not be accounted for by the standard second-order equations which included the spin-orbit-induced admixture of some other excited orbital levels of the d/sup 1/ configuration into the ground orbital level.

  5. Selective chemical dissolution of sulfides: An evaluation of six methods applicable to assaying sulfide-bound nickel

    USGS Publications Warehouse

    Klock, P.R.; Czamanske, G.K.; Foose, M.; Pesek, J.

    1986-01-01

    Six analytical techniques for the selective chemical dissolution of sulfides are compared with the purpose of defining the best method for accurately determining the concentration of sulfide-bound nickel. Synthesized sulfide phases of known elemental content, mixed with well-analyzed silicates, were used to determine the relative and absolute efficiency, based on Ni and Mg recovery, of the techniques. Tested leach-methods purported to dissolve sulfide from silicate phases include: brominated water, brominated water-carbon tetrachloride, nitric-hydrochloric acid, hydrogen peroxide-ammonium citrate, bromine-methanol and hydrogen peroxide-ascorbic acid. Only the hydrogen peroxide-ammonium citrate method did not prove adequate in dissolving the sulfide phases. The remaining five methods dissolved the sulfide phases, but the indicated amount of attack on the silicate portion ranged from 3% to 100%. The bromine-methanol method is recommended for assaying sulfide-Ni deposits when Ni is also present in silicate phases. ?? 1986.

  6. Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide

    SciTech Connect

    Reber, J.F.; Rusek, M.

    1986-02-27

    An efficient hydrogen production can be achieved by irradiated suspensions of platinized CdS in solutions of S/sup 2 -/ and/or SO/sub 3//sup 2 -/ ions. However, the photocatalytic activity of CdS powders strongly depends on their specific surface area. However, coprecipitation of CdS with about 0.5-3 wt% silver sulfide or surface modification of CdS with a large specific surface area by silver ions permitted preparation of very active platinized photocatalysts. The enhancement of activity is not limited to the absorption range of CdS, but also results from a significant extension of the spectral response up to about 620 nm. Further improvement of the photoactivity can be achieved by doping the Ag/sub 2/S activated CdS powders with zinc sulfide. 77 references, 17 figures.

  7. Arsenic speciation in natural sulfidic geothermal waters

    NASA Astrophysics Data System (ADS)

    Keller, Nicole S.; Stefánsson, Andri; Sigfússon, Bergur

    2014-10-01

    The speciation of arsenic in natural sulfidic geothermal waters was studied using chemical analyses and thermodynamic aqueous speciation calculations. Samples were collected in three geothermal systems in Iceland, having contrasting H2S concentrations in the reservoir (high vs. low). The sampled waters contained 7-116 ppb As and <0.01-77.6 ppm H2S with pH of 8.56-9.60. The analytical setup used for the determination of arsenic species (Ion Chromatography-Hydride Generation Atomic Fluorescence Spectrometry, IC-HG-AFS) was field-deployed and the samples analyzed within ∼5 min of sampling in order to prevent changes upon storage, which were shown to be considerable regardless of the sample storage method used. Nine aqueous arsenic species were detected, among others arsenite (HnAsIIIO3n-3), thioarsenite (HnAsIIIS3n-3), arsenate (HnAsVO4n-3), monothioarsenate (HnAsVSO3n-3), dithioarsenate (HnAsVS2O2n-3), trithioarsenate (HnAsVS3O n - 3) and tetrathioarsenate (HnAsVS4n-3). The results of the measured aqueous arsenic speciation in the natural geothermal waters and comparison with thermodynamic calculations reveal that the predominant factors determining the species distribution are sulfide concentration and pH. In alkaline waters with low sulfide concentrations the predominant species are AsIII oxyanions. This can be seen in samples from a liquid-only well, tapping water that is H2S-poor and free of oxygen. At intermediate sulfide concentration AsIII and AsV thio species become important and predominate at high sulfide concentration, as seen in two-phase well waters, which have high H2S concentrations in the reservoir. Upon oxidation, for instance due to mixing of the reservoir fluid with oxygenated water upon ascent to the surface, AsV oxyanions form, as well as AsV thio complexes if the sulfide concentration is intermediate to high. This oxidation process can be seen in samples from hot springs in the Geysir geothermal area. While the thermodynamic modeling allows

  8. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina.

    PubMed

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments.

  9. Kinetics and stoichiometry of sulfide oxidation by sewer biofilms.

    PubMed

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2005-10-01

    Oxidation of sulfide under aerobic conditions by biofilms grown on municipal wastewater in 6 identical pipe reactors was investigated. The biofilms were grown at pH 7.6 and temperatures of 20 and 25 degrees C under aerobic-anaerobic transient conditions with pulse dosing of sulfide in the bulk water. The pulse dosing of sulfide served to simulate conditions in a gravity sewer located downstream of a pressure main. During growth of the biofilms, sulfide was pulse dosed in concentrations of 0, 0.5, 2.0 and 5.0 g Sm(-3) with a frequency of 1h(-1). Based on a series of batch experiments, kinetics and stoichiometry of sulfide oxidation by the sewer biofilms was investigated and a rate equation and a stoichiometric constant proposed. Sulfide oxidation kinetics was significantly faster for biofilms grown at sulfide loadings of 0.5, 2.0 and 5.0 g Sm(-3)h(-1) than for biofilms grown in the absence of sulfide. However, the kinetics of sulfide oxidation was relatively constant for biofilms grown at sulfide loadings above 0.5 g Sm(-3)h(-1). Mass balance calculations of dissolved oxygen and sulfur compounds suggested the oxidation product to be elemental sulfur. Further oxidation of elemental sulfur could not be documented.

  10. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    PubMed Central

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments. PMID:26030258

  11. Sulfide, the first inorganic substrate for human cells.

    PubMed

    Goubern, Marc; Andriamihaja, Mireille; Nübel, Tobias; Blachier, François; Bouillaud, Frédéric

    2007-06-01

    Hydrogen sulfide (H2S) is produced inside the intestine and is known as a poison that inhibits cellular respiration at the level of cytochrome oxidase. However, sulfide is used as an energetic substrate by many photo- and chemoautotrophic bacteria and by animals such as the lugworm Arenicola marina. The concentrations of sulfide present in their habitats are comparable with those present in the human colon. Using permeabilized colonic cells to which sulfide was added by an infusion pump we show that the maximal respiratory rate of colonocyte mitochondria in presence of sulfide compares with that obtained with succinate or L-alpha-glycerophosphate. This oxidation is accompanied by mitochondrial energization. In contrast, other cell types not naturally exposed to high concentration of sulfide showed much lower oxidation rates. Mitochondria showed a very high affinity for sulfide that permits its use as an energetic substrate at low micromolar concentrations, hence, below the toxic level. However, if the supply of sulfide exceeds the oxidation rate, poisoning renders mitochondria inefficient and our data suggest that an anaerobic mechanism involving partial reversion of Krebs cycle already known in invertebrates takes place. In conclusion, this work provides additional and compelling evidence that sulfide is not only a toxic compound. According to our study, sulfide appears to be the first inorganic substrate for mammalian cells characterized thus far.

  12. A biogeochemical framework for metal detoxification in sulfidic systems.

    PubMed

    Schwarz, Alex O; Rittmann, Bruce E

    2007-12-01

    We develop a comprehensive biogeochemical framework for understanding and quantitatively evaluating metals bio-protection in sulfidic microbial systems. We implement the biogeochemical framework in CCBATCH by expanding its chemical equilibrium and biological sub-models for surface complexation and the formation of soluble and solid products, respectively. We apply the expanded CCBATCH to understand the relative importance of the various key ligands of sulfidic systems in Zn detoxification. Our biogeochemical analysis emphasizes the relative importance of sulfide over other microbial products in Zn detoxification, because the sulfide yield is an order of magnitude higher than that of other microbial products, while its reactivity toward metals also is highest. In particular, metal-titration simulations using the expanded CCBATCH in a batch mode illustrate how sulfide detoxifies Zn, controlling its speciation as long as total sulfide is greater than added Zn. Only in the absence of sulfide does complexation of Zn to biogenic organic ligands play a role in detoxification. Our biogeochemical analysis conveys fundamental insight on the potential of the key ligands of sulfidic systems to effect Zn detoxification. Sulfide stands out for its reactivity and prevalence in sulfidic systems.

