Science.gov

Sample records for hair cells auditory

  1. Active hair bundle movements in auditory hair cells.

    PubMed

    Fettiplace, Robert

    2006-10-01

    The frequency selectivity of mammalian hearing depends on not only the passive mechanics of the basilar membrane but also an active amplification of the mechanical stimulus by the cochlear hair cells. The common view is that amplification stems from the somatic motility of the outer hair cells (OHCs), changes in their length impelled by voltage-dependent transitions in the membrane protein prestin. Whether this voltage-controlled mechanism, whose frequency range may be limited by the membrane time constant, has the band width to cover the entire auditory range of mammals is uncertain. However, there is ample evidence for an alternative mode of force generation by hair cells of non-mammals, such as frogs and turtles, which probably lack prestin. The latter process involves active motion of the hair bundle underpinned by conformational changes in the mechanotransducer (MT) channels and activation of one or more isoforms of myosin. This review summarizes evidence for active hair bundle motion and its connection to MT channel adaptation. Key factors for the hair bundle motor to play a role in the mammalian cochlea include the size and speed of force production.

  2. Apical phosphatidylserine externalization in auditory hair cells.

    PubMed

    Shi, Xiaorui; Gillespie, Peter G; Nuttall, Alfred L

    2007-01-01

    In hair cells of the inner ear, phosphatidylserine (PS), detected with fluorescent annexin V labeling, was rapidly exposed on the external leaflet of apical plasma membranes upon dissection of the organ of Corti. PS externalization was unchanged by caspase inhibition, suggesting that externalization did not portend apoptosis or necrosis. Consistent with that conclusion, mitochondrial membrane potential and hair-cell nuclear structure remained normal during externalization. PS externalization was triggered by forskolin, which raises cAMP, and blocked by inhibitors of adenylyl cyclase. Blocking Na(+) influx by inhibiting the mechanoelectrical transduction channels and P2X ATP channels also inhibited external PS externalization. Diminished PS externalization was also seen in cells exposed to LY 294002, which blocks membrane recycling in hair cells by inhibiting phosphatidylinositol 3-kinase. These results indicate that PS exposure on the external leaflet, presumably requiring vesicular transport, results from elevation of intracellular cAMP, which can be triggered by Na(+) entry into hair cells.

  3. A prestin motor in chicken auditory hair cells

    PubMed Central

    Beurg, Maryline; Tan, Xiaodong; Fettiplace, Robert

    2013-01-01

    Active force generation by outer hair cells (OHCs) underlies amplification and frequency tuning in the mammalian cochlea but whether such a process exists in non-mammals is unclear. Here we demonstrate that hair cells of the chicken auditory papilla possess an electromechanical force generator in addition to active hair bundle motion due to mechanotransducer channel gating. The properties of the force generator, its voltage-dependence and susceptibility to salicylate, as well as an associated chloride-sensitive non-linear capacitance, suggest involvement of the chicken homolog of prestin, the OHC motor protein. The presence of chicken prestin in the hair cell lateral membrane was confirmed by immunolabeling studies. The hair bundle and prestin motors together create sufficient force to produce fast lateral displacements of the tectorial membrane. Our results imply that the first use of prestin as a motor protein occurred early in amniote evolution and was not a mammalian invention as is usually supposed. PMID:23746629

  4. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.

    PubMed

    Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J

    2015-04-30

    This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Discussion: Changes in Vocal Production and Auditory Perception after Hair Cell Regeneration.

    ERIC Educational Resources Information Center

    Ryals, Brenda M.; Dooling, Robert J.

    2000-01-01

    A bird study found that with sufficient time and training after hair cell and hearing loss and hair cell regeneration, the mature avian auditory system can accommodate input from a newly regenerated periphery sufficiently to allow for recognition of previously familiar vocalizations and the learning of new complex acoustic classifications.…

  6. My oh my(osin): Insights into how auditory hair cells count, measure, and shape

    PubMed Central

    Pollock, Lana M.; Chou, Shih-Wei

    2016-01-01

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle’s morphology and hearing. PMID:26754648

  7. Discussion: Changes in Vocal Production and Auditory Perception after Hair Cell Regeneration.

    ERIC Educational Resources Information Center

    Ryals, Brenda M.; Dooling, Robert J.

    2000-01-01

    A bird study found that with sufficient time and training after hair cell and hearing loss and hair cell regeneration, the mature avian auditory system can accommodate input from a newly regenerated periphery sufficiently to allow for recognition of previously familiar vocalizations and the learning of new complex acoustic classifications.…

  8. Supporting cell division is not required for regeneration of auditory hair cells after ototoxic injury in vitro.

    PubMed

    Shang, Jialin; Cafaro, Jon; Nehmer, Rachel; Stone, Jennifer

    2010-06-01

    In chickens, nonsensory supporting cells divide and regenerate auditory hair cells after injury. Anatomical evidence suggests that supporting cells can also transdifferentiate into hair cells without dividing. In this study, we characterized an organ culture model to study auditory hair cell regeneration, and we used these cultures to test if direct transdifferentiation alone can lead to significant hair cell regeneration. Control cultures (organs from posthatch chickens maintained without streptomycin) showed complete hair cell loss in the proximal (high-frequency) region by 5 days. In contrast, a 2-day treatment with streptomycin induced loss of hair cells from all regions by 3 days. Hair cell regeneration proceeded in culture, with the time course of supporting cell division and hair cell differentiation generally resembling in vivo patterns. The degree of supporting cell division depended upon the presence of streptomycin, the epithelial region, the type of culture media, and serum concentration. On average, 87% of the regenerated hair cells lacked the cell division marker BrdU despite its continuous presence, suggesting that most hair cells were regenerated via direct transdifferentiation. Addition of the DNA polymerase inhibitor aphidicolin to culture media prevented supporting cell division, but numerous hair cells were regenerated nonetheless. These hair cells showed signs of functional maturation, including stereociliary bundles and rapid uptake of FM1-43. These observations demonstrate that direct transdifferentiation is a significant mechanism of hair cell regeneration in the chicken auditory after streptomycin damage in vitro.

  9. Potassium currents in auditory hair cells of the frog basilar papilla.

    PubMed

    Smotherman, M S; Narins, P M

    1999-06-01

    The whole-cell patch-clamp technique was used to identify and characterize ionic currents in isolated hair cells of the leopard frog basilar papilla (BP). This end organ is responsible for encoding the upper limits of a frog's spectral sensitivity (1.25-2.0 kHz in the leopard frog). Isolated BP hair cells are the smallest hair cells in the frog auditory system, with spherical cell bodies typically less than 20 microm in diameter and exhibiting whole-cell capacitances of 4-7 pF. Hair cell zero-current resting potentials (Vz) varied around a mean of -65 mV. All hair cells possessed a non-inactivating, voltage-dependent calcium current (I(Ca)) that activates above a threshold of -55 mV. Similarly all hair cells possessed a rapidly activating, outward, calcium-dependent potassium current (I(K)(Ca)). Most hair cells also possessed a slowly activating, outward, voltage-dependent potassium current (I(K)), which is approximately 80% inactive at the hair cell Vz, and a fast-activating, inward-rectifying potassium current (I(K1)) which actively contributes to setting Vz. In a small subset of cells I(K) was replaced by a fast-inactivating, voltage-dependent potassium current (I(A)), which strongly resembled the A-current observed in hair cells of the frog sacculus and amphibian papilla. Most cells have very similar ionic currents, suggesting that the BP consists largely of one homogeneous population of hair cells. The kinetic properties of the ionic currents present (in particular the very slow I(K)) argue against electrical tuning, a specialized spectral filtering mechanism reported in the hair cells of birds, reptiles, and amphibians, as a contributor to frequency selectivity of this organ. Instead BP hair cells reflect a generalized strategy for the encoding of high-frequency auditory information in a primitive, mechanically tuned, terrestrial vertebrate auditory organ.

  10. AUDITORY HAIR CELL EXPLANT CO-CULTURES PROMOTE THE DIFFERENTIATION OF STEM CELLS INTO BIPOLAR NEURONS

    PubMed Central

    Coleman, B.; Fallon, J.B.; Gillespie, L.N.; de Silva, M.G.; Shepherd, R.K.

    2007-01-01

    Auditory neurons, the target neurons of the cochlear implant, degenerate following a sensorineural hearing loss. The goal of this research is to direct the differentiation of embryonic stem cells (SCs) into bipolar auditory neurons that can be used to replace degenerating neurons in the deafened mammalian cochlea. Successful replacement of auditory neurons is likely to result in improved clinical outcomes for cochlear implant recipients. We examined two post-natal auditory co-culture models with and without neurotrophic support, for their potential to direct the differentiation of mouse embryonic SCs into characteristic, bipolar, auditory neurons. The differentiation of SCs into neuron-like cells was facilitated by co-culture with auditory neurons or hair cell explants, isolated from post-natal day five rats. The most successful combination was the co-culture of hair cell explants with whole embryoid bodies, which resulted in significantly greater numbers of neurofilament positive, neuron-like cells. While further characterisation of these differentiated cells will be essential before transplantation studies commence, these data illustrate the effectiveness of post-natal explant co-culture, at providing valuable molecular cues for directed differentiation of SCs towards an auditory neuron lineage. PMID:17112512

  11. Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry.

    PubMed

    Peng, Anthony W; Effertz, Thomas; Ricci, Anthony J

    2013-11-20

    Adaptation is a hallmark of hair cell mechanotransduction, extending the sensory hair bundle dynamic range while providing mechanical filtering of incoming sound. In hair cells responsive to low frequencies, two distinct adaptation mechanisms exist, a fast component of debatable origin and a slow myosin-based component. It is generally believed that Ca(2+) entry through mechano-electric transducer channels is required for both forms of adaptation. This study investigates the calcium dependence of adaptation in the mammalian auditory system. Recordings from rat cochlear hair cells demonstrate that altering Ca(2+) entry or internal Ca(2+) buffering has little effect on either adaptation kinetics or steady-state adaptation responses. Two additional findings include a voltage-dependent process and an extracellular Ca(2+) binding site, both modulating the resting open probability independent of adaptation. These data suggest that slow motor adaptation is negligible in mammalian auditory cells and that the remaining adaptation process is independent of calcium entry.

  12. Reinnervation of Hair Cells by Auditory Neurons after Selective Removal of Spiral Ganglion Neurons

    PubMed Central

    Martinez-Monedero, Rodrigo; Corrales, C. Eduardo; Cuajungco, Math P.; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Hearing loss can be caused by primary degeneration of spiral ganglion neurons or by secondary degeneration of these neurons after hair cell loss. The replacement of auditory neurons would be an important step in any attempt to restore auditory function in patients with damaged inner ear neurons or hair cells. Application of β-bungarotoxin, a toxin derived from snake venom, to an explant of the cochlea eradicates spiral ganglion neurons while sparing the other cochlear cell types. The toxin was found to bind to the neurons and to cause apoptotic cell death without affecting hair cells or other inner ear cell types as indicated by TUNEL staining, and, thus, the toxin provides a highly specific means of deafferentation of hair cells. We therefore used the denervated organ of Corti for the study of neuronal regeneration and synaptogenesis with hair cells and found that spiral ganglion neurons obtained from the cochlea of an untreated newborn mouse reinnervated hair cells in the toxin-treated organ of Corti and expressed synaptic vesicle markers at points of contact with hair cells. These findings suggest that it may be possible to replace degenerated neurons by grafting new cells into the organ of Corti. PMID:16408287

  13. Inhibition of Repulsive Guidance Molecule, RGMa, Increases Afferent Synapse Formation with Auditory Hair Cells

    PubMed Central

    Brugeaud, Aurore; Tong, Mingjie; Luo, Li; Edge, Albert S.B.

    2017-01-01

    The peripheral fibers that extend from auditory neurons to hair cells are sensitive to damage, and replacement of the fibers and their afferent synapse with hair cells would be of therapeutic interest. Here, we show that RGMa, a repulsive guidance molecule previously shown to play a role in the development of the chick visual system, is expressed in the developing, newborn, and mature mouse inner ear. The effect of RGMa on synaptogenesis between afferent neurons and hair cells, from which afferent connections had been removed, was assessed. Contact of neural processes with hair cells and elaboration of postsynaptic densities at sites of the ribbon synapse were increased by treatment with a blocking antibody to RGMa, and pruning of auditory fibers to achieve the mature branching pattern of afferent neurons was accelerated. Inhibition by RGMa could thus explain why auditory neurons have a low capacity to regenerate peripheral processes: postnatal spiral ganglion neurons retain the capacity to send out processes that respond to signals for synapse formation, but expression of RGMa postnatally appears to be detrimental to regeneration of afferent hair cell innervation and antagonizes synaptogenesis. Increased synaptogenesis after inhibition of RGMa suggests that manipulation of guidance or inhibitory factors may provide a route to increase formation of new synapses at deafferented hair cells. PMID:24123853

  14. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer

    PubMed Central

    Gubbels, Samuel. P.; Woessner, David W.; Mitchell, John C.; Ricci, Anthony J.; Brigande, John V.

    2010-01-01

    Sensory hair cells in the mammalian cochlea convert mechanical stimuli into electrical impulses that subserve audition1,2. Loss of hair cells and their innervating neurons is the most frequent cause of hearing impairment3. Atonal homolog 1 (Atoh1, also known as Math1) is a basic helix-loop-helix transcription factor required for hair cell development4-6 and its misexpression in vitro7,8 and in vivo9,10 generates hair-cell-like cells. Atoh1-based gene therapy to ameliorate auditory10 and vestibular11 dysfunction has been proposed. However, the biophysical properties of putative hair cells induced by Atoh1 misexpression have not been characterized. Here we show that in utero gene transfer of Atoh1 produces functional supernumerary hair cells in the mouse cochlea. The induced hair cells display stereociliary bundles, attract neuronal processes, and express the ribbon synapse marker C-terminal binding protein 2 (Ctbp2)12,13. Moreover, the hair cells are capable of mechanoelectrical transduction1,2 and display basolateral conductances with age-appropriate specializations. Our results demonstrate that manipulation of cell fate by transcription factor misexpression produces functional sensory cells in the postnatal mammalian cochlea. We anticipate that our in utero gene transfer paradigm will enable the design and validation of gene therapies to ameliorate hearing loss in mouse models of human deafness14,15. PMID:18754012

  15. Therapeutics for Regeneration of Fully Functional Auditory Outer Hair Cells

    DTIC Science & Technology

    2012-09-27

    induced hearing loss ( NIHL ) affects millions of navy servicemen even when the best protective devices are used. To address the Naval Global War on...in naval servicemen who are suffering from NIHL . NIHL is primarily caused by damage to sensory outer hair cells (OHCs) of the inner ear. Thanks to...members suffering from NIHL . We proposed to utilize a new mouse model (Prestin-YFP knockin) we have recently created to sen -: en G u- cjl ncl i cl C! t

  16. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development.

    PubMed

    Tateya, Tomoko; Imayoshi, Itaru; Tateya, Ichiro; Ito, Juichi; Kageyama, Ryoichiro

    2011-04-15

    Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment

  17. Calcium-induced calcium release supports recruitment of synaptic vesicles in auditory hair cells

    PubMed Central

    Schnee, Michael E.; Ricci, Anthony J.

    2015-01-01

    Hair cells from auditory and vestibular systems transmit continuous sound and balance information to the central nervous system through the release of synaptic vesicles at ribbon synapses. The high activity experienced by hair cells requires a unique mechanism to sustain recruitment and replenishment of synaptic vesicles for continuous release. Using pre- and postsynaptic electrophysiological recordings, we explored the potential contribution of calcium-induced calcium release (CICR) in modulating the recruitment of vesicles to auditory hair cell ribbon synapses. Pharmacological manipulation of CICR with agents targeting endoplasmic reticulum calcium stores reduced both spontaneous postsynaptic multiunit activity and the frequency of excitatory postsynaptic currents (EPSCs). Pharmacological treatments had no effect on hair cell resting potential or activation curves for calcium and potassium channels. However, these drugs exerted a reduction in vesicle release measured by dual-sine capacitance methods. In addition, calcium substitution by barium reduced release efficacy by delaying release onset and diminishing vesicle recruitment. Together these results demonstrate a role for calcium stores in hair cell ribbon synaptic transmission and suggest a novel contribution of CICR in hair cell vesicle recruitment. We hypothesize that calcium entry via calcium channels is tightly regulated to control timing of vesicle fusion at the synapse, whereas CICR is used to maintain a tonic calcium signal to modulate vesicle trafficking. PMID:26510758

  18. Physical Limits to Auditory Transduction of Hair-Cell Bundles probed by a Biomimetic System.

    PubMed

    Song, Taegeun; Lee, Woo Seok; Ahn, Kang-Hun

    2015-06-15

    Inspired by auditory hair cells of lower vertebrates, we design and fabricate an opto-electro-mechanical sensor at the border of its spontaneous activity, called Hopf bifurcation critical point. As proposed for biological hair cells, we observe that, as the system approaches the critical point, the frequency selectivity and the force sensitivity are enhanced. However, we find that the enhancement has limits because of its intrinsic nonlinearity, even at the critical point. We also find that the minimally detectable force is not influenced by the active feedback force despite its enhanced sensitivity. This is due to the inevitable heating of the hair bundle, which implies that the active amplification of the hair cell bundle might not lower the threshold level of detectable sound.

  19. Physical Limits to Auditory Transduction of Hair-Cell Bundles probed by a Biomimetic System

    PubMed Central

    Song, Taegeun; Lee, Woo Seok; Ahn, Kang-Hun

    2015-01-01

    Inspired by auditory hair cells of lower vertebrates, we design and fabricate an opto-electro-mechanical sensor at the border of its spontaneous activity, called Hopf bifurcation critical point. As proposed for biological hair cells, we observe that, as the system approaches the critical point, the frequency selectivity and the force sensitivity are enhanced. However, we find that the enhancement has limits because of its intrinsic nonlinearity, even at the critical point. We also find that the minimally detectable force is not influenced by the active feedback force despite its enhanced sensitivity. This is due to the inevitable heating of the hair bundle, which implies that the active amplification of the hair cell bundle might not lower the threshold level of detectable sound. PMID:26074375

  20. Physical Limits to Auditory Transduction of Hair-Cell Bundles probed by a Biomimetic System

    NASA Astrophysics Data System (ADS)

    Song, Taegeun; Lee, Woo Seok; Ahn, Kang-Hun

    2015-06-01

    Inspired by auditory hair cells of lower vertebrates, we design and fabricate an opto-electro-mechanical sensor at the border of its spontaneous activity, called Hopf bifurcation critical point. As proposed for biological hair cells, we observe that, as the system approaches the critical point, the frequency selectivity and the force sensitivity are enhanced. However, we find that the enhancement has limits because of its intrinsic nonlinearity, even at the critical point. We also find that the minimally detectable force is not influenced by the active feedback force despite its enhanced sensitivity. This is due to the inevitable heating of the hair bundle, which implies that the active amplification of the hair cell bundle might not lower the threshold level of detectable sound.

  1. Progenitor cell cycling during hair cell regeneration in the vestibular and auditory epithelia of the chick.

    PubMed

    Stone, J S; Choi, Y S; Woolley, S M; Yamashita, H; Rubel, E W

    1999-01-01

    We investigated nucleotide-labeling patterns during ongoing hair cell regeneration in the avian vestibular epithelium and during drug-induced regeneration in the avian auditory epithelium. For utricle experiments, post-hatch chicks received an injection of bromodeoxyuridine (BrdU) and were allowed to survive from 2 hours to 110 days after the injection. Utricles were fixed and immunoreacted to detect BrdU. The number of BrdU-labeled nuclei in the hair cell and support cell layers of the utricular sensory epithelium changes significantly between 2 hours and 110 days post-BrdU. At 2 hours, most labeled cells are isolated, while by 5-10 days, the majority of labeled cells are organized in pairs that are most frequently composed of a hair cell and a support cell. Pairs of labeled cells are seen as late as 110 days. Clusters of more than 3 labeled cells are uncommon at all time-points. The total number of labeled cells increases approximately 1.5-fold between 5 and 60 days post-BrdU. This increase is due primarily to a rise in the number of labeled support cells, and it is likely that it represents additional rounds of division by a subset of cells that were labeled at the time of the BrdU injection. There is a significant decrease in labeled nuclei in the hair cell layer between 60 and 110 days post-BrdU, suggesting that hair cells die during this period. To investigate support cell recycling in the drug-damaged auditory epithelium, we examined nucleotide double labeling after separate injections of BrdU and tritiated thymidine. A small number of support cells that incorporate BrdU administered at 3 days post-gentamicin treatment also label with tritiated thymidine administered between 17 and 38 hours later. We conclude that a small population of support cells recycles during regeneration in both the normal utricle and the drug-damaged basilar papilla.

  2. Hydrogen protects auditory hair cells from cisplatin-induced free radicals.

    PubMed

    Kikkawa, Yayoi S; Nakagawa, Takayuki; Taniguchi, Mirei; Ito, Juichi

    2014-09-05

    Cisplatin is a widely used chemotherapeutic agent for the treatment of various malignancies. However, its maximum dose is often limited by severe ototoxicity. Cisplatin ototoxicity may require the production of reactive oxygen species (ROS) in the inner ear by activating enzymes specific to the cochlea. Molecular hydrogen was recently established as an antioxidant that selectively reduces ROS, and has been reported to protect the central nervous system, liver, kidney and cochlea from oxidative stress. The purpose of this study was to evaluate the potential of molecular hydrogen to protect cochleae against cisplatin. We cultured mouse cochlear explants in medium containing various concentrations of cisplatin and examined the effects of hydrogen gas dissolved directly into the media. Following 48-h incubation, the presence of intact auditory hair cells was assayed by phalloidin staining. Cisplatin caused hair cell loss in a dose-dependent manner, whereas the addition of hydrogen gas significantly increased the numbers of remaining auditory hair cells. Additionally, hydroxyphenyl fluorescein (HPF) staining of the spiral ganglion showed that formation of hydroxyl radicals was successfully reduced in hydrogen-treated cochleae. These data suggest that molecular hydrogen can protect auditory tissues against cisplatin toxicity, thus providing an additional strategy to protect against drug-induced inner ear damage.

  3. Postnatal refinement of auditory hair cell planar polarity deficits occurs in the absence of Vangl2.

    PubMed

    Copley, Catherine O; Duncan, Jeremy S; Liu, Chang; Cheng, Haixia; Deans, Michael R

    2013-08-28

    The distinctive planar polarity of auditory hair cells is evident in the polarized organization of the stereociliary bundle. Mutations in the core planar cell polarity gene Van Gogh-like 2 (Vangl2) result in hair cells that fail to properly orient their stereociliary bundles along the mediolateral axis of the cochlea. The severity of this phenotype is graded along the length of the cochlea, similar to the hair cell differentiation gradient, suggesting that an active refinement process corrects planar polarity phenotypes in Vangl2 knock-out (KO) mice. Because Vangl2 gene deletions are lethal, Vangl2 conditional knock-outs (CKOs) were generated to test this hypothesis. When crossed with Pax2-Cre, Vangl2 is deleted from the inner ear, yielding planar polarity phenotypes similar to Vangl2 KOs at late embryonic stages except that Vangl2 CKO mice are viable and do not have craniorachischisis like Vangl2 KOs. Quantification of planar polarity deficits through postnatal development demonstrates the activity of a Vangl2-independent refinement process that rescues the planar polarity phenotype within 10 d of birth. In contrast, the Pax2-Cre;Vangl2 CKO has profound changes in the shape and distribution of outer pillar cell and Deiters' cell phalangeal processes that are not corrected during the period of planar polarity refinement. Auditory brainstem response analyses of adult mice show a 10-15 dB shift in auditory threshold, and distortion product otoacoustic emission measurements indicate that this mild hearing deficit is of cochlear origin. Together, these data demonstrate a Vangl2-independent refinement mechanism that actively reorients auditory stereociliary bundles and reveals an unexpected role of Vangl2 during supporting cell morphogenesis.

  4. Postnatal Refinement of Auditory Hair Cell Planar Polarity Deficits Occurs in the Absence of Vangl2

    PubMed Central

    Copley, Catherine O.; Duncan, Jeremy S.; Liu, Chang; Cheng, Haixia

    2013-01-01

    The distinctive planar polarity of auditory hair cells is evident in the polarized organization of the stereociliary bundle. Mutations in the core planar cell polarity gene Van Gogh-like 2 (Vangl2) result in hair cells that fail to properly orient their stereociliary bundles along the mediolateral axis of the cochlea. The severity of this phenotype is graded along the length of the cochlea, similar to the hair cell differentiation gradient, suggesting that an active refinement process corrects planar polarity phenotypes in Vangl2 knock-out (KO) mice. Because Vangl2 gene deletions are lethal, Vangl2 conditional knock-outs (CKOs) were generated to test this hypothesis. When crossed with Pax2–Cre, Vangl2 is deleted from the inner ear, yielding planar polarity phenotypes similar to Vangl2 KOs at late embryonic stages except that Vangl2 CKO mice are viable and do not have craniorachischisis like Vangl2 KOs. Quantification of planar polarity deficits through postnatal development demonstrates the activity of a Vangl2-independent refinement process that rescues the planar polarity phenotype within 10 d of birth. In contrast, the Pax2–Cre;Vangl2 CKO has profound changes in the shape and distribution of outer pillar cell and Deiters' cell phalangeal processes that are not corrected during the period of planar polarity refinement. Auditory brainstem response analyses of adult mice show a 10–15 dB shift in auditory threshold, and distortion product otoacoustic emission measurements indicate that this mild hearing deficit is of cochlear origin. Together, these data demonstrate a Vangl2-independent refinement mechanism that actively reorients auditory stereociliary bundles and reveals an unexpected role of Vangl2 during supporting cell morphogenesis. PMID:23986237

  5. 17-DMAG induces Hsp70 and protects the auditory hair cells from kanamycin ototoxicity in vitro.

    PubMed

    Liu, Yun; Yu, Yang; Chu, Hanqi; Bing, Dan; Wang, Shaoli; Zhou, Liangqiang; Chen, Jin; Chen, Qingguo; Pan, Chunchen; Sun, Yanbo; Cui, Yonghua

    2015-02-19

    Heat shock protein 70 (Hsp70) has been known to be able to play a protective role in the cochlea. The aim of this study was to investigate whether geldanamycin hydrosoluble derivative 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) has the ability to induce Hsp70 up-regulation to protect hair cells from kanamycin-induced ototoxicity in vitro. The organ of Corti (OC) explants were isolated from mice at postnatal day 3-5. Then, the explants were exposed to kanamycin with or without pre-incubation with 17-DMAG. The expression of Hsp70 was assessed by reverse transcription-quantitative polymerase chain reaction, ELISA, and immunofluorescent staining. The surviving hair cells were examined by phalloidin labeling and were counted. We found that Hsp70 expression in the explants after pre-incubation with 17-DMAG was significantly increased at both mRNA and protein levels. Immunofluorescent staining showed that Hsp70 was mainly located in the auditory hair cells. Compared with kanamycin group, the loss of hair cells was inhibited significantly in 17-DMAG+kanamycin group. Our study demonstrated that 17-DMAG induces Hsp70 in the hair cells, and has a significant protective effect against kanamycin ototoxicity in vitro. 17-DMAG has the possibility to be a safe and effective anti-ototoxic drug.

  6. Auditory sensitivity provided by self-tuned critical oscillations of hair cells

    PubMed Central

    Camalet, Sébastien; Duke, Thomas; Jülicher, Frank; Prost, Jacques

    2000-01-01

    We introduce the concept of self-tuned criticality as a general mechanism for signal detection in sensory systems. In the case of hearing, we argue that active amplification of faint sounds is provided by a dynamical system that is maintained at the threshold of an oscillatory instability. This concept can account for the exquisite sensitivity of the auditory system and its wide dynamic range as well as its capacity to respond selectively to different frequencies. A specific model of sound detection by the hair cells of the inner ear is discussed. We show that a collection of motor proteins within a hair bundle can generate oscillations at a frequency that depends on the elastic properties of the bundle. Simple variation of bundle geometry gives rise to hair cells with characteristic frequencies that span the range of audibility. Tension-gated transduction channels, which primarily serve to detect the motion of a hair bundle, also tune each cell by admitting ions that regulate the motor protein activity. By controlling the bundle's propensity to oscillate, this feedback automatically maintains the system in the operating regime where it is most sensitive to sinusoidal stimuli. The model explains how hair cells can detect sounds that carry less energy than the background noise. PMID:10737791

  7. In Vitro Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells into Auditory Hair Cells and Neurons.

    PubMed

    Kil, Kicheol; Choi, Mi Young; Park, Kyoung Ho

    2016-04-01

    We attempted to induce mesenchymal stem cells (MSCs) from human Wharton's jelly (WJ) to differentiate into neuronal progenitor cells, neurons, and auditory hair cells. MSCs were isolated from WJ from human umbilical cords and cultured in medium containing epidermal growth factor and basic fibroblast growth factor. Differentiation into hair cells and neurons was induced using a neurobasal medium containing glial cell-derived neurotrophic factor, brain-derived neurotrophic factor, and neurotrophic factor 3. Fluorescence-activated cell sorting (FACS), immunocytochemistry, and reverse transcription polymerase chain reaction were performed to characterize the differentiated auditory hair cells and neurons. MSCs isolated from human WJ were confirmed by FACS. Double immunocytochemistry confirmed the expression of the hair cell markers myosin VIIA and TRPA1 and the functional marker C-terminal binding protein 2. Differentiation into neurons was revealed using neurofilament and βIII-tubulin markers. Gene expression of neuronal lineage-specific markers confirmed the neuronal differentiation state. MSCs from human WJ can be successfully induced to differentiate into auditory hair cells and neurons in vitro.

  8. Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish

    PubMed Central

    Rohmann, Kevin N.; Tripp, Joel A.; Genova, Rachel M.; Bass, Andrew H.

    2014-01-01

    Non-mammalian vertebrates rely on electrical resonance for frequency tuning in auditory hair cells. A key component of the resonance exhibited by these cells is an outward calcium-activated potassium current that flows through large-conductance calcium-activated potassium (BK) channels. Previous work in midshipman fish (Porichthys notatus) has shown that BK expression correlates with seasonal changes in hearing sensitivity and that pharmacologically blocking these channels replicates the natural decreases in sensitivity during the winter non-reproductive season. To test the hypothesis that reducing BK channel function is sufficient to change auditory thresholds in fish, morpholino oligonucleotides (MOs) were used in larval zebrafish (Danio rerio) to alter expression of slo1a and slo1b, duplicate genes coding for the pore-forming α-subunits of BK channels. Following MO injection, microphonic potentials were recorded from the inner ear of larvae. Quantitative real-time PCR was then used to determine the MO effect on slo1a and slo1b expression in these same fish. Knockdown of either slo1a or slo1b resulted in disrupted gene expression and increased auditory thresholds across the same range of frequencies of natural auditory plasticity observed in midshipman. We conclude that interference with the normal expression of individual slo1 genes is sufficient to increase auditory thresholds in zebrafish larvae and that changes in BK channel expression are a direct mechanism for regulation of peripheral hearing sensitivity among fishes. PMID:24803460

  9. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration

    PubMed Central

    Mittal, Rahul; Nguyen, Desiree; Patel, Amit P.; Debs, Luca H.; Mittal, Jeenu; Yan, Denise; Eshraghi, Adrien A.; Van De Water, Thomas R.; Liu, Xue Z.

    2017-01-01

    Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function. PMID:28824370

  10. Seasonal plasticity of auditory hair cell frequency sensitivity correlates with plasma steroid levels in vocal fish

    PubMed Central

    Rohmann, Kevin N.; Bass, Andrew H.

    2011-01-01

    SUMMARY Vertebrates displaying seasonal shifts in reproductive behavior provide the opportunity to investigate bidirectional plasticity in sensory function. The midshipman teleost fish exhibits steroid-dependent plasticity in frequency encoding by eighth nerve auditory afferents. In this study, evoked potentials were recorded in vivo from the saccule, the main auditory division of the inner ear of most teleosts, to test the hypothesis that males and females exhibit seasonal changes in hair cell physiology in relation to seasonal changes in plasma levels of steroids. Thresholds across the predominant frequency range of natural vocalizations were significantly less in both sexes in reproductive compared with non-reproductive conditions, with differences greatest at frequencies corresponding to call upper harmonics. A subset of non-reproductive males exhibiting an intermediate saccular phenotype had elevated testosterone levels, supporting the hypothesis that rising steroid levels induce non-reproductive to reproductive transitions in saccular physiology. We propose that elevated levels of steroids act via long-term (days to weeks) signaling pathways to upregulate ion channel expression generating higher resonant frequencies characteristic of non-mammalian auditory hair cells, thereby lowering acoustic thresholds. PMID:21562181

  11. Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function.

    PubMed

    Goutman, Juan D

    2017-09-05

    Inner hair cells (IHCs) in the cochlea are the mammalian phono-receptors, transducing sound energy into graded changes in membrane potentials, the so called "receptor potentials." Ribbon synapses between IHCs and auditory nerve neurons are responsible for converting receptor potentials into spike rates. The characteristics of auditory nerve responses to sound have been described extensively. For instance, persistent acoustic stimulation produces sensory adaptation, which is revealed as a reduction in neuronal spike rate with time constants in the range of milliseconds to seconds. Since the amplitude of IHC receptor potentials is invariant during this period, the classic hypothesis pointed to vesicle depletion at the IHC as responsible for auditory adaptation. In this study, we observed that fast synaptic depression occurred in responses to stimuli of varying intensities. Nevertheless, release continued after this initial depression, via synaptic vesicles with slower exocytotic kinetics. Heterogeneity in kinetic elements, therefore, favored synaptic responses with an early peak and a sustained phase. The application of cyclothiazide (CTZ) revealed that desensitization of postsynaptic receptors contributed to synaptic depression, which was more pronounced during stronger stimulation. Thus, desensitization had a twofold effect: It abbreviated signaling between IHC and the auditory nerve and also balanced differences in decay kinetics between responses to different stimulation strengths. We therefore propose that both pre- and postsynaptic mechanisms at the IHC ribbon synapse contribute to synaptic depression at the IHC ribbon synapse and spike rate adaptation in the auditory nerve.

  12. Electrical tuning and transduction in short hair cells of the chicken auditory papilla

    PubMed Central

    Tan, Xiaodong; Beurg, Maryline; Hackney, Carole; Mahendrasingam, Shanthini

    2013-01-01

    The avian auditory papilla contains two classes of sensory receptor, tall hair cells (THCs) and short hair cells (SHCs), the latter analogous to mammalian outer hair cells with large efferent but sparse afferent innervation. Little is known about the tuning, transduction, or electrical properties of SHCs. To address this problem, we made patch-clamp recordings from hair cells in an isolated chicken basilar papilla preparation at 33°C. We found that SHCs are electrically tuned by a Ca2+-activated K+ current, their resonant frequency varying along the papilla in tandem with that of the THCs, which also exhibit electrical tuning. The tonotopic map for THCs was similar to maps previously described from auditory nerve fiber measurements. SHCs also possess an A-type K+ current, but electrical tuning was observed only at resting potentials positive to −45 mV, where the A current is inactivated. We predict that the resting potential in vivo is approximately −40 mV, depolarized by a standing inward current through mechanotransducer (MT) channels having a resting open probability of ∼0.26. The resting open probability stems from a low endolymphatic Ca2+ concentration (0.24 mM) and a high intracellular mobile Ca2+ buffer concentration, estimated from perforated-patch recordings as equivalent to 0.5 mM BAPTA. The high buffer concentration was confirmed by quantifying parvalbumin-3 and calbindin D-28K with calibrated postembedding immunogold labeling, demonstrating >1 mM calcium-binding sites. Both proteins displayed an apex-to-base gradient matching that in the MT current amplitude, which increased exponentially along the papilla. Stereociliary bundles also labeled heavily with antibodies against the Ca2+ pump isoform PMCA2a. PMID:23365177

  13. Phase-locking precision is enhanced by multiquantal release at an auditory hair cell ribbon synapse

    PubMed Central

    Li, Geng-Lin; Cho, Soyoun; von Gersdorff, Henrique

    2014-01-01

    Sound-evoked spikes in the auditory nerve can phase-lock with submillisecond precision for prolonged periods of time. However, the synaptic mechanisms that enable this accurate spike firing remain poorly understood. Using paired recordings from adult frog hair cells and their afferent fibers we show here that during sinewave stimuli EPSC failures occur even during strong stimuli. However, exclusion of EPSC failures leads to mean EPSC amplitudes that are independent of Ca2+ current. Given the intrinsic jitter in spike triggering, evoked EPSPs and spikes had surprisingly similar degrees of synchronization to a sinewave stimulus. This similarity was explained by an unexpected finding: large-amplitude multiquantal EPSCs have a significantly larger synchronization index than smaller evoked EPSCs. Large EPSPs therefore enhance the precision of spike timing. The hair cells’ unique capacity for continuous, large-amplitude, and highly synchronous multiquantal release thus underlies its ability to trigger phase-locked spikes in afferent fibers. PMID:25199707

  14. Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility.

    PubMed

    Köppl, Christine; Forge, Andrew; Manley, Geoffrey A

    2004-11-08

    Hair cells are the mechanoreceptive cells of the vertebrate lateral line and inner ear. In addition to their sensory function, hair cells display motility and thus themselves generate mechanical energy, which is thought to enhance sensitivity. Two principal cellular mechanism are known that can mediate hair-cell motility in vitro. One of these is based on voltage-dependent changes of an intramembrane protein and has so far been demonstrated only in outer hair cells of the mammalian cochlea. Correlated with this, the cell membranes of outer hair cells carry an extreme density of embedded particles, as revealed by freeze fracturing. The present study explored the possibility of membrane-based motility in hair cells of nonmammals, by determining their density of intramembrane particles. Replicas of freeze-fractured membrane were prepared from auditory hair cells of a lizard, the Tokay gecko, and a bird, the barn owl. These species were chosen because of independent evidence for active cochlear mechanics, in the form of spontaneous otoacoustic emissions. For quantitative comparison, mammalian inner and outer hair cells, as well as vestibular hair, cells were reevaluated. Lizard and bird hair cells displayed median densities of 2,360 and 1,880 intramembrane particles/microm2, respectively. This was not significantly different from the densities in vestibular and mammalian inner hair cells; however, it was about half the density in of mammalian outer hair cells. This suggests that nonmammalian hair cells do not possess high densities of motor protein in their membranes and are thus unlikely to be capable of somatic motility. 2004 Wiley-Liss, Inc.

