Sample records for hagedorn nph insulin

  1. Cost-Effectiveness Analysis of Insulin Detemir Compared to Neutral Protamine Hagedorn (NPH) in Patients with Type 1 and Type 2 Diabetes Mellitus in Spain.

    PubMed

    Morales, Cristóbal; de Luis, Daniel; de Arellano, Antonio Ramírez; Ferrario, Maria Giovanna; Lizán, Luis

    2015-12-01

    An Excel ® (Microsoft Corporation) model was adapted to estimate the short-term (1-year) cost effectiveness of insulin detemir (IDet) versus neutral protamine Hagedorn (NPH) insulin in patients initiating insulin treatment with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) in Spain. Clinical benefits included the non-severe hypoglycemia rate for T1DM and T2DM, and weight change for T2DM. Three scenarios were included with different hypoglycemia rates estimated on the basis of clinical trials and observational studies. Costs, estimated from perspective of the Spanish Public Healthcare System (Euros 2014), included insulin treatment and non-severe hypoglycemia management costs. Non-severe hypoglycemia, defined as a self-managed event, implied the use of extra glucose testing strips and a general practitioner visit during the week following the event for 25% of patients. An average disutility value was associated to non-severe hypoglycemia events and, for T2DM, to one body mass index unit gain to calculate quality-adjusted life years (QALYs). For the three scenarios a range of 0.025-0.076 QALYs for T1DM and 0.014-0.051 QALYs for T2DM were gained for IDet versus NPH due to non-severe hypoglycemia and weight gain avoidance, in return of an incremental cost of €145-192 for T1DM and €128-206 for T2DM. This resulted in the IDet versus NPH incremental cost-effectiveness ratio (ICER) ranging between €1910/QALY and €7682/QALY for T1DM and €2522/QALY and €15,009/QALY for T2DM. IDet was a cost-effective alternative to NPH insulin in the first year of treatment of patients with T1DM and patients with T2DM in Spain, with ICERs under the threshold value commonly accepted in Spain (€30,000/QALY). Novo Nordisk.

  2. A randomized trial comparing perinatal outcomes using insulin detemir or neutral protamine Hagedorn in type 1 diabetes

    PubMed Central

    Mathiesen, Elisabeth R; Jovanovič, Lois; McCance, David R; Ivanisevic, Marina; Durán-Garcia, Santiago; Brøndsted, Lise; Nazeri, Avideh; Damm, Peter

    2014-01-01

    Objective This randomized controlled trial aimed to compare the efficacy and safety of insulin detemir (IDet) with neutral protamine Hagedorn (NPH), both with insulin aspart, in pregnant women with type 1 diabetes. The perinatal and obstetric pregnancy outcomes are presented. Methods Subjects were randomized to IDet (n = 152) or NPH (n = 158) ≤12 months before pregnancy or at 8–12 gestational weeks. Results For IDet and NPH, there were 128 and 136 live births, 11 and 9 early fetal losses, and two and one perinatal deaths, respectively. Gestational age at delivery was greater for children from the IDet arm than the NPH arm (treatment difference: 0.49 weeks [95% CI 0.11;0.88], p = 0.012, linear regression). Sixteen children had a malformation (IDet: n = 8/142, 5.6%; NPH: n = 8/145, 5.5%). The incidence of adverse events was similar between treatments. Conclusion IDet is as well tolerated as NPH as regards perinatal outcomes in pregnant women with type 1 diabetes and no safety issues were identified. PMID:23617228

  3. Effects of insulin detemir and NPH insulin on body weight and appetite-regulating brain regions in human type 1 diabetes: a randomized controlled trial.

    PubMed

    van Golen, Larissa W; Veltman, Dick J; IJzerman, Richard G; Deijen, Jan Berend; Heijboer, Annemieke C; Barkhof, Frederik; Drent, Madeleine L; Diamant, Michaela

    2014-01-01

    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli. ClinicalTrials.gov NCT00626080.

  4. Effects of Insulin Detemir and NPH Insulin on Body Weight and Appetite-Regulating Brain Regions in Human Type 1 Diabetes: A Randomized Controlled Trial

    PubMed Central

    van Golen, Larissa W.; Veltman, Dick J.; IJzerman, Richard G.; Deijen, Jan Berend; Heijboer, Annemieke C.; Barkhof, Frederik; Drent, Madeleine L.; Diamant, Michaela

    2014-01-01

    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli. Trial Registration ClinicalTrials.gov NCT00626080

  5. Maternal Efficacy and Safety Outcomes in a Randomized, Controlled Trial Comparing Insulin Detemir With NPH Insulin in 310 Pregnant Women With Type 1 Diabetes

    PubMed Central

    Mathiesen, Elisabeth R.; Hod, Moshe; Ivanisevic, Marina; Duran Garcia, Santiago; Brøndsted, Lise; Jovanovič, Lois; Damm, Peter; McCance, David R.

    2012-01-01

    OBJECTIVE This randomized, controlled noninferiority trial aimed to compare the efficacy and safety of insulin detemir (IDet) versus neutral protamine Hagedorn (NPH) (both with prandial insulin aspart) in pregnant women with type 1 diabetes. RESEARCH DESIGN AND METHODS Patients were randomized and exposed to IDet or NPH up to 12 months before pregnancy or at 8–12 weeks gestation. The primary analysis aimed to demonstrate noninferiority of IDet to NPH with respect to A1C at 36 gestational weeks (GWs) (margin of 0.4%). The data were analyzed using linear regression, taking several baseline factors and covariates into account. RESULTS A total of 310 type 1 diabetic women were randomized and exposed to IDet (n = 152) or NPH (n = 158) up to 12 months before pregnancy (48%) or during pregnancy at 8–12 weeks (52%). The estimated A1C at 36 GWs was 6.27% for IDet and 6.33% for NPH in the full analysis set (FAS). IDet was declared noninferior to NPH (FAS, –0.06% [95% CI –0.21 to 0.08]; per protocol, –0.15% [–0.34 to 0.04]). Fasting plasma glucose (FPG) was significantly lower with IDet versus NPH at both 24 GWs (96.8 vs. 113.8 mg/dL, P = 0.012) and 36 GWs (85.7 vs. 97.4 mg/dL, P = 0.017). Major and minor hypoglycemia rates during pregnancy were similar between groups. CONCLUSIONS Treatment with IDet resulted in lower FPG and noninferior A1C in late pregnancy compared with NPH insulin. Rates of hypoglycemia were comparable. PMID:22851598

  6. Patient-level meta-analysis of efficacy and hypoglycaemia in people with type 2 diabetes initiating insulin glargine 100U/mL or neutral protamine Hagedorn insulin analysed according to concomitant oral antidiabetes therapy.

    PubMed

    Owens, David R; Traylor, Louise; Mullins, Peter; Landgraf, Wolfgang

    2017-02-01

    Evaluate efficacy and hypoglycaemia according to concomitant oral antidiabetes drug (OAD) in people with type 2 diabetes initiating insulin glargine 100U/mL (Gla-100) or neutral protamine Hagedorn (NPH) insulin once daily. Four studies (target fasting plasma glucose [FPG] ⩽100mg/dL [⩽5.6mmol/L]; duration ⩾24weeks) were included. Standardised data from 2091 subjects (Gla-100, n=1024; NPH insulin, n=1067) were analysed. Endpoints included glycated haemoglobin (HbA1c) and FPG change, glycaemic target achievement, hypoglycaemia, weight change, and insulin dose. Mean HbA1c and FPG reductions were similar with Gla-100 and NPH insulin regardless of concomitant OAD (P=0.184 and P=0.553, respectively) and similar proportions of subjects achieved HbA1c <7.0% (P=0.603). There was a trend for more subjects treated with Gla-100 achieving FPG ⩽100mg/dL versus NPH insulin (relative risk [RR] 1.09 [95% confidence interval (CI) 0.97-1.23]; P=0.135). Plasma glucose confirmed (<70mg/dL) overall and nocturnal hypoglycaemia incidences and rates were lower with Gla-100 versus NPH insulin (overall RR 0.93 [95% CI 0.87-1.00]; P=0.041; nocturnal RR 0.73 [95% CI 0.65-0.83]; P<0.001). After 24weeks, weight gain and insulin doses were higher with Gla-100 versus NPH insulin (2.7kg vs 2.3kg, P=0.009 and 0.42U/kg vs 0.39U/kg; P=0.003, respectively). Insulin doses were higher when either insulin was added to sulfonylurea alone. Pooled results from treat-to-target trials in insulin-naïve people with type 2 diabetes demonstrate a significantly lower overall and nocturnal hypoglycaemia risk across different plasma glucose definitions with Gla-100 versus NPH insulin at similar glycaemic control. OAD therapy co-administered with Gla-100 or NPH insulin impacts glycaemic control and overall nocturnal hypoglycaemia risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Observational 6-month open-label study of Japanese type 2 diabetes patients switching from NPH insulin to insulin detemir in basal-bolus regimen: 23rd article of the Japan Diabetes Clinical Data Management Study Group (JDDM23).

    PubMed

    Oishi, M; Abe, N; Yokoyama, H; Kuribayashi, N; Tomonaga, O; Matoba, K; Kobayashi, M

    2012-01-01

    Glycaemic control is critical to prevent diabetic complications and mortality. This 6-month, open-label, observational study assessed the efficacy and safety of switching Japanese patients with type 2 diabetes from neutral protamine Hagedorn (NPH) insulin to insulin detemir. Patients with type 2 diabetes (n = 126) receiving basal-bolus insulin therapy with NPH insulin plus rapid-acting insulin analogues were recruited. NPH insulin was replaced with insulin detemir for 6 months. Glycosylated haemoglobin (HbA(1c)), fasting plasma glucose (FPG), daily glucose levels and hypoglycaemia were monitored. Nocturnal quality of life was assessed by insulin therapy related quality of life at night questionnaire. HbA(1c), FPG and body weight were all significantly reduced after treatment with insulin detemir for 6 months, without increasing severe hypoglycaemia. Insulin dose increased significantly over the same time. There were significant improvements in overall nocturnal quality of life, as well as well-being. Treatment with insulin detemir for 6 months resulted in substantial benefits, including reduced HbA(1c), FPG and body weight, and improvements in nocturnal quality of life, without increasing hypoglycaemia.

  8. Cost-effectiveness of insulin detemir compared with NPH insulin in people with type 2 diabetes in Denmark, Finland, Norway, and Sweden.

    PubMed

    Ridderstråle, Martin; Jensen, Marie Markert; Gjesing, Rasmus Prior; Niskanen, Leo

    2013-01-01

    To assess the cost-effectiveness of insulin detemir compared with Neutral Protamine Hagedorn (NPH) insulin when initiating insulin treatment in people with type 2 diabetes mellitus (T2DM) in Denmark, Finland, Norway, and Sweden. Efficacy and safety data were derived from a 20-week multi-centre randomized controlled head-to-head clinical trial comparing insulin detemir and NPH insulin in insulin naïve people with T2DM, and short-term (1-year) cost effectiveness analyses were performed. As no significant differences in HbA1c were observed between the two treatment arms, the model was based on significant differences in favour of insulin detemir in frequency of hypoglycaemia (Rate-Ratio = 0.52; CI = 0.44-0.61) and weight gain (Δ = 0.9 kg). Model outcomes were measured in Quality Adjusted Life Years (QALYs) using published utility estimates. Acquisition costs for insulin and direct healthcare costs associated with non-severe hypoglycaemic events were obtained from National Health Service public sources. One-way and probabilistic sensitivity analyses were performed. Based on lower incidence of non-severe hypoglycaemic events and less weight gain, the QALY gain from initiating treatment with insulin detemir compared with NPH insulin was 0.01 per patient per year. Incremental cost-effectiveness ratios for the individual countries were: Denmark, Danish Kroner 170,852 (€22,933); Finland, €28,349; Norway, Norwegian Kroner 169,789 (€21,768); and Sweden, Swedish Krona 226,622 (€25,097) per QALY gained. Possible limitations of the study are that data on hypoglycaemia and relative weight benefits from a clinical trial were combined with hypoglycaemia incidence data from observational studies. These populations may have slightly different patient characteristics. The lower risk of non-severe hypoglycaemia and less weight gain associated with using insulin detemir compared with NPH insulin when initiating insulin treatment in insulin naïve patients with

  9. Health economic evaluations comparing insulin glargine with NPH insulin in patients with type 1 diabetes: a systematic review

    PubMed Central

    2011-01-01

    Background Compared to conventional human basal insulin (neutral protamine Hagedorn; NPH) the long-acting analogue insulin glargine (GLA) is associated with a number of advantages regarding metabolic control, hypoglycaemic events and convenience. However, the unit costs of GLA exceed those of NPH. This study aims to systematically review the economic evidence comparing GLA with NPH in basal-bolus treatment (intensified conventional therapy; ICT) of type 1 diabetes in order to facilitate informed decision making in clinical practice and health policy. Methods A systematic literature search was performed for the period of January 1st 2000 to December 1st 2009 via Embase, Medline, the Cochrane Library, the databases GMS (German Medical Science) and DAHTA (Deutsche Agentur für Health Technology Assessment), and the abstract books of relevant international scientific congresses. Retrieved studies were reviewed based on predefined inclusion criteria, methodological and quality aspects. In order to allow comparison between studies, currencies were converted using purchasing power parities (PPP). Results A total of 7 health economic evaluations from 4 different countries fulfilled the predefined criteria: 6 modelling studies, all of them cost-utility analyses, and one claims data analysis with a cost-minimisation design. One cost-utility analysis showed dominance of GLA over NPH. The other 5 cost-utility analyses resulted in additional costs per quality adjusted life year (QALY) gained for GLA, ranging from € 3,859 to € 57,002 (incremental cost effectiveness ratio; ICER). The cost-minimisation analysis revealed lower annual diabetes-specific costs in favour of NPH from the perspective of the German Statutory Health Insurance (SHI). Conclusions The incremental cost-utility-ratios (ICER) show favourable values for GLA with considerable variation. If a willingness-to-pay threshold of £ 30,000 (National Institute of Clinical Excellence, UK) is adopted, GLA is cost

  10. Evaluating the cost-effectiveness of insulin detemir versus neutral protamine Hagedorn insulin in patients with type 1 or type 2 diabetes in the UK using a short-term modeling approach.

    PubMed

    Pollock, Richard F; Chubb, Barrie; Valentine, William J; Heller, Simon

    2018-01-01

    To estimate the short-term cost-effectiveness of insulin detemir (IDet) versus neutral protamine Hagedorn (NPH) insulin based on the incidence of non-severe hypoglycemia and changes in body weight in subjects with type 1 diabetes (T1D) or type 2 diabetes (T2D) in the UK. A model was developed to evaluate cost-effectiveness based on non-severe hypoglycemia, body mass index, and pharmacy costs over 1 year. Published rates of non-severe hypoglycemia were employed in the T1D and T2D analyses, while reduced weight gain with IDet was modeled in the T2D analysis only. Effectiveness was calculated in terms of quality-adjusted life expectancy using published utility scores. Pharmacy costs were captured using published prices and defined daily doses. Costs were expressed in 2016 pounds sterling (GBP). Sensitivity analyses were performed (including probabilistic sensitivity analysis). In T1D, IDet was associated with fewer non-severe hypoglycemic events than NPH insulin (126.7 versus 150.8 events per person-year), leading to an improvement of 0.099 quality-adjusted life years (QALYs). Costs with IDet were GBP 60 higher, yielding an incremental cost-effectiveness ratio (ICER) of GBP 610 per QALY gained. In T2D, mean non-severe hypoglycemic event rates and body weight were lower with IDet than NPH insulin, leading to a total incremental utility of 0.120, accompanied by an annual cost increase of GBP 171, yielding an ICER of GBP 1,422 per QALY gained for IDet versus NPH insulin. Short-term health economic evaluation showed IDet to be a cost-effective alternative to NPH insulin in the UK due to lower rates of non-severe hypoglycemia (T1D and T2D) and reduced weight gain (T2D only).

  11. [Comparison between basal insulin glargine and NPH insulin in patients with diabetes type 1 on conventional intensive insulin therapy].

    PubMed

    Pesić, Milica; Zivić, Sasa; Radenković, Sasa; Velojić, Milena; Dimić, Dragan; Antić, Slobodan

    2007-04-01

    Insulin glargine is a long-acting insulin analog that mimics normal basal insulin secretion without pronounced peaks. The aim of this study was to compare insulin glargine with isophane insulin (NPH insulin) for basal insulin supply in patients with type 1 diabetes. A total of 48 type 1 diabetics on long term conventional intensive insulin therapy (IT) were randomized to three different regimens of basal insulin substitution: 1. continuation of NPH insulin once daily at bedtime with more intensive selfmonitoring (n = 15); 2. NPH insulin twice daily (n = 15); 3. insulin glargine once daily (n = 18). Meal time insulin aspart was continued in all groups. Fasting blood glucose (FBG) was lower in the glargine group (7.30+/-0.98 mmol/1) than in the twice daily NPH group (7.47+/-1.06 mmol/1), but without significant difference. FBG was significantly higher in the once daily NPH group (8.44+/-0.85 mmol/l; p < 0.05). HbAlc after 3 months did not change in the once daily NPH group, but decreased in the glargine group (from 7.72+/-0.86% to 6.87+/-0.50%), as well as in the twice daily NPH group (from 7.80+/-0.83% to 7.01+/-0.63%). Total daily insulin doses were similar in all groups but only in the glargine group there was an increase of basal and decrease of meal related insulin doses. The frequency of mild hypoglycemia was significantly lower in the glargine group (6.56+/-2.09) than in both NPH groups (9.0+/-1.65 in twice daily NPH group and 8.13+/-1.30 in other NPH group) (episodes/patients-month, p < 0.05). Basal insulin supplementation in type 1 diabetes mellitus with either twice daily NPH insulin or glargine can result in similar glycemic control when combined with meal time insulin aspart. However, with glargine regimen FBG, HbAlc and frequency of hypoglycemic event are lower. These facts contribute to better patients satisfaction with insulin glargine versus NPH insulin in IIT in type 1 diabetics.

  12. Long-Term Cost-Effectiveness of Insulin Glargine Versus Neutral Protamine Hagedorn Insulin for Type 2 Diabetes in Thailand.

    PubMed

    Permsuwan, Unchalee; Chaiyakunapruk, Nathorn; Dilokthornsakul, Piyameth; Thavorn, Kednapa; Saokaew, Surasak

    2016-06-01

    Even though Insulin glargine (IGlar) has been available and used in other countries for more than a decade, it has not been adopted into Thai national formulary. This study aimed to evaluate the long-term cost effectiveness of IGlar versus neutral protamine Hagedorn (NPH) insulin in type 2 diabetes from the perspective of Thai Health Care System. A validated computer simulation model (the IMS CORE Diabetes Model) was used to estimate the long-term projection of costs and clinical outcomes. The model was populated with published characteristics of Thai patients with type 2 diabetes. Baseline risk factors were obtained from Thai cohort studies, while relative risk reduction was derived from a meta-analysis study conducted by the Canadian Agency for Drugs and Technology in Health. Only direct costs were taken into account. Costs of diabetes management and complications were obtained from hospital databases in Thailand. Both costs and outcomes were discounted at 3 % per annum and presented in US dollars in terms of 2014 dollar value. Incremental cost-effectiveness ratio (ICER) was calculated. One-way and probabilistic sensitivity analyses were also performed. IGlar is associated with a slight gain in quality-adjusted life years (0.488 QALYs), an additional life expectancy (0.677 life years), and an incremental cost of THB119,543 (US$3522.19) compared with NPH insulin. The ICERs were THB244,915/QALY (US$7216.12/QALY) and THB176,525/life-year gained (LYG) (US$5201.09/LYG). The ICER was sensitive to discount rates and IGlar cost. At the acceptable willingness to pay of THB160,000/QALY (US$4714.20/QALY), the probability that IGlar was cost effective was less than 20 %. Compared to treatment with NPH insulin, treatment with IGlar in type 2 diabetes patients who had uncontrolled blood glucose with oral anti-diabetic drugs did not represent good value for money at the acceptable threshold in Thailand.

  13. Different insulin concentrations in resuspended vs. unsuspended NPH insulin: Practical aspects of subcutaneous injection in patients with diabetes.

    PubMed

    Lucidi, P; Porcellati, F; Marinelli Andreoli, A; Candeloro, P; Cioli, P; Bolli, G B; Fanelli, C G

    2017-06-06

    This study measured the insulin concentration (Ins [C] ) of NPH insulin in vials and cartridges from different companies after either resuspension (R+) or not (R-; in the clear/cloudy phases of unsuspended NPH). Measurements included Ins [C] in NPH(R+) and in the clear/cloudy phases of NPH(R-), and the time needed to resuspend NPH and time for NPH(R+) to separate again into clear/cloudy parts. In vials of NPH(R+) (assumed to be 100%), Ins [C] in the clear phase of NPH(R-) was<1%, but 230±41% and 234±54% in the cloudy phases of Novo Nordisk and Eli Lilly NPH, respectively. Likewise, in pen cartridges, Ins [C] in the clear phase of NPH(R-) was<1%, but 182±33%, 204±22% and 229±62% in the cloudy phases of Novo, Lilly and Sanofi NPH. Time needed to resuspend NPH (spent in tipping) in vials was brief with both Novo (5±1s) and Lilly NPH (6±1s), but longer with all pen cartridges (50±8s, 40±6s and 30±4s from Novo, Lilly and Sanofi, respectively; P=0.022). Time required for 50% separation into cloudy and clear parts of NPH was longer with Novo (60±7min) vs. Lilly (18±3min) in vials (P=0.021), and affected by temperature, but not by the different diameter sizes of the vials. With pen cartridges, separation into clear and cloudy parts was significantly faster than in vials (P<0.01). Ins [C] in NPH preparations varies depending on their resuspension or not. Thus, subcutaneous injection of the same number of units of NPH in patients with diabetes may deliver different amounts of insulin depending on its prior NPH resuspension. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Treatment duration (persistence) of basal insulin supported oral therapy (BOT) in Type-2 diabetic patients: comparison of insulin glargine with NPH insulin.

    PubMed

    Quinzler, Renate; Ude, Miriam; Franzmann, Alexandra; Feldt, Sandra; Schüssel, Katrin; Leuner, Kristina; Müller, Walter E; Dippel, Franz-Werner; Schulz, Martin

    2012-01-01

    To compare the persistence (treatment duration) of basal insulin supported oral therapy (BOT) using insulin glargine (GLA) or NPH insulin (NPH) in Type-2 diabetic patients. This retrospective cohort study reports results from an analysis of claims data from prescriptions for ambulatory patients within the German Statutory Health Insurance scheme. The study is based on claims data from more than 80% of German community pharmacies. Treatment duration until switching to a basal bolus treatment regimen (intensified conventional insulin therapy: ICT) was determined in insulin-naïve patients who began treatment with BOT using GLA or NPH between 01/2003 and 12/2006. A total of 97,998 patients (61,070 GLA and 36,928 NPH) were included. Within the observation period, 23.5% of GLA patients and 28.0% of NPH patients switched from BOT to ICT. The upper quartile of probability of continuation of therapy (the 75th percentile) was reached after 769 days in GLA patients and after 517 days in NPH patients. Therefore, the risk of switching to ICT was significantly higher with NPH compared to GLA: hazard ratios were 1.34 (99% CI: 1.29-1.38; unadjusted) and 1.22 (99% CI: 1.18-1.27) after adjustment for predefined covariates. Various sensitivity analyses using modified inclusion criteria and endpoint definitions were applied and these confirmed the initial results. Type-2 diabetic patients under BOT with GLA stayed significantly longer on the initial therapy before switching to ICT than patients on BOT using NPH.

  15. Meta-Analysis of Maternal and Neonatal Outcomes Associated with the Use of Insulin Glargine versus NPH Insulin during Pregnancy

    PubMed Central

    Lepercq, Jacques; Lin, Jay; Hall, Gillian C.; Wang, Edward; Dain, Marie-Paule; Riddle, Matthew C.; Home, Philip D.

    2012-01-01

    As glargine, an analog of human insulin, is increasingly used during pregnancy, a meta-analysis assessed its safety in this population. A systematic literature search identified studies of gestational or pregestational diabetes comparing use of insulin glargine with human NPH insulin, with at least 15 women in both arms. Data was extracted for maternal outcomes (weight at delivery, weight gain, 1st/3rd trimester HbA1c, severe hypoglycemia, gestation/new-onset hypertension, preeclampsia, and cesarean section) and neonatal outcomes (congenital malformations, gestational age at delivery, birth weight, macrosomia, LGA, 5 minute Apgar score >7, NICU admissions, respiratory distress syndrome, neonatal hypoglycemia, and hyperbilirubinemia). Relative risk ratios and weighted mean differences were determined using a random effect model. Eight studies of women using glargine (331) or NPH (371) were analyzed. No significant differences in the efficacy and safety-related outcomes were found between glargine and NPH use during pregnancy. PMID:22685467

  16. Cerebral Blood Flow and Glucose Metabolism in Appetite-Related Brain Regions in Type 1 Diabetic Patients After Treatment With Insulin Detemir and NPH Insulin

    PubMed Central

    van Golen, Larissa W.; IJzerman, Richard G.; Huisman, Marc C.; Hensbergen, Jolanda F.; Hoogma, Roel P.; Drent, Madeleine L.; Lammertsma, Adriaan A.; Diamant, Michaela

    2013-01-01

    OBJECTIVE To test the hypothesis that insulin detemir, which is associated with less weight gain than other basal insulin formulations, exerts its weight-modulating effects by acting on brain regions involved in appetite regulation, as represented by altered cerebral blood flow (CBF) or cerebral glucose metabolism (CMRglu). RESEARCH DESIGN AND METHODS Twenty-eight male type 1 diabetic patients (age 36.9 ± 9.7 years, BMI 24.9 ± 2.7 kg/m2, A1C 7.5 ± 0.6%) successfully completed a randomized crossover study, consisting of two periods of 12-week treatment with either insulin detemir or NPH insulin, both in combination with prandial insulin aspart. After each treatment period, patients underwent positron emission tomography scans to measure regional CBF and CMRglu. RESULTS After 12 weeks, A1C, daily insulin doses, fasting insulin, and blood glucose levels were similar between treatments. Insulin detemir resulted in body weight loss, whereas NPH insulin induced weight gain (between-treatment difference 1.3 kg; P = 0.02). After treatment with insulin detemir relative to NPH insulin, CBF was higher in brain regions involved in appetite regulation, whereas no significant difference in CMRglu was observed. CONCLUSIONS Treatment with insulin detemir versus NPH insulin resulted in weight loss, paralleled by increased CBF in appetite-related brain regions in the resting state, in men with well-controlled type 1 diabetes. These findings lend support to the hypothesis that a differential effect on the brain may contribute to the consistently observed weight-sparing effect of insulin detemir. PMID:24130356

  17. Structural studies of a crystalline insulin analog complex with protamine by atomic force microscopy.

    PubMed Central

    Yip, C M; Brader, M L; Frank, B H; DeFelippis, M R; Ward, M D

    2000-01-01

    Crystallographic studies of insulin-protamine complexes, such as neutral protamine Hagedorn (NPH) insulin, have been hampered by high crystal solvent content, small crystal dimensions, and extensive disorder in the protamine molecules. We report herein in situ tapping mode atomic force microscopy (TMAFM) studies of crystalline neutral protamine Lys(B28)Pro(B29) (NPL), a complex of Lys(B28)Pro(B29) insulin, in which the C-terminal prolyl and lysyl residues of human insulin are inverted, and protamine that is used as an intermediate time-action therapy for treating insulin-dependent diabetes. Tapping mode AFM performed at 6 degrees C on bipyramidally tipped tetragonal rod-shaped NPL crystals revealed large micron-sized islands separated by 44-A tall steps. Lattice images obtained by in situ TMAFM phase and height imaging on these islands were consistent with the arrangement of individual insulin-protamine complexes on the P4(1)2(1)2 (110) crystal plane of NPH, based on a low-resolution x-ray diffraction structure of NPH, arguing that the NPH and NPL insulins are isostructural. Superposition of the height and phase images indicated that tip-sample adhesion was larger in the interstices between NPL complexes in the (110) crystal plane than over the individual complexes. These results demonstrate the utility of low-temperature TMAFM height and phase imaging for the structural characterization of biomolecular complexes. PMID:10620310

  18. Repaglinide versus metformin in combination with bedtime NPH insulin in patients with type 2 diabetes established on insulin/metformin combination therapy.

    PubMed

    Furlong, Niall J; Hulme, Shirley A; O'Brien, Sarah V; Hardy, Kevin J

    2002-10-01

    To compare the effect on glycemic control and weight gain of repaglinide versus metformin combined with bedtime NPH insulin in patients with type 2 diabetes. A total of 80 subjects treated with 850 or 1,000 mg t.i.d. metformin combined with bedtime NPH insulin were randomized to 13 weeks of open-label treatment with 4 mg t.i.d. repaglinide (n = 39) or metformin (dose unchanged) (n = 41). Insulin dose was titrated at the clinician's discretion, aiming for a fasting blood glucose (FBG) < or =6.0 mmol/l. Baseline age, diabetes duration, insulin requirement, weight, BMI, FBG, and HbA(1c) (Diabetes Control and Complications Trial-aligned assay, normal range 4.6-6.2%) were similar. Glycemic control improved (nonsignificantly) with insulin/metformin by (mean) 0.4%, from 8.4 to 8.1% (P = 0.09) but deteriorated with insulin/repaglinide by (mean) 0.4%, from 8.1 to 8.6% (P = 0.03; P = 0.005 between groups). Weight gain was less with insulin/metformin: 0.9 +/- 0.4 kg (means +/- SE) (P = 0.01) versus 2.7 +/- 0.4 kg (P < 0.0001) (P = 0.002 between groups). The Diabetes Treatment Satisfaction Questionnaire score (potential range 0 [minimum] to 36 [maximum]) increased from 32.4 +/- 0.8 to 34.1 +/- 0.5 (P = 0.01) with insulin/metformin but decreased from 32.5 +/- 0.9 to 29.1 +/- 1.3 (P < 0.002) with insulin/repaglinide. Combined with bedtime NPH insulin, metformin provides superior glycemic control to repaglinide with less weight gain and improved diabetes treatment satisfaction.

  19. An RCT Investigating Patient-Driven Versus Physician-Driven Titration of BIAsp 30 in Patients with Type 2 Diabetes Uncontrolled Using NPH Insulin.

    PubMed

    Chraibi, Abdelmjid; Al-Herz, Shoorook; Nguyen, Bich Dao; Soeatmadji, Djoko W; Shinde, Anil; Lakshmivenkataraman, Balasubramanian; Assaad-Khalil, Samir H

    2017-08-01

    The aim of this study was to confirm the efficacy of patient-driven titration of BIAsp 30 in terms of glycemic control, by comparing it to physician-driven titration of BIAsp 30, in patients with type 2 diabetes in North Africa, the Middle East, and Asia. A 20-week, open-label, randomized, two-armed, parallel-group, multicenter study in Egypt, Indonesia, Morocco, Saudi Arabia, and Vietnam. Patients (n = 155) with type 2 diabetes inadequately controlled using neutral protamine Hagedorn (NPH) insulin were randomized to either patient-driven or physician-driven BIAsp 30 titration. The noninferiority of patient-driven compared to physician-driven titration with respect to the reduction in HbA1c was confirmed. The estimated mean change in HbA1c from baseline to week 20 was -1.27% in the patient-driven arm and -1.04% in the physician-driven arm, with an estimated treatment difference of -0.23% (95% confidence interval: -0.54; 0.08). After 20 weeks of treatment, the proportions of patients achieving the target of HbA1c <7.5% were similar between titration arms; the proportions of patients achieving the target of ≤6.5% were also similar. Both titration algorithms were well tolerated, and hypoglycemic episode rates were similar in both arms. Patient-driven titration of BIAsp 30 can be as effective and safe as physician-driven titration in non-Western populations. Overall, the switch from NPH insulin to BIAsp 30 was well tolerated in both titration arms and led to improved glycemic control. A limitation of the study was the relatively small number of patients recruited in each country. ClinicalTrials.gov NCT01589653. Novo Nordisk A/S, Denmark.

  20. Reduced risk of hypoglycemia with once-daily glargine versus twice-daily NPH and number needed to harm with NPH to demonstrate the risk of one additional hypoglycemic event in type 2 diabetes: Evidence from a long-term controlled trial

    PubMed Central

    Rosenstock, Julio; Fonseca, Vivian; Schinzel, Stefan; Dain, Marie-Paule; Mullins, Peter; Riddle, Matthew

    2016-01-01

    Aims This analysis evaluated HbA1c-adjusted hypoglycemia risk with glargine versus neutral protamine Hagedorn (NPH) over a 5-year study in patients with Type 2 diabetes mellitus (T2DM). Clinical significance was assessed using number needed to harm (NNH) to demonstrate the risk of one additional patient experiencing at least one hypoglycemic event. Methods Individual patient-level data for symptomatic documented hypoglycemia and HbA1c values from a 5-year randomized study comparing once-daily glargine (n = 513) with twice-daily NPH (n = 504) were analyzed. Symptomatic hypoglycemia was categorized according to concurrent self-monitoring blood glucose levels and need for assistance. Hypoglycemic events per patient-year as a function of HbA1c were fitted by negative binomial regression using treatment and HbA1c at endpoint as independent variables. An estimate of NNH was derived from logistic regression models. Results The cumulative number of symptomatic hypoglycemia events was consistently lower with glargine compared with NPH over 5 years. Compared with twice-daily NPH, once-daily glargine treatment resulted in significantly lower adjusted odds ratios (OR) for all daytime hypoglycemia (OR 0.74; p = 0.030) and any severe event (OR 0.64; p = 0.035), representing a 26% and 36% reduction in the odds of daytime and severe hypoglycemia, respectively. Our model predicts that, if 25 patients were treated with NPH instead of glargine, then one additional patient would experience at least one severe hypoglycemic event. Conclusions This analysis of long-term insulin treatment confirms findings from short-term studies and demonstrates that glargine provides sustained, clinically meaningful reductions in risk of hypoglycemia compared with NPH in patients with T2DM. PMID:24856612

  1. Treatment persistence in the use of basal insulins in Poland and Germany
.

    PubMed

    Rathmann, Wolfgang; Czech, Marcin; Franek, Edward; Kostev, Karel

    2017-02-01

    To compare short-term basal insulin therapy persistence and its predictors in Poland and Germany. Persistence was defined as proportions of patients remaining on the initial basal insulin (analogs: Poland: n = 6,889, Germany: n = 454,067; neutral protamine Hagedorn (NPH) insulins: Poland: n = 50,761, Germany: n = 226,064) over 2 years based on nationwide prescription databases (LRx; IMS Health) in Poland and Germany from 2013 to 2015. Persistence was evaluated by Kaplan-Meier curves (log-rank tests). Risk of discontinuation of initial basal insulin was investigated using Cox regression models adjusting for age, sex, comedication with other glucose-lowering agents and baseline or comedication with antihypertensives, lipid-lowering drugs, antidepressants, and antiepileptics. In Poland, 2-year persistence was 83.0% in analog insulin and 73.3% in NPH users (p < 0.001). In Germany, persistence was also higher in patients with analog insulins (92.6% vs. 79.0%; p < 0.001). Analog insulin users were less likely to discontinue basal insulin compared with NPH users (adjusted hazard ratio (95%CI): Poland: 0.73 (0.67 - 0.79); Germany: 0.27 (0.27 - 0.28)). Higher age (> 75 vs. ≤ 60 years: Poland: 1.24 (1.16 - 1.33), Germany: 1.09 (1.07 - 1.11)) and GLP-1 receptor agonist use (Poland: 2.76 (1.38 - 5.53), Germany: 1.21 (1.16 - 1.26)) were related to higher risk of discontinuation. Male sex, metformin, sulfonylurea, thiazolidinedione, and short-acting insulin prescriptions as well as antihypertensive, anti-epileptic, and lipid-lowering drug use were associated with lower risk of discontinuation in both countries (all p < 0.05). This real-world study shows that both in Poland and Germany treatment persistence of newly-prescribed basal insulin is influenced by type of insulin (analog vs. NPH) and by glucose-lowering and other comedications.
.

  2. Insulin detemir: a review of its use in the management of diabetes mellitus.

    PubMed

    Keating, Gillian M

    2012-12-03

    Insulin detemir (Levemir®) is a long-acting insulin analogue indicated for use as basal insulin therapy in patients with type 1 or 2 diabetes mellitus. The protracted action of insulin detemir is explained by increased self-association and reversible binding to albumin, which slows its systemic absorption from the injection site. In glucose-clamp studies, less within-patient variability in glucose-lowering effect was seen with insulin detemir than with neutral protamine Hagedorn (NPH) insulin or insulin glargine in patients with type 1 or 2 diabetes. The beneficial effect of insulin detemir on glycaemic control was shown in numerous randomized, open-label, multicentre trials, including when used as basal-bolus therapy in patients with type 1 or 2 diabetes and as basal therapy in addition to oral antidiabetic drugs in insulin-naive patients with type 2 diabetes. In terms of glycosylated haemoglobin (HbA(1c)).[primary endpoint in most trials], insulin detemir was generally at least as effective as NPH insulin, insulin glargine or insulin lispro protamine suspension in patients with type 1 or 2 diabetes, and at least as effective as biphasic insulin aspart in patients with type 2 diabetes. Less within-patient variability in blood glucose was also generally seen with insulin detemir than with NPH insulin in patients with type 1 or 2 diabetes. Significantly less weight gain was generally seen with insulin detemir than with NPH insulin in patients with type 1 diabetes or with insulin detemir than with NPH insulin, insulin glargine, insulin lispro protamine suspension or biphasic insulin aspart (in one study) in patients with type 2 diabetes (i.e. insulin detemir generally had a weight-sparing effect). The addition of insulin detemir to liraglutide plus metformin improved glycaemic control in insulin-naive patients with type 2 diabetes and inadequate glycaemic control, although a significantly greater reduction in bodyweight was seen in patients receiving liraglutide

  3. Vildagliptin versus insulin in patients with type 2 diabetes mellitus inadequately controlled with sulfonylurea: results from a randomized, 24 week study.

    PubMed

    Forst, Thomas; Koch, Cornelia; Dworak, Markus

    2015-06-01

    There is limited evidence to guide the selection of second-line anti-hyperglycemic agents in patients with type 2 diabetes mellitus (T2DM) who are inadequately controlled with sulfonylurea monotherapy and are intolerant to metformin. We compared the efficacy and safety of vildagliptin 50 mg qd and Neutral Protamine Hagedorn (NPH) insulin qd in such patients. This was a 24 week, multicenter, randomized, open-label study. The co-primary endpoints were (i) proportion of patients achieving HbA1c <7.0% without any confirmed hypoglycemic events (HEs) or weight gain ≥3% (composite endpoint); (ii) rate of confirmed HEs. Treatment satisfaction was assessed using the TSQM-9 questionnaire at study end. A total of 162 patients were randomly assigned to vildagliptin (n = 83) and NPH insulin (n = 79). Similar proportion of patients achieved the composite endpoint in vildagliptin versus NPH insulin group (35.4% versus 34.2%; OR 0.985; 95% CI 0.507, 1.915; p = 0.96). After 24 weeks, 48.8% of patients in the vildagliptin group and 60.8% in the NPH insulin group achieved HbA1c <7.0%; 13.4% in the vildagliptin group and 29.1% in the insulin group had at least one confirmed HE; while 11.0% in the vildagliptin group and 22.8% in the insulin group experienced weight gain. The rate of confirmed HEs was significantly lower in patients receiving vildagliptin versus NPH insulin (1.3 versus 5.1 events per year). The TSQM-9 score for 'convenience' at week 24 increased significantly more with vildagliptin than with NPH insulin. Addition of vildagliptin and NPH insulin resulted in a similar number of patients reaching HbA1c target without HEs or weight gain in T2DM patients inadequately controlled with sulfonylurea. The addition of vildagliptin to sulfonylurea could be considered as a treatment option prior to intensification with insulin, with the advantages of a lower HE rate and greater patient convenience. Study results are limited by a higher drop-out rate in the

  4. Insulin detemir improves glycemic control and reduces hypoglycemia in children with type 1 diabetes: findings from the Turkish cohort of the PREDICTIVE observational study.

    PubMed

    Kurtoglu, Selim; Atabek, Mehmet Emre; Dizdarer, Ceyhun; Pirgon, Ozgur; Isguven, Pinar; Emek, Sevil

    2009-09-01

    Insulin detemir is a basal insulin analog designed to produce a superior pharmacokinetic profile to basal formulations of human insulin. It has shown consistently improved tolerability in comparison to neutral protamine Hagedorn (NPH) insulin in adult cohorts, but there are relatively few publications involving pediatric cohorts. The efficacy and safety of insulin detemir in children with type 1 diabetes was assessed using data from the Turkish cohort of PREDICTIVE (a large, multinational, observational) study. The children investigated were using basal-bolus therapy involving NPH insulin or insulin glargine at baseline but were switched to insulin detemir as part of routine clinical care by their physicians. Twelve weeks of treatment with insulin detemir significantly reduced mean hemoglobin A1c (9.7-8.9%, p < 0.001) and mean fasting glucose [185-162 mg/dL (10.3-9 mmol/L), p < 0.01]. Fasting glucose variability was also lower after treatment with insulin detemir than previously (on either NPH or glargine, p < 0.05). The frequencies of total, major and nocturnal hypoglycemic events were significantly reduced with insulin detemir relative to baseline, with an estimated mean of 6.89 fewer events/patient/yr overall (p < 0.001) and 2.6 fewer nocturnal events/patient/yr (p < 0.01). Weight and insulin dose remained relatively unchanged. Twelve weeks of treatment with insulin detemir improved glycemic control and reduced hypoglycemia in children with type 1 diabetes. This improved tolerability might allow further dose titration and therefore additional improvements in glucose control.

  5. Safety and efficacy of insulin glargine 300 u/mL compared with other basal insulin therapies in patients with type 2 diabetes mellitus: a network meta-analysis.

    PubMed

    Freemantle, Nick; Chou, Engels; Frois, Christian; Zhuo, Daisy; Lehmacher, Walter; Vlajnic, Aleksandra; Wang, Hongwei; Chung, Hsing-Wen; Zhang, Quanwu; Wu, Eric; Gerrits, Charles

    2016-02-15

    To compare the efficacy and safety of a concentrated formulation of insulin glargine (Gla-300) with other basal insulin therapies in patients with type 2 diabetes mellitus (T2DM). This was a network meta-analysis (NMA) of randomised clinical trials of basal insulin therapy in T2DM identified via a systematic literature review of Cochrane library databases, MEDLINE and MEDLINE In-Process, EMBASE and PsycINFO. Changes in HbA1c (%) and body weight, and rates of nocturnal and documented symptomatic hypoglycaemia were assessed. 41 studies were included; 25 studies comprised the main analysis population: patients on basal insulin-supported oral therapy (BOT). Change in glycated haemoglobin (HbA1c) was comparable between Gla-300 and detemir (difference: -0.08; 95% credible interval (CrI): -0.40 to 0.24), neutral protamine Hagedorn (NPH; 0.01; -0.28 to 0.32), degludec (-0.12; -0.42 to 0.20) and premixed insulin (0.26; -0.04 to 0.58). Change in body weight was comparable between Gla-300 and detemir (0.69; -0.31 to 1.71), NPH (-0.76; -1.75 to 0.21) and degludec (-0.63; -1.63 to 0.35), but significantly lower compared with premixed insulin (-1.83; -2.85 to -0.75). Gla-300 was associated with a significantly lower nocturnal hypoglycaemia rate versus NPH (risk ratio: 0.18; 95% CrI: 0.05 to 0.55) and premixed insulin (0.36; 0.14 to 0.94); no significant differences were noted in Gla-300 versus detemir (0.52; 0.19 to 1.36) and degludec (0.66; 0.28 to 1.50). Differences in documented symptomatic hypoglycaemia rates of Gla-300 versus detemir (0.63; 0.19 to 2.00), NPH (0.66; 0.27 to 1.49) and degludec (0.55; 0.23 to 1.34) were not significant. Extensive sensitivity analyses supported the robustness of these findings. NMA comparisons are useful in the absence of direct randomised controlled data. This NMA suggests that Gla-300 is also associated with a significantly lower risk of nocturnal hypoglycaemia compared with NPH and premixed insulin, with glycaemic control comparable to

  6. The cost-effectiveness of insulin glargine vs. neutral protamine Hagedorn insulin in type 2 diabetes: a focus on health economics.

    PubMed

    Levin, P

    2008-07-01

    Diabetes mellitus is a major public health problem, in particular because of long-term complications affecting essential organs, such as the eyes and kidneys, which can lead to a reduction in life expectancy and high healthcare costs. The number of individuals with diabetes mellitus is projected to rise worldwide from 171 million people in 2000 to 366 million people in 2030. With the number of patients with diabetes continually growing, the burden of pressure on worldwide health systems is huge. Accordingly, regulatory and marketing approvals of new medicines are beginning to incorporate economic evaluation techniques to determine their cost-effectiveness. Overall, the studies included in this review show that the initiation of insulin glargine is cost-effective and is expected to lead to substantial improvements in both life years (LYs) and quality-adjusted LYs compared with neutral protamine Hagedorn insulin.

  7. Comparison of repaglinide vs. gliclazide in combination with bedtime NPH insulin in patients with Type 2 diabetes inadequately controlled with oral hypoglycaemic agents.

    PubMed

    Furlong, N J; Hulme, S A; O'Brien, S V; Hardy, K J

    2003-11-01

    This open-label randomized controlled clinical trial compared the effect on glycaemic control and weight gain of repaglinide vs. gliclazide combined with bedtime NPH insulin in patients with Type 2 diabetes inadequately controlled with oral hypoglycaemic therapy [HbA1c>7.0% (DCCT aligned assay, normal range 4.6-6.2%)]. Eighty subjects with Type 2 diabetes were randomized to 13 weeks' open-label treatment with repaglinide 4 mg t.i.d. or gliclazide 160 mg b.i.d. in combination with bedtime NPH insulin (initial dose 0.5 units/kg). The fasting blood glucose (FBG) target was < or =6.0 mmol/l. Baseline characteristics were similar for age, sex, weight, BMI, FBG and HbA1c. Glycaemic control improved similarly in both groups-insulin/gliclazide by (mean) 1.0%, from 9.2 to 8.2% (P=0.001) and by 0.9%, from 9.4 to 8.5% in the insulin/repaglinide group (P=0.005) (P=0.83 between groups). Weight gain averaged (mean +/- sem) 4.1 +/- 0.5 and 3.4 +/- 0.4 kg in the insulin/gliclazide and insulin/repaglinide groups, respectively (P<0.0001 for both groups from baseline) (P=0.29 between groups). The mean number of hypoglycaemic episodes experienced per patient was 2.95 +/- 0.82 (insulin/gliclazide) and 2.3 +/- 0.52 (insulin/repaglinide) (P=0.81 between groups). Both treatments were associated with significant improvements in Diabetes Treatment Satisfaction [Diabetes Treatment Satisfaction Questionnaire-potential range 0 (min) to 36 (max)]; in the insulin/gliclazide group, by 4.9 +/- 1.1 points to 33.3 +/- 0.6 (P<0.0001) and by 3.0 +/- 0.9 points to 34.6 +/- 0.4 (P=0.0006) in the insulin/repaglinide group (P=0.29 between groups). Over 13 weeks, both repaglinide and gliclazide, when combined with bedtime NPH insulin produce similar significant improvements in glycaemic control (-1%) and similar weight gain.

  8. Hagedorn states and thermalization

    NASA Astrophysics Data System (ADS)

    Noronha-Hostler, J.; Greiner, C.

    2011-12-01

    In recent years Hagedorn states have been used to explain the physics close to the critical temperature within a hadron gas. Because of their large decay widths these massive resonances lower η/ s to near the AdS/CFT limit within the hadron gas phase. A comparison of the Hagedorn model to recent lattice results is made and it is found that for both T c = 176 MeV and T c = 196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states. In this paper we also observe the effects of Hagedorn States on the K +/π+ horn seen at AGS, SPS, and RHIC.

  9. Music and Science: Tribute to Rolf Hagedorn

    NASA Astrophysics Data System (ADS)

    Jacob, Maurice

    I present here Rolf Hagedorn as a man, and present his achievements as a physicist. He has made several very important contributions: to particle and nuclear fields of research: The Hagedorn Temperature and the Statistical Bootstrap Model are concepts that are here to stay, and which have stimulated much further research. But Rolf Hagedorn is also a wonderful person and, saying that, does not require a specialist.

  10. Is insulin diluted when stored in water?

    PubMed

    Plager, Phillip; Nurie, Kadiro; Omann, Trevor; Moran, Antoinette; Piloya, Thereza; Bahendeka, Silver; Sunni, Muna

    2017-05-01

    Insulin storage is a challenge in resource-poor countries. In Uganda, patients were noted to store insulin vials by submerging them in water. To examine whether withdrawing insulin from a vial without adding air back causes a vacuum which allows water to enter the vial, resulting in insulin dilution. Seven hundred units of insulin were withdrawn from forty 10 mL vials of 100 units/mL insulin [20 neutral protamine hagedorn (NPH), 20 regular]. In half, air was added back. The vials were weighed (baseline). Half of the vials (10 with added air, 10 without) were submerged in water for 24 h and then air-dried for 24 h. Vials that were not submerged sat at room temperature for 48 h. All vials were weighed 48 h from baseline. Addition of air did not impact the change in weight after submersion (air added: -0.002 ± 0.001 g or -0.2 ± 0.1 unit; no air added: -0.003 ± 0.000 g or -0.3 ± 0 unit, p = 0.57). In a subset of vials in which an additional 240 units were withdrawn before submersion for another 24 h, there was still no difference in weight change in those vials with air added (p = 0.2). Withdrawing insulin from a vial without adding air did not result in uptake of water or dilution of insulin in the submerged vial, although it made drawing up the insulin easier. This study did not address the larger concern of bacterial contamination of the rubber stopper during water storage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Glycemic control and maternal and fetal outcomes in pregnant women with type 1 diabetes according to the type of basal insulin.

    PubMed

    Chico, A; Herranz, L; Corcoy, R; Ramírez, O; Goya, M M; Bellart, J; González-Romero, S; Codina, M; Sánchez, P; Cortázar, A; Acosta, D; Picón, M J; Rubio, J A; Megía, A; Sancho, M A; Balsells, M; Solá, E; González, N L; López-López, J

    2016-11-01

    To examine the potential role of the type of basal insulin on glycemic control and maternal and foetal outcomes in pregnant women with type 1 diabetes (T1DM). Retrospective cohort study of pregnancies attended at 18 Spanish tertiary hospitals. T1DM, singleton pregnancies, delivery between 2002-2010, and use of the same basal and prandial insulin from before pregnancy until delivery. A total of 1534 pregnancies were included. The basal insulin most commonly used was Neutral Protamine Hagedorn (NPH) (51.7%), followed by glargine (23.2%) and continuous subcutaneous insulin infusion (CSII) (21.1%). CSII users had longer diabetes duration. Multiple logistic regression analysis showed that CSII was independently associated with lower doses of insulin, higher glycated haemoglobin (HbA 1c ) in all trimesters, and higher rates of miscarriage, preterm birth and neonatal hypoglycemia. Glargine was related to a higher risk of preterm birth and a small-for-gestational age infant (SGA). The odds ratios (OR) of the associations between insulin type and clinical outcomes (from 0.642 to 4.894) have a relevant magnitude. In this observational study of pregnant women with T1DM, the type of basal insulin was independently associated with metabolic variables and foetal outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Quality of life in type 2 diabetes mellitus patients requiring insulin treatment in Buenos Aires, Argentina: a cross-sectional study

    PubMed Central

    Pichon-Riviere, Andres; Irazola, Vilma; Beratarrechea, Andrea; Alcaraz, Andrea; Carrara, Carolina

    2015-01-01

    Background: Decision-makers have begun to recognize Health-Related Quality of Life (HRQoL) as an important and measurable outcome of healthcare interventions; and HRQoL data is increasingly being used by policy-makers to prioritize health resources. Our objective was to measure HRQoL in a group of Type 2 Diabetes Mellitus (T2DM) patients receiving insulin treatment in Buenos Aires, Argentina. Methods: We conducted a cross-sectional study of patients with T2DM over 21 years of age, treated with either Neutral Protamine Hagedorn (NPH) insulin or Insulin Glargine (IG), who had not changed their baseline schedule in the last 6 months. The recruitment was during 2006–7 in nine private diabetes specialists’ offices in Buenos Aires, Argentina. A standardized diabetes-specific HRQoL questionnaire, the Audit of Diabetes Dependent Quality of Life (ADDQoL), was used. Results: A total of 183 patients were included (93 receiving NPH and 90 receiving IG). The mean QoL score was: 0.98 (SD: 0.89) and the diabetes specific QoL was: -1.49 (SD: 0.90). T2DM had a negative impact on HRQoL with a mean Average Weighted Impact (AWI) score on QoL of -1.77 (SD: 1.58). The greatest negative impact was observed for domains: ‘worries about the future’, ‘freedom to eat’, ‘living conditions’, ‘sex life’, and ‘family life’. The mean AWI score was -1.71 (SD: 1.48) in patients treated with IG and -1.85 (SD: 1.68) in patients receiving NPH, this difference was not statistically significant. Conclusion: The ADDQoL questionnaire is a tool that can be used in Argentina to measure the QoL of patients with diabetes when evaluating diabetes care programs. The scores of QoL in our selected population did not differ from those reported in high-income countries. We expect that the results of this study will increase healthcare providers’ awareness of patients’ perceived QoL and help to overcome the barriers that delay insulin treatment; mainly clinical inertia and patient

  13. Theoretical considerations on the pathophysiology of normal pressure hydrocephalus (NPH) and NPH-related dementia.

    PubMed

    Hamlat, Abderrahmane; Adn, Mahmoudreza; Sid-ahmed, Seddik; Askar, Brahim; Pasqualini, Edouardo

    2006-01-01

    Normal pressure hydrocephalus (NPH) is considered to be an example of reversible dementia although clinical improvement after shunting varies from subject to subject, and recent studies have pointed to a possible link with other dementia. The authors consider that the craniospinal compartment is a partially closed sphere with control device systems represented by the spinal axis and the sagittal sinus-arachnoid villi complex which interact with each other in the clinical patient setting. We hypothesise that changing spinal compliance by altering the flow process and CSF dynamics lead to hydrocephalus. Therefore four NPH types have been distinguished according to the alterations in spinal compliance, decrease in CSF absorption at the sagittal sinus or both occurrences. The authors consider that NPH and NPH-related diseases (NPH-RD) are initiated by the same common final pathway and demonstrate that NPH could represent an initial stage of NPH-RD. Progression of clinical signs can be explained as damage to the cerebral tissue by both intermittent increased intracranial pressure and pulse pressure waves leading to periventricular ischaemia. In addition, they believe that both volume equilibrium and spinal compliance are restored in patients who improve after CSF shunt, whereas in patients whose condition does not improve, only volume equilibrium is restored and not spinal compliance, which was the underlying cause of hydrocephalus in such cases. They therefore wonder whether cervical decompression should not be indicated in patients who show no improvement. Although attractive, this analysis warrants confirmation from clinical, radiological, and hydrodynamic studies.

  14. 20 Years of insulin lispro in pediatric type 1 diabetes: a review of available evidence.

    PubMed

    Kaiserman, Kevin; Jung, Heike; Benabbad, Imane; Karges, Beate; Polak, Michel; Rosilio, Myriam

    2017-03-01

    Insulin lispro, the first rapid-acting insulin analog, was developed 20 years ago and has been studied in multiple situations and various populations. To review the literature on the use of insulin lispro in children, adolescents, and young adults. Children, adolescents, and young adults with type-1-diabetes. One hundred and twenty-two relevant publications, identified by a systematic (MEDLINE) and manual literature search, were reviewed. Multiple daily injection (MDI) treatment with insulin lispro or other rapid-acting insulins, mainly using neutral protamine Hagedorn (NPH) insulin as the basal component, was associated with reduced postprandial glucose excursions, similar or improved HbA1c levels, and similar or reduced risks of severe hypoglycemia when compared with regular human insulin across all age-groups. Continuous subcutaneous insulin infusion (CSII)-treatment with insulin lispro also showed similar or improved glycemic control vs. MDI- or other CSII-regimens across all age-groups, without increasing the rate of severe hypoglycemia. The other two more recently developed rapid-acting insulins (aspart, glulisine) demonstrated non-inferiority to lispro on HbA1c. Long-term observational studies and real-life experience indicate that the increasing use of optimized MDI- and CSII-regimens with insulin lispro was associated with improvements in overall glycemic control. For almost 20 years, rapid-acting insulins, in particular insulin lispro as the first-in-class, have contributed to broadening the treatment options for the unique needs of pediatric patients with type-1-diabetes across all age-groups, and have enabled more physiological insulin administration. Now widely used, they have allowed pediatric patients to safely reach better glycemic control, with more flexibility in their daily lives. © 2016 The Authors. Pediatric Diabetes published by John Wiley & Sons Ltd.

  15. Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States

    NASA Astrophysics Data System (ADS)

    Beitel, M.; Gallmeister, K.; Greiner, C.

    2017-01-01

    Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc . A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles as the Ξ0- and the Ω--baryon. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH . Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2. . . 5 fm/c.

  16. Hagedorn Temperature of AdS5/CFT4 via Integrability

    NASA Astrophysics Data System (ADS)

    Harmark, Troels; Wilhelm, Matthias

    2018-02-01

    We establish a framework for calculating the Hagedorn temperature of AdS5/CFT4 via integrability. Concretely, we derive the thermodynamic Bethe ansatz equations that yield the Hagedorn temperature of planar N =4 super Yang-Mills theory at any value of the 't Hooft coupling. We solve these equations perturbatively at weak coupling via the associated Y system, confirming the known results at tree level and one-loop order as well as deriving the previously unknown two-loop Hagedorn temperature. Finally, we comment on solving the equations at finite coupling.

  17. Insulin analog preparations and their use in children and adolescents with type 1 diabetes mellitus.

    PubMed

    Miles, Harriet L; Acerini, Carlo L

    2008-01-01

    Standard or 'traditional' human insulin preparations such as regular soluble insulin and neutral protamine Hagedorn (NPH) insulin have shortcomings in terms of their pharmacokinetic and pharmacodynamic properties that limit their clinical efficacy. Structurally modified insulin molecules or insulin 'analogs' have been developed with the aim of delivering insulin replacement therapy in a more physiological manner. In the last 10 years, five insulin analog preparations have become commercially available for clinical use in patients with type 1 diabetes mellitus: three 'rapid' or fast-acting analogs (insulin lispro, aspart, and glulisine) and two long-acting analogs (insulin glargine and detemir). This review highlights the specific pharmacokinetic properties of these new insulin analog preparations and focuses on their potential clinical advantages and disadvantages when used in children and adolescents with type 1 diabetes mellitus. The fast-acting analogs specifically facilitate more flexible insulin injection timing with regard to meals and activities, whereas the long-acting analogs have a more predictable profile of action and lack a peak effect. To date, clinical trials in children and adolescents have been few in number, but the evidence available from these and from other studies carried out in adults with type 1 diabetes suggest that they offer significant benefits in terms of reduced frequency of nocturnal hypoglycemia, better postprandial blood glucose control, and improved quality of life when compared with traditional insulins. In addition, insulin detemir therapy is unique in that patients may benefit from reduced risk of excessive weight, particularly during adolescence. Evidence for sustained long-term improvements in glycosylated hemoglobin, on the other hand, is modest. Furthermore, alterations to insulin/insulin-like growth factor I receptor binding characteristics have also raised theoretical concerns that insulin analogs may have an increased

  18. Shunting for normal pressure hydrocephalus (NPH).

    PubMed

    Esmonde, T; Cooke, S

    2002-01-01

    Since the condition was first described in 1965, the syndrome of normal pressure hydrocephalus (NPH) has conventionally been managed by placement of a cerebrospinal fluid (CSF) shunt. To determine the effectiveness of shunting procedures in promoting stability or improvement in the neurological symptoms and signs of NPH. The trials were identified from a search of the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group on 26 June 2001 using the terms 'shunt*' and 'normal pressure hydrocephalus'. Studies included for analysis were those involving the placement of a CSF shunt for the treatment of NPH as part of a randomized controlled trial. No data matching the selection criteria were found. No randomized controlled trials of shunt placement versus no shunt were found. There is no evidence to indicate whether placement of a shunt is effective in the management of NPH.

  19. Benchmarking Insulin Treatment Persistence Among Patients with Type 2 Diabetes Across Different U.S. Payer Segments.

    PubMed

    Wei, Wenhui; Jiang, Jenny; Lou, Youbei; Ganguli, Sohini; Matusik, Mark S

    2017-03-01

    Treatment persistence with basal insulins is crucial to achieving sustained glycemic control, which is associated with a reduced risk of microvascular disease and other complications of type 2 diabetes (T2D). However, studies suggest that persistence with basal insulin treatment is often poor. To measure and benchmark real-world basal insulin treatment persistence among patients with T2D across different payer segments in the United States. This was a retrospective observational study of data from a national pharmacy database (Walgreen Co., Deerfield, IL). The analysis included patients with T2D aged ≥ 18 years who filled ≥ 1 prescription for basal insulins between January 2013 and June 2013 (the index prescription) and who had also filled prescriptions for ≥ 1 oral antidiabetes drug in the database. Patients with claims for premixed insulin were excluded. Treatment persistence was defined as remaining on the study medication(s) during the 1-year follow-up period. Patients were stratified according to treatment history (existing basal insulin users vs. new insulin users), payer segments (commercially insured, Medicare, Medicaid, or cash-pay), type of basal insulin (insulin glargine, insulin detemir, or neutral protamine Hagedorn insulin [NPH]), and device for insulin administration (pen or vial/syringe). A total of 274,102 patients were included in this analysis, 82% of whom were existing insulin users. In terms of payer segments, 45.3% of patients were commercially insured, 47.8% had Medicare, 5.9% had Medicaid, and 1.1% were cash-pay. At the 1-year follow-up, basal insulin treatment persistence rate was 66.8% overall, 61.7% for new users, and 67.9% for existing users. In general, for both existing and new basal insulin users, higher persistence rate and duration were associated with Medicare versus cash-pay patients, use of insulin pens versus vial/syringe, and use of insulin glargine versus NPH. This large-scale study provides a benchmark of basal insulin

  20. Basal Insulin Regimens for Adults with Type 1 Diabetes Mellitus: A Systematic Review and Network Meta-Analysis.

    PubMed

    Dawoud, Dalia; O'Mahony, Rachel; Wonderling, David; Cobb, Jill; Higgins, Bernard; Amiel, Stephanie A

    2018-02-01

    To assess the relative efficacy and safety of basal insulin regimens in adults with type 1 diabetes mellitus (T1DM). A systematic review and Bayesian network meta-analysis (NMA) of randomized controlled trials comparing two or more basal insulin regimens were conducted. The following basal insulin regimens were included: Neutral Protamine Hagedorn (iNPH) (once [od], twice [bid], and four times daily [qid]), insulin detemir (iDet) (od and bid), insulin glargine 100 IU (iGlarg) (od), and insulin degludec (iDegl) (od). We searched the following databases: MEDLINE via OVID, Embase via OVID, and the Cochrane Library (Wiley). Study quality was appraised using Cochrane risk-of-bias checklist for randomized controlled trials. Two outcomes (change in hemoglobin A 1c [HbA 1c ] and rate of severe/major hypoglycemia [SH]) were analyzed. Network inconsistency was assessed using Bucher and chi-square tests. Thirty studies met the eligibility criteria. Twenty-five were included in the HbA 1c network and 16 in the SH network. All studies were of moderate quality. No network inconsistency was evident in the HbA 1c network. Of the seven regimens of interest, iDet (bid) had the highest probability of being best (mean change in HbA 1c -0.48; 95% credible interval -0.69 to -0.29). In contrast, the SH network demonstrated both considerable uncertainty and significant network inconsistency (χ 2 test, P = 0.003). Of the specified frequency regimens, iDet (bid) had the highest probability of being the best basal insulin regimen in terms of reduction in HbA 1c . Ranking of the regimens in terms of the SH rate was highly uncertain and no clear conclusion could be made. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  1. Quantitative RT-PCR and immunoblot analyses reveal acclimated A2 noradrenergic neuron substrate fuel transporter, glucokinase, phospho-AMPK, and dopamine-β-hydroxylase responses to hypoglycemia.

    PubMed

    Cherian, Ajeesh Koshy; Briski, Karen P

    2011-07-01

    Cellular metabolic stasis is monitored in discrete brain sites, including the dorsal vagal complex (DVC), where A2 noradrenergic neurons perform this sensory function. Single-cell qPCR and high-sensitivity immunoblotting were used to determine if A2 neurons adapt to chronic hypoglycemia by increasing substrate fuel transporter expression, and whether such adjustments coincide with decreased cellular energy instability during this systemic metabolic stress. Tyrosine hydroxylase-immunolabeled neurons were laser-microdissected from the caudal DVC 2 hr after single or serial neutral protamine Hagedorn insulin (NPH) dosing. Preceding hypoglycemia suppressed basal A2 MCT2, GLUT3, and GLUT4 profiles and diminished MCT2, GLUT4, and glucokinase responses to recurring hypoglycemia. Acute NPH caused a robust increase in A2 phospho-AMPK protein levels; baseline phospho-AMPK expression was elevated after 3 days of insulin treatment but only slight augmented after a fourth NPH injection. Transcripts encoding the catecholamine biosynthetic enzyme dopamine-β-hydroxylase were unaffected by acute NPH but were diminished by serial insulin dosing. This evidence for diminished basal A2 glucose and lactate uptake and attenuated phospho-AMPK-mediated detection of hypoglycemia-associated energy deficits suggests that these cells acclimate to chronic hypoglycemia by adopting a new metabolic steady state characterized by energy paucity and reduced sensitivity to hypoglycemia. Because dopamine-β-hydroxylase mRNA was reduced after serial, but not single NPH dosing, A2 neurotransmitter biosynthesis may be impervious to acute hypoglycemia but inhibited when posthypoglycemic metabolic deficiency is exacerbated by recurring hypoglycemia. This research suggests that chronic hypoglycemia-associated adjustments in A2-sensory neurotransmission may reflect cellular energetic debilitation rather than adaptive attenuation of cellular metabolic imbalance. Copyright © 2011 Wiley-Liss, Inc.