  13. The Evolution of Sulfide Tolerance in the Cyanobacteria

    NASA Technical Reports Server (NTRS)

    Miller, Scott R.; Bebout, Brad M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Understanding how the function of extant microorganisms has recorded both their evolutionary histories and their past interactions with the environment is a stated goal of astrobiology. We are taking a multidisciplinary approach to investigate the diversification of sulfide tolerance mechanisms in the cyanobacteria, which vary both in their degree of exposure to sulfide and in their capacity to tolerate this inhibitor of photosynthetic electron transport. Since conditions were very reducing during the first part of Earth's history and detrital sulfides have been found in Archean sediments, mechanisms conferring sulfide tolerance may have been important for the evolutionary success of the ancestors of extant cyanobacteria. Two tolerance mechanisms have been identified in this group: (1) resistance of photosystem II, the principal target of sulfide toxicity; and (2) maintenance of the ability to fix carbon despite photosystem II inhibition by utilizing sulfide as an electron donor in photosystem I - dependent, anoxygenic photosynthesis. We are presently collecting comparative data on aspects of sulfide physiology for laboratory clones isolated from a variety of habitats. These data will be analyzed within a phylogenetic framework inferred from molecular sequence data collected for these clones to test how frequently different mechanisms of tolerance have evolved and which tolerance mechanism evolved first. In addition, by analyzing these physiological data together with environmental sulfide data collected from our research sites using microelectrodes, we can also test whether the breadth of an organism's sulfide tolerance can be predicted from the magnitude of variation in environmental sulfide concentration it has experienced in its recent evolutionary past and whether greater average sulfide concentration and/or temporal variability in sulfide favors the evolution of a particular mechanism of sulfide tolerance.

  14. Is hydrogen sulfide a circulating "gasotransmitter" in vertebrate blood?

    PubMed

    Olson, Kenneth R

    2009-07-01

    Hydrogen sulfide (H(2)S) is gaining acceptance as a signaling molecule and has been shown to elicit a variety of biological effects at concentrations between 10 and 1000 micromol/l. Dissolved H(2)S is a weak acid in equilibrium with HS(-) and S(2-) and under physiological conditions these species, collectively referred to as sulfide, exist in the approximate ratio of 20% H(2)S, 80% HS(-) and 0% S(2-). Numerous analyses over the past 8 years have reported plasma or blood sulfide concentrations also in this range, typically between 30 and 300 micromol/l, thus supporting the biological studies. However, there is some question whether or not these concentrations are physiological. First, many of these values have been obtained from indirect methods using relatively harsh chemical conditions. Second, most studies conducted prior to 2000 failed to find blood sulfide in micromolar concentrations while others showed that radiolabeled (35)S-sulfide is rapidly removed from blood and that mammals have a relatively high capacity to metabolize exogenously administered sulfide. Very recent studies using H(2)S gas-sensing electrodes to directly measure sulfide in plasma or blood, or HPLC analysis of head-space gas, have also indicated that sulfide does not circulate at micromolar levels and is rapidly consumed by blood or tissues. Third, micromolar concentrations of sulfide in blood or exhaled air should be, but are not, malodorous. Fourth, estimates of dietary sulfur necessary to sustain micromolar levels of plasma sulfide greatly exceed the daily intake. Collectively, these studies imply that many of the biological effects of sulfide are only achieved at supra-physiological concentrations and they question whether circulating sulfide is a physiologically relevant signaling molecule. This review examines the blood/plasma sulfide measurements that have been reported over the past 30 years from the perspective of the analytical methods used and the potential sources of error.

  15. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.

    PubMed

    Rajajayavel, Sai Rajasekar C; Ghoshal, Subhasis

    2015-07-01

    Direct injection of reactive nanoscale zerovalent iron particles (NZVI) is considered to be a promising approach for remediation of aquifers contaminated by chlorinated organic pollutants. In this study we show that the extent of sulfidation of NZVI enhances the rate of dechlorination of trichloroethylene (TCE) compared to that by unamended NZVI, and the enhancement depends on the Fe/S molar ratio. Experiments where TCE was reacted with NZVI sulfidated to different extents (Fe/S molar ratios 0.62-66) showed that the surface-area normalized first-order TCE degradation rate constant increased up to 40 folds compared to non-sulfidated NZVI. Fe/S ratios in the range of 12-25 provided the highest TCE dechlorination rates, and rates decreased at both higher and lower Fe/S. In contrast, sulfidated NZVI exposed to water in the absence of TCE showed significantly lower hydrogen evolution rate (2.75 μmol L(-1) h(-1)) compared to that by an unamended NZVI (6.92 μmol L(-1) h(-1)), indicating that sulfidation of NZVI suppressed corrosion reactions with water. Sulfide (HS(-)) ions reacted rapidly with NZVI and X-ray photoelectron spectroscopy analyses showed formation of a surface layer of FeS and FeS2. We propose that more electrons are preferentially conducted from sulfidated NZVI than from unamended NZVI to TCE, likely because of greater binding of TCE on the reactive sites of the iron sulfide outer layer. Resuspending sulfidated NZVI in sulfide-free or sulfide containing solutions altered the TCE degradation rate constants because of changes in the FeS layer thickness. Sulfidated NZVI maintained its high reactivity in the presence of multiple mono and divalent ions and with polyelectrolyte coatings. Thus, sulfide ions in groundwater can significantly alter NZVI reactivity.

  16. Cadmium zinc sulfide by solution growth

    DOEpatents

    Chen, Wen S.

    1992-05-12

    A process for depositing thin layers of a II-VI compound cadmium zinc sulfide (CdZnS) by an aqueous solution growth technique with quality suitable for high efficiency photovoltaic or other devices which can benefit from the band edge shift resulting from the inclusion of Zn in the sulfide. A first solution comprising CdCl.sub.2 2.5H.sub.2 O, NH.sub.4 Cl, NH.sub.4 OH and ZnCl.sub.2, and a second solution comprising thiourea ((NH.sub.2).sub.2 CS) are combined and placed in a deposition cell, along with a substrate to form a thin i.e. 10 nm film of CdZnS on the substrate. This process can be sequentially repeated with to achieve deposition of independent multiple layers having different Zn concentrations.

  17. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  18. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  19. Atomic Layer Deposition of Metal Sulfide Materials

    SciTech Connect

    Dasgupta, Neil P.; Meng, Xiangbo; Elam, Jeffrey W.; Martinson, Alex B. F.

    2015-02-17

    The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry.

  20. Global Budgets of Atmospheric Carbonyl Sulfide

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Whelan, M.; Seibt, U. H.; Smith, S.; Berry, J. A.; Montzka, S. A.; Hilton, T. W.

    2014-12-01

    This study investigates the magnitudes and temporal trends of sources and sinks of tropospheric carbonyl sulfide (COS) and their relationship to understanding the atmospheric lifetime as well as other important atmospheric species including carbon dioxide, carbon disulfide, dimethyl sulfide, and biogenic volatile organic compounds. Our analysis incorporates data that was overlooked in previous budgets, recent advances in the understanding of budget components, and temporal data relevant to estimating recent and long-term changes in budget components. While the uncertainty estimates are large and include a missing source that may be the largest individual source, atmospheric inverse studies can constrain these budgets while also addressing critical knowledge gaps for related species, particularly CO2.

  1. Speciation of arsenic in sulfidic waters

    PubMed Central

    Wilkin, Richard T; Wallschläger, Dirk; Ford, Robert G

    2003-01-01

    Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH2S from 10-7.5 to 10-3.0 M, ΣAs from 10-5.6 to 10-4.8 M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH)30, and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10-4.3 M at neutral pH. Conversion from neutral As(OH)30 to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions.

  2. Removal of hydrogen sulfide from drilling fluids

    SciTech Connect

    Gilligan Jr., T. J.

    1985-10-22

    The present invention relates to a process for scavenging hydrogen sulfide which frequently becomes entrained in drilling fluid during the course of drilling operations through subterranean formations. The process consists of introducing a solid oxidant in powdered form into the circulating drilling fluid when hydrogen sulfide is encountered. The solid oxidants are selected from the group consisting of calcium hypochlorite (Ca-(OCl)/sub 2/), sodium perborate (NaBO/sub 3/), potassium permanganate (KMnO/sub 4/), and potassium peroxydisulfate (K/sub 2/S/sub 2/O/sub 8/). The solid oxidants are soluble in the drilling fluid, promoting fast and complete scavenging reactions without adversely altering the drilling fluid rheology.

  3. Single-layer transition metal sulfide catalysts

    DOEpatents

    Thoma, Steven G.