  15. Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells

    PubMed Central

    Vélez-Ortega, A Catalina; Freeman, Mary J; Indzhykulian, Artur A; Grossheim, Jonathan M; Frolenkov, Gregory I

    2017-01-01

    Mechanotransducer channels at the tips of sensory stereocilia of inner ear hair cells are gated by the tension of 'tip links' interconnecting stereocilia. To ensure maximal sensitivity, tip links are tensioned at rest, resulting in a continuous influx of Ca2+ into the cell. Here, we show that this constitutive Ca2+ influx, usually considered as potentially deleterious for hair cells, is in fact essential for stereocilia stability. In the auditory hair cells of young postnatal mice and rats, a reduction in mechanotransducer current, via pharmacological channel blockers or disruption of tip links, leads to stereocilia shape changes and shortening. These effects occur only in stereocilia that harbor mechanotransducer channels, recover upon blocker washout or tip link regeneration and can be replicated by manipulations of extracellular Ca2+ or intracellular Ca2+ buffering. Thus, our data provide the first experimental evidence for the dynamic control of stereocilia morphology by the mechanotransduction current. DOI: http://dx.doi.org/10.7554/eLife.24661.001 PMID:28350294

  16. Electrically evoked auditory nerve responses in the cochlea with normal outer hair cells.

    PubMed

    Ren, Tianying; Guo, Menghe; He, Wenxuan; Miller, Josef M; Nuttall, Alfred L

    2009-12-01

    As hybrid cochlear implant devices are increasingly used for restoring hearing in patients with residual hearing it is important to understand electrically evoked responses in cochleae having functional hair cells. To test the hypothesis that extracochlear electrical stimulation (EES) from sinusoidal current can provoke an auditory nerve response with normal frequency selectivity, the EES-evoked compound action potential (ECAP) was investigated in this study. Brief sinusoidal electrical currents, delivered via a round window electrode, were used to evoke ECAP. The ECAP waveform was observed to be the same as the acoustically evoked CAP (ACAP), except for a shorter latency. The input/output and intensity/latency functions of ACAPs and ECAPs were also similar. The maximum acoustic masking for both ACAP and ECAP occurred near probe frequencies. Since the masked tuning curve of a CAP reflects the frequency selectivity of neural excitation, these data demonstrate a highly specific activation of the auditory nerve, which would result in high degree of frequency selectivity. This frequency selectivity likely results from the cochlear traveling wave caused by electrically stimulated outer hair cells.

  17. Electrically evoked auditory nerve responses in the cochlea with normal outer hair cells

    PubMed Central

    Ren, Tianying.; Guo, Menghe; He, Wenxuan; Miller, Josef M; Nuttall, Alfred L

    2010-01-01

    As hybrid cochlear implant devices are increasingly used for restoring hearing in patients with residual hearing it is important to understand electrically evoked responses in cochleae having functional hair cells. To test the hypothesis that extracochlear electrical stimulation (EES) from sinusoidal current can provoke an auditory nerve response with normal frequency selectivity, the EES-evoked compound action potential (ECAP) was investigated in this study. Brief sinusoidal electrical currents, delivered via a round window electrode, were used to evoke ECAP. The ECAP waveform was observed to be the same as the acoustically evoked CAP (ACAP), except for a shorter latency. The input/output and intensity/latency functions of ACAPs and ECAPs were also similar. The maximum acoustic masking for both ACAP and ECAP occurred near probe frequencies. Since the masked tuning curve of a CAP reflects the frequency selectivity of neural excitation, these data demonstrate a highly specific activation of the auditory nerve, which would result in high degree of frequency selectivity. This frequency selectivity likely results from the cochlear traveling wave caused by electrically stimulated outer hair cells. PMID:22034583

  18. Relationship between auditory thresholds, central spontaneous activity and hair cell loss after acoustic trauma

    PubMed Central

    Mulders, W.H.A.M.; Ding, D.; Salvi, R.; Robertson, D.

    2011-01-01

    Acoustic trauma caused by exposure to a very loud sound increases spontaneous activity in central auditory structures such as the inferior colliculus. This hyperactivity has been suggested as a neural substrate for tinnitus, a phantom hearing sensation. In previous studies we have described a tentative link between the frequency region of hearing impairment and the corresponding tonotopic regions in the inferior colliculus showing hyperactivity. In this study we further investigated the relationship between cochlear compound action potential threshold loss, cochlear outer and inner hair cell loss and central hyperactivity in inferior colliculus of guinea pigs. Two weeks after a 10 kHz pure tone acoustic trauma, a tight relationship was demonstrated between the frequency region of compound action potential threshold loss and frequency regions in the inferior colliculus showing hyperactivity. Extending the duration of the acoustic trauma from 1 to 2 h did not result in significant increases in final cochlear threshold loss, but did result in a further increase of spontaneous firing rates in the inferior colliculus. Interestingly, hair cell loss was not present in the frequency regions where elevated cochlear thresholds and central hyperactivity were measured, suggesting that subtle changes in hair cell or primary afferent neural function are sufficient for central hyperactivity to be triggered and maintained. PMID:21491427

  19. Cholesterol Influences Voltage-Gated Calcium Channels and BK-Type Potassium Channels in Auditory Hair Cells

    PubMed Central

    Purcell, Erin K.; Liu, Liqian; Thomas, Paul V.; Duncan, R. Keith

    2011-01-01

    The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitabilityare unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD) on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs) are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type) potassiumcurrent by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (∼30%), ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology. PMID:22046269

  20. Phylogenetic differences in calcium permeability of the auditory hair cell cholinergic nicotinic receptor

    PubMed Central

    Lipovsek, Marcela; Im, Gi Jung; Franchini, Lucía F.; Pisciottano, Francisco; Katz, Eleonora; Fuchs, Paul Albert; Elgoyhen, Ana Belén

    2012-01-01

    The α9 and α10 cholinergic nicotinic receptor subunits assemble to form the receptor that mediates efferent inhibition of hair cell function within the auditory sensory organ, a mechanism thought to modulate the dynamic range of hearing. In contrast to all nicotinic receptors, which serve excitatory neurotransmission, the activation of α9α10 produces hyperpolarization of hair cells. An evolutionary analysis has shown that the α10 subunit exhibits signatures of positive selection only along the mammalian lineage, strongly suggesting the acquisition of a unique function. To establish whether mammalian α9α10 receptors have acquired distinct functional properties as a consequence of this evolutionary pressure, we compared the properties of rat and chicken recombinant and native α9α10 receptors. Our main finding in the present work is that, in contrast to the high (pCa2+/pMonovalents ∼10) Ca2+ permeability reported for rat α9α10 receptors, recombinant and native chicken α9α10 receptors have a much lower permeability (∼2) to this cation, comparable to that of neuronal α4β2 receptors. Moreover, we show that, in contrast to α10, α7 as well as α4 and β2 nicotinic subunits are under purifying selection in vertebrates, consistent with the conserved Ca2+ permeability reported across species. These results have important consequences for the activation of signaling cascades that lead to hyperpolarization of hair cells after α9α10 gating at the cholinergic–hair cell synapse. In addition, they suggest that high Ca2+ permeability of the α9α10 cholinergic nicotinic receptor might have evolved together with other features that have given the mammalian ear an expanded high-frequency sensitivity. PMID:22371598

  1. Auditory Brainstem Response Altered in Humans With Noise Exposure Despite Normal Outer Hair Cell Function

    PubMed Central

    Bramhall, Naomi F.; Konrad-Martin, Dawn; McMillan, Garnett P.; Griest, Susan E.

    2017-01-01

    Objectives Recent animal studies demonstrated that cochlear synaptopathy, a partial loss of inner hair cell-auditory nerve fiber synapses, can occur in response to noise exposure without any permanent auditory threshold shift. In animal models, this synaptopathy is associated with a reduction in the amplitude of wave I of the auditory brainstem response (ABR). The goal of this study was to determine whether higher lifetime noise exposure histories in young people with clinically normal pure-tone thresholds are associated with lower ABR wave I amplitudes. Design Twenty-nine young military Veterans and 35 non Veterans (19 to 35 years of age) with normal pure-tone thresholds were assigned to 1 of 4 groups based on their self-reported lifetime noise exposure history and Veteran status. Suprathreshold ABR measurements in response to alternating polarity tone bursts were obtained at 1, 3, 4, and 6 kHz with gold foil tiptrode electrodes placed in the ear canal. Wave I amplitude was calculated from the difference in voltage at the positive peak and the voltage at the following negative trough. Distortion product otoacoustic emission input/output functions were collected in each participant at the same four frequencies to assess outer hair cell function. Results After controlling for individual differences in sex and distortion product otoacoustic emission amplitude, the groups containing participants with higher reported histories of noise exposure had smaller ABR wave I amplitudes at suprathreshold levels across all four frequencies compared with the groups with less history of noise exposure. Conclusions Suprathreshold ABR wave I amplitudes were reduced in Veterans reporting high levels of military noise exposure and in non Veterans reporting any history of firearm use as compared with Veterans and non Veterans with lower levels of reported noise exposure history. The reduction in ABR wave I amplitude in the groups with higher levels of noise exposure cannot be accounted

  2. Regulated vesicular trafficking of specific PCDH15 and VLGR1 variants in auditory hair cells.

    PubMed

    Zallocchi, Marisa; Delimont, Duane; Meehan, Daniel T; Cosgrove, Dominic

    2012-10-03

    Usher syndrome is a genetically heterogeneous disorder characterized by hearing and balance dysfunction and progressive retinitis pigmentosa. Mouse models carrying mutations for the nine Usher-associated genes have splayed stereocilia, and some show delayed maturation of ribbon synapses suggesting these proteins may play different roles in terminal differentiation of auditory hair cells. The presence of the Usher proteins at the basal and apical aspects of the neurosensory epithelia suggests the existence of regulated trafficking through specific transport proteins and routes. Immature mouse cochleae and UB/OC-1 cells were used in this work to address whether specific variants of PCDH15 and VLGR1 are being selectively transported to opposite poles of the hair cells. Confocal colocalization studies between apical and basal vesicular markers and the different PCDH15 and VLGR1 variants along with sucrose density gradients and the use of vesicle trafficking inhibitors show the existence of Usher protein complexes in at least two vesicular subpools. The apically trafficked pool colocalized with the early endosomal vesicle marker, rab5, while the basally trafficked pool associated with membrane microdomains and SNAP25. Moreover, coimmunoprecipitation experiments between SNAP25 and VLGR1 show a physical interaction of these two proteins in organ of Corti and brain. Collectively, these findings establish the existence of a differential vesicular trafficking mechanism for specific Usher protein variants in mouse cochlear hair cells, with the apical variants playing a potential role in endosomal recycling and stereocilia development/maintenance, and the basolateral variants involved in vesicle docking and/or fusion through SNAP25-mediated interactions.

  3. An analog VLSI implementation of the inner hair cell and auditory nerve using a dual AGC model.

    PubMed

    Freedman, David S; Cohen, Howard I; Deligeorges, Socrates; Karl, Christian; Hubbard, Allyn E

    2014-04-01

    An analog inner hair cell and auditory nerve circuit using a dual AGC model has been implemented using 0.35 micron mixed-signal technology. A fully-differential current-mode architecture is used and the ability to correct channel mismatch is evaluated with matched layouts as well as with digital current tuning. The Meddis test paradigm is used to examine the analog implementation's auditory processing capabilities and investigate the circuit's ability to correct DC mismatch. The correction techniques used demonstrate the analog inner hair cell and auditory nerve circuit's potential use in low-power, multiple-sensor analog biomimetic systems with highly reproducible signal processing blocks on a single massively parallel integrated circuit.

  4. Allicin protects auditory hair cells and spiral ganglion neurons from cisplatin - Induced apoptosis.

    PubMed

    Wu, Xianmin; Li, Xiaofei; Song, Yongdong; Li, He; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Li, Jianfeng; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-04-01

    Cisplatin is a broad-spectrum anticancer drug that is commonly used in the clinic. Ototoxicity is one of the major side effects of this drug, which caused irreversible sensorineural hearing loss. Allicin, the main biologically active compound derived from garlic, has been shown to exert various anti-apoptotic and anti-oxidative activities in vitro and in vivo studies. We took advantage of C57 mice intraperitoneally injected with cisplatin alone or with cisplatin and allicin combined, to investigate whether allicin plays a protective role in vivo against cisplatin ototoxicity. The result showed that C57 mice in cisplatin group exhibited increased shift in auditory brainstem response, whereas the auditory fuction of mice in allicin + cisplatin group was protected in most frequencies, which was accordance with observed damages of outer hair cells (OHCs) and spiral ganglion neurons (SGNs) in the cochlea. Allicin markedly protected SGN mitochondria from damage and releasing cytochrome c, and significantly reduced pro-apoptosis factor expressions activated by cisplatin, including Bax, cleaved-caspase-9, cleaved-caspase-3and p53. Furthermore, allicin reduced the level of Malondialdehyde (MDA), but increased the level of superoxide dismutase (SOD). All data suggested that allicin could prevent hearing loss induced by cisplatin effectively, of which allicin protected SGNs from apoptosis via mitochondrial pathway while protected OHCs and supporting cells (SCs) from apoptosis through p53 pathway.

  5. Short term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells

    PubMed Central

    Ballestero, Jimena; de San Martín, Javier Zorrilla; Goutman, Juan; Elgoyhen, Ana Belén; Fuchs, Paul A.; Katz, Eleonora

    2011-01-01

    In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHCs function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked inhibitory postsynaptic currents (eIPSCs) are mediated solely by α9α10 nicotinic acetylcholine receptors (nAChRs) functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies above 10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier. PMID:21994392

  6. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells.

    PubMed Central

    Tolomeo, J A; Steele, C R; Holley, M C

    1996-01-01

    Mammalian auditory outer hair cells generate high-frequency mechanical forces that enhance sound-induced displacements of the basilar membrane within the inner ear. It has been proposed that the resulting cell deformation is directed along the longitudinal axis of the cell by the cortical cytoskeleton. We have tested this proposal by making direct mechanical measurements on outer hair cells. The resultant stiffness modulus along the axis of whole dissociated cells was 3 x 10(-3) N/m, consistent with previously published values. The resultant axial and circumferential stiffness moduli for the cortical lattice were 5 x 10(-4) N/m and 3 x 10(-3) N/m, respectively. Thus the cortical lattice is a highly orthotropic structure. Its axial stiffness is small compared with that of the intact cell, but its circumferential stiffness is within the same order of magnitude. These measurements support the theory that the cortical cytoskeleton directs electrically driven length changes along the longitudinal axis of the cell. The Young's modulus of the circumferential filamentous components of the lattice were calculated to be 1 x 10(7) N/m2. The axial cross-links, believed to be a form of spectrin, were calculated to have a Young's modulus of 3 x 10(6) N/m2. Based on the measured values for the lattice and intact cell cortex, an estimate for the resultant stiffness modulus of the plasma membrane was estimated to be on the order of 10(-3) N/m. Thus, the plasma membrane appears to be relatively stiff and may be the dominant contributor to the axial stiffness of the intact cell. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 5 PMID:8804625

  7. Changes in size and shape of auditory hair cells in vivo during noise-induced temporary threshold shift.

    PubMed

    Dew, L A; Owen, R G; Mulroy, M J

    1993-03-01

    In this study we describe changes in the size and shape of auditory hair cells of the alligator lizard in vivo during noise-induced temporary threshold shift. These changes consist of a decrease in cell volume, a decrease in cell length and an increase in cell width. We speculate that these changes are due to relaxation of cytoskeletal contractile elements and osmotic loss of intracellular water. We also describe a decrease in the surface area of the hair cell plasmalemma, and speculate that it is related to the endocytosis and intracellular accumulation of cell membrane during synaptic vesicle recycling. Finally we describe an increase in the endolymphatic surface area of the hair cell, and speculate that this could alter the micromechanics of the stereociliary tuft to attenuate the effective stimulus.

  8. Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing

    NASA Astrophysics Data System (ADS)

    Edri, Yuval; Bozovic, Dolores; Yochelis, Arik

    2016-10-01

    The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.

  9. A revised model of the inner-hair cell and auditory-nerve complex

    NASA Astrophysics Data System (ADS)

    Sumner, Christian J.; Lopez-Poveda, Enrique A.; O'Mard, Lowel P.; Meddis, Ray

    2002-05-01

    A revised computational model of the inner-hair cell (IHC) and auditory-nerve (AN) complex is presented and evaluated. Building on previous models, the algorithm is intended as a component for use in more comprehensive models of the auditory periphery. It combines smaller components that aim to be faithful to physiology in so far as is practicable and known. Transduction between cochlear mechanical motion and IHC receptor potential (RP) is simulated using a modification of an existing biophysical IHC model. Changes in RP control the opening of calcium ion channels near the synapse, and local calcium levels determine the probability of the release of neurotransmitter. AN adaptation results from transmitter depletion. The exact timing of AN action potentials is determined by the quantal and stochastic release of neurotransmitter into the cleft. The model reproduces a wide range of animal RP and AN observations. When the input to the model is taken from a suitably nonlinear simulation of the motion of the cochlear partition, the new algorithm is able to simulate the rate-intensity functions of low-, medium-, and high-spontaneous rate AN fibers in response to stimulation both at best frequency and at other frequencies. The variation in fiber type arises in large part from the manipulation of a single parameter in the model: maximum calcium conductance. The model also reproduces quantitatively phase-locking characteristics, relative refractory effects, mean-to-variance ratio, and first- and second-order discharge history effects.

  10. ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice

    PubMed Central

    Diaz-Horta, Oscar; Abad, Clemer; Sennaroglu, Levent; Foster, Joseph; DeSmidt, Alexandra; Bademci, Guney; Tokgoz-Yilmaz, Suna; Cengiz, F. Basak; Grati, M’hamed; Fitoz, Suat; Liu, Xue Z.; Farooq, Amjad; Imtiaz, Faiqa; Currall, Benjamin B.; Morton, Cynthia Casson; Nishita, Michiru; Minami, Yasuhiro; Lu, Zhongmin; Walz, Katherina; Tekin, Mustafa

    2016-01-01

    Hair cells of the inner ear, the mechanosensory receptors, convert sound waves into neural signals that are passed to the brain via the auditory nerve. Little is known about the molecular mechanisms that govern the development of hair cell–neuronal connections. We ascertained a family with autosomal recessive deafness associated with a common cavity inner ear malformation and auditory neuropathy. Via whole-exome sequencing, we identified a variant (c.2207G>C, p.R736T) in ROR1 (receptor tyrosine kinase-like orphan receptor 1), cosegregating with deafness in the family and absent in ethnicity-matched controls. ROR1 is a tyrosine kinase-like receptor localized at the plasma membrane. At the cellular level, the mutation prevents the protein from reaching the cellular membrane. In the presence of WNT5A, a known ROR1 ligand, the mutated ROR1 fails to activate NF-κB. Ror1 is expressed in the inner ear during development at embryonic and postnatal stages. We demonstrate that Ror1 mutant mice are severely deaf, with preserved otoacoustic emissions. Anatomically, mutant mice display malformed cochleae. Axons of spiral ganglion neurons show fasciculation defects. Type I neurons show impaired synapses with inner hair cells, and type II neurons display aberrant projections through the cochlear sensory epithelium. We conclude that Ror1 is crucial for spiral ganglion neurons to innervate auditory hair cells. Impairment of ROR1 function largely affects development of the inner ear and hearing in humans and mice. PMID:27162350

  11. Auditory Hair Cell-Specific Deletion of p27Kip1 in Postnatal Mice Promotes Cell-Autonomous Generation of New Hair Cells and Normal Hearing

    PubMed Central

    Walters, Bradley J.; Liu, Zhiyong; Crabtree, Mark; Coak, Emily; Cox, Brandon C.

    2014-01-01

    Hearing in mammals relies upon the transduction of sound by hair cells (HCs) in the organ of Corti within the cochlea of the inner ear. Sensorineural hearing loss is a widespread and permanent disability due largely to a lack of HC regeneration in mammals. Recent studies suggest that targeting the retinoblastoma (Rb)/E2F pathway can elicit proliferation of auditory HCs. However, previous attempts to induce HC proliferation in this manner have resulted in abnormal cochlear morphology, HC death, and hearing loss. Here we show that cochlear HCs readily proliferate and survive following neonatal, HC-specific, conditional knock-out of p27Kip1 (p27CKO), a tumor suppressor upstream of Rb. Indeed, HC-specific p27CKO results in proliferation of these cells without the upregulation of the supporting cell or progenitor cell proteins, Prox1 or Sox2, suggesting that they remain HCs. Furthermore, p27CKO leads to a significant addition of postnatally derived HCs that express characteristic synaptic and stereociliary markers and survive to adulthood, although a portion of the newly derived inner HCs exhibit cytocauds and lack VGlut3 expression. Despite this, p27CKO mice exhibit normal hearing as measured by evoked auditory brainstem responses, which suggests that the newly generated HCs may contribute to, or at least do not greatly detract from, function. These results show that p27Kip1 actively maintains HC quiescence in postnatal mice, and suggest that inhibition of p27Kip1 in residual HCs represents a potential strategy for cell-autonomous auditory HC regeneration. PMID:25411503

  12. Auditory hair cell-specific deletion of p27Kip1 in postnatal mice promotes cell-autonomous generation of new hair cells and normal hearing.

    PubMed

    Walters, Bradley J; Liu, Zhiyong; Crabtree, Mark; Coak, Emily; Cox, Brandon C; Zuo, Jian

    2014-11-19

    Hearing in mammals relies upon the transduction of sound by hair cells (HCs) in the organ of Corti within the cochlea of the inner ear. Sensorineural hearing loss is a widespread and permanent disability due largely to a lack of HC regeneration in mammals. Recent studies suggest that targeting the retinoblastoma (Rb)/E2F pathway can elicit proliferation of auditory HCs. However, previous attempts to induce HC proliferation in this manner have resulted in abnormal cochlear morphology, HC death, and hearing loss. Here we show that cochlear HCs readily proliferate and survive following neonatal, HC-specific, conditional knock-out of p27(Kip1) (p27CKO), a tumor suppressor upstream of Rb. Indeed, HC-specific p27CKO results in proliferation of these cells without the upregulation of the supporting cell or progenitor cell proteins, Prox1 or Sox2, suggesting that they remain HCs. Furthermore, p27CKO leads to a significant addition of postnatally derived HCs that express characteristic synaptic and stereociliary markers and survive to adulthood, although a portion of the newly derived inner HCs exhibit cytocauds and lack VGlut3 expression. Despite this, p27CKO mice exhibit normal hearing as measured by evoked auditory brainstem responses, which suggests that the newly generated HCs may contribute to, or at least do not greatly detract from, function. These results show that p27(Kip1) actively maintains HC quiescence in postnatal mice, and suggest that inhibition of p27(Kip1) in residual HCs represents a potential strategy for cell-autonomous auditory HC regeneration.

  13. Saccular-specific hair cell addition correlates with reproductive state-dependent changes in the auditory saccular sensitivity of a vocal fish

    PubMed Central

    Coffin, Allison B.; Mohr, Robert A.; Sisneros, Joseph A.

    2012-01-01

    The plainfin midshipman fish, Porichthys notatus, is a seasonal breeding teleost fish for which vocal-acoustic communication is essential for its reproductive success. Female midshipman use the saccule as the primary end organ for hearing to detect and locate “singing” males that produce multiharmonic advertisement calls during the summer breeding season. Previous work showed that female auditory sensitivity changes seasonally with reproductive state; summer reproductive females become better suited than winter nonreproductive females to detect and encode the dominant higher harmonic components in the male’s advertisement call, which are potentially critical for mate selection and localization. Here, we test the hypothesis that these seasonal changes in female auditory sensitivity are concurrent with seasonal increases in saccular hair cell receptors. We show that there is increased hair cell density in reproductive females and that this increase is not dependent on body size since similar changes in hair cell density were not found in the other inner ear end organs. We also observed an increase in the number of small, potentially immature saccular hair bundles in reproductive females. The seasonal increase in saccular hair cell density and smaller hair bundles in reproductive females was paralleled by a dramatic increase in the magnitude of the evoked saccular potentials and a corresponding decrease in the auditory thresholds recorded from the saccule. This demonstration of correlated seasonal plasticity of hair cell addition and auditory sensitivity may in part facilitate the adaptive auditory plasticity of this species to enhance mate detection and localization during breeding. PMID:22279221

  14. Hair cell ribbon synapses

    PubMed Central

    Brandt, Andreas; Lysakowski, Anna

    2010-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the apical compartment. Transmitter release occurs at several active zones along the basolateral membrane. The astonishing capability of the hair cell ribbon synapse for temporally precise and reliable sensory coding has been the subject of intense investigation over the past few years. This research has been facilitated by the excellent experimental accessibility of the hair cell. For the same reason, the hair cell serves as an important model for studying presynaptic Ca2+ signaling and stimulus-secretion coupling. In addition to common principles, hair cell synapses differ in their anatomical and functional properties among species, among the auditory and vestibular organs, and among hair cell positions within the organ. Here, we briefly review synaptic morphology and connectivity and then focus on stimulus-secretion coupling at hair cell synapses. PMID:16944206

  15. Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.

    PubMed

    Peng, Anthony W; Gnanasambandam, Radhakrishnan; Sachs, Frederick; Ricci, Anthony J

    2016-03-09

    The auditory system is able to detect movement down to atomic dimensions. This sensitivity comes in part from mechanisms associated with gating of hair cell mechanoelectric transduction (MET) channels. MET channels, located at the tops of stereocilia, are poised to detect tension induced by hair bundle deflection. Hair bundle deflection generates a force by pulling on tip-link proteins connecting adjacent stereocilia. The resting open probability (P(open)) of MET channels determines the linearity and sensitivity to mechanical stimulation. Classically, P(open) is regulated by a calcium-sensitive adaptation mechanism in which lowering extracellular calcium or depolarization increases P(open). Recent data demonstrated that the fast component of adaptation is independent of both calcium and voltage, thus requiring an alternative explanation for the sensitivity of P(open) to calcium and voltage. Using rat auditory hair cells, we characterize a mechanism, separate from fast adaptation, whereby divalent ions interacting with the local lipid environment modulate resting P(open). The specificity of this effect for different divalent ions suggests binding sites that are not an EF-hand or calmodulin model. GsMTx4, a lipid-mediated modifier of cationic stretch-activated channels, eliminated the voltage and divalent sensitivity with minimal effects on adaptation. We hypothesize that the dual mechanisms (lipid modulation and adaptation) extend the dynamic range of the system while maintaining adaptation kinetics at their maximal rates.

  16. An unusually powerful mode of low-frequency sound interference due to defective hair bundles of the auditory outer hair cells.

    PubMed

    Kamiya, Kazusaku; Michel, Vincent; Giraudet, Fabrice; Riederer, Brigitte; Foucher, Isabelle; Papal, Samantha; Perfettini, Isabelle; Le Gal, Sébastien; Verpy, Elisabeth; Xia, Weiliang; Seidler, Ursula; Georgescu, Maria-Magdalena; Avan, Paul; El-Amraoui, Aziz; Petit, Christine

    2014-06-24

    A detrimental perceptive consequence of damaged auditory sensory hair cells consists in a pronounced masking effect exerted by low-frequency sounds, thought to occur when auditory threshold elevation substantially exceeds 40 dB. Here, we identified the submembrane scaffold protein Nherf1 as a hair-bundle component of the differentiating outer hair cells (OHCs). Nherf1(-/-) mice displayed OHC hair-bundle shape anomalies in the mid and basal cochlea, normally tuned to mid- and high-frequency tones, and mild (22-35 dB) hearing-threshold elevations restricted to midhigh sound frequencies. This mild decrease in hearing sensitivity was, however, discordant with almost nonresponding OHCs at the cochlear base as assessed by distortion-product otoacoustic emissions and cochlear microphonic potentials. Moreover, unlike wild-type mice, responses of Nherf1(-/-) mice to high-frequency (20-40 kHz) test tones were not masked by tones of neighboring frequencies. Instead, efficient maskers were characterized by their frequencies up to two octaves below the probe-tone frequency, unusually low intensities up to 25 dB below probe-tone level, and growth-of-masker slope (2.2 dB/dB) reflecting their compressive amplification. Together, these properties do not fit the current acknowledged features of a hypersensitivity of the basal cochlea to lower frequencies, but rather suggest a previously unidentified mechanism. Low-frequency maskers, we propose, may interact within the unaffected cochlear apical region with midhigh frequency sounds propagated there via a mode possibly using the persistent contact of misshaped OHC hair bundles with the tectorial membrane. Our findings thus reveal a source of misleading interpretations of hearing thresholds and of hypervulnerability to low-frequency sound interference.

  17. Modes and regulation of endocytic membrane retrieval in mouse auditory hair cells.

    PubMed

    Neef, Jakob; Jung, Sangyong; Wong, Aaron B; Reuter, Kirsten; Pangrsic, Tina; Chakrabarti, Rituparna; Kügler, Sebastian; Lenz, Christine; Nouvian, Régis; Boumil, Rebecca M; Frankel, Wayne N; Wichmann, Carolin; Moser, Tobias

    2014-01-15

    Synaptic vesicle recycling sustains high rates of neurotransmission at the ribbon-type active zones (AZs) of mouse auditory inner hair cells (IHCs), but its modes and molecular regulation are poorly understood. Electron microscopy indicated the presence of clathrin-mediated endocytosis (CME) and bulk endocytosis. The endocytic proteins dynamin, clathrin, and amphiphysin are expressed and broadly distributed in IHCs. We used confocal vglut1-pHluorin imaging and membrane capacitance (Cm) measurements to study the spatial organization and dynamics of IHC exocytosis and endocytosis. Viral gene transfer expressed vglut1-pHluorin in IHCs and targeted it to synaptic vesicles. The intravesicular pH was ∼6.5, supporting only a modest increase of vglut1-pHluorin fluorescence during exocytosis and pH neutralization. Ca(2+) influx triggered an exocytic increase of vglut1-pHluorin fluorescence at the AZs, around which it remained for several seconds. The endocytic Cm decline proceeded with constant rate (linear component) after exocytosis of the readily releasable pool (RRP). When exocytosis exceeded three to four RRP equivalents, IHCs additionally recruited a faster Cm decline (exponential component) that increased with the amount of preceding exocytosis and likely reflects bulk endocytosis. The dynamin inhibitor Dyngo-4a and the clathrin blocker pitstop 2 selectively impaired the linear component of endocytic Cm decline. A missense mutation of dynamin 1 (fitful) inhibited endocytosis to a similar extent as Dyngo-4a. We propose that IHCs use dynamin-dependent endocytosis via CME to support vesicle cycling during mild stimulation but recruit bulk endocytosis to balance massive exocytosis.

  18. Probing the pore of the auditory hair cell mechanotransducer channel in turtle

    PubMed Central

    Farris, H E; LeBlanc, C L; Goswami, J; Ricci, A J

    2004-01-01

    Hair cell mechano-electric transducer (MET) channels play a pivotal role in auditory and vestibular signal detection, yet few data exist regarding their molecular nature. Present work characterizes the MET channel pore, a region whose properties are thought to be intrinsically determined. Two approaches were used. First, the channel was probed with antagonists of candidate channel subtypes including: cyclic nucleotide-gated channels, transient receptor potential channels and gap-junctional channels. Eight new antagonists were identified. Most of the effective antagonists had a partially charged amine group predicted to penetrate the channel pore, antagonizing current flow, while the remainder of the molecule prevented further permeation of the compound through the pore. This blocking mechanism was tested using curare to demonstrate the open channel nature of the block and by identifying methylene blue as a permeant channel blocker. The second approach estimated dimensions of the channel pore with simple amine compounds. The narrowest diameter of the pore was calculated as 12.5 ± 0.8 Å and the location of a binding site ∼45% of the way through the membrane electric field was calculated. Channel length was estimated as ∼31 Å and the width of the pore mouth at < 17 Å. Each effective antagonist had a minimal diameter, measured about the penetrating amine, of less than the pore diameter, with a direct correlation between IC50 and minimal diameter. The IC50 was also directly related to the length of the amine side chains, further validating the proposed pore blocking mechanism. Data provided by these two approaches support a hypothesis regarding channel permeation and block that incorporates molecular dimensions and ion interactions within the pore. PMID:15181168

  19. Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors

    PubMed Central

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Askew, Charles; Garrige, Suneetha; Gratton, Michael Anne; Rothermund-Franklin, Christie A.; Cosgrove, Dominic

    2009-01-01

    The Usher syndrome 3A (CLRN1) gene encodes clarin-1, which is a member of the tetraspanin family of transmembrane proteins. Although identified more than 6 years ago, little is known about its localization or function in the eye and ear. We developed a polyclonal antibody that react with all clarin-1 isoforms and used it to characterize protein expression in cochlea and retina. In the cochlea, we observe clarin-1expression in the stereocilia of P0 mice, and in synaptic terminals present at the base of the auditory hair cells from E18 to P6. In the retina, clarin-1 localizes to the connecting cilia, inner segment of photoreceptors and to the ribbon synapses. RT-PCR from P0 cochlea and P28 retina show mRNAs encoding only isoforms 2 and 3. Western-blots show that only isoform 2 is present in protein extracts from these same tissues. We examined clarin-1 expression in the immortomouse-derived hair cell line UB/OC-1. Only isoform 2 is expressed in UB/OC-1 at both mRNA and protein levels, suggesting this isoform is biologically relevant to hair cell function. The protein co-localizes with microtubules and post-transgolgi vesicles. The sub-cellular localization of clarin-1 in hair cells and photoreceptors suggests it functions at both the basal and apical poles of neurosensoriepithelia. PMID:19539019

  20. Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain.

    PubMed

    Möhrle, Dorit; Ni, Kun; Varakina, Ksenya; Bing, Dan; Lee, Sze Chim; Zimmermann, Ulrike; Knipper, Marlies; Rüttiger, Lukas

    2016-08-01

    A dramatic shift in societal demographics will lead to rapid growth in the number of older people with hearing deficits. Poorer performance in suprathreshold speech understanding and temporal processing with age has been previously linked with progressing inner hair cell (IHC) synaptopathy that precedes age-dependent elevation of auditory thresholds. We compared central sound responsiveness after acoustic trauma in young, middle-aged, and older rats. We demonstrate that IHC synaptopathy progresses from middle age onward and hearing threshold becomes elevated from old age onward. Interestingly, middle-aged animals could centrally compensate for the loss of auditory fiber activity through an increase in late auditory brainstem responses (late auditory brainstem response wave) linked to shortening of central response latencies. In contrast, old animals failed to restore central responsiveness, which correlated with reduced temporal resolution in responding to amplitude changes. These findings may suggest that cochlear IHC synaptopathy with age does not necessarily induce temporal auditory coding deficits, as long as the capacity to generate neuronal gain maintains normal sound-induced central amplitudes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Canonical transient receptor potential channel subtype 3-mediated hair cell Ca(2+) entry regulates sound transduction and auditory neurotransmission.

    PubMed

    Wong, Ann Chi Yan; Birnbaumer, Lutz; Housley, Gary D

    2013-05-01

    The physiological significance of canonical transient receptor potential (TRPC) ion channels in sensory systems is rapidly emerging. Heterologous expression studies show that TRPC3 is a significant Ca(2+) entry pathway, with dual activation via G protein-coupled receptor (GPCR)-phospholipase C-diacylglycerol second messenger signaling, and through negative feedback, whereby a fall in cytosolic Ca(2+) releases Ca(2+) -calmodulin channel block. We hypothesised that the latter process contributes to cochlear hair cell cytosolic Ca(2+) homeostasis. Confocal microfluorimetry with the Ca(2+) indicator Fluo-4 acetoxymethylester showed that, when cytosolic Ca(2+) was depleted, Ca(2+) re-entry was significantly impaired in mature TRPC3(-/-) inner and outer hair cells. The impact of this disrupted Ca(2+) homeostasis on sound transduction was assessed with the use of distortion product otoacoustic emissions (DPOAEs), which constitute a direct measure of the outer hair cell transduction that underlies hearing sensitivity and frequency selectivity. TRPC3(-/-) mice showed significantly stronger DPOAE (2f1  - f2 ) growth functions than wild-type (WT) littermates within the frequency range of best hearing acuity. This translated to hyperacusis (decreased threshold) measured by the auditory brainstem response (ABR). TRPC3(-/-) and WT mice did not differ in the levels of temporary and permanent threshold shift arising from noise exposure, indicating that potential GPCR signaling via TRPC3 is not pronounced. Overall, these data suggest that the Ca(2+) set-point in the hair cell, and hence membrane conductance, is modulated by TRPC3s through their function as a negative feedback-regulated Ca(2+) entry pathway. This TPRC3-regulated Ca(2+) homeostasis shapes the sound transduction input-output function and auditory neurotransmission.

  2. The acquisition of mechano‐electrical transducer current adaptation in auditory hair cells requires myosin VI

    PubMed Central

    Marcotti, Walter; Corns, Laura F.; Goodyear, Richard J.; Rzadzinska, Agnieszka K.; Avraham, Karen B.; Steel, Karen P.; Richardson, Guy P.

    2016-01-01

    Key points The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano‐electrical transducer (MET) channels.The MET currents decline during steady stimuli; this is termed adaptation and ensures they always work within the most sensitive part of their operating range, responding best to rapidly changing (sound) stimuli.In this study we used a mouse model (Snell's waltzer) for hereditary deafness in humans that has a mutation in the gene encoding an unconventional myosin, myosin VI, which is present in the hair bundles.We found that in the absence of myosin VI the MET current fails to acquire its characteristic adaptation as the hair bundles develop.We propose that myosin VI supports the acquisition of adaptation by removing key molecules from the hair bundle that serve a temporary, developmental role. Abstract Mutations in Myo6, the gene encoding the (F‐actin) minus end‐directed unconventional myosin, myosin VI, cause hereditary deafness in mice (Snell's waltzer) and humans. In the sensory hair cells of the cochlea, myosin VI is expressed in the cell bodies and along the stereocilia that project from the cells’ apical surface. It is required for maintaining the structural integrity of the mechanosensitive hair bundles formed by the stereocilia. In this study we investigate whether myosin VI contributes to mechano‐electrical transduction. We report that Ca2+‐dependent adaptation of the mechano‐electrical transducer (MET) current, which serves to keep the transduction apparatus operating within its most sensitive range, is absent in outer and inner hair cells from homozygous Snell's waltzer mutant mice, which fail to express myosin VI. The operating range of the MET channels is also abnormal in the mutants, resulting in the absence of a resting MET current. We found that cadherin 23, a component of the hair bundle's transient lateral links

  3. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain.