  2. PHMC post-NPH emergency response training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrads, T.J.

    1997-04-08

    This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site.

  3. Contemporary Rates of Severe Hypoglycaemia in Youth with Type 1 Diabetes: Variability by Insulin Regimen

    PubMed Central

    Katz, M. L.; Volkening, L. K.; Anderson, B. J.; Laffel, L. M.

    2013-01-01

    Aims To determine incidence rates of severe hypoglycaemia and compare incidence rates by insulin regimen in a diverse sample of youth with type 1 diabetes from two sites. Methods In this observational study, 255 youth (51% female) aged 9–15 years receiving varied insulin regimens provided data prospectively for a median of 1.2 years. Reported episodes of severe hypoglycaemia, defined as episodes requiring help from another person for oral treatment or episodes resulting in seizure/coma, and current insulin regimens were collected systematically. Incidence rates were calculated and compared according to insulin regimen in bivariate and multivariate analyses. Results At first encounter, participants had a median age of 12.2 years (range 9.0–15.0), median diabetes duration of 4.4 years (range 1.0–13.0) and mean A1C of 67±12 mmol/mol (8.3±1.1%). The incidence rate was 37.6/100-patient-years for all severe hypoglycaemia and 9.6/100-patient-years for seizure/coma. The incidence rate for severe hypoglycaemia was 31.8/100-patient-years on continuous subcutaneous insulin infusion (CSII), 34.4/100-patient-years on basal-bolus injections (B-B) and 46.1/100-patient-years on NPH (NPH vs. CSII: p=.04). The incidence rate for seizure/coma was 4.5/100-patient-years on CSII, 11.1/100-patient-years on B-B, and 14.4/100-patient-years on NPH (NPH vs. CSII: p=.004). In the multivariate analysis, the rate of seizure/coma was significantly higher for those on NPH vs. CSII (rate ratio 2.9, p=.03). Conclusions Rates of severe hypoglycaemia in youth with type 1 diabetes remain high. CSII was associated with lower rates of all severe hypoglycaemia and seizure/coma in comparison to NPH. PMID:22417321

  4. Three-year outcome of shunted idiopathic NPH patients.

    PubMed

    Aygok, G; Marmarou, A; Young, H F

    2005-01-01

    The incidence of idiopathic normal pressure hydrocephalus (iNPH) has increased as a result of improved longevity. This report describes the 3-year outcome of shunted iNPH patients compared to three-month outcome after shunting. Patients (n = 50) (Age 70.4 +/- 8.9) admitted to our service were diagnosed and treated according to a fixed protocol for management of iNPH and after shunting were followed at least three times per year in clinic. The outcome of 50 patients was graded according to the level of improvement in symptoms as Excellent/Good, Partial or None in each category of Gait, Incontinence and Dementia. If we lump favorable (excellent, good, partial recovery) vs poor recovery (none), we found from 3 months to 3 years, a moderate decline in gait performance (91% to 75%), a retention of memory improvement (80%-80%) and an improvement in incontinence occurred over time (70%-82.5%). With proper diagnosis and management of iNPH, shunting of patients is associated with a favorable risk/benefit ratio that is reasonably long lasting.

  5. Comparison of [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ as Electrocatalysts for H2 Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Eric S.; Helm, Monte L.

    The complexes [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, where PPh2NPh2 is 1,5-diphenyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane, are compared as electrocatalysts for H2 production under identical experimental conditions. With [(DMF)H]+ as the acid in acetonitrile solution, [Pd(PPh2NPh2)2]2+ afforded a turnover frequency (TOF) of 230 s-1 for formation of H2 under dry conditions and a TOF of 640 s-1 when H2O was added. These rates are similar to the TOF’s of 590 s-1 (dry) and 720 s-1 (wet) that were previously measured for [Ni(PPh2NPh2)2(CH3CN)]2+ using [(DMF)H]+. The [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ complexes both exhibited large current enhancements when treated with trifluoroacetic acid (TFA). At a TFA concentration of 1.8 M,more » TOF values of 5670 s-1 and 2060 s-1 were measured for [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, respectively. The fast rates observed using TFA are, in part, attributed to homoconjugation of TFA in acetonitrile solutions, which decreases the effective pKa of the acid. In support of this hypothesis, dramatically lower rates of H2 production were observed using p anisidinium, which has a pKa comparable to TFA but does not homoconjugate significantly in acetonitrile solutions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is oper-ated by Battelle for the U.S. Department of Energy.« less

  6. Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology.

    PubMed

    Nayeri, Ali; Brandenberger, Robert H; Vafa, Cumrun

    2006-07-14

    We study the generation of cosmological perturbations during the Hagedorn phase of string gas cosmology. Using tools of string thermodynamics we provide indications that it may be possible to obtain a nearly scale-invariant spectrum of cosmological fluctuations on scales which are of cosmological interest today. In our cosmological scenario, the early Hagedorn phase of string gas cosmology goes over smoothly into the radiation-dominated phase of standard cosmology, without having a period of cosmological inflation.

  7. Evaluation of glucose response to 3 types of insulin using a continuous glucose monitoring system in healthy alpacas.

    PubMed

    Byers, S R; Beemer, O M; Lear, A S; Callan, R J

    2014-01-01

    Persistent hyperglycemia is common in alpacas and typically requires insulin administration for resolution; however, little is known about alpacas' response to different insulin formulations. To evaluate the effects of 3 insulin formulations on blood glucose concentrations and the use of a continuous glucose monitoring (CGM) system in alpacas. Six healthy alpacas. The CGM was installed in the left paralumbar fossa at the start of this crossover study and recorded data every 5 minutes. Regular insulin, NPH insulin, insulin glargine, and dextrose were administered to each alpaca over a 2-week period. Blood samples were collected for glucose testing at 0, 1, 2, 4, 6, 8, and 12 hours, and then every 6 hours after each administration of insulin or dextrose. Data were compared by using method comparison techniques, error grid plots, and ANOVA. Blood glucose concentrations decreased most rapidly after regular insulin administration when administered IV or SC as compared to the other formulations. The NPH insulin produced the longest suppression of blood glucose. The mean CGM interstitial compartment glucose concentrations were typically lower than the intravascular compartment glucose concentrations. The alpacas had no adverse reactions to the different insulin formulations. The NPH insulin might be more appropriate for long-term use in hyperglycemic alpacas because of its extended duration of action. A CGM is useful in monitoring glucose trends and reducing blood collection events, but it should not be the sole method for determining treatment protocols. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  8. Repaglinide in combination therapy.

    PubMed

    Moses, R

    2002-12-01

    Type 2 diabetes mellitus (T2DM) is a progressive disorder requiring increasingly aggressive treatment to achieve and maintain target blood glucose concentrations in the presence of deteriorating insulin secretion and increasing insulin resistance. Diet and lifestyle modification are often sufficient initially; however, most patients eventually require pharmacological intervention. With disease progression, monotherapy becomes less effective, so combination therapy is required, using drugs with complementary modes of action to maximise glycaemic control. The prandial glucose regulator repaglinide has been studied in combination with metformin (an inhibitor of hepatic glucose production), neutral protamine Hagedorn (NPH)-insulin (which has a long duration of effect, but at the risk of early hypoglycaemia and late hyperglycaemia in the dosing interval) and three thiazolidinediones (TZDs--troglitazone, rosiglitazone and pioglitazone, which stimulate nuclear receptors to increase insulin sensitivity and reduce insulin resistance) in patients whose diabetes was inadequately controlled by previous monotherapy or combination therapy. The combination of repaglinide and metformin resulted in reduced fasting plasma glucose concentrations (by 2.2 mmol/l) and HbA1c (by 1.4%). Combination therapy with repaglinide and bedtime NPH-insulin resulted in reductions in fasting plasma glucose (by 5.4 mmol/l) and HbA1c (by 0.7%). The combination of repaglinide and each TZD also resulted in consistent decreases in fasting plasma glucose concentrations and HbA1c. No severe hypoglycaemic episodes were reported in the three studies. In conclusion, repaglinide has additive, and often synergistic, effects on glycaemic control when given in combination regimens and should be a valuable option in the management of patients with T2DM.

  9. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Robert L.; Ross, Steven B.

    2011-09-15

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  10. Arabidopsis G-protein β subunit AGB1 interacts with NPH3 and is involved in phototropism.

    PubMed

    Kansup, Jeeraporn; Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2014-02-28

    Heterotrimeric G proteins (Gα, Gβ and Gγ) have pleiotropic roles in plants, but molecular mechanisms underlying them remain to be elucidated. Here we show that Arabidopsis Gβ (AGB1) interacts with NPH3, a regulator of phototropism. Yeast two-hybrid assays, in vitro pull-down assays and bimolecular fluorescence complementation assays showed that AGB1 and NPH3 physically interact. NPH3-null mutation (nph3) is known to completely abolish hypocotyl phototropism. Loss-of-function mutants of AGB1 (agb1-1 and agb1-2) showed decreased hypocotyl phototropism, and agb1/nph3 double mutants showed no hypocotyl phototropism. These results suggest that AGB1 is involved in the NPH3-mediated regulation of phototropism. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Predictors of early discontinuation of basal insulin therapy in type 2 diabetes in primary care.

    PubMed

    Kostev, K; Dippel, F W; Rathmann, W

    2016-04-01

    To identify patient-related characteristics and other impact factors predicting early discontinuation of basal insulin therapy in type 2 diabetes in primary care. A total of 4837 patients who started basal insulin therapy (glargine: n=3175; NPH: n=1662) in 1072 general and internal medicine practices throughout Germany were retrospectively analyzed (Disease Analyser Database: 01/2008-03/2014). Early discontinuation was defined as switching back to oral antidiabetic drugs (OAD) therapy within 90 days after first basal insulin prescription (index date, ID). Patient records were assessed 365 days prior and post ID. Logistic regression models were used to adjust for age, sex, diabetes duration, diabetologist care, disease management program participation, HbA1c, and comorbidity. Within 3 months after ID, 202 (6.8%) of glargine patients switched back to OAD (NPH: 130 (8.5%); p<0.05). In multivariable logistic regression, predictors of early basal insulin discontinuation were ≥1 documented hypoglycemia before ID (adjusted Odds ratio; 95% CI: 2.20; 1.27-3.82), diagnosed depression (1.31; 1.01-1.70) and referrals to specialists within 90 days after ID (2.06; 1.61-2.63). Diabetologist care (0.57; 0.36-0.89) and glargine treatment (vs. NPH: 0.78; 0.61-0.98) were related to a lower odds of having early insulin discontinuation. Less than 10% of type 2 diabetes patients switched back to oral antidiabetic drugs within 90 days after start of basal insulin therapy. In particular, patients with baseline depression and frequent or severe hypoglycemia have a higher likelihood for early discontinuation of basal insulin, whereas use of insulin glargine and diabetologist care are related to an increased chance of continuous insulin treatment. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  12. Chemical stability of insulin. 2. Formation of higher molecular weight transformation products during storage of pharmaceutical preparations.

    PubMed

    Brange, J; Havelund, S; Hougaard, P

    1992-06-01

    Formation of covalent, higher molecular weight transformation (HMWT) products during storage of insulin preparations at 4-45 degrees C was studied by size exclusion chromatography. The main products are covalent insulin dimers (CID), but in protamine-containing preparations the concurrent formation of covalent insulin-protamine (CIP) products takes place. At temperatures greater than or equal to 25 degrees C parallel or consecutive formation of covalent oligo- and polymers can also be observed. Rate of HMWT is only slightly influenced by species of insulin but varies with composition and formulation, and for isophane (NPH) preparations, also with the strength of preparation. Temperature has a pronounced effect on CID, CIP, and, especially, covalent oligo- and polymer formation. The CIDs are apparently formed between molecules within the hexameric unit common for all types of preparations and rate of formation is generally faster in glycerol-containing preparations. Compared with insulin hydrolysis reactions (see the preceding paper), HMWT is one order of magnitude slower, except for NPH preparations.

  13. NPH4, a Conditional Modulator of Auxin-Dependent Differential Growth Responses in Arabidopsis1

    PubMed Central

    Stowe-Evans, Emily L.; Harper, Reneé M.; Motchoulski, Andrei V.; Liscum, Emmanuel

    1998-01-01

    Although sessile in nature, plants are able to use a number of mechanisms to modify their morphology in response to changing environmental conditions. Differential growth is one such mechanism. Despite its importance in plant development, little is known about the molecular events regulating the establishment of differential growth. Here we report analyses of the nph4 (nonphototropic hypocotyl) mutants of Arabidopsis that suggest that the NPH4 protein plays a central role in the modulation of auxin-dependent differential growth. Results from physiological studies demonstrate that NPH4 activity is conditionally required for a number of differential growth responses, including phototropism, gravitropism, phytochrome-dependent hypocotyl curvature, apical hook maintenance, and abaxial/adaxial leaf-blade expansion. The nph4 mutants exhibited auxin resistance and severely impaired auxin-dependent gene expression, indicating that the defects associated with differential growth likely arise because of altered auxin responsiveness. Moreover, the auxin signaling events mediating phototropism are genetically correlated with the abundance of the NPH4 protein. PMID:9847100

  14. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation.

    PubMed

    Sakai, T; Kagawa, T; Kasahara, M; Swartz, T E; Christie, J M; Briggs, W R; Wada, M; Okada, K

    2001-06-05

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1 npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1 npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.

  15. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation

    PubMed Central

    Sakai, Tatsuya; Kagawa, Takatoshi; Kasahara, Masahiro; Swartz, Trevor E.; Christie, John M.; Briggs, Winslow R.; Wada, Masamitsu; Okada, Kiyotaka

    2001-01-01

    UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner. PMID:11371609

  16. A Summary Report on the NPH Evaluation of 105-L Disassembly Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, J.R.

    2002-04-30

    The L Area Disassembly Basin (LDB) is evaluated for the natural phenomena hazards (NPH) effects due to earthquake, wind, and tornado in accordance with DOE Order 420.1 and DOE-STD-1020. The deterministic analysis is performed for a Performance Category 3 (PC3) level of loads. Savannah River Site (SRS) specific NPH loads and design criteria are obtained from Engineering Standard 01060. It is demonstrated that the demand to capacity (D/C) ratios for primary and significant structural elements are acceptable (equal to or less than 1.0). Thus, 105-L Disassembly Basin building structure is qualified for the PC3 NPH effects in accordance with DOEmore » Order 420.1.« less

  17. Long-acting insulin analogues for type 1 diabetes: An overview of systematic reviews and meta-analysis of randomized controlled trials.

    PubMed

    Laranjeira, Fernanda O; de Andrade, Keitty R C; Figueiredo, Ana C M G; Silva, Everton N; Pereira, Mauricio G

    2018-01-01

    The comparison between long acting insulin analogues (LAIA) and human insulin (NPH) has been investigated for decades, with many randomized controlled trials (RCTs) and systematic reviews giving mixed results. This overlapping and contradictory evidence has increased uncertainty on coverage decisions at health systems level. To conduct an overview of systematic reviews and update existing reviews, preparing new meta-analysis to determine whether LAIA are effective for T1D patients compared to NPH. We identified systematic reviews of RCTs that evaluated the efficacy of LAIA glargine or detemir, compared to NPH insulin for T1D, assessing glycated hemoglobin (A1C) and hypoglycemia. Data sources included Pubmed, Cochrane Library, EMBASE and hand-searching. The methodological quality of studies was independently assessed by two reviewers, using AMSTAR and Jadad scale. We found 11 eligible systematic reviews that contained a total of 25 relevant clinical trials. Two reviewers independently abstracted data. We found evidence that LAIA are efficacious compared to NPH, with estimates showing a reduction in nocturnal hypoglycemia episodes (RR 0.66; 95% CI 0.57; 0.76) and A1C (95% CI 0.23; 0.12). No significance was found related to severe hypoglycemia (RR 0.94; 95% CI 0.71; 1.24). This study design has allowed us to carry out the most comprehensive assessment of RCTs on this subject, filling a gap in diabetes research. Our paper addresses a question that is important not only for decision makers but also for clinicians.

  18. Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Robert L.; Ross, Steven B.; Sullivan, Robin S.

    2010-09-24

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the Hanford 200 Areas, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. The review includes all natural phenomena hazards with the exception of seismic/earthquake hazards, which are being addressed under a separate effort. It was determined that existing non-seismic NPH assessments are consistent with current design methodology and site specific data.

  19. Comparison of the impact of human vs analogue insulins on glycosylated haemoglobin in a population with diabetes mellitus.

    PubMed

    Machado-Alba, Jorge Enrique; Medina-Morales, Diego Alejandro

    2016-12-01

    To compare the effect on metabolic control of treatment with conventional and analogue insulins for patients with diabetes mellitus. Retrospective cohort study held in cities of Colombia (Pereira and Manizales). People insured by the paid healthcare system, who were diagnosed with diabetes mellitus type 1 and 2, and treated with conventional and analogue insulin for at least 6 months prior to the start of the study were sampled and followed up for 18 months. Data were collected from clinical records for each patient. Treatment groups were compared according to the type of insulin received. A total of 313 patients were included; overall, 56.9% were women and the mean age was 57.3 years. No statistically significant difference was found in glycosylated haemoglobin reduction at 3, 6 and 18 months when comparing patients receiving glargine vs NPH insulin (P=.403) and NPH plus zinc crystalline insulin vs glargine plus glulisine (P=.514). The percentage of patients with metabolic control increased from 27.8% to 34.2% during follow-up with all types of insulin. Insulin analogues were not superior to human insulin for glycaemic control. A significant proportion of patients did not attain the treatment goals; therefore, it is necessary to implement measures to improve the monitoring and control of diabetes mellitus. © 2016 John Wiley & Sons Ltd.

  20. Pharmacokinetics of insulin following intravenous and subcutaneous administration in canines.

    PubMed

    Ravis, W R; Comerci, C; Ganjam, V K

    1986-01-01

    Studies were conducted to examine the absorption and disposition kinetics of insulin in dogs following intravenous (IV) and subcutaneous (SC) administration of commercial preparations. After IV and SC dosing, the plasma levels were described by models which considered basal insulin level contributions. Intersubject variation in the disposition kinetics was small with half-lives of 0.52 +/- 0.05 h and total body clearances of 16.21 +/- 2.08 ml min-1 kg-1. Calculated insulin plasma secretion rates in the canines were 14.4 +/- 3.3 mUh-1 kg-1. Following SC injection of regular insulin, the rate and extent of absorption were noted to be quite variable. The absorption process appeared first-order with half-life values of 2.3 +/- 1.3 h and extents of absorption of 78 +/- 15 per cent with a range of 55-101 per cent. Insulin absorption from SC NPH preparations was evaluated as being composed of two zero-order release phases, a rapid and a slow release phase. With a dose of 1.65 U kg-1, the rapid release phase had an average duration of 1.5 h and a rate of 580 +/- 269 mUh-1 (4.2 per cent of dose) while the slow phase had a zero-order rate of 237 +/- 92 mU h-1 which continued beyond 12 h. The extent of absorption from the NPH preparation was 23.6 +/- 5.1 per cent and was significantly lower than that for the regular injection.

  1. The impact of ethnicity, educational and economic status on the prescription of insulin therapeutic regimens and on glycemic control in patients with type 1 diabetes. A nationwide study in Brazil.

    PubMed

    Gomes, Marilia Brito; Rodacki, Melanie; Pavin, Elizabeth João; Cobas, Roberta Arnoldi; Felicio, João S; Zajdenverg, Lenita; Negrato, Carlos Antonio

    2017-12-01

    Establish the relationship between demographic, educational and economic status on insulin therapeutic regimens (ITRs) and on glycemic control in patients with type 1 diabetes. This was a cross-sectional, multicenter study with 1760 patients conducted between August 2011 and August 2014 in 10 Brazilian cities. Patients were stratified according to ITRs as follows: only NPH insulin (group 1, n=80(4.5%)); only long-acting insulin analogs (group 2, n=6(0.3%)); continuous subcutaneous insulin infusion (CSII) (group 3, n=62(3.5%)); NPH plus regular insulin (group 4, n=710(40.3%)); NPH plus ultra-rapid insulin analogs (group 5, n=259(14.8%)); long-acting insulin analogs plus regular insulin (group 6, n=25(4.4%)) and long-acting plus ultra-rapid insulin analogs (group 7, n=618 (35.1%)). As group A (provided free of charge by the government) we considered groups 1 and 4, and as group B (obtained through lawsuit or out-of-pocket) groups 2, 3 and 7. Multivariate logistic analysis showed that independent variables related to group B were older age, more years of school attendance, higher economic status and ethnicity (Caucasians). The independent variables related to better glycemic control were older age, higher adherence to diet, higher frequency of self-monitoring of blood glucose, more years of school attendance and belonging to group B. In Brazilian National Health Care System, prescriptions of insulin analogs or CSII are more frequent in Caucasian patients with type 1 diabetes, with higher economic status and more years ofschool attendance. Among these variables years of school attendance was the only one associated with better glycemic control. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hot string soup: Thermodynamics of strings near the Hagedorn transition

    NASA Astrophysics Data System (ADS)

    Lowe, David A.; Thorlacius, Lárus

    1995-01-01

    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The averge total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.

  3. Endoscopic third ventriculostomy (ETV) for idiopathic normal pressure hydrocephalus (iNPH).

    PubMed

    Tudor, Katarina Ivana; Tudor, Mario; McCleery, Jenny; Car, Josip

    2015-07-29

    Idiopathic normal pressure hydrocephalus (iNPH) is a type of communicating hydrocephalus also known as non-obstructive hydrocephalus. This type of hydrocephalus is caused by impaired cerebrospinal fluid reabsorption without any obstruction in the ventricular system and is associated with normal cerebrospinal fluid pressure. It is characterised clinically by gait disturbance, cognitive dysfunction, and urinary incontinence (known as the Hakim-Adams triad). The exact cause of iNPH is unknown. It may be managed conservatively or treated surgically by inserting a ventriculoperitoneal (VP) or ventriculoatrial (VA) shunt. However, a substantial number of patients do not respond well to surgical treatment, complication rates are high and there is often a need for further surgery. Endoscopic third ventriculostomy (ETV) is an alternative surgical intervention. It has been suggested that ETV may lead to better outcomes, including fewer complications. To determine the effectiveness of ETV for treatment of patients with iNPH compared to conservative therapy, or shunting of CSF using VP or VA shunts.To assess the perioperative and postoperative complication rates in patients with iNPH after ETV compared to conservative therapy, VP or VA shunting. We searched for eligible studies using ALOIS: a comprehensive register of dementia studies, The Cochrane Central Register of Controlled Trials (CENTRAL) and several bibliographic databases such as MEDLINE (Ovid SP), EMBASE (Ovid SP), PsycINFO (Ovid SP), CINAHL (EBSCOhost) and LILACS (BIREME).We also searched the Database of Abstracts of Reviews of Effects (DARE) to identify potentially relevant reviews. The search strategy was adapted for other databases, using the most appropriate controlled vocabulary for each. We did not apply any language or time restrictions. The searches were performed in August 2014. We included randomised controlled trials (RCTs) of ETV treatment of iNPH. Patients had to have at least two symptoms of the Hakim

  4. Influence of insulin and glargine on outgrowth and number of circulating endothelial progenitor cells in type 2 diabetes patients: a partially double-blind, randomized, three-arm unicenter study.

    PubMed

    Oikonomou, Dimitrios; Kopf, Stefan; von Bauer, Rüdiger; Djuric, Zdenka; Cebola, Rita; Sander, Anja; Englert, Stefan; Vittas, Spiros; Hidmark, Asa; Morcos, Michael; Korosoglou, Grigorios; Nawroth, Peter P; Humpert, Per M

    2014-10-11

    Endothelial progenitor cells (EPC) are bone marrow-derived cells which can undergo differentiation into endothelial cells and participate in endothelial repair and angiogenesis. Insulin facilitates this in vitro mediated by the IGF-1 receptor. Clinical trials showed that the number of circulating EPCs is influenced by glucose control and EPC are a predictor of cardiovascular death. To study direct effects of insulin treatment on EPCs in type 2 diabetes patients, add-on basal insulin treatment was compared to an escalation of oral medication aiming at similar glucose control between the groups. 55 patients with type 2 diabetes (61.6±5.9 years) on oral diabetes medication were randomized in a 2:2:1 ratio in 3 groups. Patients were treated additionally with insulin glargine (n=20), NPH insulin (n=22) or escalated with oral medication (n=13). Number of circulating EPC, EPC-outgrowth, intima media thickness, skin microvascular function and HbA1c were documented at baseline and/or after 4 weeks and 4 months. HbA1c at baseline was, 7.3+/-0.7% in the oral group, 7.3+/-0.9% and 7.5+/-0.7% in the glargine and NPH insulin respectively (p=0.713). HbA1c after 4 months decreased to 6.8+/-0.8%, 6.6+/-0.7% and 6.7+/-0.6%, in the oral, glargine and NPH insulin group respectively (p=0.61). FACS analysis showed no difference in number of circulating EPC between the groups after 4 weeks and 4 months. However, the outgrowth of EPCs as detected by colony forming assay was increased in the NPH insulin and glargine groups (29.2+/-6.4 and 29.4+/- 6.7 units respectively) compared to the group on oral medication (23.2+/-6.3, p=0.013) after 4 months of treatment. A significant decrease of IMT from 0.80mm (+/-0.14) at baseline to 0.76mm (+/-0.12) after 4 months could be observed in all patients only (p=0.03) with a trend towards a reduction of IMT after 4 months when all patients on insulin treatment were compared to the oral treatment group (p=0.06). Skin microvascular function revealed no

  5. Reversal of the toxic effects of cachectin by concurrent insulin administration.

    PubMed

    Fraker, D L; Merino, M J; Norton, J A

    1989-06-01

    Rats treated with recombinant human tumor necrosis factor-cachectin, 100 micrograms/kg ip twice daily for 5 consecutive days, had a 56% decrease in food intake, a 54% decrease in nitrogen balance, and a 23-g decrease in body weight gain vs. saline-treated controls. Concurrent neutral protamine hagedorn insulin administration of 2 U/100 g sc twice daily reversed all of these changes to control levels without causing any treatment deaths. The improvement seen with insulin was dose independent. Five days of cachectin treatment caused a severe interstitial pneumonitis, periportal inflammation in the liver, and an increase in wet organ weight in the heart, lungs, kidney, and spleen. Concurrent insulin treatment led to near total reversal of these histopathologic changes. Cachectin treatment did not significantly change blood glucose levels from control values of 130-140 mg/dl, but insulin plus cachectin caused a significant decrease in blood glucose from 1 through 12 h after injection. Administration of high-dose insulin can near totally reverse the nutritional and histopathologic toxicity of sublethal doses of cachectin in rats.

  6. Deconfinement and the Hagedorn transition in string theory.

    PubMed

    Chaudhuri, S

    2001-03-05

    We introduce a new definition of the thermal partition function in string theory. With this new definition, the thermal partition functions of all of the string theories obey thermal duality relations with self-dual Hagedorn temperature beta(2)(H) = 4pi(2)alpha('). A beta-->beta(2)(H)/beta transformation maps the type I theory into a new string theory (type I) with thermal D p-branes, spatial hypersurfaces supporting a p-dimensional finite temperature non-Abelian Higgs-gauge theory for p< or =9. We demonstrate a continuous phase transition in the behavior of the static heavy quark-antiquark potential for small separations r(2)(*)

  7. Paradigm-shift: radiological changes in the asymptomatic iNPH-patient to be: an observational study.

    PubMed

    Engel, D C; Adib, S D; Schuhmann, M U; Brendle, C

    2018-02-09

    Many radiological signs are known for the diagnosis of idiopathic normal pressure hydrocephalus (iNPH). However, there is little information about these signs in the pre-symptomatic phase. For pathophysiological investigative purposes we conducted a descriptive image analysis study on pre-symptomatic patients. Patients that had contact with either the neurological or neurosurgical department of the university hospital Tuebingen from 2010 through 2016 with magnetic resonance images > 3 years before onset of symptoms, were included. The date of onset and severity of symptoms, date of first imaging and birth date were recorded. Evan's index (EI), width of the third ventricle (3VW), tight high convexity (THC), Sylvian fissure, extent of white matter hyperintensities and aqueductal flow were assessed in images before and around symptom onset. Ten patients were included. In all ten patients the first symptom was gait disturbance. Nine of ten pre-symptomatic images showed classic signs for iNPH. EI showed a significant increase between the pre-symptomatic and symptomatic phase. 3VW showed a trend for increase without significance. THC changed back and forth over time within some patients. In accordance with the scarce literature available, radiological changes are present at least 3 years before onset of iNPH-symptoms. EI seems to be a robust measure for pre-symptomatic radiological changes. Extrapolating the data, the development of iNPH typical changes might be an insidious process and the development of THC might be a variable and non-linear process. Further studies with larger sample sizes are necessary to put these findings into the pathophysiological perspective for the development of iNPH.

  8. Safety and effectiveness of biphasic insulin aspart 30 in people with type 2 diabetes switching from basal-bolus insulin regimens in the A1chieve study.

    PubMed

    Dieuzeide, Guillermo; Chuang, Lee-Ming; Almaghamsi, Abdulrahman; Zilov, Alexey; Chen, Jian-Wen; Lavalle-González, Fernando J

    2014-07-01

    Biphasic insulin aspart 30 allows fewer daily injections versus basal-bolus insulin regimens, which may improve adherence and treatment outcome. This sub-analysis of the observational A1chieve study assessed clinical safety and effectiveness of biphasic insulin aspart 30 in people with type 2 diabetes previously receiving basal-bolus insulin regimens. A1chieve was an international, open-label, 24-week study in people with type 2 diabetes starting/switching to biphasic insulin aspart 30, insulin detemir or insulin aspart. This sub-analysis assessed patients switching from insulin glargine- or neutral protamine Hagedorn insulin-based basal-bolus insulin regimens to biphasic insulin aspart 30. 1024 patients were included. At 24 weeks, glycated haemoglobin and fasting plasma glucose were significantly reduced from baseline in both cohorts (all p<0.001). The proportion reporting any hypoglycaemia, major hypoglycaemia or nocturnal hypoglycaemia was significantly reduced after 24 weeks (all p<0.05). No serious adverse drug reactions were reported. Both cohorts had significantly improved health-related quality of life (HRQoL; p<0.001). 24 weeks after switching from basal-bolus insulin regimens to biphasic insulin aspart 30, glycaemic control and HRQoL were significantly improved, and hypoglycaemia was significantly reduced. This suggests that people with type 2 diabetes inadequately controlled on basal-bolus insulin regimens can consider biphasic insulin aspart 30. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  9. Nucleoside Triphosphate Phosphohydrolase I (NPH I) Functions as a 5′ to 3′ Translocase in Transcription Termination of Vaccinia Early Genes*

    PubMed Central

    Hindman, Ryan; Gollnick, Paul

    2016-01-01

    Vaccinia virus early genes are transcribed immediately upon infection. Nucleoside triphosphate phosphohydrolase I (NPH I) is an essential component of the early gene transcription complex. NPH I hydrolyzes ATP to release transcripts during transcription termination. The ATPase activity of NPH I requires single-stranded (ss) DNA as a cofactor; however, the source of this cofactor within the transcription complex is not known. Based on available structures of transcription complexes it has been hypothesized that the ssDNA cofactor is obtained from the unpaired non-template strand within the transcription bubble. In vitro transcription on templates that lack portions of the non-template strand within the transcription bubble showed that the upstream portion of the transcription bubble is required for efficient NPH I-mediated transcript release. Complementarity between the template and non-template strands in this region is also required for NPH I-mediated transcript release. This observation complicates locating the source of the ssDNA cofactor within the transcription complex because removal of the non-template strand also disrupts transcription bubble reannealing. Prior studies have shown that ssRNA binds to NPH I, but it does not activate ATPase activity. Chimeric transcription templates with RNA in the non-template strand confirm that the source of the ssDNA cofactor for NPH I is the upstream portion of the non-template strand in the transcription bubble. Consistent with this conclusion we also show that isolated NPH I acts as a 5′ to 3′ translocase on single-stranded DNA. PMID:27189950

  10. Comparable Efficacy and Safety of Insulin Glulisine and Insulin Lispro When Given as Part of a Basal–Bolus Insulin Regimen in a 26-Week Trial in Pediatric Patients with Type 1 Diabetes

    PubMed Central

    Arslanian, Silva; Blatniczky, László; Peterkova, Valentina; Souhami, Elisabeth; Danne, Thomas

    2011-01-01

    Abstract Background We compared the efficacy and safety of insulin glulisine with insulin lispro as part of a basal–bolus regimen in children and adolescents with type 1 diabetes. Methods Overall, 572 children and adolescents (4–17 years old) using insulin glargine or neutral protamine Hagedorn insulin as basal insulin were enrolled in a 26-week, multicenter, open, centrally randomized, parallel-group, noninferiority study. Subjects were randomized to receive glulisine (n = 277) or lispro (n = 295) 0–15 min premeal. Results Baseline-to-endpoint hemoglobin A1c changes were similar between the two insulins: adjusted mean change (glulisine vs. lispro), 0.10% versus 0.16%; between-treatment difference (glulisine–lispro), &minsu;0.06, 95% confidence interval (−0.24; 0.12); and prespecified noninferiority margin, 0.4%. Overall, for all age groups together, the percentage of patients achieving American Diabetes Association age-specific A1c targets at endpoint was significantly higher (P = 0.039) with glulisine (38.4%) versus lispro (32.0%). From Month 4 to endpoint, both “all” and “severe” symptomatic hypoglycemia rates were similar (3.10 vs. 2.91 and 0.06 vs. 0.07 events/patient-month, respectively). Frequency and type of adverse events, serious adverse events, or hypoglycemia reported as serious adverse events were similar between both groups. Conclusions Glulisine was as effective as lispro in baseline-to-endpoint A1c change, and both treatments were similarly well tolerated. PMID:21291333

  11. Challenges and unmet needs in basal insulin therapy: lessons from the Asian experience.

    PubMed

    Chan, Wing Bun; Chen, Jung Fu; Goh, Su-Yen; Vu, Thi Thanh Huyen; Isip-Tan, Iris Thiele; Mudjanarko, Sony Wibisono; Bajpai, Shailendra; Mabunay, Maria Aileen; Bunnag, Pongamorn

    2017-01-01

    Basal insulin therapy can improve glycemic control in people with type 2 diabetes. However, timely initiation, optimal titration, and proper adherence to prescribed basal insulin regimens are necessary to achieve optimal glycemic control. Even so, glycemic control may remain suboptimal in a significant proportion of patients. Unique circumstances in Asia (eg, limited resources, management of diabetes primarily in nonspecialist settings, and patient populations that are predominantly less educated) coupled with the limitations of current basal insulin options (eg, risk of hypoglycemia and dosing time inflexibility) amplify the challenge of optimal basal insulin therapy in Asia. Significant progress has been made with long-acting insulin analogs (insulin glargine 100 units/mL and insulin detemir), which provide longer coverage and less risk of hypoglycemia over intermediate-acting insulin (Neutral Protamine Hagedorn insulin). Furthermore, recent clinical evidence suggests that newer long-acting insulin analogs, new insulin glargine 300 units/mL and insulin degludec, may address some of the unmet needs of current basal insulin options in terms of risk of hypoglycemia and dosing time inflexibility. Nevertheless, more can be done to overcome barriers to basal insulin therapy in Asia, through educating both patients and physicians, developing better patient support models, and improving accessibility to long-acting insulin analogs. In this study, we highlight the unique challenges associated with basal insulin therapy in Asia and, where possible, propose strategies to address the unmet needs by drawing on clinical experiences and perspectives in Asia.

  12. Challenges and unmet needs in basal insulin therapy: lessons from the Asian experience

    PubMed Central

    Chan, Wing Bun; Chen, Jung Fu; Goh, Su-Yen; Vu, Thi Thanh Huyen; Isip-Tan, Iris Thiele; Mudjanarko, Sony Wibisono; Bajpai, Shailendra; Mabunay, Maria Aileen; Bunnag, Pongamorn

    2017-01-01

    Basal insulin therapy can improve glycemic control in people with type 2 diabetes. However, timely initiation, optimal titration, and proper adherence to prescribed basal insulin regimens are necessary to achieve optimal glycemic control. Even so, glycemic control may remain suboptimal in a significant proportion of patients. Unique circumstances in Asia (eg, limited resources, management of diabetes primarily in nonspecialist settings, and patient populations that are predominantly less educated) coupled with the limitations of current basal insulin options (eg, risk of hypoglycemia and dosing time inflexibility) amplify the challenge of optimal basal insulin therapy in Asia. Significant progress has been made with long-acting insulin analogs (insulin glargine 100 units/mL and insulin detemir), which provide longer coverage and less risk of hypoglycemia over intermediate-acting insulin (Neutral Protamine Hagedorn insulin). Furthermore, recent clinical evidence suggests that newer long-acting insulin analogs, new insulin glargine 300 units/mL and insulin degludec, may address some of the unmet needs of current basal insulin options in terms of risk of hypoglycemia and dosing time inflexibility. Nevertheless, more can be done to overcome barriers to basal insulin therapy in Asia, through educating both patients and physicians, developing better patient support models, and improving accessibility to long-acting insulin analogs. In this study, we highlight the unique challenges associated with basal insulin therapy in Asia and, where possible, propose strategies to address the unmet needs by drawing on clinical experiences and perspectives in Asia. PMID:29276400

  13. Nocturnal Hypoglycemia: Answering the Challenge With Long-acting Insulin Analogs

    PubMed Central

    Brunton, Stephen A.

    2007-01-01

    Background Nocturnal hypoglycemia may be the most common type of hypoglycemia in individuals with diabetes using insulin and is particularly worrisome because it often goes undetected and may lead to unconsciousness and even death in severe cases. Objectives The prevalence, causes, and consequences of nocturnal hypoglycemia as well as detection and prevention strategies are reviewed, including the use of long-acting insulin analogs, which offer more physiologic and predictable time-action profiles than traditional human basal insulin. Data Sources A total of 307 publications (151 PubMed; 104 Adis; 52 BIOSIS) were reviewed. Review Methods Relevant trials were found by searching for “(detemir OR glargine) AND nocturnal AND (hypoglycemia OR hypoglycaemia) AND diabetes.” To capture trials that may not have specified “nocturnal” in the title or abstract text but still reported nocturnal hypoglycemia data, a supplemental search of PubMed using “(detemir OR glargine) AND (nocturnal OR hypoglycemia OR hypoglycaemia) AND diabetes” was undertaken. Results A review of these trials found that patients with type 1 and type 2 diabetes mellitus have a lower risk for nocturnal hypoglycemia when receiving long-acting insulin analogs (insulin detemir or insulin glargine), provided that glycemic control is comparable to that provided by traditional human basal insulin. Long-acting insulin analogs may be the best option to provide basal insulin coverage in patients who do not choose or require continuous subcutaneous insulin infusion. Conclusions Randomized clinical trials suggest that the long-acting insulin analogs are associated with a lower risk for nocturnal hypoglycemia than neutral protamine Hagedorn without sacrificing glycemic control. PMID:17955093

  14. [A study of variability in glycaemia in children and adolescents with diabetes mellitus type 1 on treatment with insulin glargine].

    PubMed

    Rodríguez Pérez, C; Lizondo Escuder, A; López García, M J; Escrivá Cholbi, L; Alpera Lacruz, R; Collado Pérez, C

    2008-11-01

    To determine the usefulness of insulin glargine (IG) to reduce hipoglycaemias and hyperglycaemic events in children and adolescents with type 1 diabetes. In a retrospective/prospective study, 29 patients with a high number of non-severe hypoglycaemias, aged 3-18, and an average HbA1c of 8+/-0.7, received IG once daily plus regular insulin or rapid analogue before meals. Inclusion criteria were: a) previous treatment with NPH insulin; b) diagnosis of type 1 diabetes for at least 1 year before starting IG, and c) >3 blood glucose controls within a day. Incidence of severe and non-severe hypoglycaemic events, hyperglycaemic events, HbA1c values, body mass index, daily insulin dose before and after the institution of glargine therapy, were collected. Additionally, family were asked to complete a diabetes quality of life survey. 1,294+/-411 glycaemias/subject were obtained. Hypoglycaemic episodes were not reduced (5.9% vs 6.2%) and hyperglycaemic events remained unchanged. Fasting blood glucose levels decreased from 195.3+/-36.6 to 162.8+/-25.8 in all patients (p<0.05) and a tendency a decrease in nocturnal hypoglycaemias was observed. The average HbA1c and total daily insulin doses also remained unchanged (0.8+/-0.2 UI/Kg/day). Using IG achieves a glycaemic control similar to NPH, with a tendency to decrease the frequency of nocturnal hypoglycaemias and an improvement in fasting glycaemia values.

  15. Chemical stability of insulin. 5. Isolation, characterization and identification of insulin transformation products.

    PubMed

    Brange, J; Hallund, O; Sørensen, E

    1992-01-01

    During storage of insulin formulated for therapy, minor amounts of various degradation and covalent di- and polymerization products are formed [1-3]. The main chemical transformation products were isolated from aged preparations and characterized chemically and biologically. The most prominent products formed in neutral medium were identified as a mixture of deamidation products hydrolyzed at residue B3, namely isoAsp B3 and Asp B3 derivatives. A hydrolysis product formed only in crystals of insulin zinc suspensions containing a surplus of zinc ions in the supernatant was identified as an A8-A9 cleavage product. The small amounts of covalent insulin dimers (CID) formed in all formulations were shown to be a heterogenous mixture of 5-6 different CIDs with a composition dependent on the pharmaceutical formulation. The chemical characteristics of the CIDs indicate that they are formed through a transamidation reaction mainly between the B-chain N-terminal and one of the four amide side-chains of the A chain. GlnA15, AsnA18 and, in particular, AsnA21 participate in the formation of such isopeptide links between two insulin molecules. The covalent insulin-protamine products (CIPP) formed during storage of NPH preparations presumably originate from a similar reaction between the protamine N-terminal with an amide in insulin. Covalent polymerization products, mainly formed during storage of amorphously suspended insulin at higher temperature, were shown to be due to disulfide interactions. Biological in vivo potencies relative to native insulin were less than 2% for the split-(A8-A9)-product and for the covalent disulfide exchange polymers, 4% for the CIPP, approximately 15% for the CIDs, whereas the B3 derivatives exhibited full potency. Rabbit immunization experiments revealed that none of the insulin transformation products had significantly increased immunogenicity in rabbits.

  16. Variability of insulin degludec and glargine U300: A matter of methodology or just marketing?

    PubMed

    Heise, Tim; Heckermann, Sascha; DeVries, J Hans

    2018-05-17

    The variability in the time-action profiles of insulin preparations, in particular basal insulins, has been a matter of debate ever since the publication of a glucose clamp study comparing the day-to-day variability of three different basal insulins (glargine U100, detemir and NPH) in 2004 [1]. While critics did not contest the findings of a lower variability of some basal insulins in this and a later [2] glucose clamp study, they did question the relevance of a lower pharmacokinetic (PK) and pharmacodynamic (PD) variability for clinical endpoints [3, 4]. Nevertheless, this has not stopped marketeers to widely use the results of glucose clamp studies promoting insulins for higher predictability or a suggested flat PK/PD-profile fully covering 24 hours [5]. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Low molecular weight protamine (LMWP): a nontoxic protamine substitute and an effective cell-penetrating peptide.

    PubMed

    He, Huining; Ye, Junxiao; Liu, Ergang; Liang, Qiuling; Liu, Quan; Yang, Victor C

    2014-11-10

    Low molecular weight protamine (LMWP) is a peptide fragment produced in our laboratory from enzymatic digestion of native protamine. More than 30 papers studying the properties and applications of LMWP have been published by our group in various journals since its initial discovery in 1999. Results have shown that LMWP could completely neutralize the anticoagulant functions of both heparin and low molecular weight heparin (LMWH), with reduced antigenicity and cross-reactivity toward the mice-derived anti-protamine antibodies. Aside from its potential as a heparin/LMWH antagonist, LMWP also shows the ability to retard insulin adsorption by the formation of an insoluble complex, making it a less toxic long-lasting insulin product than the conventional neutral protamine Hagedorn (NPH) insulin for diabetic control. Importantly, LMWP (Sequence: VSRRRRRRGGRRRR), with 10 arginine residues in its structure, could function as a cell-penetrating peptide (CPP), also termed protein transduction domain (PTD), to achieve effective intracellular protein or gene delivery in clinical practice. In this paper, we present a thorough review of our work related to LMWP, with the aim of providing readers an insight into its potential to be a clinical protamine substitute as well as a non-toxic cell penetrating peptide applicable to achieve intracellular protein and gene delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring

    PubMed Central

    Gaglani, Shiv; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-01-01

    Objectives: This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. Methods: This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Results: Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. Conclusions: These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested. PMID:26719825

  19. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring.

    PubMed

    Gaglani, Shiv; Moore, Jessica; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-11-17

    This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested.

  20. Comparing effects of insulin analogues and human insulin on nocturnal glycaemia in hypoglycaemia-prone people with Type 1 diabetes.

    PubMed

    Kristensen, P L; Tarnow, L; Bay, C; Nørgaard, K; Jensen, T; Parving, H-H; Perrild, H; Beck-Nielsen, H; Christiansen, J S; Thorsteinsson, B; Pedersen-Bjergaard, U

    2017-05-01

    To assess the difference between analogue and human insulin with regard to nocturnal glucose profiles and risk of hypoglycaemia in people with recurrent severe hypoglycaemia. A total of 72 people [46 men, mean ± sd age 54 ± 12 years, mean ± sd HbA 1c 65 ± 12 mmol/mol (8.1 ± 1.1%), mean ± sd duration of diabetes 30 ± 14 years], who participated in a 2-year randomized, crossover trial of basal-bolus therapy with insulin detemir/insulin aspart or human NPH insulin/human regular insulin (the HypoAna trial) were studied for 2 nights during each treatment. Venous blood was drawn hourly during sleep. Primary endpoints were nocturnal glucose profiles and occurrence of hypoglycaemia (blood glucose ≤ 3.9 mmol/l). During insulin analogue treatment, the mean nocturnal plasma glucose level was significantly higher than during treatment with human insulin (10.6 vs 8.1 mmol/l). The fasting plasma glucose level was similar between the treatments. Nocturnal hypoglycaemia was registered during 41/101 nights (41%) in the human insulin arm and 19/117 nights (16%) in the insulin analogue arm, corresponding to a hazard ratio of 0.26 (95% CI 0.14 to 0.45; P < 0.0001) with insulin analogue. Treatment with insulin analogue reduces the occurrence of nocturnal hypoglycaemia assessed by nocturnal glucose profiles in people with Type 1 diabetes prone to severe hypoglycaemia. Nocturnal glucose profiles provide a more comprehensive assessment of clinical benefit of insulin regimens as compared to conventional recording of hypoglycaemia. © 2017 Diabetes UK.

  1. An observational study comparing continuous subcutaneous insulin infusion (CSII) and insulin glargine in children with type 1 diabetes.

    PubMed

    Schiaffini, Riccardo; Ciampalini, Paolo; Spera, Sabrina; Cappa, Marco; Crinó, Antonino

    2005-01-01

    The advantages of continuous subcutaneous insulin infusion (CSII) or insulin glargine have been demonstrated both in adult and paediatric diabetic patients; however, as no data comparing these two approaches during childhood are available, we have examined the efficacy of these two intensive approaches. We retrospectively evaluated data from 36 diabetic children, who had changed their previous insulin regimen [with isophane insulin (NPH) at bedtime] because of HbA1c levels >8.0%. Twenty patients underwent CSII, while the other 16 (significantly younger for age) started insulin glargine at bedtime. At 6 and 12 months, CSII-treated patients showed a significant reduction in HbA1c values from 8.5 +/- 1.8 to 7.4 +/- 1.1% and to 7.6 +/- 1.2%, respectively. The insulin requirement significantly decreased from 0.93 +/- 0.2 IU/kg to 0.73 +/- 0.2 IU/kg of body weight and to 0.74 +/- 0.15 IU/kg of body weight, respectively, while no significant differences were observed for BMI SDS, fructosamine and severe hypoglycaemic events. The patients treated with glargine showed a small decline in HbA1c values from 8.9 +/- 1.7 to 8.3 +/- 0.9% (not significant) in the first 6 months of treatment and to 8.2 +/- 0.9% after 12 months. The basal insulin supplementation can be supplied effectively in children with type 1 diabetes by either CSII or insulin glargine. As previously reported for adults, it is confirmed that CSII is the best current intensive approach aimed to the improvement of glycaemic control.

  2. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism.

    PubMed

    Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing

    2012-02-01

    Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone.

  3. Diabetes mellitus remission in a cat with pituitary-dependent hyperadrenocorticism after trilostane treatment.

    PubMed

    Muschner, Adriana Cunha; Varela, Fernanda Venzon; Hazuchova, Katarina; Niessen, Stijn Jm; Pöppl, Álan Gomes

    2018-01-01

    An 8-year-old male neutered Persian cat was presented with polyuria, polydipsia, polyphagia and muscle weakness associated with a 7 month history of diabetes mellitus (DM). The cat had initially been treated with neutral protamine Hagedorn (NPH) insulin 2 U q12h, followed by porcine lente insulin 2 U q12h and, most recently, 3 U glargine insulin q12h, without improvement of clinical signs. The cat also suffered from concurrent symmetrical bilateral alopecia of thorax and forelimbs, abdominal distension and lethargy. Hyperadrenocorticism (HAC), specifically pituitary-dependent HAC, was suspected and confirmed through abdominal ultrasonography demonstrating bilateral adrenal enlargement, and a low-dose dexamethasone suppression test using 0.1 mg/kg dexamethasone intravenously. Trilostane treatment (initially 10 mg/cat PO q24h then increased to 10 mg/cat PO q12h) was started and insulin sensitivity gradually improved, ultimately leading to diabetic remission after an increased in trilostane dose to 13mg/cat PO q12h, 14 months after the DM diagnosis and 7 months after the initiation of trilostane therapy. DM in cats with HAC is a difficult combination of diseases to treat. To our knowledge this is the first reported case of diabetic remission in a feline patient with HAC as a result of treatment with trilostane. Further work should focus on whether fine-tuning of trilostane-treatment protocols in cats with concurrent DM and HAC could lead to a higher proportion of diabetic remissions in this patient group.

  4. Diabetes mellitus remission in a cat with pituitary-dependent hyperadrenocorticism after trilostane treatment

    PubMed Central

    Muschner, Adriana Cunha; Varela, Fernanda Venzon; Hazuchova, Katarina; Niessen, Stijn JM; Pöppl, Álan Gomes

    2018-01-01

    Case summary An 8-year-old male neutered Persian cat was presented with polyuria, polydipsia, polyphagia and muscle weakness associated with a 7 month history of diabetes mellitus (DM). The cat had initially been treated with neutral protamine Hagedorn (NPH) insulin 2 U q12h, followed by porcine lente insulin 2 U q12h and, most recently, 3 U glargine insulin q12h, without improvement of clinical signs. The cat also suffered from concurrent symmetrical bilateral alopecia of thorax and forelimbs, abdominal distension and lethargy. Hyperadrenocorticism (HAC), specifically pituitary-dependent HAC, was suspected and confirmed through abdominal ultrasonography demonstrating bilateral adrenal enlargement, and a low-dose dexamethasone suppression test using 0.1 mg/kg dexamethasone intravenously. Trilostane treatment (initially 10 mg/cat PO q24h then increased to 10 mg/cat PO q12h) was started and insulin sensitivity gradually improved, ultimately leading to diabetic remission after an increased in trilostane dose to 13mg/cat PO q12h, 14 months after the DM diagnosis and 7 months after the initiation of trilostane therapy. Relevance and novel information DM in cats with HAC is a difficult combination of diseases to treat. To our knowledge this is the first reported case of diabetic remission in a feline patient with HAC as a result of treatment with trilostane. Further work should focus on whether fine-tuning of trilostane-treatment protocols in cats with concurrent DM and HAC could lead to a higher proportion of diabetic remissions in this patient group. PMID:29707227

  5. Multifactorial intervention for diabetes control among older users of insulin

    PubMed Central

    Machry, Rafael Vaz; Pedroso, Henrique Umpierre; Vasconcellos, Luthiele Silva; Nunes, Rafaela Ramos; Evaldt, Cibelle de Abreu; Yunes, Eduardo Bardou; Rodrigues, Ticiana da Costa

    2018-01-01

    ABSTRACT OBJECTIVE: To evaluate if the closer follow-up with the supply of insulin pens and the measurement of capillary blood glucose improve the management of older patients with type 2 diabetes without adequate glycemic control despite extensive therapy. METHODS: This is a prospective, non-randomized, quasi-experimental study. We have included 45 patients over 60 years old, from both sexes, with glycated hemoglobin (HbA1c) > 8.5% using oral hypoglycemic agents and insulin. The intervention consisted of monthly medical visits, with the provision of insulin pens and strips for blood glucose measurement. All patients received insulin pen, refills of Neutral Protamine Hagedorn and regular insulin, needles for the pen, blood glucose meter, and capillary blood glucose tests (three tests/day). Treatment was adjusted with the same endocrinologist monthly for six months. Glycated hemoglobin was measured at baseline and 12 and 24 weeks after intervention. RESULTS: Glycated hemoglobin at baseline was 10.34% (SE = 0.22%) and 8.54% (SE = 0.24%, p < 0.001) and 8.09% (SE = 0.21%, p < 0.001) at 12 and 24 weeks after intervention, respectively, with a significant reduction from baseline. CONCLUSIONS: More frequent medical visits, with treatment inputs including the use of insulin pens and self-monitoring, have improved glycemic control (reduction of 2.25% in HbA1C, on average, at 24 weeks of follow-up). Our data support a change in the management and medical behavior of older patients with chronically decompensated diabetes. PMID:29791677

  6. The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in Arabidopsis Root Phototropism[C][W

    PubMed Central

    Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing

    2012-01-01

    Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone. PMID:22374399

  7. MANAGEMENT OF DIABETES DURING AIR TRAVEL: A SYSTEMATIC LITERATURE REVIEW OF CURRENT RECOMMENDATIONS AND THEIR SUPPORTING EVIDENCE.

    PubMed

    Pavela, James; Suresh, Rahul; Blue, Rebecca S; Mathers, Charles H; Belalcazar, L Maria

    2018-02-01

    oxidase GLP1 = glucagon-like peptide-1 NPH = neutral protamine Hagedorn SGLT2 = sodium-glucose cotransporter-2.

  8. Incorporating a Generic Model of Subcutaneous Insulin Absorption into the AIDA v4 Diabetes Simulator 3. Early Plasma Insulin Determinations

    PubMed Central

    Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor

    2009-01-01

    Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as

  9. The effects of increasing doses of 2 preparations of long-acting insulin on short-term plasma profiles of glucose and insulin in lactating dairy cows.

    PubMed

    Winkelman, L A; Overton, T R

    2012-12-01

    Two experiments were conducted to investigate effects of administering increasing doses of 2 different preparations of long-acting insulin on the 24-h profiles of plasma glucose and insulin concentrations in mid lactation dairy cows. The 2 separately analyzed experiments investigated the effects administering either Humulin N (H), a neutral protamine Hagedorn insulin, or insulin glargine (Lantus, L), an insulin analog, at doses of 0 (control), 0.1, 0.2, and 0.4 IU/kg of body weight in a randomized complete block design. Sixteen cows (237±11 d in milk for H; 213±10 d in milk for L; mean ± SD) were used for each insulin preparation, resulting in n=4 for each dose within insulin preparation. Cows were fitted with a single jugular catheter on the day before the study. On the day of the study, cows were given treatments by subcutaneous injection of either sterile water or the designated insulin type and dose. Blood samples were taken hourly from the jugular catheter. Subcutaneous injection of both H and L resulted in linear decreases in plasma glucose concentrations, increased area under the curve, and decreased nadir for plasma glucose following administration of the insulin preparations. Plasma insulin concentration linearly increased with increasing dose of H. Though elevated concentrations of insulin were measurable in cows treated with H, they were not measurable in cows treated with L. Attempts to measure overall insulin concentrations and metabolites of L by a commercially available ELISA and a commercially available RIA kit were not successful and did not retrieve values that we felt truly represented the amount of insulin activity exhibited during this treatment. Both long-acting insulin preparations elicited insulin-like activity in lactating dairy cows, as evidenced by reduced plasma glucose concentrations. Given these results, the potential exists to use both H and L to study the effects of insulin in mid lactation dairy cows without the confounding

  10. Regge trajectories and Hagedorn behavior: Hadronic realizations of dynamical dark matter

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks

    2017-11-01

    Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. In this talk, we study the properties of a hitherto-unexplored class of DDM ensembles in which the ensemble constituents are the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector. Such ensembles exhibit masses lying along Regge trajectories and Hagedorn-like densities of states that grow exponentially with mass. We investigate the applicable constraints on such dark-"hadronic" DDM ensembles and find that these constraints permit a broad range of mass and confinement scales for these ensembles. We also find that the distribution of the total present-day abundance across the ensemble is highly correlated with the values of these scales. This talk reports on research originally presented in Ref. [1].

  11. Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3).

    PubMed

    Roberts, Diana; Pedmale, Ullas V; Morrow, Johanna; Sachdev, Shrikesh; Lechner, Esther; Tang, Xiaobo; Zheng, Ning; Hannink, Mark; Genschik, Pascal; Liscum, Emmanuel

    2011-10-01

    Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3(NPH3). Under low-intensity BL, CRL3(NPH3) mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3(NPH3), with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters.

  12. Newer agents for blood glucose control in type 2 diabetes: systematic review and economic evaluation.

    PubMed

    Waugh, N; Cummins, E; Royle, P; Clar, C; Marien, M; Richter, B; Philip, S

    2010-07-01

    . The gliptins were effective in improving glycaemic control, reducing HbA1c level by about 0.8%. Glargine and detemir were equivalent to Neutral Protamine Hagedorn (NPH) (and to each other) in terms of glycaemic control but had modest advantages in terms of hypoglycaemia, especially nocturnal. Detemir, used only once daily, appeared to cause slightly less weight gain than glargine. The glitazones appeared to have similar effectiveness in controlling hyperglycaemia. Both can cause heart failure and fractures, but rosiglitazone appears to slightly increase the risk of cardiovascular events whereas pioglitazone reduces it. Eight trials examined the benefits of adding pioglitazone to an insulin regimen; in our meta-analysis, the mean reduction in HbA1c level was 0.54% [95% confidence interval (CI) -0.70 to -0.38] and hypoglycaemia was marginally more frequent in the pioglitazone arms [relative risk (RR) 1.27, 95% CI 0.99 to 1.63]. In most studies, those on pioglitazone gained more weight than those who were not. In terms of annual drug acquisition costs among the non-insulin regimes for a representative patient with a body mass index of around 30 kg/m2, the gliptins were the cheapest of the new drugs, with costs of between 386 pounds and 460 pounds. The glitazone costs were similar, with total annual costs for pioglitazone and for rosiglitazone of around 437 pounds and 482 pounds, respectively. Exenatide was more expensive, with an annual cost of around 830 pounds. Regimens containing insulin fell between the gliptins and exenatide in terms of their direct costs, with a NPH-based regimen having an annual cost of around 468 pounds for the representative patient, whereas the glargine and detemir regimens were more expensive, at around 634 pounds and 716 pounds, respectively. Comparisons of sitagliptin and rosiglitazone, and of vidagliptin and pioglitazone slowed clinical equivalence in terms of quality-adjusted life-years (QALYs), but the gliptins were marginally less costly

  13. Modulation of Phototropic Responsiveness in Arabidopsis through Ubiquitination of Phototropin 1 by the CUL3-Ring E3 Ubiquitin Ligase CRL3NPH3[W

    PubMed Central

    Roberts, Diana; Pedmale, Ullas V.; Morrow, Johanna; Sachdev, Shrikesh; Lechner, Esther; Tang, Xiaobo; Zheng, Ning; Hannink, Mark; Genschik, Pascal; Liscum, Emmanuel

    2011-01-01

    Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3NPH3. Under low-intensity BL, CRL3NPH3 mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3NPH3, with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters. PMID:21990941

  14. Incorporating a Generic Model of Subcutaneous Insulin Absorption into the AIDA v4 Diabetes Simulator: 1. A Prospective Collaborative Development Plan

    PubMed Central

    Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor

    2007-01-01

    Introduction AIDA v4 is an interactive educational diabetes simulator that has been made available, for over a decade, without charge via the Internet. The software is currently freely accessible at http://www.2aida.org. This report sets out a collaborative development plan to enhance the program with a new model of subcutaneous insulin absorption, which permits the simulation of rapidly acting and very long-acting insulin analogues, as well as insulin injection doses larger than 40 units. Methods A novel, generic, physiological subcutaneous insulin absorption model is overviewed and a methodology is proposed by which this can be substituted in place of the previously adopted insulin absorption model utilized within AIDA v4.3a. Apart from this substitution it is proposed to retain the existing model of the glucoregulatory system currently used in AIDA v4.3a. Results Initial simulation results based on bench testing of this approach using MATLAB are presented for the exogenous insulin flow profile (Iex) following subcutaneous injections of a rapidly acting insulin analogue, a short-acting (regular) insulin preparation, intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue. Discussion It is proposed to implement this collaborative development plan—first by bench testing the approach in MATLAB and then by integrating the generic subcutaneous insulin absorption Iex model into the AIDA simulator in Pascal. The aim is to provide enhanced functionality and educational simulations of regimens utilizing novel insulin analogues, as well as injections larger than 40 units of insulin. PMID:19885100

  15. Insulin and oral agents for managing cystic fibrosis-related diabetes.

    PubMed

    Onady, Gary M; Stolfi, Adrienne

    2016-04-18

    The Cystic Fibrosis Foundation recommends both short-term and long-acting insulin therapy when cystic fibrosis-related diabetes has been diagnosed. Diagnosis is based on: an elevated fasting blood glucose level greater than 6.94 mmol/liter (125 mg/deciliter); or oral glucose tolerance tests greater than 11.11 mmol/liter (200 mg/deciliter) at two hours; or symptomatic diabetes for random glucose levels greater than 11.11 mmol/liter (200 mg/deciliter); or glycated hemoglobin levels of at least 6.5%. To establish the effectiveness of insulin and oral agents for managing diabetes in people with cystic fibrosis in relation to blood sugar levels, lung function and weight management. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also handsearched abstracts from pulmonary symposia and the North American Cystic Fibrosis Conferences.Date of the most recent search of the Group's Cystic Fibrosis Trials Register: 18 February 2016. Randomized controlled trials comparing all methods of diabetes therapy in people with diagnosed cystic fibrosis-related diabetes. Two authors independently extracted data and assessed the risk of bias in the included studies. The searches identified 22 trials (34 references). Four trials (200 participants) are included: one short-term single-center trial (n = 7) comparing insulin with oral repaglinide and no medication in people with cystic fibrosis-related diabetes and normal fasting glucose; one long-term multicenter trial (n = 100, 74 of whom had cystic fibrosis-related diabetes) comparing insulin with oral repaglinide and placebo; one long-term multicenter trial (n = 73) comparing insulin with oral repaglinide; and one 12-week single-center trial (n = 20) comparing the long-acting insulin glargine to short-term neutral protamine Hagedorn

  16. RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants.

    PubMed

    Suetsugu, Noriyuki; Takemiya, Atsushi; Kong, Sam-Geun; Higa, Takeshi; Komatsu, Aino; Shimazaki, Ken-Ichiro; Kohchi, Takayuki; Wada, Masamitsu

    2016-09-13

    In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.

  17. Insulin detemir attenuates food intake, body weight gain and fat mass gain in diet-induced obese Sprague-Dawley rats.

    PubMed

    Rojas, J M; Printz, R L; Niswender, K D

    2011-07-04

    Initiation and intensification of insulin therapy commonly causes weight gain, a barrier to therapy. A contrasting body of evidence indicates that insulin functions as an adiposity negative feedback signal and reduces food intake, weight gain and adiposity via action in the central nervous system. Basal insulin analogs, detemir (Det) and glargine (Glar), have been associated with less hypoglycemia compared with neutral protamine hagedorn insulin, and Det with less weight gain, especially in patients with higher body mass index (BMI). We sought to determine whether insulin therapy per se causes body weight and fat mass gain when delivered via a clinically relevant subcutaneous (SC) route in the absence of hypoglycemia and glycosuria in non-diabetic lean and diet-induced obese rats. Rats were exposed to either a low-fat diet (LFD; 13.5% fat) or high-fat diet (HFD; 60% fat), and received Det (0.5 U kg(-1)), Glar (0.2 U kg(-1)) or vehicle (Veh) SC once daily for 4 weeks. These dosages of insulin were equipotent in rats with respect to blood-glucose concentration and did not induce hypoglycemia. As predicted by current models of energy homeostasis, neither insulin Det nor Glar therapy affected food intake and weight gain in LFD rats. Det treatment significantly attenuated food intake, body weight gain and fat mass gain relative to the Glar and Veh in high-fat fed animals, mirroring observations in humans. That neither insulin group gained excess weight, suggests weight gain with SC basal insulin therapy may not be inevitable. Our data further suggest that Det possesses a unique property to attenuate the development of obesity associated with a HFD.

  18. Studies of a series of [Ni(P(R)2N(Ph)2)2(CH3CN)]2+ complexes as electrocatalysts for H2 production: substituent variation at the phosphorus atom of the P2N2 ligand.