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  4. Electrolysis of aluminum sulfide in molten chlorides

    SciTech Connect

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-01-01

    A laboratory-scale investigation of the production of aluminum by the electrolysis of aluminum sulfide in molten salt electrolytes has been carried out at Argonne National Laboratory. The solubility, electrochemical behavior, and electrolysis of Al/sub 2/S/sub 3/ were studied in MgCl/sub 2/-NaCl-KCl eutectic and in the eutectic containing AlCl/sub 3/ at 1023K.

  5. Subsurface heaters with low sulfidation rates

    DOEpatents

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  6. Redetermination of piperidinium hydrogen sulfide structure

    NASA Technical Reports Server (NTRS)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    The presence of adventitious water in a reaction between dicyclopentamethylene thiuram-disulfide (C5H10NCS2)(sub 2) and a picoline solution of tricyclopentadienyl indium(III) (C5H5)(sub 3). It resulted in the formation of piperidinium hydrogen sulfide (C5H13NS). The piperidinium hydrogen sulfide produced in this way was unambiguously characterized by X-ray crystallography. The structure determination showed that the piperidinium hydrogen sulfide crystal (MW = 119.23 g/mol) has an orthorhombic (Pbcm) unit cell whose parameters are: a = 9.818(2), b = 7.3720(1), c = 9.754(1) A, V = 706.0(3) A(exp 3), Z=4. D(sub chi) = 1.122 g cm(exp -3), Mo K(alpha) (lamda = 0.71073), mu= 3.36 cm(exp -1), F(000) = 264.0, T =293 K, R = 0.036 for 343 reflections with F(sub O)(sup 2) greater than 3 sigma (F(sub O)(sup 2)) and 65 variables. The compound consists of (C5H10NH2)(+) cations and (SH)(-) anions with both species residing on crystallographic mirror planes. N-H -- S hydrogen bonding contributes to the interconnection of neighboring piperidinium components of the compound.

  7. Sulfide-based ATP production in Urechis unicinctus

    NASA Astrophysics Data System (ADS)

    Ma, Zhuojun; Bao, Zhenmin; Wang, Sifeng; Zhang, Zhifeng

    2010-05-01

    We measured sulfide-based ATP production by isolated mitochondria from four tissues of Urechis unicinctus and the effects of inhibitors of respiratory complexes on ATP production were evaluated. The results show that these mitochondria could oxidize sulfide to produce ATP. The yield of sulfide-stimulated ATP varied from 5 nmol ATP/min/mg to 90 nmol ATP/min/mg according to the sulfide concentration and the source of the mitochondria. The maximum ATP synthesis occurred in hindgut mitochondria using 5 μmol/L sulfide as a substrate. The effects of inhibitors (Rotenone, Antimycin A, Cyanide, and Salicylhydroxamic acid) on mitochondrial ATP production varied with the source of the mitochondria. Our results indicate that sulfide-based ATP production and the associated electron transport pathway are tissue-specific in U. unicinctus.

  8. Pilot-scale biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Rajganesh, B.; Sublette, K.L.; Camp, C.

    1995-12-31

    Caustics are used in petroleum refining to remove hydrogen sulfide from various hydrocarbon streams. It was previously demonstrated that spent sulfidic caustics from two Conoco refineries could be successfully biotreated at the bench scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate to Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic. Biotreatment of a Conoco spent sulfidic caustic has now been demonstrated at pilot scale (1000 gal or 3875 L). Results were comparable to those obtained at the bench scale. The economics and design of a commercial system to treat 1 gpm (3.8 L/min) of spent caustic are resented.

  9. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

    1996-07-30

    A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

  10. Organization of the human mitochondrial hydrogen sulfide oxidation pathway.

    PubMed

    Libiad, Marouane; Yadav, Pramod Kumar; Vitvitsky, Victor; Martinov, Michael; Banerjee, Ruma

    2014-11-07

    Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.

  11. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  12. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  13. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  14. A sulfide-saturated lunar mantle?

    NASA Astrophysics Data System (ADS)

    Brenan, James M.; Mungall, James E.

    2017-04-01

    Although much work has been done to understand the controls on the sulfur content at sulfide saturation (SCSS) for terrestrial melt compositions, little information exists to evaluate the SCSS for the high FeO compositions typical of lunar magmas, and at the reduced conditions of the Moon's interior. Experiments were done to measure the SCSS for a model low Ti mare basalt with 20 wt% FeO at 1400oC as a function of fO2 and pressure. Synthetic lunar basalt was encapsulated along with stoichiometric FeS in capsules made from Fe-Ir alloy. The fO2 of the experiment can be estimated by the heterogeneous equilibrium: Femetal + 1 /2 O2 = FeOsilicate Variation in the metal composition, by addition of Ir, serves to change the fO2 of the experiment. Capsule compositions spanning the range Fe25Ir75 to Fe96Ir4 (at%) were synthesized by sintering of pressed powders under reducing conditions. Fe100 capsules were fabricated from pure Fe rod. For a melt with 20 wt% FeO, this range in capsule composition spans the fO2 interval of ˜IW-1 (Fe100, Fe96Ir4) to IW+2.2 (Fe25Ir75). Experiments were done over the pressure interval of 0.1 MPa to 2 GPa. Results for experiments involving Fe100capsules indicate that the SCSS decreases from ˜2000 ppm (0.1 MPa) to 700 ppm (2 GPa). Experiments done thus far at 1 GPa, involving the range of capsule compositions indicated, show a marked decrease in SCSS as the Fe content of the capsule increases (fO2 decreases). Complementary to the decrease in SCSS is a drop in the sulfur content of the coexisting sulfide melt, from ˜50 at% at ΔIW = +2.2 to ˜20 at% at ΔIW-1. In fact, both the composition of the sulfide melt and the SCSS are essentially indistinguishable for Fe96Ir4 and Fe100 compositions. Results thus far indicate that at reduced conditions and high pressure, the SCSS for high FeO lunar compositions is low, and overlaps with Apollo 11 melt inclusion data. Importantly, such low SCSS does not require Fe metal saturation, and suggests that some

  15. Hydrogen recovery from hydrogen sulfide by oxidation and by decomposition

    SciTech Connect

    Yang, B.L.; Kung, H.H. . Ipatieff Lab. and Chemical Engineering Dept.)

    1994-05-01

    Selective oxidation of hydrogen sulfide to hydrogen and sulfur oxides in a two-step process and the catalytic decomposition of hydrogen sulfide were studied for the recovery of hydrogen from hydrogen sulfide. Platinum, when adequately dispersed on a silica support, was found to be effective in reacting with hydrogen sulfide to produce hydrogen and platinum sulfide at 500 C. The platinum sulfide could then be treated with oxygen at 400 C to release sulfur oxides and regenerate the platinum. However, oxidation of sulfur dioxide to trioxide, retention of oxygen by platinum, and adsorption of hydrogen sulfide by the silica support also occurred, which resulted in a minor loss in hydrogen yield. In the decomposition of hydrogen sulfide, platinum sulfide was found to be catalytically active. The equilibrium hydrogen yields were measured experimentally over the range 350--650 C and compared with the values calculated on the basis of a model that included the S, allotropes, the H[sub 2]S[sub n] sulfanes, and HS. The values agreed well at low temperatures but deviated from each other up to 20% at high temperatures.

  16. Reactivity of inorganic sulfide species toward a heme protein model.

    PubMed

    Bieza, Silvina A; Boubeta, Fernando; Feis, Alessandro; Smulevich, Giulietta; Estrin, Darío A; Boechi, Leonardo; Bari, Sara E

    2015-01-20

    The reactivity of inorganic sulfide species toward heme peptides was explored under biorelevant conditions in order to unravel the molecular details of the reactivity of the endogenous hydrogen sulfide toward heme proteins. Unlike ferric porphyrinates, which are reduced by inorganic sulfide, some heme proteins can form stable Fe(III)-sulfide adducts. To isolate the protein factors ruling the redox chemistry, we used as a system model, the undecapeptide microperoxidase (MP11), a heme peptide derived from cytochrome c proteolysis that retains the proximal histidine bound to the Fe(III) atom. Upon addition of gaseous hydrogen sulfide (H2S) at pH 6.8, the UV-vis spectra of MP11 closely resembled those of the low-spin ferric hydroxo complex (only attained at an alkaline pH) and cysteine or alkylthiol derivatives, suggesting that the Fe(III) reduction was prevented. The low-frequency region of the resonance Raman spectrum revealed the presence of an Fe(III)-S band at 366 cm(-1) and the general features of a low-spin hexacoordinated heme. Anhydrous sodium sulfide (Na2S) was the source of sulfide of choice for the kinetic evaluation of the process. Theoretical calculations showed no distal stabilization mechanisms for bound sulfide species in MP11, highlighting a key role of the proximal histidine for the stabilization of the Fe(III)-S adducts of heme compounds devoid of distal counterparts, which is significant with regard to the biochemical reactivity of endogenous hydrogen sulfide.