    PubMed

    Salvi, Richard; Sun, Wei; Ding, Dalian; Chen, Guang-Di; Lobarinas, Edward; Wang, Jian; Radziwon, Kelly; Auerbach, Benjamin D

    2016-01-01

    There are three times as many outer hair cells (OHC) as inner hair cells (IHC), yet IHC transmit virtually all acoustic information to the brain as they synapse with 90-95% of type I auditory nerve fibers. Here we review a comprehensive series of experiments aimed at determining how loss of the IHC/type I system affects hearing by selectively destroying these cells in chinchillas using the ototoxic anti-cancer agent carboplatin. Eliminating IHC/type I neurons has no effect on distortion product otoacoustic emission or the cochlear microphonic potential generated by OHC; however, it greatly reduces the summating potential produced by IHC and the compound action potential (CAP) generated by type I neurons. Remarkably, responses from remaining auditory nerve fibers maintain sharp tuning and low thresholds despite innervating regions of the cochlea with ~80% IHC loss. Moreover, chinchillas with large IHC lesions have surprisingly normal thresholds in quiet until IHC losses exceeded 80%, suggesting that only a few IHC are needed to detect sounds in quiet. However, behavioral thresholds in broadband noise are elevated significantly and tone-in-narrow band noise masking patterns exhibit greater remote masking. These results suggest the auditory system is able to compensate for considerable loss of IHC/type I neurons in quiet but not in difficult listening conditions. How does the auditory brain deal with the drastic loss of cochlear input? Recordings from the inferior colliculus found a relatively small decline in sound-evoked activity despite a large decrease in CAP amplitude after IHC lesion. Paradoxically, sound-evoked responses are generally larger than normal in the auditory cortex, indicative of increased central gain. This gain enhancement in the auditory cortex is associated with decreased GABA-mediated inhibition. These results suggest that when the neural output of the cochlea is reduced, the central auditory system compensates by turning up its gain so that

  4. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain

    PubMed Central

    Salvi, Richard; Sun, Wei; Ding, Dalian; Chen, Guang-Di; Lobarinas, Edward; Wang, Jian; Radziwon, Kelly; Auerbach, Benjamin D.

    2017-01-01

    There are three times as many outer hair cells (OHC) as inner hair cells (IHC), yet IHC transmit virtually all acoustic information to the brain as they synapse with 90–95% of type I auditory nerve fibers. Here we review a comprehensive series of experiments aimed at determining how loss of the IHC/type I system affects hearing by selectively destroying these cells in chinchillas using the ototoxic anti-cancer agent carboplatin. Eliminating IHC/type I neurons has no effect on distortion product otoacoustic emission or the cochlear microphonic potential generated by OHC; however, it greatly reduces the summating potential produced by IHC and the compound action potential (CAP) generated by type I neurons. Remarkably, responses from remaining auditory nerve fibers maintain sharp tuning and low thresholds despite innervating regions of the cochlea with ~80% IHC loss. Moreover, chinchillas with large IHC lesions have surprisingly normal thresholds in quiet until IHC losses exceeded 80%, suggesting that only a few IHC are needed to detect sounds in quiet. However, behavioral thresholds in broadband noise are elevated significantly and tone-in-narrow band noise masking patterns exhibit greater remote masking. These results suggest the auditory system is able to compensate for considerable loss of IHC/type I neurons in quiet but not in difficult listening conditions. How does the auditory brain deal with the drastic loss of cochlear input? Recordings from the inferior colliculus found a relatively small decline in sound-evoked activity despite a large decrease in CAP amplitude after IHC lesion. Paradoxically, sound-evoked responses are generally larger than normal in the auditory cortex, indicative of increased central gain. This gain enhancement in the auditory cortex is associated with decreased GABA-mediated inhibition. These results suggest that when the neural output of the cochlea is reduced, the central auditory system compensates by turning up its gain so that

  5. Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer

    PubMed Central

    Gnanasambandam, Radhakrishnan; Sachs, Frederick

    2016-01-01

    The auditory system is able to detect movement down to atomic dimensions. This sensitivity comes in part from mechanisms associated with gating of hair cell mechanoelectric transduction (MET) channels. MET channels, located at the tops of stereocilia, are poised to detect tension induced by hair bundle deflection. Hair bundle deflection generates a force by pulling on tip-link proteins connecting adjacent stereocilia. The resting open probability (Popen) of MET channels determines the linearity and sensitivity to mechanical stimulation. Classically, Popen is regulated by a calcium-sensitive adaptation mechanism in which lowering extracellular calcium or depolarization increases Popen. Recent data demonstrated that the fast component of adaptation is independent of both calcium and voltage, thus requiring an alternative explanation for the sensitivity of Popen to calcium and voltage. Using rat auditory hair cells, we characterize a mechanism, separate from fast adaptation, whereby divalent ions interacting with the local lipid environment modulate resting Popen. The specificity of this effect for different divalent ions suggests binding sites that are not an EF-hand or calmodulin model. GsMTx4, a lipid-mediated modifier of cationic stretch-activated channels, eliminated the voltage and divalent sensitivity with minimal effects on adaptation. We hypothesize that the dual mechanisms (lipid modulation and adaptation) extend the dynamic range of the system while maintaining adaptation kinetics at their maximal rates. SIGNIFICANCE STATEMENT Classically, changes in extracellular calcium and voltage affect open probability (Popen) through mechanoelectric transduction adaptation, and this mechanism is the only means of controlling the set point of the channel. Here, we further characterize the effects of extracellular calcium and voltage on the channel and for the first time determine that these manipulations occur through a mechanism that is independent of fast adaptation

  6. Remodeling of the Inner Hair Cell Microtubule Meshwork in a Mouse Model of Auditory Neuropathy AUNA1

    PubMed Central

    Surel, Clément; Guillet, Marie; Lenoir, Marc; Bourien, Jérôme; Sendin, Gaston; Joly, Willy; Delprat, Benjamin; Lesperance, Marci M.; Puel, Jean-Luc

    2016-01-01

    Abstract Auditory neuropathy 1 (AUNA1) is a form of human deafness resulting from a point mutation in the 5′ untranslated region of the Diaphanous homolog 3 (DIAPH3) gene. Notably, the DIAPH3 mutation leads to the overexpression of the DIAPH3 protein, a formin family member involved in cytoskeleton dynamics. Through study of diap3-overexpressing transgenic (Tg) mice, we examine in further detail the anatomical, functional, and molecular mechanisms underlying AUNA1. We identify diap3 as a component of the hair cells apical pole in wild-type mice. In the diap3-overexpressing Tg mice, which show a progressive threshold shift associated with a defect in inner hair cells (IHCs), the neurotransmitter release and potassium conductances are not affected. Strikingly, the overexpression of diap3 results in a selective and early-onset alteration of the IHC cuticular plate. Molecular dissection of the apical components revealed that the microtubule meshwork first undergoes aberrant targeting into the cuticular plate of Tg IHCs, followed by collapse of the stereociliary bundle, with eventual loss of the IHC capacity to transmit incoming auditory stimuli. PMID:28058271

  7. Differences in mechano-transducer channel kinetics underlie tonotopic distribution of fast adaptation in auditory hair cells.

    PubMed

    Ricci, Anthony

    2002-04-01

    The first step in audition is a deflection of the sensory hair bundle that opens mechanically gated channels, depolarizing the sensory hair cells. Two mechanism of adaptation of mechano-electric transducer (MET) channels have been identified in turtle auditory hair cells. The rate of fast adaptation varies tonotopically and is postulated to underlie a mechanical tuning mechanism in turtle auditory hair cells. Fast adaptation is driven by a calcium-dependent feedback process associated with MET channels. The purpose of this paper is to test the hypothesis that fast adaptation contributes to MET channel kinetics and that variations in channel kinetics underlie the tonotopic distribution of fast adaptation. To test for kinetic differences, the open channel blocker dihydrostreptomycin (DHS) was used. DHS blocked MET currents from low-frequency cells (IC(50) = 14 +/- 2 microM) more effectively than high-frequency cells (IC(50) = 75 +/- 5 microM), suggesting differences in MET channel properties. DHS block showed similar calcium sensitivities at both papilla locations. No difference in calcium permeation or block of the transducer channels was observed, indicating that the DHS effect was not due to differences in the channel pore. Slowing adaptation increased DHS efficacy, and speeding adaptation decreased DHS efficacy, suggesting that adaptation was influencing DHS block. DHS block of MET channels slowed adaptation, most likely by reducing the peak intraciliary calcium concentration achieved, supporting the hypothesis that the rate of adaptation varies with the calcium load per stereocilia. Another channel blocker, amiloride showed similar efficacy for high- and low-frequency cells with an IC(50) of 24.2 +/- 0.5 microM and a Hill coefficient of 2 but appeared to block high-frequency channels faster than low-frequency channels. To further explore MET channel differences between papilla locations, stationary noise analysis was performed. Spectral analysis of the noise

  8. PIEZO2 as the anomalous mechanotransducer channel in auditory hair cells.

    PubMed

    Beurg, Maryline; Fettiplace, Robert

    2017-10-05

    Throughout post-natal maturation of the mouse inner ear, cochlear hair cells display at least two types of mechanically-gated ion channel: normal mechanotransducer (MT) channels at the tips of the stereocilia, activated by tension in inter-ciliary tip links; and anomalous mechanosensitive (MS) channels on the top surface of the cells. The anomalous MS channels are responsible for the reverse-polarity current that appears in mutants in which normal transduction is lost. They are also seen in wild-type hair cells around birth, appearing two days earlier than normal MT channels, and being down-regulated with the emergence of the normal channels. We review the evidence that the normal and anomalous channels are distinct channel types, which includes differences in localization, susceptibility to pharmacological agents, single-channel conductance and Ca(2+) permeability. The dichotomy is reinforced by the observation that the anomalous current is absent in cochlear cells of Piezo2-null mice, even though the normal MT current persists. The anomalous current is suppressed by high intracellular Ca(2+) , suggesting that influx of the divalent via more Ca(2+) -permeable normal MT channels inhibits the anomalous channels, thus explaining the temporal relationship between the two. Piezo2-null mice have largely normal hearing, exhibiting up to 20 dB elevation in threshold in the acoustic brainstem response, so raising questions about the significance of PIEZO2 in the cochlea. Since the anomalous current declines with post-natal age, PIEZO2 may contribute to hair cell development, but it does not underlie the normal MT current. Its role in the development of hearing is not understood. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Effects of caffeic acid on cisplatin-induced hair cell damage in HEI-OC1 auditory cells.

    PubMed

    Choi, June; Kim, Shin Hye; Rah, Yoon Chan; Chae, Sung Won; Lee, Jong Dae; Md, Byung Don Lee; Park, Moo Kyun

    2014-12-01

    Cisplatin is a widely used anticancer chemotherapeutic agent. However, it is notorious for its ototoxicity and nephrotoxicity due to induction of reactive oxygen species (ROS). Caffeic acid is a naturally occurring polyphenol present in honey that is known to reduce the generation of oxygen-derived free radicals. The objective of the present study was to evaluate the protective effects and mechanism underlying the effect of caffeic acid on cisplatin-induced ototoxicity in HEI-OC1 auditory cell lines. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was determined by Hoechst 33258 staining and Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Cell cycle stages were analyzed by flow cytometry. The radical-scavenging activity of caffeic acid was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The expression levels of caspase-3, -8, and -9, as well as the activity of caspase-3, were evaluated. Caffeic acid showed a protective effect against cisplatin-induced HEI-OC1 cell damage as demonstrated by the MTT assay. Caffeic acid decreased cell death by apoptosis and necrosis. Caffeic acid showed strong scavenging activity against the radical DPPH and decreased intracellular ROS production. Caffeic acid decreased the expression of caspase-3 and -8 and increased the activity of caspase-3. Caffeic acid attenuated cisplatin-induced hair cell loss in HEI-OC1 cell lines; these effects were mediated by its radical scavenging activity and inhibition of apoptosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Developmental regulation of planar cell polarity and hair-bundle morphogenesis in auditory hair cells: lessons from human and mouse genetics.

    PubMed

    Lu, Xiaowei; Sipe, Conor W

    2016-01-01

    Hearing loss is the most common and costly sensory defect in humans and genetic causes underlie a significant proportion of affected individuals. In mammals, sound is detected by hair cells (HCs) housed in the cochlea of the inner ear, whose function depends on a highly specialized mechanotransduction organelle, the hair bundle. Understanding the factors that regulate the development and functional maturation of the hair bundle is crucial for understanding the pathophysiology of human deafness. Genetic analysis of deafness genes in animal models, together with complementary forward genetic screens and conditional knock-out mutations in essential genes, have provided great insights into the molecular machinery underpinning hair-bundle development and function. In this review, we highlight recent advances in our understanding of hair-bundle morphogenesis, with an emphasis on the molecular pathways governing hair-bundle polarity and orientation. We next discuss the proteins and structural elements important for hair-cell mechanotransduction as well as hair-bundle cohesion and maintenance. In addition, developmental signals thought to regulate tonotopic features of HCs are introduced. Finally, novel approaches that complement classic genetics for studying the molecular etiology of human deafness are presented. WIREs Dev Biol 2016, 5:85-101. doi: 10.1002/wdev.202 For further resources related to this article, please visit the WIREs website.

  11. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro

    PubMed Central

    Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves

    2015-01-01

    Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation. PMID:25918725

  12. Elementary properties of Ca2+ channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses

    PubMed Central

    Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L.; Masetto, Sergio

    2015-01-01

    Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca2+ entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca2+ channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses. PMID:25904847

  13. Developmental acquisition of a rapid calcium-regulated vesicle supply allows sustained high rates of exocytosis in auditory hair cells.

    PubMed

    Levic, Snezana; Bouleau, Yohan; Dulon, Didier

    2011-01-01

    Auditory hair cells (HCs) have the remarkable property to indefinitely sustain high rates of synaptic vesicle release during ongoing sound stimulation. The mechanisms of vesicle supply that allow such indefatigable exocytosis at the ribbon active zone remain largely unknown. To address this issue, we characterized the kinetics of vesicle recruitment and release in developing chick auditory HCs. Experiments were done using the intact chick basilar papilla from E10 (embryonic day 10) to P2 (two days post-hatch) by monitoring changes in membrane capacitance and Ca(2+) currents during various voltage stimulations. Compared to immature pre-hearing HCs (E10-E12), mature post-hearing HCs (E18-P2) can steadily mobilize a larger readily releasable pool (RRP) of vesicles with faster kinetics and higher Ca(2+) efficiency. As assessed by varying the inter-pulse interval of a 100 ms paired-pulse depolarization protocol, the kinetics of RRP replenishment were found much faster in mature HCs. Unlike mature HCs, exocytosis in immature HCs showed large depression during repetitive stimulations. Remarkably, when the intracellular concentration of EGTA was raised from 0.5 to 2 mM, the paired-pulse depression level remained unchanged in immature HCs but was drastically increased in mature HCs, indicating that the Ca(2+) sensitivity of the vesicle replenishment process increases during maturation. Concomitantly, the immunoreactivity of the calcium sensor otoferlin and the number of ribbons at the HC plasma membrane largely increased, reaching a maximum level at E18-P2. Our results suggest that the efficient Ca(2+)-dependent vesicle release and supply in mature HCs essentially rely on the concomitant engagement of synaptic ribbons and otoferlin at the plasma membrane.

  14. Effects of restricted basilar papillar lesions and hair cell regeneration on auditory forebrain frequency organization in adult European starlings.

    PubMed

    Irvine, Dexter R F; Brown, Mel; Kamke, Marc R; Rubel, Edwin W

    2009-05-27

    The frequency organization of neurons in the forebrain Field L complex (FLC) of adult starlings was investigated to determine the effects of hair cell (HC) destruction in the basal portion of the basilar papilla (BP) and of subsequent HC regeneration. Conventional microelectrode mapping techniques were used in normal starlings and in lesioned starlings either 2 d or 6-10 weeks after aminoglycoside treatment. Histological examination of the BP and recordings of auditory brainstem evoked responses confirmed massive loss of HCs in the basal portion of the BP and hearing losses at frequencies >2 kHz in starlings tested 2 d after aminoglycoside treatment. In these birds, all neurons in the region of the FLC in which characteristic frequencies (CFs) normally increase from 2 to 6 kHz had CF in the range of 2-4 kHz. The significantly elevated thresholds of responses in this region of altered tonotopic organization indicated that they were the residue of prelesion responses and did not reflect CNS plasticity. In the long-term recovery birds, there was histological evidence of substantial HC regeneration. The tonotopic organization of the high-frequency region of the FLC did not differ from that in normal starlings, but the mean threshold at CF in this frequency range was intermediate between the values in the normal and lesioned short-recovery groups. The recovery of normal tonotopicity indicates considerable stability of the topography of neuronal connections in the avian auditory system, but the residual loss of sensitivity suggests deficiencies in high-frequency HC function.

  15. EFFECTS OF RESTRICTED BASILAR PAPILLAR LESIONS AND HAIR CELL REGENERATION ON AUDITORY FOREBRAIN FREQUENCY ORGANIZATION IN ADULT EUROPEAN STARLINGS

    PubMed Central

    Irvine, Dexter R. F.; Brown, Mel; Kamke, Marc R.; Rubel, Edwin W

    2009-01-01

    The frequency organization of neurons in the forebrain Field L complex (FLC) of adult starlings was investigated to determine the effects of hair cell (HC) destruction in the basal portion of the basilar papilla (BP) and of subsequent HC regeneration. Conventional microelectrode mapping techniques were used in normal starlings and in lesioned starlings either 2 days or 6–10 weeks after aminoglycoside treatment. Histological examination of the BP and recordings of auditory brainstem evoked responses confirmed massive loss of HCs in the basal portion of the BP and hearing losses at frequencies above 2 kHz in starlings tested 2 days after aminoglycoside treatment. In these birds, all neurons in the region of the FLC in which CFs normally increase from 2 to 6 kHz had characteristic frequency (CF) in the range 2–4 kHz. The significantly elevated thresholds of responses in this region of altered tonotopic organization indicated that they were the residue of pre-lesion responses and did not reflect central nervous system plasticity. In the long-term recovery birds, there was histological evidence of substantial HC regeneration. The tonotopic organization of the high frequency region of the FLC did not differ from that in normal starlings, but the mean threshold at CF in this frequency range was intermediate between the values in the normal and lesioned short-recovery groups. The recovery of normal tonotopicity indicates considerable stability of the topography of neuronal connections in the avian auditory system, but the residual loss of sensitivity suggests deficiencies in high-frequency HC function. PMID:19474314

  16. Steady-State Adaptation of Mechanotransduction Modulates the Resting Potential of Auditory Hair Cells, Providing an Assay for Endolymph [Ca2+

    PubMed Central

    Farris, Hamilton E.; Wells, Gregg B.; Ricci, Anthony J.

    2007-01-01

    The auditory hair cell resting potential is critical for proper translation of acoustic signals to the CNS, because it determines their filtering properties, their ability to respond to stimuli of both polarities, and, because the hair cell drives afferent firing rates, the resting potential dictates spontaneous transmitter release. In turtle auditory hair cells, the filtering properties are established by the interactions between BK calcium-activated potassium channels and an L-type calcium channel (electrical resonance). However, both theoretical and in vitro recordings indicate that a third conductance is required to set the resting potential to a point on the ICa and IBK activation curves in which filtering is optimized like that found in vivo. Present data elucidate a novel mechanism, likely universal among hair cells, in which mechanoelectric transduction (MET) and its calcium-dependent adaptation provide the depolarizing current to establish the hair cell resting potential. First, mechanical block of the MET current hyperpolarized the membrane potential, resulting in broadband asymmetrical resonance. Second, altering steady-state adaptation by altering the [Ca2+] bathing the hair bundle changed the MET current at rest, the magnitude of which resulted in membrane potential changes that encompassed the best resonant voltage. The Ca2+ sensitivity of adaptation allowed for the first physiological estimate of endolymphatic Ca2+ near the MET channel (56 ±11μM), a value similar to bulk endolymph levels. These effects of MET current on resting potential were independently confirmed using a theoretical model of electrical resonance that included the steady-state MET conductance. PMID:17135414

  17. The glutamate receptor subunit delta1 is highly expressed in hair cells of the auditory and vestibular systems.

    PubMed

    Safieddine, S; Wenthold, R J

    1997-10-01

    In the inner ear, fast excitatory synaptic transmission is mediated by ionotropic glutamate receptors, including AMPA, kainate, and NMDA receptors. The recently identified delta1 and delta2 glutamate receptors share low homology with the other three types, and no clear response or ligand binding has been obtained from cells transfected with delta alone or in combination with other ionotropic receptors. Studies of mice lacking expression of delta2 show that this subunit plays a crucial role in plasticity of cerebellar glutamatergic synapses. In addition, these mice show a deficit in vestibular compensation. These findings and the nature of glutamatergic synapses between vestibulocochlear hair cells and primary afferent dendrites suggest that delta receptors may be functionally important in the inner ear and prompted us to investigate the expression of delta receptors in the cochlea and peripheral vestibular system. Reverse transcription and DNA amplification by PCR combined with immunocytochemistry and in situ hybridization were used. Our results show that the expression of delta1 in the organ of Corti is intense and restricted to the inner hair cells, whereas delta1 is expressed in all spiral ganglion neurons as well as in their satellite glial cells. In the vestibular end organ, delta1 was highly expressed in both hair cell types and also was expressed in the vestibular ganglion neurons. The prominent expression of delta1 in inner hair cells and in type I and type II vestibular hair cells suggests a functional role in hair cell neurotransmission.

  18. Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells.

    PubMed

    Yuhas, W A; Fuchs, P A

    1999-11-01

    Acetylcholine released from efferent neurons in the cochlea causes inhibition of mechanosensory hair cells due to the activation of calcium-dependent potassium channels. Hair cells are known to have large-conductance, "BK"-type potassium channels associated with the afferent synapse, but these channels have different properties than those activated by acetylcholine. Whole-cell (tight-seal) and cell-attached patch-clamp recordings were made from short (outer) hair cells isolated from the chicken basilar papilla (cochlea equivalent). The peptides apamin and charybdotoxin were used to distinguish the calcium-activated potassium channels involved in the acetylcholine response from the BK-type channels associated with the afferent synapse. Differential toxin blockade of these potassium currents provides definitive evidence that ACh activates apamin-sensitive, "SK"-type potassium channels, but does not activate carybdotoxin-sensitive BK channels. This conclusion is supported by tentative identification of small-conductance, calcium-sensitive but voltage-insensitive potassium channels in cell-attached patches. The distinction between these channel types is important for understanding the segregation of opposing afferent and efferent synaptic activity in the hair cell, both of which depend on calcium influx. These different calcium-activated potassium channels serve as sensitive indicators for functionally significant calcium influx in the hair cell.

  19. The Challenge of Hair Cell Regeneration

    PubMed Central

    Groves, Andrew K.

    2013-01-01

    Sensory hair cells of the inner ear are responsible for translating auditory or vestibular stimuli into electrical energy that can be perceived by the nervous system. Although hair cells are exquisitely mechanically sensitive, they can be easily damaged by excessive stimulation, by ototoxic drugs and by the effects of aging. In mammals, auditory hair cells are never replaced, such that cumulative damage to the ear causes progressive and permanent deafness. In contrast, non-mammalian vertebrates are capable of replacing lost hair cells, which has led to efforts to understand the molecular and cellular basis of regenerative responses in different vertebrate species. In this review, we describe recent progress in understanding the limits to hair cell regeneration in mammals and discuss the obstacles that currently exist for therapeutic approaches to hair cell replacement. PMID:20407075

  20. Proton-Mediated Block of Ca2+ Channels during Multivesicular Release Regulates Short-Term Plasticity at an Auditory Hair Cell Synapse

    PubMed Central

    Cho, Soyoun

    2014-01-01

    Synaptic vesicles release both neurotransmitter and protons during exocytosis, which may result in a transient acidification of the synaptic cleft that can block Ca2+ channels located close to the sites of exocytosis. Evidence for this effect has been reported for retinal ribbon-type synapses, but not for hair cell ribbon synapses. Here, we report evidence for proton release from bullfrog auditory hair cells when they are held at more physiological, in vivo–like holding potentials (Vh = −60 mV) that facilitate multivesicular release. During paired recordings of hair cells and afferent fibers, L-type voltage-gated Ca2+ currents showed a transient block, which was highly correlated with the EPSC amplitude (or the amount of glutamate release). This effect was masked at Vh = −90 mV due to the presence of a T-type Ca2+ current and blocked by strong pH buffering with HEPES or TABS. Increasing vesicular pH with internal methylamine in hair cells also abolished the transient block. High concentrations of intracellular Ca2+ buffer (10 mm BAPTA) greatly reduced exocytosis and abolished the transient block of the Ca2+ current. We estimate that this transient block is due to the rapid multivesicular release of ∼600–1300 H+ ions per synaptic ribbon. Finally, during a train of depolarizing pulses, paired pulse plasticity was significantly changed by using 40 mm HEPES in addition to bicarbonate buffer. We propose that this transient block of Ca2+ current leads to more efficient exocytosis per Ca2+ ion influx and it may contribute to spike adaptation at the auditory nerve. PMID:25429130

  1. Expression of amyloid-β in mouse cochlear hair cells causes an early-onset auditory defect in high-frequency sound perception.

    PubMed

    Omata, Yasuhiro; Tharasegaran, Suganya; Lim, Young-Mi; Yamasaki, Yasutoyo; Ishigaki, Yasuhito; Tatsuno, Takanori; Maruyama, Mitsuo; Tsuda, Leo

    2016-03-01

    Increasing evidence indicates that defects in the sensory system are highly correlated with age-related neurodegenerative diseases, including Alzheimer's disease (AD). This raises the possibility that sensory cells possess some commonalities with neurons and may provide a tool for studying AD. The sensory system, especially the auditory system, has the advantage that depression in function over time can easily be measured with electrophysiological methods. To establish a new mouse AD model that takes advantage of this benefit, we produced transgenic mice expressing amyloid-β (Aβ), a causative element for AD, in their auditory hair cells. Electrophysiological assessment indicated that these mice had hearing impairment, specifically in high-frequency sound perception (>32 kHz), at 4 months after birth. Furthermore, loss of hair cells in the basal region of the cochlea, which is known to be associated with age-related hearing loss, appeared to be involved in this hearing defect. Interestingly, overexpression of human microtubule-associated protein tau, another factor in AD development, synergistically enhanced the Aβ-induced hearing defects. These results suggest that our new system reflects some, if not all, aspects of AD progression and, therefore, could complement the traditional AD mouse model to monitor Aβ-induced neuronal dysfunction quantitatively over time.

  2. Traveling waves on the organ of Corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers

    PubMed Central

    Temchin, Andrei N.; Recio-Spinoso, Alberto; Cai, Hongxue; Ruggero, Mario A.

    2012-01-01

    Spatial magnitude and phase profiles for inner hair cell depolarization throughout the chinchilla cochlea were inferred from responses of auditory-nerve fibers to threshold- and moderate-level tones and tone complexes. Firing-rate profiles for frequencies ≤ 2 kHz are bimodal, with the major peak at the characteristic place and a secondary peak at 3–5 mm from the extreme base. Response-phase trajectories are synchronous with peak outward stapes displacement at the extreme cochlear base and accumulate 1.5-period lags at the characteristic places. High-frequency phase trajectories are very similar to the trajectories of basilar-membrane peak velocity toward scala tympani. Low-frequency phase trajectories undergo a polarity flip in a region, 6.5–9 mm from the cochlear base, where traveling-wave phase velocity attains a local minimum and a local maximum and where the onset latencies of near-threshold impulse responses computed from responses to near-threshold white noise exhibit a local minimum. That region is the same where frequency-threshold tuning curves of auditory-nerve fibers undergo a shape transition. Since depolarization of inner hair cells presumably indicates the mechanical stimulus to their stereocilia, the present results suggest that distinct low-frequency forward waves of organ of Corti vibration are launched simultaneously at the extreme base of the cochlea and at the 6.5–9 mm transition region, from where antiphasic reflections arise. PMID:22855802

  3. Deletion of SLC19A2, the high affinity thiamine transporter, causes selective inner hair cell loss and an auditory neuropathy phenotype.

    PubMed

    Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J

    2006-09-01

    Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.

  4. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse

    PubMed Central

    Paquette, Stephen T.; Gilels, Felicia; White, Patricia M.

    2016-01-01

    Cochlear neuropathy resulting from unsafe noise exposure is a life altering condition that affects many people. This hearing dysfunction follows a conserved mechanism where inner hair cell synapses are lost, termed cochlear synaptopathy. Here we investigate cochlear synaptopathy in the FVB/nJ mouse strain as a prelude for the investigation of candidate genetic mutations for noise damage susceptibility. We used measurements of auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to assess hearing recovery in FVB/nJ mice exposed to two different noise levels. We also utilized confocal fluorescence microscopy in mapped whole mount cochlear tissue, in conjunction with deconvolution and three-dimensional modeling, to analyze numbers, volumes and positions of paired synaptic components. We find evidence for significant synapse reorganization in response to both synaptopathic and sub-synaptopathic noise exposures in FVB/nJ. Specifically, we find that the modulation in volume of very small synaptic ribbons correlates with the presence of reduced ABR peak one amplitudes in both levels of noise exposures. These experiments define the use of FVB/nJ mice for further genetic investigations into the mechanisms of noise damage. They further suggest that in the cochlea, neuronal-inner hair cell connections may dynamically reshape as part of the noise response. PMID:27162161

  5. Response properties from turtle auditory hair cell afferent fibers suggest spike generation is driven by synchronized release both between and within synapses.

    PubMed

    Schnee, M E; Castellano-Muñoz, M; Ricci, A J

    2013-07-01

    Inner ear hair cell afferent fiber synapses are capable of transferring information at high rates for long periods of time with extraordinary fidelity. As at other sensory synapses, hair cells rely on graded receptor potentials and unique vesicle trafficking and release properties of ribbon synapses to relay intensity information. Postsynaptic recordings from afferent fibers of the turtle auditory papilla identified excitatory postsynaptic currents (EPSCs) that were fast AMPA receptor-based responses with rapid onset and decay times. EPSCs varied in amplitude by ≈ 15× per fiber, with kinetics that showed a tendency to slow at larger amplitudes. Complex EPSCs were produced by temporal summation of single events, likely across synapses. Complex EPSCs were more efficient at generating action potentials than single EPSCs. Potassium-evoked release increased the frequency of EPSCs, in particular complex events, but did not increase EPSC amplitudes. Temporal summation of EPSCs across synapses may underlie action potential generation at these synapses. Broad amplitude histograms were probed for mechanisms of multivesicular release with reduced external Ca(2+) or the introduction of Cd(2+) or Sr(2+) to uncouple release. The results are consistent with broad amplitude histograms being generated by a combination of the variability in synaptic vesicle size and coordinated release of these vesicles. It is posited that multivesicular release plays less of a role in multisynaptic ribbon synapses than in single synaptic afferent fibers.

  6. Response properties from turtle auditory hair cell afferent fibers suggest spike generation is driven by synchronized release both between and within synapses

    PubMed Central

    Schnee, M. E.; Castellano-Muñoz, M.

    2013-01-01

    Inner ear hair cell afferent fiber synapses are capable of transferring information at high rates for long periods of time with extraordinary fidelity. As at other sensory synapses, hair cells rely on graded receptor potentials and unique vesicle trafficking and release properties of ribbon synapses to relay intensity information. Postsynaptic recordings from afferent fibers of the turtle auditory papilla identified excitatory postsynaptic currents (EPSCs) that were fast AMPA receptor-based responses with rapid onset and decay times. EPSCs varied in amplitude by ∼15× per fiber, with kinetics that showed a tendency to slow at larger amplitudes. Complex EPSCs were produced by temporal summation of single events, likely across synapses. Complex EPSCs were more efficient at generating action potentials than single EPSCs. Potassium-evoked release increased the frequency of EPSCs, in particular complex events, but did not increase EPSC amplitudes. Temporal summation of EPSCs across synapses may underlie action potential generation at these synapses. Broad amplitude histograms were probed for mechanisms of multivesicular release with reduced external Ca2+ or the introduction of Cd2+ or Sr2+ to uncouple release. The results are consistent with broad amplitude histograms being generated by a combination of the variability in synaptic vesicle size and coordinated release of these vesicles. It is posited that multivesicular release plays less of a role in multisynaptic ribbon synapses than in single synaptic afferent fibers. PMID:23596330

  7. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse.

    PubMed

    Paquette, Stephen T; Gilels, Felicia; White, Patricia M

    2016-05-10

    Cochlear neuropathy resulting from unsafe noise exposure is a life altering condition that affects many people. This hearing dysfunction follows a conserved mechanism where inner hair cell synapses are lost, termed cochlear synaptopathy. Here we investigate cochlear synaptopathy in the FVB/nJ mouse strain as a prelude for the investigation of candidate genetic mutations for noise damage susceptibility. We used measurements of auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to assess hearing recovery in FVB/nJ mice exposed to two different noise levels. We also utilized confocal fluorescence microscopy in mapped whole mount cochlear tissue, in conjunction with deconvolution and three-dimensional modeling, to analyze numbers, volumes and positions of paired synaptic components. We find evidence for significant synapse reorganization in response to both synaptopathic and sub-synaptopathic noise exposures in FVB/nJ. Specifically, we find that the modulation in volume of very small synaptic ribbons correlates with the presence of reduced ABR peak one amplitudes in both levels of noise exposures. These experiments define the use of FVB/nJ mice for further genetic investigations into the mechanisms of noise damage. They further suggest that in the cochlea, neuronal-inner hair cell connections may dynamically reshape as part of the noise response.

  8. Protective effects of the seaweed phlorotannin polyphenolic compound dieckol on gentamicin-induced damage in auditory hair cells.

    PubMed

    Chang, Mun Young; Byon, Seon-Hee; Shin, Hyeon-Cheol; Han, Song Ee; Kim, Ju Yeon; Byun, Jang Yul; Lee, Jong Dae; Park, Moo Kyun

    2016-04-01

    Drug-induced ototoxicity from compounds such as aminoglycosides and platinum can damage the inner ear resulting in hearing loss, tinnitus or balance problems and may be caused by the formation of reactive oxygen species (ROS). Dieckol is a phlorotannin polyphenolic compound with strong antioxidant effects found in edible brown algae. This study investigated the protective effects of dieckol on drug-induced ototoxicity in cochlear cultures obtained from neonatal mice. Cochlear explants were pretreated with dieckol and exposed to gentamicin for 48h. The explants were then fixed and stained with fluorescein isothiocyanate-phalloidin and the intact hair cells counted. The free radical scavenging activity of dieckol was assessed using a 1,1-diphenyl-2-picrylhydrazyl assay. E. coli (Escherichia coli) cultures were used to evaluate the effect of dieckol on the antibiotic activity of gentamicin. Gentamicin treatment resulted in dose-dependent hair cell loss that was partially protected by dieckol. Moreover, at concentrations >67μM dieckol had significant radical scavenging activity. Dieckol did not compromise the antibiotic effect of gentamicin. These findings suggest that dieckol can be used as a therapeutic agent that reduces the damage caused by drug-induced ototoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of rates of spontaneous synaptic vesicle secretions in inner hair cells on information transmission in an auditory nerve fiber model.

    PubMed

    Kumsa, Parichat; Mino, Hiroyuki

    2012-01-01

    In this article, we investigate how the rates of spontaneous synaptic vesicle secretions affect information transmission of the spike trains in response to the inner hair cell (IHC) synaptic currents in an auditory nerve fiber (ANF) model through computer simulations. The IHC synaptic currents were modeled by a filtered inhomogeneous Poisson process modulated with sinusoidal functions, while the stochastic ion channel model was incorporated into each node of Ranvier in the ANF model with spiral ganglion. The information rates were estimated from the entropies of the inter-spike intervals of the spike trains to evaluate information transmission in the ANF model. The results show that the information rates increased, reached a maximum, and then decreased as the rate of spontaneous secretion increased, implying a resonance phenomenon dependent on the rate of spontaneous IHC synaptic secretions. In conclusion, this phenomenon similar to the regular stochastic resonance may be observed due to that spontaneous IHC synaptic secretions may act as an origin of fluctuation or noise, and these findings may play a key role in the design of better auditory prostheses.

  10. Too much of a good thing: Long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity

    PubMed Central

    Chen, Guang-Di; Kermany, Mohammad Habiby; D’Elia, Alessandra; Ralli, Massimo; Tanaka, Chiemi; Bielefeld, Eric C.; Ding, Dalian; Henderson, Donald; Salvi, Richard

    2014-01-01

    Aspirin has been extensively used in clinical settings. Its side effects on auditory function, including hearing loss and tinnitus, are considered as temporary. A recent promising finding is that chronic treatment with high-dose salicylate (the active ingredient of aspirin) for several weeks enhances expression of the outer hair cell (OHC) motor protein (prestin), resulting in strengthened OHC electromotility and enhanced distortion product otoacoustic emissions (DPOAE). To follow up on these observations, we carried out two studies, one planned study of age-related hearing loss restoration and a second unrelated study of salicylate-induced tinnitus. Rats of different strains and ages were injected with salicylate at a dose of 200 mg/kg/day for 5 days per week for 3 weeks or at higher dose levels (250–350 mg/kg/day) for 4 days per week for 2 weeks. Unexpectedly, while an enhanced or sustained DPOAE was seen, permanent reductions in the amplitude of the cochlear compound action potential (CAP) and the auditory brainstem response (ABR) were often observed after the chronic salicylate treatment. The mechanisms underlying these unexpected, permanent salicylate-induced reductions in neural activity are discussed. PMID:20214971

  11. Hey1 and Hey2 control the spatial and temporal pattern of mammalian auditory hair cell differentiation downstream of Hedgehog signaling.