    PubMed

    Kilgore, Uriah J; Stewart, Michael P; Helm, Monte L; Dougherty, William G; Kassel, W Scott; DuBois, Mary Rakowski; DuBois, Daniel L; Bullock, R Morris

    2011-11-07

    A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate. © 2011 American Chemical Society

  19. The potential for improvement of outcomes by personalized insulin treatment of type 1 diabetes as assessed by analysis of single-patient data from a randomized controlled cross-over insulin trial.

    PubMed

    Pedersen-Bjergaard, Ulrik; Kristensen, Peter L; Beck-Nielsen, Henning; Nørgaard, Kirsten; Perrild, Hans; Christiansen, Jens S; Jensen, Tonny; Parving, Hans-Henrik; Thorsteinsson, Birger; Tarnow, Lise

    2017-01-01

    The evidence for optimal insulin treatment in type 1 diabetes is mainly based on randomised controlled trials applying a parallel-group design. Such trials yield robust general results but crucial individual treatment effects cannot be extracted. We aimed to assess the potential for further improvement of outcomes by personalized insulin therapy by analyzing data from a cross-over trial at individual level. Post hoc analysis of data from a two-year multicentre, prospective, randomised, open, blinded endpoint (PROBE) trial (the HypoAna trial). In a cross-over design 114 patients with type 1 diabetes and recurrent severe hypoglycemia were treated with basal-bolus therapy based on analog (detemir/aspart) or human (NPH/regular) insulin aiming at maintenance of baseline HbA1c levels. For each patient a superior outcome was defined as fewer events of severe hypoglycemia defined by need for third party treatment assistance or a more than 0.4% (4.4mmol/mol) lower HbA1c. Only one quarter had comparable outcome of the two treatments in terms of rate of severe hypoglycemia or HbA1c. Twice as many patients had superior outcome of analog-based as compared to human insulin-based insulin treatment. The rate of severe hypoglycemia with the superior treatment was lower compared to the rates obtained with analog insulin and with human insulin (0.67, 1.09, and 1.57 episode per patient-year, respectively (p<0.0001)). Personalized insulin treatment of type 1 diabetes based on single-patient evidence may improve outcomes significantly compared to a general treatment approach. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Insulin degludec results in lower rates of nocturnal hypoglycaemia and fasting plasma glucose vs. insulin glargine: A meta-analysis of seven clinical trials.

    PubMed

    Russell-Jones, D; Gall, M-A; Niemeyer, M; Diamant, M; Del Prato, S

    2015-10-01

    Basal insulin analogues have a reduced risk of hypoglycaemia compared with NPH insulin, but hypoglycaemia still remains a major impediment to achieving recommended fasting plasma glucose (FPG) targets in patients with diabetes. Insulin degludec (IDeg) is a new basal insulin that forms soluble multihexamers after subcutaneous injection resulting in an ultra-long duration of action and stable glucose-lowering effect. The aim of this analysis was to compare the effect of IDeg on FPG and nocturnal confirmed hypoglycaemia as compared to insulin glargine (IGlar). Data were included from seven phase 3a, randomised, open-label, treat-to-target clinical trials in which once-daily IDeg was compared with once-daily IGlar. Two trials included a total of 957 patients with type 1 diabetes (T1D) and five trials included a total of 3360 patients with type 2 diabetes (T2D); all trials were 26 or 52 weeks in duration. Confirmed hypoglycaemia was defined as plasma glucose <3.1 mmol/L or severe episodes requiring assistance, and nocturnal hypoglycaemia occurred between 00:01 and 05:59. In all trials, the mean end-of-trial FPG was lower for IDeg than IGlar, reaching statistical significance in three trials. Similarly, IDeg was associated with a lower rate of nocturnal confirmed hypoglycaemia vs. IGlar, which was statistically significant in three trials, regardless of type of diabetes or background therapy. This analysis shows that the lower rate of nocturnal confirmed hypoglycaemia seen with IDeg relative to IGlar is accompanied by a reduced mean FPG, in particular in patients with T2D. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A prospective randomised cross-over study of the effect of insulin analogues and human insulin on the frequency of severe hypoglycaemia in patients with type 1 diabetes and recurrent hypoglycaemia (the HypoAna trial): study rationale and design

    PubMed Central

    2012-01-01

    Background Severe hypoglycaemia still represents a significant problem in insulin-treated diabetes. Most patients do not experience severe hypoglycaemia often. However, 20% of patients with type 1 diabetes experience recurrent severe hypoglycaemia corresponding to at least two episodes per year. The effect of insulin analogues on glycaemic control has been documented in large trials, while their effect on the frequency of severe hypoglycaemia is less clear, especially in patients with recurrent severe hypoglycaemia. The HypoAna Trial is designed to investigate whether short-acting and long-acting insulin analogues in comparison with human insulin are superior in reducing the occurrence of severe hypoglycaemic episodes in patients with recurrent hypoglycaemia. This paper reports the study design of the HypoAna Trial. Methods/design The study is a Danish two-year investigator-initiated, prospective, randomised, open, blinded endpoint (PROBE), multicentre, cross-over trial investigating the effect of insulin analogues versus human insulin on the frequency of severe hypoglycaemia in subjects with type 1 diabetes. Patients are randomised to treatment with basal-bolus therapy with insulin detemir / insulin aspart or human NPH insulin / human regular insulin in random order. The major inclusion criterion is history of two or more episodes of severe hypoglycaemia in the preceding year. Discussion In contrast to almost all other studies in this field the HypoAna Trial includes only patients with major problems with hypoglycaemia. The HypoAna Trial will elucidate whether basal-bolus regimen with short-acting and long-acting insulin analogues in comparison with human insulin are superior in reducing occurrence of severe hypoglycaemic episodes in hypoglycaemia prone patients with type 1 diabetes. http://www.clinicaltrials.gov: NCT00346996. PMID:22727048

  2. Improvement of glycaemic control and elevation of C-peptide following a diet free of dairy products in an insulin-treated, patient with type 2 diabetes with ulcerative colitis.

    PubMed

    Tandeter, Howard

    2009-01-01

    An insulin-treated patient with type 2 diabetes mellitus started a diet free of dairy products. Unexpectedly, she developed episodes of hypoglycaemia, without any change in her usual medication (insulin NPH at bedtime and Metformin). Laboratory tests showed an improvement of endogenous insulin secretion as demonstrated by the induction of hypoglycaemia and the elevation to normalisation of C-peptide levels. The patient was rechallenged with dairy products, leading to the lowering of the C-peptide levels back to abnormal levels, and an increase in HBA1C levels. The findings in our patient contrast with the insulinotropic effect of milk in healthy subjects described in the literature. The two main "milk debates" on the relation between milk (or its components) and diabetes are presented. Further observations will be needed to clarify the question of whether a diet free of dairy products can improve glycaemic control in other insulin-treated patients with type 2 diabetes.

  3. Effects of styrene unit on molecular conformation and spectral properties of CNsbnd PhCHdbnd NPhCHdbnd CHPhsbnd CN

    NASA Astrophysics Data System (ADS)

    Fang, Zhengjun; Wu, Feng; Jiao, Yingchun; Wang, Nanfang; Au, Chaktong; Cao, Chenzhong; Yi, Bing

    2018-05-01

    Compound CN-PhCH=NPhCH=CHPh-CN with both stilbene and benzylidene aniline units was synthesized, and studied from the viewpoint of molecular conformation and spectroscopic property by a combined use of experimental and computational methods. The maximum UV absorption wavelength (λmax) of the compound in ethanol, acetonitrile, chloroform and cyclohexane solvents were measured, and the 13C NMR chemical shift value δC(Cdbnd N) in chloroform-d was determined. The crystal structure of the compound was determined by X-ray diffraction. The frontier molecular orbital was calculated by density functional theory method. The results show that the UV absorption spectrum of the titled compound is similar to those of Schiff bases, while there is a larger red shift of λmax comparing to that of CN-PhCH=NPh-CN. Moreover, the molecular configuration of the titled compound relative to Cdbnd N is anti-form, having a more obvious twisted structure. The spectral and structural behaviors are further supported by the results of frontier molecular orbital analyses, NBO, electrostatic potentials and TD-DFT calculations. The study provides deeper insights into the molecular conformation of Schiff bases.

  4. [Renal handling of beta2 microglobulin. Its significance in carriers of adolescent nephronophthisis (NPH3)].

    PubMed

    Fernández, Carmen; Araque, Carolina; Méndez, Jorge; Angulo, Luisa; Fargier, Bernardo

    2007-06-01

    The adolescent nephronophthisis (NPH3) is a variant of the nephronophthisis. In Venezuela, one to three patients have been registered each year, all of them belonging to the same family tree. The objective of this study was to evaluate the function of the proximal convoluted tubule in NPHP3 carriers; using the beta2M as biological marker. Eight carriers, 7 heterozygotes and 1 homozygote, with normal renal function were compared with a 10 healthy subjects (control group). Serum beta2 microglobulin (beta2M), urinary beta2M, the quotient urinary beta2M/urinary creatinine and the beta2M fractional excretion were determinated. The filtered beta2M and the percentage of reabsortion were calculated. We observed an increase in the plasmatic concentration of beta2M but not related with a decrease of the glomerular filtration. The urinary beta2M, the beta2M/urinary creatinine relation and the fractional excretion of beta2M were normal. The filtered load of beta2M was elevated without increase in the excretion or percentage of reabsortion. We conclude that in our group of NPH3 carriers, functional changes in the proximal convoluted tubule, when measured by urinary excretion of beta2M, were absent. This finding suggests the existence of other mechanism of uptake or degradation of the substance in the proximal convoluted tubule, which have yet to be elucidated.

  5. Impact of race/ethnicity on the efficacy and safety of commonly used insulin regimens: a post hoc analysis of clinical trials in type 2 diabetes mellitus.

    PubMed

    Davidson, Jaime A; Lacaya, Lyndon B; Jiang, Honghua; Heilmann, Cory R; Scism-Bacon, Jamie L; Gates, Jeffrey R; Jackson, Jeffrey A

    2010-01-01

    To explore the impact of race/ethnicity on the efficacy and safety of commonly used insulin regimens in patients with type 2 diabetes mellitus. In this post hoc analysis, pooled data from 11 multinational clinical trials involving 1455 patients with type 2 diabetes were used to compare specific insulin treatments in Latino/Hispanic, Asian, African-descent, and Caucasian patients. Insulin treatments included once daily insulin glargine or neutral protamine Hagedorn (BASAL), insulin lispro mix 75/25 twice daily (LMBID), or insulin lispro mix 50/50 three times daily (LMTID). Race/ethnicity was associated with significant outcome differences for each of the insulin regimens. BASAL therapy was associated with greater improvement in several measures of glycemic control among Latino/Hispanic patients compared with Caucasian patients (lower end point hemoglobin A1c, greater reduction in hemoglobin A1c from baseline, and a larger proportion of patients achieving hemoglobin A1c level <7%). In contrast, LMBID therapy was associated with higher end point hemoglobin A1c and a smaller decrease in hemoglobin A1c from baseline in Latino/Hispanic and Asian patients than in Caucasian patients. Furthermore, fewer Asian patients attained a hemoglobin A1c level <7% than did Caucasians patients. For LMTID therapy, hemoglobin A1c outcomes were comparable across patient groups. Fasting blood glucose and glycemic excursions varied among racial/ethnic groups for the 3 insulin regimens. Weight change was comparable among racial/ethnic groups in each insulin regimen. During treatment with LMTID, Asian patients experienced higher incidence and rate of severe hypoglycemia than Caucasian patients. Latino/Hispanic, Asian, and African-descent patients with type 2 diabetes show different metabolic responses to insulin therapy, dependent in part on insulin type and regimen intensity.

  6. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin.

    PubMed

    Haga, Ken; Takano, Makoto; Neumann, Ralf; Iino, Moritoshi

    2005-01-01

    We isolated a mutant, named coleoptile phototropism1 (cpt1), from gamma-ray-mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution.

  7. Basal Insulin Regimens for Adults with Type 1 Diabetes Mellitus: A Cost-Utility Analysis.

    PubMed

    Dawoud, Dalia; Fenu, Elisabetta; Higgins, Bernard; Wonderling, David; Amiel, Stephanie A

    2017-12-01

    To assess the cost-effectiveness of basal insulin regimens for adults with type 1 diabetes mellitus in England. A cost-utility analysis was conducted in accordance with the National Institute for Health and Care Excellence reference case. The UK National Health Service and personal and social services perspective was used and a 3.5% discount rate was applied for both costs and outcomes. Relative effectiveness estimates were based on a systematic review of published trials and a Bayesian network meta-analysis. The IMS CORE Diabetes Model was used, in which net monetary benefit (NMB) was calculated using a threshold of £20,000 per quality-adjusted life-year (QALY) gained. A wide range of sensitivity analyses were conducted. Insulin detemir (twice daily) [iDet (bid)] had the highest mean QALY gain (11.09 QALYs) and NMB (£181,456) per patient over the model time horizon. Compared with the lowest cost strategy (insulin neutral protamine Hagedorn once daily), it had an incremental cost-effectiveness ratio of £7844/QALY gained. Insulin glargine (od) [iGlarg (od)] and iDet (od) were ranked as second and third, with NMBs of £180,893 and £180,423, respectively. iDet (bid) remained the most cost-effective treatment in all the sensitivity analyses performed except when high doses were assumed (>30% increment compared with other regimens), where iGlarg (od) ranked first. iDet (bid) is the most cost-effective regimen, providing the highest QALY gain and NMB. iGlarg (od) and iDet (od) are possible options for those for whom the iDet (bid) regimen is not acceptable or does not achieve required glycemic control. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  8. Hypoglycemia in patients with type 2 diabetes newly initiated on basal insulin in the US in a community setting: impact on treatment discontinuation and hospitalization.

    PubMed

    Dalal, Mehul R; Kazemi, Mahmood R; Ye, Fen

    2017-02-01

    To evaluate the impact of 6 month hypoglycemia on treatment discontinuation and hospitalization of patients initiating basal insulin for type 2 diabetes (T2D) in real-world practice. This was a retrospective cohort study of patient-level data using electronic medical records (EMRs) in the Predictive Health Intelligence diabetes dataset. Data from adult patients with T2D initiating basal insulin glargine, insulin detemir, or Neutral Protamine Hagedorn insulin between January 2008 and March 2014 was analyzed. The date of first basal insulin prescription in an outpatient setting was the index date. A 12 month baseline prior to the index date was established; follow-up was 6-24 months from the index date. Patients were assigned to cohorts by experience of hypoglycemia (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] code or blood glucose test) in the first 6 months following the index date; with hypoglycemia and without hypoglycemia cohorts were compared for basal insulin treatment discontinuation and hospitalization. Overall, 49,062 patients were included; 5159 (10.5%) experienced hypoglycemia in the 6 months following basal insulin initiation. In the first 12 months, 68.1% of patients in the with hypoglycemia cohort discontinued basal insulin versus 53.9% in the without hypoglycemia cohort (p < .0001); more patients in the with hypoglycemia cohort had at least one hospitalization in the first year of follow-up (50.1% vs. 14.6%; p < .0001). Patients with hypoglycemia soon after initiating basal insulin are at greater risk of discontinuation of their basal insulin therapy and hospitalization versus those who did not have hypoglycemic events within the first 6 months of basal insulin initiation. A limitation of this study is that it was a retrospective analysis of EMR data and the study may not be representative of all US patients with T2D on basal insulin and it cannot be assumed that every hypoglycemic event was

  9. The Rice COLEOPTILE PHOTOTROPISM1 Gene Encoding an Ortholog of Arabidopsis NPH3 Is Required for Phototropism of Coleoptiles and Lateral Translocation of AuxinW⃞

    PubMed Central

    Haga, Ken; Takano, Makoto; Neumann, Ralf; Iino, Moritoshi

    2005-01-01

    We isolated a mutant, named coleoptile phototropism1 (cpt1), from γ-ray–mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution. PMID:15598797

  10. Comparison of glucose fluctuations between day- and night-time measured using a continuous glucose monitoring system in diabetic dogs.

    PubMed

    Mori, Akihiro; Kurishima, Miyuki; Oda, Hitomi; Saeki, Kaori; Arai, Toshiro; Sako, Toshinori

    2013-01-31

    Monitoring of blood glucose concentration is important to evaluate the diabetic status of dogs. Continuous glucose monitoring systems (CGMS) have been applied in veterinary medicine for glucose monitoring in diabetic dogs. The purpose of the study was to evaluate the daily glycemic profiles obtained with CGMS and compare glucose fluctuations between day- and night-time in diabetic dogs. Five diabetic dogs were used in this study and were treated with either NPH insulin or insulin detemir. For data analyses, day-time was defined as 9:00 am-9:00 pm and night-time as 9:00 pm-9:00 am. Using glucose profiles, we determined the mean glucose concentrations (1- and 12-hr intervals), and times spent in hyperglycemia >200 mg/dl or hypoglycemia <60 mg/dl. None of the parameters differed significantly between day-time and night-time in dogs treated with NPH insulin or insulin detemir. In conclusion, this study confirmed, using CGMS, that there are no differences in glucose fluctuations between day- and night-time, in diabetic dogs on a similar feeding regimen and insulin administration.

  11. Serum leptin concentrations in children with type 1 diabetes mellitus: relationship to body mass index, insulin dose, and glycemic control.

    PubMed

    Soliman, Ashraf T; Omar, Magdi; Assem, Hala M; Nasr, Ibrahim S; Rizk, Mohamed M; El Matary, Wael; El Alaily, Rania K

    2002-03-01

    Although obesity is a frequent feature of type 2 diabetes mellitus (DM), many patients with type 1 DM are prone to high body mass index (BMI). We measured serum leptin concentrations in a cohort of children (n = 55) with type 1 diabetes mellitus (DM), as well as their anthropometric parameters including BMI, skin fold thickness at multiple sites, and midarm circumference. Glycemic control was assessed by blood glucose (BG) monitoring before meals, and measurement of glycated hemoglobin (HbA1c) and insulin dose/kg/d was recorded. Dietary evaluation and assessment of caloric intake (kg/d) was performed by an expert dietitian. In the newly diagnosed children (n = 10) before initiation of insulin therapy, circulating leptin concentration was significantly lower (1.1 +/- 0.8 ng/dL) versus 5 days after insulin therapy (1.45 +/- 0.7 ng/dL). The decreased leptin level appears to be related to insulinopenia in these patients. In 45 children with type 1 DM on conventional therapy (2 doses of insulin mixture (NPH and regular) subcutaneous (SC) before breakfast and dinner for more than 2 years), serum leptin concentration was significantly higher (2.15 +/- 1 ng/dL) compared with age-matched normal children (1.3 +/- 1 ng/dL). Diabetic children were further divided into 2 groups according to their HbA1c level: group 1 with HbA1C less than 7.5% (less than 2 SD above the mean for normal population) (n = 29) and group 2 with HbA1c greater than 7.5%. (greater than 2 SD above the mean for normal population) (n = 16). Patients with a higher HbA1c level (group 2) had a higher leptin concentration (2.3 +/- 0.8 ng/dL), higher BMI (17.8 +/- 1.7), and were receiving higher insulin dose/kg (0.92 +/- 0.2 U/kg/d) compared with group 1 (lower HbA1c) (1.78 +/- 0.8 ng/dL, 16.7 +/- 1.5, and 0.59 +/- 0.2 U/kg/d, respectively). Group 2 patients had a higher incidence of late morning hypoglycemia (9/29) versus group 1 patients (2/16). Analysis of dietary intake showed that patients with a higher Hb

  12. Spinorial Regge trajectories and Hagedorn-like temperatures. Spinorial space-time and preons as an alternative to strings

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2016-11-01

    The development of the statistical bootstrap model for hadrons, quarks and nuclear matter occurred during the 1960s and the 1970s in a period of exceptional theoretical creativity. And if the transition from hadrons to quarks and gluons as fundamental particles was then operated, a transition from standard particles to preons and from the standard space-time to a spinorial one may now be necessary, including related pre-Big Bang scenarios. We present here a brief historical analysis of the scientific problematic of the 1960s in Particle Physics and of its evolution until the end of the 1970s, including cosmological issues. Particular attention is devoted to the exceptional role of Rolf Hagedorn and to the progress of the statistical boostrap model until the experimental search for the quark-gluon plasma started being considered. In parallel, we simultaneously expose recent results and ideas concerning Particle Physics and in Cosmology, an discuss current open questions. Assuming preons to be constituents of the physical vacuum and the standard particles excitations of this vacuum (the superbradyon hypothesis we introduced in 1995), together with a spinorial space-time (SST), a new kind of Regge trajectories is expected to arise where the angular momentum spacing will be of 1/2 instead of 1. Standard particles can lie on such Regge trajectories inside associated internal symmetry multiplets, and the preonic vacuum structure can generate a new approach to Quantum Field Theory. As superbradyons are superluminal preons, some of the vacuum excitations can have critical speeds larger than the speed of light c, but the cosmological evolution selects by itself the particles with the smallest critical speed (the speed of light). In the new Particle Physics and Cosmology emerging from the pattern thus developed, Hagedornlike temperatures will naturally be present. As new space, time, momentum and energy scales are expected to be generated by the preonic vacuum dynamics, the

  13. Effect of insulin analogues on frequency of non-severe hypoglycaemia in patients with type 1 diabetes prone to severe hypoglycaemia: The HypoAna trial.

    PubMed

    Agesen, R M; Kristensen, P L; Beck-Nielsen, H; Nørgaard, K; Perrild, H; Christiansen, J S; Jensen, T; Hougaard, P; Parving, H H; Thorsteinsson, B; Tarnow, L; Pedersen-Bjergaard, U

    2016-09-01

    Insulin analogues reduce the risk of hypoglycaemia compared with human insulin in patients with type 1 diabetes (T1D) and minor hypoglycaemia problems. The HypoAna trial showed that, in patients with recurrent severe hypoglycaemia, treatment based on insulin analogues reduces the risk of severe hypoglycaemia. The present study aims to assess whether this also applies to non-severe hypoglycaemia events during the day and at night. This 2-year investigator-initiated multicentre, prospective, randomized, open, blinded endpoint (PROBE) trial involved patients with T1D and at least two episodes of severe hypoglycaemia during the previous year. Using a balanced crossover design, patients were randomized to basal-bolus therapy based on analogue (detemir/aspart) or human (NPH/regular) insulins. A total of 114 participants were included. Endpoints were the number of severe hypoglycaemic events and non-severe events, including documented symptomatic and asymptomatic episodes occurring during the day and at night (ClinicalTrials.gov number: NCT00346996). Analogue-based treatment resulted in a 6% (2-10%; P=0.0025) overall relative risk reduction of non-severe hypoglycaemia. This was due to a 39% (32-46%; P<0.0001) reduction of non-severe nocturnal hypoglycaemia, seen for both symptomatic (48% [36-57%]; P<0.0001) and asymptomatic (28% [14-39%]; P=0.0004) nocturnal hypoglycaemia episodes. No clinically significant differences in hypoglycaemia occurrence were observed between the insulin regimens during the day. The time needed to treat one patient with insulin analogues to avoid one episode (TNT1) of non-severe nocturnal hypoglycaemia was approximately 3 months. In T1D patients prone to severe hypoglycaemia, treatment with analogue insulin reduced the risk of non-severe nocturnal hypoglycaemia compared with human insulin. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Institution of basal-bolus therapy at diagnosis for children with type 1 diabetes mellitus.

    PubMed

    Adhikari, Soumya; Adams-Huet, Beverley; Wang, Yu-Chi A; Marks, James F; White, Perrin C

    2009-04-01

    We studied whether the institution of basal-bolus therapy immediately after diagnosis improved glycemic control in the first year after diagnosis for children with newly diagnosed type 1 diabetes mellitus. We reviewed the charts of 459 children > or =6 years of age who were diagnosed as having type 1 diabetes between July 1, 2002, and June 30, 2006 (212 treated with basal-bolus therapy and 247 treated with a more-conventional neutral protamine Hagedorn regimen). We abstracted data obtained at diagnosis and at quarterly clinic visits and compared groups by using repeated-measures, mixed-linear model analysis. We also reviewed the records of 198 children with preexisting type 1 diabetes mellitus of >1-year duration who changed from the neutral protamine Hagedorn regimen to a basal-bolus regimen during the review period. Glargine-treated subjects with newly diagnosed diabetes had lower hemoglobin A1c levels at 3, 6, 9, and 12 months after diagnosis than did neutral protamine Hagedorn-treated subjects (average hemoglobin A1c levels of 7.05% with glargine and 7.63% with neutral protamine Hagedorn, estimated across months 3, 6, 9, and 12, according to repeated-measures models adjusted for age at diagnosis and baseline hemoglobin A1c levels; treatment difference: 0.58%). Children with long-standing diabetes had no clinically important changes in their hemoglobin A1c levels in the first year after changing regimens. The institution of basal-bolus therapy with insulin glargine at the time of diagnosis of type 1 diabetes was associated with improved glycemic control, in comparison with more-conventional neutral protamine Hagedorn regimens, during the first year after diagnosis.

  15. Addressing hyperglycemia from hospital admission to discharge.

    PubMed

    Moghissi, Etie S

    2010-03-01

    This review examines glycemia management practices in hospitalized patients. Optimal glycemic control remains a challenge among hospitalized patients. Recent studies have questioned the benefit of tight glycemic control and have raised concerns regarding the safety of this approach. As a result, medical societies have updated glycemic targets and have published new consensus guidelines for management of glycemia in hospitalized patients. This review highlights recent inpatient glycemic trials, the new glycemic targets and recommended strategies for management of glycemia in hospitalized patients. Medline and PubMed searches (diabetes, hyperglycemia, hypoglycemia, intensive therapy insulin, tight glycemic control, and hospital patients) were performed for English-language articles on treatment of diabetes, insulin therapy, hyperglycemia or hypoglycemia in hospitalized patients published from 2004 to present. Earlier works cited in these papers were surveyed. Clinical studies, reviews, consensus/guidelines statements, and meta-analyses relevant to the identification and management of diabetes and hyperglycemia in hospitalized patients were included and selected. This is not an exhaustive review of the published literature. Insulin remains the most appropriate agent for a majority of hospitalized patients. In critically ill patients insulin is given as a continuous intravenous (IV) infusion and in non-critically ill inpatients hyperglycemia is best managed using scheduled subcutaneous (SC) basal-bolus insulin regimens supplemented with correction doses as needed and adjusted daily with the guidance of frequent blood glucose monitoring. Prevention of hypoglycemia is equally as important to patient outcomes and is an equally necessary part of any effective glucose control program. Modern insulin analogs offer advantages over the older human insulins (e.g., regular and neutral protamine Hagedorn [NPH] insulin) because their time-action profiles more closely correspond to

  16. Insulin 70/30 mix plus metformin versus triple oral therapy in the treatment of type 2 diabetes after failure of two oral drugs: efficacy, safety, and cost analysis.

    PubMed

    Schwartz, Sherwyn; Sievers, Richard; Strange, Poul; Lyness, William H; Hollander, Priscilla

    2003-08-01

    Subjects (n = 188) with type 2 diabetes and inadequate response to two oral medications (A1C >8.0%) were randomly assigned to treatment with either a third oral medication or an insulin 70/30 mix b.i.d. plus metformin for a comparison of efficacy, safety, and cost. The protocol called for aggressive dose titration to achieve target values of fasting blood glucose (80-120 mg/dl), postprandial glucose (<160 mg/dl), and A1C (<7%). These efficacy parameters were evaluated at weeks 2, 6, 12, and 24 of therapy. If dose adjustments failed to achieve targeted glycemic control, subjects were switched to an alternate therapy. At the end of study (week 24 of therapy), A1C and fasting plasma glucose (FPG) values showed comparable decreases in the two treatment groups. Only 31% (oral therapy) and 32% (insulin plus metformin) of subjects achieved target values of A1C (<7%). A total of 10 of the 98 subjects randomized to triple oral therapy (10.2%) who failed to improve sufficiently were switched to insulin therapy. An additional four subjects dropped out of the oral treatment group due to adverse events felt to be potentially drug related. Only two of the subjects randomized to insulin plus metformin had to be switched to basal-bolus regimens (regular insulin and NPH insulin). Cost analysis determined that insulin plus metformin (mean cost 3.20 dollars/day) provided efficacy equal to that of a triple oral drug regimen (10.40 dollars/day). Insulin 70/30 mix plus metformin was as effective as triple oral therapy in lowering A1C and FPG values. The triple oral regimen was not as cost effective, and a high percentage of subjects (total of 16.3%) did not complete this regimen due to lack of efficacy or side effects.

  17. Left ventricular diastolic function in patients with type 2 diabetes treated with a dipeptidyl peptidase-4 inhibitor- a pilot study.

    PubMed

    Nogueira, Katia Camarano; Furtado, Meive; Fukui, Rosa Tsuneshiro; Correia, Marcia Regina Silva; Dos Santos, Rosa Ferreira; Andrade, José Lázaro; Rossi da Silva, Maria Elizabeth

    2014-01-01

    Blood glucose control is fundamental albeit not enough to prevent diabetic macrovascular complications. Dipeptidyl peptidase-4 (DPP-4) inhibitors are effective in improving metabolic parameters in patients with type 2 diabetes mellitus (T2DM) but little is known about its cardiovascular effects. We compared the DPP-4 inhibitor sitagliptin with bedtime NPH insulin (NPH) as add-on therapy in patients with T2DM, aiming to ascertain which drug would have additional cardioprotective effects. Thirty-five T2DM patients inadequately controlled with metformin plus glyburide were randomized to receive sitagliptin (n = 18) or NPH (n = 17) for 24 weeks. Fasting plasma glucose, HbA1c, lipid profile, C-reactive protein, active glucagon-like peptide (aGLP-1) levels, 24-hour ambulatory blood pressure measurement and comprehensive 2-dimensional echocardiogram were determined before and after treatments. Both sitagliptin and NPH therapies decreased HbA1c levels after 24 weeks. Fasting plasma glucose and triglyceride levels decreased in the NPH group whereas only sitagliptin increased aGLP-1 levels. Left ventricular diastolic dysfunction (LVDD) was detected in 58.6% of twenty-nine patients evaluated. Beneficial effects in LVDD were observed in 75% and 11% of patients treated with sitagliptin and NPH, respectively (p = 0.015). Neither therapy changed C-reactive protein or blood pressure. Sitagliptin and bedtime NPH were similarly effective on glucose control. Improvement in LVDD in T2DM patients treated with sitagliptin was suggested, probably related to the increase of aGLP-1 levels. Therefore, DPP-4 inhibitor seems to have cardioprotective effects independent of glucose control and may have a role in the prevention of diabetic cardiomyopathy.

  18. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity*

    PubMed Central

    Ramakrishnan, Sadeesh K.; Russo, Lucia; Ghanem, Simona S.; Patel, Payal R.; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M.

    2016-01-01

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα−/− null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα−/− mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. PMID:27662905

  19. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus

    PubMed Central

    Atkin, Stephen; Javed, Zeeshan; Fulcher, Gregory

    2015-01-01

    Patients with type 2 diabetes mellitus require insulin as disease progresses to attain or maintain glycaemic targets. Basal insulin is commonly prescribed initially, alone or with one or more rapid-acting prandial insulin doses, to limit mealtime glucose excursions (a basal–bolus regimen). Both patients and physicians must balance the advantages of improved glycaemic control with the risk of hypoglycaemia and increasing regimen complexity. The rapid-acting insulin analogues (insulin aspart, insulin lispro and insulin glulisine) all have similar pharmacokinetic and pharmacodynamic characteristics and clinical efficacy/safety profiles. However, there are important differences in the pharmacokinetic and pharmacodynamic profiles of basal insulins (insulin glargine, insulin detemir and insulin degludec). Insulin degludec is an ultra-long-acting insulin analogue with a flat and stable glucose-lowering profile, a duration of action exceeding 30 h and less inter-patient variation in glucose-lowering effect than insulin glargine. In particular, the chemical properties of insulin degludec have allowed the development of a soluble co-formulation with prandial insulin aspart (insulin degludec/insulin aspart) that provides basal insulin coverage for at least 24 h with additional mealtime insulin for one or two meals depending on dose frequency. Pharmacokinetic and pharmacodynamic studies have shown that the distinct, long basal glucose-lowering action of insulin degludec and the prandial glucose-lowering effect of insulin aspart are maintained in the co-formulation. Evidence from pivotal phase III clinical trials indicates that insulin degludec/insulin aspart translate into sustained glycaemic control with less hypoglycaemia and the potential for a simpler insulin regimen with fewer daily injections. PMID:26568812

  20. [Profile of patients with diabetes type 1: insulinotherapy and self-monitoring].

    PubMed

    Almeida, Henriqueta Galvanin Guidio de; Campos, Joao Jose Batista; Kfouri, Christiane; Tanita, Marcos Toshiyuki; Dias, Adriana Espinosa; Souza, Marizia Marcos de

    2002-01-01

    A study carried out in Londrina - PR, with the cohort of local patients from Brazilian Study on the incidence of Diabetes Mellitus Type 1 (EDID). To know the insulin treatment and the plan for glycemic self-monitoring used by these patients; to verify their knowledge as for what they consider the optimization of these parameters and limitations of use. A survey was conducted with objective questions to 63 patients of the cohort. The average age was 13 years, without gender predominance. It was verified that most of the patients, 79.36%, (n=50) took at least 2 daily applications of insulin. All of them used insulin NPH in one (n=13) or two (n=50) doses. The use of regular insulin, in variable programs, was associated to the NPH in 41.27% (n=26) of the patients (The most frequent insulin type used was human 53.97% (n=34). Of the patients not making use of human insulin, 44.83% (n=13) considered it of high cost and 95.24% (n=60) would make use of it if it was distributed by the Government Unified Health System. As for the monitoring, 63.40% (n=40) took the tests up to 7 times a week, 20.63% (n=13) from 15 to 21 and only 1 patient from 29 to 35 tests. The high cost was the reason for 48.21% (n=27) not to take the tests; 58.73% (n=37) would take the test in the blood and 33.33% (n=21) either in the blood or in the urine if they were given the reactive ribbons. In this cohort of patients, although the human insulin is already adopted as the use of choice, the outline insulin treatment plan is still traditional and the monitoring is far behind the ideal.

  1. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  2. Improvement in C-reactive protein and advanced glycosylation end-products in poorly controlled diabetics is independent of glucose control.

    PubMed

    Md Isa, S H; Najihah, I; Nazaimoon, W M Wan; Kamarudin, N A; Umar, N A; Mat, N H; Khalid, B A K

    2006-04-01

    We studied the efficacy of four different treatment regimens (sulphonylurea and metformin+/-acarbose versus glimepiride and rosiglitazone versus glimepiride and bedtime NPH insulin versus multiple actrapid and NPH insulin injections) in poorly controlled type 2 diabetes subjects on hs-CRP, VCAM-1 and AGE at 4, 8 and 12 weeks of treatment. Multiple insulin injections rapidly improved HbA(1c) by 0.6+/-0.9% (p<0.005), 1.2+/-1.3% (p<0.0005) and 1.3+/-1.4% (p<0.0005) at week 4, at week 8 and week 12, respectively. Subjects who continued their existing combination treatment of sulphonylurea, metformin+/-acarbose also showed a significant reduction in HbA(1c) (p<0.05). Although effective in reducing glycemic parameters, there was no reduction in CRP levels in either treatment group. The treatment regimen consisting of rosiglitazone and glimepiride significantly lowered hs-CRP by -2.6 (3.9) mg/L (p<0.05) at week 12 in spite of no improvement in blood glucose. AGE improved in all groups irrespective of type of treatment, glycaemic control and CRP levels. Our data indicate rapid glycaemic control alone does not necessarily result in improvement in markers of inflammation in type 2 diabetes patients.

  3. CONSENSUS STATEMENT BY THE AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY ON THE COMPREHENSIVE TYPE 2 DIABETES MANAGEMENT ALGORITHM - 2017 EXECUTIVE SUMMARY.

    PubMed

    Garber, Alan J; Abrahamson, Martin J; Barzilay, Joshua I; Blonde, Lawrence; Bloomgarden, Zachary T; Bush, Michael A; Dagogo-Jack, Samuel; DeFronzo, Ralph A; Einhorn, Daniel; Fonseca, Vivian A; Garber, Jeffrey R; Garvey, W Timothy; Grunberger, George; Handelsman, Yehuda; Hirsch, Irl B; Jellinger, Paul S; McGill, Janet B; Mechanick, Jeffrey I; Rosenblit, Paul D; Umpierrez, Guillermo E

    2017-02-01

    A1C = hemoglobin A1C AACE = American Association of Clinical Endocrinologists ACCORD = Action to Control Cardiovascular Risk in Diabetes ACCORD BP = Action to Control Cardiovascular Risk in Diabetes Blood Pressure ACEI = angiotensin-converting enzyme inhibitor ADVANCE = Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation AGI = alpha-glucosidase inhibitor apo B = apolipoprotein B ASCVD = atherosclerotic cardiovascular disease BAS = bile acid sequestrant BMI = body mass index BP = blood pressure CHD = coronary heart disease CKD = chronic kidney disease CVD = cardiovascular disease DASH = Dietary Approaches to Stop Hypertension DPP-4 = dipeptidyl peptidase 4 eGFR = estimated glomerular filtration rate FDA = Food and Drug Administration GLP-1 = glucagon-like peptide 1 HDL-C = high-density lipoprotein cholesterol IMPROVE-IT = Improved Reduction of Outcomes: Vytorin Efficacy International Trial LDL-C = low-density lipoprotein cholesterol LDL-P = low-density lipoprotein particle Look AHEAD = Look Action for Health in Diabetes NPH = neutral protamine Hagedorn OSA = obstructive sleep apnea SFU = sulfonylurea SGLT-2 = sodium glucose cotransporter-2 SMBG = self-monitoring of blood glucose T2D = type 2 diabetes TZD = thiazolidinedione VADT = Veterans Affairs Diabetes Trial.

  4. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  5. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Insulin Secretagogues

    MedlinePlus

    ... the Spikes Is mealtime insulin right for you? Insulin Secretagogues September 2017 Download PDFs English Espanol Editors ... Additional Resources Affordable Insulin Project FDA What are insulin secretagogues? Insulin secretagogues are one type of medicine ...

  7. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    PubMed

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation.

    PubMed

    Mayer, Christopher M; Belsham, Denise D

    2010-01-01

    Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR.

  9. NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles.

    PubMed

    Matsuda, Satomi; Kajizuka, Tomomi; Kadota, Akeo; Nishimura, Takeshi; Koshiba, Tomokazu

    2011-06-01

    Phototropic curvature results from differential growth on two sides of the elongating shoot, which is explained by asymmetrical indole-3-acetic acid (IAA) distribution. Using 2 cm maize coleoptile segments, 1st positive phototropic curvature was confirmed here after 8 s irradiation with unilateral blue light (0.33 μmol m(-2) s(-1)). IAA was redistributed asymmetrically by approximately 20 min after photo-stimulation. This asymmetric distribution was initiated in the top 0-3 mm region and was then transmitted to lower regions. Application of the IAA transport inhibitor, 1-N-naphthylphthalamic acid (NPA), to the top 2 mm region completely inhibited phototropic curvature, even when auxin was simultaneously applied below the NPA-treated zone. Thus, lateral IAA movement occurred only within the top 0-3 mm region after photo-stimulation. Localized irradiation experiments indicated that the photo-stimulus was perceived in the apical 2 mm region. The results suggest that this region harbours key components responsible for photo-sensing and lateral IAA transport. In the present study, it was found that the NPH3- and PGP-like genes were exclusively expressed in the 0-2 mm region of the tip, whereas PHOT1 and ZmPIN1a, b, and c were expressed relatively evenly along the coleoptile, and ZmAUX1, ZMK1, and ZmSAURE2 were strongly expressed in the elongation zone. These results suggest that the NPH3-like and PGP-like gene products have a key role in photo-signal transduction and regulation of the direction of auxin transport after blue light perception by phot1 at the very tip region of maize coleoptiles.

  10. Biosimilar insulins.

    PubMed

    Heinemann, Lutz

    2012-08-01

    Until now most insulin used in developed countries is manufactured and distributed by a small number of multinational companies. Other pharmaceutical companies - many of these are located in countries such as India or China - are also able to manufacture insulin with modern biotechnological methods. Additionally, the patents for many insulin formulations have expired or are going to expire soon. This enables such companies to produce insulins and to apply for market approval of these as biosimilar insulins (BIs) in highly regulated markets such as the EU or the US. To understand the complexity of BIs' approval and usage, scientific and regulatory aspects have to be discussed. Differences in the manufacturing process (none of the insulin-manufacturing procedures are identical) result in the fact that all insulin that might become BIs differ from the originator insulin to some extent. The question is, have such differences in the structure of the insulin molecule and or the purity and so on clinically relevant consequences for the biological effects induced or not. The guidelines already in place in the EU for market approval require that the manufacturer demonstrates that his insulin has a safety and efficacy profile that is similar to that of the 'original' insulin formulation. Recently guidelines for biosimilars were issued in the US; however, these do not cover insulin. Although a challenging approval process for insulins to become BI might be regarded as a hurdle to keep companies out of certain markets, it is fair to say that the potential safety and efficacy issues surrounding BI are substantial and relevant, and do warrant a careful and evidence-driven approval process. Nevertheless, it is very likely that in the next years, BIs will come to the market also in highly regulated markets.

  11. Expectations about insulin therapy, perceived insulin-delivery system social acceptability, and insulin treatment satisfaction contribute to decreases in insulin therapy self-efficacy in patients with type 2 diabetes after 36 weeks insulin therapy.

    PubMed

    Hayes, Risa P; Curtis, Bradley; Ilag, Liza; Nelson, David R; Wong, Mayme; Funnell, Martha

    2013-09-01

    Self-efficacy plays a critical role in diabetes self-care. Herein we explore factors contributing to decreased insulin therapy self-efficacy in insulin-naïve patients with type 2 diabetes mellitus (T2DM) initiating and managing insulin therapy over 36 weeks. The study was conducted within an international, randomized clinical trial comparing two insulin therapies administered by insulin pen in patients with T2DM inadequately controlled with oral antihyperglycemic medications. Patients completed the Self-Efficacy about Insulin Therapy Questionnaire (SEITQ) at baseline and endpoint. Patients also completed patient-reported measures assessing expectations about insulin therapy at baseline and perceptions about insulin therapy and insulin-delivery system (IDS) satisfaction at endpoint. Baseline and endpoint SEITQ scores were compared. Using prespecified criteria, patients were classified as having "decreased" or "no change/improved" insulin self-efficacy. Demographic, clinical, and patient-reported variables were entered into a logistic regression model with decreased insulin self-efficacy (yes or no) as the dependent variable. Baseline and endpoint SEITQ data were available for 450 insulin-naïve T2DM patients (mean age 59 years; 53% female; 57% Caucasian; mean baseline HbA1c 9.4%; 80.0 mmol/mol). Insulin therapy self-efficacy improved from baseline to endpoint (74.0 vs 77.5; P<0.001). Logistic regression analysis indicated that lower IDS satisfaction (P<0.0001), lower IDS social acceptability (P=0.004), and more positive expectations of insulin therapy (P<0.0001) were associated with decreased insulin self-efficacy. A candid discussion between clinicians and their insulin-naïve T2DM patients about the benefits and challenges of insulin therapy may prevent unrealistic expectations that could potentially undermine insulin self-efficacy. © 2013 Wiley Publishing Asia Pty Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  12. Multinational Consensus: Insulin Initiation with Insulin Degludec/Aspart (IDegAsp).

    PubMed

    Kalra, Sanjay; Atkin, Stephen; Cervera, Antonio; Das, Ashok Kumar; Demir, Ozgur; Demir, Tevfik; Fariduddin, Md; Vo, Khoa Tuan; Ku, Bon Jeong; Kumar, Ajay; Latif, Zafar A; Malek, Rachid; Matawaran, Bien J; Mehta, Roopa; Tran, Nam Quang; Panelo, Araceli; Ruder, Sundeep; Saldana, Joel Rodriquez; Shaikh, Khalid A; Shakya, Amit; Shrestha, Dina; Unnikrishnan, A G

    2018-05-23

    Insulin degludec/aspart (IDegAsp) is the first soluble insulin co-formulation, combining a long-acting insulin degludec (IDeg) and rapid-acting insulin aspart (IAsp). In type 2 diabetes patients with oral antidiabetes agent (OAD) inadequacy, insulin initiation with IDegAsp once daily provides superior long-term glycemic control compared to insulin glargine, with similar fasting plasma glucose (FPG) and insulin doses, and numerically lower rates of overall and nocturnal hypoglycemia. Furthermore, in patients with uncontrolled type 2 diabetes previously treated with insulins, IDegAsp twice daily effectively improves glycated hemoglobin and FPG, with fewer hypoglycemic episodes versus premix insulins and basal bolus therapy. In patients with type 1 diabetes mellitus, IDegAsp once daily with two doses of IAsp is a convenient, yet effective, regimen as compared to the conventional 4-5 injection-based basal bolus therapy. IDegAsp is an appropriate and reasonable option for initiation of insulin therapy in both type 1 and type 2 diabetes.

  13. Hyperinsulinemic hypoglycemia associated with insulin antibodies caused by exogenous insulin analog.

    PubMed

    Su, Chih-Ting; Lin, Yi-Chun

    2016-01-01

    Insulin antibodies (IA) associated with exogenous insulin administration seldom caused hypoglycemia and had different characteristics from insulin autoantibodies (IAA) found in insulin autoimmune syndrome (IAS), which was first described by Dr Hirata in 1970. The characteristic of IAS is the presence of insulin-binding autoantibodies and related fasting or late postprandial hypoglycemia. Here, we report a patient with type 1 diabetes mellitus under insulin glargine and insulin aspart treatment who developed recurrent spontaneous post-absorptive hyperinsulinemic hypoglycemia with the cause probably being insulin antibodies induced by exogenous injected insulin. Examinations of serial sera disclosed a high titre of insulin antibodies (33%, normal <5%), high insulin concentration (111.9 IU/mL) and undetectable C-peptide when hypoglycemia occurred. An oral glucose tolerance test revealed persistent high serum levels of total insulin and undetectable C-peptide. Image studies of the pancreas were unremarkable, which excluded the diagnosis of insulinoma. The patient does not take any of the medications containing sulfhydryl compounds, which had been reported to cause IAS. After administering oral prednisolone for 3 weeks, hypoglycemic episodes markedly improved, and he was discharged smoothly. Insulin autoimmune syndrome (IAS) or IAS-like situation should be one of the differential diagnosis in patients with hyperinsulinemic hypoglycemia.Although less reported, insulin antibodies (IA) caused by exogenous insulin analog should be considered as the cause of hypoglycemia.Patients with suspected insulin autoimmune syndrome (IAS) should be screened for drugs related to autoimmunity to endogenous insulin.

  14. High-mix insulins

    PubMed Central

    Kalra, Sanjay; Farooqi, Mohammad Hamed; El-Houni, Ali E.

    2015-01-01

    Premix insulins are commonly used insulin preparations, which are available in varying ratios of different molecules. These drugs contain one short- or rapid-acting, and one intermediate- or long-acting insulin. High-mix insulins are mixtures of insulins that contain 50% or more than 50% of short-acting insulin. This review describes the clinical pharmacology of high-mix insulins, including data from randomized controlled trials. It suggests various ways, in which high-mix insulin can be used, including once daily, twice daily, thrice daily, hetero-mix, and reverse regimes. The authors provide a rational framework to help diabetes care professionals, identify indications for pragmatic high-mix use. PMID:26425485

  15. Clinical characteristics of type 2 diabetes patients with discordance between HbA1c and fasting plasma glucose in the real world: An analysis of the ORBIT study.

    PubMed

    Shu, Hua; Lu, Juming; Zhang, Puhong; Zhu, Dongshan; Li, Xian; Ji, Jiachao; Zhao, Fang; Ji, Linong

    2018-05-01

    We aimed to determine the clinical characteristics of type 2 diabetes patients on basal insulin therapy with inadequate glucose control due to discordance between glycated haemoglobin (HbA 1c ) and fasting plasma glucose (FPG) in the real world. This was a retrospective analysis of data from the ORBIT study in China. Clinical characteristics of patients with discordance between HbA 1c and FPG at baseline and at the end of 6 months of follow-up were analysed using multinomial logistic regression in 4 study groups divided by HbA 1c and FPG. Overall, of 6721 patients initiated on basal insulin, 853 achieved HbA 1c  < 7% but FPG ≥ 7 mmol/L (group 2), while 997 had FPG < 7 mmol/L but HbA 1c  ≥ 7% (group 3) at the end of follow-up. Patients in group 3 had a longer duration of type 2 diabetes compared with those in group 2 (7.22 ± 5.30 vs 6.00 ± 4.80 y, P < .05). Patients on glargine (32.90%) or detemir (36.88%) treatment accounted for a higher proportion of patients with both HbA 1c and FPG controlled than those on neutral protamine Hagedorn therapy (23.45%; P < .05). Per the multinomial logistic analysis, higher frequency of self-monitoring of blood glucose (SMBG) and use of glargine or detemir therapy were significantly inversely associated with risk of discordance between HbA 1c and FPG, while dose of insulin was a risk factor for discordance at the end of follow-up (all P < .05). Patients treated with insulin analogues (glargine or detemir), instead of neutral protamine Hagedorn, and with more frequent SMBG are more likely to exhibit concordance between HbA 1c and FPG. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Anti-insulin antibody test

    MedlinePlus

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... You appear to have an allergic response to insulin Insulin no longer seems to control your diabetes

  17. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    PubMed

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  18. Variability of Directly Measured First-Pass Hepatic Insulin Extraction and its Association With Insulin Sensitivity and Plasma Insulin.

    PubMed

    Asare-Bediako, Isaac; Paszkiewicz, Rebecca L; Kim, Stella P; Woolcott, Orison O; Kolka, Cathryn M; Burch, Miguel A; Kabir, Morvarid; Bergman, Richard N

    2018-05-11

    While the β-cells secrete insulin, it is the liver with its first-pass insulin extraction (FPE) that regulates the amount of insulin allowed into circulation for action on target tissues. The metabolic clearance rate of insulin, of which FPE is the dominant component, is reported to be a major determinant of insulin sensitivity (SI). We studied the intricate relationship between FPE, SI and fasting insulin. We used a direct method of measuring FPE, the paired portal/peripheral infusion protocol (PPII) where insulin is infused step-wise, either via the portal vein or a peripheral vein in healthy young dogs (n =12). FPE is calculated as the difference in clearance rates (slope of infusion rate vs. steady insulin plot) between the paired experiments. Significant correlations were found between FPE vs. clamp assessed SI (r s = 0.74); FPE vs. fasting insulin (r s = -0.64) and SI vs. fasting insulin (r s = - 0.67). Also, we found a wide variance in FPE (22.4 -77.2%; mean ± SD of 50.4 ± 19.1%) which is reflected in the variability of plasma insulin (48.1 ± 30.9pM) and SI (9.4 ± 5.8 x10 4 dL * kg -1 * min -1 * pM -1 ). FPE could be the nexus of regulation of both plasma insulin and SI. © 2018 by the American Diabetes Association.

  19. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

    PubMed

    Brange, J; Dodson, G G; Edwards, D J; Holden, P H; Whittingham, J L

    1997-04-01

    The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.

  20. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    PubMed

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Insulin Therapy

    MedlinePlus

    ... Your Health Resources Drugs, Procedures & Devices Prescription Medicines Insulin Therapy Insulin Therapy Share Print When you digest food, your ... you eat into glucose (a form of sugar). Insulin allows this glucose to enter all the cells ...

  2. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  3. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    PubMed

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  4. Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice

    PubMed Central

    Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick

    2011-01-01

    OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512

  5. Gender-based differences in glycaemic control and hypoglycaemia prevalence in patients with type 2 diabetes: results from patient-level pooled data of six randomized controlled trials.

    PubMed

    Kautzky-Willer, A; Kosi, L; Lin, J; Mihaljevic, R

    2015-06-01

    To determine the impact of gender on glycaemic control and hypoglycaemia in insulin-naïve patients with type 2 diabetes (T2DM). Data were pooled from six randomized clinical trials of insulin glargine or NPH insulin in insulin-naïve, inadequately controlled patients. Female [n = 1251; mean glycated haemoglobin (HbA1c) level 8.99%, age 56.91 years, diabetes duration 9.84 years] and male patients (n = 1349; mean HbA1c 8.9%, age 57.47 years, diabetes duration 10.13 years) were started on and treated with insulin glargine or NPH insulin for 24-36 weeks. HbA1c and fasting blood glucose levels, percent achieving HbA1c target of <7% and insulin dose change were recorded. For both men and women, HbA1c levels were significantly reduced over time (p < 0.001); a significantly greater HbA1c reduction was observed in men than in women (-1.36 vs. -1.22; p = 0.002). Significantly fewer women achieved target HbA1c of <7% (p < 0.001). At the study end, women had a significantly higher insulin dose/kg than men (0.47 vs. 0.42 U/kg; p < 0.001). The incidence rates of severe and severe nocturnal hypoglycaemia were significantly higher in women (3.28% vs. 1.85%; p < 0.05 and 2.24% vs. 0.59%; p < 0.001, respectively). Women were more likely to experience severe hypoglycaemia [odds ratio (OR) 1.80; 95% confidence interval (CI) 1.08, 3.00; p = 0.02] and severe nocturnal hypoglycaemia (OR: 3.80; 95% CI 1.72, 8.42; p = 0.001). These observations confirm studies that found a smaller improvement in HbA1c and greater hypoglycaemia in women during insulin treatment. Physicians should be aware of the need to determine and closely monitor dosing, particularly in women, to optimize the balance between glycaemic control and hypoglycaemia risk. © 2015 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  6. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    PubMed

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-10-01

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk. Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer. Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio ( P trend = 0.55 and P trend = 0.27, respectively). Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development. Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1519-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. A retrospective database analysis of insulin use patterns in insulin-naïve patients with type 2 diabetes initiating basal insulin or mixtures

    PubMed Central

    Bonafede, Machaon MK; Kalsekar, Anupama; Pawaskar, Manjiri; Ruiz, Kimberly M; Torres, Amelito M; Kelly, Karen R; Curkendall, Suellen M

    2010-01-01

    Objective: To describe insulin persistence among patients with type 2 diabetes initiating insulin therapy with basal insulin or insulin mixtures and determine factors associated with nonpersistence. Research design and methods: The Thomson Reuters MarketScan® databases were used to retrospectively analyze insulin-naïve patients with type 2 diabetes by initiating insulin therapy. Insulin use was described using a variety of measures. The persistence to insulin was described using both a gap-based measure and the number of claims measure. Results: Patients in the basal insulin cohort (N = 15,255) primarily used insulin analogs (88.1%) and vial and syringe (97%). Patients in the mixture cohort (N = 2,732) were more likely to initiate on human insulin mixtures (62.5%) and vial and syringe (68.1%). Average time between insulin refills was 80 and 71 days for basal and mixture initiators, respectively. Nearly, 75% of basal insulin initiators and 65% of insulin mixture initiators had a 90-day gap in insulin prescriptions. More than half of all the patients had at least one insulin prescription per quarter. Patients initiating with insulin analogs were more likely to be persistent compared with those initiating with human insulin across both cohorts and measures of persistence (P < 0.001). Conclusion: Persistence to insulin therapy is poorer than one would anticipate, but appears to be higher in users of insulin analogs and insulin mixtures. PMID:20622915

  8. Economic benefits of improved insulin stability in insulin pumps.

    PubMed

    Weiss, Richard C; van Amerongen, Derek; Bazalo, Gary; Aagren, Mark; Bouchard, Jonathan R

    2011-05-01

    Insulin pump users discard unused medication and infusion sets according to labeling and manufacturer's instructions. The stability labeling for insulin aspart (rDNA origin] (Novolog) was increased from two days to six. The associated savings was modeled from the perspective of a hypothetical one-million member health plan and the total United States population. The discarded insulin volume and the number of infusion sets used under a two-day stability scenario versus six were modeled. A mix of insulin pumps of various reservoir capacities with a range of daily insulin dosages was used. Average daily insulin dose was 65 units ranging from 10 to 150 units. Costs of discarded insulin aspart [rDNA origin] were calculated using WAC (Average Wholesale Price minus 16.67%). The cost of pump supplies was computed for the two-day scenario assuming a complete infusion set change, including reservoirs, every two days. Under the six-day scenario complete infusion sets were discarded every six days while cannulas at the insertion site were changed midway between complete changes. AWP of least expensive supplies was used to compute their costs. For the hypothetical health plan (1,182 pump users) the annual reduction in discarded insulin volume between scenarios was 19.8 million units. The corresponding cost reduction for the plan due to drug and supply savings was $3.4 million. From the U.S. population perspective, savings of over $1 billion were estimated. Using insulin that is stable for six days in pump reservoirs can yield substantial savings to health plans and other payers, including patients.

  9. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    PubMed

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  10. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    PubMed

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  11. Insulin Infusion Set: The Achilles Heel of Continuous Subcutaneous Insulin Infusion

    PubMed Central

    Heinemann, Lutz; Krinelke, Lars

    2012-01-01

    Continuous subcutaneous insulin infusion from an insulin pump depends on reliable transfer of the pumped insulin to the subcutaneous insulin depot by means of an insulin infusion set (IIS). Despite their widespread use, the published knowledge about IISs and related issues regarding the impact of placement and wear time on insulin absorption/insulin action is relatively small. We also have to acknowledge that our knowledge is limited with regard to how often patients encounter issues with IISs. Reading pump wearer blogs, for instance, suggests that these are a frequent source of trouble. There are no prospective clinical studies available on current IIS and insulin formulations that provide representative data on the type and frequency of issues with infusion sets. The introduction of new IISs and patch pumps may foster a reassessment of available products and of patient problems related to their use. The aim of this review is to summarize the current knowledge and recommendations about IISs and to highlight potential directions of IIS development in order to make insulin absorption safer and more efficient. PMID:22920824

  12. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents.

    PubMed

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-11-08

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85 th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = -0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents.

  13. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  14. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    PubMed Central

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  15. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    PubMed

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Conversion from insulin glargine U-100 to insulin glargine U-300 or insulin degludec and the impact on dosage requirements.

    PubMed

    Pearson, Scott M; Trujillo, Jennifer M

    2018-04-01

    We wanted to determine whether basal insulin requirements change when patients transition from insulin glargine U-100 (Gla-100) to insulin glargine U-300 (Gla-300) or insulin degludec. This study involved subjects seen in the University of Colorado Health Endocrine Clinic who were transitioned from Gla-100 to either Gla-300 ( n = 95) or insulin degludec ( n = 39). The primary outcome was the difference between baseline Gla-100 dose and dose of Gla-300 or insulin degludec prescribed after first follow-up visit within 1-12 months. Secondary outcomes included changes in glycemic control and empiric dose conversion from Gla-100 to Gla-300 or insulin degludec on the day of transition. Wilcoxon rank sum tests evaluated changes in insulin doses, and paired t tests assessed changes in glycemic control using GraphPad statistical software. Median daily basal insulin dose increased for individuals transitioned from Gla-100 to Gla-300 from 30 [19-60 interquartile range (IQR)] units at baseline to 34.5 (19-70 IQR) units after follow up ( p = 0.01). For patients transitioned to insulin degludec, dose changes from baseline to follow up were not significantly different ( p = 0.56). At the time of transition, the prescribed dose of Gla-300 or insulin degludec did not significantly differ from the previous dose of Gla-100 ( p = 0.73 and 0.28, respectively), indicating that empiric dose adjustments were not routinely prescribed. Patients who transitioned from Gla-100 to Gla-300 had increased basal insulin requirements between visits, while basal insulin requirements for those transitioned from Gla-100 to insulin degludec were not significantly different.

  17. Conversion from insulin glargine U-100 to insulin glargine U-300 or insulin degludec and the impact on dosage requirements

    PubMed Central

    Trujillo, Jennifer M.

    2018-01-01

    Background: We wanted to determine whether basal insulin requirements change when patients transition from insulin glargine U-100 (Gla-100) to insulin glargine U-300 (Gla-300) or insulin degludec. Methods: This study involved subjects seen in the University of Colorado Health Endocrine Clinic who were transitioned from Gla-100 to either Gla-300 (n = 95) or insulin degludec (n = 39). The primary outcome was the difference between baseline Gla-100 dose and dose of Gla-300 or insulin degludec prescribed after first follow-up visit within 1–12 months. Secondary outcomes included changes in glycemic control and empiric dose conversion from Gla-100 to Gla-300 or insulin degludec on the day of transition. Wilcoxon rank sum tests evaluated changes in insulin doses, and paired t tests assessed changes in glycemic control using GraphPad statistical software. Results: Median daily basal insulin dose increased for individuals transitioned from Gla-100 to Gla-300 from 30 [19–60 interquartile range (IQR)] units at baseline to 34.5 (19–70 IQR) units after follow up (p = 0.01). For patients transitioned to insulin degludec, dose changes from baseline to follow up were not significantly different (p = 0.56). At the time of transition, the prescribed dose of Gla-300 or insulin degludec did not significantly differ from the previous dose of Gla-100 (p = 0.73 and 0.28, respectively), indicating that empiric dose adjustments were not routinely prescribed. Conclusions: Patients who transitioned from Gla-100 to Gla-300 had increased basal insulin requirements between visits, while basal insulin requirements for those transitioned from Gla-100 to insulin degludec were not significantly different. PMID:29619208

  18. Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.

    PubMed

    Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A

    2017-10-01

    Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.

  19. Clinical use of the co-formulation of insulin degludec and insulin aspart.

    PubMed

    Kumar, A; Awata, T; Bain, S C; Ceriello, A; Fulcher, G R; Unnikrishnan, A G; Arechavaleta, R; Gonzalez-Gálvez, G; Hirose, T; Home, P D; Kaku, K; Litwak, L; Madsbad, S; Pinget, M; Mehta, R; Mithal, A; Tambascia, M; Tibaldi, J; Christiansen, J S

    2016-08-01

    To provide a review of the available data and practical use of insulin degludec with insulin aspart (IDegAsp). Premixed insulins provide basal and prandial glucose control; however, they have an intermediate-acting prandial insulin component and do not provide as effective basal coverage as true long-acting insulins, owing to the physicochemical incompatibility of their individual components, coupled with the inflexibility of adjustment. The molecular structure of the co-formulation of IDegAsp, a novel insulin preparation, allows these two molecules to coexist without affecting their individual pharmacodynamic profiles. Clinical evidence in phase 2/3 trials of IDegAsp efficacy and safety in type 1 and type 2 diabetes mellitus (T1DM and T2DM) have been assessed and summarised. In people with T2DM, once- and twice-daily dosing provides similar overall glycaemic control (HbA1c ) to current modern insulins, but with lower risk of nocturnal hypoglycaemia. In prior insulin users, glycaemic control was achieved with lower or equal insulin doses vs. other basal+meal-time or premix insulin regimens. In insulin-naïve patients with T2DM, IDegAsp can be started once or twice-daily, based on individual need. People switching from more than once-daily basal or premix insulin therapy can be converted unit-to-unit to once-daily IDegAsp, although this strategy should be assessed by the physician on an individual basis. IDegAsp offers physicians and people with T2DM a simpler insulin regimen than other available basal-bolus or premix-based insulin regimens, with stable daytime basal coverage, a lower rate of hypoglycaemia and some flexibility in injection timing compared with premix insulins. © 2016 John Wiley & Sons Ltd.

  20. Challenges constraining insulin access in Nepal-a country with no local insulin production.

    PubMed

    Sharma, Abhishek; Bhandari, Parash Mani; Neupane, Dipika; Kaplan, Warren A; Mishra, Shiva Raj

    2018-05-01

    Nepal is facing an increasing burden of diabetes and relies almost entirely on insulin imported through India. We employed a modified version of the WHO/Health Action International standard survey to assess insulin availability and prices, along with qualitative interviews with insulin retailers (pharmacists) and wholesalers in the Kathmandu Valley, Nepal. The mean availability of the two human insulins listed on the 2011 Nepal Essential Medicine List were 14.3% and 42.85% in the surveyed private- and public-sector pharmacies, respectively, compared with the WHO target of 80% availability. The median consumer price of human insulin cartridges, analogue insulin cartridges and pens was, respectively, 2.1, 4.6 and 5.3 times that of human insulin vials (US$5.54). The insulin cartridges made in India were less expensive (p<0.001) than those made elsewhere. The lowest-paid worker would need to spend between 3 and 17 days' wages to purchase a monthly insulin supply out of pocket. Insulin access is limited in Kathmandu owing to low availability and the highly unaffordable price. Insulin access could improve with the government exploring additional suppliers, pooling insulin tenders, auditing insulin utilization and developing independent prescribing guidelines. Furthermore, there is a need to educate physicians and develop a consensus statement on insulin initiation to curb the growing analogue use and promote rational use.