  17. Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy.

    PubMed

    Song, Kai; Wang, Fen; Li, Qian; Shi, Yong-Bing; Zheng, Hui-Fen; Peng, Hanjing; Shen, Hua-Ying; Liu, Chun-Feng; Hu, Li-Fang

    2014-06-01

    Hydrogen sulfide has recently been found decreased in chronic kidney disease. Here we determined the effect and underlying mechanisms of hydrogen sulfide on a rat model of unilateral ureteral obstruction. Compared with normal rats, obstructive injury decreased the plasma hydrogen sulfide level. Cystathionine-β-synthase, a hydrogen sulfide-producing enzyme, was dramatically reduced in the ureteral obstructed kidney, but another enzyme cystathionine-γ-lyase was increased. A hydrogen sulfide donor (sodium hydrogen sulfide) inhibited renal fibrosis by attenuating the production of collagen, extracellular matrix, and the expression of α-smooth muscle actin. Meanwhile, the infiltration of macrophages and the expression of inflammatory cytokines including interleukin-1β, tumor necrosis factor-α, and monocyte chemoattractant protein-1 in the kidney were also decreased. In cultured kidney fibroblasts, a hydrogen sulfide donor inhibited the cell proliferation by reducing DNA synthesis and downregulating the expressions of proliferation-related proteins including proliferating cell nuclear antigen and c-Myc. Further, the hydrogen sulfide donor blocked the differentiation of quiescent renal fibroblasts to myofibroblasts by inhibiting the transforming growth factor-β1-Smad and mitogen-activated protein kinase signaling pathways. Thus, low doses of hydrogen sulfide or its releasing compounds may have therapeutic potentials in treating chronic kidney disease.

  18. Recent advances in thiol and sulfide reactive probes.

    PubMed

    Wang, Ke; Peng, Hanjing; Wang, Binghe

    2014-06-01

    Because of the biological relevance of thiols and sulfides such as cysteine, homocysteine, glutathione and hydrogen sulfide, their detection has attracted a great deal of research interest. Fluorescent probes are emerging as a new strategy for thiol and hydrogen sulfide analysis due to their high sensitivity, low cost, and ability to detect and image thiols in biological samples. In this short review, we have summarized recent advances in the development of thiol and hydrogen sulfide reactive fluorescent probes. These probes are compared and contrasted with regard to their designing strategies, mechanisms, photophysical properties, and/or reaction kinetics. Biological applications of these probes are also discussed.

  19. INVESTIGATION OF THIN FILM CADMIUM SULFIDE SOLAR CELLS.

    DTIC Science & Technology

    SOLAR CELLS , *CADMIUM COMPOUNDS, FILMS, SULFIDES, VAPOR PLATING, VACUUM APPARATUS, SINGLE CRYSTALS, TITANIUM, COPPER COMPOUNDS, CHLORIDES, INDIUM, MOLYBDENUM, SILICON COMPOUNDS, MONOXIDES, SURFACE PROPERTIES, ENERGY CONVERSION.

  20. Removal of insoluble heavy metal sulfides from water.

    PubMed

    Banfalvi, Gaspar

    2006-05-01

    The necessity of heavy metal removal from wastewater has led to increasing interest in absorbents. We have developed a new approach to obtain high metal adsorption capacity by precipitating metal sulfides with sodium sulfide on the surface of bentonite and adhere them to the absorbent. This method allowed to remove approximately 90% of cadmium as CdS from 10(-4)-10(-6) M CdCl2 solutions. Additional reactions are related to the removal of excess sodium sulfide by the release of hydrogen sulfide and oxidation to sulfur using carbogen gas (5% CO2, 95% O2) followed by aeration.

  1. Influence of iron on sulfide inhibition in dark biohydrogen fermentation.

    PubMed

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Nakhla, George

    2012-12-01

    Sulfide impact on biohydrogen production using dark fermentation of glucose at 37 °C was investigated. Dissolved sulfide (S(2-)) at a low concentration (25mg/L) increased biohydrogen production by 54% relative to the control (without iron addition). Whereas on initial dissolved S(2-) concentration of 500 mg/L significantly inhibited the biohydrogen production with total cumulative biohydrogen decreasing by 90% compared to the control (without iron addition). At sulfide concentrations of 500 mg S(2-)/L, addition of Fe(2+) at 3-4 times the theoretical requirement to precipitate 100% of the dissolved S(2-) entirely eliminated the inhibitory effect of sulfide.

  2. Performance of a sulfide-oxidizing, sulfur-producing membrane biofilm reactor treating sulfide-containing bioreactor effluent.

    PubMed

    Sahinkaya, Erkan; Hasar, Halil; Kaksonen, Anna H; Rittmann, Bruce E

    2011-05-01

    Sulfide-containing waste streams are generated in mining, petrochemical plants, tanneries, viscose rayon manufacture, and the gasification of coal. Colorless sulfur bacteria can oxidize sulfide to elemental sulfur (S°), which can be recovered, when oxygen is their electron acceptor. This study evaluated sulfide oxidation and S° recovery in an oxygen-based membrane biofilm reactor (MBfR) treating the effluent from a sulfidogenic anaerobic baffled reactor. Sulfide oxidation efficiency (37-99%) and S° recovery (64-89% of oxidized sulfide) could be controlled by manipulating the sulfide loading, oxygen pressure to the fibers, and hydraulic retention time (HRT). For example, too-low oxygen pressure decreased S° recovery due to decreased sulfide oxidation, but too-high oxygen pressure lowered S° recovery due to its oxidation to sulfate. Most importantly, high sulfide oxidation (>98%) and conversion to S° (>75%) could be achieved together when the sulfide loading was less than 1.7 mol/m²·d and the O₂ pressure was sufficient to give an O₂ flux of at least 1.5 mol/m²·d. However, higher sulfide loading could be compensated by a higher O₂ pressure, and the best performance occurred when the sulfide loading was high (2 molS/m²·d), the O₂ pressure was high (∼1 atm), and the HRT was short (1.9 h). Membrane fouling caused a low O₂ flux, which led to low sulfide-oxidation efficiency, but fouling could be reversed by mild acid washing.

  3. Ni ion release, osteoblast-material interactions, and hemocompatibility of hafnium-implanted NiTi alloy.

    PubMed

    Zhao, Tingting; Li, Yan; Zhao, Xinqing; Chen, Hong; Zhang, Tao

    2012-04-01

    Hafnium ion implantation was applied to NiTi alloy to suppress Ni ion release and enhance osteoblast-material interactions and hemocompatibility. The auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscope results showed that a composite TiO(2)/HfO(2) nanofilm with increased surface roughness was formed on the surface of NiTi, and Ni concentration was reduced in the superficial surface layer. Potentiodynamic polarization tests displayed that 4 mA NiTi sample possessed the highest E(br) - E(corr), 470 mV higher than that of untreated NiTi, suggesting a significant improvement on pitting corrosion resistance. Inductively coupled plasma mass spectrometry tests during 60 days immersion demonstrated that Ni ion release rate was remarkably decreased, for example, a reduction of 67% in the first day. The water contact angle increased and surface energy decreased after Hf implantation. Cell culture and methyl-thiazol-tetrazolium indicated that Hf-implanted NiTi expressed enhanced osteoblasts adhesion and proliferation, especially after 7 days culture. Hf implantation decreased fibrinogen adsorption, but had almost no effect on albumin adsorption. Platelets adhesion and activation were suppressed significantly (97% for 4 mA NiTi) and hemolysis rate was decreased by at least 57% after Hf implantation. Modified surface composition and morphology and decreased surface energy should be responsible for the improvement of cytocompatibility and hemocompatibility. Copyright © 2011 Wiley Periodicals, Inc.

  4. Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods.

    PubMed

    Cueny, Eric S; Johnson, Heather C; Anding, Bernie J; Landis, Clark R

    2017-08-30

    Chromophore quench-labeling applied to 1-octene polymerization as catalyzed by hafnium-pyridyl amido precursors enables quantification of the amount of active catalyst and observation of the molecular weight distribution (MWD) of Hf-bound polymers via UV-GPC analysis. Comparison of the UV-detected MWD with the MWD of the "bulk" (all polymers, from RI-GPC analysis) provides important mechanistic information. The time evolution of the dual-detection GPC data, concentration of active catalyst, and monomer consumption suggests optimal activation conditions for the Hf pre-catalyst in the presence of the activator [Ph3C][B(C6F5)4]. The chromophore quench-labeling agents do not react with the chain-transfer agent ZnEt2 under the reaction conditions. Thus, Hf-bound polymeryls are selectively labeled in the presence of zinc-polymeryls. Quench-labeling studies in the presence of ZnEt2 reveal that ZnEt2 does not influence the rate of propagation at the Hf center, and chain transfer of Hf-bound polymers to ZnEt2 is fast and quasi-irreversible. The quench-label techniques represent a means to study commercial polymerization catalysts that operate with high efficiency at low catalyst concentrations without the need for specialized equipment.