    PubMed

    Benito-Gonzalez, Ana; Doetzlhofer, Angelika

    2014-09-17

    Mechano-sensory hair cells (HCs), housed in the inner ear cochlea, are critical for the perception of sound. In the mammalian cochlea, differentiation of HCs occurs in a striking basal-to-apical and medial-to-lateral gradient, which is thought to ensure correct patterning and proper function of the auditory sensory epithelium. Recent studies have revealed that Hedgehog signaling opposes HC differentiation and is critical for the establishment of the graded pattern of auditory HC differentiation. However, how Hedgehog signaling interferes with HC differentiation is unknown. Here, we provide evidence that in the murine cochlea, Hey1 and Hey2 control the spatiotemporal pattern of HC differentiation downstream of Hedgehog signaling. It has been recently shown that HEY1 and HEY2, two highly redundant HES-related transcriptional repressors, are highly expressed in supporting cell (SC) and HC progenitors (prosensory cells), but their prosensory function remained untested. Using a conditional double knock-out strategy, we demonstrate that prosensory cells form and proliferate properly in the absence of Hey1 and Hey2 but differentiate prematurely because of precocious upregulation of the pro-HC factor Atoh1. Moreover, we demonstrate that prosensory-specific expression of Hey1 and Hey2 and its subsequent graded downregulation is controlled by Hedgehog signaling in a largely FGFR-dependent manner. In summary, our study reveals a critical role for Hey1 and Hey2 in prosensory cell maintenance and identifies Hedgehog signaling as a novel upstream regulator of their prosensory function in the mammalian cochlea. The regulatory mechanism described here might be a broadly applied mechanism for controlling progenitor behavior in the central and peripheral nervous system. Copyright © 2014 the authors 0270-6474/14/3412865-12$15.00/0.

  12. Comparative transduction mechanisms of hair cells in the bullfrog uticulus. 2: Sensitivity and response dynamics to hair bundle displacement

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    The present study was motivated by an interest in seeing whether hair cell types in the bullfrog utriculus might differ in their voltage responses to hair bundle displacement. Particular interest was in assessing the contributions of two factors to the responses of utricular hair cells. First, interest in examining the effect of hair bundle morphology on the sensitivity of hair cells to natural stimulation was motivated by the observation that vestibular hair cells, unlike many auditory hair cells, are not free-standing but rather linked to an accessory cupular or otolithic membrane via the tip of their kinocilium. Interest also laid in examining the contribution, if any, of adaptation to the response properties of utricular hair cells. Hair cells in auditory and vibratory inner ear endorgans adapt to maintained displacements of their hair bundles, sharply limiting their low frequency sensitivity. This adaptation is mediated by a shift in the displacement-response curve (DRC) of the hair cell along the displacement axis. Observations suggest that the adaptation process occurs within the hair bundle and precedes mechanoelectric transduction. Recent observations of time-dependent changes in hair bundle stiffness are consistent with this conclusion. Adaptation would be expected to be most useful in inner ear endorgans in which hair cells are subject to large static displacements that could potentially saturate their instantaneous response and compromise their sensitivity to high frequency stimulation. The adaptation process also permits hair cells to maintain their sensory hair bundle in the most sensitive portion of their DRC. In vestibular otolith organs in which static sensitivity is desirable, any adaptation process in the hair cells may be undesirable. The rate and extent of the decline of the voltage responses was measured of utricular hair cells to step and sinusoidal hair bundle displacements. Then for similar resting potentials and response amplitudes, the

  13. ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells

    PubMed Central

    Morozko, Eva L.; Nishio, Ayako; Ingham, Neil J.; Chandra, Rashmi; Fitzgerald, Tracy; Martelletti, Elisa; Borck, Guntram; Wilson, Elizabeth; Riordan, Gavin P.; Wangemann, Philine; Forge, Andrew; Steel, Karen P.; Liddle, Rodger A.; Friedman, Thomas B.; Belyantseva, Inna A.

    2015-01-01

    In the mammalian inner ear, bicellular and tricellular tight junctions (tTJs) seal the paracellular space between epithelial cells. Tricellulin and immunoglobulin-like (Ig-like) domain containing receptor 1 (ILDR1, also referred to as angulin-2) localize to tTJs of the sensory and non-sensory epithelia in the organ of Corti and vestibular end organs. Recessive mutations of TRIC (DFNB49) encoding tricellulin and ILDR1 (DFNB42) cause human nonsyndromic deafness. However, the pathophysiology of DFNB42 deafness remains unknown. ILDR1 was recently reported to be a lipoprotein receptor mediating the secretion of the fat-stimulated cholecystokinin (CCK) hormone in the small intestine, while ILDR1 in EpH4 mouse mammary epithelial cells in vitro was shown to recruit tricellulin to tTJs. Here we show that two different mouse Ildr1 mutant alleles have early-onset severe deafness associated with a rapid degeneration of cochlear hair cells (HCs) but have a normal endocochlear potential. ILDR1 is not required for recruitment of tricellulin to tTJs in the cochlea in vivo; however, tricellulin becomes mislocalized in the inner ear sensory epithelia of ILDR1 null mice after the first postnatal week. As revealed by freeze-fracture electron microscopy, ILDR1 contributes to the ultrastructure of inner ear tTJs. Taken together, our data provide insight into the pathophysiology of human DFNB42 deafness and demonstrate that ILDR1 is crucial for normal hearing by maintaining the structural and functional integrity of tTJs, which are critical for the survival of auditory neurosensory HCs. PMID:25217574

  14. ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells.

    PubMed

    Morozko, Eva L; Nishio, Ayako; Ingham, Neil J; Chandra, Rashmi; Fitzgerald, Tracy; Martelletti, Elisa; Borck, Guntram; Wilson, Elizabeth; Riordan, Gavin P; Wangemann, Philine; Forge, Andrew; Steel, Karen P; Liddle, Rodger A; Friedman, Thomas B; Belyantseva, Inna A

    2015-02-01

    In the mammalian inner ear, bicellular and tricellular tight junctions (tTJs) seal the paracellular space between epithelial cells. Tricellulin and immunoglobulin-like (Ig-like) domain containing receptor 1 (ILDR1, also referred to as angulin-2) localize to tTJs of the sensory and non-sensory epithelia in the organ of Corti and vestibular end organs. Recessive mutations of TRIC (DFNB49) encoding tricellulin and ILDR1 (DFNB42) cause human nonsyndromic deafness. However, the pathophysiology of DFNB42 deafness remains unknown. ILDR1 was recently reported to be a lipoprotein receptor mediating the secretion of the fat-stimulated cholecystokinin (CCK) hormone in the small intestine, while ILDR1 in EpH4 mouse mammary epithelial cells in vitro was shown to recruit tricellulin to tTJs. Here we show that two different mouse Ildr1 mutant alleles have early-onset severe deafness associated with a rapid degeneration of cochlear hair cells (HCs) but have a normal endocochlear potential. ILDR1 is not required for recruitment of tricellulin to tTJs in the cochlea in vivo; however, tricellulin becomes mislocalized in the inner ear sensory epithelia of ILDR1 null mice after the first postnatal week. As revealed by freeze-fracture electron microscopy, ILDR1 contributes to the ultrastructure of inner ear tTJs. Taken together, our data provide insight into the pathophysiology of human DFNB42 deafness and demonstrate that ILDR1 is crucial for normal hearing by maintaining the structural and functional integrity of tTJs, which are critical for the survival of auditory neurosensory HCs.

  15. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  16. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  17. All Akt Isoforms (Akt1, Akt2, Akt3) Are Involved in Normal Hearing, but Only Akt2 and Akt3 Are Involved in Auditory Hair Cell Survival in the Mammalian Inner Ear

    PubMed Central

    Brand, Yves; Levano, Soledad; Radojevic, Vesna; Naldi, Arianne Monge; Setz, Cristian; Ryan, Allen F.; Pak, Kwang; Hemmings, Brian A.; Bodmer, Daniel

    2015-01-01

    The kinase Akt is a key downstream mediator of the phosphoinositide-3-kinase signaling pathway and participates in a variety of cellular processes. Akt comprises three isoforms each encoded by a separate gene. There is evidence to indicate that Akt is involved in the survival and protection of auditory hair cells in vitro. However, little is known about the physiological role of Akt in the inner ear—especially in the intact animal. To elucidate this issue, we first analyzed the mRNA expression of the three Akt isoforms in the inner ear of C57/BL6 mice by real-time PCR. Next, we tested the susceptibility to gentamicin-induced auditory hair cell loss in isoform-specific Akt knockout mice compared to wild-types (C57/BL6) in vitro. To analyze the effect of gene deletion in vivo, hearing and cochlear microanatomy were evaluated in Akt isoform knockout animals. In this study, we found that all three Akt isoforms are expressed in the cochlea. Our results further indicate that Akt2 and Akt3 enhance hair cell resistance to ototoxicity, while Akt1 does not. Finally, we determined that untreated Akt1 and Akt2/Akt3 double knockout mice display significant hearing loss, indicating a role for these isoforms in normal hearing. Taken together, our results indicate that each of the Akt isoforms plays a distinct role in the mammalian inner ear. PMID:25811375

  18. All Akt isoforms (Akt1, Akt2, Akt3) are involved in normal hearing, but only Akt2 and Akt3 are involved in auditory hair cell survival in the mammalian inner ear.

    PubMed

    Brand, Yves; Levano, Soledad; Radojevic, Vesna; Naldi, Arianne Monge; Setz, Cristian; Ryan, Allen F; Pak, Kwang; Hemmings, Brian A; Bodmer, Daniel

    2015-01-01

    The kinase Akt is a key downstream mediator of the phosphoinositide-3-kinase signaling pathway and participates in a variety of cellular processes. Akt comprises three isoforms each encoded by a separate gene. There is evidence to indicate that Akt is involved in the survival and protection of auditory hair cells in vitro. However, little is known about the physiological role of Akt in the inner ear-especially in the intact animal. To elucidate this issue, we first analyzed the mRNA expression of the three Akt isoforms in the inner ear of C57/BL6 mice by real-time PCR. Next, we tested the susceptibility to gentamicin-induced auditory hair cell loss in isoform-specific Akt knockout mice compared to wild-types (C57/BL6) in vitro. To analyze the effect of gene deletion in vivo, hearing and cochlear microanatomy were evaluated in Akt isoform knockout animals. In this study, we found that all three Akt isoforms are expressed in the cochlea. Our results further indicate that Akt2 and Akt3 enhance hair cell resistance to ototoxicity, while Akt1 does not. Finally, we determined that untreated Akt1 and Akt2/Akt3 double knockout mice display significant hearing loss, indicating a role for these isoforms in normal hearing. Taken together, our results indicate that each of the Akt isoforms plays a distinct role in the mammalian inner ear.

  19. Relationship Between Hair Cell Loss and Hearing Loss in Fishes.

    PubMed

    Smith, Michael E

    2016-01-01

    Exposure to intense sound or ototoxic chemicals can damage the auditory hair cells of vertebrates, resulting in hearing loss. Although the relationship between such hair cell damage and auditory function is fairly established for terrestrial vertebrates, there are limited data available to understand this relationship in fishes. Although investigators have measured either the morphological damage of the inner ear or the functional deficits in the hearing of fishes, very few have directly measured both in an attempt to find a relationship between the two. Those studies that have examined both auditory hair cell damage in the inner ear and the resulting hearing loss in fishes are reviewed here. In general, there is a significant linear relationship between the number of hair cells lost and the severity of hearing threshold shifts, although this varies between species and different hair cell-damaging stimuli. After trauma to the fish ear, auditory hair cells are able to regenerate to control level densities. With this regeneration also comes a restoration of hearing. Thus there is also a significant relationship between hair cell recovery and hearing recovery in fishes.

  20. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels

    PubMed Central

    Zhao, Bo; Cunningham, Christopher; Harkins-Perry, Sarah; Coste, Bertrand; Ranade, Sanjeev; Zebarjadi, Navid; Beurg, Maryline; Fettiplace, Robert; Patapoutian, Ardem; Mueller, Ulrich

    2016-01-01

    Auditory hair cells contain mechanotransduction channels that rapidly open in response to sound-induced vibrations. Surprisingly, we report here that auditory hair cells contain two molecularly distinct mechanotransduction channels. One ion channel is activated by sound and is responsible for sensory transduction. This sensory transduction channel is expressed in hair-cell stereocilia and previous studies show that its activity is affected by mutations in the genes encoding the transmembrane proteins TMHS/LHFPL5, TMIE and TMC1/2. We show here that the second ion channel is expressed at the apical surface of hair cells and contains the Piezo2 protein. The activity of the Piezo2-dependent channel is controlled by the intracellular Ca2+ concentration and can be recorded following disruption of the sensory transduction machinery or more generally by disruption of the sensory epithelium. We thus conclude that hair cells express two molecularly and functionally distinct mechanotransduction channels with different subcellular distribution. PMID:27893727

  1. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels.

    PubMed

    Wu, Zizhen; Grillet, Nicolas; Zhao, Bo; Cunningham, Christopher; Harkins-Perry, Sarah; Coste, Bertrand; Ranade, Sanjeev; Zebarjadi, Navid; Beurg, Maryline; Fettiplace, Robert; Patapoutian, Ardem; Mueller, Ulrich

    2017-01-01

    Auditory hair cells contain mechanotransduction channels that rapidly open in response to sound-induced vibrations. We report here that auditory hair cells contain two molecularly distinct mechanotransduction channels. One ion channel is activated by sound and is responsible for sensory transduction. This sensory transduction channel is expressed in hair cell stereocilia, and previous studies show that its activity is affected by mutations in the genes encoding the transmembrane proteins TMHS, TMIE, TMC1 and TMC2. We show here that the second ion channel is expressed at the apical surface of hair cells and that it contains the Piezo2 protein. The activity of the Piezo2-dependent channel is controlled by the intracellular Ca(2+) concentration and can be recorded following disruption of the sensory transduction machinery or more generally by disruption of the sensory epithelium. We thus conclude that hair cells express two molecularly and functionally distinct mechanotransduction channels with different subcellular distributions.

  2. Notch Signaling Limits Supporting Cell Plasticity in the Hair Cell-Damaged Early Postnatal Murine Cochlea

    PubMed Central

    Korrapati, Soumya; Roux, Isabelle; Glowatzki, Elisabeth; Doetzlhofer, Angelika

    2013-01-01

    In mammals, auditory hair cells are generated only during embryonic development and loss or damage to hair cells is permanent. However, in non-mammalian vertebrate species, such as birds, neighboring glia-like supporting cells regenerate auditory hair cells by both mitotic and non-mitotic mechanisms. Based on work in intact cochlear tissue, it is thought that Notch signaling might restrict supporting cell plasticity in the mammalian cochlea. However, it is unresolved how Notch signaling functions in the hair cell-damaged cochlea and the molecular and cellular changes induced in supporting cells in response to hair cell trauma are poorly understood. Here we show that gentamicin-induced hair cell loss in early postnatal mouse cochlear tissue induces rapid morphological changes in supporting cells, which facilitate the sealing of gaps left by dying hair cells. Moreover, we provide evidence that Notch signaling is active in the hair cell damaged cochlea and identify Hes1, Hey1, Hey2, HeyL, and Sox2 as targets and potential Notch effectors of this hair cell-independent mechanism of Notch signaling. Using Cre/loxP based labeling system we demonstrate that inhibition of Notch signaling with a γ- secretase inhibitor (GSI) results in the trans-differentiation of supporting cells into hair cell-like cells. Moreover, we show that these hair cell-like cells, generated by supporting cells have molecular, cellular, and basic electrophysiological properties similar to immature hair cells rather than supporting cells. Lastly, we show that the vast majority of these newly generated hair cell-like cells express the outer hair cell specific motor protein prestin. PMID:24023676

  3. Prospects for Replacement of Auditory Neurons by Stem Cells

    PubMed Central

    Shi, Fuxin; Edge, Albert S.B.

    2013-01-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457

  4. Prospects for replacement of auditory neurons by stem cells.

    PubMed

    Shi, Fuxin; Edge, Albert S B

    2013-03-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth

    PubMed Central

    Lelli, Andrea; Michel, Vincent; Boutet de Monvel, Jacques; Cortese, Matteo; Bosch-Grau, Montserrat; Aghaie, Asadollah; Perfettini, Isabelle; Dupont, Typhaine; Avan, Paul

    2016-01-01

    The precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a−/−Myo3b−/− mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b−/− mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a−/−Myo3b−/− cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a−/−Myo3b−/− stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping. PMID:26754646

  6. Rapid, active hair bundle movements in hair cells from the bullfrog's sacculus.

    PubMed

    Benser, M E; Marquis, R E; Hudspeth, A J

    1996-09-15

    Hair bundles, the mechanically sensitive organelles of hair cells in the auditory and vestibular systems, are elastic structures that are deflected by sound or acceleration. To examine rapid mechanical events associated with mechanoelectrical transduction, we stimulated individual hair bundles with flexible glass fibers and measured their responses with a temporal resolution of 400 microsec. When a hair bundle from the bullfrog's sacculus was abruptly deflected in the positive direction, the bundle's motion in the direction of stimulation was interrupted within the initial few milliseconds by an active movement, or twitch. This response was biphasic, with an initial component in the direction of the stimulus and a second component in the opposite direction. The amplitude and duration of the twitch depended on the bundle's initial position and the size and rise time of the stimulus; the twitch was largest over the range of bundle deflections in which transduction was most sensitive. Under displacement clamp conditions, in which a hair bundle's position was changed and then held constant with negative feedback, the twitch manifested itself as a biphasic force exerted by the bundle. Some hair bundles produced twitches in response to negatively directed stimuli, exhibited stimulus-evoked damped oscillations, or twitched spontaneously. The hair bundle's ability to perform work against an external load and to oscillate in response to stimulation indicates that the bundle could supply feedback for mechanical amplification in vertebrate auditory organs.

  7. The regulation of gene expression in hair cells

    PubMed Central

    Ryan, Allen F.; Ikeda, Ryoukichi; Masuda, Masatsugu

    2015-01-01

    No genes have been discovered for which expression is limited only to inner ear hair cells. This is hardly surprising, since the number of mammalian genes is estimated to be 20–25,000, and each gene typically performs many tasks in various locations. Many genes are expressed in inner ear sensory cells and not in other cells of the labyrinth. However, these genes are also expressed in other locations, often in other sensory or neuronal cell types. How gene transcription is directed specifically to hair cells is unclear. Key transcription factors that act during development can specify cell phenotypes, and the hair cell is no exception. The transcription factor ATOH1 is well known for its ability to transform nonsensory cells of the developing inner ear into hair cells. And yet, ATOH1 also specifies different sensory cells at other locations, neuronal phenotypes in the brain, and epithelial cells in the gut. How it specifies hair cells in the inner ear, but alternate cell types in other locations, is not known. Studies of regulatory DNA and transcription factors are revealing mechanisms that direct gene expression to hair cells, and that determine the hair cell identity. The purpose of this review is to summarize what is known about such gene regulation in this key auditory and vestibular cell type. PMID:25616095

  8. Hair cell regeneration: Look to the future

    NASA Astrophysics Data System (ADS)

    Rubel, Edwin W.

    2005-04-01

    Less than 2 decades ago it was discovered that birds can regenerate hair cells in the auditory and vestibular parts of the inner ear after the native hair cells are destroyed by exposure to excessive noise or by mechanical trauma of aminoglycoside antibiotics. This discovery issued in a new era of hearing research-it suggested that some day it may be possible to actually restore hearing in people with congenital or acquired hearing loss due to the degeneration of sensory cells or supporting cells in the inner ear. Fifteen years is a very short time in the history of science. Consider the fact that we have actively sought chemical treatments to prevent or cure cancers for well over a half century and the ``war on Cancer,'' resulted in enormous public and private support. Progress has been great, and some forms of cancer can be treated with great success, but the overall 5-year survival rates have only risen from about 50% to 63%. Progress will continue and many more forms of cancer will be cured and prevented during the next half century. Similarly, during the first 15 years of hair cell regeneration research enormous progress has been made, and we now know that postnatal mammalian ears have the capacity to produce new hair cells. We are indeed a long way from restoring hearing through hair cell regeneration, but the future is pretty clear. I will review the progress of this field with an eye toward the future and what it means for treatments of today. In particular, I will address the potential cost versus benefits of bilateral implantation when applied to babies and young children.

  9. Cell transplantation to the auditory nerve and cochlear duct.

    PubMed

    Sekiya, Tetsuji; Kojima, Ken; Matsumoto, Masahiro; Kim, Tae-Soo; Tamura, Tetsuya; Ito, Juichi

    2006-03-01

    We have developed a technique to deliver cells to the inner ear without injuring the membranes that seal the endolymphatic and perilymphatic chambers. The integrity of these membranes is essential for normal hearing, and the technique should significantly reduce surgical trauma during cell transplantation. Embryonic stem cells transplanted at the internal auditory meatal portion of an atrophic auditory nerve migrated extensively along it. Four-five weeks after transplantation, the cells were found not only throughout the auditory nerve, but also in Rosenthal's canal and the scala media, the most distal portion of the auditory nervous system where the hair cells reside. Migration of the transplanted cells was more extensive following damage to the auditory nerve. In the undamaged nerve, migration was more limited, but the cells showed more signs of neuronal differentiation. This highlights an important balance between tissue damage and the potential for repair.

  10. Transfer characteristics of the hair cell's afferent synapse

    NASA Astrophysics Data System (ADS)

    Keen, Erica C.; Hudspeth, A. J.

    2006-04-01

    The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle

  11. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  12. A Bio-Inspired Electromechanical System: Artificial Hair Cell

    NASA Astrophysics Data System (ADS)

    Ahn, Kang-Hun

    Inspired by recent biophysical study on the auditory sensory organs, we study electromechanical system which functions similar to the hair cell of the ear. One of the important mechanisms of hair cells, adaptation, is mimicked by an electromechanical feedback loop. The proposed artificial hair cell functions similar to a living sensory organ in the sense that it senses input force signal in spite of the relatively strong noise. Numerical simulation of the proposed system shows otoacoustic sound emission, which was observed in the experiments on the hair cells of the bullfrog. This spontaneous motion is noise-induced periodic motion which is controlled by the time scale of adaptation process and the mechanical damping.

  13. Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner.

    PubMed

    Kazmierczak, Marcin; Kazmierczak, Piotr; Peng, Anthony W; Harris, Suzan L; Shah, Prahar; Puel, Jean-Luc; Lenoir, Marc; Franco, Santos J; Schwander, Martin

    2017-03-29

    Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-induced peroxisome proliferation in auditory hair cells and neurons. Here we demonstrate that loss of pejvakin in hair cells, but not in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function.SIGNIFICANCE STATEMENT Two missense mutations in the Pejvakin (PJVK or DFNB59) gene were first identified in patients with audiological hallmarks of auditory neuropathy spectrum disorder, whereas all other PJVK alleles cause hearing loss of cochlear origin. These findings suggest that complex pathogenetic mechanisms underlie human deafness DFNB59. In contrast to recent studies, we demonstrate that pejvakin in auditory neurons is not essential for normal hearing in mice. Moreover, pejvakin localizes to stereociliary rootlets in hair cells and is required for stereocilia maintenance and mechanosensory function of the hair bundle. Delineating the site of the lesion and the mechanisms underlying DFNB59 will allow clinicians to predict the efficacy of different therapeutic approaches, such as determining compatibility for cochlear implants.

  14. Imaging hair cell transduction at the speed of sound: Dynamic behavior of mammalian stereocilia

    PubMed Central

    Fridberger, Anders; Tomo, Igor; Ulfendahl, Mats; Boutet de Monvel, Jacques

    2006-01-01

    The cochlea contains two types of sensory cells, the inner and outer hair cells. Sound-evoked deflection of outer hair cell stereocilia leads to fast force production that will enhance auditory sensitivity up to 1, 000-fold. In contrast, inner hair cells are thought to have a purely receptive function. Deflection of their stereocilia produces receptor potentials, transmitter release, and action potentials in the auditory nerve. Here, we describe a method for rapid confocal imaging. The method was used to image stereocilia during simultaneous sound stimulation in an in vitro preparation of the guinea pig cochlea. We show that inner hair cell stereocilia move because they interact with the fluid surrounding the hair bundles, but stereocilia deflection occurs at a different phase of the stimulus than is generally expected. In outer hair cells, stereocilia deflections were ≈1/3 of the reticular lamina displacement. Smaller deflections were found in inner hair cells. The ratio between stereocilia deflection and reticular lamina displacement is important for auditory function, because it determines the stimulus applied to transduction channels. The low ratio measured here suggests that amplification of hair-bundle movements may be necessary in vivo to preserve transduction fidelity at low stimulus levels. In the case of the inner hair cells, this finding would represent a departure from traditional views on their function. PMID:16446441

  15. Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia.

    PubMed

    Fridberger, Anders; Tomo, Igor; Ulfendahl, Mats; Boutet de Monvel, Jacques

    2006-02-07

    The cochlea contains two types of sensory cells, the inner and outer hair cells. Sound-evoked deflection of outer hair cell stereocilia leads to fast force production that will enhance auditory sensitivity up to 1,000-fold. In contrast, inner hair cells are thought to have a purely receptive function. Deflection of their stereocilia produces receptor potentials, transmitter release, and action potentials in the auditory nerve. Here, we describe a method for rapid confocal imaging. The method was used to image stereocilia during simultaneous sound stimulation in an in vitro preparation of the guinea pig cochlea. We show that inner hair cell stereocilia move because they interact with the fluid surrounding the hair bundles, but stereocilia deflection occurs at a different phase of the stimulus than is generally expected. In outer hair cells, stereocilia deflections were approximately 1/3 of the reticular lamina displacement. Smaller deflections were found in inner hair cells. The ratio between stereocilia deflection and reticular lamina displacement is important for auditory function, because it determines the stimulus applied to transduction channels. The low ratio measured here suggests that amplification of hair-bundle movements may be necessary in vivo to preserve transduction fidelity at low stimulus levels. In the case of the inner hair cells, this finding would represent a departure from traditional views on their function.

  16. Synchronization of Spontaneous Active Motility of Hair Cell Bundles

    PubMed Central

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  17. Stimulus Processing in Vestibular Hair Cells

    DTIC Science & Technology

    1990-01-03

    Preliminary results reveal that in some cells, the currents elicited by voltage steps are qualitatively similar to those previously described in frog ...rather than in the artificial perilymph used for the frog saccules. In some experiments individual hair cells were stimulated by moving their hair bundles...postsynaptic potentials alone. (2) Whole-cell current recording from isolated vestibular hair cells Hair cells were isolated from frog saccules and from rat

  18. Sensing sound: molecules that orchestrate mechanotransduction by hair cells.

    PubMed

    Kazmierczak, Piotr; Müller, Ulrich

    2012-04-01

    Animals use acoustic signals to communicate and to obtain information about their environment. The processing of acoustic signals is initiated at auditory sense organs, where mechanosensory hair cells convert sound-induced vibrations into electrical signals. Although the biophysical principles underlying the mechanotransduction process in hair cells have been characterized in much detail over the past 30 years, the molecular building-blocks of the mechanotransduction machinery have proved to be difficult to determine. We review here recent studies that have both identified some of these molecules and established the mechanisms by which they regulate the activity of the still-elusive mechanotransduction channel.

  19. Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma

    PubMed Central

    Mizutari, Kunio; Fujioka, Masato; Hosoya, Makoto; Bramhall, Naomi; Okano, Hirotaka James; Okano, Hideyuki; Edge, Albert S.B.

    2013-01-01

    SUMMARY Hearing loss due to damage to auditory hair cells is normally irreversible because mammalian hair cells do not regenerate. Here, we show that new hair cells can be induced and can cause partial recovery of hearing in ears damaged by noise trauma, when Notch signaling is inhibited by a γ-secretase inhibitor selected for potency in stimulating hair cell differentiation from inner ear stem cells in vitro. Hair cell generation resulted from an increase in the level of bHLH transcription factor, Atoh1, in response to inhibition of Notch signaling. In vivo prospective labeling of Sox2-expressing cells with a Cre/lox system unambiguously demonstrated that hair cell generation resulted from transdifferentiation of supporting cells. Manipulating cell fate of cochlear sensory cells in vivo by pharmacological inhibition of Notch signaling is thus a potential therapeutic approach to the treatment of deafness. PMID:23312516

  20. Modulation of hair cell efferents

    PubMed Central

    Wersinger, Eric; Fuchs, Paul Albert

    2011-01-01

    Outer hair cells (OHCs) amplify the sound-evoked motion of the basilar membrane to enhance acoustic sensitivity and frequency selectivity. Medial olivocochlear (MOC) efferents inhibit OHCs to reduce the sound-evoked response of cochlear afferent neurons. OHC inhibition occurs through the activation of postsynaptic α9α10 nicotinic receptors tightly coupled to calcium-dependent SK2 channels that hyperpolarize the hair cell. MOC neurons are cholinergic but a number of other neurotransmitters and neuromodulators have been proposed to participate in efferent transmission, with emerging evidence for both pre- and postsynaptic effects. Cochlear inhibition in vivo is maximized by repetitive activation of the efferents, reflecting facilitation and summation of transmitter release onto outer hair cells. This review summarizes recent studies on cellular and molecular mechanisms of cholinergic inhibition and the regulation of those molecular components, in particular the involvement of intracellular calcium. Facilitation at the efferent synapse is compared in a variety of animals, as well as other possible mechanisms of modulation of ACh release. These results suggest that short-term plasticity contributes to effective cholinergic inhibition of hair cells. PMID:21187136

  1. Designer aminoglycosides prevent cochlear hair cell loss and hearing loss.

    PubMed

    Huth, Markus E; Han, Kyu-Hee; Sotoudeh, Kayvon; Hsieh, Yi-Ju; Effertz, Thomas; Vu, Andrew A; Verhoeven, Sarah; Hsieh, Michael H; Greenhouse, Robert; Cheng, Alan G; Ricci, Anthony J

    2015-02-01

    Bacterial infections represent a rapidly growing challenge to human health. Aminoglycosides are widely used broad-spectrum antibiotics, but they inflict permanent hearing loss in up to ~50% of patients by causing selective sensory hair cell loss. Here, we hypothesized that reducing aminoglycoside entry into hair cells via mechanotransducer channels would reduce ototoxicity, and therefore we synthesized 9 aminoglycosides with modifications based on biophysical properties of the hair cell mechanotransducer channel and interactions between aminoglycosides and the bacterial ribosome. Compared with the parent aminoglycoside sisomicin, all 9 derivatives displayed no or reduced ototoxicity, with the lead compound N1MS 17 times less ototoxic and with reduced penetration of hair cell mechanotransducer channels in rat cochlear cultures. Both N1MS and sisomicin suppressed growth of E. coli and K. pneumoniae, with N1MS exhibiting superior activity against extended spectrum β lactamase producers, despite diminished activity against P. aeruginosa and S. aureus. Moreover, systemic sisomicin treatment of mice resulted in 75% to 85% hair cell loss and profound hearing loss, whereas N1MS treatment preserved both hair cells and hearing. Finally, in mice with E. coli-infected bladders, systemic N1MS treatment eliminated bacteria from urinary tract tissues and serially collected urine samples, without compromising auditory and kidney functions. Together, our findings establish N1MS as a nonototoxic aminoglycoside and support targeted modification as a promising approach to generating nonototoxic antibiotics.

  2. Essential role of retinoblastoma protein in mammalian hair cell development and hearing.

    PubMed

    Sage, Cyrille; Huang, Mingqian; Vollrath, Melissa A; Brown, M Christian; Hinds, Philip W; Corey, David P; Vetter, Douglas E; Chen, Zheng-Yi

    2006-05-09

    The retinoblastoma protein pRb is required for cell-cycle exit of embryonic mammalian hair cells but not for their early differentiation. However, its role in postnatal hair cells is unknown. To study the function of pRb in mature animals, we created a new conditional mouse model, with the Rb gene deleted primarily in the inner ear. Progeny survive up to 6 months. During early postnatal development, pRb(-/-) hair cells continue to divide and can transduce mechanical stimuli. However, adult pRb(-/-) mice exhibit profound hearing loss due to progressive degeneration of the organ of Corti. We show that pRb is required for the full maturation of cochlear outer hair cells, likely in a gene-specific manner, and is also essential for their survival. In addition, lack of pRb results in cell division in postnatal auditory supporting cells. In contrast, many pRb(-/-) vestibular hair cells survive and continue to divide in adult mice. Significantly, adult pRb(-/-) vestibular hair cells are functional, and pRb(-/-) mice maintain partial vestibular function. Therefore, the functional adult vestibular pRb(-/-) hair cells, derived from proliferation of postnatal hair cells, are largely integrated into vestibular pathways. This study reveals essential yet distinct roles of pRb in cochlear and vestibular hair cell maturation, function, and survival and suggests that transient block of pRb function in mature hair cells may lead to propagation of functional hair cells.

  3. Hair Cell Replacement in Adult Mouse Utricles after Targeted Ablation of Hair Cells with Diphtheria Toxin

    PubMed Central

    Golub, Justin S.; Tong, Ling; Ngyuen, Tot B.; Hume, Cliff R.; Palmiter, Richard D.; Rubel, Edwin W.; Stone, Jennifer S.

    2012-01-01

    We developed a transgenic mouse to permit conditional and selective ablation of hair cells in the adult mouse utricle by inserting the human diphtheria toxin receptor (DTR) gene into the Pou4f3 gene, which encodes a hair cell-specific transcription factor. In adult wild-type mice, administration of diphtheria toxin (DT) caused no significant hair cell loss. In adult Pou4f3 +/DTR mice, DT treatment reduced hair cell numbers to 6% of normal by 14 days post-DT. Remaining hair cells were located primarily in the lateral extrastriola. Over time, hair cell numbers increased in these regions, reaching 17% of untreated Pou4f3 +/DTR mice by 60 days post-DT. Replacement hair cells were morphologically distinct, with multiple cytoplasmic processes, and displayed evidence for active mechanotransduction channels and synapses characteristic of type II hair cells. Three lines of evidence suggest replacement hair cells were derived via direct (nonmitotic) transdifferentiation of supporting cells: new hair cells did not incorporate BrdU, supporting cells upregulated the pro-hair cell gene Atoh1, and supporting cell numbers decreased over time. This study introduces a new method for efficient conditional hair cell ablation in adult mouse utricles and demonstrates that hair cells are spontaneously regenerated in vivo in regions where there may be ongoing hair cell turnover. PMID:23100430

  4. Coupling a sensory hair-cell bundle to cyber clones enhances nonlinear amplification

    PubMed Central

    Barral, Jérémie; Dierkes, Kai; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal

    2010-01-01

    The vertebrate ear benefits from nonlinear mechanical amplification to operate over a vast range of sound intensities. The amplificatory process is thought to emerge from active force production by sensory hair cells. The mechano-sensory hair bundle that protrudes from the apical surface of each hair cell can oscillate spontaneously and function as a frequency-selective, nonlinear amplifier. Intrinsic fluctuations, however, jostle the response of a single hair bundle to weak stimuli and seriously limit amplification. Most hair bundles are mechanically coupled by overlying gelatinous structures. Here, we assayed the effects of mechanical coupling on the hair-bundle amplifier by combining dynamic force clamp of a hair bundle from the bullfrog’s saccule with real-time stochastic simulations of hair-bundle mechanics. This setup couples the hair bundle to two virtual hair bundles, called cyber clones, and mimics a situation in which the hair bundle is elastically linked to two neighbors with similar characteristics. We found that coupling increased the coherence of spontaneous hair-bundle oscillations. By effectively reducing noise, the synergic interplay between the hair bundle and its cyber clones also enhanced amplification of sinusoidal stimuli. All observed effects of coupling were in quantitative agreement with simulations. We argue that the auditory amplifier relies on hair-bundle cooperation to overcome intrinsic noise limitations and achieve high sensitivity and sharp frequency selectivity. PMID:20404191

  5. Coupling a sensory hair-cell bundle to cyber clones enhances nonlinear amplification.

    PubMed

    Barral, Jérémie; Dierkes, Kai; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal

    2010-05-04

    The vertebrate ear benefits from nonlinear mechanical amplification to operate over a vast range of sound intensities. The amplificatory process is thought to emerge from active force production by sensory hair cells. The mechano-sensory hair bundle that protrudes from the apical surface of each hair cell can oscillate spontaneously and function as a frequency-selective, nonlinear amplifier. Intrinsic fluctuations, however, jostle the response of a single hair bundle to weak stimuli and seriously limit amplification. Most hair bundles are mechanically coupled by overlying gelatinous structures. Here, we assayed the effects of mechanical coupling on the hair-bundle amplifier by combining dynamic force clamp of a hair bundle from the bullfrog's saccule with real-time stochastic simulations of hair-bundle mechanics. This setup couples the hair bundle to two virtual hair bundles, called cyber clones, and mimics a situation in which the hair bundle is elastically linked to two neighbors with similar characteristics. We found that coupling increased the coherence of spontaneous hair-bundle oscillations. By effectively reducing noise, the synergic interplay between the hair bundle and its cyber clones also enhanced amplification of sinusoidal stimuli. All observed effects of coupling were in quantitative agreement with simulations. We argue that the auditory amplifier relies on hair-bundle cooperation to overcome intrinsic noise limitations and achieve high sensitivity and sharp frequency selectivity.

  6. Physiological Maturation of Regenerating Hair Cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    2003-01-01

    The bullfrog saccule, a sensor of gravity and substrate-borne vibration, is a model system for hair cell transduction. Saccular hair cells also increase in number throughout adult life and rapidly recover after hair cell damage, making this organ an ideal system for studying hair cell development, repair, and regeneration. We have used of hair cell and supporting cell immunocytochemical markers to identify damaged hair cells and hair cell precursors in organotypic cultures of the bullfrog saccule. We then used an innovative combination of confocal, electron, and time-lapse microscopy to study the fate of damaged hair cells and the origin of new hair cells after gentamicin ototoxicity in normal and mitotically blocked saccular cultures. These studies have shown that gentamicin ototoxicity produces both lethal and sublethal hair cell damage. They have also shown that hair cell recovery in this organ takes place by both the repair of sublethally damaged hair cells and by the replacement of lost hair cells by mitotic regeneration. In parallel studies, we have used biophysical and molecular biological techniques to study the differentiation and innervation of developing, repairing, and regenerating hair cells. More specifically, we have used RT-PCR to obtain the bullfrog homologues of L-type voltage- gated calcium (L-VGCC) and large-conductance Ca(2+)-activated potassium (BK) channel genes. We have then obtained probes for these genes and, using in situ hybridization, begun to examine their expression in the bullfrog saccule and amphibian papilla. We have also used fluorescent-labeled channel toxins and channel toxin derivatives to determine the time of appearance of L-type voltage-gated calcium (L-VGCC) and Ca(2+)-activated potassium (BK) channels and to study dynamic changes in the number, distribution, and co-localization of these proteins in developing, repairing, and regenerating hair cells. Using time-lapse microscopy, we are also studying the dynamic relationship

  7. Formation, encapsulation, and validation of membrane-based artificial hair cell sensors

    NASA Astrophysics Data System (ADS)

    Garrison, Kevin L.; Sarles, Stephen A.; Leo, Donald J.