  1. Insulin structure and stability.

    PubMed

    Brange, J; Langkjoer, L

    1993-01-01

    Insulin is composed of 51 amino acids in two peptide chains (A and B) linked by two disulfide bonds. The three-dimensional structure of the insulin molecule (insulin monomer), essentially the same in solution and in solid phase, exists in two main conformations. These differ in the extent of helix in the B chain which is governed by the presence of phenol or its derivatives. In acid and neutral solutions, in concentrations relevant for pharmaceutical formulation, the insulin monomer assembles to dimers and at neutral pH, in the presence of zinc ions, further to hexamers. Many crystalline modifications of insulin have been identified but only those with the hexamer as the basic unit are utilized in preparations for therapy. The insulin hexamer forms a relatively stable unit but some flexibility remains within the individual molecules. The intrinsic flexibility at the ends of the B chain plays an important role in governing the physical and chemical stability of insulin. A variety of chemical changes of the primary structure (yielding insulin derivatives), and physical modifications of the secondary to quaternary structures (resulting in "denaturation," aggregation, and precipitation) are known to affect insulin and insulin preparations during storage and use (Fig. 8). The tendency of insulin to undergo structural transformation resulting in aggregation and formation of insoluble insulin fibrils has been one of the most intriguing and widely studied phenomena in relation to insulin stability. Although the exact mechanism of fibril formation is still obscure, it is now clear that the initial step is an exposure of certain hydrophobic residues, normally buried in the three-dimensional structure, to the surface of the insulin monomer. This requires displacement of the COOH-terminal B-chain residues from their normal position which can only be accomplished via monomerization of the insulin. Therefore, most methods stabilizing insulin against fibrillation share the

  2. Cross-reactivity of insulin analogues with three insulin assays.

    PubMed

    Dayaldasani, A; Rodríguez Espinosa, M; Ocón Sánchez, P; Pérez Valero, V

    2015-05-01

    Immunometric assays have recently shown higher specificity in the detection of human insulin than radioimmunoassays with almost no cross-reaction with proinsulin or C peptide. The introduction of the new insulin analogues on the market, however, has raised the need to define their cross-reactivity in these assays. Several studies have been published in this regard with different results. The analogues studied were insulins lispro, aspart, glargine, detemir, and glulisine. Insulin concentrations were measured in Immulite(®) 2000 and Advia Centaur(®) XP (Siemens Healthcare Diagnostics), and Elecsys(®) Modular Analytics E170 (Roche). All samples were processed 15 times in the same analytical run following a random sequence. Those samples which showed statistically and clinically significant changes in insulin concentration were reprocessed using increasing concentrations of analogue, and this was done twice, using two different serum pools, one with a low concentration of insulin and one with a high concentration of insulin. In the Elecsys(®) E170 analyser, glargine showed statistical changes (comparison of mean concentrations with p < 0.05) and clinically significant changes in measured insulin (percentage difference 986.2% > reference change value: 59.8%), and the interference increased with increasing concentrations of analogue; the differences were not significant in the case of the other analogues. In the Advia Centaur(®) and Immulite(®) 2000 only the results for glulisine did not present significance (percentage difference 44.7% < reference change value 103.5%). Increasing concentrations of aspart, glargine, and lispro showed increased interference in Immulite(®) 2000. In the Elecsys(®) E170 assay, relevant cross-reactivity was only detected with insulin glargine, whereas in the other analysers all analogues except glulisine showed significant interference. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  4. Fluid Distribution Pattern in Adult-Onset Congenital, Idiopathic, and Secondary Normal-Pressure Hydrocephalus: Implications for Clinical Care.

    PubMed

    Yamada, Shigeki; Ishikawa, Masatsune; Yamamoto, Kazuo

    2017-01-01

    In spite of growing evidence of idiopathic normal-pressure hydrocephalus (NPH), a viewpoint about clinical care for idiopathic NPH is still controversial. A continuous divergence of viewpoints might be due to confusing classifications of idiopathic and adult-onset congenital NPH. To elucidate the classification of NPH, we propose that adult-onset congenital NPH should be explicitly distinguished from idiopathic and secondary NPH. On the basis of conventional CT scan or MRI, idiopathic NPH was defined as narrow sulci at the high convexity in concurrent with enlargement of the ventricles, basal cistern and Sylvian fissure, whereas adult-onset congenital NPH was defined as huge ventricles without high-convexity tightness. We compared clinical characteristics and cerebrospinal fluid distribution among 85 patients diagnosed with idiopathic NPH, 17 patients with secondary NPH, and 7 patients with adult-onset congenital NPH. All patients underwent 3-T MRI examinations and tap-tests. The volumes of ventricles and subarachnoid spaces were measured using a 3D workstation based on T2-weighted 3D sequences. The mean intracranial volume for the patients with adult-onset congenital NPH was almost 100 mL larger than the volumes for patients with idiopathic and secondary NPH. Compared with the patients with idiopathic or secondary NPH, patients with adult-onset congenital NPH exhibited larger ventricles but normal sized subarachnoid spaces. The mean volume ratio of the high-convexity subarachnoid space was significantly less in idiopathic NPH than in adult-onset congenital NPH, whereas the mean volume ratio of the basal cistern and Sylvian fissure in idiopathic NPH was >2 times larger than that in adult-onset congenital NPH. The symptoms of gait disturbance, cognitive impairment, and urinary incontinence in patients with adult-onset congenital NPH tended to progress more slowly compared to their progress in patients with idiopathic NPH. Cerebrospinal fluid distributions and

  5. Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection

    NASA Astrophysics Data System (ADS)

    Park, Eun-Joo; Dodds, Jeff; Barrie Smith, Nadine

    2010-03-01

    Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20% duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190±96 mg/dl (mean±SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.

  6. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    PubMed Central

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched

  7. A two year observational study of nicotinamide and intensive insulin therapy in patients with recent onset type 1 diabetes mellitus.

    PubMed

    Crinó, A; Schiaffini, R; Ciampalini, P; Suraci, M C; Manfrini, S; Visalli, N; Matteoli, M C; Patera, P; Buzzetti, R; Guglielmi, C; Spera, S; Costanza, F; Fioriti, E; Pitocco, D; Pozzilli, P

    2005-08-01

    A number of trials have evaluated residual beta-cell function in patients with recent onset type 1 diabetes mellitus (DM1) treated with nicotinamide in addition to intensive insulin therapy (IIT). In most studies, only a slight decline of C-peptide secretion was observed 12 months after diagnosis; however, no data is available on C-peptide secretion and metabolic control in patients continuing nicotinamide and IIT for up to 2 years after diagnosis. We retrospectively analysed data from 25 patients (mean age 14.7 years +/- 5 SD) with DM1 in whom nicotinamide at a dose of 25 mg/kg b. wt. was added from diagnosis (< 4 weeks) to IIT (three injections of regular insulin at meals + one NPH at bed time) and continued for up to 2 years after diagnosis. Data were also analysed from patients (n = 27) in whom IIT was introduced at diagnosis and who were similarly followed for 2 years. Baseline C-peptide as well as insulin dose and HbA1c levels were evaluated at 12 and 24 months after diagnosis. In the course of the follow-up, patients on nicotinamide + IIT or IIT alone did not significantly differ in terms of C-peptide secretion (values at 24 months in the two groups were 0.19 +/- 0.24 nM vs 0.19 +/- 0.13 nM, respectively). Insulin requirement (0.6 +/- 0.3 U/kg/day vs 0.7 +/- 0.2 U/kg/day at 24 months, respectively) did not differ between the two groups. However, HbA1c was significantly lower 2 years after diagnosis in patients treated with nicotinamide + IIT (6.09 +/- 0.9% vs 6.98 +/- 0.9%, respectively, p < 0.01). No adverse effects were observed in patients receiving nicotinamide for 2 years. Implementation of IIT with the addition of nicotinamide at diagnosis continued for 2 years improves metabolic control as assessed by HbA1c. In both nicotinamide and control patients, no decline in C-peptide was detected 2 years after diagnosis, indicating that IIT preserves C-peptide secretion. We conclude that nicotinamide + IIT at diagnosis of DM1 prolonged for up to 2 years can be

  8. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients.

    PubMed

    Hu, Xiaolei; Chen, Fengling

    2018-01-01

    Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs). IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS). The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS. © 2018 The authors.

  9. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients

    PubMed Central

    Hu, Xiaolei

    2018-01-01

    Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs). IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS). The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS. PMID:29233817

  10. The effect of tubing dwell time on insulin adsorption during intravenous insulin infusions.

    PubMed

    Thompson, Cecilia D; Vital-Carona, Jessica; Faustino, E Vincent S

    2012-10-01

    Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration-dwell time combination five times. Comparisons were performed using analyses of variance. For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy.

  11. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance.

    PubMed

    Kim, Mee Kyoung; Reaven, Gerald M; Kim, Sun H

    2017-02-01

    The aim of this study was to better delineate the complex interrelationship among insulin resistance (IR), secretion rate (ISR), and clearance rate (ICR) to increase plasma insulin concentrations in obesity. Healthy volunteers (92 nondiabetic individuals) had an insulin suppression test to measure IR and graded-glucose infusion test to measure ISR and ICR. Obesity was defined as a body mass index (BMI) ≥30 kg/m 2 , and IR was defined as steady-state plasma glucose (SSPG) ≥10 mmol/L during the insulin suppression test. Plasma glucose and insulin concentrations, ISR, and ICR were compared in three groups: insulin sensitive/overweight; insulin sensitive/obesity; and insulin resistant/obesity. Compared with the insulin-sensitive/overweight group, the insulin-sensitive/obesity had significantly higher insulin area under the curve (AUC) and ISR AUC during the graded-glucose infusion test (P < 0.001). Glucose AUC and ICR were similar. The insulin-resistant/obesity group had higher insulin AUC and ISR AUC compared with the insulin-sensitive/obesity but also had higher glucose AUC and decreased ICR (P < 0.01). In multivariate analysis, both BMI and SSPG were significantly associated with ISR. Plasma insulin concentration and ISR are increased in individuals with obesity, irrespective of degree of IR, but a decrease in ICR is confined to the subset of individuals with IR. © 2016 The Obesity Society.

  12. Insulin pumps and insulin quality--requirements and problems.

    PubMed

    Brange, J; Havelund, S

    1983-01-01

    In developing insulin solution suitable for delivery devices the chemical and biological stability, as well as the physical stability, must be taken into consideration. Addition of certain mono- and disaccharides increases the physical stability of neutral insulin solutions, but concurrently the chemical and biological stability decrease to an unacceptable degree. Addition of Ca-ions in low concentrations offers a physiologically acceptable method for stabilizing neutral insulin solutions against heat precipitation without affecting the quality, including the chemical and biological stability.

  13. Comparison of prandial AIR inhaled insulin alone to intensified insulin glargine alone and to AIR insulin plus intensified insulin glargine in patients with type 2 diabetes previously treated with once-daily insulin glargine.

    PubMed

    Rosenstock, Julio; Eliaschewitz, Freddy G; Heilmann, Cory R; Muchmore, Douglas B; Hayes, Risa P; Belin, Ruth M

    2009-09-01

    Patients with type 2 diabetes often initiate insulin with once-daily basal insulin. Over time, many patients intensify their insulin regimens in an attempt to attain and sustain glycemic targets. This study compares three intensification approaches: changing insulin glargine to preprandial AIR inhaled insulin (developed by Alkermes, Inc. [Cambridge, MA] and Eli Lilly and Company [Indianapolis, IN]; AIR is a registered trademark of Alkermes, Inc.), intensifying glargine via validated titration algorithms (IG), or adding AIR insulin while intensifying glargine (AIR + IG). Five hundred sixty patients with hemoglobin A(1c) (A1C) of 7.5-10.5%, on one or more antihyperglycemic medications, and on once-daily insulin glargine for > or =4 months were randomly allocated to one of the three treatments lasting 52 weeks. The primary objective assessed between-group differences in A1C mean change from baseline to 24 weeks using last-observation-carried-forward (LOCF) in the intent-to-treat population. At 24 weeks, A1C was reduced from a mean baseline of 8.5% to 7.7%, 7.9%, and 7.5% for the AIR, IG, and AIR + IG groups, respectively. AIR produced 0.20% greater A1C decrease than IG (least-squares mean difference = -0.20%; 95% confidence interval [CI], -0.39, -0.02). AIR + IG had a 0.35% greater A1C decrease versus IG (95% CI, -0.57, -0.13). The -0.15% difference between AIR + IG versus AIR was not significant (P < 0.198). More hypoglycemia categorized as severe occurred with AIR alone versus IG alone at LOCF end points. More nocturnal hypoglycemia occurred with IG alone versus AIR alone and AIR + IG. Preprandial inhaled insulin provides an alternative for patients not optimized on insulin glargine alone. Glycemic control, hypoglycemic risk, delivery preference, and regimen complexity must be considered when selecting insulin initiation and optimization regimens.

  14. Toward understanding insulin fibrillation.

    PubMed

    Brange, J; Andersen, L; Laursen, E D; Meyn, G; Rasmussen, E

    1997-05-01

    Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.

  15. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    PubMed

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose < or =215 mg/dL. Twenty patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p < .002), whereas conventional

  16. The Effect of Tubing Dwell Time on Insulin Adsorption During Intravenous Insulin Infusions

    PubMed Central

    Vital-Carona, Jessica; Faustino, E. Vincent S.

    2012-01-01

    Abstract Background Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. Materials and Methods In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration–dwell time combination five times. Comparisons were performed using analyses of variance. Results For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. Conclusions We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy. PMID:22746979

  17. Nanolayer encapsulation of insulin-chitosan complexes improves efficiency of oral insulin delivery

    PubMed Central

    Song, Lei; Zhi, Zheng-liang; Pickup, John C

    2014-01-01

    Current oral insulin formulations reported in the literature are often associated with an unpredictable burst release of insulin in the intestine, which may increase the risk for problematic hypoglycemia. The aim of the study was to develop a solution based on a nanolayer encapsulation of insulin-chitosan complexes to afford sustained release after oral administration. Chitosan/heparin multilayer coatings were deposited onto insulin-chitosan microparticulate cores in the presence of poly(ethylene) glycol (PEG) in the precipitating and coating solutions. The addition of PEG improved insulin loading and minimized an undesirable loss of the protein resulting from redissolution. Nanolayer encapsulation and the formation of complexes enabled a superior loading capacity of insulin (>90%), as well as enhanced stability and 74% decreased solubility at acid pH in vitro, compared with nonencapsulated insulin. The capsulated insulin administered by oral gavage lowered fasting blood glucose levels by up to 50% in a sustained and dose-dependent manner and reduced postprandial glycemia in streptozotocin-induced diabetic mice without causing hypoglycemia. Nanolayer encapsulation reduced the possibility of rapid and erratic falls of blood glucose levels in animals. This technique represents a promising strategy to promote the intestinal absorption efficiency and release behavior of the hormone, potentially enabling an efficient and safe route for oral insulin delivery of insulin in diabetes management. PMID:24833901

  18. Comparison of insulin analogue B9AspB27Glu and soluble human insulin in insulin-treated diabetes.

    PubMed

    Kang, S; Owens, D R; Vora, J P; Brange, J

    1990-02-10

    Postprandial plasma glucose excursions and plasma levels of free insulin after subcutaneous bolus injection of a rapidly absorbed monomeric insulin analogue (B9AspB27Glu) or soluble human insulin ('Actrapid HM' U100) were studied in six insulin-treated diabetic subjects. 10 U actrapid or an equimolar amount of the analogue were injected, in random order with an interval of 1 week, immediately before a 500 kcal test meal. Basal insulin levels were similar on the 2 study days (mean 74.1 [SE 5.1] pmol/l, actrapid; 79.7 [13.0] pmol/l, analogue). After injection of actrapid plasma free insulin levels rose slowly, reaching a plateau by 105 min at 222 (19) pmol/l. Injection of the analogue resulted in a rapid early peak at 30 min (798 [112] pmol/l), and levels were significantly higher than those after actrapid between 15 and 210 min. The more physiological plasma insulin levels achieved with the analogue were accompanied by a substantial reduction in postprandial plasma glucose excursions; the integrated area under the incremental plasma glucose curve was 45% lower after the analogue than after actrapid.

  19. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    PubMed

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  1. Re-evaluation of Sepharose-insulin as a tool for the study of insulin action.

    PubMed Central

    Kolb, H J; Renner, R; Hepp, K D; Weiss, L; Wieland, O H

    1975-01-01

    The biological activity of Sepharose-insulin in different assays in vitro, e.g., stimulation of glucose oxidation, lipogenesis, and antilipolysis and activation of pyruvate dehydrogenase (EC 1.2.4.1) activity, has been investigated. According to amino acid analysis, between 270 and 330 mug (6.9-8.2 U) of insulin were coupled per ml of packed beads. Related to the total insulin content, 0.2-0.7% of the insulin was biologically active. Comparable biological activity was observed with isolated fat cells and fat pad pieces. After incubation with tissue or cells, Sepharose-insulin particles were separated by centrifugation from the medium. The clear supernatant was assayed for biologically and immunologically reactive insulin and contained soluble insulin activity. A quantitative evaluation of the soluble biological and immunological insulin activity in the supernatant accounted for the total insulin activity of Sepharose-insulin. PMID:1054501

  2. Insulin Test

    MedlinePlus

    ... sometimes used in conjunction with the glucose tolerance test (GTT) . In this situation, blood glucose and insulin levels are measured at pre-established time intervals to evaluate insulin resistance. When ...

  3. Insulin production rate in normal man as an estimate for calibration of continuous intravenous insulin infusion in insulin-dependent diabetic patients.

    PubMed

    Waldhäusl, W K; Bratusch-Marrain, P R; Francesconi, M; Nowotny, P; Kiss, A

    1982-01-01

    This study examines the feasibility of deriving the 24-h insulin requirement of insulin-dependent diabetic patients who were devoid of any endogenous insulin release (IDD) from the insulin-production rate (IPR) of healthy man (basal, 17 mU/min; stimulated 1.35 U/12.5 g glucose). To this end, continuous intravenous insulin infusion (CIVII) was initiated at a precalculated rate of 41.2 +/- 4.6 (SD) U/24 h in IDD (N - 12). Blood glucose profiles were compared with those obtained during intermittent subcutaneous (s.c.) insulin therapy (IIT) and those of healthy controls (N = 7). Regular insulin (Hoechst CS) was infused with an adapted Mill Hill Infuser at a basal infusion rate of 1.6 U/h (6:00 a.m. to 8:00 p.m.), and of 0.8 U/h from 8:00 p.m. to 6:00 a.m. Preprandial insulin (3.2-6.4 U) was added for breakfast, lunch, and dinner. Daily individual food intake totaled 7688 +/- 784 kJ (1836 +/- 187 kcal)/24 h including 184 +/- 37 g of glucose. Proper control of blood glucose (BG) (mean BG 105 +/- 10 mg/dl; mean amplitude of glycemic excursions 54 +/- 18 mg/dl; and 1 h postprandial BG levels not exceeding 160 mg/dl) and of plasma concentrations of beta-hydroxybutyrate and lactate was maintained by 41.4 +/- 4.4 U insulin/24 h. Although BG values only approximated the upper normal range as seen in healthy controls, they were well within the range reported by others during CIVII. Therefore, we conclude that in adult IDD completely devoid of endogenous insulin (1) the IPR of normal man can be used during CIVII as an estimate for the patient's minimal insulin requirement per 24 h, and (2) this approach allows for a blood glucose profile close to the upper range of a normal control group. Thus, deriving a patient's daily insulin dose from the insulin production rate of healthy man may add an additional experimental protocol which aids in making general calculations of a necessary insulin dose instead of using trial and error or a closed-loop insulin infusion system.

  4. Insulin resistance in dairy cows.

    PubMed

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Appropriate insulin initiation dosage for insulin-naive type 2 diabetes outpatients receiving insulin monotherapy or in combination with metformin and/or pioglitazone.

    PubMed

    Liao, Lin; Yang, Ming; Qiu, Lu-Lu; Mou, Ya-Ru; Zhao, Jia-Jun; Dong, Jian-Jun

    2010-12-01

    Few studies have given suggestions on appropriate initiation insulin dosage when combined with oral antidiabetic drugs (OADs). This research was to investigate appropriate initiation insulin doses for insulin-naive type 2 diabetes patients with different combinations and the relationship between insulin dosage and relevant factors. This was a randomized, open-label, treat to target study. The target was 20% decrease of both fasting plasma glucose (FPG) and 2 hours post-breakfast blood glucose (P2hBG). One hundred and forty-seven insulin-naive Chinese patients recruited were randomly assigned to 3 groups: group A, patients received insulin monotherapy; group B, received insulin plus metformin (0.5 g, tid) and group C, received insulin plus metformin (0.5 g, tid) and pioglitazone (15 mg, qd). Insulin doses were initiated with a dose of 0.3 U×kg(-1)×d(-1) and titrated according to FPG and P2hBG till reached the targets. Both the time of getting 20% reduction of FPG and P2hBG showed significant differences among the three groups. The time was shortest in Group C. The insulin doses needed to achieve glucose reduction of 20% in three treatment groups were (0.40 ± 0.04) U×kg(-1)×d(-1) for Group A, (0.37 ± 0.04) U×kg(-1)×d(-1) for Group B, and (0.35 ± 0.03) U×kg(-1)×d(-1) for Group C, respectively. Multiple linear stepwise regression analysis showed that insulin doses correlated with body weight, FPG, diabetes duration, age and history of sulfonylurea treatment. The standardized regression coefficients were 0.871, 0.322, 0.089, 0.067 and 0.063 (with all P < 0.05). To achieve blood glucose's reduction of 20% within safety context, initial insulin doses were recommended as the following: 0.40 U×kg(-1)×d(-1) for insulin mono-therapy, 0.37 U×kg(-1)×d(-1) for insulin plus metformin treatment, and 0.35 U×kg(-1)×d(-1) for insulin plus metformin and pioglitazone treatment in Chinese type 2 diabetes outpatients. Body weight is found the most closely related factor

  6. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    PubMed

    Vora, J P; Owens, D R; Dolben, J; Atiea, J A; Dean, J D; Kang, S; Burch, A; Brange, J

    1988-11-12

    To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. Study in normal people at a diabetes research unit and a university department of medical physics. Seven healthy male volunteers aged 20-39 not receiving any other drugs. After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U/kg respectively. The response of glucagon substantiated the earlier and

  7. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    PubMed Central

    Vora, J. P.; Owens, D. R.; Dolben, J.; Atiea, J. A.; Dean, J. D.; Kang, S.; Burch, A.; Brange, J.

    1988-01-01

    OBJECTIVE--To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. DESIGN--Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. SETTING--Study in normal people at a diabetes research unit and a university department of medical physics. SUBJECTS--Seven healthy male volunteers aged 20-39 not receiving any other drugs. INTERVENTIONS--After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. END POINT--To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U

  8. Inhibition of Insulin Degrading Enzyme and Insulin Degradation by UV-Killed Lactobacillus acidophilus.

    PubMed

    Neyazi, Nadia; Motevaseli, Elahe; Khorramizadeh, Mohammad Reza; Mohammadi Farsani, Taiebeh; Nouri, Zahra; Nasli Esfahani, Ensieh; Ghahremani, Mohammad Hossein

    2018-05-11

    Probiotics have beneficial effects on management of type 2 diabetes (T2D). The major hallmarks of T2D are insulin deficiency and insulin resistance which emphasize insulin therapy in onset of disease. Lactobacilli such as Lactobacillus acidophilus ( L. acidophilus ) have well known properties on prevention of T2D and insulin resistance but not on insulin degradation. Insulin-degrading enzyme (IDE) degrades insulin in the human body. We studied the effects of cell-free supernatant (CFS) and ultraviolet (UV)-killed L. acidophilus (ATCC 314) on IDE activity and insulin degradation in vitro. Cell growth inhibition by CFS and UV-killed L. acidophilus (ATCC 314) was studied and Western blotting and a fluoregenic assay was performed to determine IDE expression and its activity, respectively. Insulin degradation was evaluated by sandwich enzyme-linked immunosorbent assay(ELISA). IDE expression and activity was reduced by CFS and UV-killed L. acidophilus (ATCC 314). Although, decreased enzyme expression and activity was not significant for CFS in contrast to MRL (MRS with same pH as CFS). Also, reduction in IDE activity was not statistically considerable when compared to IDE expression. Insulin degradation was increased by CFS but decreased by UV-killed L. acidophilus (ATCC 314).

  9. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.

    PubMed

    Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D

    2004-06-11

    An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules.

  10. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme.

    PubMed

    Affholter, J A; Cascieri, M A; Bayne, M L; Brange, J; Casaretto, M; Roth, R A

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, we have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor I (25 nM and approximately 16,000 nM, respectively), the first set of analogues studied were hybrid molecules of insulin and IGF I. IGF I mutants [insB1-17,17-70]IGF I, [Tyr55,Gln56]IGF I, and [Phe23,Phe24,Tyr25]IGF I have been synthesized and share the property of having insulin-like amino acids at positions corresponding to primary sites of cleavage of insulin by IDE. Whereas the first two exhibit affinities for IDE similar to that of wild type IGF I, the [Phe23,Phe24,Tyr25]IGF I analogue has a 32-fold greater affinity for the immobilized enzyme. Replacement of Phe-23 by Ser eliminates this increase. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Metformin and insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific /sup 125/I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific /sup 125/I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitromore » to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded.« less

  12. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND

  13. Losartan increases muscle insulin delivery and rescues insulin's metabolic action during lipid infusion via microvascular recruitment

    PubMed Central

    Wang, Nasui; Chai, Weidong; Zhao, Lina; Tao, Lijian; Cao, Wenhong

    2013-01-01

    Insulin delivery and transendothelial insulin transport are two discrete steps that limit muscle insulin action. Angiotensin II type 1 receptor (AT1R) blockade recruits microvasculature and increases glucose use in muscle. Increased muscle microvascular perfusion is associated with increased muscle delivery and action of insulin. To examine the effect of acute AT1R blockade on muscle insulin uptake and action, rats were studied after an overnight fast to examine the effects of losartan on muscle insulin uptake (protocol 1), microvascular perfusion (protocol 2), and insulin's microvascular and metabolic actions in the state of insulin resistance (protocol 3). Endothelial cell insulin uptake was assessed, using 125I-insulin as tracer. Systemic lipid infusion was used to induce insulin resistance. Losartan significantly increased muscle insulin uptake (∼60%, P < 0.03), which was associated with a two- to threefold increase in muscle microvascular blood volume (MBV; P = 0.002) and flow (MBF; P = 0.002). Losartan ± angiotensin II had no effect on insulin internalization in cultured endothelial cells. Lipid infusion abolished insulin-mediated increases in muscle MBV and MBF and lowered insulin-stimulated whole body glucose disposal (P = 0.0001), which were reversed by losartan administration. Inhibition of nitric oxide synthase abolished losartan-induced muscle insulin uptake and reversal of lipid-induced metabolic insulin resistance. We conclude that AT1R blockade increases muscle insulin uptake mainly via microvascular recruitment and rescues insulin's metabolic action in the insulin-resistant state. This may contribute to the clinical findings of decreased cardiovascular events and new onset of diabetes in patients receiving AT1R blockers. PMID:23299501

  14. Tea enhances insulin activity.

    PubMed

    Anderson, Richard A; Polansky, Marilyn M

    2002-11-20

    The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.

  15. Insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the procedure in insulin receptors. Part B: Clinical assessment, biological responses, and comparison to the IGF-1 receptor. Topics covered include: Insulin and IGF-1 receptors, Clinical assessment of receptor functions, and Biological responses.

  16. Subetta increases phosphorylation of insulin receptor β-subunit alone and in the presence of insulin

    PubMed Central

    Gorbunov, E A; Nicoll, J; Kachaeva, E V; Tarasov, S A; Epstein, O I

    2015-01-01

    It has been previously shown that Subetta (a drug containing released-active forms of antibodies to the insulin receptor β-subunit and antibodies to endothelial nitric oxide synthase) stimulated insulin-induced adiponectin production by mature human adipocytes in the absence of insulin. Therefore, it was assumed that Subetta could activate the insulin receptor. To confirm this hypothesis, the capacity of Subetta to activate the insulin receptor in mature human adipocytes in the absence or presence of the insulin was investigated. Cells were incubated either with Subetta or with vehicle, or with basal medium for 3 days. Then, adipocytes were treated with water or insulin (100 nm) for 15 min. Following treatment, lysates were prepared and phosphorylation of insulin receptor β-subunits was analyzed by western blot analysis. It was shown that Subetta significantly increased (P<0.001) the ‘phosphorylated-insulin receptor β-subunit/total insulin receptor β-subunit' ratios in both the presence and the absence of insulin. These results support previously published data and indicate that Subetta could activate the insulin receptor through the effect on its β-subunits, whose conformational state is essential for insulin receptor activation. This action might serve as one of the primary mechanisms of the drug's antidiabetic effect. PMID:26148148

  17. Effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men.

    PubMed

    González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Hernández-Corona, Diana M; Ramírez-Rodríguez, Alejandra M

    2017-10-01

    To evaluate the effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men without diabetes. A randomized, double-blind, placebo-controlled clinical trial was carried out in obese male patients between 30 and 50 years of age. Eighteen subjects were randomly assigned to two groups of nine patients each. During a 28-day period, subjects received 5 mg orally of tadalafil or placebo each night. Patients were evaluated before and after the intervention. Total insulin secretion and first phase of insulin secretion were calculated by insulinogenic index and Stumvoll index, respectively, and insulin sensitivity was calculated using the Matsuda index. Tolerability and compliance were evaluated permanently throughout the study. There were no significant differences after administration of tadalafil in total insulin secretion (0.82 ± 0.45 vs. 0.61 ± 0.27, p = 0.594), first phase of insulin secretion (1332 ± 487 vs. 1602 ± 800, p = 0.779) and insulin sensitivity (4.6 ± 1.2 vs. 4.9 ± 2.5, p = 0.779). No significant differences were shown in other measurements. Tadalafil administration for 28 days did not modify insulin secretion or insulin sensitivity in obese men.

  18. Treatment of severe insulin resistance in pregnancy with 500 units per milliliter of concentrated insulin.

    PubMed

    Mendez-Figueroa, Hector; Maggio, Lindsay; Dahlke, Joshua D; Daley, Julie; Lopes, Vrishali V; Coustan, Donald R; Rouse, Dwight J

    2013-07-01

    To evaluate glycemic control and pregnancy outcomes among pregnant women with severe insulin resistance treated with 500 units/mL concentrated insulin. Retrospective analysis of gravid women with severe insulin resistance (need for greater than 100 units of insulin per injection or greater than 200 units/d) treated with either 500 units/mL concentrated insulin or conventional insulin therapy. We performed a two-part analysis: 1) between gravid women treated with and without 500 units/mL concentrated insulin; and 2) among gravid women treated with 500 units/mL concentrated insulin, comparing glycemic control before and after its initiation. Seventy-three pregnant women with severe insulin resistance were treated with 500 units/mL concentrated insulin and 78 with conventional insulin regimens. Patients treated with 500 units/mL concentrated insulin were older and more likely to have type 2 diabetes mellitus. Average body mass index was comparable between both groups (38.6 compared with 40.4, P=.11) as were obstetric and perinatal outcomes and glycemic control during the last week of gestation. Within the 500 units/mL concentrated insulin cohort, after initiation of this medication, fasting and postprandial blood glucose concentrations improved. However, the rates of blood glucose values less than 60 mg/dL and less than 50 mg/dL were higher in the 500 units/mL concentrated insulin group after initiation than before, 4.8% compared with 2.0% (P<.01) and 2.0% compared with 0.7% (P<.01), respectively. The use of 500 units/mL concentrated insulin in severely obese insulin-resistant pregnant women confers similar glycemic control compared with traditional insulin regimens but may increase the risk of hypoglycemia. II.

  19. Immunohistochemical expression of insulin, glucagon, and somatostatin in pancreatic islets of horses with and without insulin resistance.

    PubMed

    Newkirk, Kim M; Ehrensing, Gordon; Odoi, Agricola; Boston, Raymond C; Frank, Nicholas

    2018-02-01

    OBJECTIVE To assess insulin, glucagon, and somatostatin expression within pancreatic islets of horses with and without insulin resistance. ANIMALS 10 insulin-resistant horses and 13 insulin-sensitive horses. PROCEDURES For each horse, food was withheld for at least 10 hours before a blood sample was collected for determination of serum insulin concentration. Horses with a serum insulin concentration < 20 μU/mL were assigned to the insulin-sensitive group, whereas horses with a serum insulin concentration > 20 μU/mL underwent a frequently sampled IV glucose tolerance test to determine sensitivity to insulin by minimal model analysis. Horses with a sensitivity to insulin < 1.0 × 10 -4 L•min -1 •mU -1 were assigned to the insulin-resistant group. All horses were euthanized with a barbiturate overdose, and pancreatic specimens were harvested and immunohistochemically stained for determination of insulin, glucagon, and somatostatin expression in pancreatic islets. Islet hormone expression was compared between insulin-resistant and insulin-sensitive horses. RESULTS Cells expressing insulin, glucagon, and somatostatin made up approximately 62%, 12%, and 7%, respectively, of pancreatic islet cells in insulin-resistant horses and 64%, 18%, and 9%, respectively, of pancreatic islet cells in insulin-sensitive horses. Expression of insulin and somatostatin did not differ between insulin-resistant and insulin-sensitive horses, but the median percentage of glucagon-expressing cells in the islets of insulin-resistant horses was significantly less than that in insulin-sensitive horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, in insulin-resistant horses, insulin secretion was not increased but glucagon production might be downregulated as a compensatory response to hyperinsulinemia.

  20. Comparison of Subcutaneous Regular Insulin and Lispro Insulin in Diabetics Receiving Continuous Nutrition

    PubMed Central

    Stull, Mamie C.; Strilka, Richard J.; Clemens, Michael S.; Armen, Scott B.

    2015-01-01

    Background: Optimal management of non–critically ill patients with diabetes maintained on continuous enteral feeding (CEN) is poorly defined. Subcutaneous (SQ) lispro and SQ regular insulin were compared in a simulated type 1 and type 2 diabetic patient receiving CEN. Method: A glucose-insulin feedback mathematical model was employed to simulate type 1 and type 2 diabetic patients on CEN. Each patient received 25 SQ injections of regular insulin or insulin lispro, ranging from 0-6 U. Primary endpoints were the change in mean glucose concentration (MGC) and change in glucose variability (GV); hypoglycemic episodes were also reported. The model was first validated against patient data. Results: Both SQ insulin preparations linearly decreased MGC, however, SQ regular insulin decreased GV whereas SQ lispro tended to increase GV. Hourly glucose concentration measurements were needed to capture the increase in GV. In the type 2 diabetic patient, “rebound hyperglycemia” occurred after SQ lispro was rapidly metabolized. Although neither SQ insulin preparation caused hypoglycemia, SQ lispro significantly lowered MGC compared to SQ regular insulin. Thus, it may be more likely to cause hypoglycemia. Analyses of the detailed glucose concentration versus time data suggest that the inferior performance of lispro resulted from its shorter duration of action. Finally, the effects of both insulin preparations persisted beyond their duration of actions in the type 2 diabetic patient. Conclusions: Subcutaneous regular insulin may be the short-acting insulin preparation of choice for this subset of diabetic patients. Clinical trial is required before a definitive recommendation can be made. PMID:26134836

  1. Insulin signaling pathways in a patient with insulin resistance of difficult management - a case report

    PubMed Central

    2009-01-01

    Insulin signalling pathways were investigated in a 33 year-old woman with immunologic insulin resistance. Her past medical history was remarkable for intermittent use of insulin and allergic reactions to several drugs, and measure of plasma anti-insulin antibodies level corroborated the clinical suspicion of immune mediated insulin resistance (8074 nU/ml - RIA - Ref value: <60). Treatment with several immunosuppressive regimens was tried, however the results were disappointing. Possible subcellular mechanisms of insulin resistance were investigated by performing analysis of insulin receptor and post receptor signaling in skeletal muscle biopsy. The expression of insulin receptor (IR), insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT-4) was evaluated in total extract from muscle tissue by Western blotting. Basal IR, IRS-1 and GLUT-4 expression was detected, however receptor autophosphorylation was not observed. A study of translocation of GLUT-4 to plasma membrane showed that tissue presented low levels of membrane-associated GLUT-4. When in vitro stimulation was undertaken, tissue was capable to be responsive to insulin. Our results suggest that even though IR expression was normally occurring, IR β-subunit tyrosine kinase activity in muscle was down-regulated leading to alterations in insulin post receptor signaling. Consistent with normal insulin receptor and post receptor signaling, our results were compatible with decreased insulin binding to IR probably due to neutralization by anti-insulin antibodies. In conclusion, this patient has immunologic insulin resistance and treatment should be based on immunosuppressive drugs as tolerated. PMID:19941665

  2. Therapeutics of diabetes mellitus: focus on insulin analogues and insulin pumps.

    PubMed

    Valla, Vasiliki

    2010-01-01

    Inadequately controlled diabetes accounts for chronic complications and increases mortality. Its therapeutic management aims in normal HbA1C, prandial and postprandial glucose levels. This review discusses diabetes management focusing on the latest insulin analogues, alternative insulin delivery systems and the artificial pancreas. Intensive insulin therapy with multiple daily injections (MDI) allows better imitation of the physiological rhythm of insulin secretion. Longer-acting, basal insulin analogues provide concomitant improvements in safety, efficacy and variability of glycaemic control, followed by low risks of hypoglycaemia. Continuous subcutaneous insulin infusion (CSII) provides long-term glycaemic control especially in type 1 diabetic patients, while reducing hypoglycaemic episodes and glycaemic variability. Continuous subcutaneous glucose monitoring (CGM) systems provide information on postprandial glucose excursions and nocturnal hypo- and/or hyperglycemias. This information enhances treatment options, provides a useful tool for self-monitoring and allows safer achievement of treatment targets. In the absence of a cure-like pancreas or islets transplants, artificial "closed-loop" systems mimicking the pancreatic activity have been also developed. Individualized treatment plans for insulin initiation and administration mode are critical in achieving target glycaemic levels. Progress in these fields is expected to facilitate and improve the quality of life of diabetic patients.

  3. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin.

    PubMed

    Chono, Sumio; Togami, Kohei; Itagaki, Shirou

    2017-11-01

    We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer. The present study provides the useful information for development of noninvasive treatment of diabetes. Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin. DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased. We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.

  4. Insulin glargine 300 units/mL: A new basal insulin product for diabetes mellitus.

    PubMed

    Clements, Jennifer N; Bello, Larkin

    2016-03-15

    The pharmacokinetics, efficacy, and safety of U-300 insulin glargine for the management of diabetes are reviewed. U-300 (300 units/mL) insulin glargine is a long-acting basal insulin with low within-day variability, high day-to-day reproducibility, longer duration, and constant pharmacokinetic profile compared with U-100 (100 units/mL) insulin glargine. U-300 was evaluated in six randomized, active-comparator, open-label, Phase III clinical studies (EDITION trials) among patients with type 1 or 2 diabetes. The primary endpoint for all EDITION studies was the reduction in glycosylated hemoglobin from baseline to six months. Safety endpoints included confirmed or nocturnal hypoglycemia between week 9 and month 6 and the change in weight from baseline. For hypoglycemic episodes, U-300 insulin glargine was superior to U-100 insulin glargine when comparing the risk of hypoglycemia. U-300 insulin glargine is supplied in a prefilled device (for safety purposes) and packaged in boxes of three or five pens. It is still early to determine the role of U-300 insulin glargine in diabetes management. When compared with U-100 insulin glargine, U-300 insulin glargine appeared to be associated with a lower risk of hypoglycemia and nocturnal hypoglycemia, most likely due to its pharmacokinetics. The wholesale average cost of U-300 insulin glargine is $335.48 per box of three pens. The efficacy outcomes of U-300 insulin glargine were similar to those of U-100 insulin glargine, but the constant pharmacokinetic profile and longer duration of action of U-300 insulin glargine may help certain patients with type 1 or type 2 diabetes achieve better glycemic control. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  5. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  6. Glucose-lowering effect and glycaemic variability of insulin glargine, insulin detemir and insulin lispro protamine in people with type 1 diabetes.

    PubMed

    Derosa, G; Franzetti, I; Querci, F; Romano, D; D'Angelo, A; Maffioli, P

    2015-06-01

    To compare, using a continuous glucose monitoring (CGM) system, the effect on glycaemic variability of insulin glargine, detemir and lispro protamine. A total of 49 white people with type 1 diabetes, not well controlled by three times daily insulin lispro, taken for at least 2 months before study and on a stable dose, were enrolled. The study participants were randomized to add insulin glargine, detemir or lispro protamine, once daily, in the evening. We used a CGM system, the iPro Digital Recorder (Medtronic MiniMed, Northridge, CA, USA) for 1 week. Glycaemic control was assessed according to mean blood glucose values, the area under the glucose curve above 3.9 mmol/l (AUC(>3.9)) or above 10.0 mmol/l (AUC(>10.0)), and the percentage of time spent with glucose values >3.9 or >10.0 mmol/l. Intraday glycaemic variability was assessed using standard deviation (s.d.) values, the mean amplitude of glycaemic excursions and continuous overlapping of net glycaemic action. Day-to-day glycaemic variability was assessed using the mean of daily differences. The s.d. was found to be significantly lower with insulin lispro protamine and glargine compared with insulin detemir. AUC(>3.9) was higher and AUC(>10.0) was lower with insulin lispro protamine and glargine compared with detemir. The mean amplitude of glycaemic excursions and continuous overlapping net glycaemic action values were lower with insulin lispro protamine and glargine compared with detemir. In addition, the mean of daily differences was significantly lower with insulin lispro protamine and glargine compared with detemir. Fewer hypoglycaemic events were recorded during the night-time with insulin lispro protamine compared with glargine and detemir. The results suggest that insulin lispro protamine and glargine are more effective than detemir in reducing glycaemic variability and improving glycaemic control in people with type 1 diabetes. Insulin lispro protamine seems to lead to fewer hypoglycaemic

  7. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion.

    PubMed

    Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y

    2013-01-01

    The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.

  8. In vivo differential effects of fasting, re-feeding, insulin and insulin stimulation time course on insulin signaling pathway components in peripheral tissues.

    PubMed

    Agouni, Abdelali; Owen, Carl; Czopek, Alicja; Mody, Nimesh; Delibegovic, Mirela

    2010-10-08

    Components of the insulin receptor signaling pathway are probably some of the best studied ones. Even though methods for studying these components are well established, the in vivo effects of different fasting regimens, and the time course of insulin receptor phosphorylation and that of its downstream components in insulin-sensitive peripheral tissues have not been analyzed in detail. When assessing insulin signaling, it may be beneficial to drive insulin levels as low as possible by performing an overnight fast before injecting a supra-physiological dose of insulin. Recent studies have shown however that 5 or 6 h fast in mice is sufficient to assess physiological responses to insulin and/or glucose in glucose tolerance tests, insulin tolerance tests and euglycemic hyperinsulinemic clamp studies. Moreover, mice are nocturnal feeders, with ∼70% of their daily caloric intake occurring during the dark cycle, and their metabolic rate is much higher than humans. Therefore, an overnight fast in mice is closer to starvation than just food withdrawal. Thus our aim was to assess insulin signaling components from the insulin receptor to downstream targets IRS1, Akt/PKB, GSK3, Erk1/2 and ribosomal protein S6 in muscle, liver and adipose tissue in 5 h versus 16 h (overnight) fasted mice, and the time course (0-30 min) of these phosphorylation events. We also assessed whether re-feeding under 5 h and 16 h fasting conditions was a more robust stimulus than insulin alone. Our study determines that a short food withdrawal from mice, for a period of 5 h, results in a similar insulin-stimulated response in phosphorylation events as the long overnight fast, presenting a more physiological experimental set up. We also demonstrate that in vivo, insulin-stimulated phosphorylation of its signaling components is different between different peripheral tissues, and depending on the tissue(s) and protein(s) of interest, an appropriate time course should be chosen. Copyright © 2010

  9. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  10. The insulin receptor.

    PubMed

    Kaplan, S A

    1984-03-01

    Cells are endowed with specific cognitive molecules that function as receptors for hormones, neurotransmitters, and other intercellular messengers. The receptor molecules may be present in the plasma membrane, cytoplasm, or nucleus. When occupied by the messenger, the receptor is coupled to the cellular machinery that responds to the message-bearing molecules. For some hormones the events following attachment of the messenger to the receptor are well known. An example is the generation of cAMP after combination of glucagon with its receptor and the series of steps culminating in activation of phosphorylase. In the case of many other messengers, including insulin, the nature of these coupling steps is not known. Receptors are subject to the regulatory processes of synthesis, degradation, and conformational change; alterations in receptor properties may have significant effects on the qualitative and quantitative responses of the cell to the extracellular messenger. The insulin receptor is located in the plasma membrane, is composed of two pairs of subunits, and has a molecular weight of about 350,000. It is located in cells such as adipocytes, hepatocytes, and skeletal muscle cells as well as in cells not considered to be typical target organ cells. Insulin receptors in nonfetal cells are downregulated by exposure of the cells to high concentrations of insulin. Other factors that regulate insulin binding include muscular exercise, diet, thyroid hormones, glucocorticoids, androgens, estrogens, and cyclic nucleotides. The fetus has high concentrations of insulin receptors in several tissues. These begin to appear early in fetal life and may outnumber those found in adult tissues. Fetal insulin receptors are unusual in that they may not undergo downregulation but may experience the opposite when exposed to insulin in high concentrations. Thus the offspring of a mother with poorly controlled diabetes may be placed in double jeopardy by fetal hyperinsulinemia and

  11. Blood Glucose and Insulin Concentrations after Octreotide Administration in Horses With Insulin Dysregulation.

    PubMed

    Frank, N; Hermida, P; Sanchez-Londoño, A; Singh, R; Gradil, C M; Uricchio, C K

    2017-07-01

    Octreotide is a somatostatin analog that suppresses insulin secretion. We hypothesized that octreotide would suppress insulin concentrations in horses and that normal (N) horses and those with insulin dysregulation (ID) would differ significantly in their plasma glucose and insulin responses to administration of octreotide. Twelve horses, N = 5, ID = 7. Prospective study. An oral sugar test was performed to assign horses to N and ID groups. Octreotide (1.0 μg/kg IV) was then administered, and blood was collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, 75, and 90 minute, and 2, 3, 4, 6, 8, 12, and 24 hour for measurement of glucose and insulin concentrations. Area under the curve (AUC) values were calculated. Mean AUC values for glucose and insulin did not differ between normal (n = 5) and ID (n = 7) groups after octreotide injection. Significant time (P < .001) effects were detected for glucose and insulin concentrations. A group × time interaction (P = .091) was detected for insulin concentrations after administration of octreotide, but the group (P = .33) effect was not significant. Octreotide suppresses insulin secretion, resulting in hyperglycemia, and then concentrations increase above baseline as glycemic control is restored. Our hypothesis that octreotide causes insulin concentrations to decrease in horses was supported, but differences between N and ID groups did not reach statistical significance when blood glucose and insulin responses were compared. The utility of an octreotide response test remains to be determined. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  12. Patient safety and minimizing risk with insulin administration - role of insulin degludec.

    PubMed

    Aye, Myint M; Atkin, Stephen L

    2014-01-01

    Diabetes is a lifelong condition requiring ongoing medical care and patient self-management. Exogenous insulin therapy is essential in type 1 diabetes and becomes a necessity in patients with longstanding type 2 diabetes who fail to achieve optimal control with lifestyle modification, oral agents, and glucagon-like peptide 1-based therapy. One of the risks that hinders insulin use is hypoglycemia. Optimal insulin therapy should therefore minimize the risk of hypoglycemia while improving glycemic control. Insulin degludec (IDeg) is a novel basal insulin that, following subcutaneous injection, assembles into a depot of soluble multihexamer chains. These subsequently release IDeg monomers that are absorbed at a slow and steady rate into the circulation, with the terminal half-life of IDeg being ~25 hours. Thus, it requires only once-daily dosing unlike other basal insulin preparations that often require twice-daily dosing. Despite its long half-life, once-daily IDeg does not cause accumulation of insulin in the circulation after reaching steady state. IDeg once a day will produce a steady-state profile with a lower peak:trough ratio than other basal insulins. In clinical trials, this profile translates into a lower frequency of nocturnal hypoglycemia compared with insulin glargine, as well as an ability to allow some flexibility in dose timing without compromising efficacy and safety. Indeed, a study that tested the extremes of dosing intervals of 8 and 40 hours showed no detriment in either glycemic control or hypoglycemic frequency versus insulin glargine given at the same time each day. While extreme flexibility in dose timing is not recommended, these findings are reassuring. This may be particularly beneficial to elderly patients, patients with learning difficulties, or others who have to rely on health-care professionals for their daily insulin injections. Further studies are required to confirm whether this might benefit adherence to treatment, reduce long

  13. Insulin, cognition, and dementia

    PubMed Central

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  14. Conventional insulin vs insulin infusion therapy in acute coronary syndrome diabetic patients

    PubMed Central

    Arvia, Caterina; Siciliano, Valeria; Chatzianagnostou, Kyriazoula; Laws, Gillian; Quinones Galvan, Alfredo; Mammini, Chiara; Berti, Sergio; Molinaro, Sabrina; Iervasi, Giorgio

    2014-01-01

    AIM: To evaluate the impact on glucose variability (GLUCV) of an nurse-implemented insulin infusion protocol when compared with a conventional insulin treatment during the day-to-day clinical activity. METHODS: We enrolled 44 type 2 diabetic patients (n = 32 males; n = 12 females) with acute coronary syndrome (ACS) and randomy assigned to standard a subcutaneous insulin treatment (n = 23) or a nurse-implemented continuous intravenous insulin infusion protocol (n = 21). We utilized some parameters of GLUCV representing well-known surrogate markers of prognosis, i.e., glucose standard deviation (SD), the mean daily δ glucose (mean of daily difference between maximum and minimum glucose), and the coefficient of variation (CV) of glucose, expressed as percent glucose (SD)/glucose (mean). RESULTS: At the admission, first fasting blood glucose, pharmacological treatments (insulin and/or anti-diabetic drugs) prior to entering the study and basal glycated hemoglobin (HbA1c) were observed in the two groups treated with subcutaneous or intravenous insulin infusion, respectively. When compared with patients submitted to standard therapy, insulin-infused patients showed both increased first 24-h (median 6.9 mmol/L vs 5.7 mmol/L P < 0.045) and overall hospitalization δ glucose (median 10.9 mmol/L vs 9.3 mmol/L, P < 0.028), with a tendency to a significant increase in first 24-h glycaemic CV (23.1% vs 19.6%, P < 0.053). Severe hypoglycaemia was rare (14.3%), and it was observed only in 3 patients receiving insulin infusion therapy. HbA1c values measured during hospitalization and 3 mo after discharge did not differ in the two groups of treatment. CONCLUSION: Our pilot data suggest that no real benefit in terms of GLUCV is observed when routinely managing blood glucose by insulin infusion therapy in type 2 diabetic ACS hospitalized patients in respect to conventional insulin treatment PMID:25126402

  15. Fasting and feeding variations of insulin requirements and insulin binding to erythrocytes at different times of the day in insulin dependent diabetics--assessed under the condition of glucose-controlled insulin infusion.

    PubMed

    Hung, C T; Beyer, J; Schulz, G

    1986-07-01

    Nine insulin-dependent diabetic patients were examined for insulin requirement, counterregulatory hormones, and receptor binding during their connection to glucose-controlled insulin infusion system. They were of 103% ideal body weight. A diet of 45% carbohydrate, 20% protein and 35% fat was divided into three meals and three snacks averaging the daily calorie intake of 1859 kcal. Following an equilibrating phase of 14 hours after the connection to the glucose-controlled insulin infusion system the blood samples were taken at 0800, 1200 and 1800. The insulin infusion rate increased at 0300 in the early morning from 0.128 mU/kg/min to 0.221 mU/kg/min (P less than 0.02). The postprandial insulin infusion rate jumped from 0.7 U/h (0700-0800) to 7.5 U/h (0800-0900). The calorie related and carbohydrate related insulin demands after breakfast were also highest and declined after lunch respectively (1.16 uU/kg/min kj vs. 0.61 uU/kg/min kj, P less than 0.05 and 236 mU/g CHO vs. 129 mU/g CHO and 143 mU/g CHO). Of the counterregulatory hormones the cortisol showed a significant diurnal rhythm to insulin demands. The insulin tracer binding was higher at 0800 before breakfast than that at 1200 before lunch (P less than 0.05). The increased binding could be better attributed to receptor concentration change than to affinity change. The cause of insulin relative insensitivity in the morning could be due to altered liver response to the cortisol peak in type 1 diabetics. The preserved variation of insulin binding in our patients might be referred to feeding.

  16. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  17. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  18. Effect of flow rate and insulin priming on the recovery of insulin from microbore infusion tubing.

    PubMed

    Fuloria, M; Friedberg, M A; DuRant, R H; Aschner, J L

    1998-12-01

    A retrospective medical record review of 13 consecutive, hyperglycemic, extremely low birth weight (ELBW) infants treated with continuous insulin infusions revealed a 14- to 24-hour delay (mean, 19 hours) in blood glucose normalization despite stepwise increases in insulin infusion rates. This in vitro study examined the effects of flow rate and insulin priming on insulin recovery from polyvinyl chloride (PVC) tubing and polyethylene (PE)-lined PVC tubing infused with a standard insulin stock solution. Stock insulin solution (0.2 U/mL) was infused through microbore PVC or PE-lined tubing at flow rates of 0.05 and 0.2 mL/h. To determine if saturation of nonspecific binding sites would alter effluent insulin concentration, we compared insulin recovery from tubing previously flushed with the stock solution and tubing primed with 5 U/mL of insulin for 20 minutes. Effluent samples, which were collected at baseline and at six time points during a 24-hour period, were immediately frozen at -20 degreesC. Insulin concentration was measured by IMx immunoassay. Data were analyzed using general linear modeling with repeated measures. At 0.05 mL/h flow rate, insulin recovery from unprimed PVC tubing at 1, 2, 4, and 8 hours was 17%, 11%, 27%, and 55%, respectively, with 100% recovery at 24 hours. From insulin-primed tubing, insulin recovery was approximately 70% at 1, 2, and 4 hours, and close to 100% at 8 hours. At a faster flow rate of 0.2 mL/h, insulin recovery at 1, 2, 4, and 8 hours was 22%, 38%, 67%, and 75% vs 42%, 85%, 91% and 95% from unprimed and insulin-primed PVC tubing, respectively. Similar results were obtained from unprimed and insulin-primed PE-lined tubing at 0.2 mL/h flow rate. Priming of microbore tubing with 5 U/mL of insulin solution for 20 minutes to block nonspecific binding sites enhances delivery of a standard insulin stock at infusion rates typically used to treat hyperglycemic ELBW infants. We conclude that priming the tubing with a higher

  19. Insulin resistance: definition and consequences.

    PubMed

    Lebovitz, H E

    2001-01-01

    Insulin resistance is defined clinically as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as much as it does in a normal population. Insulin action is the consequence of insulin binding to its plasma membrane receptor and is transmitted through the cell by a series of protein-protein interactions. Two major cascades of protein-protein interactions mediate intracellular insulin action: one pathway is involved in regulating intermediary metabolism and the other plays a role in controlling growth processes and mitoses. The regulation of these two distinct pathways can be dissociated. Indeed, some data suggest that the pathway regulating intermediary metabolism is diminished in type 2 diabetes while that regulating growth processes and mitoses is normal.--Several mechanisms have been proposed as possible causes underlying the development of insulin resistance and the insulin resistance syndrome. These include: (1) genetic abnormalities of one or more proteins of the insulin action cascade (2) fetal malnutrition (3) increases in visceral adiposity. Insulin resistance occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Insulin Resistance Syndrome" or "The Metabolic Syndrome". This cluster of abnormalities may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension or polycystic ovarian syndrome depending on the genetic background of the individual developing the insulin resistance.--In this context, we need to consider whether insulin resistance should be defined as a disease entity which needs to be diagnosed and treated with specific drugs to improve insulin action.

  20. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.

    PubMed

    Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A

    2014-12-01

    Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.

  1. [Historical review of insulin and its preparations in pharmacopoeia (3). Fish insulins].

    PubMed

    Suehiro, M

    1992-01-01

    Existence of encapsulated glands situated in the mesentery of certain teleosti was reported by Brockmann (1846) and Stannius (1848), respectively. Thus the gland was named stannius corpuscle or Brockmann body. Later, as results of histological study, cells of stannius corpuscle tissues were constituted with Langerhans islet cells observed in mammalian pancreas by Diammare (1899) and Laguesse (1906). Thus, before the days of discovery of insulin by Banting and Best in 1921, stannius corpuscle has been interesting from the aspects of comparative anatomy and physiology. Rennie (1906) examined a large number of specimens in various species of teleosti and gave the term "principal islet" to easily recognizable stannius corpuscle. Osawa studied comparative anatomy in Freiburg and returned to Tokyo. He continued the study of comparative anatomy of Langerhans islet aand published a report on observation of "principal islet" of flatfish, limanda yokohamae Gth. in 1912 in Japanese. His report seemed to be a milestone of studies of fish insulin in Japan. Macleod attempted to demonstrate direct evidence on secretion of insulin from Langerhans islet cells. Experiments were made on extraction of "principal islet" of teleosti, angler Lophius) and sculpin (Myoxocephalus) to obtain insulin and demonstrated activity. No insulin activity was obtained from pancreatic tissues constituted with acinar cells of these fishes. In the case of elasmobranch, Langerhans islets are not separated, but potent insulin could be extracted from the pancreas. His report published in 1922 was the first report on fish insulin. Succeeding to Macleod's report, several reports on fish insulin were contnributed from Canada, England and U.S.A. until 1929. Dr. Kkumagai, Professor of Internal Medicine, Tohoku Imperial University (Sendai) also conducted the studies on extraction of active principle of pancreas since 1920, independently. But, a Toronto group reached the goal on discovery of insulin earlier than

  2. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  3. Tagging insulin in microgravity

    NASA Technical Reports Server (NTRS)

    Dobeck, Michael; Nelson, Ronald S.

    1992-01-01

    Knowing the exact subcellular sites of action of insulin in the body has the potential to give basic science investigators a basis from which a cause and cure for this disease can be approached. The goal of this project is to create a test reagent that can be used to visualize these subcellular sites. The unique microgravity environment of the Shuttle will allow the creation of a reagent that has the possibility of elucidating the subcellular sites of action of insulin. Several techniques have been used in an attempt to isolate the sites of action of items such as insulin. One of these is autoradiography in which the test item is obtained from animals fed radioactive materials. What is clearly needed is to visualize individual insulin molecules at their sites of action. The insulin tagging process to be used on G-399 involves the conjugation of insulin molecules with ferritin molecules to create a reagent that will be used back on Earth in an attempt to elucidate the sites of action of insulin.

  4. Adipokines and insulin action

    PubMed Central

    Knights, Alexander J; Funnell, Alister PW; Pearson, Richard CM; Crossley, Merlin; Bell-Anderson, Kim S

    2014-01-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease. PMID:24719781

  5. [News and perspectives in insulin treatment].

    PubMed

    Haluzík, Martin

    2014-09-01

    Insulin therapy is a therapeutic cornerstone in patients with type 1 diabetes and also in numerous patients with type 2 diabetes especially with longer history of diabetes. The initiation of insulin therapy in type 2 diabetes patients is often delayed which is at least partially due to suboptimal pharmacokinetic characteristics of available insulins. The development of novel insulins with more favorable characteristics than those of current insulins is therefore still ongoing. The aim of this paper is to review current knowledge of novel insulins that have been recently introduced to the market or are getting close to routine clinical use. We will also focus on the perspectives of insulin therapy in the long-term run including the alternative routes of insulin administration beyond its classical subcutaneous injection treatment.Key words: alternative routes of insulin administration - diabetes mellitus - hypoglycemia - insulin - insulin analogues.

  6. [Continuous insulin therapy versus multiple insulin injections in the management of type 1 diabetes: a longitutinal study].

    PubMed

    Ribeiro, Maria Estela Bellini; Del Roio Liberatore Junior, Raphael; Custodio, Rodrigo; Martinelli Junior, Carlos Eduardo

    2016-01-01

    To compare multiple doses of insulin and continuous insulin infusion therapy as treatment for type 1 diabetes melito. 40 patients with type 1 diabetes melito (21 female) with ages between 10 and 20 years (mean=14.2) and mean duration of diabetes of 7 years used multiple doses of insulin for at least 6 months and after that, continuous insulin infusion therapy for at least 6 months. Each one of the patients has used multiple doses of insulin and continuous insulin infusion therapy. For analysis of HbA1c, mean glycated hemoglobin levels (mHbA1c) were obtained during each treatment period (multiple doses of insulin and continuous insulin infusion therapy period). Although mHbA1c levels were lower during continuous insulin infusion therapy the difference was not statistically significant. During multiple doses of insulin, 14.2% had mHbA1c values below 7.5% vs. 35.71% while on continuous insulin infusion therapy; demonstrating better glycemic control with the use of continuous insulin infusion therapy. During multiple doses of insulin, 15-40 patients have severe hypoglycemic events versus 5-40 continuous insulin infusion therapy. No episodes of ketoacidosis events were recorded. This is the first study with this design comparing multiple doses of insulin and continuous insulin infusion therapy in Brazil showing no significant difference in HbA1c; hypoglycemic events were less frequent during continuous insulin infusion therapy than during multiple doses of insulin and the percentage of patients who achieved a HbA1c less than 7.5% was greater during continuous insulin infusion therapy than multiple doses of insulin therapy. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Combining insulins for optimal blood glucose control in type 1 and 2 diabetes: Focus on insulin glulisine

    PubMed Central

    Ulrich, Heather; Snyder, Benjamin; K Garg, Satish

    2007-01-01

    Normalization of blood glucose is essential for the prevention of diabetes mellitus (DM)-related microvascular and macrovascular complications. Despite substantial literature to support the benefits of glucose lowering and clear treatment targets, glycemic control remains suboptimal for most people with DM in the United States. Pharmacokinetic limitations of conventional insulins have been a barrier to achieving treatment targets secondary to adverse effects such as hypoglycemia and weight gain. Recombinant DNA technology has allowed modification of the insulin molecule to produce insulin analogues that overcome these pharmacokinetic limitations. With time action profiles that more closely mimic physiologic insulin secretion, rapid acting insulin analogues (RAAs) reduce post-prandial glucose excursions and hypoglycemia when compared to regular human insulin (RHI). Insulin glulisine (Apidra®) is a rapid-acting insulin analogue created by substituting lysine for asparagine at position B3 and glutamic acid for lysine at position B29 on the B chain of human insulin. The quick absorption of insulin glulisine more closely reproduces physiologic first-phase insulin secretion and its rapid acting profile is maintained across patient subtypes. Clinical trials have demonstrated comparable or greater efficacy of insulin glulisine versus insulin lispro or RHI, respectively. Efficacy is maintained even when insulin glulisine is administered post-meal. In addition, glulisine appears to have a more rapid time action profile compared with insulin lispro across various body mass indexes (BMIs). The safety and tolerability profile of insulin glulisine is also comparable to that of insulin lispro or RHI in type 1 or 2 DM and it has been shown to be as safe and effective when used in a continuous subcutaneous insulin infusion (CSII). In summary, insulin glulisine is a safe, effective, and well tolerated rapid-acting insulin analogue across all BMIs and a worthy option for prandial

  8. Pitfalls of Insulin Pump Clocks

    PubMed Central

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  9. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  10. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick

    PubMed Central

    Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank

    2012-01-01

    Purpose Intravitreal insulin has been shown to be a powerful stimulator of myopia in chickens, in particular if the retinal image is degraded or defocused. In most tissues, the insulin receptor activates two main signaling pathways: a) the mitogen-activated protein kinase (MAPK) cascade (e.g., mitogen-activated protein kinasem kinase [MEK] and extracellular regulated kinase [ERK]) and b) the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In the current study, insulin was injected, and these pathways were separately inhibited to determine which is activated when the retinal image is defocused by spectacle lenses. Methods Chicks were treated with either +7 D, −7 D, or no lenses. They were intravitreally injected with insulin, the MEK inhibitor U0126, the PI3K inhibitor Ly294002, or a combination of insulin and one of the inhibitors. Refractions and ocular dimension were measured at the beginning and after four days of treatment. The retinal proteins of the chicks were measured with western blots after 2 h and four days of treatment. Incubation occurred with anti-Akt1, anti-Erk1/2, anti-phospho-AktThr308, and anti-phospho-Erk1/2(Thr202/Tyr204) antibodies, and the ratio between the relative intensity of the phospho-form and the total-form was calculated. Results Chicks wearing positive lenses and injected with saline and with PI3K inhibitor compensated for the imposed defocus and became hyperopic. Insulin injections and insulin plus PI3K inhibitor injections prevented lens-induced hyperopia, whereas the MEK inhibitor alone and insulin plus MEK inhibitor had no effect. Obviously, the MEK inhibitor suppressed the effect of insulin on eye growth in the plus lens–treated animals. Chicks treated with negative lenses and injected with insulin, or with insulin plus MEK inhibitor, overcompensated for the imposed defocus. This effect of insulin was not detected in eyes injected with PI3K inhibitor plus insulin, suggesting that the PI3K inhibitor

  11. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick.

    PubMed

    Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank; Feldkaemper, Marita P

    2012-01-01

    Intravitreal insulin has been shown to be a powerful stimulator of myopia in chickens, in particular if the retinal image is degraded or defocused. In most tissues, the insulin receptor activates two main signaling pathways: a) the mitogen-activated protein kinase (MAPK) cascade (e.g., mitogen-activated protein kinasem kinase [MEK] and extracellular regulated kinase [ERK]) and b) the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In the current study, insulin was injected, and these pathways were separately inhibited to determine which is activated when the retinal image is defocused by spectacle lenses. Chicks were treated with either +7 D, -7 D, or no lenses. They were intravitreally injected with insulin, the MEK inhibitor U0126, the PI3K inhibitor Ly294002, or a combination of insulin and one of the inhibitors. Refractions and ocular dimension were measured at the beginning and after four days of treatment. The retinal proteins of the chicks were measured with western blots after 2 h and four days of treatment. Incubation occurred with anti-Akt1, anti-Erk1/2, anti-phospho-Akt(Thr308), and anti-phospho-Erk1/2((Thr202/Tyr204)) antibodies, and the ratio between the relative intensity of the phospho-form and the total-form was calculated. Chicks wearing positive lenses and injected with saline and with PI3K inhibitor compensated for the imposed defocus and became hyperopic. Insulin injections and insulin plus PI3K inhibitor injections prevented lens-induced hyperopia, whereas the MEK inhibitor alone and insulin plus MEK inhibitor had no effect. Obviously, the MEK inhibitor suppressed the effect of insulin on eye growth in the plus lens-treated animals. Chicks treated with negative lenses and injected with insulin, or with insulin plus MEK inhibitor, overcompensated for the imposed defocus. This effect of insulin was not detected in eyes injected with PI3K inhibitor plus insulin, suggesting that the PI3K inhibitor suppressed the effects of

  12. Insulin Delivery System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    When Programmable Implantable Medication System (PIMS) is implanted in human body, it delivers precise programmed amounts of insulin over long periods of time. Mini-Med Technologies has been refining the Technologies since initial development at APL. The size of a hockey puck, and encased in titanium shell, PIMS holds about 2 1/2 teaspoons of insulin at a programmed basal rate. If a change in measured blood sugar level dictates a different dose, the patient can vary the amount of insulin delivered by holding a small radio transceiver over the implanted system and dialing in a specific program held in the PIMS computer memory. Insulin refills are accomplished approximately 4 times a year by hypodermic needle.