  5. Tetra­kis(quinolin-8-olato-κ2 N,O)hafnium(IV) toluene disolvate

    PubMed Central

    Viljoen, J. Augustinus; Visser, Hendrik G.; Roodt, Andreas; Steyn, Maryke

    2009-01-01

    In the title compound, [Hf(C9H6NO)4]·2C7H8, the hafnium metal centre is coordinated by four N,O-donating bidentate quinolin-8-olate ligands arranged to give a square-anti­prismatic coordination polyhedron with a slightly distorted dodeca­hedral geometry. The average Hf—O and Hf—N distances are 2.096 (3) and 2.398 (3) Å, respectively, and the average O—Hf—N bite angle is 70.99 (11)°. The crystal packing is controlled by π–π inter­actions between quinoline ligands of neighbouring mol­ecules and hydrogen-bonding inter­actions. The inter­planar distances vary between 3.138 (1) and 3.208 (2) Å, while the centroid–centroid distances range from 3.576 (1) to 4.074 (1) Å. PMID:21578562

  6. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    DOE PAGES

    Miao, Yinbin; Mo, Kun; Cui, Bai; ...

    2015-01-26

    We report comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y2O3, fluorite Y2O3–HfO2 solid solution and pyrochlore (or fluorite) Y2(Ti,Hf)2 - xO7 - x. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Moreover, two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and themore » steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. Our results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation.« less

  7. Improved Retention Characteristic in Polycrystalline Silicon-Oxide-Hafnium Oxide-Oxide-Silicon-Type Nonvolatile Memory with Robust Tunnel Oxynitride

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih Ren; Lai, Chiung Hui; Lin, Bo Chun; Zheng, Yuan Kai; Chung Lou, Jen; Lin, Gray

    2011-03-01

    In this paper, we present a simple novel process for forming a robust and reliable oxynitride dielectric with a high nitrogen content. It is highly suitable for n-channel metal-oxide-semiconductor field-effect transistor (nMOSFETs) and polycrystalline silicon-oxide-hafnium oxide-oxide-silicon (SOHOS)-type memory applications. The proposed approach is realized by using chemical oxide with ammonia (NH3) nitridation followed by reoxidation with oxygen (O2). The novel oxynitride process is not only compatible with the standard complementary metal-oxide-semiconductor (CMOS) process, but also can ensure the improvement of flash memory with low-cost manufacturing. The characteristics of nMOSFETs and SOHOS-type nonvolatile memories (NVMs) with a robust oxynitride as a gate oxide or tunnel oxide are studied to demonstrate their advantages such as the retardation of the stress-induced trap generation during constant-voltage stress (CVS), the program/erase behaviors, cycling endurance, and data retention. The results indicate that the proposed robust oxynitride is suitable for future nonvolatile flash memory technology application.

  8. Extraction of short-lived zirconium and hafnium isotopes usingcrown ethers: A model system for the study of rutherfordium

    SciTech Connect

    Sudowe, Ralf; Calvert, Michael G.; Dullmann, Christoph E.; Farina, Lindsy M.; Folden III, Charles M.; Gregorich, Kenneth E.; Gallaher, Sarah E.H.; Nelson, Sarah L.; Phillips, Diana C.; Schwantes,Jon M.; Wilson, Richard E.; Zielinski Peter M.; Hoffman, Darleane C.; Nitsche Heino

    2005-07-06

    The extraction of zirconium and hafnium from hydrochloric acid media was studied using the crown ethers dibenzo-18-crown-6 (DB18C6), dicyclohexano-18-crown-6 (DC18C6) and dicyclohexano-24-crown-8 (DC24C8) as extractants. The goal was to find an extraction system that exhibits a high selectivity between the members of group 4 of the periodic table and is suitable for the study of rutherfordium. It was found that Zr and Hf are both extracted using DB18C6, DC18C6 and DC24C8. The extraction yield increases with increasing acid concentration and increasing concentration of crown ether. The extracted species most likely consists of an ion-association complex formed between a Zr or Hf chloro complex and a hydronium crown ether complex. Conditions can be found for each extractant that provide for the separation of Zr from Hf. This selective separation between Zr and Hf makes the extraction with crown ethers from HCl well suited to study the extraction behavior of Rf and compare it to the behavior of Zr and Hf. These extraction systems can be used to determine whether the extraction behavior of Rf is similar to Zr, similar to Hf or follows the trend established by the lighter homologs. The extraction kinetics are fast enough for the study of the 78-s isotope {sup 261}Rf.

  9. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    SciTech Connect

    Miao, Yinbin; Mo, Kun; Cui, Bai; Chen, Wei-Ying; Miller, Michael K.; Powers, Kathy A.; McCreary, Virginia; Gross, David; Almer, Jonathan; Robertson, Ian M.; Stubbins, James F.

    2015-01-26

    We report comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y2O3, fluorite Y2O3–HfO2 solid solution and pyrochlore (or fluorite) Y2(Ti,Hf)2 - xO7 - x. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Moreover, two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. Our results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation.

  10. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge.

    PubMed

    Hanan, Barry B; Blichert-Toft, Janne; Pyle, Douglas G; Christie, David M

    2004-11-04

    The origin of the isotopic signature of Indian mid-ocean ridge basalts has remained enigmatic, because the geochemical composition of these basalts is consistent either with pollution from recycled, ancient altered oceanic crust and sediments, or with ancient continental crust or lithosphere. The radiogenic isotopic signature may therefore be the result of contamination of the upper mantle by plumes containing recycled altered ancient oceanic crust and sediments, detachment and dispersal of continental material into the shallow mantle during rifting and breakup of Gondwana, or contamination of the upper mantle by ancient subduction processes. The identification of a process operating on a scale large enough to affect major portions of the Indian mid-ocean ridge basalt source region has been a long-standing problem. Here we present hafnium and lead isotope data from across the Indian-Pacific mantle boundary at the Australian-Antarctic discordance region of the Southeast Indian Ridge, which demonstrate that the Pacific and Indian upper mantle basalt source domains were each affected by different mechanisms. We infer that the Indian upper-mantle isotope signature in this region is affected mainly by lower continental crust entrained during Gondwana rifting, whereas the isotope signature of the Pacific upper mantle is influenced predominantly by ocean floor subduction-related processes.

  11. Thermomechanical and Thermochemical Behavior of a Hafnium-20 Percent Tantalum Alloy. Ph.D. Thesis - North Carolina State Univ., Raleigh

    NASA Technical Reports Server (NTRS)

    Howell, J. P.

    1971-01-01

    An investigation was conducted to determine the thermomechanical and thermochemical behavior of a high temperature, oxidation resistant, hafnium-20 percent tantalum alloy. The elastic and shear moduli of this alloy were determined in air up to 1000 C and in vacuum up to 2000 C using a mechanical resonance technique. The internal friction of the alloy was measured up to temperatures greater than 1400 C. Room temperature stress-strain behavior of the oxidized and unoxidized alloy was established. The effect of annealing on the elastic and shear moduli of the extruded rod material was investigated. The martensitic-type phase transformation occurring in the alloy was studied using hot stage metallography and electron microscopy. Static oxidation tests were conducted on the alloy at temperatures from 1000 C to 1700 C with weight gain measurements made as a function of time and temperatures. Surface morphology studies were conducted on the oxide coatings formed at the different temperatures using scanning electron microscopy and X-ray diffraction techniques.

  12. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    SciTech Connect

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Chang, Ting-Chang; Chen, Ching-En; Tseng, Tseung-Yuen; Lin, Chien-Yu; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-04-25

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  13. Cupriavidus necator H16 uses flavocytochrome c-sulfide dehydrogenase to oxidize self-produced and spiked sulfide.