    2012-04-01

    Hair cell structures are one of the most common forms of sensing elements found in nature. In nearly all vertebrates hair cells are used for auditory and vestibular sensing. In humans, approximately 16,000 auditory hair cells can be found in the cochlea of the ear. Each hair cell contains a stereocilia, which is the primary structure for sound transduction. This study looks to develop and characterize an artificial hair cell that resembles the stereocilia of the human ear. Recently our research group has shown that a single artificial hair cell can be formed in an open substrate using a single aqueous droplet and a hydrogel. In this study, air was blown across the hair and analyzed using spectral analysis. The results of this study provided the foundation for our current work toward an artificial hair cell that uses two aqueous droplets. In the current study a test fixture was created in order to consistently measure various properties of the encapsulated hair cell. The response of the hair cell was measured with an impulse input at various locations on the test fixture. A frequency response function was then created using the impulse input and the output of the sensor. It was found that the vibration of the hair was only detectable if the test fixture was struck at the correct location. By changing the physical parameters of the hair sensor, such as hair length, we were able to alter the response of the sensor. It was also found that the sensitivity of the sensor was reliant on the size of the lipid bilayer.

  8. The Effects of Urethane on Rat Outer Hair Cells

    PubMed Central

    Fu, Mingyu; Chen, Mengzi; Yang, Xueying

    2016-01-01

    The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged. PMID:28050287

  9. Regeneration of Hair Cells: Making Sense of All the Noise.

    PubMed

    Kopecky, Benjamin; Fritzsch, Bernd

    2011-06-01

    Hearing loss affects hundreds of millions of people worldwide by dampening or cutting off their auditory connection to the world. Current treatments for sensorineural hearing loss (SNHL) with cochlear implants are not perfect, leaving regenerative medicine as the logical avenue to a perfect cure. Multiple routes to regeneration of damaged hair cells have been proposed and are actively pursued. Each route not only requires a keen understanding of the molecular basis of ear development but also faces the practical limitations of stem cell regulation in the delicate inner ear where topology of cell distribution is essential. Improvements in our molecular understanding of the minimal essential genes necessary for hair cell formation and recent advances in stem cell manipulation, such as seen with inducible pluripotent stem cells (iPSCs) and epidermal neural crest stem cells (EPI-NCSCs), have opened new possibilities to advance research in translational stem cell therapies for individuals with hearing loss. Despite this, more detailed network maps of gene expression are needed, including an appreciation for the roles of microRNAs (miRs), key regulators of transcriptional gene networks. To harness the true potential of stem cells for hair cell regeneration, basic science and clinical medicine must work together to expedite the transition from bench to bedside by elucidating the full mechanisms of inner ear hair cell development, including a focus on the role of miRs, and adapting this knowledge safely and efficiently to stem cell technologies.

  10. Glass Probe Stimulation of Hair Cell Stereocilia.

    PubMed

    Peng, Anthony W; Ricci, Anthony J

    2016-01-01

    Hair cells are designed to sense mechanical stimuli of sound using their apical stereocilia hair bundles. Mechanical deflection of this hair bundle is converted into an electrical signal through gating of mechano-electric transduction channels. Stiff probe stimulation of hair bundles is an invaluable tool for studying the transduction channel and its associated processes because of the speed and ability to precisely control hair bundle position. Proper construction of these devices is critical to their ultimate performance as is appropriate placement of the probe onto the hair bundle. Here we describe the construction and use of a glass probe coupled to a piezo-electric actuator for stimulating hair bundles, including the basic technique for positioning of the stimulating probe onto the hair bundle. These piezo-electric stimulators can be adapted to other mechanically sensitive systems.

  11. Magnetic actuation of hair cells

    PubMed Central

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-01-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state. PMID:22163368

  12. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation.

    PubMed

    Nishimura, Emi K

    2011-06-01

    Most mammals are coated with pigmented hair. Melanocytes in each hair follicle produce melanin pigments for the hair during each hair cycle. The key to understanding the mechanism of cyclic melanin production is the melanocyte stem cell (MelSC) population, previously known as 'amelanotic melanocytes'. The MelSCs directly adhere to hair follicle stem cells, the niche cells for MelSCs and reside in the hair follicle bulge-subbulge area, the lower permanent portion of the hair follicle, to serve as a melanocyte reservoir for skin and hair pigmentation. MelSCs form a stem cell system within individual hair follicles and provide a 'hair pigmentary unit' for each cycle of hair pigmentation. This review focuses on the identification of MelSCs and their characteristics and explains the importance of the MelSC population in the mechanisms of hair pigmentation, hair greying, and skin repigmentation. 2011 John Wiley & Sons A/S.

  13. Basilar papilla explants: a model to study hair cell regeneration-repair and protection.

    PubMed

    Frenz, D A; Yoo, H; Liu, W

    1998-09-01

    Explants of basilar papillae from 6-7 days posthatch chicks were cultured in growth medium for a period of 1-8 days. Hair cells were counted following staining of stereocilia bundles with FITC-phalloidin, and the percentage of hair cell survival was determined by comparison to control (i.e. uncultured) specimens. Hair cell integrity was evaluated by scanning electron microscopy. Although previous studies have utilized organotypic culture of the basilar papilla to assess cell proliferation and ototoxicity, viability and integrity of hair cells was documented for periods of up to only 2 3 days. Our results demonstrate substantive auditory hair cell viability for a period of 7 days in vitro. We describe a pattern of natural hair cell loss in organotypic culture that progresses along a proximal-distal, abneural-neural gradient, mimicking the pattern of hair cell loss that occurs following ototoxic insult to the chick basilar papilla in vivo and the pattern we observed during a 48-h period of exposure of basilar papilla explants to an ototoxic dose of neomycin. Our results provide an important quantitative step for the use of organotypic culture of the chick basilar papilla as a purposeful model to investigate the process of hair cell regeneration-repair in the avian auditory system.

  14. Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas.

    PubMed

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2013-08-01

    Noise trauma, aging, and ototoxicity preferentially damage the outer hair cells of the inner ear, leading to increased hearing thresholds and poorer frequency resolution. Whereas outer hair cells make synaptic connections with less than 10% of afferent auditory nerve fibers (type-II), inner hair cells make connections with over 90% of afferents (type-I). Despite these extensive connections, little is known about how selective inner hair cell loss impacts hearing. In chinchillas, moderate to high doses of the anticancer compound carboplatin produce selective inner hair cell and type-I afferent loss with little to no effect on outer hair cells. To determine the effects of carboplatin-induced inner hair cell loss on the most widely used clinical measure of hearing, the audiogram, pure-tone thresholds were determined behaviorally before and after 75 mg/kg carboplatin. Following carboplatin treatment, small effects on audiometric thresholds were observed even with extensive inner hair cell losses that exceed 80%. These results suggest that conventional audiometry is insensitive to inner hair cell loss and that only small populations of inner hair cells appear to be necessary for detecting tonal stimuli in a quiet background.

  15. A Brief History of Hair Cell Regeneration Research and Speculations on the Future

    PubMed Central

    Rubel, Edwin W; Furrer, Stephanie A.; Stone, Jennifer S.

    2013-01-01

    Millions of people worldwide suffer from hearing and balance disorders caused by loss of the sensory hair cells that convert sound vibrations and head movements into electrical signals that are conveyed to the brain. In mammals, the great majority of hair cells are produced during embryogenesis. Hair cells that are lost after birth are virtually irreplaceable, leading to permanent disability. Other vertebrates, such as fish and amphibians produce hair cells throughout life. However, hair cell replacement after damage to the mature inner ear was either not investigated or assumed to be impossible until studies in the late 1980s proved this to be false. Adult birds were shown to regenerate lost hair cells in the auditory sensory epithelium after noise- and ototoxic drug-induced damage. Since then, the field of hair cell regeneration has continued to investigate the capacity of the auditory and vestibular epithelia in vertebrates (fishes, birds, reptiles, and mammals) to regenerate hair cells and to recover function, the molecular mechanisms governing these regenerative capabilities, and the prospect of designing biologically-based treatments for hearing loss and balance disorders. Here, we review the major findings of the field during the past 25 years and speculate how future inner ear repair may one day be achieved. PMID:23321648

  16. Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: A simple model to study hair cell loss and regeneration

    PubMed Central

    Abbas, Leila; Rivolta, Marcelo N.

    2015-01-01

    The Mongolian gerbil, Meriones unguiculatus, has been widely employed as a model for studies of the inner ear. In spite of its established use for auditory research, no robust protocols to induce ototoxic hair cell damage have been developed for this species. In this paper, we demonstrate the development of an aminoglycoside-induced model of hair cell loss, using kanamycin potentiated by the loop diuretic furosemide. Interestingly, we show that the gerbil is relatively insensitive to gentamicin compared to kanamycin, and that bumetanide is ineffective in potentiating the ototoxicity of the drug. We also examine the pathology of the spiral ganglion after chronic, long-term hair cell damage. Remarkably, there is little or no neuronal loss following the ototoxic insult, even at 8 months post-damage. This is similar to the situation often seen in the human, where functioning neurons can persist even decades after hair cell loss, contrasting with the rapid, secondary degeneration found in rats, mice and other small mammals. We propose that the combination of these factors makes the gerbil a good model for ototoxic damage by induced hair cell loss. PMID:25783988

  17. Hair cell damage recruited Lgr5-expressing cells are hair cell progenitors in neonatal mouse utricle

    PubMed Central

    Lin, Jinchao; Zhang, Xiaodong; Wu, Fengfang; Lin, Weinian

    2015-01-01

    Damage-activated stem/progenitor cells play important roles in regenerating lost cells and in tissue repair. Previous studies reported that the mouse utricle has limited hair cell regeneration ability after hair cell ablation. However, the potential progenitor cell population regenerating new hair cells remains undiscovered. In this study, we first found that Lgr5, a Wnt target gene that is not usually expressed in the neonatal mouse utricle, can be activated by 24 h neomycin treatment in a sub-population of supporting cells in the striolar region of the neonatal mouse utricle. Lineage tracing demonstrated that these Lgr5-positive supporting cells could regenerate new hair cells in explant culture. We isolated the damage-activated Lgr5-positive cells with flow cytometry and found that these Lgr5-positive supporting cells could regenerate hair cells in vitro, and self-renew to form spheres, which maintained the capacity to differentiate into hair cells over seven generations of passages. Our results suggest that damage-activated Lgr5-positive supporting cells act as hair cell progenitors in the neonatal mouse utricle, which may help to uncover a potential route to regenerate hair cell in mammals. PMID:25883551

  18. Solitary Hair Cells Are Distributed Throughout the Extramacular Epithelium in the Bullfrog's Saccule

    PubMed Central

    Meyers, Jason R.; Corwin, Jeffrey T.

    2000-01-01

    The frog inner ear contains eight sensory organs that provide sensitivities to auditory, vestibular, and ground-borne vibrational stimuli. The saccule in bullfrogs is responsible for detecting ground- and air-borne vibrations and is used for studies of hair cell physiology, development, and regeneration. Based on hair bundle morphology, a number of hair cell types have been defined in this organ. Using immunocytochemistry, vital labeling, and electron microscopy, we have characterized a new hair cell type in the bullfrog saccule. A monoclonal antibody that is specific to hair cells revealed that a population of solitary hair cells exists outside the sensory macula in what was previously thought to be nonsensory epithelium. We call these extramacular hair cells. There are 80–100 extramacular hair cells in both tadpole and adult saccules, which extend up to 1 mm from the edge of the sensory macula. The extramacular hair cells have spherical cell bodies and small apical surfaces. Even in adults, the hair bundles of the extramacular cells appear immature, with a long kinocilium (6–9 μm) and short stereocilia (0.5–2 μm). At least 90% of extramacular hair cells are likely to be innervated as demonstrated by labeling of nerve fibers with an antineurofilament antibody. The extramacular hair cells may differentiate in regions just beyond the edge of the macula at an early stage in development and then be pushed out via the interstitial growth of the epithelium that surrounds the macula. It is also possible that they may be produced from cell divisions in the extramacular epithelium that has not been considered capable of giving rise to hair cells. PMID:11545144

  19. Organization of microtubules in cochlear hair cells.

    PubMed

    Furness, D N; Hackney, C M; Steyger, P S

    1990-07-01

    The organization of microtubules in hair cells of the guinea-pig cochlea has been investigated using transmission electron microscopy and correlated with the location of tubulin-associated immunofluorescence in surface preparations of the organ of Corti. Results from both techniques reveal consistent distributions of microtubules in inner and outer hair cells. In the inner hair cells, microtubules are most concentrated in the apex. Reconstruction from serial sections shows three main groups: firstly, in channels through the cuticular plate and in a discontinuous belt around its upper perimeter; secondly, forming a ring inside a rim extending down from the lower perimeter of the plate; and thirdly, in a meshwork underlying the main body of the plate. In the cell body, microtubules line the inner face of the subsurface cistern and extend longitudinally through a tubulo-vesicular track between the apex and base. In outer hair cells, the pattern of microtubules associated with the cuticular plate is similar, although there are fewer present than in inner hair cells. In outer hair cells from the apex of the cochlea, microtubules occur around an infracuticular protrusion of cuticular plate material. In the cell body, many more microtubules occur in the region below the nucleus compared with inner hair cells. The possible functions of microtubules in hair cells are discussed by comparison with those found in other systems. These include morphogenesis and maintenance of cell shape; intracellular transport, e.g., of neurotransmitter vesicles; providing a possible substrate for motility; mechanical support of structures associated with sensory transduction.

  20. Outer Hair Cells Provide Active Tuning in the Organ of Corti.

    PubMed

    Ulfendahl, Mats; Flock Å, Åke

    1998-06-01

    The detection of sound by the mammalian hearing organ, the organ of Corti, is far from a passive process with the sensory cells acting as mere receptors. The high sensitivity and sharp tuning of the auditory apparatus are very much dependant on the active mechanical behavior of the outer hair cells, acting as effector cells.

  1. Immunohistochemical study of hair follicle stem cells in regenerated hair follicles induced by Wnt10b

    PubMed Central

    Zhang, Yiming; Xing, Yizhan; Guo, Haiying; Ma, Xiaogen; Li, Yuhong

    2016-01-01

    The regulation of the periodic regeneration of hair follicles is complicated. Although Wnt10b has been reported to induce hair follicle regeneration, the characteristics of induced hair follicles, especially the target cells of Wnt10b, have not yet been clearly elucidated. Thus, we systematically evaluated the expression and proliferation patterns of Wnt10b-induced hair follicles. We found that Wnt10b promoted the proliferation of hair follicle stem cells from 24 hours after AdWnt10b injection. Seventy-two hours after AdWnt10b injection, cells outside of bulge area began to proliferate. When the induced hair follicle entered full anagen, although the hair follicle stem cells were normal, canonical Wnt signaling was maintained in the hair precortex cells. Our results reveal that the target cells that overexpressed Wnt10b included hair follicle stem cells, hair precortex cells, and matrix cells. PMID:27766026

  2. Defective calmodulin-dependent rapid apical endocytosis in zebrafish sensory hair cell mutants.

    PubMed

    Seiler, C; Nicolson, T

    1999-11-15

    Vertebrate mechanosensory hair cells contain a narrow "pericuticular" zone which is densely populated with small vesicles between the cuticular plate and cellular junctions near the apical surface. The presence of many cytoplasmic vesicles suggests that the apical surface of hair cells has a high turnover rate. The significance of intense membrane trafficking at the apical surface is not known. Using a marker of endocytosis, the styryl dye FM1-43, this report shows that rapid apical endocytosis in zebrafish lateral line sensory hair cells is calcium and calmodulin dependent and is partially blocked by the presence of amiloride and dihydrostreptomycin, known inhibitors of mechanotransduction channels. As seen in lateral line hair cells, sensory hair cells within the larval otic capsule also exhibit rapid apical endocytosis. Defects in internalization of the dye in both lateral line and inner ear hair cells were found in five zebrafish auditory/vestibular mutants: sputnik, mariner, orbiter, mercury, and skylab. In addition, lateral line hair cells in these mutants were not sensitive to prolonged exposure to streptomycin, which is toxic to hair cells. The presence of endocytic defects in the majority of zebrafish mechanosensory mutants points to a important role of apical endocytosis in hair cell function. Copyright 1999 John Wiley & Sons, Inc.

  3. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice

    PubMed Central

    Niksch, Paul D.; Webber, Roxanna M.; Garcia-Gonzalez, Miguel; Watnick, Terry; Zhou, Jing; Vollrath, Melissa A.; Corey, David P.

    2016-01-01

    Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction. PMID:27196058

  4. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla.

    PubMed

    Xia, Anping; Liu, Xiaofang; Raphael, Patrick D; Applegate, Brian E; Oghalai, John S

    2016-10-31

    Frequency tuning within the auditory papilla of most non-mammalian species is electrical, deriving from ion-channel resonance within their sensory hair cells. In contrast, tuning within the mammalian cochlea is mechanical, stemming from active mechanisms within outer hair cells that amplify the basilar membrane travelling wave. Interestingly, hair cells in the avian basilar papilla demonstrate both electrical resonance and force-generation, making it unclear which mechanism creates sharp frequency tuning. Here, we measured sound-induced vibrations within the apical half of the chicken basilar papilla in vivo and found broadly-tuned travelling waves that were not amplified. However, distortion products were found in live but not dead chickens. These findings support the idea that avian hair cells do produce force, but that their effects on vibration are small and do not sharpen tuning. Therefore, frequency tuning within the apical avian basilar papilla is not mechanical, and likely derives from hair cell electrical resonance.

  5. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla

    PubMed Central

    Xia, Anping; Liu, Xiaofang; Raphael, Patrick D.; Applegate, Brian E.; Oghalai, John S.

    2016-01-01

    Frequency tuning within the auditory papilla of most non-mammalian species is electrical, deriving from ion-channel resonance within their sensory hair cells. In contrast, tuning within the mammalian cochlea is mechanical, stemming from active mechanisms within outer hair cells that amplify the basilar membrane travelling wave. Interestingly, hair cells in the avian basilar papilla demonstrate both electrical resonance and force-generation, making it unclear which mechanism creates sharp frequency tuning. Here, we measured sound-induced vibrations within the apical half of the chicken basilar papilla in vivo and found broadly-tuned travelling waves that were not amplified. However, distortion products were found in live but not dead chickens. These findings support the idea that avian hair cells do produce force, but that their effects on vibration are small and do not sharpen tuning. Therefore, frequency tuning within the apical avian basilar papilla is not mechanical, and likely derives from hair cell electrical resonance. PMID:27796310

  6. Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus

    NASA Technical Reports Server (NTRS)

    Lanford, P. J.; Presson, J. C.; Popper, A. N.

    1996-01-01

    Cell proliferation and hair cell addition have not been studied in the ears of otophysan fish, a group of species who have specialized hearing capabilities. In this study we used the mitotic S-phase marker bromodeoxyuridine (BrdU) to identify proliferating cells in the ear of one otophysan species, Carassius auratus (the goldfish). Animals were sacrificed at 3 h or 5 days postinjection with BrdU and processed for immunocytochemistry. The results of the study show that cell proliferation occurs in all of the otic endorgans and results in the addition of new hair cells. BrdU-labeled cells were distributed throughout all epithelia, including the primary auditory endorgan (saccule), where hair cell phenotypes vary considerably along the rostrocaudal axis. This study lays the groundwork for our transmission electron microscopy study of proliferative cells in the goldfish ear (Presson et al., Hearing Research 100 (1996) 10-20) as well as future studies of hair cell development in this species. The ability to predict, based on epithelial location, the future phenotype of developing hair cells in the saccule of the goldfish make that endorgan a particularly powerful model system for the investigation of early hair cell differentiation.

  7. Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus

    NASA Technical Reports Server (NTRS)

    Lanford, P. J.; Presson, J. C.; Popper, A. N.

    1996-01-01

    Cell proliferation and hair cell addition have not been studied in the ears of otophysan fish, a group of species who have specialized hearing capabilities. In this study we used the mitotic S-phase marker bromodeoxyuridine (BrdU) to identify proliferating cells in the ear of one otophysan species, Carassius auratus (the goldfish). Animals were sacrificed at 3 h or 5 days postinjection with BrdU and processed for immunocytochemistry. The results of the study show that cell proliferation occurs in all of the otic endorgans and results in the addition of new hair cells. BrdU-labeled cells were distributed throughout all epithelia, including the primary auditory endorgan (saccule), where hair cell phenotypes vary considerably along the rostrocaudal axis. This study lays the groundwork for our transmission electron microscopy study of proliferative cells in the goldfish ear (Presson et al., Hearing Research 100 (1996) 10-20) as well as future studies of hair cell development in this species. The ability to predict, based on epithelial location, the future phenotype of developing hair cells in the saccule of the goldfish make that endorgan a particularly powerful model system for the investigation of early hair cell differentiation.

  8. Wnt Responsive Lgr5-Expressing Stem Cells Are Hair Cell Progenitors in the Cochlea

    PubMed Central

    Shi, Fuxin; Kempfle, Judith; Edge, Albert S. B.

    2012-01-01

    Auditory hair cells are surrounded on their basolateral aspects by supporting cells, and these two cell types together constitute the sensory epithelium of the organ of Corti, which is the hearing apparatus of the ear. We show here that Lgr5, a marker for adult stem cells, was expressed in a subset of supporting cells in the newborn and adult murine cochlea. Lgr5-expressing supporting cells, sorted by flow cytometry and cultured in a single cell suspension, as compared to unsorted cells, displayed an enhanced capacity for self-renewing neurosphere formation in response to Wnt and were converted to hair cells at a higher (>10-fold) rate. The greater differentiation of hair cell in the neurosphere assay showed that Lgr5-positive cells had the capacity to act as cochlear progenitor cells, and lineage tracing confirmed that Lgr5-expressing cells accounted for the cells that formed neurospheres and differentiated to hair cells. The responsiveness to Wnt of cells with a capacity for division and sensory cell formation suggests a potential route to new hair cell generation in the adult cochlea. PMID:22787049

  9. Evaluation of the Hair Cell Regeneration in Zebrafish Larvae by Measuring and Quantifying the Startle Responses

    PubMed Central

    Wang, Changquan; Zhong, Zhenmin; Sun, Peng

    2017-01-01

    The zebrafish has become an established model organism for the study of hearing and balance systems in the past two decades. The classical approach to examine hair cells is to use dye to conduct selective staining, which shows the number and morphology of hair cells but does not reveal their function. Startle response is a behavior closely related to the auditory function of hair cells; therefore it can be used to measure the function of hair cells. In this study, we developed a device to measure the startle response of zebrafish larvae. By applying various levels of stimulus, it showed that the system can discern a 10 dB difference. The hair cell in zebrafish can regenerate after damage due to noise exposure or drug treatment. With this device, we measured the startle response of zebrafish larvae during and after drug treatment. The results show a similar trend to the classical hair cell staining method. The startle response was reduced with drug treatment and recovered after removal of the drug. Together it demonstrated the capability of this behavioral assay in evaluating the hair cell functions of fish larvae and its potential as a high-throughput screening tool for auditory-related gene and drug discovery. PMID:28250994

  10. Evaluation of the Hair Cell Regeneration in Zebrafish Larvae by Measuring and Quantifying the Startle Responses.

    PubMed

    Wang, Changquan; Zhong, Zhenmin; Sun, Peng; Zhong, Hanbing; Li, Hongzhe; Chen, Fangyi

    2017-01-01

    The zebrafish has become an established model organism for the study of hearing and balance systems in the past two decades. The classical approach to examine hair cells is to use dye to conduct selective staining, which shows the number and morphology of hair cells but does not reveal their function. Startle response is a behavior closely related to the auditory function of hair cells; therefore it can be used to measure the function of hair cells. In this study, we developed a device to measure the startle response of zebrafish larvae. By applying various levels of stimulus, it showed that the system can discern a 10 dB difference. The hair cell in zebrafish can regenerate after damage due to noise exposure or drug treatment. With this device, we measured the startle response of zebrafish larvae during and after drug treatment. The results show a similar trend to the classical hair cell staining method. The startle response was reduced with drug treatment and recovered after removal of the drug. Together it demonstrated the capability of this behavioral assay in evaluating the hair cell functions of fish larvae and its potential as a high-throughput screening tool for auditory-related gene and drug discovery.

  11. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro.

    PubMed

    Gunewardene, Niliksha; Crombie, Duncan; Dottori, Mirella; Nayagam, Bryony A

    2016-01-01

    Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients.

  12. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro

    PubMed Central

    Gunewardene, Niliksha; Crombie, Duncan; Dottori, Mirella; Nayagam, Bryony A.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients. PMID:26966437

  13. Observing Cells in Plucked Hair Follicles.

    ERIC Educational Resources Information Center

    Wells, John

    1991-01-01

    A simple technique is described by which the cells attached to plucked hair can be observed and used to demonstrate dividing and differentiating cell populations. The necessary equipment and the procedure are listed. (Author/KR)

  14. Observing Cells in Plucked Hair Follicles.

    ERIC Educational Resources Information Center

    Wells, John

    1991-01-01

    A simple technique is described by which the cells attached to plucked hair can be observed and used to demonstrate dividing and differentiating cell populations. The necessary equipment and the procedure are listed. (Author/KR)

  15. Manganese is toxic to spiral ganglion neurons and hair cells in vitro.

    PubMed

    Ding, Dalian; Roth, Jerome; Salvi, Richard

    2011-03-01

    Occupational exposure to high atmospheric levels of Mn produces a severe and debilitating disorder known as manganism characterized by extrapyramidal disturbances similar to that seen in Parkinson's disease. Epidemiological and case studies suggest that persistent exposures to Mn may have deleterious effects on other organs including the auditory system and hearing. Mn accumulates in the inner ear following acute exposure raising the possibility that it can damage the sensory hair cells that convert sound into neural activity or spiral ganglion neurons (SGN) that transmit acoustic information from the hair cells to the brain via the auditory nerve. In this paper we demonstrate for first time that Mn causes significant damage to the sensory hair cells, peripheral auditory nerve fibers (ANF) and SGN in cochlear organotypic cultures isolated from postnatal day three rats. The peripheral ANF that make synaptic contact with the sensory hair cells were particularly vulnerable to Mn toxicity; damage occurred at concentrations as low 0.01 mM and increased with dose and duration of Mn exposure. Sensory hair cells, in contrast, were slightly more resistant to Mn toxicity than the ANF. Mn induced an atypical pattern of sensory cell damage; Mn was more toxic to inner hair cells (IHC) than outer hair cells (OHC) and in addition, IHC loss was relatively uniform along the length of the cochlea. Mn also caused significant loss and shrinkage of SGN soma. These findings are the first to demonstrate that Mn can produce severe lesions to both neurons and hair cells in the postnatal inner ear.

  16. Manganese is Toxic to Spiral Ganglion Neurons and Hair Cells in Vitro

    PubMed Central

    Ding, Dalian; Roth, Jerome; Salvi, Richard

    2011-01-01

    Occupational exposure to high atmospheric levels of Mn produces a severe and debilitating disorder known as manganism characterized by extrapyramidal disturbances similar to that seen in Parkinson’s disease. Epidemiological and case studies suggest that persistent exposures to Mn may have deleterious effects on other organs including the auditory system and hearing. Mn accumulates in the inner ear following acute exposure raising the possibility that it can damage the sensory hair cells that convert sound into neural activity or spiral ganglion neurons (SGN) that transmit acoustic information from the hair cells to the brain via the auditory nerve. In this paper we demonstrate for first time that Mn causes significant damage to the sensory hair cells, peripheral auditory nerve fibers (ANF) and SGN in cochlear organotypic cultures isolated from postnatal day three rats. The peripheral ANF that make synaptic contact with the sensory hair cells were particularly vulnerable to Mn toxicity; damage occurred at concentrations as low 0.01 mM and increased with dose and duration of Mn exposure. Sensory hair cells, in contrast, were slightly more resistant to Mn toxicity than the ANF. Mn induced an atypical pattern of sensory cell damage; Mn was more toxic to inner hair cells (IHC) than outer hair cells (OHC) and in addition, IHC loss was relatively uniform along the length of the cochlea. Mn also caused significant loss and shrinkage of SGN soma. These findings are the first to demonstrate that Mn can produce severe lesions to both neurons and hair cells in the postnatal inner ear. PMID:21182863

  17. Dopamine Modulates the Activity of Sensory Hair Cells

    PubMed Central

    Toro, Cecilia; Trapani, Josef G.; Pacentine, Itallia; Maeda, Reo; Sheets, Lavinia; Mo, Weike

    2015-01-01

    The senses of hearing and balance are subject to modulation by efferent signaling, including the release of dopamine (DA). How DA influences the activity of the auditory and vestibular systems and its site of action are not well understood. Here we show that dopaminergic efferent fibers innervate the acousticolateralis epithelium of the zebrafish during development but do not directly form synapses with hair cells. However, a member of the D1-like receptor family, D1b, tightly localizes to ribbon synapses in inner ear and lateral-line hair cells. To assess modulation of hair-cell activity, we reversibly activated or inhibited D1-like receptors (D1Rs) in lateral-line hair cells. In extracellular recordings from hair cells, we observed that D1R agonist SKF-38393 increased microphonic potentials, whereas D1R antagonist SCH-23390 decreased microphonic potentials. Using ratiometric calcium imaging, we found that increased D1R activity resulted in larger calcium transients in hair cells. The increase of intracellular calcium requires Cav1.3a channels, as a Cav1 calcium channel antagonist, isradipine, blocked the increase in calcium transients elicited by the agonist SKF-38393. Collectively, our results suggest that DA is released in a paracrine fashion and acts at ribbon synapses, likely enhancing the activity of presynaptic Cav1.3a channels and thereby increasing neurotransmission. SIGNIFICANCE STATEMENT The neurotransmitter dopamine acts in a paracrine fashion (diffusion over a short distance) in several tissues and bodily organs, influencing and regulating their activity. The cellular target and mechanism of the action of dopamine in mechanosensory organs, such as the inner ear and lateral-line organ, is not clearly understood. Here we demonstrate that dopamine receptors are present in sensory hair cells at synaptic sites that are required for signaling to the brain. When nearby neurons release dopamine, activation of the dopamine receptors increases the activity of

  18. Strategies to regenerate hair cells: identification of progenitors and critical genes.

    PubMed

    Breuskin, Ingrid; Bodson, Morgan; Thelen, Nicolas; Thiry, Marc; Nguyen, Laurent; Belachew, Shibeshih; Lefebvre, Philippe P; Malgrange, Brigitte

    2008-02-01

    Deafness commonly results from a lesion of the sensory cells and/or of the neurons of the auditory part of the inner ear. There are currently no treatments designed to halt or reverse the progression of hearing loss. A key goal in developing therapy for sensorineural deafness is the identification of strategies to replace lost hair cells. In amphibians and birds, a spontaneous post-injury regeneration of all inner ear sensory hair cells occurs. In contrast, in the mammalian cochlea, hair cells are only produced during embryogenesis. Many studies have been carried out in order to demonstrate the persistence of endogenous progenitors. The present review is first focused on the occurrence of spontaneous supernumerary hair cells and on nestin positive precursors found in the organ of Corti. A second approach to regenerating hair cells would be to find genes essential for their differentiation. This review will also focus on critical genes for embryonic hair cell formation such as the cell cycle related proteins, the Atoh1 gene and the Notch signaling pathway. Understanding mechanisms that underlie hair cell production is an essential prerequisite to defining therapeutic strategies to regenerate hair cells in the mature inner ear.

  19. Hair Cell Heterogeneity in the Goldfish Saccule

    NASA Technical Reports Server (NTRS)

    Saidel, William M.; Lanford, Pamela J.; Yan, Hong Y.; Popper, Arthur N.

    1995-01-01

    A set of cytological studies performed in the utricle and saccule of Astronotus ocellatus (Teleostei, Percomorphi, Cichlidae) identified two basic types of hair cells and others with some intermediate characteristics. This paper reports on applying the same techniques to the saccule of Carassius auratus (Teleostei, Otophysi, Cyprinidae) and demonstrates similar types of hair cells to those found in Astronotus. Since Carassius and Astronous are species of extreme taxonomic distance within the Euteteostei, two classes of mechanoreceptive hair cells are likely to represent the primitive condition for sensory receptors in the euteleost inner ear and perhaps in all bony fish ears.

  20. Comparative Transduction Mechanisms of Vestibular Otolith Hair Cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog vestibular otolith organs regenerate following aminoglycoside ototoxicity. Hair cells in these organs are differentially sensitive to gentamicin, with saccular hair cells and hair cells in the utricular striola being damaged at lower gentamicin concentrations than hair cells in the utricular extrastriola. Regenerating hair cells in these organs have short hair bundles and can be classified into a number of phenotypes using the same morphological criteria used to identify their mature counterparts. Our studies suggest that some supporting cells can convert, or transdifferentiate,into hair cells without an intervening cell division. By stimulating these processes in humans, clinicians may be able to alleviate human deafness and peripheral vestibular disorders by regenerating and replacing lost hair cells. In vivo and in vitro studies were done on cell proliferation and hair cell regeneration.

  1. Purinergic signaling in cochleovestibular hair cells and afferent neurons

    PubMed Central

    Dulon, Didier

    2010-01-01

    Purinergic signaling in the mammalian cochleovestibular hair cells and afferent neurons is reviewed. The scope includes P2 and P1 receptors in the inner hair cells (IHCs) of the cochlea, the type I spiral ganglion neurons (SGNs) that convey auditory signals from IHCs, the vestibular hair cells (VHCs) in the vestibular end organs (macula in the otolith organs and crista in the semicircular canals), and the vestibular ganglion neurons (VGNs) that transmit postural and rotatory information from VHCs. Various subtypes of P2X ionotropic receptors are expressed in IHCs as well as P2Y metabotropic receptors that mobilize intracellular calcium. Their functional roles still remain speculative, but adenosine 5′-triphosphate (ATP) could regulate the spontaneous activity of the hair cells during development and the receptor potentials of mature hair cells during sound stimulation. In SGNs, P2Y metabotropic receptors activate a nonspecific cation conductance that is permeable to large cations as NMDG+ and TEA+. Remarkably, this depolarizing nonspecific conductance in SGNs can also be activated by other metabotropic processes evoked by acetylcholine and tachykinin. The molecular nature and the role of this depolarizing channel are unknown, but its electrophysiological properties suggest that it could lie within the transient receptor potential channel family and could regulate the firing properties of the afferent neurons. Studies on the vestibular partition (VHC and VGN) are sparse but have also shown the expression of P2X and P2Y receptors. There is still little evidence of functional P1 (adenosine) receptors in the afferent system of the inner ear. PMID:20806012

  2. Horseradish peroxidase dye tracing and embryonic statoacoustic ganglion cell transplantation in the rat auditory nerve trunk.

    PubMed

    Palmgren, Björn; Jin, Zhe; Jiao, Yu; Kostyszyn, Beata; Olivius, Petri

    2011-03-04

    At present severe damage to hair cells and sensory neurons in the inner ear results in non-treatable auditory disorders. Cell implantation is a potential treatment for various neurological disorders and has already been used in clinical practice. In the inner ear, delivery of therapeutic substances including neurotrophic factors and stem cells provide strategies that in the future may ameliorate or restore hearing impairment. In order to describe a surgical auditory nerve trunk approach, in the present paper we injected the neuronal tracer horseradish peroxidase (HRP) into the central part of the nerve by an intra cranial approach. We further evaluated the applicability of the present approach by implanting statoacoustic ganglion (SAG) cells into the same location of the auditory nerve in normal hearing rats or animals deafened by application of β-bungarotoxin to the round window niche. The HRP results illustrate labeling in the cochlear nucleus in the brain stem as well as peripherally in the spiral ganglion neurons in the cochlea. The transplanted SAGs were observed within the auditory nerve trunk but no more peripheral than the CNS-PNS transitional zone. Interestingly, the auditory nerve injection did not impair auditory function, as evidenced by the auditory brainstem response. The present findings illustrate that an auditory nerve trunk approach may well access the entire auditory nerve and does not compromise auditory function. We suggest that such an approach might compose a suitable route for cell transplantation into this sensory cranial nerve. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Re-Emergent Inhibition of Cochlear Inner Hair Cells in a Mouse Model of Hearing Loss.

    PubMed

    Zachary, Stephen Paul; Fuchs, Paul Albert

    2015-07-01

    Hearing loss among the elderly correlates with diminished social, mental, and physical health. Age-related cochlear cell death does occur, but growing anatomical evidence suggests that synaptic rearrangements on sensory hair cells also contribute to auditory functional decline. Here we present voltage-clamp recordings from inner hair cells of the C57BL/6J mouse model of age-related hearing loss, which reveal that cholinergic synaptic inputs re-emerge during aging. These efferents are functionally inhibitory, using the same ionic mechanisms as do efferent contacts present transiently before the developmental onset of hearing. The strength of efferent inhibition of inner hair cells increases with hearing threshold elevation. These data indicate that the aged cochlea regains features of the developing cochlea and that efferent inhibition of the primary receptors of the auditory system re-emerges with hearing impairment. Synaptic changes in the auditory periphery are increasingly recognized as important factors in hearing loss. To date, anatomical work has described the loss of afferent contacts from cochlear hair cells. However, relatively little is known about the efferent innervation of the cochlea during hearing loss. We performed intracellular recordings from mouse inner hair cells across the lifespan and show that efferent innervation of inner hair cells arises in parallel with the loss of afferent contacts and elevated hearing threshold during aging. These efferent neurons inhibit inner hair cells, raising the possibility that they play a role in the progression of age-related hearing loss. Copyright © 2015 the authors 0270-6474/15/359701-06$15.00/0.