  13. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Mumbai cohort of the A1chieve study.

    PubMed

    Talwalkar, P G; Gupta, Vishal; Kovil, Rajiv

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Mumbai, India. A total of 2112 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1561), insulin detemir (n = 313), insulin aspart (n = 144), basal insulin plus insulin aspart (n = 53) and other insulin combinations (n = 41). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 8.7%) and insulin user (mean HbA1c: 9.2%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: -1.4%, insulin users: -1.8%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  14. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    PubMed

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Accurate screening for insulin resistance in PCOS women using fasting insulin concentrations.

    PubMed

    Lunger, Fabian; Wildt, Ludwig; Seeber, Beata

    2013-06-01

    The aims of this cross-sectional study were to evaluate the relative agreement of both static and dynamic methods of diagnosing IR in women with polycystic ovary syndrome (PCOS) and to suggest a simple screening method for IR. All participants underwent serial blood draws for hormonal profiling and lipid assessment, a 3 h, 75 g load oral glucose tolerance test (OGTT) with every 15 min measurements of glucose and insulin, and an ACTH stimulation test. The prevalence of IR ranged from 12.2% to 60.5%, depending on the IR index used. Based on largest area under the curve on receiver operating curve (ROC) analyses, the dynamic indices outperformed the static indices with glucose to insulin ratio and fasting insulin (fInsulin) demonstrating the best diagnostic properties. Applying two cut-offs representing fInsulin extremes (<7 and >13 mIU/l, respectively) gave the diagnosis in 70% of the patients with high accuracy. Currently utilized indices for assessing IR give highly variable results in women with PCOS. The most accurate indices based on dynamic testing can be time-consuming and labor-intensive. We suggest the use of fInsulin as a simple screening test, which can reduce the number of OGTTs needed to routinely assess insulin resistance in women with PCOS.

  16. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence?

    PubMed Central

    Stanley, Molly; Macauley, Shannon L.

    2016-01-01

    Individuals with type 2 diabetes have an increased risk for developing Alzheimer’s disease (AD), although the causal relationship remains poorly understood. Alterations in insulin signaling (IS) are reported in the AD brain. Moreover, oligomers/fibrils of amyloid-β (Aβ) can lead to neuronal insulin resistance and intranasal insulin is being explored as a potential therapy for AD. Conversely, elevated insulin levels (ins) are found in AD patients and high insulin has been reported to increase Aβ levels and tau phosphorylation, which could exacerbate AD pathology. Herein, we explore whether changes in ins and IS are a cause or consequence of AD. PMID:27432942

  17. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans.

    PubMed

    Galgani, Jose E; Vasquez, Karla; Watkins, Guillermo; Dupuy, Aude; Bertrand-Michel, Justine; Levade, Thierry; Moro, Cedric

    2013-04-01

    Skeletal muscle insulin resistance is proposed to result from impaired skeletal muscle lipid oxidative capacity. However, there is no evidence indicating that muscle lipid oxidative capacity is impaired in healthy otherwise insulin-resistant individuals. The objective of the study was to assess muscle lipid oxidative capacity in young, nonobese, glucose-tolerant, insulin-resistant vs insulin-sensitive individuals. In 13 insulin-sensitive [by Matsuda index (MI) (22.6 ± 0.6 [SE] kg/m(2)); 23 ± 1 years; MI 5.9 ± 0.1] and 13 insulin-resistant (23.2 ± 0.6 kg/m(2); 23 ± 3 years; MI 2.2 ± 0.1) volunteers, skeletal muscle biopsy, blood extraction before and after an oral glucose load, and dual-energy x-ray absorptiometry were performed. Skeletal muscle mitochondrial to nuclear DNA ratio, oxidative phosphorylation protein content, and citrate synthase and β-hydroxyacyl-CoA dehydrogenase activities were assessed. Muscle lipids and palmitate oxidation ((14)CO2 and (14)C-acid soluble metabolites production) at 4 [1-(14)C]palmitate concentrations (45-520 μM) were also measured. None of the muscle mitochondrial measures showed differences between groups, except for a higher complex V protein content in insulin-resistant vs insulin-sensitive volunteers (3.5 ± 0.4 vs 2.2 ± 0.4; P = .05). Muscle ceramide content was significantly increased in insulin-resistant vs insulin-sensitive individuals (P = .04). Total palmitate oxidation showed a similar concentration-dependent response in both groups (P = .69). However, lipid oxidative efficiency (CO2 to (14)C-acid soluble metabolites ratio) was enhanced in insulin-resistant vs insulin-sensitive individuals, particularly at the highest palmitate concentration (0.24 ± 0.04 vs 0.12 ± 0.02; P = .02). We found no evidence of impaired muscle mitochondrial oxidative capacity in young, nonobese, glucose-tolerant, otherwise insulin-resistant vs insulin-sensitive individuals. Enhanced muscle lipid oxidative efficiency in insulin

  18. Basal plasma insulin and homeostasis model assessment (HOMA) are indicators of insulin sensitivity in cats.

    PubMed

    Appleton, D J; Rand, J S; Sunvold, G D

    2005-06-01

    The objective of this study was to compare simpler indices of insulin sensitivity with the minimal model-derived insulin sensitivity index to identify a simple and reliable alternative method for assessing insulin sensitivity in cats. In addition, we aimed to determine whether this simpler measure or measures showed consistency of association across differing body weights and glucose tolerance levels. Data from glucose tolerance and insulin sensitivity tests performed in 32 cats with varying body weights (underweight to obese), including seven cats with impaired glucose tolerance, were used to assess the relationship between Bergman's minimal model-derived insulin sensitivity index (S(I)), and various simpler measures of insulin sensitivity. The most useful overall predictors of insulin sensitivity were basal plasma insulin concentrations and the homeostasis model assessment (HOMA), which is the product of basal glucose and insulin concentrations divided by 22.5. It is concluded that measurement of plasma insulin concentrations in cats with food withheld for 24 h, in conjunction with HOMA, could be used in clinical research projects and by practicing veterinarians to screen for reduced insulin sensitivity in cats. Such cats may be at increased risk of developing impaired glucose tolerance and type 2 diabetes mellitus. Early detection of these cats would enable preventative intervention programs such as weight reduction, increased physical activity and dietary modifications to be instigated.

  19. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    PubMed

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  20. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer's Disease.

    PubMed

    Santangelo, Roberto; Cecchetti, Giordano; Bernasconi, Maria Paola; Cardamone, Rosalinda; Barbieri, Alessandra; Pinto, Patrizia; Passerini, Gabriella; Scomazzoni, Francesco; Comi, Giancarlo; Magnani, Giuseppe

    2017-01-01

    Co-existence of Alzheimer's disease (AD) in normal pressure hydrocephalus (NPH) is a frequent finding, thus a common pathophysiological basis between AD and NPH has been postulated. We measured CSF amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) concentrations in a sample of 294 patients with different types of dementia and 32 subjects without dementia. We then compared scores on neuropsychological tests of NPH patients with pathological and normal CSF Aβ42 values. Aβ42 levels were significantly lower in NPH than in control patients, with no significant differences between AD and NPH. On the contrary, t-tau and p-tau levels were significantly lower in NPH than in AD, with no differences between NPH and controls. NPH patients with pathological Aβ42 levels did not perform worse than NPH patients with normal Aβ42 levels in any cognitive domains. Our data seem to support the hypothesis of amyloid accumulation in brains of NPH patients. Nevertheless, amyloid does not seem to play a pathogenetic role in the development of cognitive deficits in NPH.

  1. Insulin transport into the brain.

    PubMed

    Gray, Sarah M; Barrett, Eugene J

    2018-05-30

    While there is a growing consensus that insulin has diverse and important regulatory actions on the brain, seemingly important aspects of brain insulin physiology are poorly understood. Examples include: what is the insulin concentration within brain interstitial fluid under normal physiologic conditions; whether insulin is made in the brain and acts locally; does insulin from the circulation cross the blood-brain barrier or the blood-CSF barrier in a fashion that facilitates its signaling in brain; is insulin degraded within the brain; do privileged areas with a "leaky" blood-brain barrier serve as signaling nodes for transmitting peripheral insulin signaling; does insulin action in the brain include regulation of amyloid peptides; whether insulin resistance is a cause or consequence of processes involved in cognitive decline. Heretofore, nearly all studies examining brain insulin physiology have employed techniques and methodologies that do not appreciate the complex fluid compartmentation and flow throughout the brain. This review attempts to provide a status report on historical and recent work that begins to address some of these issues. It is undertaken in an effort to suggest a framework for studies going forward. Such studies are inevitably influenced by recent physiologic and genetic studies of insulin accessing and acting in brain, discoveries relating to brain fluid dynamics and the interplay of cerebrospinal fluid, brain interstitial fluid, and brain lymphatics, and advances in clinical neuroimaging that underscore the dynamic role of neurovascular coupling.

  2. Impact of insulin resistance, insulin and adiponectin on kidney stones in the Japanese population.

    PubMed

    Ando, Ryosuke; Suzuki, Sadao; Nagaya, Teruo; Yamada, Tamaki; Okada, Atsushi; Yasui, Takahiro; Tozawa, Keiichi; Tokudome, Shinkan; Kohri, Kenjiro

    2011-02-01

    It has been reported that kidney stones are linked to metabolic syndrome (MetS), which is characterized by insulin resistance. The aim of the present study was to examine the association of insulin resistance, insulin and adiponectin with kidney stones in a Japanese population. From February 2007 to March 2008, 1036 (529 men and 507 women) apparently healthy Japanese subjects, aged 35-79 years, were analyzed. Weight, height, waist circumference and blood pressure were measured. Overnight fasting blood was collected to measure insulin and adiponectin levels. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated to assess insulin resistance. Logistic regression analysis was used to estimate the odds ratio (OR) and 95% confidence intervals for a self-reported history of kidney stones across tertiles of HOMA-IR, insulin and adiponectin. Of the participants, 84 men (15.6%) and 35 women (6.9%) had a history of kidney stones. Age, body mass index, waist circumference, systolic and diastolic blood pressures, HOMA-IR and insulin were significantly higher in women with than in women without kidney stones. There was no difference in adiponectin level between subjects with and without a history of kidney stones in either sex. Furthermore, a significant positive trend was observed in the age-adjusted OR for a history of kidney stones across insulin tertiles (P-value for trend = 0.04) in women. For Japanese women, HOMA-IR and insulin are associated with a history of kidney stones. The findings suggest that MetS components could increase the risk of kidney stones through subclinical hyperinsulinemia and insulin resistance. © 2010 The Japanese Urological Association.

  3. Insulin and glucose excursion following premeal insulin lispro or repaglinide in cystic fibrosis-related diabetes.

    PubMed

    Moran, A; Phillips, J; Milla, C

    2001-10-01

    Insulin and glucose levels in response to premeal insulin lispro or repaglinide were evaluated in adult patients with cystic fibrosis-related diabetes (CFRD) without fasting hyperglycemia. Seven patients with CFRD were fed 1,000-kcal liquid mixed meals. Three study conditions were administered in random order on separate mornings: 1) no premeal diabetes medication, 2) insulin lispro, 0.1 unit/kg body wt premeal and 3) repaglinide 1 mg premeal. Glucose and insulin levels were measured every 20 min for 5 h. Fasting insulin and glucose levels were normal in patients with CFRD, but the peak glucose level was elevated. Insulin lispro significantly decreased the peak glucose level (P = 0.0004) and the 2-h (P = 0.001) and 5-h (P < 0.0001) glucose area under the curve (AUC). Repaglinide significantly decreased the 5-h glucose AUC (P = 0.03). Neither drug completely normalized cystic fibrosis glucose excursion at the doses used for this study. Insulin lispro significantly increased the 5-h insulin AUC (P = 0.04). In response to subcutaneous insulin lispro, postprandial glucose excursion was significantly diminished and insulin secretion was enhanced compared with a control meal in which no medication was given to patients with CFRD. The oral agent repaglinide resulted in lesser corrections in these parameters. Neither drug completely normalized glucose or insulin levels, suggesting that the doses chosen for this study were suboptimal. Placebo-controlled longitudinal studies comparing the effectiveness of repaglinide and insulin on glucose metabolic control as well as overall nutrition and body weight are needed to help determine optimal medical treatment of CFRD.

  4. Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection.

    PubMed

    Pettis, Ronald J; Ginsberg, Barry; Hirsch, Laurence; Sutter, Diane; Keith, Steven; McVey, Elaine; Harvey, Noel G; Hompesch, Marcus; Nosek, Leszek; Kapitza, Christoph; Heinemann, Lutz

    2011-04-01

    This study compared insulin lispro (IL) pharmacokinetics (PK) and pharmacodynamics (PD) delivered via microneedle intradermal (ID) injection with subcutaneous (SC) injection under euglycemic glucose clamp conditions. Ten healthy male volunteers were administered 10 international units (IU) of IL at 3 microneedle lengths (1.25, 1.50, or 1.75 mm) in a randomized, crossover fashion on Days 1-3 followed by a repetitive ID 1.5-mm microneedle dose (Day 4) and an SC dose (Day 5). Microneedle ID delivery resulted in more rapid absorption of IL, with decreased time to maximum insulin concentration (ID vs. SC: 36.0-46.4 vs. 64.3 min, P < 0.05) and higher fractional availability at early postinjection times. ID produced more rapid effects on glucose uptake with shorter times to maximal and early half-maximal glucose infusion rates (GIRs) (ID vs. SC: time to maximum GIR, 106-112 vs. 130 min, P < 0.05; early half-maximal GIR, 29-35 vs. 42 min), increased early GIR area under the curve (AUC), and faster offset of insulin action (shorter time to late half-maximal GIR: 271-287 vs. 309 min). Relative total insulin bioavailability (AUC to 360 min and AUC to infinite measurement) did not significantly differ between administration routes. ID PK/PD parameters showed some variation as a function of needle length. Delivery of ID IL was generally well tolerated, although transient, localized wheal formation and redness were observed at injection sites. Microneedle ID insulin lispro delivery enables more rapid onset and offset of metabolic effect than SC therapy and is safe and well tolerated; further study for insulin therapy is warranted.

  5. [RAAS and insulin resistance].

    PubMed

    Motoshima, Hiroyuki; Araki, Eiichi

    2012-09-01

    The role of the renin-angiotensin-aldosterone system (RAAS) on the development of insulin resistance and type 2 diabetes (T2DM) is an area of growing interest. Most of the deleterious actions of the RAAS on insulin signals appear to be mediated through activation of the serine/threonine kinase, oxidative stress and tissue-inflammation in insulin-sensitive organs. Both experimental and clinical studies demonstrated that angiotensin II (Ang II) and aldosterone could play a role in the development of insulin resistance, diabetes and cardiovascular diseases. Large randomized clinical trials revealed that blockade of the RAAS with either angiotensin I converting enzyme inhibitors or AT1 receptor blockers results in decreased T2DM incidence, with a minor attenuation of markers for insulin resistance. This review focuses on the role of RAAS in the pathogenesis of insulin resistance, as well as on clinical relevance of RAAS blockade in the prevention and treatment of the metabolic syndrome and pre-diabetes.

  6. Basal measures of insulin sensitivity and insulin secretion and simplified glucose tolerance tests in dogs.

    PubMed

    Verkest, K R; Fleeman, L M; Rand, J S; Morton, J M

    2010-10-01

    There is need for simple, inexpensive measures of glucose tolerance, insulin sensitivity, and insulin secretion in dogs. The aim of this study was to estimate the closeness of correlation between fasting and dynamic measures of insulin sensitivity and insulin secretion, the precision of fasting measures, and the agreement between results of standard and simplified glucose tolerance tests in dogs. A retrospective descriptive study using 6 naturally occurring obese and 6 lean dogs was conducted. Data from frequently sampled intravenous glucose tolerance tests (FSIGTTs) in 6 obese and 6 lean client-owned dogs were used to calculate HOMA, QUICKI, fasting glucose and insulin concentrations. Fasting measures of insulin sensitivity and secretion were compared with MINMOD analysis of FSIGTTs using Pearson correlation coefficients, and they were evaluated for precision by the discriminant ratio. Simplified sampling protocols were compared with standard FSIGTTs using Lin's concordance correlation coefficients, limits of agreement, and Pearson correlation coefficients. All fasting measures except fasting plasma glucose concentration were moderately correlated with MINMOD-estimated insulin sensitivity (|r| = 0.62-0.80; P < 0.03), and those that combined fasting insulin and glucose were moderately closely correlated with MINMOD-estimated insulin secretion (r = 0.60-0.79; P < 0.04). HOMA calculated using the nonlinear formulae had the closest estimated correlation (r = 0.77 and 0.74) and the best discrimination for insulin sensitivity and insulin secretion (discriminant ratio 4.4 and 3.4, respectively). Simplified sampling protocols with half as many samples collected over 3 h had close agreement with the full sampling protocol. Fasting measures and simplified intravenous glucose tolerance tests reflect insulin sensitivity and insulin secretion derived from frequently sampled glucose tolerance tests with MINMOD analysis in dogs. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Insulin absorption from lipodystrophic areas: a (neglected) source of trouble for insulin therapy?

    PubMed

    Heinemann, Lutz

    2010-05-01

    The experienced clinical diabetologist first checks the skin at the area where the patient usually injects his insulin when he sees widely fluctuating blood glucose levels in the diary of the patient. He knows that insulin absorption from skin with lipodystrophic changes is irregular. However, our scientific knowledge about why this is the case is very limited. Most probably, the number of blood vessels near the insulin depot in the subcutaneous tissue varies depending on the nature of the lipodystrophic changes, or the structural changes in this tissue hamper the diffusion of insulin. Not only is our knowledge about the number of patients who exhibit such changes very limited, but also our understanding why such changes show up in certain patients and not in others is minimal. More practically important, we also have few quantitative studies investigating the impact of this diabetes-related complication on insulin absorption/insulin action; however, it is not difficult to run such studies in practice. Nevertheless, it is impressive to see how often metabolic control improves considerably once the patients apply the insulin into other skin areas. (c) 2010 Diabetes Technology Society.

  8. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  9. [Desensitization to human recombinant DNA insulin in an adolescent with insulin-dependent diabetes mellitus].

    PubMed

    Rosas Vargas, M A; Alvarez Amador, M; Alvarez Amador, L M; del Río Navarro, B E; Avila Castanón, L; Sienra Monge, J J

    2001-01-01

    Adverse reactions to drugs have increased in the last years, about 15% of all side effects are thought to be immune mediated according to the Coombs and Gell classification they can be type I (immediate) hypersensitivity, type II (cytotoxic) type III (immune complex mediated) or type IV (delay). Allergy to insulin is defined as an immunological response type I, and type II or III to exogenous insulin solutions occurring the 0.1% and 0.2% of the patients. A 13 year old female with a 4-year history of insulin-dependent diabetes mellitus who presented hypersensitivity against recombinant DNA (rDNA) insulin manifested with urticaria and itching. We used a premedication therapy without good response and impossibility to use alternative therapy for her metabolic control, so she needed desensitization with insulin. Skin prick testing with rapid insulin preparations 1:10 W/V dilution were positive. IgE antibodies to insulin weren't presented. IgE serum values were normal. We began the desensitization with a rapid 1:1000 UI insulin solution by intradermal route, than by subcutaneous route until reaching the accumulated doses necessary per day. During the process it appeared a papular rash and itching which were treated with an intravenous antihistaminic without troubles. The patient tolerated the desensitization procedure very well. For the past 14 months she has been treated uneventfully by subcutaneous administration of rDNA insulin. The desensitization against drugs is not a frequently process it only has to be used when it is impossible to substitute the treatment. Our patient showed probably hypersensitivity type 1 to insulin. However, we have to take into account the cytotoxic reaction caused by IgG or IgM antibodies or by immune complex. The desensitization finally was tolerated, 14 months after our patient accepts correctly her daily dose of human recombinant insulin.

  10. An Audit of Insulin Usage and Insulin Injection Practices in a Large Indian Cohort

    PubMed Central

    Baruah, Manash P.; Kalra, Sanjay; Bose, Saptarshi; Deka, Jumi

    2017-01-01

    Introduction: Insulin remains the cornerstone of therapy in a substantial number of patients with type 2 diabetes mellitus (T2DM). Inadequate knowledge regarding insulin usage is likely to influence its acceptance and adherence, and outcome of therapy, underscoring great need to investigate knowledge, attitude, and practice of insulin usage in patients with T2DM. Methodology: A cross-sectional registry-based retrospective study analyzed data collected from 748 respondents (male: 466, female: 282), mostly from high or middle economic status, who were enrolled as outpatient in a referral clinic during last 10 years (2006–2016), to assess the general characteristics of patients with type 2 diabetes and their baseline knowledge, attitude, and practice of insulin usage and injection practices. Results: Mean ± standard deviation (SD) of duration of diabetes was 12.24 ± 7.60 years and mean ± SD duration of insulin therapy was 3.42 ± 4.18 years, which was initiated after a mean ± SD diabetes duration of 8.80 ± 6.42 years. Mean insulin dose per kilogram of body weight/day was 0.51 ± 0.27 units. Total daily dose of insulin was 33.36 ± 18.44 units and number of injections/day (mean ± SD) was 2.06 ± 0.73. Among the respondents, 58.96% were on human insulin and 35.70% were on analog insulin. Pen devices were used by 66.08% of the population whereas 31.76% used insulin syringes. The prevalence of lipohypertrophy (LH) was 12.57%, which was significantly (P < 0.001) associated with wrong technique with regard to injection angle (10.45% vs. 23.02%), site of injection (7.00% vs. 30.51%), rotation of site of injection (0.88% vs. 17.66%), and reuse of needle (5.77% vs. 15.19%). LH was also significantly (P < 0.05) associated with the use of human (14.74%) compared to analog insulin (8.24%). Conclusion: The current study highlights the unique patterns of insulin usage and associated high prevalence of LH among insulin users in India. PMID:28553603

  11. The Epoxyeicosatrienoic Acid Pathway Enhances Hepatic Insulin Signaling and is Repressed in Insulin-Resistant Mouse Liver*

    PubMed Central

    Schäfer, Alexander; Neschen, Susanne; Kahle, Melanie; Sarioglu, Hakan; Gaisbauer, Tobias; Imhof, Axel; Adamski, Jerzy; Hauck, Stefanie M.; Ueffing, Marius

    2015-01-01

    Although it is widely accepted that ectopic lipid accumulation in the liver is associated with hepatic insulin resistance, the underlying molecular mechanisms have not been well characterized. Here we employed time resolved quantitative proteomic profiling of mice fed a high fat diet to determine which pathways were affected during the transition of the liver to an insulin-resistant state. We identified several metabolic pathways underlying altered protein expression. In order to test the functional impact of a critical subset of these alterations, we focused on the epoxyeicosatrienoic acid (EET) eicosanoid pathway, whose deregulation coincided with the onset of hepatic insulin resistance. These results suggested that EETs may be positive modulators of hepatic insulin signaling. Analyzing EET activity in primary hepatocytes, we found that EETs enhance insulin signaling on the level of Akt. In contrast, EETs did not influence insulin receptor or insulin receptor substrate-1 phosphorylation. This effect was mediated through the eicosanoids, as overexpression of the deregulated enzymes in absence of arachidonic acid had no impact on insulin signaling. The stimulation of insulin signaling by EETs and depression of the pathway in insulin resistant liver suggest a likely role in hepatic insulin resistance. Our findings support therapeutic potential for inhibiting EET degradation. PMID:26070664

  12. Insulin analogs with improved pharmacokinetic profiles.

    PubMed

    Brange; Vølund

    1999-02-01

    The aim of insulin replacement therapy is to normalize blood glucose in order to reduce the complications of diabetes. The pharmacokinetics of the traditional insulin preparations, however, do not match the profiles of physiological insulin secretion. The introduction of the rDNA technology 20 years ago opened new ways to create insulin analogs with altered properties. Fast-acting analogs are based on the idea that an insulin with less tendency to self-association than human insulin would be more readily absorbed into the systemic circulation. Protracted-acting analogs have been created to mimic the slow, steady rate of insulin secretion in the fasting state. The present paper provides a historical review of the efforts to change the physicochemical and pharmacological properties of insulin in order to improve insulin therapy. The available clinical studies of the new insulins are surveyed and show, together with modeling results, that new strategies for optimal basal-bolus treatment are required for utilization of the new fast-acting analogs.

  13. Probing the mechanism of insulin fibril formation with insulin mutants.

    PubMed

    Nielsen, L; Frokjaer, S; Brange, J; Uversky, V N; Fink, A L

    2001-07-27

    The molecular basis of insulin fibril formation was investigated by studying the structural properties and kinetics of fibril formation of 20 different human insulin mutants at both low pH (conditions favoring monomer/dimer) and at pH 7.4 (conditions favoring tetramer/hexamer). Small-angle X-ray scattering showed insulin to be monomeric in 20% acetic acid, 0.1 M NaCl, pH 2. The secondary structure of the mutants was assessed using far-UV circular dichroism, and the tertiary structure was determined using near-UV circular dichroism, quenching of intrinsic fluorescence by acrylamide and interactions with the hydrophobic probe 1-anilino-8-naphthalene-sulfonic acid (ANS). The kinetics of fibril formation were monitored with the fluorescent dye, Thioflavin T. The results indicate that the monomer is the state from which fibrils arise, thus under some conditions dissociation of hexamers may be rate limiting or partially rate limiting. The insulin mutants were found to retain substantial nativelike secondary and tertiary structure under all conditions studied. The results suggest that fibril formation of the insulin mutants is controlled by specific molecular interactions that are sensitive to variations in the primary structure. The observed effects of several mutations on the rate of fibril formation are inconsistent with a previously suggested model for fibrillation [Brange, J., Whittingham, J., Edwards, D., Youshang, Z., Wollmer, A., Brandenburg, D., Dodson, G., and Finch, J. (1997) Curr. Sci. 72, 470-476]. Two surfaces on the insulin monomer are identified as potential interacting sites in insulin fibrils, one consisting of the residues B10, B16, and B17 and the other consisting of at least the residues A8 and B25. The marked increase in the lag time for fibril formation with mutations to more polar residues, as well as mutations to charged residues, demonstrates the importance of both hydrophobic and electrostatic interactions in the initial stages of fibrillation

  14. Insulin Signaling and Heart Failure

    PubMed Central

    Riehle, Christian; Abel, E. Dale

    2016-01-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin resistant states such as type 2 diabetes and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes alters the systemic and neurohumoral milieu leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead (FOXO) transcriptional signaling or glucose transport which may also impair cardiac metabolism, structure and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  15. Insulin Human Inhalation

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used in ... normally and, therefore, cannot control the amount of sugar in the blood) who need insulin to control ...

  16. Insulin Lispro Injection

    MedlinePlus

    ... insulin and therefore cannot control the amount of sugar in the blood). It is also used to ... normally and therefore cannot control the amount of sugar in the blood) who need insulin to control ...

  17. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  18. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Northern Tunisia cohort of the A1chieve study

    PubMed Central

    Blouza, Samira; Jamoussi, Henda

    2013-01-01

    Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Northern Tunisia. Results: A total of 443 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 137), insulin detemir (n = 243), insulin aspart (n = 11), basal insulin plus insulin aspart (n = 39) and other insulin combinations (n = 13). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 10.2%) and insulin user (mean HbA1c: 9.8%) groups. After 24 weeks of treatment, both the study groups showed improvement in HbA1c (insulin naïve: −2.1%, insulin users: −0.9%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia. PMID:24404473

  19. Human primary myoblast cell cultures from non-diabetic insulin resistant subjects retain defects in insulin action.

    PubMed Central

    Thompson, D B; Pratley, R; Ossowski, V

    1996-01-01

    Insulin resistance is a predictor of the development of noninsulin-dependent diabetes mellitus (NIDDM) in humans. It is unclear whether insulin resistance is a primary defect leading to NIDDM or the result of hyperinsulinemia and hyperglycemia. To determine if insulin resistance is the result of extrinsic factors such as hyperinsulinemia primary skeletal muscle cell cultures were established from muscle biopsies from Pima Indians with differing in vivo insulin sensitivities. These cell cultures expressed a variety of muscle-specific phenotypes including the proteins alpha-actinin and myosin, muscle-specific creatine kinase activity, and RNA encoding GLUT4, MYF5, MYOD1, and MYOGENIN. Labeled glucose was used to measure the insulin-stimulated conversion of glucose to glycogen in these cultures. The in vivo rates of insulin-stimulated glycogen production (insulin resistance) were correlated with in vitro measures of glycogen production (P = 0.007, r = 0.58). This defect in insulin action is stable in a uniform culture environment and is retained over time. The retention of insulin resistance in myoblast derived cell cultures is consistent with the expression of an underlying biochemical defect in insulin resistant skeletal muscle. PMID:8941652

  20. Intranasal insulin improves memory in humans.

    PubMed

    Benedict, Christian; Hallschmid, Manfred; Hatke, Astrid; Schultes, Bernd; Fehm, Horst L; Born, Jan; Kern, Werner

    2004-11-01

    Previous studies have suggested an acutely improving effect of insulin on memory function. To study changes in memory associated with a prolonged increase in brain insulin activity in humans, here we used the intranasal route of insulin administration known to provide direct access of the substance to the cerebrospinal fluid compartment. Based on previous results indicating a prevalence of insulin receptors in limbic and hippocampal regions as well as improvements in memory with systemic insulin administration, we expected that intranasal administration of insulin improves primarily hippocampus dependent declaration memory function. Also, improvements in mood were expected. We investigated the effects of 8 weeks of intranasal administration of insulin (human regular insulin 4 x 40 IU/d) on declarative memory (immediate and delayed recall of word lists), attention (Stroop test), and mood in 38 healthy subjects (24 males) in a double blind, between-subject comparison. Blood glucose and plasma insulin levels did not differ between the placebo and insulin conditions. Delayed recall of words significantly improved after 8 weeks of intranasal insulin administration (words recalled, Placebo 2.92 +/- 1.00, Insulin 6.20 +/- 1.03, p < 0.05). Moreover, subjects after insulin reported signs of enhanced mood, such as reduced anger (p < 0.02) and enhanced self-confidence (p < 0.03). Results indicate a direct action of prolonged intranasal administration of insulin on brain functions, improving memory and mood in the absence of systemic side effects. These findings could be of relevance for the treatment of patients with memory disorders like in Alzheimer's disease.

  1. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  2. Conformational Dynamics of Insulin

    PubMed Central

    Hua, Qing-Xin; Jia, Wenhua; Weiss, Michael A.

    2011-01-01

    We have exploited a prandial insulin analog to elucidate the underlying structure and dynamics of insulin as a monomer in solution. A model was provided by insulin lispro (the active component of Humalog®; Eli Lilly and Co.). Whereas NMR-based modeling recapitulated structural relationships of insulin crystals (T-state protomers), dynamic anomalies were revealed by amide-proton exchange kinetics in D2O. Surprisingly, the majority of hydrogen bonds observed in crystal structures are only transiently maintained in solution, including key T-state-specific inter-chain contacts. Long-lived hydrogen bonds (as defined by global exchange kinetics) exist only at a subset of four α-helical sites (two per chain) flanking an internal disulfide bridge (cystine A20–B19); these sites map within the proposed folding nucleus of proinsulin. The anomalous flexibility of insulin otherwise spans its active surface and may facilitate receptor binding. Because conformational fluctuations promote the degradation of pharmaceutical formulations, we envisage that “dynamic re-engineering” of insulin may enable design of ultra-stable formulations for humanitarian use in the developing world. PMID:22649374

  3. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    PubMed

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  4. Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity.

    PubMed

    Novosyadlyy, Ruslan; Leroith, Derek

    2012-06-01

    Numerous lines of evidence indicate that insulin-like growth factor signaling plays an important role in the regulation of life span and tumor development. In the present paper, the role of individual components of insulin-like growth factor signaling in aging and tumor development has been extensively analyzed. The molecular mechanisms underlying aging and tumor development are frequently overlapping. Although the link between reduced insulin-like growth factor signaling and suppressed tumor growth and development is well established, it remains unclear whether extended life span results from direct suppression of insulin-like growth factor signaling or this effect is caused by indirect mechanisms such as improved insulin sensitivity.

  5. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor*

    PubMed Central

    Lawrence, Callum F.; Margetts, Mai B.; Menting, John G.; Smith, Nicholas A.; Smith, Brian J.; Ward, Colin W.; Lawrence, Michael C.

    2016-01-01

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe701 and Phe705. The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  6. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  7. Shunting for hydrocephalus: analysis of techniques and failure patterns.

    PubMed

    Nigim, Fares; Critchlow, Jonathan F; Schneider, Benjamin E; Chen, Clark; Kasper, Ekkehard M

    2014-09-01

    Hydrocephalus is characterized by ventricular dilatation because of progressive accumulation of cerebrospinal fluid. Normal pressure hydrocephalus (NPH) affects a subset of patients representing a reversible clinical triad of gait disturbance, urinary incontinence, and dementia with normal cerebrospinal fluid pressure and composition. Various shunting procedures have been used for treatment, but techniques and outcomes remain under debate. The objective of this study was to evaluate the clinical outcomes of 232 patients with and without NPH after the first-time Ventriculoperitoneal shunt placement and assessed patterns of failure between December 2004 and December 2012. Mean age was 54.7 y in non-NPH and 71.9 y in NPH patients. We used open technique in 34.3% and laparoscopic technique in 65.7% of NPH patients and 32.7% and 67.3% of the non-NPH patients, respectively. A total of 36 of 232 patients displayed shunt failure, 16.4% in NPH and 15.2% in non-NPH patients. Twenty-three of 155 patients failed after laparoscopic and 13 of 77 failed after open placement. Proximal shunt failure was more frequent in the non-NPH cohort. Distal failures accounted for 13 of 232 cases, and the difference between laparoscopic (six of 155) and open failures (seven of 77) was profound, but not between NPH- and non-NPH patients. Shunt failures are related to the placement method. Non-NPH patients showed more proximal failures. NPH patients showed fewer proximal failures. Less distal failures were observed after laparoscopic ventriculoperitoneal shunt placement without significant differences between NPH and non-NPH patients. Beyond this, laparoscopic surgery carries distinct advantages such as shorter operating room times and hospital stays, which should translate into less use of pain medications, earlier mobilization, and a lower incidence of ileus. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    PubMed

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The Effect of Fasting Duration on Baseline Blood Glucose Concentration, Blood Insulin Concentration, Glucose/Insulin Ratio, Oral Sugar Test, and Insulin Response Test Results in Horses.

    PubMed

    Bertin, F R; Taylor, S D; Bianco, A W; Sojka-Kritchevsky, J E

    2016-09-01

    Published descriptions of the oral sugar test (OST) and insulin response test (IRT) have been inconsistent when specifying the protocol for fasting horses before testing. The purpose of our study was to examine the effect of fasting duration on blood glucose concentration, blood insulin concentration, glucose/insulin ratio, OST, and IRT results in horses. Ten healthy adult horses. Both OST and IRT were performed on horses without fasting and after fasting for 3, 6, and 12 hours. Thus, 8 tests were performed per horse in a randomized order. Blood collected at the initial time point of the OST was analysed for both blood glucose and serum insulin concentrations so that baseline concentrations and the glucose/insulin ratio could be determined. Unless fasted, horses had free-choice access to grass hay. There was no effect of fasting and fasting duration on blood glucose concentration, serum insulin concentration, glucose/insulin ratio, or the OST. Response to insulin in the IRT was decreased in fasted horses. The effect increased with fasting duration, with the least response to insulin administration after a 12-hour fast. These data indicate that insulin sensitivity is not a fixed trait in horses. Fasting a horse is not recommended for a glucose/insulin ratio or IRT, and fasting a horse for 3 hours is recommended for the OST. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis.

    PubMed

    Wang, Feng; Han, Lili; Hu, Dayi

    2017-01-01

    Studies on the association of fasting insulin concentrations or insulin resistance with subsequent risk of hypertension have yielded conflicting results. To quantitatively assess the association of fasting insulin concentrations or homeostasis model assessment insulin resistance (HOMA-IR) with incident hypertension in a general population by performing a meta-analysis. We searched the PubMed and Embase databases until August 31, 2016 for prospective observational studies investigating the elevated fasting insulin concentrations or HOMA-IR with subsequent risk of hypertension in the general population. Pooled risk ratio (RR) and 95% confidence interval (CI) of hypertension was calculated for the highest versus the lowest category of fasting insulin or HOMA-IR. Eleven studies involving 10,230 hypertension cases were identified from 55,059 participants. Meta-analysis showed that the pooled adjusted RR of hypertension was 1.54 (95% CI 1.34-1.76) for fasting insulin concentrations and 1.43 (95% CI 1.27-1.62) for HOMA-IR comparing the highest to the lowest category. Subgroup analysis results showed that the association of fasting insulin concentrations with subsequent risk of hypertension seemed more pronounced in women (RR 2.07; 95% CI 1.19-3.60) than in men (RR 1.48; 95% CI 1.17-1.88). This meta-analysis suggests that elevated fasting insulin concentrations or insulin resistance as estimated by homeostasis model assessment is independently associated with an exacerbated risk of hypertension in the general population. Early intervention of hyperinsulinemia or insulin resistance may help clinicians to identify the high risk of hypertensive population. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women.

    PubMed

    Stull, April J; Cash, Katherine C; Johnson, William D; Champagne, Catherine M; Cefalu, William T

    2010-10-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m(-2)⋅min(-1)). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants' body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM(-1)⋅min(-1)) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM(-1)⋅min(-1)) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants.

  12. Effect of Gymnema sylvestre Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion.

    PubMed

    Zuñiga, Laura Y; González-Ortiz, Manuel; Martínez-Abundis, Esperanza

    2017-08-01

    Gymnema sylvestre is a medicinal plant whose consumption has demonstrated benefits on lipid and glucose levels, blood pressure, and body weight (BWt). The aim of this study was to evaluate the effect of G. sylvestre administration on metabolic syndrome (MetS), insulin secretion, and insulin sensitivity. A randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (without pharmacological treatment), 30-60 years old, with diagnosis of MetS in accordance with the modified International Diabetes Federation criteria. Patients were randomly assigned to receive G. sylvestre or placebo twice daily before breakfast and dinner in 300 mg capsules for a total of 600 mg per day for 12 weeks. Before and after the intervention, the components of MetS were evaluated as well as BWt, body mass index (BMI), total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein (VLDL). Area under the curve of glucose and insulin, phases of insulin secretion, and insulin sensitivity were calculated. Statistical analysis was performed using Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests; P ≤ .05 was considered statistically significant. After G. sylvestre administration, significant decreases in BWt (81.3 ± 10.6 kg vs. 77.9 ± 8.4 kg, P = .02), BMI (31.2 ± 2.5 kg/m 2 vs. 30.4 ± 2.2 kg/m 2 , P = .02), and VLDL levels (0.45 ± 0.15 mmol/dL vs. 0.35 ± 0.15 mmol/dL, P = .05) were observed, without modifying the components of MetS, insulin secretion, and insulin sensitivity. In conclusion, G. sylvestre administration decreased BWt, BMI, and VLDL levels in subjects with MetS, without changes in insulin secretion and insulin sensitivity.

  13. Carbohydrate-to-insulin ratio is estimated from 300-400 divided by total daily insulin dose in type 1 diabetes patients who use the insulin pump.

    PubMed

    Kuroda, Akio; Yasuda, Tetsuyuki; Takahara, Mitsuyoshi; Sakamoto, Fumie; Kasami, Ryuichi; Miyashita, Kazuyuki; Yoshida, Sumiko; Kondo, Eri; Aihara, Ken-ichi; Endo, Itsuro; Matsuoka, Taka-aki; Kaneto, Hideaki; Matsumoto, Toshio; Shimomura, Iichiro; Matsuhisa, Munehide

    2012-11-01

    To optimize insulin dose using insulin pump, basal and bolus insulin doses are widely calculated from total daily insulin dose (TDD). It is recommended that total daily basal insulin dose (TBD) is 50% of TDD and that the carbohydrate-to-insulin ratio (CIR) equals 500 divided by TDD. We recently reported that basal insulin requirement is approximately 30% of TDD. We therefore investigated CIR after adjustment of the proper basal insulin rate. Forty-five Japanese patients with type 1 diabetes were investigated during several weeks of hospitalization. The patients were served standard diabetes meals (25-30 kcal/kg of ideal body weight). Each meal omission was done to confirm basal insulin rate. Target blood glucose level was set at 100 and 150 mg/dL before and 2 h after each meal, respectively. After the basal insulin rate was fixed and target blood glucose levels were achieved, TBD, CIR, TDD, and their products were determined. Mean (±SD) blood glucose levels before and 2 h after meals were 121±47 and 150±61 mg/dL, respectively. TDD was 31.5±9.0 U, and TBD was 27.0±6.5% of TDD. CIR×TDD of breakfast was significantly lower than those of lunch and supper (288±73 vs. 408±92 and 387±83, respectively; P<0.01). CIR has diurnal variance and is estimated from the formula CIR=300/TDD at breakfast or CIR=400/TDD at lunch and supper in type 1 diabetes patients. These results indicate that the insulin dose has been underestimated by using previously established calculations.

  14. Familial hyperinsulinemia associated with secretion of an abnormal insulin, and coexistence of insulin resistance in the propositus.

    PubMed

    Vinik, A I; Seino, S; Funakoshi, A; Schwartz, J; Matsumoto, M; Schteingart, D E; Fu, Z Z; Tsai, S T

    1986-04-01

    A 45-yr-old muscular nonobese white man who had a 9-yr history of syncopal episodes was studied on several occasions between April 1979 and August 1984. Fasting glucose concentrations ranged between 74-115 mg/dl, and those of insulin ranged between 14-64 microU/ml. Reactive hypoglycemia 3-4 h after ingestion of glucose occurred in the first 2 yr. Glucose tolerance was impaired in 1979, from February 1982 through September 1983, and again in August 1984. The maximum plasma insulin response to glucose ranged between 475-1630 microU/ml. When studied in November 1982, insulin (0.1 U/kg) caused a fall in blood glucose concentration of only 25% (normal, greater than 50%), and maximal glucose utilization during the euglycemic hyperinsulinemic clamp was 7.5 mg/kg . min (normal, greater than 12 mg/kg . min). Plasma counterregulatory hormone concentrations were normal, and antibodies to insulin and the insulin receptor were absent. Binding of exogenous insulin to the patient's cellular receptors (monocytes, red blood cells, and skin fibroblasts) was normal. Insulin was purified from plasma by immunoaffinity and molecular sieve chromatography and was found to elute later than human insulin on reversed phase high performance liquid chromatography. It was more hydrophobic than normal human insulin and had only 10% of the activity of normal insulin in terms of ability to bind to and stimulate glucose metabolism in isolated rat adipocytes. The abnormal insulin was identified in two of three sons and a sister, but not in the mother, brother, or niece. Sensitivity to insulin was normal in the two sons who had abnormal insulin. These results suggest that in this family the abnormal insulin was due to a biosynthetic defect, inherited as an autosomal dominant trait. The hyperinsulinemia was not associated with diabetes in family members who had no insulin resistance.

  15. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes.

    PubMed

    Sun, Shishuo; Tan, Pengcheng; Huang, Xiaoheng; Zhang, Wei; Kong, Chen; Ren, Fangfang; Su, Xiong

    2018-02-16

    Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Oral insulin reloaded: a structured approach.

    PubMed

    Zijlstra, Eric; Heinemann, Lutz; Plum-Mörschel, Leona

    2014-05-01

    Optimal coverage of insulin needs is the paramount aim of insulin replacement therapy in patients with diabetes mellitus. To apply insulin without breaking the skin barrier by a needle and/or to allow a more physiological provision of insulin are the main reasons triggering the continuous search for alternative routes of insulin administration. Despite numerous attempts over the past 9 decades to develop an insulin pill, no insulin for oral dosing is commercially available. By way of a structured approach, we aim to provide a systematic update on the most recent developments toward an orally available insulin formulation with a clear focus on data from clinical-experimental and clinical studies. Thirteen companies that claim to be working on oral insulin formulations were identified. However, only 6 of these companies published new clinical trial results within the past 5 years. Interestingly, these clinical data reports make up a mere 4% of the considerably high total number of publications on the development of oral insulin formulations within this time period. While this picture clearly reflects the rising research interest in orally bioavailable insulin formulations, it also highlights the fact that the lion's share of research efforts is still allocated to the preclinical stages. © 2014 Diabetes Technology Society.

  17. Selective Insulin Resistance in the Kidney

    PubMed Central

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  18. Homeostatic Model Assessment for Insulin Resistance (HOMA-IR): A Better Marker for Evaluating Insulin Resistance Than Fasting Insulin in Women with Polycystic Ovarian Syndrome.

    PubMed

    Majid, Hafsa; Masood, Qamar; Khan, Aysha Habib

    2017-03-01

    To assess the utility of HOMA-IR in assessing insulin resistance in patients with polycystic ovary syndrome (PCOS) and compare it with fasting insulin for assessing insulin resistance (IR). Observational study. Section of Clinical Chemistry, Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Karachi, from January 2009 to September 2012. Medical chart review of all women diagnosed with PCOS was performed. Of the 400 PCOS women reviewed, 91 met the inclusion criteria. Insulin resistance was assessed by calculating HOMA-IR using the formula (fasting glucose x fasting insulin)/405, taking normal value <2 in adults and hyperinsulinemia based on fasting insulin levels ≥12 µIU/ml. A total of 91 premenopausal women diagnosed with PCOS were included. Mean age was 30 ±5.5 years. Mean HOMA-IR of women was 3.1 ±1.7, respectively with IR in 69% (n=63) women, while hyperinsulinemia was present in 60% (n=55) women (fasting Insulin 18.5 ±5.8 µIU/ml). Hyperandrogenism was present in 53.8% (n=49), whereas 38.5% (n=35) women had primary infertility or subfertility, while 65.9% (n=60) had menstrual irregularities; and higher frequencies were observed in women with IR. Eight subjects with IR and endocrine abnormalities were missed by fasting insulin. Insulin resistance is common in PCOS and it is likely a pathogenic factor for development of PCOS. HOMAIR model performed better than hyperinsulinemia alone for diagnosing IR.

  19. Insulin and insulin-like growth factor-1 induce pronounced hypertrophy of skeletal myofibers in tissue culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Karlisch, Patricia; Shansky, Janet

    1990-01-01

    Skeletal myofibers differentiated from primary avian myoblasts in tissue culture can be maintained in positive nitrogen balance in a serum-free medium for at least 6 to 7 days when embedded in a three dimensional collagen gel matrix. The myofibers are metabolically sensitive to physiological concentrations of insulin but these concentrations do not stimulate cell growth. Higher insulin concentrations stimulate both cell hyperplasia and myofiber hypertrophy. Cell growth results from a long term 42 percent increase in total protein synthesis and a 38 percent increase in protein degradation. Myofiber diameters increase by 71 to 98 percent after 6 to 7 days in insulin-containing medium. Insulin-like growth factor-1 but not insulin-like growth factor-2, at 250 ng/ml, is as effective as insulin in stimulating cell hyperplasia and myofiber hypertrophy. This model system provides a new method for studying the long-term anabolic effects of insulin and insulin-like growth factors on myofiber hypertrophy under defined tissue culture conditions.

  20. A novel regulation of IRS1 (insulin receptor substrate-1) expression following short term insulin administration

    PubMed Central

    2005-01-01

    Reduced insulin-mediated glucose transport in skeletal muscle is a hallmark of the pathophysiology of T2DM (Type II diabetes mellitus). Impaired intracellular insulin signalling is implicated as a key underlying mechanism. Attention has focused on early signalling events such as defective tyrosine phosphorylation of IRS1 (insulin receptor substrate-1), a major target for the insulin receptor tyrosine kinase. This is required for normal induction of signalling pathways key to many of the metabolic actions of insulin. Conversely, increased serine/threonine phosphorylation of IRS1 following prolonged insulin exposure (or in obesity) reduces signalling capacity, partly by stimulating IRS1 degradation. We now show that IRS1 levels in human muscle are actually increased 3-fold following 1 h of hyperinsulinaemic euglycaemia. Similarly, transient induction of IRS1 (3-fold) in the liver or muscle of rodents occurs following feeding or insulin injection respectively. The induction by insulin is also observed in cell culture systems, although to a lesser degree, and is not due to reduced proteasomal targeting, increased protein synthesis or gene transcription. Elucidation of the mechanism by which insulin promotes IRS1 stability will permit characterization of the importance of this novel signalling event in insulin regulation of liver and muscle function. Impairment of this process would reduce IRS1 signalling capacity, thereby contributing to the development of hyperinsulinaemia/insulin resistance prior to the appearance of T2DM. PMID:16128672

  1. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    PubMed

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2)) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein

  2. Investigations into the absorption of insulin and insulin derivatives from the small intestine of the anaesthetised rat.

    PubMed

    McGinn, B J; Morrison, J D

    2016-06-28

    Experiments have been undertaken to determine the extent to which cholic acid conjugates of insulin were absorbed from the small intestine of anaesthetised rats by means of the bile salt transporters of the ileum. The measure used to assess the absorption of the cholyl-insulins was the amount of hypoglycaemia following infusion into the small intestine. Control experiments involving infusion of natural insulin into the ileum showed either nil absorption or absorption of a small amount of insulin as indicated by transient dip in the blood glucose concentration. However, when insulin was co-infused with the bile salt taurocholate, this was followed by a marked hypoglycaemic response which was specific to the ileum and did not occur on infusion into the jejunum. When the two cholyl conjugates of insulin were tested viz. B(29)-Lys-cholyl-insulin and B(1)-Phe-cholyl-insulin, both were biologically active as indicated by hypoglycaemic responses on systemic injection, though their potency was about 40% of that of natural insulin. While there was no evidence for the absorption of B(29)-Lys-cholyl-insulin when infused into the ileum, B(1)-Phe-cholyl-insulin did cause a long lasting hypoglycaemic response, indicating that absorption had occurred. Since the hypoglycaemic response was blocked on co-infusion with taurocholate and was absent for infusion of the conjugate into the jejunum, these results were taken as evidence that B(1)-Phe-cholyl-insulin had been taken up by the ileal bile salt transporters. This would indicate that B(1)-Phe-cholyl-insulin is worthy of further investigation for use in an oral insulin formulation. Copyright © 2016. Published by Elsevier B.V.

  3. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2010-02-01

    When Exubera (EXU), the first inhaled insulin formulation to make it through the clinical development process, was introduced to the market some years ago it was hoped that this would be the first in a series of novel insulin formulations applied by this route. In addition, it was hoped that inhaled insulin would pave the way for other alternative routes of insulin administration (ARIA), i.e. oral insulin, nasal insulin or transdermal insulin to mention only some of the different attempts that have been studied in the last 90 years. The failure of EXU, i.e. its withdrawal from the market due to insufficient market success, was followed by the cessation of nearly all other attempts to develop inhaled insulin formulations. Currently there is only one company (MannKind) which moves sturdily ahead with their Technosphere insulin. This company has submitted an NDA for their product recently and hopes to bring it to the market by the end of 2010 or early 2011. Even if the product is able to pass the approval hurdles in the USA and Europe, this does not guarantee that it will become a market success. Many diabetologists were sceptical about the need/advantages of inhaled insulin/EXU from the start and the introduction of this product has raised even more scepticism. Reports about 'side effects' (development of lung cancer in patients treated with EXU) of inhaled insulin are also not helpful, even if the causality of the appearance of cancer with this type of insulin therapy is not proven. One of the very negative consequences of stopping EXU are the huge financial losses to Pfizer. The managers in charge in other pharmaceutical companies and also most venture capitalists are reluctant to invest in ARIA nowadays. This in turn means that many of the small companies that try to develop new forms of insulin administration have issues when they try to find a big brother and/or sufficient financial support. Clearly the economic crisis has further aggravated this issue. One can

  4. Peripheral Insulin Resistance and Impaired Insulin Signaling Contribute to Abnormal Glucose Metabolism in Preterm Baboons

    PubMed Central

    McGill-Vargas, Lisa L.; Gastaldelli, Amalia; Seidner, Steven R.; McCurnin, Donald C.; Leland, Michelle M.; Anzueto, Diana G.; Johnson, Marney C.; Liang, Hanyu; DeFronzo, Ralph A.; Musi, Nicolas

    2015-01-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors. PMID:25560831

  5. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    PubMed

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  6. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  7. Insulin Infusion Sets: A Critical Reappraisal.

    PubMed

    Heinemann, Lutz

    2016-05-01

    An insulin infusion set (IIS) is a key component of insulin pumps. In daily practice issues with the IIS appear to be as relevant for a successful insulin therapy as the pumps themselves. The insulin is applied to the subcutaneous tissue via a Teflon(®) (Dupont, Wilmington, DE) or steel cannula. There are intensive discussions about the impact the choice of material for insulin application has on insulin pharmacokinetics. In this review, this factor and others that are known to have an impact on the successful usage of IIS are discussed.

  8. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    PubMed

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P < 0.05). Furthermore, central IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P < 0.05). Taken together, IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. Severe hypoglycaemia in a person with insulin autoimmune syndrome accompanied by insulin receptor anomaly type B.

    PubMed

    Kato, T; Itoh, M; Hanashita, J; Itoi, T; Matsumoto, T; Ono, Y; Imamura, S; Hayakawa, N; Suzuki, A; Mizutani, Y; Uchigata, Y; Oda, N

    2007-11-01

    A rare case of the insulin autoimmune syndrome (IAS) accompanied by insulin receptor anomaly is reported. Antibodies to insulin and insulin receptor were determined in the patient with severe hypoglycaemia before and after the treatment with prednisolone. Titers of antibody to insulin and insulin receptors were 73.0% and 41.5%, respectively. Drug-induced lymphocyte stimulation tests were all negative for the suspicious drugs. Her HLA-DR was DRB1*0403/04051. Following steroid therapy, the formation of antibodies was suppressed and alleviated her symptoms. Scatchard analysis yielded findings specific to polyclonal antibodies. The changes in autoantibodies resulted in alleviation of the hypoglycemic symptoms as a result of steroid therapy.

  10. Novel hepato-preferential basal insulin peglispro (BIL) does not differentially affect insulin sensitivity compared with insulin glargine in patients with type 1 and type 2 diabetes.

    PubMed

    Porksen, Niels; Linnebjerg, Helle; Garhyan, Parag; Lam, Eric C Q; Knadler, Mary P; Jacober, Scott J; Hoevelmann, Ulrike; Plum-Moerschel, Leona; Watkins, Elaine; Gastaldelli, Amalia; Heise, Tim

    2017-04-01

    Basal insulin peglispro (BIL) is a novel PEGylated basal insulin with a flat pharmacokinetic and glucodynamic profile and reduced peripheral effects, which results in a hepato-preferential action. In Phase 3 trials, patients with T1DM treated with BIL had lower prandial insulin requirements, yet improved prandial glucose control, relative to insulin glargine (GL). We hypothesized that this may be because of an enhanced sensitivity to prandial insulin with BIL resulting from lower chronic peripheral insulin action. Two open-label, randomized, 2-period crossover clinical studies were conducted in 28 patients with T1DM and 24 patients with T2DM. In each study period, patients received once-daily, individualized, stable, subcutaneous doses of BIL or GL for 5 weeks before a euglycaemic 2-step hyperinsulinemic clamp procedure (with [6,6- 2 H 2 ]-glucose in 12 of the patients with T1DM). M-values were derived from the clamp procedure for all patients, with rate of glucose appearance (Ra) and disappearance (Rd) and insulin sensitivity index (SI) determined from the clamps with [6,6- 2 H 2 ]-glucose. There were no statistically significant differences between BIL and GL in key measures of hepatic (% Ra suppression during the low-dose insulin infusion; 78.7% with BIL, 81.8% with GL) or peripheral (M-value and M/I during the high-dose insulin infusion, Rd and SI) insulin sensitivity in patients with T1DM or T2DM. The need to reduce prandial insulin observed with BIL during phase 3 trials cannot be explained by the differential effects of BIL and GL on sensitivity to prandial insulin in either T1DM or T2DM. © 2016 John Wiley & Sons Ltd.

  11. Relationship between insulin sensitivity index and cognitive function in diet-induced insulin resistant rats.

    PubMed

    Chen, Sisi; Xie, Hao; Wu, Jing; Hong, Hao; Jin, Jianwen; Fang, Jinbo; Huang, Ji; Fu, Ying Zhou; Ji, Hui; Li, Yong Qi; Long, Yan; Xia, Yuan Zheng

    2009-06-01

    Clinical and animal studies have revealed significant cognitive impairment in type II diabetic subjects. However, whether there is a relationship between insulin resistance and cognitive function is poorly understood. In the present study, we used a high fat diet to induce insulin resistance (IR) in rats, insulin sensitivity index (ISI) (= FINS x FPG/22.5) to assess the extent of insulin resistance and the Morris Water Maze Task to judge cognitive function. The relationship between insulin sensitivity index and cognitive function was determined by analysing the correlation between ISI and the time rat spent in targeted quadrant, as well as between ISI and the times the rat swam across the very point where a platform was previously placed, using Pearson's method. Perfect negative correlation between ISI and cognitive function existed when ISI fell within a certain range, which indicates that insulin resistance is associated with cognitive function impairment in some cases where ISI might be an indicator.

  12. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    PubMed

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  13. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  14. Chitosan Nanofibers for Transbuccal Insulin Delivery

    PubMed Central

    Lancina, Michael G.; Shankar, Roopa Kanakatti; Yang, Hu

    2017-01-01

    Purpose In this work, we aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Methods Chitosan was electrospun into nanofibers using poly (ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Results Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Conclusions Taken together, our work demonstrates chitosan based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. PMID:28000386

  15. Insulin during pregnancy, labour and delivery.

    PubMed

    de Valk, Harold W; Visser, Gerard H A

    2011-02-01

    Optimal glycaemic control is of the utmost importance to achieve the best possible outcome of a pregnancy complicated by diabetes. This holds for pregnancies in women with preconceptional type 1 or type 2 diabetes as well as for pregnancies complicated by gestational diabetes. Glycaemic control is conventionally expressed in the HbA1c value but the HbA1c value does not completely capture the complexity of glycaemic control. The daily glucose profile measured by the patients themselves through measurements performed in capillary blood obtained by finger stick provides valuable information needed to adjust insulin therapy. Hypoglycaemia is the major threat to the pregnant woman or the woman with tight glycaemic control in the run-up to pregnancy. Repetitive hypoglycaemia can lead to hypoglycaemia unawareness, which is reversible with prevention of hypoglycaemia. A delicate balance should be struck between preventing hyperglycaemia and hypoglycaemia. Insulin requirements are not uniform across the day: it is low during the night with a more or less pronounced rise at dawn, followed by a gradual decrease during the remainder of the day. A basal amount of insulin is needed to regulate the endogenous glucose production, short-acting insulin shots are needed to handle exogenous glucose loads. Insulin therapy means two choices: the type of insulin used and the method of insulin administration. Regarding the type of insulin, the choice is between human and analogue insulins. The analogue short-acting insulin aspart has been shown to be safe during pregnancy in a randomised trial and has received registration for this indication; the short-acting analogue insulin lispro has been shown to be safe in observational studies. No such information is available on the long-acting insulin analogues detemir and glargine and both are prescribed off-label with human long-acting insulin as obvious alternatives. Randomised trials have not been able to show superiority of continuous

  16. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  17. Comparison of Subcutaneous Regular Insulin and Lispro Insulin in Diabetics Receiving Continuous Nutrition: A Numerical Study.

    PubMed

    Stull, Mamie C; Strilka, Richard J; Clemens, Michael S; Armen, Scott B

    2015-06-30

    Optimal management of non-critically ill patients with diabetes maintained on continuous enteral feeding (CEN) is poorly defined. Subcutaneous (SQ) lispro and SQ regular insulin were compared in a simulated type 1 and type 2 diabetic patient receiving CEN. A glucose-insulin feedback mathematical model was employed to simulate type 1 and type 2 diabetic patients on CEN. Each patient received 25 SQ injections of regular insulin or insulin lispro, ranging from 0-6 U. Primary endpoints were the change in mean glucose concentration (MGC) and change in glucose variability (GV); hypoglycemic episodes were also reported. The model was first validated against patient data. Both SQ insulin preparations linearly decreased MGC, however, SQ regular insulin decreased GV whereas SQ lispro tended to increase GV. Hourly glucose concentration measurements were needed to capture the increase in GV. In the type 2 diabetic patient, "rebound hyperglycemia" occurred after SQ lispro was rapidly metabolized. Although neither SQ insulin preparation caused hypoglycemia, SQ lispro significantly lowered MGC compared to SQ regular insulin. Thus, it may be more likely to cause hypoglycemia. Analyses of the detailed glucose concentration versus time data suggest that the inferior performance of lispro resulted from its shorter duration of action. Finally, the effects of both insulin preparations persisted beyond their duration of actions in the type 2 diabetic patient. Subcutaneous regular insulin may be the short-acting insulin preparation of choice for this subset of diabetic patients. Clinical trial is required before a definitive recommendation can be made. © 2015 Diabetes Technology Society.

  18. Insulin adherence behaviours and barriers in the multinational Global Attitudes of Patients and Physicians in Insulin Therapy study.

    PubMed

    Peyrot, M; Barnett, A H; Meneghini, L F; Schumm-Draeger, P-M

    2012-05-01

    To examine patient and physician beliefs regarding insulin therapy and the degree to which patients adhere to their insulin regimens. Internet survey of 1250 physicians (600 specialists, 650 primary care physicians) who treat patients with diabetes and telephone survey of 1530 insulin-treated patients (180 with Type 1 diabetes, 1350 with Type 2 diabetes) in China, France, Japan, Germany, Spain, Turkey, the UK or the USA. One third (33.2%) of patients reported insulin omission/non-adherence at least 1 day in the last month, with an average of 3.3 days. Three quarters (72.5%) of physicians report that their typical patient does not take their insulin as prescribed, with a mean of 4.3 days per month of basal insulin omission/non-adherence and 5.7 days per month of prandial insulin omission/non-adherence. Patients and providers indicated the same five most common reasons for insulin omission/non-adherence: too busy; travelling; skipped meals; stress/emotional problems; public embarrassment. Physicians reported low patient success at initiating insulin in a timely fashion and adjusting insulin doses. Most physicians report that many insulin-treated patients do not have adequate glucose control (87.6%) and that they would treat more aggressively if not for concern about hypoglycaemia (75.5%). Although a majority of patients (and physicians) regard insulin treatment as restrictive, more patients see insulin treatment as having positive than negative impacts on their lives. Glucose control is inadequate among insulin-treated patients, in part attributable to insulin omission/non-adherence and lack of dose adjustment. There is a need for insulin regimens that are less restrictive and burdensome with lower risk of hypoglycaemia. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  19. Insulin analogues with improved absorption characteristics.

    PubMed

    Brange, J; Hansen, J F; Langkjaer, L; Markussen, J; Ribel, U; Sørensen, A R

    1992-01-01

    The insulin preparations available today are not ideal for therapy as s.c. injection does not provide a physiological insulin profile. With the aim to improve the absorption properties recombinant DNA technology has been utilized to design novel insulin molecules with changed physico-chemical characteristics and hence altered subcutaneous absorption kinetics. Soluble, long-acting human insulin analogues in which the isoelectric point has been increased from 5.4 to approx. 7 are absorbed very slowly, providing a more constant basal insulin delivery with lower day-to-day variation than present protracted preparations. In addition they have better storage stability. Rapid-acting human insulin analogues with largely reduced self-association are absorbed substantially faster from subcutaneous tissue than current regular insulin and thus are better suited for bolus injection. The absorption kinetics of these analogues have been able to explain the mechanism behind the dose effect on insulin absorption rate.

  20. Effect of combined application insulin and insulin detemir on continous glucose monitor in children with type 1 diabetes mellitus.

    PubMed

    Chen, Xiao-Yun; Dong, Qing; Li, Gui-Mei

    2015-01-01

    Insulin detemir is a soluble long-acting human insulin analogue at neutral pH with a unique mechanism of action, which could strengthen the effects of insulin. This study aims to explore the effects of insulin combined with insulin detemir on the continous glucose in children with type 1 diabetes mellitus. In this study, 150 patients with type 1 diabetes enrolled were included and randomly divided into 3 groups: insulin group (group A), insulin detemir group (group B) and insulin combined with insulin detemir group (group C). Each subject underwent 72 h of continuous glucose monitoring (CGM). MAGE, HbA1c and Noctumal Hypoglycemia levels were examined by using the ELISA kits. The body weight changes were also detected in this study. The results indicated that the information including age, body weight, disease duration and glucose level and HbA1c percentage on the start time point among three groups indicated no statistical differences. Insulin combined with insulin detemir decrease MAGE and HbA1c level in Group C compared to Group A and Group A (P < 0.05). Insulin combined with insulin detemir decreas noctumal hypoglycemia levels and body weight changes (P < 0.05). In conclusion, this study confirmed efficacy of insulin detemir by demonstrating non-inferiority of insulin detemir compared with insulin with respect to HbA1c, with an improved safety profile including significantly fewer hypoglycaemic episodes and less undesirable weight gain in children.