    PubMed

    Lü, Chuanjuan; Xia, Yongzhen; Liu, Daixi; Zhao, Rui; Gao, Rui; Liu, Honglei; Xun, Luying

    2017-09-01

    Heterotrophic bacteria producing sulfide (H2S, HS(-), and S(2-)) during aerobic growth is a common phenomenon. Some with sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) can oxidize self-produced sulfide to sulfite and thiosulfate, but others without these enzymes will release sulfide into the medium, from which H2S can volatilize into the gas phase. Here, we report Cupriavidus necator H16 with the fccAB genes, encoding flavocytochrome c-sulfide dehydrogenases (FCSDs), also oxidized self-produced H2S. The mutant with fccAB being deleted accumulated and released H2S. When fccAB were expressed in a Pseudomonas aeruginosa strain Pa3K with deletions of its sqr and pdo genes, the recombinant rapidly oxidized sulfide to sulfane sulfur. When PDO was also cloned into the recombinant, the recombinant with both FCSD and PDO oxidized sulfide to sulfite and thiosulfate. Thus, the proposed pathway is similar to the pathway catalyzed by SQR and PDO, in which FCSD oxidizes sulfide to polysulfide, polysulfide spontaneously reacts with GSH to produce GSSH, and PDO oxidizes GSSH to sulfite, which chemically reacts with polysulfide to produce thiosulfate. About 20.6% of sequenced bacterial genomes contain SQR, and only 3.9% contain FCSD. This is not a surprise since SQR is more efficient in conserving energy because it passes electrons from sulfide oxidation into the electron transport chain at the quinone level, while FCSD passes electrons to cytochrome c The transport of electrons from the latter to O2 conserves less energy. FCSDs are grouped into three subgroups, well conserved at taxonomic levels. Thus, our data show the diversity in sulfide oxidation by heterotrophic bacteria.Importance Heterotrophic bacteria with SQR and PDO can oxidize self-produced sulfide and do not release H2S into the gas phase. C. necator H16 has FCSD but not SQR, and it does not release H2S. We confirmed that the bacterium used FCSD for the oxidation of self-produced sulfide. The

  14. Toxicological analysis of 17 autopsy cases of hydrogen sulfide poisoning resulting from the inhalation of intentionally generated hydrogen sulfide gas.

    PubMed

    Maebashi, Kyoko; Iwadate, Kimiharu; Sakai, Kentaro; Takatsu, Akihiro; Fukui, Kenji; Aoyagi, Miwako; Ochiai, Eriko; Nagai, Tomonori

    2011-04-15

    Although many cases of fatal hydrogen sulfide poisoning have been reported, in most of these cases, it resulted from the accidental inhalation of hydrogen sulfide gas. In recent years, we experienced 17 autopsy cases of fatal hydrogen sulfide poisoning due to the inhalation of intentionally generated hydrogen sulfide gas. In this study, the concentrations of sulfide and thiosulfate in blood, urine, cerebrospinal fluid and pleural effusion were examined using GC/MS. The sulfide concentrations were blood: 0.11-31.84, urine: 0.01-1.28, cerebrospinal fluid: 0.02-1.59 and pleural effusion: 2.00-8.59 (μg/ml), while the thiosulfate concentrations were blood: 0-0.648, urine: 0-2.669, cerebrospinal fluid: 0.004-0.314 and pleural effusion: 0.019-0.140 (μmol/ml). In previous reports, the blood concentration of thiosulfate was said to be higher than that of sulfide in hydrogen sulfide poisoning cases, although the latter was higher than the former in 8 of the 14 cases examined in this study. These results are believed to be strongly influenced by the atmospheric concentration of hydrogen sulfide the victims were exposed to and the time interval between exposure and death.

  15. Evidence supporting biologically mediated sulfide oxidation in hot spring ecosystems

    NASA Astrophysics Data System (ADS)

    Cox, A. D.; Shock, E.

    2011-12-01

    The sulfide concentration of fluids in hydrothermal ecosystems is one of several factors determining the transition to microbial photosynthesis (Cox et al., 2011, Chem. Geol. 280, 344-351). To investigate the loss of sulfide in Yellowstone hot spring systems, measurements of total dissolved sulfide with respect to time were made in incubation experiments conducted on 0.2-micron filtered (killed controls) vs. unfiltered hot spring water at locations with three different pH:sulfide combinations (pH 2.5 with 50 μM sulfide, 5.2 with 5.6 μM sulfide, and 8.3 with 86 μM sulfide). At the higher pH values, the experiments yielded similar rates of sulfide loss in filtered and unfiltered water of approximately 0.8 (pH 5.2) and 7.6 nmol sulfide L-1s-1 (pH 8.3). At the acidic spring, the unfiltered water lost sulfide at a rate 1.6 times that of the filtered water (8.2 vs. 5 nmol sulfide L-1s-1). These results suggest that the pelagic biomass at the pH 5.2 and 8.3 springs may not affect sulfide loss, whereas in the pH 2.5 spring there appears to be an effect. In addition, the incubation of filamentous biomass with unfiltered water increased the rate of sulfide loss by approximately two-fold at a pH of 2.5 (59 vs. 31 nmol L-1s-1; Cox et al., 2011), five-fold at a pH of 5.2 (3.9 vs. 0.8 nmol sulfide L-1s-1), and barely increased the rate of sulfide loss at a pH of 8.3 (9.1 vs. 8.4 nmol sulfide L-1s-1). Sulfide is predominately present as HS- at a pH of 8.3, which may not be taken up as easily by microorganisms as the H2S (aq) that dominates sulfide speciation at pH 2.5 and 5.2. That the loss of sulfide at acidic pH is due to biotic rather than abiotic factors is further supported by studies with whole mat samples that show greater sulfide consumption than killed controls (D'Imperio et al., 2008, AEM 74, 5802-5808). Taken together, the results of these experiments suggest that the majority of sulfide oxidation occurs in the filamentous biomass of hot spring ecosystems, although

  16. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling.

    PubMed

    Olson, Kenneth R

    2012-10-01

    Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes.

  17. Removal of copper from carbon-saturated steel with an aluminum sulfide/iron sulfide slag

    SciTech Connect

    Cohen, A.; Blander, M.

    1995-12-01

    Scrap iron and steel has long been considered a resource in the steel-making industry, and its value is largely determined by its impurity content. As the mini-mills, the major consumers of scrap iron and steel, expand into producing flat-rolled sheet, the demand for high-quality scrap will increase. Of the impurities present in scrap, copper is particularly troublesome because of its role in causing hot shortness. Therefore, the copper content of scrap should be kept below {approx} 0.1 wt%. A method for removing copper from steel could be used to improve the quality of scrap and make it more available for use by mini-mills. To determine the effectiveness of a binary slag consisting of aluminum sulfide and iron sulfide on the removal of copper from steel and iron, the distribution coefficient of copper between the slag and a carbon-saturated iron melt was investigated at 1,365 C. The composition of the slag was varied from nearly pure aluminum sulfide to pure iron sulfide. A maximum distribution coefficient of 30 was found, and the copper level in the iron melt was reduced to as low as 0.07 wt.% with a 4:1 ratio of iron to slag.

  18. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco.

    PubMed

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild; Nielsen, Asbjørn Haaning

    2015-11-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit with some uncertainty. It was concluded that the model could be applied for the purpose in mind.

  19. Transparent zinc sulfide processed from nanocrystalline powders

    NASA Astrophysics Data System (ADS)

    Gao, De; Stefanik, Todd S.

    2013-06-01

    Nanocerox produces oxide nanopowders via flame spray pyrolysis that have proven effective in the processing of a host of high quality optical ceramic materials. In order to produce LWIR windows to compete with ZnS, however, oxide materials are not suitable. Nanocerox has therefore developed aqueous synthesis techniques for the production of zinc sulfide nanopowders. The proprietary processing technique allows control of primary particle size, high purity, low levels of agglomeration, and cost effective synthesis. Crystallinity, particle size, and purity of the powders will be presented. Characterization of parts fabricated from these powders via sinter/HIP processing will also be discussed, including optical performance and microstructural characterization.

  20. Biogenic production of dimethyl sulfide: Krill grazing

    SciTech Connect

    Daly, K.L.; DiTullio, G.R. )

    1993-01-01

    Dimethyl sulfide (DMS), a dominant sulfur compound in sea water, is a possible precursor for cloud condensation nuclei in the atmosphere and may influence global climate. The primary source of DMS is phytoplankton, but the mechanisms remain uncertain, and concentrations of DMS in the ocean vary spatially and temporally. Laboratory studies suggest zooplankton grazing may be an important process leading to the formation of DMS in the ocean. This paper describes ocean studies which examine the suggestion that grazing by krill may be a significant source for DMS production in the antarctic coastal region. 11 refs., 2 figs.