  4. Ganglioside GM3 is essential for the structural integrity and function of cochlear hair cells.

    PubMed

    Yoshikawa, Misato; Go, Shinji; Suzuki, Shun-ichi; Suzuki, Akemi; Katori, Yukio; Morlet, Thierry; Gottlieb, Steven M; Fujiwara, Michihiro; Iwasaki, Katsunori; Strauss, Kevin A; Inokuchi, Jin-ichi

    2015-05-15

    GM3 synthase (ST3GAL5) is the first biosynthetic enzyme of a- and b-series gangliosides. Patients with GM3 synthase deficiency suffer severe neurological disability and deafness. Eight children (ages 4.1 ± 2.3 years) homozygous for ST3GAL5 c.694C>T had no detectable GM3 (a-series) or GD3 (b-series) in plasma. Their auditory function was characterized by the absence of middle ear muscle reflexes, distortion product otoacoustic emissions and cochlear microphonics, as well as abnormal auditory brainstem responses and cortical auditory-evoked potentials. In St3gal5(-/-) mice, stereocilia of outer hair cells showed signs of degeneration as early as postnatal Day 3 (P3); thereafter, blebs devoid of actin or tubulin appeared at the region of vestigial kinocilia, suggesting impaired vesicular trafficking. Stereocilia of St3gal5(-/-) inner hair cells were fused by P17, and protein tyrosine phosphatase receptor Q, normally linked to myosin VI at the tapered base of stereocilia, was maldistributed along the cell membrane. B4galnt1(-/-) (GM2 synthase-deficient) mice expressing only GM3 and GD3 gangliosides had normal auditory structure and function. Thus, GM3-dependent membrane microdomains might be essential for the proper organization and maintenance of stereocilia in auditory hair cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Ganglioside GM3 is essential for the structural integrity and function of cochlear hair cells

    PubMed Central

    Yoshikawa, Misato; Go, Shinji; Suzuki, Shun-ichi; Suzuki, Akemi; Katori, Yukio; Morlet, Thierry; Gottlieb, Steven M.; Fujiwara, Michihiro; Iwasaki, Katsunori; Strauss, Kevin A.; Inokuchi, Jin-ichi

    2015-01-01

    GM3 synthase (ST3GAL5) is the first biosynthetic enzyme of a- and b-series gangliosides. Patients with GM3 synthase deficiency suffer severe neurological disability and deafness. Eight children (ages 4.1 ± 2.3 years) homozygous for ST3GAL5 c.694C>T had no detectable GM3 (a-series) or GD3 (b-series) in plasma. Their auditory function was characterized by the absence of middle ear muscle reflexes, distortion product otoacoustic emissions and cochlear microphonics, as well as abnormal auditory brainstem responses and cortical auditory-evoked potentials. In St3gal5−/− mice, stereocilia of outer hair cells showed signs of degeneration as early as postnatal Day 3 (P3); thereafter, blebs devoid of actin or tubulin appeared at the region of vestigial kinocilia, suggesting impaired vesicular trafficking. Stereocilia of St3gal5−/− inner hair cells were fused by P17, and protein tyrosine phosphatase receptor Q, normally linked to myosin VI at the tapered base of stereocilia, was maldistributed along the cell membrane. B4galnt1−/− (GM2 synthase-deficient) mice expressing only GM3 and GD3 gangliosides had normal auditory structure and function. Thus, GM3-dependent membrane microdomains might be essential for the proper organization and maintenance of stereocilia in auditory hair cells. PMID:25652401

  6. Active hair-bundle movements can amplify a hair cell's response to oscillatory mechanical stimuli.

    PubMed

    Martin, P; Hudspeth, A J

    1999-12-07

    To enhance their mechanical sensitivity and frequency selectivity, hair cells amplify the mechanical stimuli to which they respond. Although cell-body contractions of outer hair cells are thought to mediate the active process in the mammalian cochlea, vertebrates without outer hair cells display highly sensitive, sharply tuned hearing and spontaneous otoacoustic emissions. In these animals the amplifier must reside elsewhere. We report physiological evidence that amplification can stem from active movement of the hair bundle, the hair cell's mechanosensitive organelle. We performed experiments on hair cells from the sacculus of the bullfrog. Using a two-compartment recording chamber that permits exposure of the hair cell's apical and basolateral surfaces to different solutions, we examined active hair-bundle motion in circumstances similar to those in vivo. When the apical surface was bathed in artificial endolymph, many hair bundles exhibited spontaneous oscillations of amplitudes as great as 50 nm and frequencies in the range 5 to 40 Hz. We stimulated hair bundles with a flexible glass probe and recorded their mechanical responses with a photometric system. When the stimulus frequency lay within a band enclosing a hair cell's frequency of spontaneous oscillation, mechanical stimuli as small as +/-5 nm entrained the hair-bundle oscillations. For small stimuli, the bundle movement was larger than the stimulus. Because the energy dissipated by viscous drag exceeded the work provided by the stimulus probe, the hair bundles powered their motion and therefore amplified it.

  7. The potential use of low-frequency tones to locate regions of outer hair cell loss.

    PubMed

    Kamerer, Aryn M; Diaz, Francisco J; Peppi, Marcello; Chertoff, Mark E

    2016-12-01

    Current methods used to diagnose cochlear hearing loss are limited in their ability to determine the location and extent of anatomical damage to various cochlear structures. In previous experiments, we have used the electrical potential recorded at the round window -the cochlear response (CR) -to predict the location of damage to outer hair cells in the gerbil. In a follow-up experiment, we applied 10 mM ouabain to the round window niche to reduce neural activity in order to quantify the neural contribution to the CR. We concluded that a significant proportion of the CR to a 762 Hz tone originated from phase-locking activity of basal auditory nerve fibers, which could have contaminated our conclusions regarding outer hair cell health. However, at such high concentrations, ouabain may have also affected the responses from outer hair cells, exaggerating the effect we attributed to the auditory nerve. In this study, we lowered the concentration of ouabain to 1 mM and determined the physiologic effects on outer hair cells using distortion-product otoacoustic emissions. As well as quantifying the effects of 1 mM ouabain on the auditory nerve and outer hair cells, we attempted to reduce the neural contribution to the CR by using near-infrasonic stimulus frequencies of 45 and 85 Hz, and hypothesized that these low-frequency stimuli would generate a cumulative amplitude function (CAF) that could reflect damage to hair cells in the apex more accurately than the 762 stimuli. One hour after application of 1 mM ouabain, CR amplitudes significantly increased, but remained unchanged in the presence of high-pass filtered noise conditions, suggesting that basal auditory nerve fibers have a limited contribution to the CR at such low frequencies. Published by Elsevier B.V.

  8. Optogenetic Control of Mouse Outer Hair Cells.

    PubMed

    Wu, Tao; Ramamoorthy, Sripriya; Wilson, Teresa; Chen, Fangyi; Porsov, Edward; Subhash, Hrebesh; Foster, Sarah; Zhang, Yuan; Omelchenko, Irina; Bateschell, Michael; Wang, Lingyan; Brigande, John V; Jiang, Zhi-Gen; Mao, Tianyi; Nuttall, Alfred L

    2016-01-19

    Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Optogenetic Control of Mouse Outer Hair Cells

    PubMed Central

    Wu, Tao; Ramamoorthy, Sripriya; Wilson, Teresa; Chen, Fangyi; Porsov, Edward; Subhash, Hrebesh; Foster, Sarah; Zhang, Yuan; Omelchenko, Irina; Bateschell, Michael; Wang, Lingyan; Brigande, John V.; Jiang, Zhi-Gen; Mao, Tianyi; Nuttall, Alfred L.

    2016-01-01

    Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects. PMID:26789771

  10. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse

    PubMed Central

    Moser, Tobias; Neef, Andreas; Khimich, Darina

    2006-01-01

    Our auditory system is capable of perceiving the azimuthal location of a low frequency sound source with a precision of a few degrees. This requires the auditory system to detect time differences in sound arrival between the two ears down to tens of microseconds. The detection of these interaural time differences relies on network computation by auditory brainstem neurons sharpening the temporal precision of the afferent signals. Nevertheless, the system requires the hair cell synapse to encode sound with the highest possible temporal acuity. In mammals, each auditory nerve fibre receives input from only one inner hair cell (IHC) synapse. Hence, this single synapse determines the temporal precision of the fibre. As if this was not enough of a challenge, the auditory system is also capable of maintaining such high temporal fidelity with acoustic signals that vary greatly in their intensity. Recent research has started to uncover the cellular basis of sound coding. Functional and structural descriptions of synaptic vesicle pools and estimates for the number of Ca2+ channels at the ribbon synapse have been obtained, as have insights into how the receptor potential couples to the release of synaptic vesicles. Here, we review current concepts about the mechanisms that control the timing of transmitter release in inner hair cells of the cochlea. PMID:16901948

  11. Role of Nicotinic Acetylcholine Receptor on Efferent Inhibition in Cochlear Hair Cell

    PubMed Central

    2012-01-01

    The α9α10 nicotinic acetylcholine receptors (nAChRs) mediates efferent inhibition of hair cell function within the auditory sensory organ. Gating of the nAChRs leads to activation of calcium-dependent potassium channels to hyperpolarize the hair cell. In efferent system, main calcium providers to SK channel are nAChR and synaptic cistern, which contribution to efferent inhibition is different between avian and mammalian species. Calcium permeation is more effective in nAChRs of mammalian cochlea than avian cochlea, and mammalian calcium permeability of nAChRs is about 3 times more than avian hair cell. Thus, mammalian nAChRs is a main component of efferent inhibition in cochlear hair cell system. PMID:24653883

  12. Characterization of the Transcriptome of Nascent Hair Cells and Identification of Direct Targets of the Atoh1 Transcription Factor

    PubMed Central

    Cai, Tiantian; Jen, Hsin-I; Kang, Hyojin; Klisch, Tiemo J.; Zoghbi, Huda Y.

    2015-01-01

    Hair cells are sensory receptors for the auditory and vestibular system in vertebrates. The transcription factor Atoh1 is both necessary and sufficient for the differentiation of hair cells, and is strongly upregulated during hair-cell regeneration in nonmammalian vertebrates. To identify genes involved in hair cell development and function, we performed RNA-seq profiling of purified Atoh1-expressing hair cells from the neonatal mouse cochlea. We identified >600 enriched transcripts in cochlear hair cells, of which 90% have not been previously shown to be expressed in hair cells. We identified 233 of these hair cell genes as candidates to be directly regulated by Atoh1 based on the presence of Atoh1 binding sites in their regulatory regions and by analyzing Atoh1 ChIP-seq datasets from the cerebellum and small intestine. We confirmed 10 of these genes as being direct Atoh1 targets in the cochlea by ChIP-PCR. The identification of candidate Atoh1 target genes is a first step in identifying gene regulatory networks for hair-cell development and may inform future studies on the potential role of Atoh1 in mammalian hair cell regeneration. PMID:25855195

  13. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  14. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  15. Inhibition of caspases prevents ototoxic and ongoing hair cell death.

    PubMed

    Matsui, Jonathan I; Ogilvie, Judith M; Warchol, Mark E

    2002-02-15

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  16. Dimethyl sulfoxide (DMSO) exacerbates cisplatin-induced sensory hair cell death in zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Mueller, Melissa A; Gleichman, Julia S; Kramer, Matthew D; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M; Steyger, Peter S; Cotanche, Douglas A; Matsui, Jonathan I

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.

  17. Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    PubMed Central

    Gleichman, Julia S.; Kramer, Matthew D.; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M.; Steyger, Peter S.; Cotanche, Douglas A.; Matsui, Jonathan I.

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO. PMID:23383324

  18. Phoenix is required for mechanosensory hair cell regeneration in the zebrafish lateral line.

    PubMed

    Behra, Martine; Bradsher, John; Sougrat, Rachid; Gallardo, Viviana; Allende, Miguel L; Burgess, Shawn M

    2009-04-01

    In humans, the absence or irreversible loss of hair cells, the sensory mechanoreceptors in the cochlea, accounts for a large majority of acquired and congenital hearing disorders. In the auditory and vestibular neuroepithelia of the inner ear, hair cells are accompanied by another cell type called supporting cells. This second cell population has been described as having stem cell-like properties, allowing efficient hair cell replacement during embryonic and larval/fetal development of all vertebrates. However, mammals lose their regenerative capacity in most inner ear neuroepithelia in postnatal life. Remarkably, reptiles, birds, amphibians, and fish are different in that they can regenerate hair cells throughout their lifespan. The lateral line in amphibians and in fish is an additional sensory organ, which is used to detect water movements and is comprised of neuroepithelial patches, called neuromasts. These are similar in ultra-structure to the inner ear's neuroepithelia and they share the expression of various molecular markers. We examined the regeneration process in hair cells of the lateral line of zebrafish larvae carrying a retroviral integration in a previously uncharacterized gene, phoenix (pho). Phoenix mutant larvae develop normally and display a morphologically intact lateral line. However, after ablation of hair cells with copper or neomycin, their regeneration in pho mutants is severely impaired. We show that proliferation in the supporting cells is strongly decreased after damage to hair cells and correlates with the reduction of newly formed hair cells in the regenerating phoenix mutant neuromasts. The retroviral integration linked to the phenotype is in a novel gene with no known homologs showing high expression in neuromast supporting cells. Whereas its role during early development of the lateral line remains to be addressed, in later larval stages phoenix defines a new class of proteins implicated in hair cell regeneration.

  19. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    PubMed Central

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line. PMID:25431550

  20. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.

    2003-01-01

    The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.

  1. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.

    2003-01-01

    The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.

  2. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells

    PubMed Central

    Liu, Xiao-Ping; Koehler, Karl R.; Mikosz, Andrew M.; Hashino, Eri; Holt, Jeffrey R.

    2016-01-01

    Inner ear sensory epithelia contain mechanosensitive hair cells that transmit information to the brain through innervation with bipolar neurons. Mammalian hair cells do not regenerate and are limited in number. Here we investigate the potential to generate mechanosensitive hair cells from mouse embryonic stem cells in a three-dimensional (3D) culture system. The system faithfully recapitulates mouse inner ear induction followed by self-guided development into organoids that morphologically resemble inner ear vestibular organs. We find that organoid hair cells acquire mechanosensitivity equivalent to functionally mature hair cells in postnatal mice. The organoid hair cells also progress through a similar dynamic developmental pattern of ion channel expression, reminiscent of two subtypes of native vestibular hair cells. We conclude that our 3D culture system can generate large numbers of fully functional sensory cells which could be used to investigate mechanisms of inner ear development and disease as well as regenerative mechanisms for inner ear repair. PMID:27215798

  3. β-Catenin Is Required for Hair-Cell Differentiation in the Cochlea

    PubMed Central

    Hu, Lingxiang; Jacques, Bonnie E.; Mulvaney, Joanna F.; Dabdoub, Alain

    2014-01-01

    The development of hair cells in the auditory system can be separated into steps; first, the establishment of progenitors for the sensory epithelium, and second, the differentiation of hair cells. Although the differentiation of hair cells is known to require the expression of basic helix-loop-helix transcription factor, Atoh1, the control of cell proliferation in the region of the developing cochlea that will ultimately become the sensory epithelium and the cues that initiate Atoh1 expression remain obscure. We assessed the role of Wnt/β-catenin in both steps in gain- and loss-of-function models in mice. The canonical Wnt pathway mediator, β-catenin, controls the expression of Atoh1. Knock-out of β-catenin inhibited hair-cell, as well as pillar-cell, differentiation from sensory progenitors but was not required to maintain a hair-cell fate once specified. Constitutive activation of β-catenin expanded sensory progenitors by inducing additional cell division and resulted in the differentiation of extra hair cells. Our data demonstrate that β-catenin plays a role in cell division and differentiation in the cochlear sensory epithelium. PMID:24806673

  4. Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells

    PubMed Central

    Wang, Han Chin; Lin, Chun-Chieh; Cheung, Rocky; Zhang-Hooks, YingXin; Agarwal, Amit; Ellis-Davies, Graham; Rock, Jason; Bergles, Dwight E.

    2015-01-01

    Summary Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl− efflux and osmotic cell shrinkage by opening TMEM16A Ca2+-activated Cl− channels. Release of Cl− from ISCs also forces K+ efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea, and prevents ATP-dependent shrinkage of supporting cells. These results indicate that support cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells. PMID:26627734

  5. Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice.

    PubMed

    Chen, Mo; Wang, Qin; Zhu, Gang-Hua; Hu, Peng; Zhou, Yuan; Wang, Tian; Lai, Ruo-Sha; Xiao, Zi-An; Xie, Ding-Hua

    2016-10-28

    The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177-187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN(+/-) mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN(-/-) mice exhibited progressive sensorineural hearing loss as reflected by auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN(-/-) mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Hair cell bundles: flexoelectric motors of the inner ear.

    PubMed

    Breneman, Kathryn D; Brownell, William E; Rabbitt, Richard D

    2009-01-01

    Microvilli (stereocilia) projecting from the apex of hair cells in the inner ear are actively motile structures that feed energy into the vibration of the inner ear and enhance sensitivity to sound. The biophysical mechanism underlying the hair bundle motor is unknown. In this study, we examined a membrane flexoelectric origin for active movements in stereocilia and conclude that it is likely to be an important contributor to mechanical power output by hair bundles. We formulated a realistic biophysical model of stereocilia incorporating stereocilia dimensions, the known flexoelectric coefficient of lipid membranes, mechanical compliance, and fluid drag. Electrical power enters the stereocilia through displacement sensitive ion channels and, due to the small diameter of stereocilia, is converted to useful mechanical power output by flexoelectricity. This motor augments molecular motors associated with the mechanosensitive apparatus itself that have been described previously. The model reveals stereocilia to be highly efficient and fast flexoelectric motors that capture the energy in the extracellular electro-chemical potential of the inner ear to generate mechanical power output. The power analysis provides an explanation for the correlation between stereocilia height and the tonotopic organization of hearing organs. Further, results suggest that flexoelectricity may be essential to the exquisite sensitivity and frequency selectivity of non-mammalian hearing organs at high auditory frequencies, and may contribute to the "cochlear amplifier" in mammals.

  7. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  8. Depletion of CD200+ Hair Follicle Stem Cells in Human Prematurely Gray Hair Follicles

    PubMed Central

    Mohanty, Sujata; Kumar, Anil; Dhawan, Jyoti; Sharma, Vinod K; Gupta, Somesh

    2013-01-01

    Introduction: Melanocyte stem cells (MelSCs) are known to be depleted in gray hair follicles. Hair follicle stem cells (HFSCs) are important for maintenance of stemness of MelSCs. Methods: We compared the proportion of CD200+ (Cluster of Differentiation 200 positive) stem cells in the outer root sheath cell suspension of gray and pigmented hair follicles of three patients with the premature graying of hair. In addition, explants culture for HFSCs was also carried out from gray and pigmented hair follicles. Cultured HFSCs were also differentiated into melanocytes. Results: The mean ± SD CD200+ HFSCs population were 9.4 ± 1.4% and 3.5 ± 0.5% for pigmented and gray hair follicles, respectively (P = 0.002). In explants culture, the growth of HFSCs from the gray hair follicle stopped at around day 20–22, whereas the growth of the cells from the pigmented follicle continued. Conclusion: CD200+ HFSCs are depleted in prematurely gray hair in the humans. CD200+ hair follicle stem cell yield is poorer in gray hair explant culture than pigmented hair explant culture. PMID:24023430

  9. Synaptojanin1 is required for temporal fidelity of synaptic transmission in hair cells.

    PubMed

    Trapani, Josef G; Obholzer, Nikolaus; Mo, Weike; Brockerhoff, Susan E; Nicolson, Teresa

    2009-05-01

    To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses.

  10. synaptojanin1 Is Required for Temporal Fidelity of Synaptic Transmission in Hair Cells

    PubMed Central

    Mo, Weike; Brockerhoff, Susan E.; Nicolson, Teresa

    2009-01-01

    To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses. PMID:19424431

  11. Neuroplastin Isoform Np55 Is Expressed in the Stereocilia of Outer Hair Cells and Required for Normal Outer Hair Cell Function

    PubMed Central

    Zeng, Wei-Zheng; Grillet, Nicolas; Dewey, James B.; Trouillet, Alix; Krey, Jocelyn F.; Barr-Gillespie, Peter G.; Oghalai, John S.

    2016-01-01

    Neuroplastin (Nptn) is a member of the Ig superfamily and is expressed in two isoforms, Np55 and Np65. Np65 regulates synaptic transmission but the function of Np55 is unknown. In an N-ethyl-N-nitrosaurea mutagenesis screen, we have now generated a mouse line with an Nptn mutation that causes deafness. We show that Np55 is expressed in stereocilia of outer hair cells (OHCs) but not inner hair cells and affects interactions of stereocilia with the tectorial membrane. In vivo vibrometry demonstrates that cochlear amplification is absent in Nptn mutant mice, which is consistent with the failure of OHC stereocilia to maintain stable interactions with the tectorial membrane. Hair bundles show morphological defects as the mutant mice age and while mechanotransduction currents can be evoked in early postnatal hair cells, cochlea microphonics recordings indicate that mechanontransduction is affected as the mutant mice age. We thus conclude that differential splicing leads to functional diversification of Nptn, where Np55 is essential for OHC function, while Np65 is implicated in the regulation of synaptic function. SIGNIFICANCE STATEMENT Amplification of input sound signals, which is needed for the auditory sense organ to detect sounds over a wide intensity range, depends on mechanical coupling of outer hair cells to the tectorial membrane. The current study shows that neuroplastin, a member of the Ig superfamily, which has previously been linked to the regulation of synaptic plasticity, is critical to maintain a stable mechanical link of outer hair cells with the tectorial membrane. In vivo recordings demonstrate that neuroplastin is essential for sound amplification and that mutation in neuroplastin leads to auditory impairment in mice. PMID:27581460

  12. Whole-Cell Patch-Clamp Recording of Mouse and Rat Inner Hair Cells in the Intact Organ of Corti.

    PubMed

    Goutman, Juan D; Pyott, Sonja J

    2016-01-01

    Whole-cell patch clamping is a widely applied method to record currents across the entire membrane of a cell. This protocol describes application of this method to record currents from the sensory inner hair cells in the intact auditory sensory epithelium, the organ of Corti, isolated from rats or mice. This protocol particularly outlines the basic equipment required, provides instructions for the preparation of solutions and small equipment items, and methodology for recording voltage-activated and evoked synaptic currents from the inner hair cells.

  13. Calcium Balance and Mechanotransduction in Rat Cochlear Hair Cells

    PubMed Central

    Beurg, Maryline; Nam, Jong-Hoon; Chen, Qingguo

    2010-01-01

    Auditory transduction occurs by opening of Ca2+-permeable mechanotransducer (MT) channels in hair cell stereociliary bundles. Ca2+ clearance from bundles was followed in rat outer hair cells (OHCs) using fast imaging of fluorescent indicators. Bundle deflection caused a rapid rise in Ca2+ that decayed after the stimulus, with a time constant of about 50 ms. The time constant was increased by blocking Ca2+ uptake into the subcuticular plate mitochondria or by inhibiting the hair bundle plasma membrane Ca2+ ATPase (PMCA) pump. Such manipulations raised intracellular Ca2+ and desensitized the MT channels. Measurement of the electrogenic PMCA pump current, which saturated at 18 pA with increasing Ca2+ loads, indicated a maximum Ca2+ extrusion rate of 3.7 fmol·s−1. The amplitude of the Ca2+ transient decreased in proportion to the Ca2+ concentration bathing the bundle and in artificial endolymph (160 mM K+, 20 μM Ca2+), Ca2+ carried 0.2% of the MT current. Nevertheless, MT currents in endolymph displayed fast adaptation with a submillisecond time constant. In endolymph, roughly 40% of the MT current was activated at rest when using 1 mM intracellular BAPTA compared with 12% with 1 mM EGTA, which enabled estimation of the in vivo Ca2+ load as 3 pA at rest. The results were reproduced by a model of hair bundle Ca2+ diffusion, showing that the measured PMCA pump density could handle Ca2+ loads incurred from resting and maximal MT currents in endolymph. The model also indicated the endogenous mobile buffer was equivalent to 1 mM BAPTA. PMID:20427623

  14. High-order synchronization of hair cell bundles

    NASA Astrophysics Data System (ADS)

    Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-Wook; Cheon, Jinwoo; Bozovic, Dolores

    2016-12-01

    Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells.

  15. High-order synchronization of hair cell bundles

    PubMed Central

    Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo; Bozovic, Dolores

    2016-01-01

    Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells. PMID:27974743

  16. Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells.

    PubMed

    Defourny, Jean; Poirrier, Anne-Lise; Lallemend, François; Mateo Sánchez, Susana; Neef, Jakob; Vanderhaeghen, Pierre; Soriano, Eduardo; Peuckert, Christiane; Kullander, Klas; Fritzsch, Bernd; Nguyen, Laurent; Moonen, Gustave; Moser, Tobias; Malgrange, Brigitte

    2013-01-01

    Hearing requires an optimal afferent innervation of sensory hair cells by spiral ganglion neurons in the cochlea. Here we report that complementary expression of ephrin-A5 in hair cells and EphA4 receptor among spiral ganglion neuron populations controls the targeting of type I and type II afferent fibres to inner and outer hair cells, respectively. In the absence of ephrin-A5 or EphA4 forward signalling, a subset of type I projections aberrantly overshoot the inner hair cell layer and invade the outer hair cell area. Lack of type I afferent synapses impairs neurotransmission from inner hair cells to the auditory nerve. By contrast, radial shift of type I projections coincides with a gain of presynaptic ribbons that could enhance the afferent signalling from outer hair cells. Ephexin-1, cofilin and myosin light chain kinase act downstream of EphA4 to induce type I spiral ganglion neuron growth cone collapse. Our findings constitute the first identification of an Eph/ephrin-mediated mutual repulsion mechanism responsible for specific sorting of auditory projections in the cochlea.

  17. Power efficiency of outer hair cell somatic electromotility.

    PubMed

    Rabbitt, Richard D; Clifford, Sarah; Breneman, Kathryn D; Farrell, Brenda; Brownell, William E

    2009-07-01

    Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we formulated a mathematical model of the OHC based on first principles and analyzed the power conversion efficiency in the frequency domain. The model includes a mixture-composite constitutive model of the active lateral wall and spatially distributed electro-mechanical fields. The analysis predicts that: 1) the peak power efficiency is likely to be tuned to a specific frequency, dependent upon OHC length, and this tuning may contribute to the place principle and frequency selectivity in the cochlea; 2) the OHC power output can be detuned and attenuated by increasing the basal conductance of the cell, a parameter likely controlled by the brain via the efferent system; and 3) power output efficiency is limited by mechanical properties of the load, thus suggesting that impedance of the organ of Corti may be matched regionally to the OHC. The high power efficiency, tuning, and efferent control of outer hair cells are the direct result of biophysical properties of the cells, thus providing the physical basis for the remarkable sensitivity and selectivity of hearing.

  18. Power Efficiency of Outer Hair Cell Somatic Electromotility

    PubMed Central

    Rabbitt, Richard D.; Clifford, Sarah; Breneman, Kathryn D.; Farrell, Brenda; Brownell, William E.

    2009-01-01

    Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we formulated a mathematical model of the OHC based on first principles and analyzed the power conversion efficiency in the frequency domain. The model includes a mixture-composite constitutive model of the active lateral wall and spatially distributed electro-mechanical fields. The analysis predicts that: 1) the peak power efficiency is likely to be tuned to a specific frequency, dependent upon OHC length, and this tuning may contribute to the place principle and frequency selectivity in the cochlea; 2) the OHC power output can be detuned and attenuated by increasing the basal conductance of the cell, a parameter likely controlled by the brain via the efferent system; and 3) power output efficiency is limited by mechanical properties of the load, thus suggesting that impedance of the organ of Corti may be matched regionally to the OHC. The high power efficiency, tuning, and efferent control of outer hair cells are the direct result of biophysical properties of the cells, thus providing the physical basis for the remarkable sensitivity and selectivity of hearing. PMID:19629162

  19. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset.

    PubMed

    Sheets, Lavinia; He, Xinyi J; Olt, Jennifer; Schreck, Mary; Petralia, Ronald S; Wang, Ya-Xian; Zhang, Qiuxiang; Beirl, Alisha; Nicolson, Teresa; Marcotti, Walter; Trapani, Josef G; Kindt, Katie S

    2017-06-28

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons.SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence

  20. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset

    PubMed Central

    Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang

    2017-01-01

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence

  1. Global Analysis of Protein Expression of Inner Ear Hair Cells.

    PubMed

    Hickox, Ann E; Wong, Ann C Y; Pak, Kwang; Strojny, Chelsee; Ramirez, Miguel; Yates, John R; Ryan, Allen F; Savas, Jeffrey N

    2017-02-01

    The mammalian inner ear (IE) subserves auditory and vestibular sensations via highly specialized cells and proteins. Sensory receptor hair cells (HCs) are necessary for transducing mechanical inputs and stimulating sensory neurons by using a host of known and as yet unknown protein machinery. To understand the protein composition of these unique postmitotic cells, in which irreversible protein degradation or damage can lead to impaired hearing and balance, we analyzed IE samples by tandem mass spectrometry to generate an unbiased, shotgun-proteomics view of protein identities and abundances. By using Pou4f3/eGFP-transgenic mice in which HCs express GFP driven by Pou4f3, we FACS purified a population of HCs to analyze and compare the HC proteome with other IE subproteomes from sensory epithelia and whole IE. We show that the mammalian HC proteome comprises hundreds of uniquely or highly expressed proteins. Our global proteomic analysis of purified HCs extends the existing HC transcriptome, revealing previously undetected gene products and isoform-specific protein expression. Comparison of our proteomic data with mouse and human databases of genetic auditory/vestibular impairments confirms the critical role of the HC proteome for normal IE function, providing a cell-specific pool of candidates for novel, important HC genes. Several proteins identified exclusively in HCs by proteomics and verified by immunohistochemistry map to human genetic deafness loci, potentially representing new deafness genes.

  2. Glial Cell Contributions to Auditory Brainstem Development

    PubMed Central

    Cramer, Karina S.; Rubel, Edwin W

    2016-01-01

    Glial cells, previously thought to have generally supporting roles in the central nervous system, are emerging as essential contributors to multiple aspects of neuronal circuit function and development. This review focuses on the contributions of glial cells to the development of auditory pathways in the brainstem. These pathways display specialized synapses and an unusually high degree of precision in circuitry that enables sound source localization. The development of these pathways thus requires highly coordinated molecular and cellular mechanisms. Several classes of glial cells, including astrocytes, oligodendrocytes and microglia, have now been explored in these circuits in both avian and mammalian brainstems. Distinct populations of astrocytes are found over the course of auditory brainstem maturation. Early appearing astrocytes are associated with spatial compartments in the avian auditory brainstem. Factors from late appearing astrocytes promote synaptogenesis and dendritic maturation, and astrocytes remain integral parts of specialized auditory synapses. Oligodendrocytes play a unique role in both birds and mammals in highly regulated myelination essential for proper timing to decipher interaural cues. Microglia arise early in brainstem development and may contribute to maturation of auditory pathways. Together these studies demonstrate the importance of non-neuronal cells in the assembly of specialized auditory brainstem circuits. PMID:27818624

  3. Frequency-selective exocytosis by ribbon synapses of hair cells in the bullfrog's amphibian papilla

    PubMed Central

    Patel, Suchit H.; Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó; Hudspeth, A. J.

    2012-01-01

    The activity of auditory afferent fibers depends strongly on the frequency of stimulation. Although the bullfrog's amphibian papilla lacks the flexible basilar membrane that effects tuning in mammals, its afferents display comparable frequency selectivity. Seeking additional mechanisms of tuning in this organ, we monitored the synaptic output of hair cells by measuring changes in their membrane capacitance during sinusoidal electrical stimulation at various frequencies. Using perforated-patch recordings, we found that individual hair cells displayed frequency selectivity in synaptic exocytosis within the frequency range sensed by the amphibian papilla. Moreover, each cell's tuning varied in accordance with its tonotopic position. Using confocal imaging, we observed a tonotopic gradient in the concentration of proteinaceous Ca2+ buffers. A model for synaptic release suggests that this gradient maintains the sharpness of tuning. We conclude that hair cells of the amphibian papilla use synaptic tuning as an additional mechanism for sharpening their frequency selectivity. PMID:23015434

  4. Developmental expression of BK channels in chick cochlear hair cells

    PubMed Central

    2009-01-01

    Background Cochlear hair cells are high-frequency sensory receptors. At the onset of hearing, hair cells acquire fast, calcium-activated potassium (BK) currents, turning immature spiking cells into functional receptors. In non-mammalian vertebrates, the number and kinetics of BK channels are varied systematically along the frequency-axis of the cochlea giving rise to an intrinsic electrical tuning mechanism. The processes that control the appearance and heterogeneity of hair cell BK currents remain unclear. Results Quantitative PCR results showed a non-monotonic increase in BK α subunit expression throughout embryonic development of the chick auditory organ (i.e. basilar papilla). Expression peaked near embryonic day (E) 19 with six times the transcript level of E11 sensory epithelia. The steady increase in gene expression from E11 to E19 could not explain the sudden acquisition of currents at E18-19, implicating post-transcriptional mechanisms. Protein expression also preceded function but progressed in a sequence from diffuse cytoplasmic staining at early ages to punctate membrane-bound clusters at E18. Electrophysiology data confirmed a continued refinement of BK trafficking from E18 to E20, indicating a translocation of BK clusters from supranuclear to subnuclear domains over this critical developmental age. Conclusions Gene products encoding BK α subunits are detected up to 8 days before the acquisition of anti-BK clusters and functional BK currents. Therefore, post-transcriptional mechanisms seem to play a key role in the delayed emergence of calcium-sensitive currents. We suggest that regulation of translation and trafficking of functional α subunits, near voltage-gated calcium channels, leads to functional BK currents at the onset of hearing. PMID:20003519

  5. Directional sensitivity of hair cell afferents in the Octopus statocyst.

    PubMed

    Budelmann, B U; Williamson, R

    1994-02-01

    Changes in threshold sensitivity of hair cell afferents of the macula and crista of the Octopus statocyst were analyzed when the hair cells were stimulated with sinusoidal water movements from different directions. The experiments indicate that cephalopod statocyst hair cells are directionally sensitive in a way that is similar to the responses of the hair cells of the vertebrate vestibular and lateral line systems, with the amplitude of the response changing according to the cosine of the angle by which the direction of the stimulus (the deflection of the ciliary bundle) deviates from the direction of the hair cell's morphological polarization.

  6. Significance of the resting angles of hair-cell bundles for Hopf bifurcation criticality

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Joong; Ahn, Kang-Hun

    2016-08-01

    We investigate the significance of the inclined angle of a hair bundle at equilibrium. We find that, while the angle gives a geometrical conversion factor between the bundle deflection and the ion channel displacement, it also controls the dynamics of the bundle. We show that a Hopf bifurcation, which enhances sensitivity, can be driven by the geometrical factor. However, existing experimental data indicate that mammalian auditory hair-cell bundles are located far away from the Hopf bifurcation point, suggesting that the high sensitivity of mammalian hearing might come from other mechanisms.

  7. Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells.

    PubMed

    Obholzer, Nikolaus; Wolfson, Sean; Trapani, Josef G; Mo, Weike; Nechiporuk, Alex; Busch-Nentwich, Elisabeth; Seiler, Christoph; Sidi, Samuel; Söllner, Christian; Duncan, Robert N; Boehland, Andrea; Nicolson, Teresa

    2008-02-27

    Hair cells detect sound and movement and transmit this information via specialized ribbon synapses. Here we report that asteroid, a gene identified in an ethylnitrosourea mutagenesis screen of zebrafish larvae for auditory/vestibular mutants, encodes vesicular glutamate transporter 3 (Vglut3). A splice site mutation in exon 2 of vglut3 results in a severe truncation of the predicted protein product and morpholinos directed against the vglut3 ATG start site or the affected splice junction replicate the asteroid phenotype. In situ hybridization shows that vglut3 is exclusively expressed in hair cells of the ear and lateral line organ. A second transporter gene, vglut1, is also expressed in zebrafish hair cells, but the level of vglut1 mRNA is not increased in the absence of Vglut3. Antibodies against Vglut3 label the basal end of hair cells and labeling is not present in asteroid/vglut3 mutants. Based on the localization of Vglut3 in hair cells, we suspected that the lack of vestibulo-ocular and acoustic startle reflexes in asteroid/vglut3 mutants was attributable to a defect in synaptic transmission in hair cells. In support of this notion, action currents in postsynaptic acousticolateralis neurons are absent in asteroid/vglut3 mutants. At the ultrastructural level, mutant asteroid/vglut3 hair cells show a decrease in the number of ribbon-associated synaptic vesicles, indicating a role for Vglut3 in synaptic vesicle biogenesis and/or tethering to the ribbon body. Lack of postsynaptic action currents in the mutants suggests that the remaining hair-cell synaptic vesicles contain insufficient levels of glutamate for generation of action potentials in first-order neurons.

  8. Improved ROS measurement in root hair cells.

    PubMed

    Juárez, Silvina Paola Denita; Mangano, Silvina; Estevez, José M

    2015-01-01

    Reactive oxygen species (ROS) are recognized as important signaling components in various processes in plants. ROS are produced for NADPH oxidase in different subcellular compartments and they are involved for a wide range of stimuli, such as cell cycle, growth, plant defenses, abiotic stress responses, and abscisic acid signaling in guard cells. In Arabidopsis, root hairs ROS also play a key role in root hair growth and they control the activity of calcium channels required for polar growth (Takeda et al. Science 319:1241-1244, 2008). The production of reactive oxygen species is under a specific molecular control in order to avoid detrimental side effects. Here we describe a protocol to detect ROS by oxidation of a derivative of fluorescein: 2',7-dihidro dicloro fluorescein (H2DCFDA).

  9. Treatment with Piribedil and Memantine Reduces Noise-Induced Loss of Inner Hair Cell Synaptic Ribbons

    PubMed Central

    Altschuler, Richard A.; Wys, Noel; Prieskorn, Diane; Martin, Cathy; DeRemer, Susan; Bledsoe, Sanford; Miller, Josef M.

    2016-01-01

    Noise overstimulation can induce loss of synaptic ribbons associated with loss of Inner Hair CellAuditory Nerve synaptic connections. This study examined if systemic administration of Piribedil, a dopamine agonist that reduces the sound evoked auditory nerve compound action potential and/or Memantine, an NMDA receptor open channel blocker, would reduce noise-induced loss of Inner Hair Cell ribbons. Rats received systemic Memantine and/or Piribedil for 3 days before and 3 days after a 3 hour 4 kHz octave band noise at 117 dB (SPL). At 21 days following the noise there was a 26% and 38% loss of synaptic ribbons in regions 5.5 and 6.5 mm from apex, respectively, elevations in 4-, 8- and 20 kHz tonal ABR thresholds and reduced dynamic output at higher intensities of stimulation. Combined treatment with Piribedil and Memantine produced a significant reduction in the noise-induced loss of ribbons in both regions and changes in ABR sensitivity and dynamic responsiveness. Piribedil alone gave significant reduction in only the 5.5 mm region and Memantine alone did not reach significance in either region. Results identify treatments that could prevent the hearing loss and hearing disorders that result from noise-induced loss of Inner Hair CellAuditory Nerve synaptic connections. PMID:27686418

  10. Regional differences in lectin binding patterns of vestibular hair cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.; Bancroft, J.