  1. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  2. Insulin's acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin's acute effects on proximal tubular sodium reabsorption correlation with salt sensitivity in normal subjects.

    PubMed

    ter Maaten, J C; Bakker, S J; Serné, E H; ter Wee, P M; Donker, A J; Gans, R O

    1999-10-01

    Insulin induces sodium retention by increasing distal tubular sodium reabsorption. Opposite effects of insulin to offset insulin-induced sodium retention are supposedly increases in glomerular filtration rate (GFR) and decreases in proximal tubular sodium reabsorption. Defects in these opposing effects could link insulin resistance to blood-pressure elevation and salt sensitivity. We assessed the relationship between the effects of sequential physiological and supraphysiological insulin dosages (50 and 150 mU/kg/h) on renal sodium handling, and insulin sensitivity and salt sensitivity using the euglycaemic clamp technique and clearances of [131I]hippuran, [125I]iothalamate, sodium, and lithium in 20 normal subjects displaying a wide range of insulin sensitivity. Time-control experiments were performed in the same subjects. Salt sensitivity was determined using a diet method. During the successive insulin infusions, GFR increased by 5.9% (P = 0.003) and 10.9% (P<0.001), while fractional sodium excretion decreased by 34 and 50% (both P<0.001). Distal tubular sodium reabsorption increased and proximal tubular sodium reabsorption decreased. Insulin sensitivity correlated with changes in GFR during physiological (r = 0.60, P = 0.005) and supraphysiological (r = 0.58, P = 0.007) hyperinsulinaemia, but not with changes in proximal tubular sodium reabsorption. Salt sensitivity correlated with changes in proximal tubular sodium reabsorption (r = 0.49, P = 0.028), but not in GFR, during physiological hyperinsulinaemia. Neither insulin sensitivity or salt sensitivity correlated with changes in overall fractional sodium excretion. Insulin sensitivity and salt sensitivity correlate with changes in different elements of renal sodium handling, but not with overall sodium excretion, during insulin infusion. The relevance for blood pressure regulation remains to be proved.

  3. Evaluation of fasting plasma insulin concentration as an estimate of insulin action in nondiabetic individuals: comparison with the homeostasis model assessment of insulin resistance (HOMA-IR).

    PubMed

    Abbasi, Fahim; Okeke, QueenDenise; Reaven, Gerald M

    2014-04-01

    Insulin-mediated glucose disposal varies severalfold in apparently healthy individuals, and approximately one-third of the most insulin resistant of these individuals is at increased risk to develop various adverse clinical syndromes. Since direct measurements of insulin sensitivity are not practical in a clinical setting, several surrogate estimates of insulin action have been proposed, including fasting plasma insulin (FPI) concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) calculated by a formula employing fasting plasma glucose (FPG) and FPI concentrations. The objective of this study was to compare FPI as an estimate of insulin-mediated glucose disposal with values generated by HOMA-IR in 758 apparently healthy nondiabetic individuals. Measurements were made of FPG, FPI, triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) concentrations, and insulin-mediated glucose uptake was quantified by determining steady-state plasma glucose (SSPG) concentration during the insulin suppression test. FPI and HOMA-IR were highly correlated (r = 0.98, P < 0.001). The SSPG concentration also correlated to a similar degree (P < 0.001) with FPI (r = 0.60) and HOMA-IR (r = 0.64). Furthermore, the relationship between FPI and TG (r = 0.35) and HDL-C (r = -0.40) was comparable to that between HOMA-IR and TG (r = 0.39) and HDL-C (r = -0.41). In conclusion, FPI and HOMA-IR are highly correlated in nondiabetic individuals, with each estimate accounting for ~40% of the variability (variance) in a direct measure of insulin-mediated glucose disposal. Calculation of HOMA-IR does not provide a better surrogate estimate of insulin action, or of its associated dyslipidemia, than measurement of FPI.

  4. Insulin degludec/insulin aspart combination for the treatment of type 1 and type 2 diabetes

    PubMed Central

    Dardano, Angela; Bianchi, Cristina; Del Prato, Stefano; Miccoli, Roberto

    2014-01-01

    Glycemic control remains the major therapeutic objective to prevent or delay the onset and progression of complications related to diabetes mellitus. Insulin therapy represents a cornerstone in the treatment of diabetes and has been used widely for achieving glycemic goals. Nevertheless, a large portion of the population with diabetes does not meet the internationally agreed glycemic targets. Moreover, insulin treatment, especially if intensive, may be associated with emergency room visits and hospitalization due to hypoglycemic events. Therefore, fear of hypoglycemia or hypoglycemic events represents the main barriers to the attainment of glycemic targets. The burden associated with multiple daily injections also remains a significant obstacle to initiating and maintaining insulin therapy. The most attractive insulin treatment approach should meet the patients’ preference, rather than demanding patients to change or adapt their lifestyle. Insulin degludec/insulin aspart (IDegAsp) is a new combination, formulated with ultra-long-acting insulin degludec and rapid-acting insulin aspart, with peculiar pharmacological features, clinical efficacy, safety, and tolerability. IDegAsp provides similar, noninferior glycemic control to a standard basal–bolus regimen in patients with type 1 diabetes mellitus, with additional benefits of significantly lower episodes of hypoglycemia (particularly nocturnal) and fewer daily insulin injections. Moreover, although treatment strategy and patients’ viewpoint are different in type 1 and type 2 diabetes, trial results suggest that IDegAsp may be an appropriate and reasonable option for initiating insulin therapy in patients with type 2 diabetes inadequately controlled on maximal doses of conventional oral agents. This paper will discuss the role of IDegAsp combination as a novel treatment option in diabetic patients. PMID:25143741

  5. UV-Light Exposure of Insulin: Pharmaceutical Implications upon Covalent Insulin Dityrosine Dimerization and Disulphide Bond Photolysis

    PubMed Central

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B.

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ∼2.20 W.m−2) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin’s structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein

  6. Insulin Resistance of Puberty.

    PubMed

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  7. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    PubMed

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p < 0.001) and after the meal (-11%; p < 0.001). Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p < 0.01). Hyperinsulinemia and meal ingestion decrease SVR, which is directly associated with metabolic insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  8. [Prostaglandins, insulin secretion and diabetes mellitus].

    PubMed

    Giugliano, D; Torella, R; Scheen, A J; Lefebvre, P J; D'Onofrio, F

    1988-12-01

    The islets of Langerhans have the enzymatic equipment permitting the synthesis of the metabolites of arachidonic acid: cyclo-oxygenase and lipo-oxygenase. Numerous studies have shown that cyclo-oxygenase derivatives, mainly PGE2, reduce the insulin response to glucose whereas lipo-oxygenase derivatives, mainly 15-HPETE, stimulate insulin secretion. So, for instance, drugs that increase prostaglandins synthesis as colchicine or furosemide inhibit insulin secretion while non steroid anti-inflammator drugs, mainly salicylates, which inhibit cyclo-oxygenase, enhance the insulin response to various stimuli. In type-2 (non insulin-dependent) diabetes, an increased sensitivity to endogenous prostaglandins has been proposed as a possible cause for the insulin secretion defect which characterizes this disease. Play in favor of this hypothesis the fact that the administration of PGE inhibits the insulin response to arginine in type-2 diabetics but not in normal subject and the fact that the administration of salicylates could improve the insulin response to glucose in some of these patients.

  9. Insulin effects on honeybee appetitive behaviour.

    PubMed

    Mengoni Goñalons, Carolina; Guiraud, Marie; de Brito Sanchez, María Gabriela; Farina, Walter M

    2016-10-01

    Worker honeybees (Apis mellifera) carry out multiple tasks throughout their adult lifespan. It has been suggested that the insulin/insulin-like signalling pathway participates in regulating behavioural maturation in eusocial insects. Insulin signalling increases as the honeybee worker transitions from nurse to food processor to forager. As behavioural shifts require differential usage of sensory modalities, our aim was to assess insulin effects on olfactory and gustatory responsiveness as well as on olfactory learning in preforaging honeybee workers of different ages. Adults were reared in the laboratory or in the hive. Immediately after being injected with insulin or vehicle (control), and focusing on the proboscis extension response, bees were tested for their spontaneous response to odours, sucrose responsiveness and ability to discriminate odours through olfactory conditioning. Bees injected with insulin have higher spontaneous odour responses. Sucrose responsiveness and odour discrimination are differentially affected by treatment according to age: whereas insulin increases gustatory responsiveness and diminishes learning abilities of younger workers, it has the opposite effect on older bees. In summary, insulin can improve chemosensory responsiveness in young workers, but also worsens their learning abilities to discriminate odours. The insulin signalling pathway is responsive in young workers, although they are not yet initiating outdoor activities. Our results show strong age-dependent effects of insulin on appetitive behaviour, which uncover differences in insulin signalling regulation throughout the honeybee worker's adulthood. © 2016. Published by The Company of Biologists Ltd.

  10. Mechanisms of insulin resistance in obesity

    PubMed Central

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  11. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise

    PubMed Central

    2015-01-01

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24–48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  12. Role of insulin in the hyperandrogenemia of lean women with polycystic ovary syndrome and normal insulin sensitivity.

    PubMed

    Baillargeon, Jean-Patrice; Carpentier, André

    2007-10-01

    To determine the effect of reducing insulin secretion on hyperandrogenemia in lean normoinsulinemic women with polycystic ovary syndrome (PCOS) and normal metabolic insulin sensitivity. Transversal assessment at baseline and prospective follow-up of lean PCOS group after 8 days of diazoxide, which reduces insulin secretion, and 1 month of leuprolide, which suppresses LH. Clinical research center of an academic hospital. Nine lean women (body mass index insulin levels, as well as 17 lean healthy women. Lean PCOS women were reassessed after 8 days of diazoxide and after 1 month of leuprolide, which suppresses LH. Androgen levels and insulin-stimulated glucose disposal (metabolic insulin sensitivity), determined by euglycemic-hyperinsulinemic clamp (M-value). Mean M-value of lean PCOS women (48.5 micromol/kg.min) was similar to lean control subjects (52.9 micromol/kg.min). They also had comparable anthropometric measures, lipids, fibrinogen, and plasminogen activator inhibitor 1. The LH did not change significantly after diazoxide, but was almost suppressed after leuprolide in the PCOS group. Androstenedione decreased significantly after diazoxide and even more after leuprolide. However, free T significantly decreased only after diazoxide in lean PCOS women. Diazoxide also increased SHBG significantly in this group. In women with typical PCOS and normal insulin levels and metabolic insulin sensitivity, reducing insulin secretion significantly decreased androgen and increased SHBG levels. These results suggest that insulin contributes to hyperandrogenemia even in PCOS women with normal metabolic insulin sensitivity, which might be due to increased sensitivity of their androgenic insulin pathway.

  13. Adipokines and Hepatic Insulin Resistance

    PubMed Central

    Hassan, Waseem

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarification of the regulatory processes about hepatic insulin resistance by adipokines in rodents and human would seem essential in order to understand the mechanism of type 2 diabetes and for developing novel therapeutic strategies to treat it. PMID:23762871

  14. Insulin signaling in various equine tissues under basal conditions and acute stimulation by intravenously injected insulin.

    PubMed

    Warnken, Tobias; Brehm, Ralph; Feige, Karsten; Huber, Korinna

    2017-10-01

    The aim of the study was to analyze key proteins of the equine insulin signaling cascade and their extent of phosphorylation in biopsies from muscle tissue (MT), liver tissue (LT), and nuchal AT, subcutaneous AT, and retroperitoneal adipose tissues. This was investigated under unstimulated (B1) and intravenously insulin stimulated (B2) conditions, which were achieved by injection of insulin (0.1 IU/kg bodyweight) and glucose (150 mg/kg bodyweight). Twelve warmblood horses aged 15 ± 6.8 yr (yr), weighing 559 ± 79 kg, and with a mean body condition score of 4.7 ± 1.5 were included in the study. Key proteins of the insulin signaling cascade were semiquantitatively determined using Western blotting. Furthermore, modulation of the cascade was assessed. The basal expression of the proteins was only slightly influenced during the experimental period. Insulin induced a high extent of phosphorylation of insulin receptor in LT (P < 0.01) but not in MT. Protein kinase B and mechanistic target of rapamycin expressed a higher extent of phosphorylation in all tissues in B2 biopsies. Adenosine monophosphate protein kinase, as a component related to insulin signaling, expressed enhanced phosphorylation in MT (P < 0.05) and adipose tissues (nuchal AT P < 0.05; SCAT P < 0.01; retroperitoneal adipose tissue P < 0.05), but not in LT at B2. Tissue-specific variations in the acute response of insulin signaling to intravenously injected insulin were observed. In conclusion, insulin sensitivity in healthy horses is based on a complex concerted action of different tissues by their variations in the molecular response to insulin. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  16. Low utilisation of diabetes medicines in Iran, despite their affordability (2000–2012): a time-series and benchmarking study

    PubMed Central

    Sarayani, Amir; Rashidian, Arash; Gholami, Kheirollah

    2014-01-01

    Objectives Diabetes is a major public health concern worldwide, particularly in low-income and middle-income countries (LMICs). Limited data exist on the status of access to diabetes medicines in LMICs. We assessed the utilisation and affordability of diabetes medicines in Iran as a middle-income country. Design We used a retrospective time-series design (2000–2012) and assessed national diabetes medicines’ utilisation using pharmaceuticals wholesale data. Methods We calculated defined daily dose consumptions per population days (DDDs/1000 inhabitants/day; DIDs) indicator. Findings were benchmarked with data from Organization for Economic Co-operation and Development (OECD) countries. We also employed Drug Utilization-90% (DU-90) method to compare DU-90s with the Essential Medicines List published by the WHO. We measured affordability using number of minimum daily wage required to purchase a treatment course for 1 month. Results Diabetes medicines’ consumption increased from 4.47 to 33.54 DIDs. The benchmarking showed that medicines’ utilisation in Iran in 2011 was only 54% of the median DIDs of 22 OECD countries. Oral hypoglycaemic agents consisted over 80% of use throughout the study period. Regular and isophane insulin (NPH), glibenclamide, metformin and gliclazide were the DU-90 drugs in 2012. Metformin, glibenclamide and regular/NPH insulin combination therapy were affordable throughout the study period (∼0.4, ∼0.1, ∼0.3 of minimum daily wage, respectively). While the affordability of novel insulin preparations improved over time, they were still unaffordable in 2012. Conclusions The utilisation of diabetes medicines was relatively low, perhaps due to underdiagnosis and inadequate management of patients with diabetes. This had occurred despite affordability of essential diabetes medicines in Iran. Appropriate policies are required to address the underutilisation of diabetes medicines in Iran. PMID:25324322

  17. Chitosan nanofibers for transbuccal insulin delivery.

    PubMed

    Lancina, Michael G; Shankar, Roopa Kanakatti; Yang, Hu

    2017-05-01

    In this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Taken together, the work demonstrates that chitosan-based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1252-1259, 2017. © 2017 Wiley Periodicals, Inc.

  18. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes.

    PubMed

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas P J; Blaszczak, Alecia; Kashyap, Sangeeta R; Kirwan, John P

    2013-11-15

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUCOGTT in IGT only (P < 0.05), and the decrease in glucose iAUCOGTT was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training.

  19. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women1234

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Johnson, William D.; Champagne, Catherine M.; Cefalu, William T.

    2010-01-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m−2⋅min−1). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants’ body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM−1⋅min−1) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM−1⋅min−1) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants. PMID:20724487

  20. Bioavailability of insulin detemir and human insulin at the level of peripheral interstitial fluid in humans, assessed by open-flow microperfusion.

    PubMed

    Bodenlenz, M; Ellmerer, M; Schaupp, L; Jacobsen, L V; Plank, J; Brunner, G A; Wutte, A; Aigner, B; Mautner, S I; Pieber, T R

    2015-12-01

    To find an explanation for the lower potency of insulin detemir observed in humans compared with unmodified human insulin by investigating insulin detemir and human insulin concentrations directly at the level of peripheral insulin-sensitive tissues in humans in vivo. Euglycaemic-hyperinsulinaemic clamp experiments were performed in healthy volunteers. Human insulin was administered i.v. at 6 pmol/kg/min and insulin detemir at 60 pmol/kg/min, achieving a comparable steady-state pharmacodynamic action. In addition, insulin detemir was doubled to 120 pmol/kg/min. Minimally invasive open-flow microperfusion (OFM) sampling methodology was combined with inulin calibration to quantify human insulin and insulin detemir in the interstitial fluid (ISF) of subcutaneous adipose and skeletal muscle tissue. The human insulin concentration in the ISF was ∼115 pmol/l or ∼30% of the serum concentration, whereas the insulin detemir concentration in the ISF was ∼680 pmol/l or ∼2% of the serum concentration. The molar insulin detemir interstitial concentration was five to six times higher than the human insulin interstitial concentration and metabolic clearance of insulin detemir from serum was substantially reduced compared with human insulin. OFM proved useful for target tissue measurements of human insulin and the analogue insulin detemir. Our tissue data confirm a highly effective retention of insulin detemir in the vascular compartment. The higher insulin detemir relative to human insulin tissue concentrations at comparable pharmacodynamics, however, indicate that the lower potency of insulin detemir in humans is attributable to a reduced effect in peripheral insulin-sensitive tissues and is consistent with the reduced in vitro receptor affinity. © 2015 John Wiley & Sons Ltd.

  1. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke

  2. Stability and Performance of Rapid-Acting Insulin Analogs Used for Continuous Subcutaneous Insulin Infusion: A Systematic Review

    PubMed Central

    Kerr, David; Wizemann, Erik; Senstius, Jakob; Zacho, Mette; Ampudia-Blasco, Francisco Javier

    2013-01-01

    Aim: We review and summarize the literature on the safety and stability of rapid-acting insulin analogs used for continuous subcutaneous insulin infusion (CSII) in patients with diabetes. Methods Two predefined search strategies were systematically implemented to search Medline and the Cochrane Register of Clinical Trials for publications between 1996 and 2012. Results Twenty studies were included in the review: 13 in vitro studies and 7 clinical studies. In vitro studies investigated the effects of extreme CSII conditions (high temperature and mechanical agitation) on the risk of catheter occlusions and insulin stability factors, such as potency, purity, high molecular weight protein content, pH stability, and preservative content (m-cresol, phenol). Under these conditions, the overall stability of rapid-acting insulin analogs was similar for insulin lispro, insulin aspart, and insulin glulisine, although insulin glulisine showed greater susceptibility to insulin precipitation and catheter occlusions. A limited number of clinical trials were identified; this evidence-based information suggests that the rate of catheter occlusions in patients with type 1 diabetes using CSII treatment may vary depending on the rapid-acting analog used. Conclusions Based on a limited amount of available data, the safety, stability, and performance of the three available rapid-acting insulin analogs available for use with CSII were similar. However, there is limited evidence suggesting that the risk of occlusion may vary with the insulin preparation under certain circumstances. PMID:24351186

  3. Anti-inflammatory effects of insulin.

    PubMed

    Dandona, Paresh; Chaudhuri, Ajay; Mohanty, Priya; Ghanim, Husam

    2007-07-01

    This review deals with the recent observations on the pro-inflammatory effects of glucose and the anti-inflammatory actions of insulin. Apart from being novel, they are central to our understanding of why hyperglycemia is a prognosticator of bad clinical outcomes including patients with acute coronary syndromes, stroke and in patients in the intensive care unit. The pro-inflammatory effect of glucose as well as that of other macronutrients including fast food meals provides the basis of chronic oxidative stress and inflammation in the obese and their propensity to atherosclerotic disease. The anti-inflammatory action of insulin provides a neutralizing effect to balance macronutrient induced inflammation on the one hand and the possibility of using insulin as an anti-inflammatory drug on the other. The actions of macronutrients and insulin described above explain why insulin resistant states like obesity and type 2 diabetes are associated with oxidative stress, inflammation and atherosclerosis. They also suggest that insulin may be antiatherogenic.

  4. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring.

    PubMed

    Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H

    2013-03-01

    Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P <0.05) in the PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.

  5. Insulin sensitivity deteriorates after short-term lifestyle intervention in the insulin sensitive phenotype of obesity.

    PubMed

    Gilardini, Luisa; Vallone, Luciana; Cottafava, Raffaella; Redaelli, Gabriella; Croci, Marina; Conti, Antonio; Pasqualinotto, Lucia; Invitti, Cecilia

    2012-01-01

    To investigate the effects of a 3-month lifestyle intervention on insulin sensitivity and its related cardiometabolic factors in obese patients. Anthropometry, body composition, oral glucose tolerance test, lipids, alanine aminotransferase, insulin sensitivity (insulinogenic index (ISI), homeostasis model assessment, β-cell performance (disposition index)) were evaluated in 263 obese women and 93 obese men before and after 3 months of hypocaloric low fat/high protein diet associated with physical activity 30 min/day. Patients were divided into 3 groups according to the intervention-induced ISI changes: group 1 (decrease), group 2 (stability) and group 3 (increase). Insulin sensitivity and the disposition index were significantly higher before the intervention in group 1 than in group 3. BMI, waist circumference, and fat mass significantly decreased in groups 1 and 3 in both sexes. β-cell performance decreased in group 1 and increased in group 3. Metabolic variables improved in group 3, whereas glucose levels increased in women of group 1. The post-intervention insulin sensitivity was lower in group 1 than in group 3. Lifestyle intervention induces changes in insulin sensitivity and metabolic factors that depend on the pre-intervention degree of insulin sensitivity. Weight loss leads to metabolic benefits in insulin-resistant, obese patients, whereas it may paradoxically worsen the metabolic conditions in the insulin-sensitive phenotype of obesity. Copyright © 2012 S. Karger GmbH, Freiburg.

  6. Insulin Signaling in Type 2 Diabetes

    PubMed Central

    Brännmark, Cecilia; Nyman, Elin; Fagerholm, Siri; Bergenholm, Linnéa; Ekstrand, Eva-Maria; Cedersund, Gunnar; Strålfors, Peter

    2013-01-01

    Type 2 diabetes originates in an expanding adipose tissue that for unknown reasons becomes insulin resistant. Insulin resistance reflects impairments in insulin signaling, but mechanisms involved are unclear because current research is fragmented. We report a systems level mechanistic understanding of insulin resistance, using systems wide and internally consistent data from human adipocytes. Based on quantitative steady-state and dynamic time course data on signaling intermediaries, normally and in diabetes, we developed a dynamic mathematical model of insulin signaling. The model structure and parameters are identical in the normal and diabetic states of the model, except for three parameters that change in diabetes: (i) reduced concentration of insulin receptor, (ii) reduced concentration of insulin-regulated glucose transporter GLUT4, and (iii) changed feedback from mammalian target of rapamycin in complex with raptor (mTORC1). Modeling reveals that at the core of insulin resistance in human adipocytes is attenuation of a positive feedback from mTORC1 to the insulin receptor substrate-1, which explains reduced sensitivity and signal strength throughout the signaling network. Model simulations with inhibition of mTORC1 are comparable with experimental data on inhibition of mTORC1 using rapamycin in human adipocytes. We demonstrate the potential of the model for identification of drug targets, e.g. increasing the feedback restores insulin signaling, both at the cellular level and, using a multilevel model, at the whole body level. Our findings suggest that insulin resistance in an expanded adipose tissue results from cell growth restriction to prevent cell necrosis. PMID:23400783

  7. Insulin/Insulin-like growth factor signaling controls non-Dauer developmental speed in the nematode Caenorhabditis elegans.

    PubMed

    Ruaud, Anne-Françoise; Katic, Iskra; Bessereau, Jean-Louis

    2011-01-01

    Identified as a major pathway controlling entry in the facultative dauer diapause stage, the DAF-2/Insulin receptor (InsR) signaling acts in multiple developmental and physiological regulation events in Caenorhabditis elegans. Here we identified a role of the insulin-like pathway in controlling developmental speed during the C. elegans second larval stage. This role relies on the canonical DAF-16/FOXO-dependent branch of the insulin-like signaling and is largely independent of dauer formation. Our studies provide further evidence for broad conservation of insulin/insulin-like growth factor (IGF) functions in developmental speed control.

  8. Insulin resistance, metabolic stress, and atherosclerosis

    PubMed Central

    Pansuria, Meghana; Xi, Hang; Li, Le; Yang, Xiao-Feng; Wang, Hong

    2012-01-01

    Atherosclerosis, a pathological process that underlies the development of cardiovascular disease, is the primary cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). T2DM is characterized by hyperglycemia and insulin resistance (IR), in which target tissues fail to respond to insulin. Systemic IR is associated with impaired insulin signaling in the metabolic tissues and vasculature. Insulin receptor is highly expressed in the liver, muscle, pancreas, and adipose tissue. It is also expressed in vascular cells. It has been suggested that insulin signaling in vascular cells regulates cell proliferation and vascular function. In this review, we discuss the association between IR, metabolic stress, and atherosclerosis with focus on 1) tissue and cell distribution of insulin receptor and its differential signaling transduction and 2) potential mechanism of insulin signaling impairment and its role in the development of atherosclerosis and vascular function in metabolic disorders including hyperglycemia, hypertension, dyslipidemia, and hyperhomocysteinemia. We propose that insulin signaling impairment is the foremost biochemical mechanism underlying increased cardiovascular morbidity and mortality in atherosclerosis, T2DM, and metabolic syndrome. PMID:22202099

  9. Insulin glulisine in the management of diabetes

    PubMed Central

    Yamada, Satoru

    2009-01-01

    Insulin glulisine is appealing in principle, but the advantages of this drug over the other rapid-acting insulin analogs are still relatively unknown. The frequency of hypoglycemia, convenience in the timing of administration, and improvements in terms of HbA1c seem similar among the rapid-acting insulin analogs, including insulin glulisine. Only properly randomized long-term clinical studies with insulin glulisine will reveal the true value of this novel insulin analog. PMID:21437124

  10. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    PubMed

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  11. Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats.

    PubMed

    Mikus, Catherine R; Roseguini, Bruno T; Uptergrove, Grace M; Morris, E Matthew; Rector, Randy Scott; Libla, Jessica L; Oberlin, Douglas J; Borengasser, Sarah J; Taylor, Angelina M; Ibdah, Jamal A; Laughlin, Maurice Harold; Thyfault, John P

    2012-11-01

    Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p < 0.05 vs. SED12), and maintained in CR20. Insulin-stimulated vasodilation was greater in Gw but not Gr, 2As of RUN20 (p < 0.01 vs. all groups), and was improved by ET-1 receptor inhibition in Gw 2As from SED20 and CR20 (p < 0.05). There were no differences in microvascular insulin signaling among groups or muscle beds. RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal. © 2012 John Wiley & Sons Ltd.

  12. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    PubMed

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. Published by Elsevier Ireland Ltd.

  13. Interleukin-1β Inhibits Insulin Signaling and Prevents Insulin-Stimulated System A Amino Acid Transport in Primary Human Trophoblasts

    PubMed Central

    Aye, Irving L. M. H.; Jansson, Thomas; Powell, Theresa L.

    2013-01-01

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10 pg/ml) for 24 hours. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. PMID:23891856

  14. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    PubMed Central

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  15. EADSG Guidelines: Insulin Therapy in Diabetes.

    PubMed

    Silver, Bahendeka; Ramaiya, Kaushik; Andrew, Swai Babu; Fredrick, Otieno; Bajaj, Sarita; Kalra, Sanjay; Charlotte, Bavuma M; Claudine, Karigire; Makhoba, Anthony

    2018-04-01

    A diagnosis of diabetes or hyperglycemia should be confirmed prior to ordering, dispensing, or administering insulin (A). Insulin is the primary treatment in all patients with type 1 diabetes mellitus (T1DM) (A). Typically, patients with T1DM will require initiation with multiple daily injections at the time of diagnosis. This is usually short-acting insulin or rapid-acting insulin analogue given 0 to 15 min before meals together with one or more daily separate injections of intermediate or long-acting insulin. Two or three premixed insulin injections per day may be used (A). The target glycated hemoglobin A1c (HbA1c) for all children with T1DM, including preschool children, is recommended to be < 7.5% (< 58 mmol/mol). The target is chosen aiming at minimizing hyperglycemia, severe hypoglycemia, hypoglycemic unawareness, and reducing the likelihood of development of long-term complications (B). For patients prone to glycemic variability, glycemic control is best evaluated by a combination of results with self-monitoring of blood glucose (SMBG) (B). Indications for exogenous insulin therapy in patients with type 2 diabetes mellitus (T2DM) include acute illness or surgery, pregnancy, glucose toxicity, contraindications to or failure to achieve goals with oral antidiabetic medications, and a need for flexible therapy (B). In T2DM patients, with regards to achieving glycemic goals, insulin is considered alone or in combination with oral agents when HbA1c is ≥ 7.5% (≥ 58 mmol/mol); and is essential for treatment in those with HbA1c ≥ 10% (≥ 86 mmol/mol), when diet, physical activity, and other antihyperglycemic agents have been optimally used (B). The preferred method of insulin initiation in T2DM is to begin by adding a long-acting (basal) insulin or once-daily premixed/co-formulation insulin or twice-daily premixed insulin, alone or in combination with glucagon-like peptide-1 receptor agonist (GLP-1 RA) or in combination with other oral antidiabetic

  16. Potential Insulin Underdelivery from Prefilled and Reusable Insulin Pens in Cases of Premature Needle Withdrawal: A Laboratory Evaluation.

    PubMed

    Joubert, Michael; Haddouche, Aini; Morera, Julia; Rod, Anne; Reznik, Yves

    2015-10-01

    Devices for the treatment of diabetes are not always used as recommended in good practice. Our aim was to evaluate potential insulin underdelivery in cases of premature needle withdrawal after injection with insulin pens, which is a commonly observed misuse, especially in young type 1 diabetes patients. Potential insulin underdelivery was evaluated using five prefilled insulin pens (lispro Kwikpen(®) [Eli Lilly, Indianapolis, IN], aspart Flexpen(®) [Novo Nordisk, Bagsvaerd, Denmark], glulisine Solostar(®) [Sanofi, Paris, France], detemir Flexpen(®) [Novo Nordisk], and glargine Solostar(®) [Sanofi]) and three reusable insulin pens (Humapen(®) Luxura HD with lispro cartridge [Eli Lilly], Novopen(®) Echo with aspart and detemir cartridge [Novo Nordisk], and JuniorSTAR(®) with glulisine and glargine cartridge [Sanofi]) in a laboratory. For each pen and insulin, we simulated premature needle withdrawal 2 and 3 s after an insulin injection of 5 and 10 units, respectively. With prefilled pens, mean potential insulin underdelivery was 0.43±0.30 and 0.44±0.32 units after injection of 5 and 10 units, respectively. With reusable pens, mean potential insulin underdelivery was lower (0.29±0.13 and 0.29±0.12 units after injection of 5 and 10 units, respectively; P<0.001). The results were heterogeneous across pens, ranging from 2.6%/1.6% to 20.2%/8.6% of the selected insulin dose for prefilled/reusable pens, respectively (P<0.001). Potential insulin underdelivery varies across prefilled and reusable insulin pens but may represent up to one-fifth of the total injected dose. Clinicians should be aware of the potential consequences of premature needle withdrawal and should reinforce insulin injection education.

  17. Principles of self-adjustment of insulin dose in people with diabetes type 2 and flexible insulin therapy.

    PubMed

    Kramer, G; Kuniss, N; Kloos, C; Lehmann, T; Müller, N; Sanow, B; Lorkowski, S; Wolf, G; Müller, U A

    2016-06-01

    Structured treatment and education programmes for people with type 2 diabetes mellitus (T2DM) and flexible insulin therapy provide rules for self-adjustment of insulin dose, that are extensively trained. The aim of this cohort study was to register current principles and the frequency of self-adjustment of insulin dose and their association with metabolic control in people with T2DM. Details of insulin dose adjustment were assessed by a structured interview in 149 people with T2DM on flexible insulin therapy (mean HbA1c 7.1%/53.8mmol/mol, age 65y, diabetes duration 19.0y, BMI 33.8kg/m(2)) in a tertiary care centre. The frequency of insulin dose adjustments was obtained from the last 28days of the patients' diaries. Insulin dose adjustment by adjustment rules was used by 33 people (22.1%) and by personal experience/feeling in 111 participants (74.5%). People adjusting by rules were younger (60.9±9.8 vs. 65.7±9.2, p=0.011) and did more insulin dose adjustments per 28days (50.0±31.0 vs. 33.4±23.5, p=0.016). HbA1c and incidence of hypoglycaemia were comparable. There were no differences in satisfaction of treatment, quality of life as well as current well-being between the groups. Only a fifth of the participants used the rule trained within the education programme to adjust their insulin dose. The majority adjusted their insulin dose by personal experience/feeling. However, people in both groups were able to adjust their insulin dose. Although people using adjustment rules adjust their insulin dose more frequently, HbA1c and the incidence of hypoglycaemia was similar compared to those using personal experience/feeling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. 21 CFR 522.1160 - Insulin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...

  19. 21 CFR 522.1160 - Insulin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...

  20. 21 CFR 522.1160 - Insulin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...

  1. 21 CFR 522.1160 - Insulin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...

  2. 21 CFR 522.1160 - Insulin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Insulin. 522.1160 Section 522.1160 Food and Drugs..., AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1160 Insulin. (a) Specifications—(1) Each milliliter (mL) of porcine insulin zinc suspension contains 40 international units (IU...

  3. Switching to insulin glargine 300 U/mL: is duration of prior basal insulin therapy important?

    PubMed

    Bonadonna, Riccardo C; Renard, Eric; Cheng, Alice; Fritsche, Andreas; Cali, Anna; Melas-Melt, Lydie; Umpierrez, Guillermo E

    2018-04-09

    To assess the impact of duration of prior basal insulin therapy on study outcomes in people with type 2 diabetes mellitus receiving insulin glargine 300 U/mL (Gla-300) or insulin glargine 100 U/mL (Gla-100) for 6 months. A post hoc patient-level meta-analysis of data from the EDITION 1 and 2 studies. Outcomes included: HbA 1c , percentage of participants with ≥1 confirmed or severe hypoglycaemic event at night (00:00-05:59 h) or any time (24 h), and body weight change. Data were analysed according to duration of prior basal insulin use: >0-≤2 years, >2-≤5 years, >5 years. This meta-analysis included 1618 participants. HbA 1c change from baseline to month 6 was comparable between Gla-300 and Gla-100 groups, regardless of duration of prior basal insulin therapy. The lower risk with Gla-300 versus Gla-100 of ≥1 confirmed (≤3.9 mmol/L [≤70 mg/dL]) or severe hypoglycaemic event, at night or any time (24 h), was unaffected by duration of prior basal insulin therapy. Similarly, weight change was unaffected by duration of prior basal insulin therapy. Switching to Gla-300 from other basal insulin therapies provided comparable glycaemic control with lower risk of hypoglycaemia versus Gla-100, regardless of duration of prior basal insulin therapy. Copyright © 2018. Published by Elsevier B.V.

  4. Oral Insulin Delivery: How Far Are We?

    PubMed Central

    Fonte, Pedro; Araújo, Francisca; Reis, Salette; Sarmento, Bruno

    2013-01-01

    Oral delivery of insulin may significantly improve the quality of life of diabetes patients who routinely receive insulin by the subcutaneous route. In fact, compared with this administration route, oral delivery of insulin in diabetes treatment offers many advantages: higher patient compliance, rapid hepatic insulinization, and avoidance of peripheral hyperinsulinemia and other adverse effects such as possible hypoglycemia and weight gain. However, the oral delivery of insulin remains a challenge because its oral absorption is limited. The main barriers faced by insulin in the gastrointestinal tract are degradation by proteolytic enzymes and lack of transport across the intestinal epithelium. Several strategies to deliver insulin orally have been proposed, but without much clinical or commercial success. Protein encapsulation into nanoparticles is regarded as a promising alternative to administer insulin orally because they have the ability to promote insulin paracellular or transcellular transport across the intestinal mucosa. In this review, different delivery systems intended to increase the oral bioavailability of insulin will be discussed, with a special focus on nanoparticulate carrier systems, as well as the efforts that pharmaceutical companies are making to bring to the market the first oral delivery system of insulin. The toxicological and safety data of delivery systems, the clinical value and progress of oral insulin delivery, and the future prospects in this research field will be also scrutinized. PMID:23567010

  5. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2011-02-01

    The predominant number of papers published from the middle of 2009 to the middle of 2010 about alternative routes of insulin administration (ARIA) were still about inhaled insulin. Long-term experience with Exubera was the topic of a number of publications that are also of relevance for inhaled insulin in general. The clinical trials performed with AIR insulin by Eli Lilly were published in a supplement issue of one diabetes technology journal and most of these will be presented. A number of other publications (also one in a high ranked journal) about their inhaled insulin were from another company: MannKind. The driving force behind Technosphere insulin (TI) - which is the only one still in clinical development - is Al Mann; he has put a lot of his personal fortune in this development. We will know the opinion of the regulatory authorities about TI in the near future; however, I am personally relatively confident that the Food and Drug Administration will provide TI with market approval. The more critical question for me is: will diabetologists and patients jump on this product once it becomes commercially available? Will it become a commercial success? In view of many negative feelings in the scientific community about inhaled insulin, it might be of help that MannKind publish their studies with TI systematically. Acknowledging being a believer in this route of insulin administration myself, one has to state that Exubera and AIR insulin had not offered profound advantages in terms of pharmacokinetic (PK) and pharmacodynamic (PD) properties in comparison with subcutaneously (SC) applied regular human insulin (RHI) and rapid-acting insulin analogues. The time-action profiles of these inhaled insulins were more or less comparable with that of rapid-acting insulin analogues. This is clearly different with TI which exhibits a strong metabolic effect shortly after application and a rapid decline in the metabolic effect thereafter; probably the duration of action is

  6. Correlates of basal insulin persistence among insulin-naïve people with type 2 diabetes: results from a multinational survey.

    PubMed

    Peyrot, Mark; Perez-Nieves, Magaly; Ivanova, Jasmina; Cao, Dachuang; Schmerold, Luke; Kalirai, Samaneh; Hadjiyianni, Irene

    2017-10-01

    People with T2DM who initiate basal insulin therapy often stop therapy temporarily or permanently soon after initiation. This study analyzes the reasons for and correlates of stopping and restarting basal insulin therapy among people with T2DM. An online survey was completed by 942 insulin-naïve adults with self-reported T2DM from Brazil, France, Germany, Japan, Spain, UK, and US. Respondents had initiated basal insulin therapy within the 3-24 months before survey participation and met criteria for one of three persistence groups: continuers had no gaps of ≥7 days in basal insulin treatment; interrupters had at least one gap in insulin therapy of ≥7 days within the first 6 months after initiation and had since restarted basal insulin; and discontinuers stopped using basal insulin within the first 6 months after initiation and had not restarted. Physician recommendations and cost were strongly implicated in patients stopping and not resuming insulin therapy. Continuous persistence was lower for patients with more worries about insulin initiation, greater difficulties and weight gain while using insulin, and higher for those using pens and perceiving their diabetes as severe. Repeated interruption of insulin therapy was associated with hyperglycemia and treatment burden while using insulin. Resumption and perceived likelihood of resumption were associated with hyperglycemia upon insulin cessation. Perceived likelihood of resumption among discontinuers was associated with perceived benefits of insulin. Better understanding of the risk factors for patient cessation and resumption of basal insulin therapy may help healthcare providers improve persistence with therapy.

  7. Half-Unit Insulin Pens: Disease Management in Patients With Diabetes Who Are Sensitive to Insulin.

    PubMed

    Klonoff, David C; Nayberg, Irina; Stauder, Udo; Oualali, Hamid; Domenger, Catherine

    2017-05-01

    Insulin pens represent a significant technological advancement in diabetes management. While the vast majority have been designed with 1U-dosing increments, improved accuracy and precision facilitated by half-unit increments may be particularly significant in specific patients who are sensitive to insulin. These include patients with low insulin requirements and in those requiring more precise dose adjustments, such as the pediatric patient population. This review summarized functional characteristics of insulin half-unit pens (HUPs) and their effect on user experience. The literature search was restricted to articles published in English between January 1, 2000, and January 1, 2015. A total of 17 publications met the set criteria and were included in the review. Overall, studies outlined characteristics for 4 insulin HUPs. Based on their functionality, the pens were generally similar and all met the ISO 11608-1 criteria for accuracy. However, some had specific advantageous features in terms of size, weight, design, dialing torque, and injection force. Although limited, the currently available user preference studies in children and adolescents with diabetes and their carers suggest that the selection of an HUP is likely to be influenced by a combination of factors such as these, in addition to the prescribed insulin and dosing regimen. Insulin HUPs are likely to be a key diabetes management tool for patients who are sensitive to insulin; specific pen features may further advance diabetes management in these populations.

  8. Extrapyramidal signs in normal pressure hydrocephalus: an objective assessment

    PubMed Central

    Mandir, Allen S; Hilfiker, Jennifer; Thomas, George; Minahan, Robert E; Crawford, Thomas O; Williams, Michael A; Rigamonti, Daniele

    2007-01-01

    Background Beyond the classic Normal Pressure Hydrocephalus (NPH) triad of gait disturbance, incontinence, and dementia are characteristic signs of motor dysfunction in NPH patients. We used highly sensitive and objective methods to characterize upper limb extrapyramidal signs in a series of NPH subjects compared with controls. Concentrated evaluation of these profound, yet underappreciated movement disorders of NPH before and after techniques of therapeutic intervention may lead to improved diagnosis, insight into pathophysiology, and targeted treatment. Methods Twenty-two (22) consecutive NPH patients and 17 controls performed an upper limb motor task battery where highly sensitive and objective measures of akinesia/bradykinesia, tone, and tremor were conducted. NPH subjects performed this test battery before and more than 36 h after continuous CSF drainage via a spinal catheter over 72 h and, in those subjects undergoing permanent ventriculo-peritoneal shunt placement, at least 12 weeks later. Control subjects performed the task battery at the same dates as the NPH subjects. Statistical analyses were applied to group populations of NPH and control subjects and repeated measures for within subject performance. Results Twenty (20) NPH subjects remained in the study following CSF drainage as did 14 controls. NPH subjects demonstrated akinesia/bradykinesia (prolonged reaction and movement times) and increased resting tone compared with controls. Furthermore, the NPH group demonstrated increased difficulty with self-initiated tasks compared with stimulus-initiated tasks. Following CSF drainage, some NPH subjects demonstrated reduced movement times with greater improvement in self- versus stimulus-initiated tasks. Group reaction time was unchanged. Resting tremor present in one NPH subject resolved following shunt placement. Tone measures were consistent for all subjects throughout the study. Conclusion Clinical motor signs of NPH subjects extend beyond gait deficits

  9. Reactive oxygen species enhance insulin sensitivity

    PubMed Central

    Loh, Kim; Deng, Haiyang; Fukushima, Atsushi; Cai, Xiaochu; Boivin, Benoit; Galic, Sandra; Bruce, Clinton; Shields, Benjamin J.; Skiba, Beata; Ooms, Lisa M.; Stepto, Nigel; Wu, Ben; Mitchell, Christina A.; Tonks, Nicholas K.; Watt, Matthew J.; Febbraio, Mark A.; Crack, Peter J.; Andrikopoulos, Sofianos; Tiganis, Tony

    2010-01-01

    SUMMARY Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high fat diet-induced insulin resistance. The increased insulin sensitivity in Gpx1−/− mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the anti-oxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo. PMID:19808019

  10. Insulin initiation status of primary care physicians in Turkey, barriers to insulin initiation and knowledge levels about insulin therapy: A multicenter cross-sectional study.

    PubMed

    Ates, Elif; Set, Turan; Saglam, Zuhal; Tekin, Nil; Karatas Eray, Irep; Yavuz, Erdinc; Sahin, Mustafa Kursat; Selcuk, Engin Burak; Cadirci, Dursun; Cubukcu, Mahcube

    2017-10-01

    Our aim was to evaluate the insulin initiation status, barriers to insulin initiation and knowledge levels about treatment administered by primary care physicians (PCP). We conducted our study in accordance with a multicenter, cross-sectional design in Turkey, between July 2015 and July 2016. A questionnaire inquiring demographic features, status of insulin initiation, obstacles to insulin initiation and knowledge about therapy of the PCPs was administered during face-to-face interviews. 84 PCPs (19%) (n=446, mean age=41.5±8.4years, 62.9% male and 90.0% ministry certified family physicians) initiated insulin therapy in the past. Most of the stated primary barriers (51.9%, n=230) were due to the physicians. The most relevant barrier was "lack of clinical experience" with a rate of 19% (n=84 of the total). The average total knowledge score was 5.7±2.0 for the family medicine specialist, and 3.8±2.1 for the ministry certified family physicians (p=0.000, maximum knowledge score could be 10). The status of insulin initiation in Turkey by the primary care physicians is inadequate. Medical education programs and health care systems may require restructuring to facilitate insulin initiation in primary care. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  11. Differences in Cardiometabolic Risk between Insulin-Sensitive and Insulin-Resistant Overweight and Obese Children.

    PubMed

    Khan, Unab I; McGinn, Aileen P; Isasi, Carmen R; Groisman-Perelstein, Adriana; Diamantis, Pamela M; Ginsberg, Mindy; Wylie-Rosett, Judith

    2015-06-01

    It is known that 15-30% overweight/obese adults do not suffer cardiometabolic consequences. There is limited literature examining factors that can be used to assess cardiometabolic health in overweight/obese children. If such factors can be identified, they would aid in differentiating those most in need for aggressive management. Baseline data from 7- to 12-year-old, overweight, and obese children enrolled in a weight management program at an urban hospital were analyzed. Homeostatic model assessment for insulin resistance (HOMA-IR) <2.6 was used to define insulin-sensitive and HOMA-IR ≥2.6 was used to defined insulin-resistant participants. Demographics, physical activity measures, and cardiometabolic risk factors were compared between the two phenotypes. Odds ratios (ORs) examining the association between intermediate endpoints (metabolic syndrome [MetS], nonalcoholic fatty liver disease [NAFLD], systemic inflammation, and microalbuminuria) and the two metabolic phenotypes were evaluated. Of the 362 overweight/obese participants, 157 (43.5%) were insulin sensitive and 204 (56.5%) were insulin resistant. Compared to the insulin-sensitive group, the insulin-resistant group was older (8.6±1.6 vs. 9.9±1.7; p<0.001) and had a higher BMI z-score (1.89±0.42 vs. 2.04±0.42; p=0.001). After multivariable adjustment, compared to the insulin-sensitive group, the insulin-resistant group had higher odds of having MetS (OR, 5.47; 95% confidence interval [CI]: 1.72, 17.35; p=0.004) and NAFLD (OR, 8.66; 95% CI, 2.48, 30.31; p=0.001), but not systemic inflammation (OR, 1.06; 95% CI: 0.56, 2.03; p=0.86) or microalbuminuria (OR, 1.71; 95% CI, 0.49, 6.04; p=0.403). Using a HOMA-IR value of ≥2.6, clinical providers can identify prepubertal and early pubertal children most at risk. Focusing limited resources on aggressive weight interventions may lead to improvement in cardiometabolic health.

  12. Insulin secretion at high altitude in man

    NASA Astrophysics Data System (ADS)

    Sawhney, R. C.; Malhotra, A. S.; Singh, T.; Rai, R. M.; Sinha, K. C.

    1986-09-01

    The effect of hypoxia on circulatory levels of insulin, its response to oral glucose administration (100 g) and changes in circadian rhythms of glucose as well as insulin were evaluated in euglycemic males at sea level (SL, 220 m) during their stay at high altitude (3500 m, SJ) and in high altitude natives (HAN). Basal glucose levels were not altered at high altitude but the rise in glucose (δ glucose) after glucose load was significantly higher in SJ and HAN (p<0.01) as compared to SL values. An increase (p<0.01) both in basal as well as glucose induced rise in insulin secretion (δ insulin) was observed at HA. The rise in insulin in SJ was significantly higher (p<0.01) than in HAN. This elevation in glucose and insulin levels was also evident at different times of the day. The circadian rhythmicity of glucose as well as insulin was altered by the altitude stress. The findings of the study show a rise in insulin level at HA but the hyperglycemia in the face of hyper-insulinism require the presumption of a simultaneous and dispropotionate rise of insulin antagonistic hormones upsetting the effect of insulin on glucose metabolism.

  13. Rapid association of protein kinase C-epsilon with insulin granules is essential for insulin exocytosis.

    PubMed

    Mendez, Carlos F; Leibiger, Ingo B; Leibiger, Barbara; Høy, Marianne; Gromada, Jesper; Berggren, Per-Olof; Bertorello, Alejandro M

    2003-11-07

    Glucose-dependent exocytosis of insulin requires activation of protein kinase C (PKC). However, because of the great variety of isoforms and their ubiquitous distribution within the beta-cell, it is difficult to predict the importance of a particular isoform and its mode of action. Previous data revealed that two PKC isoforms (alpha and epsilon) translocate to membranes in response to glucose (Zaitzev, S. V., Efendic, S., Arkhammar, P., Bertorello, A. M., and Berggren, P. O. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9712-9716). Using confocal microscopy, we have now established that in response to glucose, PKC-epsilon but not PKC-alpha associates with insulin granules and that green fluorescent protein-tagged PKC-epsilon changes its distribution within the cell periphery upon stimulation of beta-cells with glucose. Definite evidence of PKC-epsilon requirement during insulin granule exocytosis was obtained by using a dominant negative mutant of this isoform. The presence of this mutant abolished glucose-induced insulin secretion, whereas transient expression of the wild-type PKC-epsilon led to a significant increase in insulin exocytosis. These results suggest that association of PKC-epsilon with insulin granule membranes represents an important component of the secretory network because it is essential for insulin exocytosis in response to glucose.

  14. A novel pen-based Bluetooth-enabled insulin delivery system with insulin dose tracking and advice.

    PubMed

    Bailey, Timothy S; Stone, Jenine Y

    2017-05-01

    Diabetes is growing in prevalence internationally. As more individuals require insulin as part of their treatment, technology evolves to optimize delivery, improve adherence, and reduce dosing errors. Insulin pens outperform vial and syringe in simplicity, dosing accuracy, and user preference. Bolus advisors improve dosing confidence and treatment adherence. The InPen System offers a novel approach to treatment via a wireless pen that syncs to a mobile application featuring a bolus advisor, enabling convenient insulin dose tracking and more accurate bolus advice among other features. Areas covered: Existing technology for insulin delivery and bolus advice are reviewed. The mechanics and functionality of the InPen device are delineated. Findings from formative testing and usability studies of the InPen system are reported. Future directions for the InPen system in the treatment of diabetes are discussed. Expert opinion: Diabetes management is complex and largely data-driven. The InPen System offers a promising new opportunity to avail insulin pen-users of features known to improve treatment efficacy, which have otherwise primarily been available to those using pumps. Given that the majority of insulin users do not use insulin pumps, the InPen System is poised to improve glucose control in a significant portion of the diabetes population.

  15. Insulin resistance and improvements in signal transduction.

    PubMed

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  16. Dietary fiber, plasma insulin, and obesity.

    PubMed

    Albrink, M J

    1978-10-01

    The relationship between obesity, insulin resistance, and hyperinsulinemia is briefly reviewed. The possibility is considered that excess insulin secretion is the cause rather than the result of insulin resistance and obesity. Glucose administration is one of the most frequently studied of those factors known to stimulate insulin secretion. Much less well documented is the fact that meals of equal protein, fat, and carbohydrate content may cause different responses of plasma glucose and insulin. An experiment is reported in which the effects of a high-carbohydrate, high-fiber meal administered to seven healthy young adults were compared with the effects of a meal equally high in carbohydrate but composed largely of glucose in liquid formula form. The high-fiber meal caused an insulin rise less than half that caused by the liquid formula meal although the plasma glucose response to the two meals was not significantly different. The hypothesis is proposed that a high-carbohydrate, fiber-depleted diet, high in simple sugars, by repeatedly stimulating an excessive insulin response, may lead to insulin resistance and obesity in susceptible individuals and may play a role in the common occurrence of obesity in industrialized societies.

  17. Insulin pen-the "iPod" for insulin delivery (why pen wins over syringe).

    PubMed

    Asamoah, Ernest

    2008-03-01

    Diabetes affects most aspects of everyday life and places considerable responsibility on the patient; therefore, without patient acceptance of what we offer, the therapy is unlikely to be adhered to especially when that therapy happens to be insulin injection. In 2008, almost every physician/health care provider carries new and sleek cell phones (because the newer ones are well designed and function better). Why these same providers continue to prescribe insulin via syringes in 2008 is something that I cannot fathom. Previously, some insurance companies only paid for vials and there was no other choice, but today almost all insurance pay for pens and so the "insurance reason" is no longer tenable. Since Banting and Best discovered insulin in 1921, scientists have continued to improve the types of insulin (making them mimic physiology more closely in order to minimize hypoglycemia and improve glycemic control as seen with the latest analog insulins). In the same manner, the delivery process of insulin has also continued to evolve to make it easier and more acceptable to patients. Studies have shown that patients prefer device use over traditional vials/syringes. Pen devices used to inject insulin lead to better compliance, are quicker to inject, dosing is much more accurate, and, surprisingly, are more cost effective. I challenge my colleagues to take full responsibility for what their patients use. If a provider believes in pen devices, most of his/her patients will use them. The products your patients use is a direct reflection of what you practice. Educating providers to change their beliefs and practices is key to moving American diabetic patients from syringes to pen devices.

  18. Insulin and insulin-like growth factor-1 increased in preterm neonates following massage therapy.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Dieter, John N I; Kumar, Adarsh M; Schanberg, Saul; Kuhn, Cynthia

    2008-12-01

    To determine if massage therapy increased serum insulin and insulin-like growth factor-1 (IGF-1) in preterm neonates. Forty-two preterm neonates who averaged 34.6 weeks (M = 29.5 wk gestational age; M birth weight = 1237 g) and were in the "grower" (step-down) nursery were randomly assigned to a massage therapy group (body stroking and passive limb movements for three, 15-minute periods per day for 5 days) or a control group that received the standard nursery care without massage therapy. On Days 1 and 5, the serum collected by clinical heelsticks was also assayed for insulin and IGF-1, and weight gain and kilocalories consumed were recorded daily. Despite similar formula intake, the massaged preterm neonates showed greater increases during the 5-day period in (1) weight gain; (2) serum levels of insulin; and (3) IGF-1. Increased weight gain was significantly correlated with insulin and IGF-1. Previous data suggested that preterm infant weight gain following massage therapy related to increased vagal activity, which suggests decreased stress and gastric motility, which may contribute to more efficient food absorption. The data from this study suggest for the first time that weight gain was also related to increased serum insulin and IGF-1 levels following massage therapy. Preterm infants who received massage therapy not only showed greater weight gain but also a greater increase in serum insulin and IGF-1 levels, suggesting that massage therapy might be prescribed for all growing neonates.

  19. Insulin C-peptide test

    MedlinePlus

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  20. Comparative Effectiveness of Insulin versus Combination Sulfonylurea and Insulin: a Cohort Study of Veterans with Type 2 Diabetes.

    PubMed

    Min, Jea Young; Griffin, Marie R; Hung, Adriana M; Grijalva, Carlos G; Greevy, Robert A; Liu, Xulei; Elasy, Tom; Roumie, Christianne L

    2016-06-01

    Type 2 diabetes patients often initiate treatment with a sulfonylurea and subsequently intensify their therapy with insulin. However, information on optimal treatment regimens for these patients is limited. To compare risk of cardiovascular disease (CVD) and hypoglycemia between sulfonylurea initiators who switch to or add insulin. This was a retrospective cohort assembled using national Veterans Health Administration (VHA), Medicare, and National Death Index databases. Veterans who initiated diabetes treatment with a sulfonylurea between 2001 and 2008 and intensified their regimen with insulin were followed through 2011. The association between insulin versus sulfonylurea + insulin and time to CVD or hypoglycemia were evaluated using Cox proportional hazard models in a 1:1 propensity score-matched cohort. CVD included hospitalization for acute myocardial infarction or stroke, or cardiovascular mortality. Hypoglycemia included hospitalizations or emergency visits for hypoglycemia, or outpatient blood glucose measurements <60 mg/dL. Subgroups included age < 65 and ≥ 65 years and estimated glomerular filtration rate ≥ 60 and < 60 ml/min. There were 1646 and 3728 sulfonylurea monotherapy initiators who switched to insulin monotherapy or added insulin, respectively. The 1596 propensity score-matched patients in each group had similar baseline characteristics at insulin initiation. The rate of CVD per 1000 person-years among insulin versus sulfonylurea + insulin users were 49.3 and 56.0, respectively [hazard ratio (HR) 0.85, 95 % confidence interval (CI) 0.64, 1.12]. Rates of first and recurrent hypoglycemia events per 1000 person-years were 74.0 and 100.0 among insulin users compared to 78.9 and 116.8 among sulfonylurea plus insulin users, yielding HR (95 % CI) of 0.94 (0.76, 1.16) and 0.87 (0.69, 1.10), respectively. Subgroup analysis results were consistent with the main findings. Compared to sulfonylurea users who added insulin, those who switched

  1. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    PubMed

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  2. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance.

    PubMed

    Olmstead, Keedrian I; La Frano, Michael R; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A; Newman, John W; Fiehn, Oliver; Crocker, Daniel E; Filipp, Fabian V; Ortiz, Rudy M

    2017-05-01

    Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance.

  3. Endothelin antagonism improves hepatic insulin sensitivity associated with insulin signaling in Zucker fatty rats.

    PubMed

    Berthiaume, Nathalie; Carlson, Christian J; Rondinone, Cristina M; Zinker, Bradley A

    2005-11-01

    In the present study, we investigated the effects of long-term treatment with the endothelin (ET) antagonist atrasentan, an ET(A)-selective antagonist, on whole body glucose metabolism and insulin signaling in a commonly used model of insulin resistance, the Zucker fatty rat. Zucker lean and fatty rats were maintained for 6 weeks on either control or atrasentan-treated water. Euglycemic-hyperinsulinemic clamps (4 mU/kg per minute) were performed at the end of the 6-week treatment on a subset of rats (n=10/treatment). In another subset (n=5/treatment), an insulin tolerance test was performed; liver and muscle tissues were harvested 10 minutes following the challenge for further analysis. Results of the clamps demonstrated that long-term atrasentan treatment significantly increased whole body glucose metabolism in fatty rats compared with vehicle control subjects. Insulin-induced insulin receptor substrate 1 tyrosine and protein kinase B serine phosphorylation were significantly reduced in the liver and muscle of fatty animals compared with their lean littermates. This reduction was overcome with atrasentan treatment in the liver but not in the muscle. There was no difference between lean and fatty animals, however, in insulin receptor substrate 1 and protein kinase B protein expression in the liver and muscle and no effect by atrasentan. In contrast, expression of the regulatory subunit of PI-3 kinase (p85alpha) was significantly increased in the liver but not in the muscle of fatty animals compared with their lean littermates and this was normalized to levels of lean animals with atrasentan treatment. These findings indicate that long-standing ET antagonism improves whole body glucose metabolism in Zucker fatty rats through improvements in insulin signaling in the liver. These results indicate that therapeutic ET antagonism may assist in correcting the insulin-resistant state.

  4. Rapid insulin sensitivity test (RIST).

    PubMed

    Lautt, W W; Wang, X; Sadri, P; Legare, D J; Macedo, M P

    1998-12-01

    A rapid insulin sensitivity test (RIST) was recently introduced to assess insulin action in vivo (H. Xie, L. Zhu, Y.L. Zhang, D.J. Legare, and W.W. Lautt. J. Pharmacol. Toxicol. Methods, 35: 77-82. 1996). This technical report describes the current recommended standard operating procedure for the use of the RIST in rats based upon additional experience with approximately 100 tests. We describe the manufacture and use of an arterial-venous shunt that allows rapid multiple arterial samples and intravenous administration of drugs. The RIST procedure involves determination of a stable arterial glucose baseline to define the ideal euglycemic level to be maintained following a 5-min infusion of insulin, with the RIST index being the amount of glucose required to be infused to maintain euglycemia over the test period. Insulin administration by a 5-min infusion is preferable to a 30-s bolus administration. No significant difference was determined between the use of Toronto pork-beef or human insulin. Four consecutive RISTs were carried out in the same animal over 4-5 h with no tendency for change with time. The RIST index is sufficiently sensitive and reproducible to permit establishment of insulin dose-response curves and interference of insulin action by elimination of hepatic parasympathetic nerves, using atropine. This technical report provides the current recommended standard operating procedure for the RIST.

  5. Optimizing inpatient glycemic control with basal-bolus insulin therapy.

    PubMed

    Pollom, R Daniel

    2010-11-01

    Hyperglycemia is highly prevalent in the acute-care setting and is associated with an increased risk of morbidity and mortality. Evidence suggests that glycemic control in this population is suboptimal, due in part to continued use of nonphysiologic sliding-scale insulin strategies without scheduled basal insulin doses or prandial insulin with concomitant correction doses. Although the ineffectiveness and risks of sliding-scale insulin regimens have been criticized for decades, sliding-scale insulin is still the most commonly prescribed subcutaneous insulin regimen among inpatients. Improving inpatient management requires the use of scheduled basal-bolus insulin therapy that includes basal insulin, nutritional insulin, and supplemental, or correctional, insulin. Insulin analogs are the preferred insulins, as they provide a more physiologic action than human insulin regimens, are associated with a lower risk of hypoglycemia, and are more convenient to administer than human insulins. Standardized insulin protocols and subcutaneous insulin order sets are critical components of effective inpatient glycemic control. Although preliminary data have demonstrated that inpatient diabetes management programs involving basal-bolus insulin therapy are effective and well tolerated, more research is needed.

  6. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats.

    PubMed

    Qin, Bolin; Nagasaki, Masaru; Ren, Ming; Bajotto, Gustavo; Oshida, Yoshiharu; Sato, Yuzo

    2003-12-01

    Cinnamon has been shown to potentiate the insulin effect through upregulation of the glucose uptake in cultured adipocytes. In the present study, we evaluated the effect of the cinnamon extract on the insulin action in awaked rats by the euglycemic clamp and further analyzed possible changes in insulin signaling occurred in skeletal muscle. The rats were divided into saline and cinnamon extract (30 and 300 mg/kg BW-doses: C30 and C300) oral administration groups. After 3-weeks, cinnamon extract treated rats showed a significantly higher glucose infusion rate (GIR) at 3 mU/kg per min insulin infusions compared with controls (118 and 146% of controls for C30 and C300, respectively). At 30 mU/kg per min insulin infusions, the GIR in C300 rats was increased 17% over controls. There were no significant differences in insulin receptor (IR)-beta, IR substrate (IRS)-1, and phosphatidylinositol (PI) 3-kinase protein content between C300 rats and controls. However, the skeletal muscle insulin-stimulated IR-beta and the IRS-1 tyrosine phosphorylation levels in C300 rats were 18 and 33% higher, respectively, added to 41% higher IRS-1/PI 3-kinase association. These results suggest that the cinnamon extract would improve insulin action via increasing glucose uptake in vivo, at least in part through enhancing the insulin-signaling pathway in skeletal muscle.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmark, Troels; Orselli, Marta

    We match the Hagedorn/deconfinement temperature of planar N=4 super Yang-Mills (SYM) on RxS{sup 3} to the Hagedorn temperature of string theory on AdS{sub 5}xS{sup 5}. The match is done in a near-critical region where both gauge theory and string theory are weakly coupled. The near-critical region is near a point with zero temperature and critical chemical potential. On the gauge-theory side we are taking a decoupling limit found in Ref. 7 in which the physics of planar N=4 SYM is given exactly by the ferromagnetic XXX{sub 1/2} Heisenberg spin chain. We find moreover a general relation between the Hagedorn/deconfinement temperaturemore » and the thermodynamics of the Heisenberg spin chain and we use this to compute it in two distinct regimes. On the string-theory side, we identify the dual limit for which the string tension and string coupling go to zero. This limit is taken of string theory on a maximally supersymmetric pp-wave background with a flat direction, obtained from a Penrose limit of AdS{sub 5}xS{sup 5}. We compute the Hagedorn temperature of the string theory and find agreement with the Hagedorn/deconfinement temperature computed on the gauge-theory side.« less

  8. Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence.

    PubMed

    Kesten, Dov; Horovitz-Fried, Miriam; Brutman-Barazani, Tamar; Sampson, Sanford R

    2018-04-01

    Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Tumour-promoting phorbol esters increase basal and inhibit insulin-stimulated lipogenesis in rat adipocytes without decreasing insulin binding.

    PubMed Central

    van de Werve, G; Proietto, J; Jeanrenaud, B

    1985-01-01

    In isolated rat adipocytes, tumour-promoting phorbol esters caused (1) dose-dependent stimulation of lipogenesis in the absence of insulin and (2) inhibition of the lipogenic effect of submaximal concentrations of insulin, but without affecting insulin binding. The possible involvement of protein kinase C in insulin action is discussed. PMID:3883992

  10. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis

    PubMed Central

    McCracken, James P.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/. PMID:27016579

  11. 18F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus.

    PubMed

    Townley, Ryan A; Botha, Hugo; Graff-Radford, Jonathan; Boeve, Bradley F; Petersen, Ronald C; Senjem, Matthew L; Knopman, David S; Lowe, Val; Jack, Clifford R; Jones, David T

    2018-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is an important and treatable cause of neurologic impairment. Diagnosis is complicated due to symptoms overlapping with other age related disorders. The pathophysiology underlying iNPH is not well understood. We explored FDG-PET abnormalities in iNPH patients in order to determine if FDG-PET may serve as a biomarker to differentiate iNPH from common neurodegenerative disorders. We retrospectively compared 18 F-FDG PET-CT imaging patterns from seven iNPH patients (mean age 74 ± 6 years) to age and sex matched controls, as well as patients diagnosed with clinical Alzheimer's disease dementia (AD), Dementia with Lewy Bodies (DLB) and Parkinson's Disease Dementia (PDD), and behavioral variant frontotemporal dementia (bvFTD). Partial volume corrected and uncorrected images were reviewed separately. Patients with iNPH, when compared to controls, AD, DLB/PDD, and bvFTD, had significant regional hypometabolism in the dorsal striatum, involving the caudate and putamen bilaterally. These results remained highly significant after partial volume correction. In this study, we report a FDG-PET pattern of hypometabolism in iNPH involving the caudate and putamen with preserved cortical metabolism. This pattern may differentiate iNPH from degenerative diseases and has the potential to serve as a biomarker for iNPH in future studies. These findings also further our understanding of the pathophysiology underlying the iNPH clinical presentation.