  1. Impurity Studies in Single Crystal Cadmium Sulfide.

    DTIC Science & Technology

    1979-12-01

    widths and relative intensities carried out. While studying the exciton emission from pure cadmium sulfide at low temper- atures, Bliel and Broser ...A Ŗ ® tor ® i* or® 0 I jourt! 45 . leeOialdl Split ting Diatitdnl for lon i :d Donor in Cadmni um Sul1$idte AFML-TR-79-4104 B9-19-72(b) H I c CdS...Chem. Phys. 29, 1375 (1958). 4. C. E. Bleil and 1. Broser , Proceedings of the Seventh International Conference on the Physics of Semiconductors

  2. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  3. Hydrogen sulfide induces calcium waves in astrocytes.

    PubMed

    Nagai, Yasuo; Tsugane, Mamiko; Oka, Jun-Ichiro; Kimura, Hideo

    2004-03-01

    Hydrogen sulfide (H2S) modifies hippocampal long-term potentiation (LTP) and functions as a neuromodulator. Here, we show that H2S increases intracellular Ca2+ and induces Ca2+ waves in primary cultures of astrocytes as well as hippocampal slices. H2S increases the influx of Ca2+ and to a lesser extent causes the release from intracellular Ca2+ stores. Ca2+ waves induced by neuronal excitation as well as responses to exogenously applied H2S are potently blocked by La3+ and Gd3+, inhibitors of Ca2+ channels. These observations suggest that H2S induces Ca2+ waves that propagate to neighboring astrocytes.

  4. Iron Sulfide Minerals in Black Sea Sediments

    NASA Astrophysics Data System (ADS)

    Franke, Christine; Robin, Eric; Henkel, Susann; Courtin-Nomade, Alexandra; Bleil, Ulrich

    2010-05-01

    This study presents a mutidisciplinary geochemical and environmental magnetic approach, integrating advanced mineralogical techniques to better understand the physicochemical syn-sedimentary and post-depositional processes in the anoxic sediments from the northwestern Black Sea. The investigated gravity core GC 214 was retrieved in 2007 during RV METEOR cruise M72/1 west of the Crimean Peninsula in a water depth of 1686 mbsf. Geochemical analyses of the pore water and solid phase indicate non-steady state sedimentation. The oxygen-depleted water column conditions, anaerobic oxidation of methane (AOM), and related microbial-driven sulfate reduction favor a highly complex iron sulfide mineral assemblage in the sediment column. The detailed magnetic susceptibility and remanence measurements indicate an irregularly stratified depth profile showing intervals of particularly high values. Further environmental magnetic analyses of hysteresis loops depict strongly elevated coercivity values for those depth horizons, suggesting metastable ferrimagnetic greigite (Fe3S4) as the main magnetic carrier phase. Automated chemical classification (ACC), using electron dispersive spectrometer (EDS) attached to a JEOL 840 scanning electron microscope (SEM) on dispersed particle samples permitted the absolutequantification of the various present iron mineral phases with depth, identified as greigite (Fe3S4), pyrrhotite (Fe7S8), pyrite (FeS2), and monosulfides (FeS), such as troilite or markasite. The statistically stable ACC analyses were carried out on magnetic extracts and density separates to be able to calculate budgets between the different present iron sulfides. We also obtained excellent correlations between the different iron sulfide concentrations and the magnetic signal, which open the possibility to link the absolute particle concentrations to the magnetic signal. Additional synchrotron based micro-XRD analyses on polished sections yield inside into the details of the

  5. Organic Sulfur Gas Production in Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Engel, A. S.; Bennett, P. C.

    2001-12-01

    Lower Kane Cave, Big Horn Basin, WY, permits access to an environment where anaerobic sulfide-rich groundwater meets the aerobic vadose zone. At this interface microorganisms thrive on diverse metabolic pathways including autotrophic sulfur oxidation, sulfate reduction, and aerobic heterotrophy. Springs introduce groundwater rich in H2S to the cave where it both degasses into the cave atmosphere and is used by chemautotrophic sulfur oxidizing bacteria in the cave spring and stream habitat. The cave atmosphere in the immediate vicinity of the springs has elevated levels of CO2, H2S and methane, mirroring the higher concentration of H2S and methane in the spring water. The high CO2 concentrations are attenuated toward the two main sources of fresh air, the cave entrance and breathing holes at the rear of the cave. Conventional toxic gas monitors permit estimations of H2S concentrations, but they have severe cross sensitivity with other reduced sulfur gases, and thus are inadequate for characterization of sulfur cave gases. However employment of a field-based GC revealed elevated concentrations of carbonyl sulfide in cave atmosphere. Cultures of microorganisms collected from the cave optimized for enriching fermenters and autotrophic and heterophic sulfate reducing bacteria each produced carbonyl sulfide suggesting a biogenic in origin of the COS in addition to H2S. Enrichment cultures also produced methanethiol (methyl mercaptan) and an additional as yet undetermined volatile organic sulfur compound. In culture, the organo-sulfur compounds were less abundant than H2S, whereas in the cave atmosphere the organo-sulfur compounds were the dominant sulfur gases. Thus, these organo-sulfur gases may prove to be important sources of both reduced sulfur and organic carbon to microorganisms living on the cave wall in a subaerial habitat. Moreover groundwater has not yet been recognized as a source of sulfur gases to the atmosphere, but with the abundance of sulfidic

  6. Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: the effects of seagrasses on sulfide dynamics.

    PubMed

    Lee; Dunton

    2000-12-20

    The dynamics of the seagrass-sulfide interaction were examined in relation to diel changes in sediment pore water sulfide concentrations in Thalassia testudinum beds and adjacent bare areas in Corpus Christi Bay and lower Laguna Madre, Texas, USA, during July 1996. Pore water sulfide concentrations in seagrass beds were significantly higher than in adjacent bare areas and showed strong diurnal variations; levels significantly decreased during mid-day at shallow sediment depths (0-10 cm) containing high below-ground tissue biomass and surface area. In contrast, diurnal variations in sediment sulfide concentrations were absent in adjacent bare patches, and at deeper (>10 cm) sediment depths characterized by low below-ground plant biomass or when the grasses were experimentally shaded. These observations suggest that the mid-day depressions in sulfide levels are linked to the transport of photosynthetically produced oxygen to seagrass below-ground tissues that fuels sediment sulfide oxidation. Lower sulfide concentrations in bare areas are likely a result of low sulfate reduction rates due to low organic matter available for remineralization. Further, high reoxidation rates due to rapid exchange between anoxic pore water and oxic overlying water are probably stimulated in bare areas by higher current velocity on the sediment surface than in seagrass beds. The dynamics of pore water sulfides in seagrass beds suggest no toxic sulfide intrusion into below-ground tissues during photosynthetic periods and demonstrate that the sediment chemical environment is considerably modified by seagrasses. The reduced sediment sulfide levels in seagrass beds during photosynthetic periods will enhance seagrass production through reduced sulfide toxicity to seagrasses and sediment microorganisms related to the nutrient cycling.

  7. On the chemical biology of the nitrite/sulfide interaction.

    PubMed

    Cortese-Krott, Miriam M; Fernandez, Bernadette O; Kelm, Malte; Butler, Anthony R; Feelisch, Martin

    2015-04-30

    Sulfide (H2S/HS(-)) has been demonstrated to exert an astounding breadth of biological effects, some of which resemble those of nitric oxide (NO). While the chemistry, biochemistry and potential pathophysiology of the cross-talk between sulfide and NO have received considerable attention lately, a comparable assessment of the potential biological implications of an interaction between nitrite and sulfide is lacking. This is surprising inasmuch as nitrite is not only a known bioactive oxidation product of NO, but also efficiently converted to S-nitrosothiols in vivo; the latter have been shown to rapidly react with sulfide in vitro, leading to formation of S/N-hybrid species including thionitrite (SNO(-)) and nitrosopersulfide (SSNO(-)). Moreover, nitrite is used as a potent remedy against sulfide poisoning in the clinic. The chemistry of interaction between nitrite and sulfide or related bioactive metabolites including polysulfides and elemental sulfur has been extensively studied in the past, yet much of this information appears to have been forgotten. In this review, we focus on the potential chemical biology of the interaction between nitrite and sulfide or sulfane sulfur molecules, calling attention to the fundamental chemical properties and reactivities of either species and discuss their possible contribution to the biology, pharmacology and toxicology of both nitrite and sulfide.

  8. Normal state properties of the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1978-01-01

    By making a large number of normal state and superconducting properties measurements, all on the same ternary molybdenum sulfide samples, we obtain values for Fermi surface and superconducting parameters. From these we conclude that sputtered ternary molybdenum sulfides are not completely in the dirty superconductor limit, and that they are d-band metals with a high electron carrier density.