    1994-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  11. Regional differences in lectin binding patterns of vestibular hair cells

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Schuff, N. R.; Bancroft, J.

    1993-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  12. Regional differences in lectin binding patterns of vestibular hair cells

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Schuff, N. R.; Bancroft, J.

    1993-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  13. Kinocilia mediate mechanosensitivity in developing zebrafish hair cells

    PubMed Central

    Kindt, Katie S.; Finch, Gabriel; Nicolson, Teresa

    2012-01-01

    SUMMARY Mechanosensitive cilia are vital to signaling and development across many species. In sensory hair cells, sound and movement are transduced by apical hair bundles. Each bundle is comprised of a single primary cilium (kinocilium) flanked by multiple rows of actin-filled projections (stereocilia). Extracellular tip links that interconnect stereocilia are thought to gate mechanosensitive channels. In contrast to stereocilia, kinocilia are not critical for hair-cell mechanotransduction. However, by sequentially imaging the structure of hair bundles and mechanosensitivity of individual lateral-line hair cells in vivo, we uncovered a central role for kinocilia in mechanosensation during development. Our data demonstrate that nascent hair cells require kinocilia and kinocilial links for mechanosensitivity. Although nascent hair bundles have correct planar polarity, the polarity of their responses to mechanical stimuli is initially reversed. Later in development, a switch to correctly polarized mechanosensitivity coincides with the formation of tip links and the onset of tip link-dependent mechanotransduction. PMID:22898777

  14. A novel stereocilia defect in sensory hair cells of the deaf mouse mutant Tasmanian devil.

    PubMed

    Erven, Alexandra; Skynner, Michael J; Okumura, Katsuzumi; Takebayashi, Shin-ichiro; Brown, Steve D M; Steel, Karen P; Allen, Nicholas D

    2002-10-01

    Stereocilia are specialized actin-filled, finger-like processes arrayed in rows of graded heights to form a crescent or W-shape on the apical surface of sensory hair cells. The stereocilia are deflected by the vibration of sound, which opens transduction channels and allows an influx of ions to depolarize the hair cell, in turn triggering synaptic activity. The specialized morphology and organization of the stereocilia bundle is crucial in the process of sensory transduction in the inner ear. However, we know little about the development of stereocilia in the mouse and few molecules that are involved in stereocilia maturation are known. We describe here a new mouse mutant with abnormal stereocilia development. The Tasmanian devil (tde) mouse mutation arose by insertional mutagenesis and has been mapped to the middle of chromosome 5. Homozygotes show head-tossing and circling and have raised thresholds for cochlear nerve responses to sound. The gross morphology of the inner ear was normal, but the stereocilia of cochlear and vestibular hair cells are abnormally thin, and they become progressively disorganized with increasing age. Ultimately, the hair cells die. This is the first report of a mutant showing thin stereocilia. The association of thin stereocilia with cochlear dysfunction emphasizes the critical role of stereocilia in auditory transduction, and the discovery of the Tasmanian devil mutant provides a resource for the identification of an essential molecule in hair cell function.

  15. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    PubMed

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure.

  16. Functional calcium imaging in zebrafish lateral-line hair cells.

    PubMed

    Zhang, Q X; He, X J; Wong, H C; Kindt, K S

    2016-01-01

    Sensory hair-cell development, function, and regeneration are fundamental processes that are challenging to study in mammalian systems. Zebrafish are an excellent alternative model to study hair cells because they have an external auxiliary organ called the lateral line. The hair cells of the lateral line are easily accessible, which makes them suitable for live, function-based fluorescence imaging. In this chapter, we describe methods to perform functional calcium imaging in zebrafish lateral-line hair cells. We compare genetically encoded calcium indicators that have been used previously to measure calcium in lateral-line hair cells. We also outline equipment required for calcium imaging and compare different imaging systems. Lastly, we discuss how to set up optimal imaging parameters and how to process and visualize calcium signals. Overall, using these methods, in vivo calcium imaging is a powerful tool to examine sensory hair-cell function in an intact organism. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Global Analysis of Protein Expression of Inner Ear Hair Cells

    PubMed Central

    Wong, Ann C.Y.; Pak, Kwang; Strojny, Chelsee; Ramirez, Miguel

    2017-01-01

    The mammalian inner ear (IE) subserves auditory and vestibular sensations via highly specialized cells and proteins. Sensory receptor hair cells (HCs) are necessary for transducing mechanical inputs and stimulating sensory neurons by using a host of known and as yet unknown protein machinery. To understand the protein composition of these unique postmitotic cells, in which irreversible protein degradation or damage can lead to impaired hearing and balance, we analyzed IE samples by tandem mass spectrometry to generate an unbiased, shotgun-proteomics view of protein identities and abundances. By using Pou4f3/eGFP-transgenic mice in which HCs express GFP driven by Pou4f3, we FACS purified a population of HCs to analyze and compare the HC proteome with other IE subproteomes from sensory epithelia and whole IE. We show that the mammalian HC proteome comprises hundreds of uniquely or highly expressed proteins. Our global proteomic analysis of purified HCs extends the existing HC transcriptome, revealing previously undetected gene products and isoform-specific protein expression. Comparison of our proteomic data with mouse and human databases of genetic auditory/vestibular impairments confirms the critical role of the HC proteome for normal IE function, providing a cell-specific pool of candidates for novel, important HC genes. Several proteins identified exclusively in HCs by proteomics and verified by immunohistochemistry map to human genetic deafness loci, potentially representing new deafness genes. SIGNIFICANCE STATEMENT Hearing and balance rely on specialized sensory hair cells (HCs) in the inner ear (IE) to convey information about sound, acceleration, and orientation to the brain. Genetically and environmentally induced perturbations to HC proteins can result in deafness and severe imbalance. We used transgenic mice with GFP-expressing HCs, coupled with FACS sorting and tandem mass spectrometry, to define the most complete HC and IE proteome to date. We show that

  18. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK

    PubMed Central

    Hill, Kayla; Yuan, Hu; Wang, Xianren

    2016-01-01

    Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. SIGNIFICANCE STATEMENT Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy. PMID:27413159

  19. Gene and stem cell therapy of the hair follicle.

    PubMed

    Hoffman, Robert M

    2005-01-01

    The hair follicle is a highly complex appendage of the skin containing a multiplicity of cell types. The follicle undergoes constant cycling through the life of the organism including growth and resorption with growth dependent on specific stem cells. The targeting of the follicle by genes and stem cells to change its properties, in particular, the nature of the hair shaft is discussed. Hair follicle delivery systems are described such as liposomes and viral vectors for gene therapy. The nature of the hair follicle stem cells is discussed, in particular, its pluripotency.

  20. Sensory hair cell death and regeneration in fishes

    PubMed Central

    Monroe, Jerry D.; Rajadinakaran, Gopinath; Smith, Michael E.

    2015-01-01

    Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies. PMID:25954154

  1. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing.

    PubMed

    Nagata, Keiichi; Duggan, Anne; Kumar, Gagan; García-Añoveros, Jaime

    2005-04-20

    Mechanosensory channels of sensory cells mediate the sensations of hearing, touch, and some forms of pain. The TRPA1 (a member of the TRP family of ion channel proteins) channel is activated by pain-producing chemicals, and its inhibition impairs hair cell mechanotransduction. As shown here and previously, TRPA1 is expressed by hair cells as well as by most nociceptors (small neurons of dorsal root, trigeminal, and nodose ganglia) and localizes to their sensory terminals (mechanosensory stereocilia and peripheral free nerves, respectively). Thus, TRPA1 channels are proposed to mediate transduction in both hair cells and nociceptors. Accordingly, we find that heterologously expressed TRPA1 display channel behaviors expected for both auditory and nociceptive transducers. First, TRPA1 and the hair cell transducer share a unique set of pore properties not described for any other channel (block by gadolinium, amiloride, gentamicin, and ruthenium red, a ranging conductance of approximately 100 pS that is reduced to 54% by calcium, permeating calcium-induced potentiation followed by closure, and reopening by depolarization), supporting a direct role of TRPA1 as a pore-forming subunit of the hair cell transducer. Second, TRPA1 channels inactivate in hyperpolarized cells but remain open in depolarized cells. This property provides a mechanism for the lack of desensitization, coincidence detection, and allodynia that characterize pain by allowing a sensory neuron to respond constantly to sustained stimulation that is suprathreshold (i.e., noxious) and yet permitting the same cell to ignore sustained stimulation that is subthreshold (i.e., innocuous). Our results support a TRPA1 role in both nociceptor and hair cell transduction.

  2. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.

    PubMed

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2014-05-20

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force-displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell's characteristic frequency of responsiveness.

  3. Cochlear hair cells: the sound-sensing machines

    PubMed Central

    Goutman, Juan D.; Elgoyhen, A. Belén; Gómez-Casati, María Eugenia

    2015-01-01

    Summary The sensory epithelium of the mammalian inner ear contains two types of mechanosensory cells: inner (IHC) and outer hair cells (OHC). They both transduce mechanical force generated by sound waves into electrical signals. In their apical end, these cells possess a set of stereocilia representing the mechanosensing organelles. IHC are responsible for detecting sounds and transmitting the acoustic information to the brain by converting graded depolarization into trains of action potentials in auditory nerve fibers. OHC are responsible for the active mechanical amplification process that leads to the fine tuning and high sensitivity of the mammalian inner ear. This active amplification is the consequence of the ability of OHC to alter their cell length in response to changes in membrane potential, and is controlled by an efferent inhibitory innervation. Medial olivocochlear efferent fibers, originating in the brainstem, synapse directly at the base of OHC and release acetylcholine. A very special type of nicotinic receptor, assembled by α9α10 subunits, participates in this synapse. Here we review recent knowledge and the role of both afferent and efferent synapse in the inner ear. PMID:26335749

  4. Cochlear hair cells: The sound-sensing machines.

    PubMed

    Goutman, Juan D; Elgoyhen, A Belén; Gómez-Casati, María Eugenia

    2015-11-14

    The sensory epithelium of the mammalian inner ear contains two types of mechanosensory cells: inner (IHC) and outer hair cells (OHC). They both transduce mechanical force generated by sound waves into electrical signals. In their apical end, these cells possess a set of stereocilia representing the mechanosensing organelles. IHC are responsible for detecting sounds and transmitting the acoustic information to the brain by converting graded depolarization into trains of action potentials in auditory nerve fibers. OHC are responsible for the active mechanical amplification process that leads to the fine tuning and high sensitivity of the mammalian inner ear. This active amplification is the consequence of the ability of OHC to alter their cell length in response to changes in membrane potential, and is controlled by an efferent inhibitory innervation. Medial olivocochlear efferent fibers, originating in the brainstem, synapse directly at the base of OHC and release acetylcholine. A very special type of nicotinic receptor, assembled by α9α10 subunits, participates in this synapse. Here we review recent knowledge and the role of both afferent and efferent synapse in the inner ear.

  5. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish

    PubMed Central

    Olt, Jennifer; Johnson, Stuart L; Marcotti, Walter

    2014-01-01

    Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching. PMID

  6. Artificial Hair Cells for Sensing Flows

    NASA Technical Reports Server (NTRS)

    Chen, Jack

    2007-01-01

    The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1). Figure 2 presents cross sections of a representative sensor of this type at two different stages of its fabrication process. The process consists of relatively- low-temperature metallization, polymer-deposition, microfabrication, and surface-micromachining subprocesses, including plastic-deformation magnetic assembly (PDMA), which is described below. These subprocesses are suitable for a variety of substrate materials, including silicon, some glasses, and some polymers. Moreover, because it incorporates a polymeric supporting structure, this sensor is more robust, relative to its silicon-based counterparts.

  7. Leupeptin, a calpain inhibitor, protects inner ear hair cells from aminoglycoside ototoxicity.

    PubMed

    Momiyama, Junko; Hashimoto, Toshimitsu; Matsubara, Atsushi; Futai, Kazunori; Namba, Atsushi; Shinkawa, Hideichi

    2006-06-01

    Inner ear hair cells play a major role in the auditory pathway that converts sound stimulation into electrical signals, and then into a neural code. However this function is often lost by aminoglycoside ototoxicity. The injury of inner ear hair cells from aminoglycoside treatment is considered apoptosis, and caspase is an important participant in the apoptosis pathway in many organs. It has been reported that calpain, a calcium-dependent protease, is essential for mediation and promotion of cell death. The purpose of the present study was to investigate effects of caspase and calpain inhibitors on the inner ear hair cells after aminoglycoside treatment, and to explore the cell death pathway. Cochlea explant cultures were prepared from mice of postnatal 6 days, cultured with neomycin and/or protease inhibitors, and then stained with phalloidin-fluorescein isothiocyanate (phalloidin-FITC), which was used as a marker to identify surviving hair cells. We demonstrated that neomycin (0.1-1 mM) reduced the number of outer hair cells in a dose-dependent manner. Furthermore, we showed that leupeptin, a calpain inhibitor, significantly protects against the neomycin-induced loss of outer hair cells, whereas a caspase inhibitor was effective only against a lower concentration of neomycin (0.2 mM). Using the TdT-mediated dUTP-biotin nick and labeling method, we also found that a calpain inhibitor, but not a caspase inhibitor, prevents apoptotic DNA fragmentation after treatment with 1 mM neomycin. These results suggest that calpain, rather than caspase, may be responsible for apoptosis induced by aminoglycoside. Thus, leupeptin may prevent hearing loss from aminoglycoside ototoxity.

  8. The Nicotinic Receptor of Cochlear Hair Cells: A Possible Pharmacotherapeutic Target?

    PubMed Central

    Elgoyhen, Ana Belén; Katz, Eleonora; Fuchs, Paul A.

    2009-01-01

    Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial olivocochlear efferent system makes direct synaptic contacts with outer hair cells and inhibits amplification brought about by the active mechanical process inherent to these cells. This feedback system offers the potential to improve the detection of signals in background noise, to selectively attend to particular signals, and to protect the periphery from damage caused by overly loud sounds. Acetylcholine released at the synapse between efferent terminals and outer hair cells activates a peculiar nicotinic cholinergic receptor subtype, the α9α10 receptor. At present no pharmacotherapeutic approaches have been designed that target this cholinergic receptor to treat pathologies of the auditory system. The potential use of α9α10 selective drugs in conditions such as noise-induced hearing loss, tinnitus and auditory processing disorders is discussed. PMID:19481062

  9. Transduction channels’ gating can control friction on vibrating hair-cell bundles in the ear

    PubMed Central

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2014-01-01

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force–displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell’s characteristic frequency of responsiveness. PMID:24799674

  10. Oral administration of geranylgeranylacetone to protect vestibular hair cells.

    PubMed

    Nagato, Shinpei; Sugahara, Kazuma; Hirose, Yoshinobu; Takemoto, Yousuke; Hashimoto, Makoto; Fujii, Hironori; Yamashita, Hiroshi

    2017-08-03

    We recently reported that the heat shock response played a major role in the protection of hair cells against stress. Oral administration of the heat shock inducer, geranylgeranylacetone (GGA) protected hair cells against intense noise. In our present study, we investigated the effect of GGA on vestibular hair cell death induced by an aminoglycoside. We used CBA/N mice aged 4-6 weeks. The mice were divided into two groups, GGA and control. Mice in the GGA group were fed a diet containing GGA (0.5%) for 4 weeks, and those in the control group were fed a standard diet. Immunohistochemical analyses for Hsp70 were performed in four animals. The utricles of the remaining animals were cultured in medium for 24h with neomycin to induce hair cell death. After fixation, the vestibular hair cells were immunohistochemically stained against calmodulin, and hair cell survival was evaluated. The vestibular hair cells of mice in the GGA group expressed Hsp70. In addition, after exposure to neomycin, vestibular hair cell survival was higher in the GGA group than in the control group. Our results demonstrated the oral administration of GGA induced the heat shock response in the vestibule and could protect sensory cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    PubMed Central

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  12. Outer Hair Cell Electromotility in vivo

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Sripriya; Nuttall, Alfred L.

    2011-11-01

    The effectiveness of outer hair cell (OHC) electro-motility in vivo has been challenged by the expected low-pass filtering of the transmembrane potential due to the cell's own capacitance. The OHC electromotility is characterized here by an electromechanical ratio defined as the ratio of the OHC contraction to the transmembrane potential. This ratio has been measured in isolated cells to be approximately 26 nm/mV. We estimate the OHC electromechanical ratio in vivo from the recently measured displacements of the reticular lamina and the basilar membrane near the 19 kHz characteristic frequency in the basal region of guinea pig cochlea. Our analysis strongly suggests OHC electromotility process is effective for cochlear amplification in vivo at least around the characteristic frequency of the basal location in spite of the low-pass filtering.

  13. Using injectoporation to deliver genes to mechanosensory hair cells.

    PubMed

    Xiong, Wei; Wagner, Thomas; Yan, Linxuan; Grillet, Nicolas; Müller, Ulrich

    2014-10-01

    Mechanosensation, the transduction of mechanical force into electrochemical signals, allows organisms to detect touch and sound, to register movement and gravity, and to sense changes in cell volume and shape. The hair cells of the mammalian inner ear are the mechanosensors for the detection of sound and head movement. The analysis of gene function in hair cells has been hampered by the lack of an efficient gene transfer method. Here we describe a method termed injectoporation that combines tissue microinjection with electroporation to express cDNAs and shRNAs in mouse cochlear hair cells. Injectoporation allows for gene transfer into dozens of hair cells, and it is compatible with the analysis of hair cell function using imaging approaches and electrophysiology. Tissue dissection and injectoporation can be carried out within a few hours, and the tissue can be cultured for days for subsequent functional analyses.

  14. Development and regeneration of vestibular hair cells in mammals.

    PubMed

    Burns, Joseph C; Stone, Jennifer S

    2016-11-15

    Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.

  15. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    PubMed Central

    Liu, Quanwen; Shen, Yi; Chen, Jiarong; Ding, Jie; Tang, Zihua; Zhang, Cui; Chen, Jianling; Li, Liang; Chen, Ping; Wang, Jinfu

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment. PMID:27057177

  16. Acoustic Trauma Increases Cochlear and Hair Cell Uptake of Gentamicin

    PubMed Central

    Li, Hongzhe; Wang, Qi; Steyger, Peter S.

    2011-01-01

    Background Exposure to intense sound or high doses of aminoglycoside antibiotics can increase hearing thresholds, induce cochlear dysfunction, disrupt hair cell morphology and promote hair cell death, leading to permanent hearing loss. When the two insults are combined, synergistic ototoxicity occurs, exacerbating cochlear vulnerability to sound exposure. The underlying mechanism of this synergism remains unknown. In this study, we tested the hypothesis that sound exposure enhances the intra-cochlear trafficking of aminoglycosides, such as gentamicin, leading to increased hair cell uptake of aminoglycosides and subsequent ototoxicity. Methods Juvenile C57Bl/6 mice were exposed to moderate or intense sound levels, while fluorescently-conjugated or native gentamicin was administered concurrently or following sound exposure. Drug uptake was then examined in cochlear tissues by confocal microscopy. Results Prolonged sound exposure that induced temporary threshold shifts increased gentamicin uptake by cochlear hair cells, and increased gentamicin permeation across the strial blood-labyrinth barrier. Enhanced intra-cochlear trafficking and hair cell uptake of gentamicin also occurred when prolonged sound, and subsequent aminoglycoside exposure were temporally separated, confirming previous observations. Acute, concurrent sound exposure did not increase cochlear uptake of aminoglycosides. Conclusions Prolonged, moderate sound exposures enhanced intra-cochlear aminoglycoside trafficking into the stria vascularis and hair cells. Changes in strial and/or hair cell physiology and integrity due to acoustic overstimulation could increase hair cell uptake of gentamicin, and may represent one mechanism of synergistic ototoxicity. PMID:21552569

  17. Induced pluripotent stem cells from human hair follicle keratinocytes as a potential source for in vitro hair follicle cloning

    PubMed Central

    Lim, Sheng Jye; Ho, Shu Cheow; Mok, Pooi Ling; Tan, Kian Lee; Ong, Alan H.K.

    2016-01-01

    Background Human hair follicles are important for the renewal of new hairs and their development. The generation of induced pluripotent stem cells (iPSCs) from hair follicles is easy due to its accessibility and availability. The pluripotent cells derived from hair follicles not only have a higher tendency to re-differentiate into hair follicles, but are also more suited for growth in hair scalp tissue microenvironment. Methods In this study, human hair follicular keratinocytes were used to generate iPSCs, which were then further differentiated in vitro into keratinocytes. The derived iPSCs were characterised by using immunofluorescence staining, flow cytometry, and reverse-transcription PCR to check for its pluripotency markers expression. Results The iPSC clones expressed pluripotency markers such as TRA-1-60, TRA-1-81, SSEA4, OCT4, SOX2, NANOG, LEFTY, and GABRB. The well-formed three germ layers were observed during differentiation using iPSCs derived from hair follicles. The successful formation of keratioctyes from iPSCs was confirmed by the expression of cytokeratin 14 marker. Discussion Hair follicles represent a valuable keratinocytes source for in vitro hair cloning for use in treating hair balding or grafting in burn patients. Our significant findings in this report proved that hair follicles could be used to produce pluripotent stem cells and suggested that the genetic and micro-environmental elements of hair follicles might trigger higher and more efficient hair follicles re-differentiation. PMID:27867768

  18. Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure

    PubMed Central

    Spoon, Corrie; Moravec, W. J.; Rowe, M. H.; Grant, J. W.

    2011-01-01

    Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics. PMID:21918003

  19. Hair cell regeneration after ATOH1 gene therapy in the cochlea of profoundly deaf adult guinea pigs.

    PubMed

    Atkinson, Patrick J; Wise, Andrew K; Flynn, Brianna O; Nayagam, Bryony A; Richardson, Rachael T

    2014-01-01

    The degeneration of hair cells in the mammalian cochlea results in permanent sensorineural hearing loss. This study aimed to promote the regeneration of sensory hair cells in the mature cochlea and their reconnection with auditory neurons through the introduction of ATOH1, a transcription factor known to be necessary for hair cell development, and the introduction of neurotrophic factors. Adenoviral vectors containing ATOH1 alone, or with neurotrophin-3 and brain derived neurotrophic factor were injected into the lower basal scala media of guinea pig cochleae four days post ototoxic deafening. Guinea pigs treated with ATOH1 gene therapy, alone, had a significantly greater number of cells expressing hair cell markers compared to the contralateral non-treated cochlea when examined 3 weeks post-treatment. This increase, however, did not result in a commensurate improvement in hearing thresholds, nor was there an increase in synaptic ribbons, as measured by CtBP2 puncta after ATOH1 treatment alone, or when combined with neurotrophins. However, hair cell formation and synaptogenesis after co-treatment with ATOH1 and neurotrophic factors remain inconclusive as viral transduction was reduced due to the halving of viral titres when the samples were combined. Collectively, these data suggest that, whilst ATOH1 alone can drive non-sensory cells towards an immature sensory hair cell phenotype in the mature cochlea, this does not result in functional improvements after aminoglycoside-induced deafness.

  20. Lgr5-Positive Supporting Cells Generate New Hair Cells in the Postnatal Cochlea

    PubMed Central

    Bramhall, Naomi F.; Shi, Fuxin; Arnold, Katrin; Hochedlinger, Konrad; Edge, Albert S.B.

    2014-01-01

    Summary The prevalence of hearing loss after damage to the mammalian cochlea has been thought to be due to a lack of spontaneous regeneration of hair cells, the primary receptor cells for sound. Here, we show that supporting cells, which surround hair cells in the normal cochlear epithelium, differentiate into new hair cells in the neonatal mouse following ototoxic damage. Using lineage tracing, we show that new hair cells, predominantly outer hair cells, arise from Lgr5-expressing inner pillar and third Deiters cells and that new hair cell generation is increased by pharmacological inhibition of Notch. These data suggest that the neonatal mammalian cochlea has some capacity for hair cell regeneration following damage alone and that Lgr5-positive cells act as hair cell progenitors in the cochlea. PMID:24672754

  1. EphA7 regulates spiral ganglion innervation of cochlear hair cells.

    PubMed

    Kim, Young J; Ibrahim, Leena A; Wang, Sheng-Zhi; Yuan, Wei; Evgrafov, Oleg V; Knowles, James A; Wang, Kai; Tao, Huizhong W; Zhang, Li I

    2016-04-01

    During the development of periphery auditory circuitry, spiral ganglion neurons (SGNs) form a spatially precise pattern of innervation of cochlear hair cells (HCs), which is an essential structural foundation for central auditory processing. However, molecular mechanisms underlying the developmental formation of this precise innervation pattern remain not well understood. Here, we specifically examined the involvement of Eph family members in cochlear development. By performing RNA-sequencing for different types of cochlear cell, in situ hybridization, and immunohistochemistry, we found that EphA7 was strongly expressed in a large subset of SGNs. In EphA7 deletion mice, there was a reduction in the number of inner radial bundles originating from SGNs and projecting to HCs as well as in the number of ribbon synapses on inner hair cells (IHCs), as compared with wild-type or heterozygous mutant mice, attributable to fewer type I afferent fibers. The overall activity of the auditory nerve in EphA7 deletion mice was also reduced, although there was no significant change in the hearing intensity threshold. In vitro analysis further suggested that the reduced innervation of HCs by SGNs could be attributed to a role of EphA7 in regulating outgrowth of SGN neurites as knocking down EphA7 in SGNs resulted in diminished SGN fibers. In addition, suppressing the activity of ERK1/2, a potential downstream target of EphA7 signaling, either with specific inhibitors in cultured explants or by knocking out Prkg1, also resulted in reduced SGN fibers. Together, our results suggest that EphA7 plays an important role in the developmental formation of cochlear innervation pattern through controlling SGN fiber ontogeny. Such regulation may contribute to the salience level of auditory signals presented to the central auditory system.

  2. Conditional Deletion of Atoh1 Reveals Distinct Critical Periods for Survival and Function of Hair Cells in the Organ of Corti

    PubMed Central

    Cai, Tiantian; Seymour, Michelle L.; Zhang, Hongyuan; Pereira, Fred A.

    2013-01-01

    Atonal homolog1 (Atoh1) encodes a basic helix–loop–helix protein that is the first transcription factor to be expressed in differentiating hair cells. Previous work suggests that expression of Atoh1 in prosensory precursors is necessary for the differentiation and survival of hair cells, but it is not clear whether Atoh1 is required exclusively for these processes, or whether it regulates other functions later during hair cell maturation. We used EGFP-tagged Atoh1 knock-in mice to demonstrate for the first time that Atoh1 protein is expressed in hair cell precursors several days before the appearance of differentiated markers, but not in the broad pattern expected of a proneural gene. We conditionally deleted Atoh1 at different points in hair cell development and observe a rapid onset of hair cell defects, suggesting that the Atoh1 protein is unstable in differentiating hair cells and is necessary through an extended phase of their differentiation. Conditional deletion of Atoh1 reveals multiple functions in hair cell survival, maturation of stereociliary bundles, and auditory function. We show the presence of distinct critical periods for Atoh1 in each of these functions, suggesting that Atoh1 may be directly regulating many aspects of hair cell function. Finally, we show that the supporting cell death that accompanies loss of Atoh1 in hair cells is likely caused by the abortive trans-differentiation of supporting cells into hair cells. Together our data suggest that Atoh1 regulates multiple aspects of hair cell development and function. PMID:23761906

  3. Transient receptor potential melastatin 1: a hair cell transduction channel candidate.

    PubMed

    Gerka-Stuyt, John; Au, Adrian; Peachey, Neal S; Alagramam, Kumar N

    2013-01-01

    Sound and head movements are perceived through sensory hair cells in the inner ear. Mounting evidence indicates that this process is initiated by the opening of mechanically sensitive calcium-permeable channels, also referred to as the mechanoelectrical transducer (MET) channels, reported to be around the tips of all but the tallest stereocilia. However, the identity of MET channel remains elusive. Literature suggests that the MET channel is a non-selective cation channel with a high Ca(2+) permeability and ~100 picosiemens conductance. These characteristics make members of the transient receptor potential (TRP) superfamily likely candidates for this role. One of these candidates is the transient receptor potential melastatin 1 protein (TRPM1), which is expressed in various cells types within the cochlea of the mouse including the hair cells. Recent studies demonstrate that mutations in the TRPM1 gene underlie the inherited retinal disease complete congenital stationary night blindness in humans and depolarizing bipolar cell dysfunction in the mouse retina, but auditory function was not assessed. Here we investigate the role of Trpm1 in hearing and as a possible hair cell MET channel using mice homozygous for the null allele of Trpm1 (Trpm1(-/-)) or a missense mutation in the pore domain of TRPM1 (Trpm1(tvrm27/tvrm27)). Hearing thresholds were evaluated in adult (4-5 months old) mice with auditory-evoked brain stem responses. Our data shows no statistically significant difference in hearing thresholds in Trpm1(-/-) or Trpm1(tvrm27/tvrm27) mutants compared to littermate controls. Further, none of the mutant mice showed any sign of balance disorder, such as head bobbing or circling. These data suggest that TRPM1 is not essential for development of hearing or balance and it is unlikely that TRPM1 is a component of the hair cell MET channel.

  4. Atoh1 as a Coordinator of Sensory Hair Cell Development and Regeneration in the Cochlea

    PubMed Central

    Lee, Sungsu; Jeong, Han-Seong

    2017-01-01

    Cochlear sensory hair cells (HCs) are crucial for hearing as mechanoreceptors of the auditory systems. Clarification of transcriptional regulation for the cochlear sensory HC development is crucial for the improvement of cell replacement therapies for hearing loss. Transcription factor Atoh1 is the key player during HC development and regeneration. In this review, we will focus on Atoh1 and its related signaling pathways (Notch, fibroblast growth factor, and Wnt/β-catenin signaling) involved in the development of cochlear sensory HCs. We will also discuss the potential applicability of these signals for the induction of HC regeneration. PMID:28184337

  5. Distinguishing hair cell from neural potentials recorded at the round window

    PubMed Central

    Forgues, Mathieu; Koehn, Heather A.; Dunnon, Askia K.; Pulver, Stephen H.; Buchman, Craig A.; Adunka, Oliver F.

    2013-01-01

    Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients. PMID:24133227

  6. Distinguishing hair cell from neural potentials recorded at the round window.

    PubMed

    Forgues, Mathieu; Koehn, Heather A; Dunnon, Askia K; Pulver, Stephen H; Buchman, Craig A; Adunka, Oliver F; Fitzpatrick, Douglas C

    2014-02-01

    Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients.

  7. Photometric recording of transmembrane potential in outer hair cells

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Oghalai, John S.; Saggau, Peter; Rabbitt, Richard D.; Brownell, William E.

    2006-06-01

    Cochlear outer hair cells (OHCs) are polarized epithelial cells that have mechanoelectrical transduction channels within their apical stereocilia and produce electromotile force along their lateral wall. Phase shifts, or time delays, in the transmembrane voltage occurring at different axial locations along the cell may contribute to our understanding of how these cells operate at auditory frequencies. We developed a method to optically measure the phase of the OHC transmembrane potential using the voltage-sensitive dye (VSD) di-8-ANEPPS. The exit aperture of a fibre-optic light source was driven in two dimensions so that a 24 µm spot of excitation light could be positioned along the length of the OHC. We used the whole-cell patch-clamp technique in the current-clamp mode to stimulate the OHC at the base. The photometric response and the voltage response were monitored with a photodetector and patch-clamp amplifier, respectively. The photometric response was used to measure the regional changes in the membrane potential in response to maintained (dc) and sinusoidal (ac) current stimuli applied at the base of the cell. We used a neutral density filter to lower the excitation light intensity and reduce phototoxicity. A sensitive detector and lock-in amplifier were used to measure the small ac VSD signal. This permitted measurements of the ac photometric response below the noise floor of the static fluorescence. The amplitude and phase components of the photometric response were recorded for stimuli up to 800 Hz. VSD data at 400-800 Hz show the presence of a small phase delay between the stimulus voltage at the base of the cell and the local membrane potential measured along the lateral wall. Results are consistent with the hypothesis that OHCs exhibit inhomogeneous membrane potentials that vary with position in analogy with the voltage in nerve axons.

  8. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Burton, M. D.; Fashena, D. S.; Naeger, R. A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

  9. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Burton, M. D.; Fashena, D. S.; Naeger, R. A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

  10. Metformin protects against gentamicin-induced hair cell death in vitro but not ototoxicity in vivo.

    PubMed

    Oishi, Naoki; Kendall, Ann; Schacht, Jochen

    2014-11-07

    Metformin (N,N-dimethylbiguanidine) is a widely employed oral hypoglycemic agent for the management of type 2 diabetes mellitus. Its antioxidant properties and safe clinical use raise the possibility of preventing gentamicin-induced hearing loss in patients. Therefore, we screened the usefulness of metformin against gentamicin toxicity in murine cochlear explants and in the guinea pig in vivo. We confirmed in organ culture that metformin blocks the gentamicin-induced translocation of endonuclease G into the nucleus of outer hair cells and attenuates hair cell loss. In vivo, gentamicin treatment with 80, 100, or 130mg/kg body weight for 14 days induced significant threshold shifts as determined by auditory brain stem responses. Metformin (30, 75, or 100mg/kg for 14 days) was well tolerated without any indication of auditory side effects. However, co-administration of metformin with gentamicin in various permutations did not prevent loss of auditory function. On the contrary, combined treatment at higher dosages aggravated the gentamicin-induced threshold shifts and caused additional adverse reactions including body weight loss and premature deaths in some animals. These results caution against the use of metformin co-treatment with aminoglycosides and confirm the need for in vivo studies in order to evaluate potentially protective agents selected by in vitro screens. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV.

    PubMed

    György, Bence; Sage, Cyrille; Indzhykulian, Artur A; Scheffer, Deborah I; Brisson, Alain R; Tan, Sisareuth; Wu, Xudong; Volak, Adrienn; Mu, Dakai; Tamvakologos, Panos I; Li, Yaqiao; Fitzpatrick, Zachary; Ericsson, Maria; Breakefield, Xandra O; Corey, David P; Maguire, Casey A

    2017-02-01

    Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants in vitro and with direct cochlear injection in vivo. Exo-AAV shows no toxicity in vivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs(-/-)]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness.

  12. Control of hair cell excitability by vestibular primary sensory neurons

    PubMed Central

    Brugeaud, Aurore; Travo, Cécile; Demêmes, Danielle; Lenoir, Marc; Llorens, Jordi; Puel, Jean-Luc; Chabbert, Christian

    2007-01-01

    In the rat utricle, synaptic contacts between hair cells and the nerve fibers arising from the vestibular primary neurons form during the first week after birth. During that period, the sodium-based excitability that characterizes neonate utricle sensory cells is switched off. To investigate whether the establishment of synaptic contacts was responsible for the modulation of the hair cell excitability, we used an organotypic culture of rat utricle in which the setting of synapses was prevented. Under this condition, the voltage-gated sodium current and the underlying action potentials persisted in a large proportion of non-afferented hair cells. We then studied whether impairment of nerve terminals in utricle of adult rats may also affect hair cell excitability. We induced selective and transient damages of afferent terminals using glutamate excitotoxicity in vivo. The efficiency of the excitotoxic injury was attested by selective swellings of the terminals and underlying altered vestibular behavior. Under this condition, the sodium-based excitability transiently recovered in hair cells. These results indicate that the modulation of hair cells excitability depends on the state of the afferent terminals. In adult utricle hair cells this property may be essential to set the conditions required for restoration of the sensory network after damage. This is achieved via re-expression of a biological process that occurs during synaptogenesis. PMID:17392466

  13. Stem cells from human hair follicles: first mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss.

    PubMed

    Gentile, Pietro; Scioli, Maria G; Bielli, Alessandra; Orlandi, Augusto; Cervelli, Valerio

    2017-01-01

    Hair follicles are known to contain a well-characterized niche for adult stem cells: the bulge, which contains epithelial and melanocytic stem cells. Stem cells in the hair bulge, a clearly demarcated structure within the lower permanent portion of hair follicles, can generate the interfollicular epidermis, hair follicle structures, and sebaceous glands. The bulge epithelial stem cells can also reconstitute in an artificial in vivo system to a new hair follicle. In this study, we have developed a new method to isolate human adult stem cells by mechanical centrifugation of punch biopsy from human hair follicles without culture condition. Here, we used human follicle stem cells (HFSCs), to improve the hair density in 11 patients (38 to 61 years old) affected by AGA in stage 3-5 as determined by the Norwood-Hamilton classification scale. The primary outcomes were microscopic identification and counting of HFSCs. The secondary outcomes were clinical preliminary results and safety and feasibility in HFSCs-treated scalp. Each scalp tissue suspension contained about 3,728.5±664.5 cells. The percentage of hair follicle-derived mesenchymal stem cells CD44+ [from dermal papilla (DP)] was about 5%+0.7% whereas the percentage of hair follicle epithelial stem cells CD200+ (from the bulge) was about 2.6%+0.3%. In total, 23 weeks after the last treatment with HFSCs mean hair count and hair density increases over baseline values. In particular, a 29%±5% increase in hair density for the treated area and less than a 1% increase in hair density for the placebo area. We have shown that the isolated cells are capable to improve the hair density in patients affected by androgenetic alopecia (AGA). These cells appear to be located in the bulge area of human.

  14. Shaping the mammalian auditory sensory organ by the planar cell polarity pathway

    PubMed Central

    Kelly, Michael; Chen, Ping

    2014-01-01

    The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a “V”-shaped staircase. The vertices of all the “V”-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly. PMID:17891715

  15. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    PubMed Central

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  16. Introduction to Hair-Follicle-Associated Pluripotent Stem Cells.