  12. Quantifying Na(I)-insulin and K(I)-insulin non-covalent complexes by ESI-MS method and calculation of their equilibrium constants.

    PubMed

    Gülfen, Mustafa; Özdemir, Abdil; Lin, Jung-Lee; Chen, Chung-Hsuan

    2017-10-01

    In this study, the dissociation and formation equilibrium constants of Na(I)-insulin and K(I)-insulin complexes have been calculated after the quantifying them on ESI mass spectrometer. The ESI-MS spectra of the complexes were measured by using the solvents as 50% MeOH in water and 100% water. The effect of pH on the Na(I)-insulin and K(I)-insulin complex formation were examined. Serial binding of Na(I) and K(I) ions to the insulin molecule were observed in the ESI-MS measurements. The first formation equilibrium constants were calculated as K f1 : 5.48×10 3 1/M for Na(I)-insulin complex and K f1 : 4.87×10 3 1/M for K(I)-insulin in water. The binding capability of Na(I) ions to insulin molecule is higher than the capability of K(I) ions. In case of a comparison together with Ca(II)-insulin and Mg(II)-insulin, the formation equilibrium constants (K f1 ) are in order of Ca(II)-insulin>Mg(II)-insulin>Na(I)-insulin>K(I)-insulin in water. The results showed that Na(I) and K(I) ions are involved in the formation of the non-covalent complexes with insulin molecule, since high extracellular and intracellular concentrations of them in the body. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Effect of soy isoflavone on gene expression of leptin and insulin sensibility in insulin-resistant rats].

    PubMed

    Chen, Shi-wei; Zhang, Li-shi; Zhang, Hong-min; Feng, Xiao-fan; Peng, Xiao-li

    2006-04-18

    To explore the effects of soy isoflavone (SIF) on gene expression of leptin and insulin sensibility in insulin-resistant (IR) rats induced by high-fat, and to reveal the mechanisms of SIF in ameliorating insulin sensibility. IR rats were randomly divided into four groups based on their insulin-resistant indexes (IRI): one model control group and three SIF groups that were gavaged with water solutions with SIF at doses of 0 mg/kg, 50 mg/kg, 150 mg/kg, and 450 mg/kg, respectively. After one month, fasting glucose, fasting insulin, leptin in serum, and leptin mRNA in the perirenal adipocyte were detected by enzymic method, radioimmunoassay, enzyme linked immunosorbent assay, and real time quantitative RT-PCR, respectively. The model control group was used to compare against the other groups: (1) Insulin and IRI were lower in the 150 mg/kg and 450 mg/kg groups; (2) In the 450 mg/kg group, body weight and leptin mRNA expression were lower, serum leptin content was higher. These results indicate that soy isoflavone might decrease body weight of rats and leptin mRNA, increase serum leptin level, and ameliorate leptin and insulin sensitivities.

  14. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    PubMed

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  15. Concurrent Alzheimer's pathology in patients with clinical normal pressure hydrocephalus: correlation of high-volume lumbar puncture results, cortical brain biopsies, and outcomes.

    PubMed

    Pomeraniec, I Jonathan; Bond, Aaron E; Lopes, M Beatriz; Jane, John A

    2016-02-01

    Normal pressure hydrocephalus (NPH) remains most often a clinical diagnosis and has been widely considered responsive to the placement of a cerebrospinal fluid (CSF) shunt. The high incidence of patients with Alzheimer's disease (AD) with NPH symptoms leads to poorer outcomes than would be expected in patients with NPH alone. This article reviews a series of patients operated on for presumed NPH in whom preoperative high-volume lumbar puncture (HVLP) and intraoperative cortical brain biopsies were performed. The data derived from these procedures were then used to understand the incidence of AD in patients presenting with NPH symptoms and to analyze the efficacy of HVLP in patients with NPH and patients with concurrent AD (NPH+AD). A review of the outcomes of shunt surgery is provided. The cases of all patients who underwent placement of a CSF shunt for NPH from 1998 to 2013 at the University of Virginia by the senior author were retrospectively reviewed. Patients who underwent HVLP and patients who underwent cortical brain biopsies were stratified based on the biopsy results into an NPH-only group and an NPH+AD group. The HVLP results and outcomes were then compared in these 2 groups. From 1998 to 2013, 142 patients underwent shunt operations because of a preoperative clinical diagnosis of NPH. Of the patients with a shunt who had a diagnosis of NPH, 105 (74%) received HVLPs. Of 142 shunt-treated patients with NPH, 27 (19%) were determined to have concomitant Alzheimer's pathology based on histopathological findings at the time of shunting. Patients who underwent repeat biopsies had an initial positive outcome. After they clinically deteriorated, they underwent repeat biopsies during shunt interrogation, and 13% of the repeat biopsies demonstrated Alzheimer's pathology. Improvements in gait and cognition did not reach significance between the NPH and NPH+AD groups. In total, 105 patients underwent HVLP before shunt placement. In the NPH cohort, 44.6% of patients

  16. Insulin resistance in porphyria cutanea tarda.

    PubMed

    Calcinaro, F; Basta, G; Lisi, P; Cruciani, C; Pietropaolo, M; Santeusanio, F; Falorni, A; Calafiore, R

    1989-06-01

    It has been reported that patients with porphyria cutanea tarda (PCT) develop carbohydrate (CHO) intolerance and manifest diabetes melitus (DM) more frequently than the normal population. In order to verify whether this is due to insulin resistance we studied 5 patients with PCT and 5 normal subjects matched for age, sex and weight. In all the patients an evaluation consisted of the glycemic curve and insulin response to an iv glucose tolerance test (IVGTT: 0.33 g/kg) as well as of an evaluation of the circulating monocyte insulin receptors. Blood samples were drawn in the basal state to measure plasma levels of NEFA, glycerol, and intermediate metabolites. The patients with PCT showed normal glucose tolerance which was obtained, however, at the expense of the elevated insulin levels: therefore a condition of insulin resistance was demonstrated in these subjects. An involvement of the lipid metabolism, observed by the raised levels of plasma NEFA and glycerol, was also evident. The insulin binding to circulating monocytes was reduced but not enough to justify the degree of insulin resistance observed. Therefore, it could be hypothesized, in agreement with similar studies, that a postreceptor defect is responsible for the insulin-resistance observed in patients with PCT and that the reduction of insulin receptors is determined by the down regulation in response to elevated insulinemic levels. An alteration of the porphyrin metabolism might be responsible for this disorder.

  17. Higher fetal insulin resistance in Chinese pregnant women with gestational diabetes mellitus and correlation with maternal insulin resistance.

    PubMed

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively. Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively). Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM. Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.

  18. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    PubMed Central

    Olmstead, Keedrian I.; La Frano, Michael R.; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A.; Newman, John W.; Fiehn, Oliver; Crocker, Daniel E.; Filipp, Fabian V.; Ortiz, Rudy M.

    2017-01-01

    Introduction Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. Objective To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. Methods We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. Results In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Conclusion Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance. PMID:28757815

  19. Endothelial cells actively concentrate insulin during its transendothelial transport

    PubMed Central

    Genders, Amanda J.; Frison, Vera; Abramson, Sarah R.; Barrett, Eugene J.

    2013-01-01

    We examined insulin's uptake and transendothelial transport (TET) by cultured bovine aortic endothelial cells (BAECs) in order to: a) ascertain whether insulin accumulates within the cells to concentrations greater than in the media; b) compare the TET of insulin to that of inulin (using the latter as a tracer for passive transport or leak); and c) determine whether insulin's TET depended on insulin action. Using 125I-insulin at physiologic concentrations, we found that BAECs accumulate insulin >5-fold above media concentrations and that the TET of insulin, but not inulin, is saturable and requires intact PI-3-kinase and MEK-kinase signaling. We conclude that the insulin receptor and downstream signaling from the receptor regulate endothelial insulin transport. Based on comparison of the kinetics of BAEC insulin uptake with insulin TET, we suggest that insulin uptake is rate limiting for insulin TET. PMID:23350546

  20. Regulation of insulin preRNA splicing by glucose

    PubMed Central

    Wang, Juehu; Shen, Luping; Najafi, Habiba; Kolberg, Janice; Matschinsky, Franz M.; Urdea, Mickey; German, Michael

    1997-01-01

    Glucose tightly regulates the synthesis and secretion of insulin by β cells in the pancreatic islets of Langerhans. To investigate whether glucose regulates insulin synthesis at the level of insulin RNA splicing, we developed a method to detect and quantify a small amount of RNA by using the branched DNA (bDNA) signal-amplification technique. This assay is both sensitive and highly specific: mouse insulin II mRNA can be detected from a single β cell (βTC3 cells or mouse islets), whereas 1 million non-insulin-producing α cells (αTC1.6 cells) give no signal. By using intron and exon sequences, oligonucleotide probes were designed to distinguish the various unspliced and partially spliced insulin preRNAs from mature insulin mRNA. Insulin RNA splicing rates were estimated from the rate of disappearance of insulin preRNA signal from β cells treated with actinomycin D to block transcription. We found that the two introns in mouse insulin II are not spliced with the same efficiency. Intron 2 is spliced out more efficiently than intron 1. As a result, some mRNA retaining intron 1 enters the cytoplasm, making up ≈2-10% of insulin mRNA in the cell. This partially spliced cytoplasmic mRNA is quite stable, with a half-life similar to the completely spliced form. When islets grown in high glucose are shifted to low glucose medium, the level of insulin preRNA and the rate of splicing fall significantly. We conclude that glucose stimulates insulin gene transcription and insulin preRNA splicing. Previous estimates of insulin transcription rates based on insulin preRNA levels that did not consider the rate of splicing may have underestimated the effect of glucose on insulin gene transcription. PMID:9113994

  1. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Yang, Yong, E-mail: yyang@houstonmethodist.org

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocationmore » of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.« less

  2. Internalization and localization of basal insulin peglispro in cells.

    PubMed

    Moyers, Julie S; Volk, Catherine B; Cao, Julia X C; Zhang, Chen; Ding, Liyun; Kiselyov, Vladislav V; Michael, M Dodson

    2017-10-15

    Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than

  3. Insulin-egg yolk dispersions in self microemulsifying system.

    PubMed

    Singnurkar, P S; Gidwani, S K

    2008-11-01

    Formulation of insulin into a microemulsion very often presents a physicochemical instability during their preparation and storage. In order to overcome this lack of stability and facilitate the handling of these colloidal systems, stabilization of insulin in presence of hydrophobic components of a microemulsion appears as the most promising strategy. The present paper reports the use of egg yolk for stabilization of insulin in self microemulsifying dispersions. Insulin loaded egg yolk self microemulsifying dispersions were prepared by lyophilization followed by dispersion into self microemulsifying vehicle. The physicochemical characterization of selfmicroemulsifying dispersions includes such as insulin encapsulation efficiency, in vitro stability of insulin in presence of proteolytic enzymes and in vitro release. The biological activity of insulin from the dispersion was estimated by enzyme-linked immunosorbant assay and in vivo using Wistar diabetic rats. The particle size ranged 1.023±0.316 μm in diameter and insulin encapsulation efficiency was 98.2±0.9 %. Insulin hydrophobic self microemulsifying dispersions suppressed insulin release in pH 7.4 phosphate buffer and shown to protect insulin from enzymatic degradation in vitro in presence of chymotripsin. Egg yolk encapsulated insulin was bioactive, demonstrated through both in vivo and in vitro.

  4. Insulin use and persistence in patients with type 2 diabetes adding mealtime insulin to a basal regimen: a retrospective database analysis

    PubMed Central

    2011-01-01

    Background The objective of this study was to characterize insulin use and examine factors associated with persistence to mealtime insulin among patients with type 2 diabetes (T2D) on stable basal insulin therapy initiating mealtime insulin therapy. Methods Insulin use among patients with T2D initiating mealtime insulin was investigated using Thomson Reuters MarketScan® research databases from July 2001 through September 2006. The first mealtime insulin claim preceded by 6 months with 2 claims for basal insulin was used as the index event. A total of 21 months of continuous health plan enrollment was required. Patients were required to have a second mealtime insulin claim during the 12-month follow-up period. Persistence measure 1 defined non-persistence as the presence of a 90-day gap in mealtime insulin claims, effective the date of the last claim prior to the gap. Persistence measure 2 required 1 claim per quarter to be persistent. Risk factors for non-persistence were assessed using logistic regression. Results Patients initiating mealtime insulin (n = 4752; 51% male, mean age = 60.3 years) primarily used vial/syringe (87%) and insulin analogs (60%). Patients filled a median of 2, 3, and 4 mealtime insulin claims at 3, 6, and 12 months, respectively, with a median time of 76 days between refills. According to measure 1, persistence to mealtime insulin was 40.7%, 30.2%, and 19.1% at 3, 6, and 12 months, respectively. Results for measure 2 were considerably higher: 74.3%, 55.3%, and 42.2% of patients were persistent at 3, 6, and 12 months, respectively. Initiating mealtime insulin with human insulin was a risk factor for non-persistence by both measures (OR < 0.80, p < 0.01). Additional predictors of non-persistence at 12 months included elderly age, increased insulin copayment, mental health comorbidity, and polypharmacy (p < 0.05 for all). Conclusions Mealtime insulin use and persistence were both considerably lower than expected, and were significantly lower

  5. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    PubMed

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  6. [Advance of Forensic Research in Insulin Poisoning].

    PubMed

    Tong, F; Liang, Y; Shi, Q; Zhang, L; L, W H; Zhou, Y W

    2017-02-01

    Insulin as a common clinical hypoglycemic agent can effectively control serves to lower the concentration of blood glucose. However, insulin overdose can lead to death. In the whole fatal cases of insulin overdose, medical accident is the most common, followed by suicide. Though insulin homicide is extremely rare, it deserves great attention. Though there are some researches about insulin poisoning on forensic toxicology and pathology, it is still a difficult task in forensic practice. In this paper, the mechanism of death, pathological changes, detection methods and diagnose criteria of insulin overdose will be discussed in the view of forensic toxicology and pathology. We hope that this paper could enhance relative knowledges of insulin poisoning for medical examiners. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  7. Insulin algorithms in the self-management of insulin-dependent diabetes: the interactive 'Apple Juice' program.

    PubMed

    Williams, A G

    1996-01-01

    The 'Apple Juice' program is an interactive diabetes self-management program which runs on a lap-top Macintosh Powerbook 100 computer. The dose-by-dose insulin advisory program was initially designed for children with insulin-dependent (type 1) diabetes mellitus. It utilizes several different insulin algorithms, measurement formulae, and compensation factors for meals, activity, medication and the dawn phenomenon. It was developed to assist the individual with diabetes and/or care providers, in determining specific insulin dosage recommendations throughout a 24 h period. Information technology functions include, but are not limited to automated record keeping, data recall, event reminders, data trend/pattern analyses and education. This paper highlights issues, observations and recommendations surrounding the use of the current version of the software, along with a detailed description of the insulin algorithms and measurement formulae applied successfully with the author's daughter over a six year period.

  8. Clinical experience with insulin detemir type 2 diabetes mellitus, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Rabat-Sale-Zemmour-Zaer Region cohort of the A1chieve study.

    PubMed

    Chraibi, Abdelmjid; Belmejdoub, Ghizlane

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66 726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Rabat-Sale-Zemmour-Zaer region, Morocco. A total of 424 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 177), insulin detemir (n = 150), insulin aspart (n = 11), basal insulin plus insulin aspart (n = 45) and other insulin combinations (n = 41). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 10.1%) and insulin user (mean HbA1c: 9.4%) groups. After 24 weeks of treatment, all the study groups showed improvement in HbA1c (insulin naïve: -2.5%, insulin users: -1.8%). Major hypoglycaemia was observed in the insulin user group after 24 weeks (0.1 events/patient-year). SADRs were reported in 0.5% of insulin users. Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  9. Higher Fetal Insulin Resistance in Chinese Pregnant Women with Gestational Diabetes Mellitus and Correlation with Maternal Insulin Resistance

    PubMed Central

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    Objective The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. Measurements Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively. Results Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively). Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM. Conclusions Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance. PMID:23560057

  10. PTB and TIAR binding to insulin mRNA 3'- and 5'UTRs; implications for insulin biosynthesis and messenger stability.

    PubMed

    Fred, Rikard G; Mehrabi, Syrina; Adams, Christopher M; Welsh, Nils

    2016-09-01

    Insulin expression is highly controlled on the posttranscriptional level. The RNA binding proteins (RBPs) responsible for this result are still largely unknown. To identify RBPs that bind to insulin mRNA we performed mass spectrometry analysis on proteins that bound synthetic oligonucloetides mimicing the 5'- and the 3'-untranslated regions (UTRs) of rat and human insulin mRNA in vitro . We observed that the RBPs heterogeneous nuclear ribonucleoprotein (hnRNP) U, polypyrimidine tract binding protein (PTB), hnRNP L and T-cell restricted intracellular antigen 1-related protein (TIA-1-related protein; TIAR) bind to insulin mRNA sequences, and that the in vitro binding affinity of these RBPs changed when INS-1 cells were exposed to glucose, 3-isobutyl-1-methylxanthine (IBMX) or nitric oxide. High glucose exposure resulted in a modest increase in PTB and TIAR binding to an insulin mRNA sequence. The inducer of nitrosative stress DETAnonoate increased markedly hnRNP U and TIAR mRNA binding. An increased PTB to TIAR binding ratio in vitro correlated with higher insulin mRNA levels and insulin biosynthesis rates in INS-1 cells. To further investigate the importance of RNA-binding proteins for insulin mRNA stability, we decreased INS-1 and EndoC-βH1 cell levels of PTB and TIAR by RNAi. In both cell lines, decreased levels of PTB resulted in lowered insulin mRNA levels while decreased levels of TIAR resulted in increased insulin mRNA levels. Thapsigargin-induced stress granule formation was associated with a redistribution of TIAR from the cytosol to stress granules. These experiments indicate that alterations in insulin mRNA stability and translation correlate with differential RBP binding. We propose that the balance between PTB on one hand and TIAR on the other participates in the control of insulin mRNA stability and utilization for insulin biosynthesis.

  11. Insulin Action is Blocked by a Monoclonal Antibody That Inhibits the Insulin Receptor Kinase

    NASA Astrophysics Data System (ADS)

    Morgan, David O.; Ho, Lisa; Korn, Laurence J.; Roth, Richard A.

    1986-01-01

    Thirty-six monoclonal antibodies to the human insulin receptor were produced. Thirty-four bound the intracellular domain of the receptor β subunit, the domain containing the tyrosine-specific kinase activity. Of these 34 antibodies, 33 recognized the rat receptor and 1 was shown to precipitate the receptors from mice, chickens, and frogs with high affinity. Another of the antibodies inhibited the kinase activities of the human and frog receptors with equal potencies. This antibody inhibited the kinase activities of these receptors by more than 90%, whereas others had no effect on either kinase activity. Microinjection of the inhibiting antibody into Xenopus oocytes blocked the ability of insulin to stimulate oocyte maturation. In contrast, this inhibiting antibody did not block the ability of progesterone to stimulate the same response. Furthermore, control immunoglobulin and a noninhibiting antibody to the receptor β subunit did not block this response to insulin. These results strongly support a role for the tyrosine-specific kinase activity of the insulin receptor in mediating this biological effect of insulin.

  12. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...

  13. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...

  14. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...

  15. 21 CFR 862.1405 - Immunoreactive insulin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...

  16. Evaluation of efficiency of insulin suppository formulations containing sodium salicylate or sodium cholate in insulin dependent diabetic patients.

    PubMed

    Hosny, Ehab A; Al-Marzouki, Zohair M H; Metwally, Mohammed E S; Souaida, Mamdouh Y S; Alshaik, Abdel Rhman A M

    2003-10-01

    Two formulations of insulin suppositories were prepared to contain different amounts of sodium salicylate and sodium cholate as absorption promoters and also of insulin with the purpose of obtaining the most effective formulation in reducing plasma glucose levels after rectal administration to diabetic patients. The results show that insulin suppositories containing 100 mg sodium salicylate and 100 or 200 U of crystalline insulin showed no significant difference in AUC, Cmax and Tmax and both formulations showed significant reduction in plasma glucose level compared to initial values within 1.5-2 h. The results from experiments carried out in health volunteers showed that 100 mg sodium salicylate is the optimum amount to be included in insulin suppositories producing significantly higher Cmax and AUC compared to those produced after rectal administration of insulin suppositories containing 50 or 200 mg sodium salicylate. The results also show that using sodium cholate in 50 mg amount did not produce any significant reduction in plasma glucose levels of insulin dependent diabetic patients given suppositories containing 100 U of insulin, but this amount in suppositories containing 200 U of insulin was able to produce significant (p < 0.05) reduction in plasma glucose level within 1 h which lasted till end of experiment producing Cmax of 29.7 +/- 6.61% at Tmax of 1.5 +/- 0.61 h. On increasing the amount of sodium cholate to 100 mg in the suppositories, a marked (p < 0.01) reduction in plasma glucose level took place and the Cmax increased to 47.7 +/- 12.24% at Tmax of 1.5 +/- 0.63 h. This resulted in AUC of 86.7 +/- 22.4 mg%h which was non significantly higher from that produced after administration of suppositories containing 50 mg sodium cholate and 200 U insulin (62.5 +/- 17.6 mg%h). The results also show that insulin suppositories containing 100 mg sodium cholate and 200 U insulin resulted in a non significant differences in Cmax and AUC from those produced by S

  17. Development of Liver-Targeting Insulin

    DTIC Science & Technology

    2017-08-01

    decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this...have been done in the design of better insulin, problems still exist with the current therapies. For example, frequent subcutaneous injections are always...ligands will be designed and synthesized. The ligands molecular weight is a fraction of insulin, and therefore should result in an insulin analog with

  18. Insulin protects against hepatic damage postburn.

    PubMed

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.

  19. Insulin Protects against Hepatic Damage Postburn

    PubMed Central

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  20. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin

    2007-02-15

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the {beta}-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH andmore » PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.« less

  1. Insulin Pen—The “iPod” for Insulin Delivery (Why Pen Wins over Syringe)

    PubMed Central

    Asamoah, Ernest

    2008-01-01

    Diabetes affects most aspects of everyday life and places considerable responsibility on the patient; therefore, without patient acceptance of what we offer, the therapy is unlikely to be adhered to especially when that therapy happens to be insulin injection. In 2008, almost every physician/health care provider carries new and sleek cell phones (because the newer ones are well designed and function better). Why these same providers continue to prescribe insulin via syringes in 2008 is something that I cannot fathom. Previously, some insurance companies only paid for vials and there was no other choice, but today almost all insurance pay for pens and so the “insurance reason” is no longer tenable. Since Banting and Best discovered insulin in 1921, scientists have continued to improve the types of insulin (making them mimic physiology more closely in order to minimize hypoglycemia and improve glycemic control as seen with the latest analog insulins). In the same manner, the delivery process of insulin has also continued to evolve to make it easier and more acceptable to patients. Studies have shown that patients prefer device use over traditional vials/syringes. Pen devices used to inject insulin lead to better compliance, are quicker to inject, dosing is much more accurate, and, surprisingly, are more cost effective. I challenge my colleagues to take full responsibility for what their patients use. If a provider believes in pen devices, most of his/her patients will use them. The products your patients use is a direct reflection of what you practice. Educating providers to change their beliefs and practices is key to moving American diabetic patients from syringes to pen devices. PMID:19885358

  2. Mechanisms of insulin action on sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Anderson, Erling A.; Johnson, Alan Kim; Mark, Allyn L.

    1996-01-01

    Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.

  3. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  4. Variability of Insulin Requirements Over 12 Weeks of Closed-Loop Insulin Delivery in Adults With Type 1 Diabetes.

    PubMed

    Ruan, Yue; Thabit, Hood; Leelarathna, Lalantha; Hartnell, Sara; Willinska, Malgorzata E; Dellweg, Sibylle; Benesch, Carsten; Mader, Julia K; Holzer, Manuel; Kojzar, Harald; Evans, Mark L; Pieber, Thomas R; Arnolds, Sabine; Hovorka, Roman

    2016-05-01

    To quantify variability of insulin requirements during closed-loop insulin delivery. We retrospectively analyzed overnight, daytime, and total daily insulin amounts delivered during a multicenter closed-loop trial involving 32 adults with type 1 diabetes. Participants applied hybrid day-and-night closed-loop insulin delivery under free-living home conditions over 12 weeks. The coefficient of variation was adopted to measure variability of insulin requirements in individual subjects. Data were analyzed from 1,918 nights, 1,883 daytime periods and 1,564 total days characterized by closed-loop use over 85% of time. Variability of overnight insulin requirements (mean [SD] coefficient of variation 31% [4]) was nearly twice as high as variability of total daily requirements (17% [3], P < 0.001) and was also higher than variability of daytime insulin requirements (22% [4], P < 0.001). Overnight insulin requirements were significantly more variable than daytime and total daily amounts. This may explain why some people with type 1 diabetes report frustrating variability in morning glycemia. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Vascular Function, Insulin Action and Exercise: An Intricate Interplay

    PubMed Central

    Zheng, Chao; Liu, Zhenqi

    2015-01-01

    Insulin enhances the compliance of conduit arteries, relaxes resistance arterioles to increase tissue blood flow and dilates precapillary arterioles to expand muscle microvascular blood volume. These actions are impaired in the insulin resistant states. Exercise ameliorates endothelial dysfunction and improves insulin responses in insulin resistant patients, but the precise underlying mechanisms remain unclear. The microvasculature critically regulates insulin action in muscle by modulating insulin delivery to the capillaries nurturing the myocytes and trans-endothelial insulin transport. Recent data suggest that exercise may exert its insulin-sensitizing effect via recruiting muscle microvasculature to increase insulin delivery to and action in muscle. The current review focuses on how the interplay among exercise, insulin action and the vasculature contributes to exercise-mediated insulin sensitization in muscle. PMID:25735473

  6. Clinical experience with insulin detemir type 2 diabetes mellitus, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Rabat-Sale-Zemmour-Zaer Region cohort of the A1chieve study

    PubMed Central

    Chraibi, Abdelmjid; Belmejdoub, Ghizlane

    2013-01-01

    Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66 726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Rabat-Sale-Zemmour-Zaer region, Morocco. Results: A total of 424 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 177), insulin detemir (n = 150), insulin aspart (n = 11), basal insulin plus insulin aspart (n = 45) and other insulin combinations (n = 41). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 10.1%) and insulin user (mean HbA1c: 9.4%) groups. After 24 weeks of treatment, all the study groups showed improvement in HbA1c (insulin naïve: −2.5%, insulin users: −1.8%). Major hypoglycaemia was observed in the insulin user group after 24 weeks (0.1 events/patient-year). SADRs were reported in 0.5% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia. PMID:24404470

  7. Dynamics in insulin requirements and treatment safety.

    PubMed

    Harper, R; Donnelly, R; Bi, Yixi; Bashan, E; Minhas, R; Hodish, I

    2016-01-01

    The majority of insulin users have elevated HbA1c. There is growing recognition that the low success rates are due to variations in insulin requirements. Thus, frequent dosage adjustments are needed. In practice, adjustments occur sporadically due to limited provider availability. We investigated intra-individual dynamics of insulin requirements using data from a service evaluation of the d-Nav® Insulin Guidance Service. This service facilitates automated insulin dosage adjustments, as often as needed, to achieve and maintain optimal glycemic balance. Data were collected from subjects who have been using the service for more than a year. Events of considerable and persistent decrease in insulin requirements were identified by drops in total daily insulin ≥25%. Overall, 62 patients were studied over an average period of 2.1±0.5 (mean±standard deviation) years. Stability in HbA1c was attained after ~3 quarters at 7.4%±0.2% (57.4mmol/mol±1mmol/mol). Events were identified in 56.5% of the patients. On average, each affected patient had 0.8±0.4 events per year, lasting 9.7±6.6weeks, while total daily insulin dosage decreased by 41.4±13.4%. Our findings may call attention to a major contributing factor to hypoglycemia among insulin users. In reality, insulin dosage is seldom adjusted and thus transient periods of decrease in insulin requirements and overtreatment are usually overlooked. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Novel Simple Insulin Delivery Device Reduces Barriers to Insulin Therapy in Type 2 Diabetes

    PubMed Central

    Hermanns, Norbert; Lilly, Leslie C.; Mader, Julia K.; Aberer, Felix; Ribitsch, Anja; Kojzar, Harald; Warner, Jay; Pieber, Thomas R.

    2015-01-01

    Background: The PaQ® insulin delivery system is a simple-to-use patch-on device that provides preset basal rates and bolus insulin on demand. In addition to feasibility of use, safety, and efficacy (reported elsewhere), this study analyzed the impact of PaQ on patient-reported outcomes, including barriers to insulin treatment, diabetes-related distress, and attitudes toward insulin therapy in patients with type 2 diabetes on a stable multiple daily injection (MDI) regimen. Methods: This single-center, open-label, single-arm study comprised three 2-week periods: baseline (MDI), transition from MDI to PaQ, and PaQ treatment. Validated questionnaires were administered during the baseline and PaQ treatment periods: Barriers to Insulin Treatment questionnaire (BIT), Insulin Treatment Appraisal Scale (ITAS), and Problem Areas in Diabetes scale (PAID). Results: Eighteen patients (age 59 ± 5 years, diabetes duration 15 ± 7 years, 21% female, HbA1c 7.7 ± 0.7%) completed the questionnaires. There was a strong, significant effect of PaQ use in mean BIT total scores (difference [D] = −5.4 ± 0.7.7, P = .01, effect size [d] = 0.70). Patients perceived less stigmatization by insulin injection (D = −2.2 ± 6.2, P = .18, d = 0.35), increased positive outcome (D = 1.9 ± 6.6, P = .17, d = 0.29), and less fear of injections (1.3 ± 4.8, P = .55, d = 0.28). Mean change in ITAS scores after PaQ device use showed a nonsignificant improvement of 1.71 ± 5.63 but moderate effect size (d = 0.30, P = .14). No increase in PAID scores was seen. Conclusions: The results and moderate to large effects sizes suggest that PaQ device use has beneficial and clinically relevant effects to overcoming barriers to and negative appraisal of insulin treatment, without increasing other diabetes-related distress. PMID:25670847

  9. Insulin, insulin-like growth factor-I and breast cancer risk in Japanese women.

    PubMed

    Hirose, Kaoru; Toyama, Tatsuya; Iwata, Hiroji; Takezaki, Toshiro; Hamajima, Nobuyuki; Tajima, Kazuo

    2003-01-01

    To evaluate the effects of glucose metabolism related factors, such as insulin and insulin-like growth-factors (IGFs), on breast cancer development among Japanese women, we conducted a case-referent study comparing 187 women presenting with operable breast cancer and 190 women of the same age having no breast cancer. Odds ratios (OR) and 95% confidence intervals (95%CI) were determined by multiple logistic regression analysis. In the present study, no association in risk was observed with increasing levels of IGF-I or IGF binding protein-3 (IGFBP-3), before or after adjustment these factors. However, a suggestion of a positive association of an increased breast cancer risk was evident in postmenopausal women with elevated plasma insulin levels, particularly those with BMI>23.07. The OR for plasma insulin in the top tertile was 4.48 (95%CI:1.07-18.7) compared to the bottom tertile. For C-peptide, there was a similar positive association, with a corresponding OR of 2.28. In addition, we observed strong links between plasma insulin, C-peptide levels and estrogen receptor (ER) negative breast cancer, with ORs of 2.79(95%CI:1.09-7.16), and 2.52 (95%CI:0.91-6.97) respectively, for the top versus bottom tertiles. In conclusion, the present study suggested that plasma insulin level is a predictor of postmenopausal breast cancer in obese women and ER negative breast cancer. Additional studies are needed to clarify the role of glucose metabolism pathways in breast cancer development and interaction of IGF systems.

  10. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  11. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    PubMed Central

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  12. Considerations for diabetes: treatment with insulin pen devices.

    PubMed

    Cuddihy, Robert M; Borgman, Sarah K

    2013-01-01

    Insulin is essential for the treatment of type 1 diabetes, and most patients with type 2 diabetes will eventually require insulin for glycemic control. Several barriers contribute to delays in initiating insulin therapy in type 2 diabetes. Furthermore, insulin-treated patients often miss doses or otherwise fail to self-administer their insulin as prescribed, placing themselves at the risk of developing complications. Insulin pens can help overcome barriers to initiating insulin therapy and can facilitate the self-management of diabetes. Compared with the vial and syringe, insulin pens are more accurate, associated with greater adherence, and preferred by patients because of their convenience and ease of use. Large database analyses suggest that insulin pens may reduce the rate of occurrence of hypoglycemic events in patients with type 2 diabetes. Despite higher costs of insulin pens vs vials and syringes, studies suggest little or no increase in total health care costs and decreases in diabetes-related costs associated with reduced health care utilization with pens. Interestingly, the use of insulin pens within the United States lags far behind the use of pens in Europe and Japan. Insulin pens may be disposable or refillable, and some pens have special features [eg, audible clicks, large-dose selector and dial, memory function, half-unit dosing, high dosing (ie, 80 U)] that offer the opportunity to individualize treatment by meeting patients' needs. This review compares available insulin pens, describes strategies to facilitate their usage, and discusses how insulin pens can improve self-management of diabetes while reducing cost.

  13. Insulin in the Brain: There and Back Again

    PubMed Central

    Banks, William A.; Owen, Joshua B.; Erickson, Michelle A

    2012-01-01

    Insulin performs unique functions within the CNS. Produced nearly exclusively by the pancreas, insulin crosses the blood-brain barrier (BBB) using a saturable transporter, affecting feeding and cognition through CNS mechanisms largely independent of glucose utilization. Whereas peripheral insulin acts primarily as a metabolic regulatory hormone, CNS insulin has an array of effects on brain that may more closely resemble the actions of the ancestral insulin molecule. Brain endothelial cells (BEC), the cells that form the vascular BBB and contain the transporter that translocates insulin from blood to brain, is itself regulated by insulin. The insulin transporter is altered by physiological and pathological factors including hyperglycemia and the diabetic state. The latter can lead to BBB disruption. Pericytes, pluripotent cells in intimate contact with the BEC, protect the integrity of the BBB and its ability to transport insulin. Most of insulin’s known actions within the CNS are mediated through two canonical pathways, the phosphoinositide-3 kinase (PI3)/Akt and Ras/mitogen activated kinase (MAPK) cascades. Resistance to insulin action within the CNS, sometimes referred to as diabetes mellitus type III, is associated with peripheral insulin resistance, but it is possible that variable hormonal resistance syndromes exist so that resistance at one tissue bed may be independent of that at others. CNS insulin resistance is associated with Alzheimer’s disease, depression, and impaired baroreceptor gain in pregnancy. These aspects of CNS insulin action and the control of its entry by the BBB are likely only a small part of the story of insulin within the brain. PMID:22820012

  14. Design of insulin analogues for meal-related therapy.

    PubMed

    Brange, J

    1993-01-01

    The human insulin in replacement therapy has a hexameric structure. Hexamerization of the insulin molecule facilitates biosynthesis and beta-cell storage of insulin, but is unnecessary for biologic activity and appears to contribute to delayed absorption of exogenous insulin from the subcutis. Insulin analogues with reduced self-association that are produced through recombinant DNA techniques have been shown to have in vivo activity comparable to that of human insulin and absorption kinetics characterized by higher and more constant rates of disappearance from the subcutaneous injection site. In preliminary studies in patients receiving insulin therapy, monomeric insulin analogues have been found to provide glycemic control in the postprandial period that is at least equivalent to that of human insulin. Findings in these studies suggest that the use of such analogues may provide meal-related insulin effects closer to those observed in the physiologic state by limiting excessive postprandial glucose excursions and decreasing the risk of late hypoglycemia. Banting and Best revolutionized diabetes therapy 70 years ago with the extraction of insulin from animal pancreas glands (J Lab Clin Med 7:464-472, 1922). Since that time, many refinements of the therapeutic properties of pharmaceutical preparations of the hormone have been introduced. Until recently, however, such advances have been limited to improvements in insulin purity, insulin species, and adjustment of the composition of the vehicle with respect to auxiliary substances and other additives. With the advent of recombinant DNA techniques, it has become possible to optimize the insulin molecule itself for purposes of replacement therapy.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Insulin, not glutamine dipeptide, reduces lipases expression and prevents fat wasting and weight loss in Walker 256 tumor-bearing rats.

    PubMed

    de Morais, Hely; de Fatima Silva, Flaviane; da Silva, Francemilson Goulart; Silva, Milene Ortiz; Graciano, Maria Fernanda Rodrigues; Martins, Maria Isabel Lovo; Carpinelli, Ângelo Rafael; Mazucco, Tânia Longo; Bazotte, Roberto Barbosa; de Souza, Helenir Medri

    2017-07-05

    Cachexia is the main cause of mortality in advanced cancer patients. We investigated the effects of insulin (INS) and glutamine dipeptide (GDP), isolated or associated, on cachexia and metabolic changes induced by Walker 256 tumor in rats. INS (NPH, 40 UI/kg, sc) or GDP (1.5g/kg, oral gavage) was once-daily administered during 11 days after tumor cell inoculation. GDP, INS or INS+GDP treatments did not influence the tumor growth. However, INS and INS+GDP prevented retroperitoneal fat wasting and body weight loss of tumor-bearing rats. In consistency, INS and INS+GDP prevented the increased expression of triacylglycerol lipase (ATGL) and hormone sensitive lipase (HSL), without changing the expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in the retroperitoneal adipose tissue of tumor-bearing rats. INS and INS+GDP also prevented anorexia and hyperlactatemia of tumor-bearing rats. However, INS and INS+GDP accentuated the loss of muscle mass (gastrocnemius, soleus and long digital extensor) without affecting the myostatin expression in the gastrocnemius muscle and blood corticosterone. GDP treatment did not promote beneficial effects. It can be concluded that treatment with INS (INS or INS+GDP), not with GDP, prevented fat wasting and weight loss in tumor-bearing rats without reducing tumor growth. These effects might be attributed to the reduction of lipases expression (ATGL and LHS) and increased food intake. The results show the physiological function of INS in the suppression of lipolysis induced by cachexia mediators in tumor-bearing rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Does availability of AIR insulin increase insulin use and improve glycemic control in patients with type 2 diabetes?

    PubMed

    Bergenstal, Richard M; Freemantle, Nick; Leyk, Malgorzata; Cutler, Gordon B; Hayes, Risa P; Muchmore, Douglas B

    2009-09-01

    In the concordance model, physician and patient discuss treatment options, explore the impact of treatment decisions from the patient's perspective, and make treatment choices together. We tested, in a concordance setting, whether the availability of AIR inhaled insulin (developed by Alkermes, Inc. [Cambridge, MA] and Eli Lilly and Company [Indianapolis, IN]; AIR is a registered trademark of Alkermes, Inc.), as compared with existing treatment options alone, leads to greater initiation and maintenance of insulin therapy and improves glycemic control in patients with type 2 diabetes. This was a 9-month, multicenter, parallel, open-label study in adult, nonsmoking patients with diabetes not optimally controlled by two or more oral antihyperglycemic medications. Patients were randomized to the Standard Options group (n = 516), in which patients chose a regimen from drugs in each major treatment class excluding inhaled insulin, or the Standard Options + AIR insulin group (n = 505), in which patients had the same choices plus AIR insulin. The primary end points were the proportion of patients in each group using insulin at end point and change in hemoglobin A1C (A1C) from baseline to end point. At end point, 53% of patients in the Standard Options group and 59% in the Standard Options + AIR insulin group were using insulin (P = 0.07). Both groups reduced A1C by about 1.2% and reported increased well-being and treatment satisfaction. The most common adverse event with AIR insulin was transient cough. The opportunity to choose AIR insulin did not affect overall use of insulin at end point or A1C outcomes. Regardless of group assignment, utilizing a shared decision-making approach to treatment choices (concordance model), resulted in improved treatment satisfaction and A1C values at end point. Therefore, increasing patient involvement in treatment decisions may improve outcomes.

  17. An Evolutionary Perspective on Basal Insulin in Diabetes Treatment: Role of Insulin Therapy In Diabetes.

    PubMed

    Rodbard, Helena W

    2016-10-01

    The availability of human insulin and subsequently insulin analogs that more closely mimic the body's physiology have contributed to increased safety in patients with diabetes and a greater role in patients with T2DM. This greater role is supported by clear evidence that early use of insulin in T2DM results in long-term improvements in glycemic control and beta-cell function compared with oral agents.

  18. Pure Insulin Nanoparticle Agglomerates for Pulmonary Delivery

    PubMed Central

    Bailey, Mark M.; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory J.

    2009-01-01

    Diabetes is a set of diseases characterized by defects in insulin utilization, either through autoimmune destruction of insulin-producing cells (Type I) or insulin resistance (Type II). Treatment options can include regular injections of insulin, which can be painful and inconvenient, often leading to low patient compliance. To overcome this problem, novel formulations of insulin are being investigated, such as inhaled aerosols. Sufficient deposition of powder in the peripheral lung to maximize systemic absorption requires precise control over particle size and density, with particles between 1 and 5 μm in aerodynamic diameter being within the respirable range. Insulin nanoparticles were produced by titrating insulin dissolved at low pH up to the pI of the native protein, and were then further processed into microparticles using solvent displacement. Particle size, crystallinity, dissolution properties, structural stability, and bulk powder density were characterized. We have demonstrated that pure drug insulin microparticles can be produced from nanosuspensions with minimal processing steps without excipients, and with suitable properties for deposition in the peripheral lung. PMID:18959432

  19. Effects of losartan on whole-body, skeletal muscle, and vascular insulin responses in obesity/insulin resistance without hypertension

    PubMed Central

    Lteif, AA; Chisholm, RL; Gilbert, K; Considine, RV; Mather, KJ

    2011-01-01

    Aims Renin-angiotensin system antagonists have been found to improve glucose metabolism in obese hypertensive and type 2 diabetic subjects. The mechanism of these effects is not well understood. We hypothesized that the angiotensin receptor antagonist losartan would improve insulin-mediated vasodilation, and thereby improve insulin-stimulated glucose uptake in skeletal muscle of insulin resistant subjects. Materials and Methods We studied subjects with obesity and insulin resistance but without hypertension, hypercholesterolemia or dysglycemia (age 39.0±9.6 yrs [mean±SD], BMI 33.2±5.9 kg/m2, BP 115.8±12.2/70.9±7.2 mmHg, LDL 2.1±0.5 mmol/L). Subjects were randomized to 12 weeks’ double-blind treatment with losartan 100 mg once daily (n=9) or matching placebo (n=8). Before and after treatment, under hyperinsulinemic euglycemic clamp conditions we measured whole-body insulin stimulated glucose disposal, insulin-mediated vasodilation, and insulin-stimulated leg glucose uptake by the limb balance technique. Results Whole-body insulin-stimulated glucose disposal was not significantly increased by losartan. Insulin-mediated vasodilation was augmented following both treatments (increase in leg vascular conductance: pre-treatment 0.7±0.3 L*min−1*mmHg−1[losartan, mean ±SEM] and 0.9±0.3 [placebo], post-treatment 1.0±0.4 [losartan] and 1.3±0.6 [placebo]) but not different between treatment groups (p=0.53). Insulin’s action to augment NO production and to augment endothelium-dependent vasodilation were also not improved. Leg glucose uptake was not significantly changed by treatments, and not different between groups (p=0.11). Conclusions These findings argue against the hypothesis that losartan might improve skeletal muscle glucose metabolism by improving insulin-mediated vasodilation in normotensive insulin resistant obese subjects. The metabolic benefits of angiotensin receptor blockers may require the presence of hypertension in addition to obesity

  20. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  1. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    PubMed

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-11-08

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats.

  2. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    PubMed Central

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-01-01

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats. PMID:7972005

  3. Improving influence of insulin on cognitive functions in humans.

    PubMed

    Kern, W; Peters, A; Fruehwald-Schultes, B; Deininger, E; Born, J; Fehm, H L

    2001-10-01

    Insulin receptors have been identified in limbic brain structures, but their functional relevance is still unclear. In order to characterize some of their effects, we evaluated auditory evoked brain potentials (AEP) in a vigilance task, behavioral measures of memory (recall of words) and selective attention (Stroop test) during infusion of insulin. The hormone was infused at two different rates (1.5 mU/kg x min, "low insulin", and 15 mU/kg x min, "high insulin"), inducing respectively serum levels of 543 +/- 34 and 24,029 +/- 1,595 pmol/l. This experimental design allowed to compare cognitive parameters under two conditions presenting markedly different insulin levels, but with minimal incidence on blood glucose concentrations since these were kept constant by glucose infusion. A "no insulin treatment" group was not included in order to avoid leaving patients infused with glucose without insulin treatment. Measures were taken during a baseline phase preceding insulin infusion and every 90 min during the 360 min of insulin infusion. Compared with "low insulin", "high insulin" induced a slow negative potential shift in the AEP over the frontal cortex (average amplitude, high insulin: 0.27 +/- 0.48 microV; low insulin: 1.87 +/- 0.48 microV, p < 0.005), which was paralleled by enhanced memory performance (words recalled, high insulin: 22.04 +/- 0.93; low insulin: 19.29 +/- 0.92, p < 0.05). Also, during "high insulin" subjects displayed enhanced performance on the Stroop test (p < 0.05) and expressed less difficulty in thinking than during "low insulin" (p < 0.03). Results indicate an improving effect of insulin on cognitive function, and may provide a frame for further investigations of neurobehavioral effects of insulin in patients with lowered or enhanced brain insulin, i.e., patients with Alzheimer's disease or diabetes mellitus. Copyright 2001 S. Karger AG, Basel

  4. Insulin lispro 25/75 and insulin lispro 50/50 as starter insulin in Japanese patients with type 2 diabetes: subanalysis of the CLASSIFY randomized trial.

    PubMed

    Watada, Hirotaka; Imori, Makoto; Li, Pengfei; Iwamoto, Noriyuki

    2017-07-28

    In Japan, premixed insulins are commonly used as starter insulin for type 2 diabetes. This subpopulation analysis assessed the efficacy and safety of twice-daily LM25 (25% insulin lispro/75% insulin lispro protamine) and LM50 (50% insulin lispro/50% insulin lispro protamine) as starter insulin in Japanese subjects, and compared these results with the whole-trial populations of East Asian subjects. In this subpopulation analysis of an open-label, phase 4, randomized trial (CLASSIFY), Japanese subjects received LM25 (n = 88) or LM50 (n = 84) twice-daily for 26 weeks. The primary outcome was change from baseline at Week 26 in glycated hemoglobin (HbA1c). Results for Japanese subjects were generally similar to those for the whole-trial population. Similar changes from baseline in HbA1c were observed for LM25 and LM50 groups (least squares [LS] mean difference [95% confidence interval] of LM25 - LM50 = 0.13 [-0.16, 0.41]%, 1.42 [-1.75, 4.48] mmol/mol, p = 0.388). More LM50-treated subjects than LM25-treated subjects achieved HbA1c targets of <7.0% (59.5% versus 43.2%; p = 0.034) or ≤6.5% (45.2% versus 28.4%; p = 0.027). The reduction in postprandial blood glucose concentrations after morning and evening meals was statistically significantly greater for LM50 than for LM25. The incidence of both hypoglycemia and treatment-emergent adverse events were similar between treatment groups. Both LM25 and LM50 twice daily appear to be effective and well tolerated as starter insulin, although LM50 might be more effective for Japanese type 2 diabetes patients.

  5. A mutation in the insulin receptor gene that impairs transport of the receptor to the plasma membrane and causes insulin-resistant diabetes.

    PubMed Central

    Accili, D; Frapier, C; Mosthaf, L; McKeon, C; Elbein, S C; Permutt, M A; Ramos, E; Lander, E; Ullrich, A; Taylor, S I

    1989-01-01

    Insulin binds to a receptor on the cell surface, thereby triggering a biological response within the target cell. Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. We have studied a family in which two sisters have a genetic form of insulin-resistant diabetes mellitus. The technique of homozygosity mapping has been used to demonstrate that the mutation causing diabetes in this consanguineous family is genetically linked to the insulin receptor gene. The two insulin-resistant sisters are homozygous for a mutation encoding substitution of valine for phenylalanine at position 382 in the alpha-subunit of the insulin receptor. Transfection of mutant insulin receptor cDNA into NIH3T3 cells demonstrated that the Val382 mutation impaired post-translational processing and retarded transport of the insulin receptor to the plasma membrane. Thus, the mutation causes insulin resistance by decreasing the number of insulin receptors on the surface of the patients' cells. Images PMID:2573522

  6. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1more » plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.« less

  7. Insulin aggregation tracked by its intrinsic TRES

    NASA Astrophysics Data System (ADS)

    Chung, Li Hung C.; Birch, David J. S.; Vyshemirsky, Vladislav; Ryadnov, Maxim G.; Rolinski, Olaf J.

    2017-12-01

    Time-resolved emission spectra (TRES) have been used to detect conformational changes of intrinsic tyrosines within bovine insulin at a physiological pH. The approach offers the ability to detect the initial stages of insulin aggregation at the molecular level. The data analysis has revealed the existence of at least three fluorescent species undergoing dielectric relaxation and significant spectral changes due to insulin aggregation. The results indicate the suitability of the intrinsic TRES approach for insulin studies and for monitoring its stability during storage and aggregation in insulin delivery devices.

  8. Giving an insulin injection

    MedlinePlus

    ... of Insulin To fill a syringe with one type of insulin: Wash your hands with soap and water. Dry them well. Check ... hand, and tap the syringe with your other hand. The bubbles will float to the top. Push the bubbles back into the ... To fill a syringe with two ...

  9. Barbados Insulin Matters (BIM) study: Perceptions on insulin initiation by primary care doctors in the Caribbean island of Barbados.

    PubMed

    Taylor, Charles Grafton; Taylor, Gordon; Atherley, Anique; Hambleton, Ian; Unwin, Nigel; Adams, Oswald Peter

    2017-04-01

    With regards to insulin initiation in Barbados we explored primary care doctor (PCD) perception, healthcare system factors and predictors of PCD reluctance to initiate insulin. PCDs completed a questionnaire based on the theory of planned behaviour (TPB) and a reluctance to initiate insulin scale. Using linear regression, we explored the association between TPB domains and the reluctance to initiate insulin scale. Of 161 PCDs, 70% responded (75 private and 37 public sector). The majority felt initiating insulin was uncomplicated (68%) and there was benefit if used before complications developed (68%), but would not use it until absolutely necessary (58%). More private than public sector PCDs (p<0.05) thought that the healthcare system allowed enough flexibility of time for education (68 vs 38%) and initiating insulin was easy (63 vs 35%), but less thought system changes would help initiating insulin (42 vs 70%). Reasons for reluctance to initiate insulin included patient nonadherence (83%) and reluctance (63%). Only the attitudes and belief domain of the TPB was associated with the reluctance to initiate insulin scale (p<0.001). Interventions focusing on PCD attitudes and beliefs and restructuring services inclusive of the use of diabetes specialist nurses are required. Copyright © 2016 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  10. The impact of insulin therapy and attitudes towards insulin intensification among adults with type 2 diabetes: A qualitative study.

    PubMed

    Holmes-Truscott, Elizabeth; Browne, Jessica L; Speight, Jane

    2016-08-01

    As type 2 diabetes (T2DM) is a progressive chronic condition, regular clinical review and treatment intensification are critical for prevention of long-term complications. Our aim was to explore the personal impact of insulin therapy, both positive and negative consequences, and attitudes towards future insulin intensification. Twenty face-to-face interviews were conducted, and transcripts were analysed using thematic inductive analysis. Eligible participants were adults with T2DM, using insulin injections for <4years. Participants were mostly men (n=13, 65%), (median (range)) aged 65 (43-76) years, living with T2DM for 11.5 (2-27) years. Five themes emerged regarding the consequences (positive and negative) of insulin therapy, including: physical impact, personal control, emotional well-being, freedom/flexibility, (concerns about) others' reactions. Increased inconvenience and the perceived seriousness of using fast-acting insulin were both reported as barriers to future insulin intensification, despite most participants being receptive to the idea of administering additional injections. Positive and negative experiences of insulin therapy were reported by adults with T2DM and most were receptive to insulin intensification despite reported barriers. These findings may inform clinical interactions with people with T2DM and interventions to promote receptiveness to insulin initiation and intensification. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  12. Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation.

    PubMed

    Whittingham, Jean L; Scott, David J; Chance, Karen; Wilson, Ashley; Finch, John; Brange, Jens; Guy Dodson, G

    2002-04-26

    When insulin solutions are subjected to acid, heat and agitation, the normal pattern of insulin assembly (dimers-->tetramers-->hexamers) is disrupted; the molecule undergoes conformational changes allowing it to follow an alternative aggregation pathway (via a monomeric species) leading to the formation of insoluble amyloid fibres. To investigate the effect of acid pH on the conformation and aggregation state of the protein, the crystal structure of human insulin at pH 2.1 has been determined to 1.6 A resolution. The structure reveals that the native fold is maintained at low pH, and that the molecule is still capable of forming dimers similar to those found in hexameric insulin structures at higher pH. Sulphate ions are incorporated into the molecule and the crystal lattice where they neutralise positive charges on the protein, stabilising its structure and facilitating crystallisation. The sulphate interactions are associated with local deformations in the protein, which may indicate that the structure is more plastic at low pH. Transmission electron microscopy analysis of insulin fibres reveals that the appearance of the fibres is greatly influenced by the type of acid employed. Sulphuric acid produces distinctive highly bunched, truncated fibres, suggesting that the sulphate ions have a sophisticated role to play in fibre formation, rather as they do in the crystal structure. Analytical ultracentrifugation studies show that in the absence of heating, insulin is predominantly dimeric in mineral acids, whereas in acetic acid the equilibrium is shifted towards the monomer. Hence, the effect of acid on the aggregation state of insulin is also complex. These results suggest that acid conditions increase the susceptibility of the molecule to conformational change and dissociation, and enhance the rate of fibrillation by providing a charged environment in which the attractive forces between the protein molecules is increased. (c) 2002 Elsevier Science Ltd.

  13. Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients.

    PubMed

    Jazet, I M; Schaart, G; Gastaldelli, A; Ferrannini, E; Hesselink, M K; Schrauwen, P; Romijn, J A; Maassen, J A; Pijl, H; Ouwens, D M; Meinders, A E

    2008-02-01

    Both energy restriction (ER) per se and weight loss improve glucose metabolism in obese insulin-treated type 2 diabetic patients. Short-term ER decreases basal endogenous glucose production (EGP) but not glucose disposal. In contrast the blood glucose-lowering mechanism of long-term ER with substantial weight loss has not been fully elucidated. The aim of this study was to investigate the effect of loss of 50% of excess weight [50% excess weight reduction (EWR)] on EGP, whole-body insulin sensitivity and the disturbed myocellular insulin-signalling pathway in ten obese insulin-treated type 2 diabetic patients. A euglycaemic-hyperinsulinaemic clamp with stable isotopes ([6,6-(2)H2]glucose and [2H5]glycerol) combined with skeletal muscle biopsies was performed during a very low energy diet (VLED; 1,883 kJ/day) on day 2 and again after 50% EWR. Oral blood glucose-lowering agents and insulin were discontinued 3 weeks prior to the VLED and at the start of the VLED, respectively. Loss of 50% EWR (20.3+/-2.2 kg from day 2 to day of 50% EWR) normalised basal EGP and improved insulin sensitivity, especially insulin-stimulated glucose disposal (18.8+/-2.0 to 39.1+/-2.8 micromol kg fat-free mass(-1) min(-1), p=0.001). The latter was accompanied by improved insulin signalling at the level of the recently discovered protein kinase B/Akt substrates AS160 and PRAS40 along with a decrease in intramyocellular lipid (IMCL) content. Considerable weight loss in obese, insulin-treated type 2 diabetic patients normalises basal EGP and improves insulin sensitivity resulting from an improvement in insulin signal transduction in skeletal muscle. The decrease in IMCL might contribute to this effect.

  14. Nigella sativa Oil and Chromium Picolinate Ameliorate Fructose-Induced Hyperinsulinemia by Enhancing Insulin Signaling and Suppressing Insulin-Degrading Enzyme in Male Rats.

    PubMed

    Elseweidy, Mohamed Mahmoud; Amin, Rawia Sarhan; Atteia, Hebatallah Husseini; Aly, Maha Abdo

    2017-10-04

    In vivo and in vitro studies suggested that chromium enhances insulin sensitivity by promoting insulin receptor signaling. However, its effect on insulin clearance has not been yet identified. Nigella sativa, a widely used spice, possesses an antidiabetic activity. We, therefore, hypothesized that chromium picolinate may alter insulin clearance by modulating insulin-degrading enzyme (IDE) in insulin-resistant rats. We evaluated also the effect of Nigella sativa oil on insulin signaling and degradation with respect to chromium picolinate. To assess these hypotheses, insulin resistance was induced in 30 male Wistar albino rats through daily oral administration of high-fructose water (HFW, 20% w/v) for 45 days. These rats were then divided into three groups (n = 10/group). They were given either no treatment (control group) or Nigella sativa oil (500 mg/kg bw/day) or chromium picoloinate (200 μg/kg bw/day) orally along with HFW (20% w/v) for 45 days. Nigella sativa oil or chromium picolinate concurrent administration with HFW significantly decreased body weight, serum lipids, glucagon, insulin resistance, and hepatic IDE level but increased its mRNA expression and insulin receptor phosphorlyation as well as high-density lipoprotein cholesterol (HDL-C) level as compared to control group values, suggesting their potential as modulators for insulin signaling and clearance. However, Nigella sativa oil exerted better improvement in feeding efficacy ratio as well as the levels of glucagon, insulin, insulin resistance, hepatic IDE level and insulin receptor phosphorylation than chromium picolinate, suggesting its greater insulin sensitizing capacity. Our data, for the first time, prove that Nigella sativa oil and chromium picolinate monotherapy can reduce fructose-induced insulin resistance by reduction of hepatic IDE protein and activation of insulin receptor signaling.

  15. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies

    PubMed Central

    Mahon, Jeffrey L.; Beam, Craig A.; Marcovina, Santica M.; Boulware, David C.; Palmer, Jerry P.; Winter, William E.; Skyler, Jay S.; Krischer, Jeffrey P.

    2018-01-01

    Background Detection of below-threshold first-phase insulin release or FPIR (1 + 3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. Methods One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. Results The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; p < 0.05). Conclusions An insulin IEMA for FPIR in subjects at risk for type 1 diabetes accurately determined below- and above-threshold FPIRs in 2/3 of tests relative to the current standard of the insulin RIA, but could not reliably classify the remaining FPIRs. TrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. PMID:21843518

  16. Choroidal fissure acts as an overflow device in cerebrospinal fluid drainage: morphological comparison between idiopathic and secondary normal-pressure hydrocephalus

    PubMed Central

    Yamada, Shigeki; Ishikawa, Masatsune; Iwamuro, Yasushi; Yamamoto, Kazuo

    2016-01-01

    To clarify the pathogenesis of two different types of adult-onset normal-pressure hydrocephalus (NPH), we investigated cerebrospinal fluid distribution on the high-field three-dimensional MRI. The subarachnoid spaces in secondary NPH were smaller than those in the controls, whereas those in idiopathic NPH were of similar size to the controls. In idiopathic NPH, however, the basal cistern and Sylvian fissure were enlarged in concurrence with ventricular enlargement towards the z-direction, but the convexity subarachnoid space was severely diminished. In this article, we provide evidence that the key cause of the disproportionate cerebrospinal fluid distribution in idiopathic NPH is the compensatory direct CSF communication between the inferior horn of the lateral ventricles and the ambient cistern at the choroidal fissure. In contrast, all parts of the subarachnoid spaces were equally and severely decreased in secondary NPH. Blockage of CSF drainage from the subarachnoid spaces could cause the omnidirectional ventricular enlargement in secondary NPH. PMID:27941913

  17. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.

    PubMed

    Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita

    2018-04-01

    Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes.

    PubMed

    Xu, Qi; Luo, Jiao; Wu, Ning; Zhang, Renshuai; Shi, Dayong

    2018-01-01

    Insulin resistance is a key feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling cascade and has attracted intensive investigation in recent T2DM therapy study. BPN, a marine-derived bromophenol compound, was isolated from the red alga Rhodomela confervoides. This study investigated the effects of BPN on the insulin signaling pathway in insulin-resistant C2C12 myotubes by inhibiting PTP1B. Molecular docking study and analysis of small- molecule interaction with PTP1B all showed BPN inhibited PTP1B activity via binding to the catalytic site through hydrogen bonds. We then found that BPN permeated into C2C12 myotubes, on the one hand, activated insulin signaling in an insulin-independent manner in C2C12 cells; on the other hand, ameliorated palmitate-induced insulin resistance through augmenting insulin sensitivity. Moreover, our studies also showed that PTP1B inhibition by BPN increased glucose uptake in normal and insulin-resistant C2C12 myotubes through glucose transporter 4 (GLUT4) translocation. Taken together, BPN activates insulin signaling and alleviates insulin resistance and represents a potential candidate for further development as an antidiabetic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Insulin receptors and downstream substrates associate with membrane microdomains after treatment with insulin or chromium(III) picolinate.

    PubMed

    Al-Qatati, Abeer; Winter, Peter W; Wolf-Ringwall, Amber L; Chatterjee, Pabitra B; Van Orden, Alan K; Crans, Debbie C; Roess, Deborah A; Barisas, B George

    2012-04-01

    We have examined the association of insulin receptors (IR) and downstream signaling molecules with membrane microdomains in rat basophilic leukemia (RBL-2H3) cells following treatment with insulin or tris(2-pyridinecarbxylato)chromium(III) (Cr(pic)(3)). Single-particle tracking demonstrated that individual IR on these cells exhibited reduced lateral diffusion and increased confinement within 100 nm-scale membrane compartments after treatment with either 200 nM insulin or 10 μM Cr(pic)(3). These treatments also increased the association of native IR, phosphorylated insulin receptor substrate 1 and phosphorylated AKT with detergent-resistant membrane microdomains of characteristically high buoyancy. Confocal fluorescence microscopic imaging of Di-4-ANEPPDHQ labeled RBL-2H3 cells also showed that plasma membrane lipid order decreased following treatment with Cr(pic)(3) but was not altered by insulin treatment. Fluorescence correlation spectroscopy demonstrated that Cr(pic)(3) did not affect IR cell-surface density or compete with insulin for available binding sites. Finally, Fourier transform infrared spectroscopy indicated that Cr(pic)(3) likely associates with the lipid interface in reverse-micelle model membranes. Taken together, these results suggest that activation of IR signaling in a cellular model system by both insulin and Cr(pic)(3) involves retention of IR in specialized nanometer-scale membrane microdomains but that the insulin-like effects of Cr(pic)(3) are due to changes in membrane lipid order rather than to direct interactions with IR. © Springer Science+Business Media, LLC 2011

  20. Effect of Salsalate on Insulin Action, Secretion, and Clearance in Nondiabetic, Insulin-Resistant Individuals: A Randomized, Placebo-Controlled Study

    PubMed Central

    Liu, Alice; Ariel, Danit; Abbasi, Fahim; Lamendola, Cindy; Grove, Kaylene; Tomasso, Vanessa; Ochoa, Hector; Reaven, Gerald

    2014-01-01

    OBJECTIVE Salsalate treatment has been shown to improve glucose homeostasis, but the mechanism remains unclear. The aim of this study was to evaluate the effect of salsalate treatment on insulin action, secretion, and clearance rate in nondiabetic individuals with insulin resistance. RESEARCH DESIGN AND METHODS This was a randomized (2:1), single-blind, placebo-controlled study of salsalate (3.5 g daily for 4 weeks) in nondiabetic individuals with insulin resistance. All individuals had measurement of glucose tolerance (75-g oral glucose tolerance test), steady-state plasma glucose (SSPG; insulin suppression test), and insulin secretion and clearance rate (graded-glucose infusion test) before and after treatment. RESULTS Forty-one individuals were randomized to salsalate (n = 27) and placebo (n = 14). One individual from each group discontinued the study. Salsalate improved fasting (% mean change −7% [95% CI −10 to −14] vs. 1% [−3 to 5], P = 0.005) but not postprandial glucose concentration compared with placebo. Salsalate also lowered fasting triglyceride concentration (−25% [−34 to −15] vs. −6% [−26 to 14], P = 0.04). Salsalate had no effect on SSPG concentration or insulin secretion rate but significantly decreased insulin clearance rate compared with placebo (−23% [−30 to −16] vs. 3% [−10 to 15], P < 0.001). Salsalate was well tolerated, but four individuals needed a dose reduction due to symptoms. CONCLUSIONS Salsalate treatment in nondiabetic, insulin-resistant individuals improved fasting, but not postprandial, glucose and triglyceride concentration. These improvements were associated with a decrease in insulin clearance rate without change in insulin action or insulin secretion. PMID:24963111

  1. Monomeric insulins and their experimental and clinical implications.

    PubMed

    Brange, J; Owens, D R; Kang, S; Vølund, A

    1990-09-01

    Due to the inherent pharmacokinetic properties of available insulins, normoglycemia is rarely, if ever, achieved in insulin-dependent diabetic patients without compromising their quality of life. Subcutaneous insulin absorption is influenced by many factors, among which the associated state of insulin (hexameric) in pharmaceutical formulation may be of importance. This review describes the development of a series of human insulin analogues with reduced tendency to self-association that, because of more rapid absorption, are better suited to meal-related therapy. DNA technology has made it possible to prepare insulins that remain dimeric or even monomeric at high concentration by introducing one or a few amino acid substitutions into human insulin. These analogues were characterized and used for elucidating the mechanisms involved in subcutaneous absorption and were investigated in preliminary clinical studies. Their relative receptor binding and in vitro potency (free-fat cell assay), ranging from 0.05 to 600% relative to human insulin, were strongly correlated (r = 0.97). In vivo, most of the analogues exhibited approximately 100% activity, explainable by a dominating receptor-mediated clearance. This was confirmed by clamp studies in which correlation between receptor binding and clearance was observed. Thus, an analogue with reduced binding and clearance gives higher circulating concentrations, counterbalancing the reduced potency at the cellular level. Absorption studies in pigs revealed a strong inverse correlation (r = 0.96) between the rate of subcutaneous absorption and the mean association state of the insulin analogues. These studies also demonstrated that monomeric insulins were absorbed three times faster than human insulin. In healthy subjects, rates of disappearance from subcutis were two to three times faster for dimeric and monomeric analogues than for human insulin. Concomitantly, a more rapid rise in plasma insulin concentration and an earlier

  2. Astrocytes produce an insulin-like neurotrophic factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadle, R.; Suksang, C.; Fellows, R.E.