  9. Normal state properties of the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1978-01-01

    By making a large number of normal state and superconducting properties measurements, all on the same ternary molybdenum sulfide samples, we obtain values for Fermi surface and superconducting parameters. From these we conclude that sputtered ternary molybdenum sulfides are not completely in the dirty superconductor limit, and that they are d-band metals with a high electron carrier density.

  10. 46 CFR 148.285 - Metal sulfide concentrates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Metal sulfide concentrates. 148.285 Section 148.285... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.285 Metal sulfide concentrates. (a) When information given by the shipper under § 148.60 of this part indicates that the...

  11. 46 CFR 148.285 - Metal sulfide concentrates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Metal sulfide concentrates. 148.285 Section 148.285... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.285 Metal sulfide concentrates. (a) When information given by the shipper under § 148.60 of this part indicates that the...

  12. 46 CFR 148.285 - Metal sulfide concentrates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Metal sulfide concentrates. 148.285 Section 148.285... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.285 Metal sulfide concentrates. (a) When information given by the shipper under § 148.60 of this part indicates that the...

  13. As-Received, Ozone Cleaned and Ar+ Sputtered Surfaces of Hafnium Oxide Grown by Atomic Layer Deposition and Studied by XPS

    SciTech Connect

    Engelhard, Mark H.; Herman, Jacob A.; Wallace, Robert; Baer, Donald R.

    2012-06-27

    In this study, X-ray photoelectron spectroscopy (XPS) characterization was performed on 47 nm thick hafnium oxide (HfO{sub 2}) films grown by atomic layer deposition using TEMA-Hf/H{sub 2}O at 250 C substrate temperature. HfO{sub 2} is currently being studied as a possible replacement for Silicon Oxide (SiO{sub 2}) as a gate dielectric in electronics transistors. XPS spectra were collected on a Physical Electronics Quantum 2000 Scanning ESCA Microprobe using a monochromatic Al K{sub a} X-ray (1486.7 eV) excitation source. The sample was analyzed under the following conditions: as received, after UV irradiation for five minutes, and after sputter cleaning with 2 kV Ar{sup +} ions for 180 seconds. Survey scans showed carbon, oxygen, and hafnium as the major species in the film, while the only minor species of argon and carbide was detected after sputtering. Adventitious carbon initially composed approximately 18.6 AT% of the surface, but after UV cleaning it was reduced to 2.4 AT%. This demonstrated that that the majority of carbon was due to adventitious carbon. However, after 2 kV Ar{sup +} sputtering there was still only trace amounts of carbon at {approx}1 AT%, Some of this trace carbon is now in the form of a carbide due to the interaction with Ar{sup +} used for sputter cleaning. Furthermore, the stoiciometric ratio of oxygen and hafnium is consistent with a high quality HfO{sub 2} film.

  14. High Performance Laser Amplifiers at 1.5 μm using E-Gum Evaporated Hafnium Di-Oxide Coatings

    NASA Astrophysics Data System (ADS)

    Tiemeijer, L. F.; Kuindersma, P. I.; Krekels, H. C. J.; Es-Spiekman, W. v.; Hendrix, L. J. M.; Ludwig, R.; Küller, L.

    1990-02-01

    E-gun evaporated Hafnium di-Oxide anti-reflective coatings are shown to be an attractive alternative for sputtered Silicon Oxide AR coatings. Laser amplifiers were fabricated using this material and a modal reflectivity as low as 1.7× 10-4 was obtained. A single pass gain of 26 dB together with a ripple as low as 2 dB for the TE mode were measured. Furthermore a 3 dB output saturation power of {+}8 dBm and a fiber coupling loss of 3.5 dB/facet were measured.

  15. Physical and microstructural aspects of iron sulfide degradation in concrete

    SciTech Connect

    Schmidt, Thomas; Gallucci, Emanuel; Scrivener, Karen

    2011-03-15

    The microstructural aspects of iron sulfide degradation in dam concrete were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) in both dam concrete samples and laboratory concrete. The results show that iron sulfide inclusions with a diameter of a few micrometers in the aggregates are reactive and appear to generate expansion first in the aggregates and consequently in the cement paste. The expansion from the iron sulfides is a consequence of the increase in volume of the reaction products formed. The types of iron sulfide present in the aggregate, mainly pyrrhotite (FeS) and pyrite (FeS{sub 2}), show similar reaction behavior in the aggregates. The released sulfate can lead to a secondary ettringite formation in the concrete matrix, but the degradation associated with this appears to be minor. The reaction of the iron sulfides was found to be very slow even when laboratory samples were exposed to elevated temperatures.

  16. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  17. Mechanical properties of gutta-percha sulfide modified asphalt

    NASA Astrophysics Data System (ADS)

    Zou, X. Y.; Gu, X. Y.; Wang, X. W.

    2017-01-01

    Gutta-percha is the isomer of caoutchouc and can be used to enhance the performance of asphalt. In this paper, the produce proceedings of gutta-percha sulfide and gutta-percha sulfide modified asphalt are introduced. The performance indices of gutta-percha sulfide modified asphalt samples with different proportions are examined based on laboratory tests and the optimum ratio of gutta-percha and sulfur is decided.The micromechanism, temperature sensitivity, high and low temperature properties and viscoelasticity of the polymer modified asphalt are analyzed to discuss the modified mechanism and to decide the optimal polymer content. Low temperature bending tests are carried out to verify the low temperature performance of gutta-percha sulfide modified asphalt mixture. Research results showed that gutta-percha sulfide modified asphalt has good low temperature performance and a promising application prospect in the cold regions.

  18. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    PubMed Central

    Williams, Christopher S; Goldman, Angela P; Sheng, Hongmiao; Morrow, Jason D; DuBois, Raymond N

    1999-01-01

    Abstract Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID) sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice. PMID:10933052

  19. Hydrogen sulfide and nervous system regulation.

    PubMed

    Zhou, Cheng-Fang; Tang, Xiao-Qing

    2011-11-01

    This review discusses the current status and progress in studies on the roles of hydrogen sulfide (H(2)S) in regulation of neurotoxicity, neuroprotection, and neuromodulator, as well as its therapeutic potential for neurodegenerative disorders. The data used in this review were mainly from Medline and PubMed published in English from 2001 to August 2011. The search terms were "hydrogen sulfide", "neuron", and "neurodegenerative disorders". Articles regarding the regulation of neuronal function, the protection against neuronal damage and neurological diseases, and their possible cellular and molecular mechanisms associated with H(2)S were selected. The inhibited generation of endogenous H(2)S is implicated in 1-methy-4-phenylpyridinium ion, 6-OHDA, and homocysteine-triggered neurotoxicity. H(2)S elicits neuroprotection in Alzheimer's disease and Parkinson's disease models as well as protecting neurons against oxidative stress, ischemia, and hypoxia-induced neuronal death. H(2)S offers anti-oxidant, anti-inflammatory and anti-apoptotic effects, as well as activates ATP-sensitive potassium channels and cystic fibrosis transmembrane conductance regulator Cl- channels. H(2)S regulates the long-term potentiation (LTP) and GABAB receptors in the hippocampus, as well as intracellular calcium and pH homeostasis in neurons and glia cells. These articles suggest that endogenous H(2)S may regulate the toxicity of neurotoxin. H(2)S not only acts as a neuroprotectant but also serves as a novel neuromodulator.

  20. Kinetics of thermal synthesis of cerium sulfides

    NASA Astrophysics Data System (ADS)

    Gibbard, Kevin B.; Allahar, Kerry N.; Kolman, David; Butt, Darryl P.

    2008-09-01

    One of the most promising applications for cerium sulfide is as a refractory for molten metal processing, particularly for reactive actinides. Separate processes were used to synthesize cerium monosulfide, cerium sesquisulfide (Ce 2S 3) and cerium hydride (CeH 2). High purity Ce 2S 3 was produced by reacting ceria (CeO 2) and hydrogen sulfide (H 2S) in an induction furnace using a carbon catalyst at temperatures above 2000 °C. CeH 2 was synthesized from cerium metal and hydrogen gas at 100 °C. Ce 2S 3 and CeH 2 were subsequently reacted together in an induction furnace at temperatures above 1700 °C to produce CeS. X-ray diffraction was used to analyze synthesized samples and the kinetics of the CeS synthesis reaction was modeled using a diffusion-limited reaction model. The activation energy for the process was estimated to be 190 kJ/mol.