    1986-05-01

    They have previously reported that survival of dissociated neurons from fetal rat telencephalon plated at low density in serum-free, hormone-free defined medium is enhanced in the presence of insulin. In the absence of insulin a similar effect on neuronal survival is observed if cells are grown in medium conditioned by glial cells. The present study was carried out to characterize the insulin-like neurotrophic activity present in the glial conditioned medium (GLCM). Conditioned medium from confluent cultures of astrogial cells maintained in a serum free defined medium without insulin was collected every two or three days. A 5 to 30kDa fractionmore » of this medium was obtained by filtering it sequentially through YM30 and YM5 membrane filters. Binding of /sup 125/I-insulin to high density neuronal cultures was inhibited 43% by this fraction. Radioimmunoassay for insulin indicated that 1-2 ng of immuno-reactive insulin were present per ml of GLCM. Immunosequestration of the factor by insulin antibodies bound to protein A agarose gel resulted in loss of neurotrophic activity of the 5 to 30 kDa fraction. These results indicate that cultured astrocytes produce a factor immunologically and biochemically similar to insulin. This factor enhances the survival of neurons in culture and may be important for their normal development and differentiation.« less

  3. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  4. Closed loop insulin delivery in diabetes.

    PubMed

    Battelino, Tadej; Omladič, Jasna Šuput; Phillip, Moshe

    2015-06-01

    The primary goal of type 1 diabetes treatment is attaining near-normal glucose values. This currently remains out of reach for most people with type 1 diabetes despite intensified insulin treatment in the form of insulin analogues, educational interventions, continuous glucose monitoring, and sensor augmented insulin pump. The main remaining problem is risk of hypoglycaemia, which cannot be sufficiently reduced in all patient groups. Additionally, patients' burn-out often develops with years of tedious day-to-day diabetes management, rendering available diabetes-related technology less efficient. Over the past 40 years, several attempts have been made towards computer-programmed insulin delivery in the form of closed loop, with faster developments especially in the past decade. Automated insulin delivery has reduced human error in glycaemic control and considerably lessened the burden of routine self-management. In this chapter, data from randomized controlled trials with closed-loop insulin delivery that included type 1 diabetes population are summarized, and an evidence-based vision for possible routine utilization of closed loop is provided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Projections for insulin treatment for diabetics.

    PubMed

    Cao, Ying; Lam, Laura

    2002-06-01

    The evolution of insulin treatment of diabetes has dramatically changed the natural course of this disease. Modern recombinant DNA technology has brought about many new insulin analogues with improved pharmacokinetics, resulting in better glycemic control. In addition, improved insulin delivery systems, such as insulin pumps and pens, have been introduced to provide convenience and to enhance patient compliance. Efforts are currently being devoted to developing noninvasive insulin formulations, such as oral and pulmonary insulin. A number of products are at different stages of clinical trials. Meanwhile, the quest for a permanent cure for diabetes continues. The frontier of diabetes research has gone through a period of substantial expansion, with the emergence of new areas that include gene therapy, islet cell transplantation and diabetic vaccine. Technological breakthroughs, such as recombinant DNA, nanotechnology, microarray-aided genomics and proteomics, will provide more profound insights into the pathogenesis, and the immunological and biological basis of diabetes. Our growing knowledge in these areas will ultimately contribute to the discovery of preventive methods against or a cure for this disease.

  6. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    PubMed

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. The Effects of Peripheral and Central High Insulin on Brain Insulin Signaling and Amyloid-β in Young and Old APP/PS1 Mice

    PubMed Central

    Stanley, Molly; Macauley, Shannon L.; Caesar, Emily E.; Koscal, Lauren J.; Moritz, Will; Robinson, Grace O.; Roh, Joseph; Keyser, Jennifer; Jiang, Hong

    2016-01-01

    Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found

  8. Ultrafast-Acting Insulins: State of the Art

    PubMed Central

    Heinemann, Lutz; Muchmore, Douglas B.

    2012-01-01

    Optimal coverage of prandial insulin requirements remains an elusive goal. The invention of rapid-acting insulin analogs (RAIAs) was a big step forward in reducing postprandial glycemic excursions in patients with diabetes in comparison with using regular human insulin; however, even with these, the physiological situation cannot be adequately mimicked. Developing ultrafast-acting insulins (UFIs)—showing an even more rapid onset of action and a shorter duration of action after subcutaneous (SC) administration—is another step forward in achieving this goal. The need for UFIs has been gradually recognized over the years, and subsequently, a number of different approaches to cover this need are in clinical development. A rapid increase in circulating insulin levels can be achieved by different measures: modification of the primary structure of insulin molecule (as we know from RAIAs), addition of excipients that enhance the appearance in the monomeric state post-injection, or addition of enzymes that enable more free spreading of the insulin molecules in the SC tissue. Other measures to increase the insulin absorption rate increase the local blood flow nearby the insulin depot in the SC tissue, injecting the insulin intradermally or applying via another route, e.g., the lung. The development of these approaches is in different stages, from quite early stages to nearing market authorization. In time, daily practice will show if the introduction of UFIs will fulfill their clinical promise. In this review, the basic idea for UFIs will be presented and the different approaches will be briefly characterized. PMID:22920797

  9. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus

    PubMed Central

    2014-01-01

    Objective: This article discusses why CSF biomarkers found in normal-pressure hydrocephalus (NPH) can be misleading when distinguishing NPH from comorbid NPH with Alzheimer disease (AD). Methods: We describe NPH CSF biomarkers and how shunt surgery can change them. We hypothesize the effects that hydrocephalus may play on interstitial fluid space and amyloid precursor protein (APP) fragment drainage into the CSF based on a recent report and how this may explain the misleading CSF NPH biomarker findings. Results: In NPH, β-amyloid protein 42 (Aβ42) is low (as in AD), but total tau (t-tau) and phospho-tau (p-tau) levels are normal, providing conflicting biomarker findings. Low Aβ42 supports an AD diagnosis but tau findings do not. Importantly, not only Aβ42, but all APP fragments and tau proteins are low in NPH CSF. Further, these proteins increase after shunting. An increase in interstitial space and APP fragment drainage into the CSF during sleep was reported recently. Conclusions: In the setting of hydrocephalus when the brain is compressed, a decrease in interstitial space and APP protein fragment drainage into the CSF may be impeded, resulting in low levels of all APP fragments and tau proteins, which has been reported. Shunting, which decompresses the brain, would create more room for the interstitial space to increase and protein waste fragments to drain into the CSF. In fact, CSF proteins increase after shunting. CSF biomarkers in pre-shunt NPH have low Aβ42 and tau protein levels, providing misleading information to distinguish NPH from comorbid NPH plus AD. PMID:25332445

  10. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo*

    PubMed Central

    Durham, Timothy B.; Toth, James L.; Klimkowski, Valentine J.; Cao, Julia X. C.; Siesky, Angela M.; Alexander-Chacko, Jesline; Wu, Ginger Y.; Dixon, Jeffrey T.; McGee, James E.; Wang, Yong; Guo, Sherry Y.; Cavitt, Rachel Nicole; Schindler, John; Thibodeaux, Stefan J.; Calvert, Nathan A.; Coghlan, Michael J.; Sindelar, Dana K.; Christe, Michael; Kiselyov, Vladislav V.; Michael, M. Dodson; Sloop, Kyle W.

    2015-01-01

    Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE−/− mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance. PMID:26085101

  11. Some engineering aspects of insulin delivery systems.

    PubMed

    Spencer, W J; Bair, R E; Carlson, G A; Love, J T; Urenda, R S; Eaton, R P; Schade, D S

    1980-01-01

    The characteristics of electronically controlled insulin delivery systems are presented. Early experiments with an external system have shown promise in providing improved glycemic control over conventional methods of single or multiple subcutaneous insulin injections. The encouraging results with external insulin delivery systems have led to the development and early testing in dogs of an implantable system with remote controls to permit variable insulin flow rates. A number of questions remain to be answered before widespread experimentation with external and implanted insulin delivery systems is possible. There appears to be no major development problems with the engineering aspects of such systems.

  12. Selective insulin resistance in hepatocyte senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied inmore » three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.« less

  13. Menopausal hot flashes and insulin resistance.

    PubMed

    Tuomikoski, Pauliina; Ylikorkala, Olavi; Mikkola, Tomi S

    2012-10-01

    Recent data have indicated that menopausal hot flashes may be a determinant for cardiovascular health. Therefore, we studied the impact of hot flashes on insulin resistance, one of the most powerful markers of cardiovascular health, in recently postmenopausal women. We studied 143 recently postmenopausal (amenorrhea 6-36 mo) healthy and normal-weight women without previous hormone therapy use. The women prospectively recorded the number and severity of hot flashes for 2 weeks, and a validated total symptom score, the hot flash weekly weighted score, was calculated for each woman. Insulin resistance was assessed from fasting blood levels of glucose and insulin with the homeostasis model assessment. In 12 women, the assessment of insulin (n = 11) or glucose (n = 1) failed, and they were excluded from further analysis. Thus, hot flashes were absent in 19, mild in 32, moderate in 27, and severe in 53 women. The levels of glucose or insulin, or HOMA showed no differences between these groups, nor was insulin resistance related to the number or severity of hot flashes or to the levels of C-reactive protein or sex hormone-binding globulin. Overall, insulin resistance showed a positive association with body mass index (mean difference, 0.058; 95% CI, 0.015-0.102; P = 0.009) and a negative association with level of estradiol (mean difference, -0.002; 95% CI, -0.003 to -0.001; P = 0.009). Insulin resistance may not be involved in hot flash-related changes in cardiovascular health. However, because of the small sample size, these findings need to be interpreted with caution.

  14. Do Perceptions of Insulin Pump Usability Impact Attitudes Toward Insulin Pump Therapy? A Pilot Study of Individuals With Type 1 and Insulin-Treated Type 2 Diabetes

    PubMed Central

    Gilgen, Emily

    2014-01-01

    Background: We assessed the impact of perceived insulin pump usability on attitudes toward insulin pump therapy in diabetic individuals currently treated with multiple daily insulin injections (MDI). Method: This comparative, single-arm study recruited 28 adults with type 1 (n = 16) and insulin-treated type 2 diabetes (n = 12) to evaluate 2 current insulin pumps: Medtronic Revel 723 (Pump 1), Asante Snap Insulin Pump (Pump 2). Participants were randomized 1:1 to 1 of 2 assessment sequences: Pump 1 followed by Pump 2; and Pump 2 followed by Pump 1. Structured observational protocols were utilized to assess participants’ ability and time required to learn/perform common tasks associated with pump setup/use. Participants used a modified version of the System Usability Scale (SUS) and investigator-developed questionnaires to rate pump usability and task difficulty; pre-post questionnaires assessed changes in attitudes toward insulin pump therapy. Results: All participants completed the study. SUS scores showed Pump 2 to be more usable than Pump 1 on all usability attributes. Participants rated Pump 2 more positively than Pump 1, overall mean SUS scores of 5.7 versus 4.1 respectively, F(1, 52) = 32.7, P < .001, and SUS scores were higher if participants used the Pump 2 last, 5.3 versus 4.4 for Pump 1 last, F(1, 52) = 10.8, P < .01. Pump 2 was preferred for all tasks: manual bolus (86%), bolus calculation (71%), managing basal rates (93%), interpreting alarms (96%), transferring settings (100%), changing insulin and infusion sets (93%), all P < .05. Conclusions: Perceptions of pump usability can directly impact acceptance and use of features that may benefit those who wear them. Simpler pump devices that decrease perceptions of complexity may encourage broader use of this technology. PMID:25269659

  15. Multiorgan insulin sensitivity in lean and obese subjects.

    PubMed

    Conte, Caterina; Fabbrini, Elisa; Kars, Marleen; Mittendorfer, Bettina; Patterson, Bruce W; Klein, Samuel

    2012-06-01

    To provide a comprehensive assessment of multiorgan insulin sensitivity in lean and obese subjects with normal glucose tolerance. The hyperinsulinemic-euglycemic clamp procedure with stable isotopically labeled tracer infusions was performed in 40 obese (BMI 36.2 ± 0.6 kg/m(2), mean ± SEM) and 26 lean (22.5 ± 0.3 kg/m(2)) subjects with normal glucose tolerance. Insulin was infused at different rates to achieve low, medium, and high physiological plasma concentrations. In obese subjects, palmitate and glucose R(a) in plasma decreased with increasing plasma insulin concentrations. The decrease in endogenous glucose R(a) was greater during low-, medium-, and high-dose insulin infusions (69 ± 2, 74 ± 2, and 90 ± 2%) than the suppression of palmitate R(a) (52 ± 4, 68 ± 1, and 79 ± 1%). Insulin-mediated increase in glucose disposal ranged from 24 ± 5% at low to 253 ± 19% at high physiological insulin concentrations. The suppression of palmitate R(a) and glucose R(a) were greater in lean than obese subjects during low-dose insulin infusion but were the same in both groups during high-dose insulin infusion, whereas stimulation of glucose R(d) was greater in lean than obese subjects across the entire physiological range of plasma insulin. Endogenous glucose production and adipose tissue lipolytic rate are both very sensitive to small increases in circulating insulin, whereas stimulation of muscle glucose uptake is minimal until high physiological plasma insulin concentrations are reached. Hyperinsulinemia within the normal physiological range can compensate for both liver and adipose tissue insulin resistance, but not skeletal muscle insulin resistance, in obese people who have normal glucose tolerance.

  16. AMP-activated Protein Kinase (AMPK): Does This Master Regulator of Cellular Energy State Distinguish Insulin Sensitive from Insulin Resistant Obesity?

    PubMed Central

    Valentine, Rudy J.; Ruderman, Neil B.

    2014-01-01

    Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances. PMID:24891985

  17. A novel insulin resistance index to monitor changes in insulin sensitivity and glucose tolerance: the ACT NOW study.

    PubMed

    Tripathy, Devjit; Cobb, Jeff E; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C; Banerji, MaryAnn; Bray, George A; Buchanan, Thomas A; Clement, Stephen C; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Reaven, Peter D; Musi, Nicolas; Ferrannini, Ele; DeFronzo, Ralph A

    2015-05-01

    The objective was to test the clinical utility of Quantose M(Q) to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose M(Q) is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13-0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose M(Q) increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min(-1)·kgwbm(-1)) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose M(Q) correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose M(Q) outperformed both Matsuda and fasting insulin in predicting incident diabetes. In IGT subjects, Quantose M(Q) parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose M(Q) may serve as a useful clinical test to identify and monitor therapy in insulin-resistant patients.

  18. A Novel Insulin Resistance Index to Monitor Changes in Insulin Sensitivity and Glucose Tolerance: the ACT NOW Study

    PubMed Central

    Tripathy, Devjit; Cobb, Jeff E.; Gall, Walter; Adam, Klaus-Peter; George, Tabitha; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Clement, Stephen C.; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Reaven, Peter D.; Musi, Nicolas; Ferrannini, Ele

    2015-01-01

    Objective: The objective was to test the clinical utility of Quantose MQ to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose MQ is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal. Research Design and Methods: Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.4 years. At baseline and study end, fasting plasma metabolites required for determination of Quantose, glycated hemoglobin, and oral glucose tolerance test with frequent plasma insulin and glucose measurements to calculate the Matsuda index of insulin sensitivity were obtained. Results: Pioglitazone treatment lowered IGT conversion to diabetes (hazard ratio = 0.25; 95% confidence interval = 0.13–0.50; P < .0001). Although glycated hemoglobin did not track with insulin sensitivity, Quantose MQ increased in pioglitazone-treated subjects (by 1.45 [3.45] mg·min−1·kgwbm−1) (median [interquartile range]) (P < .001 vs placebo), as did the Matsuda index (by 3.05 [4.77] units; P < .0001). Quantose MQ correlated with the Matsuda index at baseline and change in the Matsuda index from baseline (rho, 0.85 and 0.79, respectively; P < .0001) and was progressively higher across closeout glucose tolerance status (diabetes, IGT, normal glucose tolerance). In logistic models including only anthropometric and fasting measurements, Quantose MQ outperformed both Matsuda and fasting insulin in predicting incident diabetes. Conclusions: In IGT subjects, Quantose MQ parallels changes in insulin sensitivity and glucose tolerance with pioglitazone therapy. Due to its strong correlation with improved insulin sensitivity and its ease of use, Quantose MQ may serve as a useful clinical test to identify and monitor therapy in

  19. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    PubMed Central

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  20. Twilight Limb Observations of the Martian North Polar Hood by MAVEN IUVS

    NASA Astrophysics Data System (ADS)

    Lo, Daniel; Yelle, Roger; Schneider, Nicholas M.; Jain, Sonal Kumar; Stewart, Ian; Deighan, Justin; Stiepen, Arnaud; Evans, Scott; Stevens, Michael H.; Chaffin, Michael S.; Crismani, Matteo; McClintock, William; Clarke, John T.; Holsclaw, Gregory; Lefevre, Franck; Jacosky, Bruce

    2016-10-01

    In northern winter, a broad distribution of ice aerosols appears in the north polar atmosphere of Mars, commonly referred to as the North Polar Hood (NPH). The NPH is thought to be formed as a result of condensation from lowered temperatures associated with both seasonal and diurnal variations in solar heating. The spatial extent and density of the NPH is highly variable, with a maximum latitudinal extent spanning 30-80°N, and a maximum density at 10-30 km altitude.The NPH has been extensively observed by both ground-based telescopes and instruments in orbit around Mars. However, the majority of these observations are nadir-pointing. This observation geometry has two significant limitations. Firstly, they poorly probe the vertical structure of the NPH. Secondly, column densities are determined by monitoring the intensity of various spectral features associated with the ice composing the NPH, against a strong background with similar features from the frost that has condensed on the surface in the winter season, resulting in low sensitivities. Limb observations removes both limitations, allowing us to study the vertical distribution of the aerosols that make up the NPH at high sensitivities.We present new limb observations of the NPH by IUVS (Imaging Ultraviolet Spectrograph) on the MAVEN (Mars Atmospheric and Volatile Evolution) spacecraft. These observations represent the first ultraviolet limb observations of the NPH, opening a new window for understanding the structure and composition of the NPH. The observations are also of the twilight limb, with sunlight being scattered from the dayside into the nightside over large solar zenith angles. This illumination geometry allows us to avoid the high dayside intensities that would drown out the signal from the thinner sections of the NPH. We determine the latitudinal extent of the NPH to be 30-60°N. We also find that an exponential altitude distribution of aerosols is able to reproduce the observed intensities, with a

  1. Responses to acute insulin-induced hypoglycaemia in diabetic patients: a comparison of short-acting human and porcine insulins.

    PubMed

    Fisher, B M; Gray, C E; Beastall, G H; Frier, B M

    1988-05-01

    A comparison was made of the metabolic, hormonal, haemodynamic and symptomatic responses to acute hypoglycaemia induced by short-acting porcine and human insulins in 16 fasting, insulin-dependent diabetic patients, 8 of whom had diabetes for less than 5 years (Group A) and 8 of whom had diabetes for greater than 15 years (Group B). Each patient received an intravenous injection of 0.2 units/kg of insulin on two separate occasions. No differences were found between the groups in the rate of fall of blood glucose or the blood glucose nadir with either insulin, but in Group B, glucose recovery was more rapid after human insulin (p less than 0.01). No differences in the responses of blood lactate, plasma free fatty acids, glucagon or prolactin were observed between the groups. In Group B the rises of growth hormone and cortisol occurred more rapidly following human insulin (p less than 0.01), while the rise in adrenaline was greater following porcine insulin. Haemodynamic changes were identical following each species of insulin in both diabetic groups. A questionnaire was used to score 18 symptoms of hypoglycaemia on a 7 point scale. No significant differences were found in the mean scores of each symptom of hypoglycaemia or in the total symptom score. Thus recovery of blood glucose from hypoglycaemia was slightly more rapid after administration of human insulin to diabetic patients of long duration, but it is unlikely that these marginal differences would confer any clinical advantage in this subgroup.

  2. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies.

    PubMed

    Mahon, Jeffrey L; Beam, Craig A; Marcovina, Santica M; Boulware, David C; Palmer, Jerry P; Winter, William E; Skyler, Jay S; Krischer, Jeffrey P

    2011-11-20

    Detection of below-threshold first-phase insulin release or FPIR (1+3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; p<0.05). An insulin IEMA for FPIR in subjects at risk for type 1 diabetes accurately determined below- and above-threshold FPIRs in 2/3 of tests relative to the current standard of the insulin RIA, but could not reliably classify the remaining FPIRs. TrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin.

    PubMed

    Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F

    1990-06-12

    The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.

  4. Continuous subcutaneous insulin infusion allows tolerance induction and diabetes treatment in a type 1 diabetic child with insulin allergy.

    PubMed

    Hasselmann, C; Pecquet, C; Bismuth, E; Raverdy, C; Sola-Gazagnes, A; Lobut, J-B; Carel, J-C; Tubiana-Rufi, N

    2013-04-01

    Insulin allergy is a rare but serious and challenging condition in patients with type 1 diabetes (T1D). This is a case report of an 8-year-old boy with T1D and an allergy to insulin. Three months after being diagnosed with T1D, the patient developed progressive skin reactions to insulin, characterized by small 1.5-cm pruritic wheals at injection sites that persisted for several days. Seven months after diagnosis, he experienced two episodes of generalized urticaria with systemic symptoms that were seen within a few seconds of insulin injection. Examination revealed lipoatrophy of the thighs. Intradermal skin tests were positive for protamine, glargine and lispro. The patient was started on a continuous subcutaneous insulin infusion (CSII) tolerance induction protocol, consisting of a very low basal rate that was progressively increased, with the first bolus given under medical supervision, and was well tolerated for 4 months. After this period of time, the skin wheals reappeared, localized to the infusion sites, but without urticaria or any other generalized reactions. Intradermal skin tests were repeated and were again positive. Serum insulin-specific IgE measured 30 months after the first allergic reactions were positive. After 3 years, pump therapy is ongoing and blood glucose control has remained relatively good (HbA1c 7.6%). In T1D children with insulin allergy, CSII can successfully be used to both induce insulin tolerance and allow diabetes insulin therapy, although insulin desensitization cannot always be fully achieved. The induction protocol was easily manageable partly due to the "honeymoon" period that the patient was still in, but it should nonetheless be used even when the patient has higher insulin requirements. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Molecular basis for insulin fibril assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Magdalena I.; Sievers, Stuart A.; Sawaya, Michael R.

    2009-12-01

    In the rare medical condition termed injection amyloidosis, extracellular fibrils of insulin are observed. We found that the segment of the insulin B-chain with sequence LVEALYL is the smallest segment that both nucleates and inhibits the fibrillation of full-length insulin in a molar ratio-dependent manner, suggesting that this segment is central to the cross-{beta} spine of the insulin fibril. In isolation from the rest of the protein, LVEALYL forms microcrystalline aggregates with fibrillar morphology, the structure of which we determined to 1 {angstrom} resolution. The LVEALYL segments are stacked into pairs of tightly interdigitated {beta}-sheets, each pair displaying the drymore » steric zipper interface typical of amyloid-like fibrils. This structure leads to a model for fibrils of human insulin consistent with electron microscopic, x-ray fiber diffraction, and biochemical studies.« less

  6. Verification of Bioanalytical Method for Quantification of Exogenous Insulin (Insulin Aspart) by the Analyser Advia Centaur® XP.

    PubMed

    Mihailov, Rossen; Stoeva, Dilyana; Pencheva, Blagovesta; Pentchev, Eugeni

    2018-03-01

    In a number of cases the monitoring of patients with type I diabetes mellitus requires measurement of the exogenous insulin levels. For the purpose of a clinical investigation of the efficacy of a medical device for application of exogenous insulin aspart, a verification of the method for measurement of this synthetic analogue of the hormone was needed. The information in the available medical literature for the measurement of the different exogenous insulin analogs is insufficient. Thus, verification was required to be in compliance with the active standards in Republic of Bulgaria. A manufactured method developed for ADVIA Centaur XP Immunoassay, Siemens Healthcare, was used which we verified using standard solutions and a patient serum pool by adding the appropriate quantity exogenous insulin aspart. The method was verified in accordance with the bioanalytical method verification criteria and regulatory requirements for using a standard method: CLIA chemiluminescence immunoassay ADVIA Centaur® XP. The following parameters are determined and monitored: intra-day precision and accuracy, inter-day precision and accuracy, limit of detection and lower limit of quantification, linearity, analytical recovery. The routine application of the method for measurement of immunoreactive insulin using the analyzer ADVIA Centaur® XP is directed to the measurement of endogenous insulin. The method is applicable for measuring different types of exogenous insulin, including insulin aspart.

  7. Molecular Mechanisms of Insulin Resistance in Chronic Kidney Disease

    PubMed Central

    Thomas, Sandhya S.; Zhang, Liping; Mitch, William E.

    2015-01-01

    Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt. In fact, low levels of Akt phosphorylation (p-Akt) identifies the presence of the insulin resistance that leads to metabolic defects in insulin-initiated metabolism of glucose, lipids and muscle proteins. Besides CKD, other complex conditions (e.g., inflammation, oxidative stress, metabolic acidosis, aging and excess angiotensin II) reduce p-Akt resulting in insulin resistance. Insulin resistance in each of these conditions is due to activation of different, E3 ubiquitin ligases which specifically conjugate ubiquitin to IRS-1 marking it for degradation in the ubiquitin-proteasome system (UPS). Consequently, IRS-1 degradation suppresses insulin-induced intracellular signaling, causing insulin resistance. Understanding mechanisms of insulin resistance could lead to therapeutic strategies that improve the metabolism of patients with CKD. PMID:26444029

  8. Oral Insulin Delivery in a Physiologic Context: Review

    PubMed Central

    Arbit, Ehud; Kidron, Miriam

    2017-01-01

    Insulin remains indispensable to the treatment of diabetes, but its availability in injectable form only has hampered its timely and broader use. The development of an oral insulin remains an ultimate goal to both enhance ease of use, and to provide therapeutic advantages rooted in its direct delivery to the portal vein and liver. By mimicking the physiological path taken by pancreatic insulin, oral insulin is expected to have a distinct effect on the hepatic aspect of carbohydrate metabolism, hepatic insulin resistance, and, at the same time, avoid hyperinsulinemia and minimize the risk of hypoglycemia. With oral insulin approaching late stages of development, the goal of this review is to examine oral insulin in a physiological context and report on recent progress in its development. PMID:28654313

  9. Comparison of the physiological relevance of systemic vs. portal insulin delivery to evaluate whole body glucose flux during an insulin clamp

    PubMed Central

    Farmer, Tiffany D.; Jenkins, Erin C.; O'Brien, Tracy P.; McCoy, Gregory A.; Havlik, Allison E.; Nass, Erik R.; Nicholson, Wendell E.; Printz, Richard L.

    2014-01-01

    To understand the underlying pathology of metabolic diseases, such as diabetes, an accurate determination of whole body glucose flux needs to be made by a method that maintains key physiological features. One such feature is a positive differential in insulin concentration between the portal venous and systemic arterial circulation (P/S-IG). P/S-IG during the determination of the relative contribution of liver and extra-liver tissues/organs to whole body glucose flux during an insulin clamp with either systemic (SID) or portal (PID) insulin delivery was examined with insulin infusion rates of 1, 2, and 5 mU·kg−1·min−1 under either euglycemic or hyperglycemic conditions in 6-h-fasted conscious normal rats. A P/S-IG was initially determined with endogenous insulin secretion to exist with a value of 2.07. During an insulin clamp, while inhibiting endogenous insulin secretion by somatostatin, P/S-IG remained at 2.2 with PID, whereas, P/S-IG disappeared completely with SID, which exhibited higher arterial and lower portal insulin levels compared with PID. Consequently, glucose disappearance rates and muscle glycogen synthetic rates were higher, but suppression of endogenous glucose production and liver glycogen synthetic rates were lower with SID compared with PID. When the insulin clamp was performed with SID at 2 and 5 mU·kg−1·min−1 without managing endogenous insulin secretion under euglycemic but not hyperglycemic conditions, endogenous insulin secretion was completely suppressed with SID, and the P/S-IG disappeared. Thus, compared with PID, an insulin clamp with SID underestimates the contribution of liver in response to insulin to whole body glucose flux. PMID:25516552

  10. Omentin, an adipokine with insulin-sensitizing properties, is negatively associated with insulin resistance in normal gestation.

    PubMed

    Brandt, Benny; Mazaki-Tovi, Shali; Hemi, Rina; Yinon, Yoav; Schiff, Eyal; Mashiach, Roy; Kanety, Hannah; Sivan, Eyal

    2015-05-01

    Omentin, a newly identified adipokine, enhances insulin mediated glucose uptake in human adipocytes, thus, inducing systemic insulin-sensitizing effect. The aims of this study were to determine whether circulating maternal omentin levels are associated with insulin resistance indices and to assess which compartment, maternal, fetal, or placental, is the source of omentin in maternal circulation. Fasting serum glucose, insulin, and omentin were determined in 25 healthy pregnant women at the third trimester, before and 3 days after elective cesarean section. Cord blood omentin was measured in the 25 term neonates. Homeostasis model assessment (HOMA) was used to evaluate insulin sensitivity before and after delivery. Antepartum maternal omentin levels were negatively correlated with insulin levels (r=-0.41, P=0.04) and positively correlated with insulin sensitivity (HOMA%S; r=0.4, P=0.04). Postpartum omentin levels were negatively correlated with maternal body mass index (r=-0.44, P=0.02). Median maternal omentin levels was comparable before and after delivery (57.2, inter-quartile range: 38.2-76.2 ng/mL vs. 53.4, 39.8-69.4 ng/mL, respectively, P=0.25) and highly correlated (r=0.83, P<0.001). Antepartum maternal and neonatal omentin levels did not differ significantly (fetal: 62.2, 44.3-74.2 ng/mL, P=0.77) and did not correlate (P=0.6). Circulating maternal omentin levels are correlated with insulin resistance indices, suggesting that this adipokine may play a role in metabolic adaptations of normal gestation. The strong correlation between anteparum and postpartum maternal omentin levels, as well as the lack of association between maternal and neonatal omentin levels, suggest that placental or fetal compartments are unlikely as the main source of circulating maternal omentin.

  11. Dynamic insulin sensitivity index: importance in diabetes.

    PubMed

    Pillonetto, Gianluigi; Caumo, Andrea; Cobelli, Claudio

    2010-03-01

    The classical minimal model (MM) index of insulin sensitivity, S(I), does not account for how fast or slow insulin action takes place. In a recent work, we proposed a new dynamic insulin sensitivity index, S(I)(D), which is able to take into account the dynamics of insulin action as well. The new index is a function of two MM parameters, namely S(I) and p(2), the latter parameter governing the speed of rise and decay of insulin action. We have previously shown that in normal glucose tolerant subjects S(I)(D) provides a more comprehensive picture of insulin action on glucose metabolism than S(I). The aim of this study is to show that resorting to S(I)(D) rather S(I) is even more appropriate when studying diabetic patients who have a low and slow insulin action. We analyzed insulin-modified intravenous glucose tolerance test studies performed in 10 diabetic subjects and mixed meal glucose tolerance test studies exploiting the triple tracer technique in 14 diabetic subjects. We derived both S(I) and S(I)(D) resorting to Bayesian and Fisherian identification strategies. The results show that S(I)(D) is estimated more precisely than S(I) when using the Bayesian approach. In addition, the less labor-intensive Fisherian approach can still be used to obtain reliable point estimates of S(I)(D) but not of S(I). These results suggest that S(I)(D) yields a comprehensive, precise, and cost-effective assessment of insulin sensitivity in subjects with impaired insulin action like impaired glucose tolerant subjects or diabetic patients.

  12. Branched-Chain Amino Acids and Insulin Metabolism: The Insulin Resistance Atherosclerosis Study (IRAS).

    PubMed

    Lee, C Christine; Watkins, Steve M; Lorenzo, Carlos; Wagenknecht, Lynne E; Il'yasova, Dora; Chen, Yii-Der I; Haffner, Steven M; Hanley, Anthony J

    2016-04-01

    Recent studies using untargeted metabolomics approaches have suggested that plasma branched-chain amino acids (BCAAs) are associated with incident diabetes. However, little is known about the role of plasma BCAAs in metabolic abnormalities underlying diabetes and whether these relationships are consistent across ethnic populations at high risk for diabetes. We investigated the associations of BCAAs with insulin sensitivity (SI), acute insulin response (AIR), and metabolic clearance of insulin (MCRI) in a multiethnic cohort. In 685 participants without diabetes of the Insulin Resistance Atherosclerosis Study (IRAS) (290 Caucasians, 165 African Americans, and 230 Hispanics), we measured plasma BCAAs (sum of valine, leucine, and isoleucine) by mass spectrometry and SI, AIR, and MCRI by frequently sampled intravenous glucose tolerance tests. Elevated plasma BCAAs were inversely associated with SI and MCRI and positively associated with fasting insulin in regression models adjusted for potential confounders (β = -0.0012 [95% CI -0.0018, -0.00059], P < 0.001 for SI; β = -0.0013 [95% CI -0.0018, -0.00082], P < 0.001 for MCRI; and β = 0.0015 [95% CI 0.0008, 0.0023], P < 0.001 for fasting insulin). The association of BCAA with SI was significantly modified by ethnicity, with the association only being significant in Caucasians and Hispanics. Elevated plasma BCAAs were associated with incident diabetes in Caucasians and Hispanics (multivariable-adjusted odds ratio per 1-SD increase in plasma BCAAs: 1.67 [95% CI 1.21, 2.29], P = 0.002) but not in African Americans. Plasma BCAAs were not associated with SI-adjusted AIR. Plasma BCAAs are associated with incident diabetes and underlying metabolic abnormalities, although the associations were generally stronger in Caucasians and Hispanics. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    USDA-ARS?s Scientific Manuscript database

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  14. Adipokines and insulin action: A sensitive issue.

    PubMed

    Knights, Alexander J; Funnell, Alister Pw; Pearson, Richard Cm; Crossley, Merlin; Bell-Anderson, Kim S

    2014-04-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease.

  15. The acetylation of insulin

    PubMed Central

    Lindsay, D. G.; Shall, S.

    1971-01-01

    The acetylation of the free amino groups of insulin was studied by reaction of the hormone with N-hydroxysuccinimide acetate at pH6.9 and 8.5. The products formed were separated by chromatography on DEAE-Sephadex and were characterized by isoelectric focusing, by end-group analysis, by the incorporation of [3H]acetyl groups in the molecule, and by treatment with trypsin that had been treated with 1-chloro-4-phenyl-3-toluene-p-sulphonamidobutan-2-one (`tosylphenylalanyl chloromethyl ketone'). Three monosubstituted products, two disubstituted products and one trisubstituted derivative were prepared. The α-amino groups of the terminal residues and the ∈-amino group of the lysine-B29 were the sites of reaction. Acetylation of any of the free amino groups did not affect the biological activity of insulin. It was demonstrated, however, that substitution at the glycine-A1 amino group by the larger residues, acetoacetyl or thiazolidinecarbonyl, produced a decrease in biological activity. Modification of the lysine-B29 or phenylalanine-B1 amino groups with these larger reagents did not affect the biological activity. Modification of the phenylalanine-B1 amino group by any of the three substituents resulted in a large decrease in the affinity of insulin for anti-insulin antibodies raised in the guinea pig. Modification of the other two amino groups did not affect the reaction with antibody. These observations are correlated with the tertiary structure of insulin. ImagesFig. 4. PMID:5113488

  16. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randazzo, P.A.; Jarett, L.

    1990-09-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetalmore » calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.« less

  17. Utilization patterns of insulin therapy and healthcare services among Japanese insulin initiators during their first year: a descriptive analysis of administrative hospital data.

    PubMed

    Ikeda, Shunya; Crawford, Bruce; Sato, Masayo

    2016-01-12

    Type 2 diabetes poses an increasing healthcare burden in Japan. Although insulin treatment has diversified in recent years, the literature on the utilization of healthcare services among patients with type 2 diabetes undergoing different insulin therapy regimens is scarce. The current study aimed to characterize the real-world insulin treatment patterns and associated utilization of healthcare services among patients with type 2 diabetes who initiated insulin therapy during the study period. We examined data from a hospital-based database consisting of administrative and laboratory data from 121 acute-phase hospitals throughout Japan from April 2008 to August 2012. Patients diagnosed with type 2 diabetes and receiving continuous insulin therapy, defined by three insulin claims or more, were included in the analysis. Of the 2,145 insulin initiators, at initiation 46.5% received rapid-acting insulin alone, 36.6% received an intensive regimen, 11.4% received long-acting insulin alone, and 5.5% received pre-mixed insulin alone. Patients treated with rapid-acting insulin alone were older, experienced more comorbid conditions, had lower HbA1c, and more often had initiated their insulin treatment at inpatient admission, compared to patients treated with other types of insulin. Inpatient admission was more common and longer for patients taking rapid-acting insulin and an intensive regimen than those taking long-acting or pre-mixed insulin, and most were readmitted within 1 year. Utilization of outpatient clinics was approximately once per month, and emergency department visits were observed to be rare. This retrospective observational descriptive study found varied treatment and healthcare service utilization patterns, as well as disparities in patient characteristics across insulin regimens. Future research should assess the basis for these various utilization patterns associated with insulin to conduct robust analyses of clinical and economic outcomes.

  18. Safety and metabolic impact of Ramadan fasting in children and adolescents with type 1 diabetes.

    PubMed

    El-Hawary, Amany; Salem, Nanees; Elsharkawy, Ashraf; Metwali, Abdelhameed; Wafa, Alaa; Chalaby, Nehad; El-Gilany, Abelhady; Abo-Elmagd, Megahed; El-Ziny, Magdy

    2016-05-01

    Annually, many children and adolescents with type 1 diabetes mellitus (T1DM) insist on fasting for Ramadan despite being exempted and despite knowing all the risks. We aimed to assess the safety and metabolic impact of Ramadan fasting in children with T1DM using different insulin regimens. Children with T1DM who choose to fast during Ramadan 1434/2013 (29 days) were recruited 3 months before Ramadan. They received pre-Ramadan intensive education. Three insulin regimens were included; Regimen-I (regular insulin/NPH); Regimen-II (regular insulin/insulin glargine) and Regimen-III (premixed insulin). Changes in weight, insulin dose, HbA1c, fructosamine and lipid profile were evaluated. Out of total 53 patients (24 male), 28 patients (52.8%) completed Ramadan fasting (fasting group). The remaining 25 patients were included in (broke-fasting group). Positive correlation between fructosamine changes and number of days fasted during Ramadan. Significant decrease in post-Ramadan fructosamine (<0.001) and increase in post-Ramadan total cholesterol and low density lipoprotein (LDL) levels were detected within fasting, broke-fasting and insulin regimen groups. Significant higher blood glucose at three time points, pre-Iftar, pre-Sohur and midday in Regimen-I compared to Regimen-II and Regimen-III (p=0.004). Fasting during Ramadan is feasible and is associated with significant improvement in fructosamine level in children with T1DM using different insulin regimens. Mandatory consideration to the quality and quantity of food offered to patients with T1DM during Ramadan to guard against adverse changes in lipid profile.

  19. Short-term fasting promotes insulin expression in rat hypothalamus.

    PubMed

    Dakic, Tamara B; Jevdjovic, Tanja V; Peric, Mina I; Bjelobaba, Ivana M; Markelic, Milica B; Milutinovic, Bojana S; Lakic, Iva V; Jasnic, Nebojsa I; Djordjevic, Jelena D; Vujovic, Predrag Z

    2017-07-01

    In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6-h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short-term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Insulin-like growth factor 1, liver enzymes, and insulin resistance in patients with PCOS and hirsutism.

    PubMed

    Çakir, Evrim; Topaloğlu, Oya; Çolak Bozkurt, Nujen; Karbek Bayraktar, Başak; Güngüneş, Aşkın; Sayki Arslan, Müyesser; Öztürk Ünsal, İlknur; Tutal, Esra; Uçan, Bekir; Delıbaşi, Tuncay

    2014-01-01

    Hyperinsulinemia and insulin resistance are commonly seen in patients with hirsutism and polycystic ovary syndrome (PCOS), and are associated with cardiovascular disease risk. However, it is not yet known whether insulin-like growth factor I (IGF-I) and alanine transaminase (ALT) produced by the liver play roles in hyperinsulinemia and subclinical atherosclerotic process in patients with PCOS and idiopathic hirsutism (IH). This was a prospective case-controlled study. The study population consisted of 25 reproductive-age PCOS women, 33 women with IH, and 25 control subjects. Mean IGF-I levels and median ALT levels were higher in patients with IH and PCOS than controls, but these differences were not statistically significant. The participants who had a homeostasis model assessment insulin resistance index (HOMA-IR) greater than 2.7 had significantly higher IGF-1 and ALT levels. ALT levels were positively correlated with body mass index, FG, insulin and HOMA-IR. The study illustrated that IGF-1 and ALT levels were significantly higher in patients with increased insulin resistance. Due to short disease duration in younger participants, we did not observe any correlation between IGF-1 and hyperinsulinemia. These findings suggest that increased hepatic production of IGF-I and ALT might be an early indicator of insulin resistance in hirsutism.

  1. Metabolic syndrome and insulin resistance in obese adolescents.

    PubMed

    Gobato, Amanda Oliva; Vasques, Ana Carolina J; Zambon, Mariana Porto; Barros Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-03-01

    To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  2. Polymorphism at the 5' end flanking region of the insulin gene is associated with reduced insulin secretion in healthy individuals.

    PubMed

    Cocozza, S; Riccardi, G; Monticelli, A; Capaldo, B; Genovese, S; Krogh, V; Celentano, E; Farinaro, E; Varrone, S; Avvedimento, V E

    1988-12-01

    Sixty-four unrelated healthy subjects were studied for the detection of a DNA polymorphism at the 5' end of the insulin gene. No significant difference between the groups was found in blood glucose values at fasting and after an oral glucose load. A significant association was found between fasting (P less than 0.05) and after load plasma C-peptide levels (P less than 0.01) and the presence of a 1.6 Kb insertion at the 5' end of the insulin gene. A gene dose-dependent effect was noted, class 3/3 individuals having the lowest after-load C-peptide concentration and class 1/3 an intermediate level (F for the linear trend: P = 0.007). This might suggest that insulin gene polymorphism affects insulin secretion in healthy individuals. In order to confirm this, a subgroup of six class 3/3 and eight class 1/1 individuals subsequently underwent a hyperglycaemic clamp. The tissue sensitivity to insulin was similar in the two groups but glucose-stimulated insulin secretion was markedly impaired in homozygotes for the class 3 allele. In this group, insulin secretion was, on average, only one-third of that in class 1/1 individuals (P less than 0.02). Similarly impaired in class 3/3 persons was the glucose + arginine-stimulated insulin secretion (P less than 0.05). We conclude that the polymorphism at the 5' end of the insulin gene is associated with variations in insulin secretion in healthy humans.

  3. A Twenty-First Century Cancer Epidemic Caused by Obesity: The Involvement of Insulin, Diabetes, and Insulin-Like Growth Factors

    PubMed Central

    Westley, Rosalyne L.; May, Felicity E. B.

    2013-01-01

    Obesity has reached epidemic proportions in the developed world. The progression from obesity to diabetes mellitus type 2, via metabolic syndrome, is recognised, and the significant associated increase in the risk of major human cancers acknowledged. We review the molecular basis of the involvement of morbidly high concentrations of endogenous or therapeutic insulin and of insulin-like growth factors in the progression from obesity to diabetes and finally to cancer. Epidemiological and biochemical studies establish the role of insulin and hyperinsulinaemia in cancer risk and progression. Insulin-like growth factors, IGF-1 and IGF-2, secreted by visceral or mammary adipose tissue have significant paracrine and endocrine effects. These effects can be exacerbated by increased steroid hormone production. Structural studies elucidate how each of the three ligands, insulin, IGF-1, and IGF-2, interacts differently with isoforms A and B of the insulin receptor and with type I IGF receptor and explain how these protagonists contribute to diabetes-associated cancer. The above should inform appropriate treatment of cancers that arise in obese individuals and in those with diabetes mellitus type 2. Novel drugs that target the insulin and insulin-like growth factor signal transduction pathways are in clinical trial and should be effective if appropriate biomarker-informed patient stratification is implemented. PMID:23983688

  4. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats.

    PubMed

    Wang, Zhong Q; Zhang, Xian H; Russell, James C; Hulver, Matthew; Cefalu, William T

    2006-02-01

    Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.

  5. The insulin-like effect of vanadate on lipolysis in rat adipocytes is not accompanied by an insulin-like effect on tyrosine phosphorylation.

    PubMed

    Mooney, R A; Bordwell, K L; Luhowskyj, S; Casnellie, J E

    1989-01-01

    Tyrosine phosphorylation of the insulin receptor and other intracellular proteins in rat adipocytes was examined using an immunoblot technique with antiphosphotyrosine antibody. Insulin at 10(-7) M increased the tyrosine phosphorylation of the 95K subunit of the insulin receptor (15-fold) and proteins of 180K (7-fold) and 60K (23-fold). Increases in insulin-dependent phosphorylation of the three proteins were detectable at 10(-10) M insulin and attained steady state within 30 sec of insulin (10(-7) M) addition. Small effects of insulin (less than 30% increases) were observed on proteins of 120K and 53K. In contrast to insulin, the effects of vanadate on tyrosine phosphorylation were small and nonspecific. Vanadate increased tyrosine phosphorylation of the 95K insulin receptor beta-subunit and the 120K and 60K proteins similarly, with increases of 1.5- to 3-fold at 1 mM and 2-fold or less at 200 and 50 microM. Vanadate-dependent tyrosine phosphorylation of the 180K protein increased to a maximum of only 30% at 200 microM. Tyrosine phosphorylation of the 53K protein was somewhat larger, approaching 4-fold at 1 mM vanadate. The concentration of insulin and vanadate that inhibited isoproterenol-dependent lipolysis were not comparable to those that increased tyrosine phosphorylation. Vanadate at 1 mM was more potent as an antilipolytic agent than 10(-9) M insulin (93% vs. 81%), yet increased tyrosine phosphorylation of the 95K insulin receptor beta-subunit only as effectively as 10(-10) M insulin (which inhibited lipolysis only 42%). The dissimilar responses were even more pronounced when antilipolysis was compared to tyrosine phosphorylation of the 180K and 60K proteins. For example, insulin at 10(-9) M increased tyrosine phosphorylation of the 180K protein 2.9-fold, while 1 mM vanadate had a negligible effect (10% increase). Thus, vanadate exerts an insulin-like effect on lipolysis, yet its effects on tyrosine phosphorylation differ from those of insulin.

  6. Addition of rapid-acting insulin to basal insulin therapy in type 2 diabetes: indications and modalities.

    PubMed

    Monnier, L; Colette, C

    2006-02-01

    There are many reasons to believe that in the near future, the treatment of patients with Type 2 diabetes will be characterised by an increased use of insulin therapy. To ensure that insulin regimens are acceptable to patients, and implemented by physicians, they should be as simple and efficient as possible. Simplicity is synonymous with the regimen of once-daily basal insulin glargine given at any time of the day (at the same time each day). With such a strategy, the dose is adjusted by titrating to target fasting blood glucose values of 5.0 - 7.2 mmol/L (90 - 130 mg/dL). When these targets can no longer be achieved with reasonable doses of long-acting insulin, a rapid-acting insulin analogue should be added at meal times. A step-by-step strategy can be used; it is recommended that initially, a single daily prandial bolus of a rapid-acting insulin analogue is administered before the meal that leads to the highest post-meal blood glucose excursions. Further boluses can be added at other meal times as necessary, i.e, when post-meal blood glucose values remain above 10.0 mmol/L (180 mg/dL) and 7.8 mmol/L (140 mg/dL) at mid-morning and 2h-post-lunch or post-dinner times, respectively. This stepwise strategy may eventually lead to a standard basal-bolus regimen with 3 pre-meal injections of rapid-acting insulin analogues, a potentially small trade-off for achieving fairly-well controlled diabetes.

  7. Impact of morphine on the expression of insulin receptor and protein levels of insulin/IGFs in rat neural stem cells.

    PubMed

    Salarinasab, Sadegh; Nourazarian, AliReza; Nikanfar, Masoud; Abdyazdani, Nima; Kazemi, Masoumeh; Feizy, Navid; Rahbarghazi, Reza

    2017-11-01

    Alzheimer's disease is correlated with neuronal degeneration and loss of neuronal precursors in different parts of the brain. It has been found disturbance in the homeostasis neural stem cells (NSCs) can cause neurodegeneration. Morphine, an analgesic agent, can disrupt the dynamic and normal state of NSCs. However, more investigations are required to clearly address underlying mechanisms. The current experiment aimed to investigate the effects of morphine on the cell distribution of insulin factor and receptor and insulin-like growth factors (IGF1, IGF2) in NSCs. NSCs were isolated from rats and stemness feature confirmed by antibodies against nestin and Sox2. The cells were exposed to 100μM morphine, 50μM naloxone and combination of these two drugs for 72h. The neural cell growth, changes in levels of insulin and insulin-like growth factors secreted by NSCs as well as the insulin-receptor-gene expression were assessed by flow cytometry, ELlSA, and real-time PCR, respectively. Cell cycle assay revealed the exposure of cells to morphine for 72h increased cell apoptosis and decreased neural stem cell growth. The biosynthesis of insulin, insulin-like growth factors, and insulin receptor were reduced (p<0.05) after NSCs exposure to morphine at the concentration of 100μM for 24, 48 and 72h. Naloxone is a competitive antagonist which binds MOR where morphine (and endogenous opioids) bind, and reversed the detrimental effects of morphine. It can be concluded that morphine initiated irregularity in NSCs kinetics and activity by reducing the secretion of insulin and insulin-like growth factors and down-regulation of insulin receptor. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    NASA Astrophysics Data System (ADS)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  9. Insulin enhances the peroxidase activity of heme by forming heme-insulin complex: Relevance to type 2 diabetes mellitus.

    PubMed

    Huang, Yi; Yang, Zhen; Xu, Huan; Zhang, Pengfei; Gao, Zhonghong; Li, Hailing

    2017-09-01

    Evidences have implicated the involvement of heme in the type 2 diabetes mellitus (T2Dm) pathogenesis, but possible mediators linking between heme and diabetes are still poorly understood. Here, we explored a potential mechanism that linked heme, insulin and diabetes. Our results demonstrated the formation of heme-insulin complex by two classical methods, i.e. UV-vis and capillary electrophoresis-frontal analysis (CE-FA). UV-vis results implied heme binding insulin via bis-histidine sites, and CE-FA further revealed that, when insulin uses two sites binding with heme, this interaction occurs at high affinity (K d =3.13×10 -6 M). Molecule docking supported that histidine-B5 of insulin binds with heme-Fe. In addition to that, tyrosine-B26, phenylalanine-B1 and valine-B2 are also contributed to binding heme. The binding amplified the peroxidase activity of heme itself. Under oxidative and nitrative stress, it affects pathogenesis of diabetes from two aspects: promoting insulin cross-linking that leads to permanent loss of insulin functionality on one hand, and enhancing protein tyrosine nitration that may result in inactivation of proteins associated with diabetes on the other hand. This study suggested that the enhanced peroxidase activity of heme through binding with insulin might be a previously unrecognized contributor to the pathogenesis of T2Dm in some heme-associated disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Does the relief of glucose toxicity act as a mediator in proliferative actions of vanadium on pancreatic islet beta cells in streptozocin diabetic rats?

    PubMed

    Pirmoradi, Leila; Mohammadi, Mohammad Taghi; Safaei, Akbar; Mesbah, Fakhardin; Dehghani, Gholam Abbas

    2014-07-01

    Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats. Rats were divided into five groups of normal and diabetic. Diabetes was induced with streptozocin (40 mg/kg, i.v.). Normal rats used water (CN) or vanadium (1 mg/ml VOSO4, VTN). Diabetic rats used water (CD), water plus daily neutral protamine Hagedorn insulin injection (80 U/kg, ITD) or vanadium (VTD). Blood samples were taken for blood glucose (BG, mg/dL) and insulin (ng/dL) measurements. After two months, the pancreata of sacrificed rats were prepared for islet staining. Pre-treated normal BG was 88 ± 2, and diabetic BG was 395 ± 9. The final BG in CD, VTD, and ITD was 509 ± 22, 138 ± 14, and 141 ± 14, respectively. Insulin in VTN (0.75 ± 0.01) and VTD (0.78 ± 0.01) was similar, higher than CD (0.51 ± 0.07) but lower than CN (2.51 ± 0.02). VTN islets compared to CN had larger size and denser central core insulin immunoreactivity with plentiful BC. CD and ITD islets were atrophied and had scattered insulin immunoreactivity spots and low BC mass. VTD islets were almost similar to CN. Besides insulin-like activity, vanadium protected pancreatic islet BC, and the relief of glucose toxicity happening with vanadium had a little role in this action.

  11. Does the Relief of Glucose Toxicity Act As a Mediator in Proliferative Actions of Vanadium on Pancreatic Islet Beta Cells in Streptozocin Diabetic Rats?

    PubMed Central

    Pirmoradi, Leila; Mohammadi, Mohammad Taghi; Safaei, Akbar; Mesbah, Fakhardin; Dehghani, Gholam Abbas

    2014-01-01

    Background: Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats. Methods: Rats were divided into five groups of normal and diabetic. Diabetes was induced with streptozocin (40 mg/kg, i.v.). Normal rats used water (CN) or vanadium (1 mg/ml VOSO4, VTN). Diabetic rats used water (CD), water plus daily neutral protamine Hagedorn insulin injection (80 U/kg, ITD) or vanadium (VTD). Blood samples were taken for blood glucose (BG, mg/dL) and insulin (ng/dL) measurements. After two months, the pancreata of sacrificed rats were prepared for islet staining. Results: Pre-treated normal BG was 88 ± 2, and diabetic BG was 395 ± 9. The final BG in CD, VTD, and ITD was 509 ± 22, 138 ± 14, and 141 ± 14, respectively. Insulin in VTN (0.75 ± 0.01) and VTD (0.78 ± 0.01) was similar, higher than CD (0.51 ± 0.07) but lower than CN (2.51 ± 0.02). VTN islets compared to CN had larger size and denser central core insulin immunoreactivity with plentiful BC. CD and ITD islets were atrophied and had scattered insulin immunoreactivity spots and low BC mass. VTD islets were almost similar to CN. Conclusion: Besides insulin-like activity, vanadium protected pancreatic islet BC, and the relief of glucose toxicity happening with vanadium had a little role in this action. PMID:24842144

  12. MR imaging of the hippocampus in normal pressure hydrocephalus: correlations with cortical Alzheimer's disease confirmed by pathologic analysis.

    PubMed

    Savolainen, S; Laakso, M P; Paljärvi, L; Alafuzoff, I; Hurskainen, H; Partanen, K; Soininen, H; Vapalahti, M

    2000-02-01

    MR studies have shown hippocampal atrophy to be a sensitive diagnostic feature of Alzheimer's disease (AD). In this study, we measured the hippocampal volumes of patients with a clinical diagnosis of normal pressure hydrocephalus (NPH), a potentially reversible cause of dementia when shunted. Further, we examined the relationship between the hippocampal volumes and cortical AD pathologic findings, intracranial pressure, and clinical outcomes in cases of NPH. We measured hippocampal volumes from 37 patients with a clinical diagnosis of NPH (27 control volunteers and 24 patients with AD). The patients with NPH underwent biopsy, and their clinical outcomes were followed for a year. Compared with those for control volunteers, the findings for patients with NPH included a minor left-side decrease in the hippocampal volumes (P < .05). Compared with those for patients with AD, the findings for patients with NPH included significantly larger hippocampi on both sides. Although not statistically significant, trends toward larger volumes were observed in patients with NPH who had elevated intracranial pressure, who benefited from shunting, and who did not display cortical AD pathologic findings. Measurements of hippocampal volumes among patients with a clinical diagnosis of NPH have clear clinical implications, providing diagnostic discrimination from AD and possibly prediction of clinical outcome after shunting.

  13. Estradiol Protects Proopiomelanocortin Neurons Against Insulin Resistance.

    PubMed

    Qiu, Jian; Bosch, Martha A; Meza, Cecilia; Navarro, Uyen-Vy; Nestor, Casey C; Wagner, Edward J; Rønnekleiv, Oline K; Kelly, Martin J

    2018-02-01

    Insulin resistance is at the core of the metabolic syndrome, and men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage diminishes sharply when women reach the postmenopausal state. Because 17β-estradiol (E2) augments the excitability of the anorexigenic proopiomelanocortin (POMC) neurons, we investigated the neuroprotective effects of E2 against insulin resistance in POMC neurons from diet-induced obese (DIO) female and male mice. The efficacy of insulin to activate canonical transient receptor potential 5 (TRPC5) channels and depolarize POMC neurons was significantly reduced in DIO male mice but not in DIO female mice. However, the insulin response in POMC neurons was abrogated in ovariectomized DIO females but restored with E2 replacement. E2 increased T-type calcium channel Cav3.1 messenger RNA (mRNA) expression and whole-cell currents but downregulated stromal-interaction molecule 1 mRNA, which rendered POMC neurons more excitable and responsive to insulin-mediated TRPC5 channel activation. Moreover, E2 prevented the increase in suppressor of cytokine signaling-3 mRNA expression with DIO as seen in DIO males. As proof of principle, insulin [intracerebroventricular injection into the third ventricle (ICV)] decreased food intake and increased metabolism in female but not male guinea pigs fed a high-fat diet. The uncoupling of the insulin receptor from its downstream effector system was corroborated by the reduced expression of phosphorylated protein kinase B in the arcuate nucleus of male but not female guinea pigs following insulin. Therefore, E2 protects female POMC neurons from insulin resistance by enhancing POMC neuronal excitability and the coupling of insulin receptor to TRPC5 channel activation. Copyright © 2018 Endocrine Society.

  14. The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level.

    PubMed

    Furutani, Masahiko; Kajiwara, Takahito; Kato, Takehide; Treml, Birgit S; Stockum, Christine; Torres-Ruiz, Ramón A; Tasaka, Masao

    2007-11-01

    Intercellular transport of the phytohormone auxin is a significant factor for plant organogenesis. To investigate molecular mechanisms by which auxin controls organogenesis, we analyzed the macchi-bou 4 (mab4) mutant identified as an enhancer of pinoid (pid). Although mab4 and pid single mutants displayed relatively mild cotyledon phenotypes, pid mab4 double mutants completely lacked cotyledons. We found that MAB4 was identical to ENHANCER OF PINOID (ENP), which has been suggested to control PIN1 polarity in cotyledon primordia. MAB4/ENP encodes a novel protein, which belongs to the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) family thought to function as a signal transducer in phototropism and control lateral translocation of auxin. MAB4/ENP mRNA was detected in the protodermal cell layer of the embryo and the meristem L1 layer at the site of organ initiation. In the mab4 embryo, the abundance of PIN1:GFP was severely decreased at the plasma membrane in the protodermal cell layer. In addition, subcellular localization analyses indicated that MAB4/ENP resides on a subpopulation of endosomes as well as on unidentified intracellular compartments. These results indicate that MAB4/ENP is involved in polar auxin transport in organogenesis.

  15. Insulin appearance of subcutaneously infused insulin: influence of the basal rate pulse interval of the infusion pump.

    PubMed

    Birch, K; Hildebrandt, P; Jensen, B M; Kühl, C; Brange, J

    1985-05-01

    To compare the metabolic control and the pharmacokinetics of infused insulin using an insulin pump (Auto-Syringe AS 6C) which provides the basal rate in pulses every 2-10 min with a pump (Medix Syringe Driver 209) providing the basal rate in pulses every 15-60 min, 6 C-peptide negative diabetic patients received, in random order, identical, but individual, insulin treatment during one 4-day period using the Auto-Syringe pump and another 4-day period using the Medix pump. On the fourth day of each period, blood glucose and plasma-free insulin were estimated every 30 min for 7 hr and every 5 min for the next hour. Plasma-free insulin was significantly higher on 3 time points out of the 26 possible when using the Medix pump, but this was not reflected in the blood glucose concentrations which were similar in the 2 periods. The results indicate that, from a metabolic and pharmacokinetic point of view, insulin pumps working with larger intervals between the basal rate pulses are just as good as the more technically advanced and hence often more expensive pumps which provide the basal rate in more and smaller pulses.

  16. Individualized correction of insulin measurement in hemolyzed serum samples.

    PubMed

    Wu, Zhi-Qi; Lu, Ju; Chen, Huanhuan; Chen, Wensen; Xu, Hua-Guo

    2017-06-01

    Insulin measurement plays a key role in the investigation of patients with hypoglycemia, subtype classification of diabetes mellitus, insulin resistance, and impaired beta cell function. However, even slight hemolysis can negatively affect insulin measurement due to RBC insulin-degrading enzyme (IDE). Here, we derived and validated an individualized correction equation in an attempt to eliminate the effects of hemolysis on insulin measurement. The effects of hemolysis on insulin measurement were studied by adding lysed self-RBCs to serum. A correction equation was derived, accounting for both percentage and exposure time of hemolysis. The performance of this individualized correction was evaluated in intentionally hemolyzed samples. Insulin concentration decreased with increasing percentage and exposure time of hemolysis. Based on the effects of hemolysis on insulin measurement of 17 donors (baseline insulin concentrations ranged from 156 to 2119 pmol/L), the individualized hemolysis correction equation was derived: INS corr  = INS meas /(0.705lgHb plasma /Hb serum  - 0.001Time - 0.612). This equation can revert insulin concentrations of the intentionally hemolyzed samples to values that were statistically not different from the corresponding insulin baseline concentrations (p = 0.1564). Hemolysis could lead to a negative interference on insulin measurement; by individualized hemolysis correction equation for insulin measurement, we can correct and report reliable serum insulin results for a wide range of degrees of sample hemolysis. This correction would increase diagnostic accuracy, reduce inappropriate therapeutic decisions, and improve patient satisfaction with care.

  17. Insulin resistance and bone: a biological partnership.

    PubMed

    Conte, Caterina; Epstein, Solomon; Napoli, Nicola

    2018-04-01

    Despite a clear association between type 2 diabetes (T2D) and fracture risk, the pathogenesis of bone fragility in T2D has not been clearly elucidated. Insulin resistance is the primary defect in T2D. Insulin signalling regulates both bone formation and bone resorption, but whether insulin resistance can affect bone has not been established. On the other hand, evidence exists that bone might play a role in the regulation of glucose metabolism. This article reviews the available experimental and clinical evidence on the interplay between bone and insulin resistance. Interestingly, a bilateral relationship between bone and insulin resistance seems to exist that unites them in a biological partnership.

  18. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  19. Pharmacokinetic and Pharmacodynamic Properties of a Novel Inhaled Insulin

    PubMed Central

    Heinemann, Lutz; Baughman, Robert; Boss, Anders; Hompesch, Marcus

    2016-01-01

    Advances in insulin treatment options over recent decades have markedly improved the management of diabetes. Despite this, glycemic control remains suboptimal in many people with diabetes. Although postprandial glucose control has been improved with the development of subcutaneously injected rapid-acting insulin analogs, currently available insulins are not able to fully mimic the physiological time–action profile of endogenously secreted insulin after a meal. The delayed onset of metabolic action and prolonged period of effect induce the risk of postprandial hyperglycemia and late postprandial hypoglycemia. A number of alternative routes of insulin administration have been investigated over time in an attempt to overcome the limitations associated with subcutaneous administration and to provide an improved time–action insulin profile more closely simulating physiological prandial insulin release. Among these, pulmonary insulin delivery has shown the most promise. Technosphere® Inhaled Insulin (TI) is a rapid-acting inhaled human insulin recently approved by the FDA for prandial insulin therapy. In this article we discuss the pharmacokinetic and pharmacodynamic properties of TI, and, based on key studies performed during its clinical development, the implications for improved postprandial glucose control. PMID:27378794

  20. The Effect of Insulin and Insulin-Like Growth Factors on Hippocampus- and Amygdala-Dependent Long-Term Memory Formation

    ERIC Educational Resources Information Center

    Stern, Sarah A.; Chen, Dillon Y.; Alberini, Cristina M.

    2014-01-01

    Recent work has reported that the insulin-like growth factor 2 (IGF2) promotes memory enhancement. Furthermore, impaired insulin or IGF1 functions have been suggested to play a role in the pathogenesis of neurodegeneration and cognitive impairments, hence implicating the insulin/IGF system as an important target for cognitive enhancement and/or…