    PubMed

    Hoffman, Robert M

    2016-01-01

    Nestin-expressing stem cells of the hair follicle, discovered by our laboratory, have been shown to be able to form outer-root sheaths of the follicle as well as neurons and many other non-follicle cell types. We have termed the nestin-expressing stem cells of the hair follicle as hair-follicle-associated pluripotent (HAP) stem cells. We have shown that the HAP stem cells from the hair follicle can effect the repair of peripheral nerve and spinal cord injury. The hair follicle stem cells differentiate into neuronal and glial cells after transplantation to the injured peripheral nerve and spinal cord, and enhance injury repair and locomotor recovery. When the excised hair follicle with its nerve stump was placed in Gelfoam(®) 3D histoculture, HAP stem cells grew and extended the hair follicle nerve which consisted of βIII-tubulin-positive fibers with F-actin expression at the tip. These findings indicate that βIII-tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in HAP stem cells, which appeared to play a major role in its elongation and interaction with other nerves in 3D Gelfoam(®) histoculture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. These results suggest that a major function of the HAP stem cells in the hair follicle is for growth of the follicle sensory nerve. Recently, we have shown that HAP stem cells can differentiate into beating cardiac muscle cells. HAP stem cells have critical advantages for regenerative medicine over embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in that they are highly accessible from each patient, thereby eliminating immunological issues since they are autologous, require no genetic manipulation, are non-tumorigenic, and do not present ethical issues.

  17. Changes of hair cell stereocilia and threshold shift after acoustic trauma in guinea pigs: comparison between inner and outer hair cells.

    PubMed

    Chen, Yuh-Shyang; Liu, Tien-Chen; Cheng, Chiung-Hsiang; Yeh, Te-Huei; Lee, Shiann-Yann; Hsu, Chuan-Jen

    2003-01-01

    The vulnerability of inner hair cells (IHCs) and outer hair cells (OHCs) to acoustic overstimulation is still controversially discussed. The present study was undertaken to investigate the vulnerability of IHCs and OHCs and the relation between chronological changes of auditory threshold shifts and stereocilia damages on IHCs and OHCs in guinea pigs after moderate acoustic trauma, caused by a single continuous exposure to pink noise (20 Hz to 20 kHz) of around 106 +/- 2 dB SPL for 44 h. Stereocilia changes and threshold shifts of auditory brainstem responses (ABR) were assessed at regular intervals after noise exposure for 9 weeks. Scanning electron microscopy demonstrated the morphological changes of stereocilia as early as 1 day after noise exposure. The morphological changes included fused, bent, collapsed, and even missing stereocilia. These damages were more prominent on IHCs than on OHCs. The shift of ABR threshold was not parallel to the chronological change of the stereocilia on IHCs as well as OHCs. The elevation of the ABR threshold (40-60 dB SPL) was greatest on the 1st day after noise exposure, whereas the stereocilia showed the most damage 7 days after noise exposure. Combined with the results from previous studies, we conclude that moderate-level (around 105-110 dB) noise tends to induce more damage to the stereocilia of IHCs than of OHCs. Other damage (e.g., metabolic disturbance) than morphological damage of hair cell stereocilia may contribute partially to the hearing threshold shift induced by moderate acoustic overstimulation. Copyright 2003 S. Karger AG, Basel

  18. Vestibular evoked myogenic potentials are heavily dependent on type I hair cell activity of the saccular macula in guinea pigs.

    PubMed

    Lue, June-Horng; Day, An-Shiou; Cheng, Po-Wen; Young, Yi-Ho

    2009-01-01

    This study applied the vestibular evoked myogenic potential (VEMP) test to guinea pigs coupled with electronic microscopic examination to determine whether VEMPs are dependent on type I or II hair cell activity of the saccular macula. An amount of 0.05 ml of gentamicin (40 mg/ml) was injected directly overlaying, but not through, the round window membrane of the left ear in guinea pigs.One week after surgery, auditory brainstem response test revealed normal responses in 12 animals (80%), and elevated thresholds in 3 animals (20%). The VEMP test using click stimulation showed absent responses in all 15 animals (100%). Another 6 gentamicin-treated animals underwent the VEMP test using galvanic stimulation and all 6 also displayed absent responses. Ultrathin sections of the saccular macula in the gentamicin-treated ears displayed morphologic alterations in type I or II hair cells, including shrinkage and/or vacuolization in the cytoplasm, increased electron density of the cytoplasm and nuclear chromatin, and cellular lucency. However, extrusion degeneration was rare and only present in type II hair cells. Quantitative analysis demonstrated that the histological density of intact type I hair cells was 1.1 +/- 1.2/4000 microm(2) in the gentamicin-treated ears, showing significantly less than that in control ears (4.5 +/- 1.8/4000 microm(2)). However, no significant difference was observed in the densities of intact type II hair cells and supporting cells between treated and control ears. Furthermore, the calyx terminals surrounding the damaged type I hair cells were swollen and disrupted, while the button afferents contacting the damaged type II hair cells were not obviously deformed. Based on the above results, we therefore conclude that VEMPs are heavily dependent on type I hair cell activity of the saccular macula in guinea pigs.

  19. [Morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise].

    PubMed

    2017-06-18

    To observe the morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise and to investigate the different changes in three turns of hair cells. Thirty-two healthy SD rats, all males, were randomly divided into four groups: control group, weightlessness group, noise group and weightlessness+noise groups (n=8). Then rats were exposed to -30° head down tilt as simulated weightlessness and inboard noise including steady-state noise which was (72±2) dB SPL and impulse noise up to 160 dB SPL in spaceship environment. The control group was kept in normal condition for 8 weeks. Bilateral auditory brainstem response (ABR) thresholds were tested before and after exposure respectively, and immunofluorescence staining and scanning electron microscopy (SEMs) of basilar membrane were applied after exposure. ABR threshold shifts of each group were higher after exposure. There was difference between ABRs of the experiment groups before and after exposure (P<0.05). IF showed that the inner hair cells (IHCs) missing was the main damage in the basal turn of weightlessness group, the hair cells in the middle turn were swell and in the top turn, the hair cells were not clear. In noise group, the main loss happened in the outer hair cells (OHCs) of the outermost layer. In weightlessness+noise group, the nuclear missing in the basal turn was apparent, and mainly happened at the outermost layer. Meanwhile, the missing of hair cells in the middle turn and top turn was seen at the innermost layer. SEM showed that the cilia in the basal turn of weightlessness group were serious lodging, and occasional absence. Furthermore, the basal cilia in noise group became lodged and absent, and the other two turns were seriously missing. And in weightlessness+noise group, the cilia missing in the basal turn was apparently seen. The damage degree of the four groups: weightlessness+noise group>noise group>weightlessness group>control group and the damage degree

  20. Aqueous extract of red deer antler promotes hair growth by regulating the hair cycle and cell proliferation in hair follicles.

    PubMed

    Li, Jing-jie; Li, Zheng; Gu, Li-juan; Wang, Yun-bo; Lee, Mi-ra; Sung, Chang-keun

    2014-01-01

    Deer antlers are the only mammalian appendage capable of regeneration. We aimed to investigate the effect of red deer antler extract in regulating hair growth, using a mouse model. The backs of male mice were shaved at eight weeks of age. Crude aqueous extracts of deer antler were prepared at either 4 °C or 100 °C and injected subcutaneously to two separate groups of mice (n = 9) at 1 mL/day for 10 consecutive days, with water as a vehicle control group. The mice skin quantitative hair growth parameters were measured and 5-bromo-2-deoxyuridine was used to identify label-retaining cells. We found that, in both the 4 °C and the 100 °C deer antler aqueous extract-injection groups, the anagen phase was extended, while the number of BrdU-incorporated cells was dramatically increased. These results indicate that deer antler aqueous extract promotes hair growth by extending the anagen phase and regulating cell proliferation in the hair follicle region.

  1. Inner Ear Hair Cell-Like Cells from Human Embryonic Stem Cells

    PubMed Central

    Ronaghi, Mohammad; Nasr, Marjan; Ealy, Megan; Durruthy-Durruthy, Robert; Waldhaus, Joerg; Diaz, Giovanni H.; Joubert, Lydia-Marie; Oshima, Kazuo

    2014-01-01

    In mammals, the permanence of many forms of hearing loss is the result of the inner ear's inability to replace lost sensory hair cells. Here, we apply a differentiation strategy to guide human embryonic stem cells (hESCs) into cells of the otic lineage using chemically defined attached-substrate conditions. The generation of human otic progenitor cells was dependent on fibroblast growth factor (FGF) signaling, and protracted culture led to the upregulation of markers indicative of differentiated inner ear sensory epithelia. Using a transgenic ESC reporter line based on a murine Atoh1 enhancer, we show that differentiated hair cell-like cells express multiple hair cell markers simultaneously. Hair cell-like cells displayed protrusions reminiscent of stereociliary bundles, but failed to fully mature into cells with typical hair cell cytoarchitecture. We conclude that optimized defined conditions can be used in vitro to attain otic progenitor specification and sensory cell differentiation. PMID:24512547

  2. Fluorescent aminoglycosides reveal intracellular trafficking routes in mechanosensory hair cells

    PubMed Central

    Hailey, Dale W.; Esterberg, Robert; Linbo, Tor H.; Rubel, Edwin W.; Raible, David W.

    2016-01-01

    Aminoglycosides (AGs) are broad-spectrum antibiotics that are associated with kidney damage, balance disorders, and permanent hearing loss. This damage occurs primarily by killing of proximal tubule kidney cells and mechanosensory hair cells, though the mechanisms underlying cell death are not clear. Imaging molecules of interest in living cells can elucidate how molecules enter cells, traverse intracellular compartments, and interact with sites of activity. Here, we have imaged fluorescently labeled AGs in live zebrafish mechanosensory hair cells. We determined that AGs enter hair cells via both nonendocytic and endocytic pathways. Both routes deliver AGs from the extracellular space to lysosomes, and structural differences between AGs alter the efficiency of this delivery. AGs with slower delivery to lysosomes were immediately toxic to hair cells, and impeding lysosome delivery increased AG-induced death. Therefore, pro-death cascades induced at early time points of AG exposure do not appear to derive from the lysosome. Our findings help clarify how AGs induce hair cell death and reveal properties that predict toxicity. Establishing signatures for AG toxicity may enable more efficient evaluation of AG treatment paradigms and structural modifications to reduce hair cell damage. Further, this work demonstrates how following fluorescently labeled drugs at high resolution in living cells can reveal important details about how drugs of interest behave. PMID:27991862

  3. Hair regeneration using adipose-derived stem cells.

    PubMed

    Jin, Su-Eon; Sung, Jong-Hyuk

    2016-03-01

    Adipose-derived stem cells (ASCs) have been used in tissue repair and regeneration. Recently, it was reported that ASC transplantation promotes hair growth in animal experiments, and a conditioned medium of ASCs (ASC-CM) induced the proliferation of hair-compositing cells in vitro. However, ASCs and their conditioned medium have shown limited effectiveness in clinical settings. ASC preconditioning is one strategy that can be used to enhance the efficacy of ASCs and ASC-CM. Therefore, we highlighted the functional role of ASCs in hair cycle progression and also the advantages and disadvantages of their application in hair regeneration. In addition, we introduced novel ASC preconditioning methods to enhance hair regeneration using ASC stimulators, such as vitamin C, platelet-derived growth factor, hypoxia, and ultraviolet B.

  4. Outer hair cell piezoelectricity: Frequency response enhancement and resonance behavior

    NASA Astrophysics Data System (ADS)

    Weitzel, Erik K.; Tasker, Ron; Brownell, William E.

    2003-09-01

    Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based on the electrical and material parameters of the lateral wall. An equivalent circuit for the outer hair cell that includes piezoelectricity shows a greater admittance at high frequencies than one containing only membrane resistance and capacitance. The model also predicts resonance at ultrasonic frequencies that is inversely proportional to cell length. These features suggest all mammals use outer hair cell piezoelectricity to support the high-frequency receptor potentials that drive electromotility. It is also possible that members of some mammalian orders use outer hair cell piezoelectric resonance in detecting species-specific vocalizations.

  5. Interrelated striated elements in vestibular hair cells of the rat

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Bourne, C.

    1983-01-01

    A series of interrelated striated organelles in types I and II vestibular hair cells of the rat which appear to be less developed in cochlear hair cells have been revealed by unusual fixation procedures, suggesting that contractile elements may play a role in sensory transduction in the inner ear, especially in the vestibular system. Included in the series of interrelated striated elements are the cuticular plate and its basal attachments to the hair cell margins, the connections of the strut array of the kinociliary basal body to the cuticular plate, and striated organelles associated with the plasma membrane and extending below the apical junctional complexes.

  6. Assembly of hair bundles, an amazing problem for cell biology.

    PubMed

    Barr-Gillespie, Peter-G

    2015-08-01

    The hair bundle--the sensory organelle of inner-ear hair cells of vertebrates--exemplifies the ability of a cell to assemble complex, elegant structures. Proper construction of the bundle is required for proper mechanotransduction in response to external forces and to transmit information about sound and movement. Bundles contain tightly controlled numbers of actin-filled stereocilia, which are arranged in defined rows of precise heights. Indeed, many deafness mutations that disable hair-cell cytoskeletal proteins also disrupt bundles. Bundle assembly is a tractable problem in molecular and cellular systems biology; the sequence of structural changes in stereocilia is known, and a modest number of proteins may be involved.

  7. Ribeye a-mCherry fusion protein: a novel tool for labeling synaptic ribbons of the hair cell.

    PubMed

    West, Megan C; McDermott, Brian M

    2011-04-30

    Synaptic ribbons are presynaptic cytomatrices that are required for efficient transfer of auditory information from hair cells to the central nervous system. In the hair cell, each electron-dense ribbon tethers numerous synaptic vesicles by fine filaments. The ribbon generally resides juxtaposed to the active zone plasma membrane. A dearth of appropriate tools to visualize the ribbon synapse has limited our knowledge of its development. Here we present the design and implementation of a method to visualize synaptic ribbons in hair cells. This scheme uses a tagged version of the protein Ribeye a, which is specific to ribbons. We generate the DNA construct Tg(pvalb3b:ribeye a-mCherry) to transgenically express the fusion protein Ribeye a-mCherry in zebrafish hair cells. The fusion protein localizes to the basolateral surface of the hair cell with a pattern similar to that of a hair cell labeled with an antiserum that recognizes ribeye proteins. Moreover, using this antiserum to label transgenics that express Ribeye a-mCherry, we demonstrate that the fusion protein and antibody-associated fluorescent signals overlap. In addition, ribbons labeled with the fusion protein are proximal to afferent nerve endings. Finally, the fusion protein labels hair-cell ribbons of zebrafish at different developmental time points. These findings indicate that the fusion protein is an effective tool to label ribbons in live and fixed hair cells, which will make it useful in the study of ribbon synapse development and to characterize zebrafish mutants with defects in synapse formation.

  8. Asymmetric Distribution of Cadherin 23 and Protocadherin 15 in the Kinocilial Links of Avian Sensory Hair Cells

    PubMed Central

    Goodyear, Richard J; Forge, Andy; Legan, P Kevin; Richardson, Guy P

    2010-01-01

    Abstract Cadherin 23 and protocadherin 15 are components of tip links, fine filaments that interlink the stereocilia of hair cells and are believed to gate the hair cell's mechanotransducer channels. Tip links are aligned along the hair bundle's axis of mechanosensitivity, stretching obliquely from the top of one stereocilium to the side of an adjacent, taller stereocilium. In guinea pig auditory hair cells, tip links are polarized with cadherin 23 at the upper end and protocadherin 15 at the lower end, where the transducer channel is located. Double immunogold labeling of avian hair cells was used to study the distribution of these two proteins in kinocilial links, a link type that attaches the tallest stereocilia of the hair bundle to the kinocilium. In the kinocilial links of vestibular hair bundles, cadherin 23 localizes to the stereocilium and protocadherin 15 to the kinocilium. The two cadherins are therefore asymmetrically distributed within the kinocilial links but of a polarity that is, within those links that are aligned along the hair bundle's axis of sensitivity, reversed relative to that of tip links. Conventional transmission electron microscopy of hair bundles fixed in the presence of tannic acid reveals a distinct density in the 120–130 nm long kinocilial links that is located 35–40 nm from the kinociliary membrane. The location of this density is consistent with it being the site at which interactions occur in an in trans configuration between the opposing N-termini of homodimeric forms of cadherin 23 and protocadherin 15. J. Comp. Neurol. 518:4288–4297, 2010. © 2010 Wiley-Liss, Inc. PMID:20853507

  9. Time sequence of auditory nerve and spiral ganglion cell degeneration following chronic kanamycin-induced deafness in the guinea pig.

    PubMed

    Kong, W J; Yin, Z D; Fan, G R; Li, D; Huang, X

    2010-05-17

    We investigated the time sequence of morphological changes of the spiral ganglion cell (SGC) and auditory nerve (AN) following chronic kanamycin-induced deafness. Guinea pigs were treated with kanamycin by subcutaneous injection at 500 mg/kg per day for 7 days. Histological changes in hair cells, SGCs, Schwann cells and the area of the cross-sectional of the AN with vestibular ganglion (VG) in the internal acoustic meatus were quantified at 1, 7, 14, 28, 56 and 70 days after kanamycin treatment. Outer hair cells decreased at 7 and 14 days. Loss of inner hair cells occurred at 14 and 28 days. The cross-sectional area of the AN with VG increased at 1 day and decreased shortly following loss of SGCs and Schwann cells at 7, 14 and 28 days after deafening. There was a similar time course of morphological changes in the overall cochlea and the basal turn. Thus, the effects of kanamycin on hair cells, spiral ganglion and Schwann cells are progressive. Early degeneration of SGC and Schwann cell mainly results from the direct toxic effect of kanamycin. However, multiple factors such as loss of hair cell, degeneration of Schwann cell and the progressive damage of kanamycin, may participate in the late degeneration process of SGCs. The molecular mechanism of the degeneration of SGC and Schwann cell should be investigated in the future. Moreover, there is a different time sequence of cell degeneration between acute and chronic deafness by kanamycin.

  10. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens.

    PubMed

    Jiang, Lingling; Jin, Ran; Xu, Jincao; Ji, Yubin; Zhang, Meiguang; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2016-02-01

    Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration.

  11. Ca(2+)-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse.

    PubMed

    Sebe, Joy Y; Cho, Soyoun; Sheets, Lavinia; Rutherford, Mark A; von Gersdorff, Henrique; Raible, David W

    2017-06-21

    We report functional and structural evidence for GluA2-lacking Ca(2+)-permeable AMPARs (CP-AMPARs) at the mature hair cell ribbon synapse. By using the methodological advantages of three species (of either sex), we demonstrate that CP-AMPARs are present at the hair cell synapse in an evolutionarily conserved manner. Via a combination of in vivo electrophysiological and Ca(2+) imaging approaches in the larval zebrafish, we show that hair cell stimulation leads to robust Ca(2+) influx into afferent terminals. Prolonged application of AMPA caused loss of afferent terminal responsiveness, whereas blocking CP-AMPARs protects terminals from excitotoxic swelling. Immunohistochemical analysis of AMPAR subunits in mature rat cochlea show regions within synapses lacking the GluA2 subunit. Paired recordings from adult bullfrog auditory synapses demonstrate that CP-AMPARs mediate a major component of glutamatergic transmission. Together, our results support the importance of CP-AMPARs in mediating transmission at the hair cell ribbon synapse. Further, excess Ca(2+) entry via CP-AMPARs may underlie afferent terminal damage following excitotoxic challenge, suggesting that limiting Ca(2+) levels in the afferent terminal may protect against cochlear synaptopathy associated with hearing loss.SIGNIFICANCE STATEMENT A single incidence of noise overexposure causes damage at the hair cell synapse that later leads to neurodegeneration and exacerbates age-related hearing loss. A first step toward understanding cochlear neurodegeneration is to identify the cause of initial excitotoxic damage to the postsynaptic neuron. Using a combination of immunohistochemical, electrophysiological, and Ca(2+) imaging approaches in evolutionarily divergent species, we demonstrate that Ca(2+)-permeable AMPARs (CP-AMPARs) mediate glutamatergic transmission at the adult auditory hair cell synapse. Overexcitation of the terminal causes Ca(2+) accumulation and swelling that can be prevented by blocking CP

  12. Compartmentalized vesicular traffic around the hair cell cuticular plate.

    PubMed

    Kachar, B; Battaglia, A; Fex, J

    1997-05-01

    Through thin-section and freeze-fracture electron microscopy, we identify structural correlates of an intense vesicular traffic in a narrow band of cytoplasm around the cuticular plate of the bullfrog vestibular hair cells. Myriads of coated and uncoated vesicles associated with longitudinally oriented microtubules populate the narrow cytoplasmic region between the cuticular plate and the actin network of the apical junctional belt. If microtubules in the sensory hair cells, like those in axons, are pathways for organelle transport, then the characteristic distribution of microtubules around the cuticular plate represents transport pathways across the apical region of the hair cells. This compartmentalized membrane traffic system appears to support an intense vesicular release and uptake along a band of apical plasma membrane near the cell border. Functions of this transport system may include membrane recycling as well as exocytotic and endocytotic exchange between the hair cell cytoplasm and the endolymphatic compartment.

  13. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    PubMed

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  14. Calcium-Induced Calcium Release during Action Potential Firing in Developing Inner Hair Cells

    PubMed Central

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J.

    2015-01-01

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  15. Absence of Neuroplastin-65 Affects Synaptogenesis in Mouse Inner Hair Cells and Causes Profound Hearing Loss

    PubMed Central

    Carrott, Leanne; Aguilar, Carlos; Johnson, Stuart L.; Chessum, Lauren; West, Melissa; Morse, Susan; Dorning, Joanne; Smart, Elizabeth; Hardisty-Hughes, Rachel; Ball, Greg; Parker, Andrew; Barnard, Alun R.; MacLaren, Robert E.; Wells, Sara; Marcotti, Walter

    2016-01-01

    The Neuroplastin gene encodes two synapse-enriched protein isoforms, Np55 and Np65, which are transmembrane glycoproteins that regulate several cellular processes, including the genesis, maintenance, and plasticity of synapses. We found that an absence of Np65 causes early-onset sensorineural hearing loss and prevented the normal synaptogenesis in inner hair cells (IHCs) in the newly identified mouse mutant pitch. In wild-type mice, Np65 is strongly upregulated in the cochlea from around postnatal day 12 (P12), which corresponds to the onset of hearing. Np65 was specifically localized at the presynaptic region of IHCs. We found that the colocalization of presynaptic IHC ribbons and postsynaptic afferent terminals is greatly reduced in pitch mutants. Moreover, IHC exocytosis is also reduced with mutant mice showing lower rates of vesicle release. Np65 appears to have a nonessential role in vision. We propose that Np65, by regulating IHC synaptogenesis, is critical for auditory function in mammals. SIGNIFICANCE STATEMENT In the mammalian cochlea, the sensory inner hair cells (IHCs) encode auditory information. They do this by converting sound wave-induced mechanical motion of their hair bundles into an electrical current. This current generates a receptor potential that controls release of glutamate neurotransmitter from their ribbon synapses onto the auditory afferent fiber. We show that the synapse-enriched protein Np65, encoded by the Neuroplastin gene, is localized at the IHC presynaptic region. In mutant mice, absence of Np65 causes early-onset sensorineural hearing loss and prevents normal neurotransmitter release in IHCs and colocalization of presynaptic ribbons with postsynaptic afferents. We identified Neuroplastin as a novel deafness gene required for ribbon synapse formation and function, which is critical for sound perception in mammals. PMID:26740663

  16. Absence of Neuroplastin-65 Affects Synaptogenesis in Mouse Inner Hair Cells and Causes Profound Hearing Loss.

    PubMed

    Carrott, Leanne; Bowl, Michael R; Aguilar, Carlos; Johnson, Stuart L; Chessum, Lauren; West, Melissa; Morse, Susan; Dorning, Joanne; Smart, Elizabeth; Hardisty-Hughes, Rachel; Ball, Greg; Parker, Andrew; Barnard, Alun R; MacLaren, Robert E; Wells, Sara; Marcotti, Walter; Brown, Steve D M

    2016-01-06

    The Neuroplastin gene encodes two synapse-enriched protein isoforms, Np55 and Np65, which are transmembrane glycoproteins that regulate several cellular processes, including the genesis, maintenance, and plasticity of synapses. We found that an absence of Np65 causes early-onset sensorineural hearing loss and prevented the normal synaptogenesis in inner hair cells (IHCs) in the newly identified mouse mutant pitch. In wild-type mice, Np65 is strongly upregulated in the cochlea from around postnatal day 12 (P12), which corresponds to the onset of hearing. Np65 was specifically localized at the presynaptic region of IHCs. We found that the colocalization of presynaptic IHC ribbons and postsynaptic afferent terminals is greatly reduced in pitch mutants. Moreover, IHC exocytosis is also reduced with mutant mice showing lower rates of vesicle release. Np65 appears to have a nonessential role in vision. We propose that Np65, by regulating IHC synaptogenesis, is critical for auditory function in mammals. In the mammalian cochlea, the sensory inner hair cells (IHCs) encode auditory information. They do this by converting sound wave-induced mechanical motion of their hair bundles into an electrical current. This current generates a receptor potential that controls release of glutamate neurotransmitter from their ribbon synapses onto the auditory afferent fiber. We show that the synapse-enriched protein Np65, encoded by the Neuroplastin gene, is localized at the IHC presynaptic region. In mutant mice, absence of Np65 causes early-onset sensorineural hearing loss and prevents normal neurotransmitter release in IHCs and colocalization of presynaptic ribbons with postsynaptic afferents. We identified Neuroplastin as a novel deafness gene required for ribbon synapse formation and function, which is critical for sound perception in mammals. Copyright © 2016 Carrott, Bowl et al.

  17. Challenges for stem cells to functionally repair the damaged auditory nerve

    PubMed Central

    Needham, K; Minter, R.L.; Shepherd, R.K.; Nayagam, B.A.

    2012-01-01

    Introduction In the auditory system, a specialised subset of sensory neurons are responsible for correctly relaying precise pitch and temporal cues to the brain. In individuals with severe-to-profound sensorineural hearing impairment these sensory auditory neurons can be directly stimulated by a cochlear implant, which restores sound input to the brainstem after the loss of hair cells. This neural prosthesis therefore depends on a residual population of functional neurons in order to function effectively. Areas covered In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, the benefits derived from a cochlear implant may be minimal. One way in which to restore function to the auditory nerve is to replace these lost neurons using differentiated stem cells, thus re-establishing the neural circuit required for cochlear implant function. Such a therapy relies on producing an appropriate population of electrophysiologically functional neurons from stem cells, and on these cells integrating and reconnecting in an appropriate manner in the deaf cochlea. Expert opinion Here we review progress in the field to date, including some of the key functional features that stem cell-derived neurons would need to possess and how these might be enhanced using electrical stimulation from a cochlear implant. PMID:23094991

  18. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    PubMed

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. © 2016. Published by The Company of Biologists Ltd.

  19. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells

    PubMed Central

    Pujol, Remy; Cunningham, Dale E.; Hailey, Dale W.; Prendergast, Andrew; Rubel, Edwin W.; Raible, David W.

    2016-01-01

    ABSTRACT Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. PMID:27103160

  20. Mefloquine damage vestibular hair cells in organotypic cultures.

    PubMed

    Yu, Dongzhen; Ding, Dalian; Jiang, Haiyan; Stolzberg, Daniel; Salvi, Richard

    2011-07-01

    Mefloquine is an effective and widely used anti-malarial drug; however, some clinical reports suggest that it can cause dizziness, balance, and vestibular disturbances. To determine if mefloquine might be toxic to the vestibular system, we applied mefloquine to organotypic cultures of the macula of the utricle from postnatal day 3 rats. The macula of the utricle was micro-dissected out as a flat surface preparation and cultured with 10, 50, 100, or 200 μM mefloquine for 24 h. Specimens were stained with TRITC-conjugated phalloidin to label the actin in hair cell stereocilia and TO-PRO-3 to visualize cell nuclei. Some utricles were also labeled with fluorogenic caspase-3, -8, or -9 indicators to evaluate the mechanism of programmed cell death. Mefloquine treatment caused a dose-dependent loss of utricular hair cells. Treatment with 10 μM caused a slight reduction, 50 μM caused a significant reduction, and 200 μM destroyed nearly all the hair cells. Hair cell nuclei in mefloquine-treated utricles were condensed and fragmented, morphological features of apoptosis. Mefloquine-treated utricles were positive for the extrinsic initiator caspase-8 and intrinsic initiator caspase-9 and downstream executioner caspase-3. These results indicate that mefloquine can induce significant hair cell degeneration in the postnatal rat utricle and that mefloquine-induced hair cell death is initiated by both caspase-8 and caspase-9.

  1. The role of ear stone size in hair cell acoustic sensory transduction.

    PubMed

    Inoue, Maya; Tanimoto, Masashi; Oda, Yoichi

    2013-01-01

    Hearing and bodily balance are different sensations initiated by a common mechanism. Both sound- and head movement-dependent mechanical displacement are converted into electrical signals by the sensory hair cells. The saccule and utricle inner ear organs, in combination with their central projections to the hindbrain, are considered essential in fish for separating auditory and vestibular stimuli. Here, we established an in vivo method in larval zebrafish to manipulate otolith growth. We found that the saccule containing a large otolith is necessary to detect sound, whereas the utricle containing a small otolith is not sufficient. Otolith removal and relocation altered otolith growth such that utricles with experimentally enlarged otoliths acquired the sense of sound. These results show that otolith biomineralization occurs in a region-specific manner, and suggest that regulation of otolith size in the larval zebrafish ear is crucial to differentially sense auditory and vestibular information.

  2. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  3. Stem cell dynamics in the hair follicle niche

    PubMed Central

    Rompolas, Panteleimon; Greco, Valentina

    2014-01-01

    Hair follicles are skin appendages of the mammalian skin that have the ability to periodically and stereotypically regenerate in order to continuously produce new hair over our lifetime. The ability of the hair follicle to regenerate is due to the presence of stem cells that along with other cell populations and non-cellular components, including molecular signals and extracellular material, make up a niche microenvironment. Mounting evidence suggests that the niche is critical for regulating stem cell behavior and thus the process of regeneration. Here we review the literature concerning past and current studies that have utilized mouse genetic models, combined with other approaches to dissect the molecular and cellular composition of the hair follicle niche. We also discuss our current understanding of how stem cells operate within the niche during the process of tissue regeneration and the factors that regulate their behavior. PMID:24361866

  4. The Coupling between Ca2+ Channels and the Exocytotic Ca2+ Sensor at Hair Cell Ribbon Synapses Varies Tonotopically along the Mature Cochlea

    PubMed Central

    Cho, Soyoun

    2017-01-01

    The cochlea processes auditory signals over a wide range of frequencies and intensities. However, the transfer characteristics at hair cell ribbon synapses are still poorly understood at different frequency locations along the cochlea. Using recordings from mature gerbils, we report here a surprisingly strong block of exocytosis by the slow Ca2+ buffer EGTA (10 mM) in basal hair cells tuned to high frequencies (∼30 kHz). In addition, using recordings from gerbil, mouse, and bullfrog auditory organs, we find that the spatial coupling between Ca2+ influx and exocytosis changes from nanodomain in low-frequency tuned hair cells (∼<2 kHz) to progressively more microdomain in high-frequency cells (∼>2 kHz). Hair cell synapses have thus developed remarkable frequency-dependent tuning of exocytosis: accurate low-latency encoding of onset and offset of sound intensity in the cochlea's base and submillisecond encoding of membrane receptor potential fluctuations in the apex for precise phase-locking to sound signals. We also found that synaptic vesicle pool recovery from depletion was sensitive to high concentrations of EGTA, suggesting that intracellular Ca2+ buffers play an important role in vesicle recruitment in both low- and high-frequency hair cells. In conclusion, our results indicate that microdomain coupling is important for exocytosis in high-frequency hair cells, suggesting a novel hypothesis for why these cells are more susceptible to sound-induced damage than low-frequency cells; high-frequency inner hair cells must have a low Ca2+ buffer capacity to sustain exocytosis, thus making them more prone to Ca2+-induced cytotoxicity. SIGNIFICANCE STATEMENT In the inner ear, sensory hair cells signal reception of sound. They do this by converting the sound-induced movement of their hair bundles present at the top of these cells, into an electrical current. This current depolarizes the hair cell and triggers the calcium-induced release of the neurotransmitter

  5. Falsification of the ionic channel theory of hair cell transduction.

    PubMed

    Rossetto, Michelangelo

    2013-11-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.

  6. [Hair cell apoptosis and hearing loss of perilymphatic fistula].

    PubMed

    Chen, J; Lu, Y; Ren, J; Chen, Z; Xie, D

    1999-01-01

    To investigate the effect of hair cell apoptosis on hearing loss of perilymphatic fistula (PLF) in guinea pig. Twenty-five guinea pigs with light microscope and TdT mediated biotin dUTP nick-end labelling (TUNEL) techniques. The ECochG and ABR were measured and the data analyzed with statistics. 1. The apoptosis of hair cell was not revealed in 0-hour-group and 2-hour-group of PLF. Following the time of PLF was longer, the apoptosis of hair cell was more increased. The apoptosis of hair cell was demonsted in 1-day-group (1 case, 17%), 2-day-group (4 case, 67%) and 7-day-group (4 case, 80%); 2. The amplication of AP was reduced after operation induced PLF. The CAP of experimental ear was significantly higher than that of control ear (P < 0.01) in 1-day-group, 2-day-group and 7-day-group. 1. Apoptosis of hair cell was appeared in PLF; 2. The apoptosis of hair cell may be one of morphological evidence in hearing loss of PLF.

  7. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  8. Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss

    NASA Astrophysics Data System (ADS)

    Rhee, Chung-Ku; He, Peijie; Jung, Jae Yun; Ahn, Jin-Chul; Chung, Phil-Sang; Lee, Min Young; Suh, Myung-Whan

    2013-12-01

    The primary cause of hearing loss includes damage to cochlear hair cells. Low-level laser therapy (LLLT) has become a popular treatment for damaged nervous systems. Based on the idea that cochlea hair cells and neural cells are from same developmental origin, the effect of LLLT on hearing loss in animal models is evaluated. Hearing loss animal models were established, and the animals were irradiated by 830-nm diode laser once a day for 10 days. Power density of the laser treatment was 900 mW/cm2, and the fluence was 162 to 194 J. The tympanic membrane was evaluated after LLLT. Thresholds of auditory brainstem responses were evaluated before treatment, after gentamicin, and after 10 days of LLLT. Quantitative scanning electron microscopic (SEM) observations were done by counting remaining hair cells. Tympanic membranes were intact at the end of the experiment. No adverse tissue reaction was found. On SEM images, LLLT significantly increased the number of hair cells in middle and basal turns. Hearing was significantly improved by laser irradiation. After LLLT treatment, both the hearing threshold and hair-cell count significantly improved.

  9. Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure.

    PubMed

    Sugahara, Kazuma; Inouye, Sachiye; Izu, Hanae; Katoh, Yumiko; Katsuki, Kensaku; Takemoto, Tsuyoshi; Shimogori, Hiroaki; Yamashita, Hiroshi; Nakai, Akira

    2003-08-01

    To analyze the role of heat shock response in the cochleae, we induced major heat shock proteins, Hsp70, Hsp90, and Hsp27 by perfusion of hot saline into the middle ear cavity (called 'local heat shock') in guinea pigs. Hsps were induced in almost all of the cochlear cells including the sensory hair cells in the organ of Corti. We showed that loss of both the sensory hair cells and the auditory function induced by acoustic overexposure was inhibited by pretreatment of the inner ear with local heat shock. To examine the role of heat shock transcription factor 1(HSF), which activates heat shock genes in response to heat shock, in the protection of sensory hair cells, we analyzed acoustic injury in HSF1-null mice. We found that the loss of sensory hair cells was more significant in HSF1-null mice compared with that of wild-type mice when mice were subjected to acoustic overexposure. These results indicate that HSF1 is required for survival of the sensory hair cells against acoustic overexposure.

  10. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus.

    PubMed

    Kurioka, Takaomi; Lee, Min Young; Heeringa, Amarins N; Beyer, Lisa A; Swiderski, Donald L; Kanicki, Ariane C; Kabara, Lisa L; Dolan, David F; Shore, Susan E; Raphael, Yehoash

    2016-09-22

    In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination.

  11. Auditory Neuropathy

    MedlinePlus

    ... hair cells? Outer hair cells help amplify sound vibrations entering the inner ear from the middle ear. ... working normally, the inner hair cells convert these vibrations into electrical signals that travel as nerve impulses ...

  12. Concise Review: Mechanisms of Quiescent Hair Follicle Stem Cell Regulation.

    PubMed

    Yi, Rui

    2017-08-30

    Maintaining a pool of adult stem cells is essential for tissue homeostasis and wound repair. In mammalian tissues, notably hair follicles, blood, and muscle, stem cells acquire quiescence and infrequently divide for self-renewal. Mechanistic understanding of stem cell quiescence is critical for applying these multipotent cells in regenerative medicine and interrogating their roles in human diseases such as cancer. Quiescent and dividing epithelial stem cells located in hair follicle are conspicuously organized in a spatiotemporally specific manner, allowing them to be studied at a considerable depth. Recent advancements in mouse genetics, genomics, and imaging have revealed unprecedented insights into establishment, maintenance, and regulation of quiescent hair follicle stem cells. This concise review summarizes the progress with a focus on mechanisms mediated by signaling pathways and transcription factors and discusses their implications in the understanding of stem cell biology. Stem Cells 2017. © 2017 AlphaMed Press.

  13. Ocsyn, a novel syntaxin-interacting protein enriched in the subapical region of inner hair cells.

    PubMed

    Safieddine, S; Ly, C D; Wang, Y-X; Wang, C Y; Kachar, B; Petralia, R S; Wenthold, R J

    2002-06-01

    Sensory (hair) cells of the inner ear contain two specialized areas of membrane delivery. The first, located at the cell base, is the afferent synapse where rapid delivery of synaptic vesicles is required to convey information about auditory signals with exceedingly high temporal precision. The second area is at the apex. To accommodate the continuous movement of stereocilia and facilitate their repair, recycling of membrane components is required. Intense vesicular traffic is restricted to a narrow band of cytoplasm around the cuticular plate, which anchors stereocilia. Our previous analyses showed that SNARE proteins (syntaxin 1A/SNAP25/VAMP1) are concentrated at both poles of hair cells, consistent with their involvement in membrane delivery at both locations. To investigate further the molecules involved in membrane delivery at these two sites, we constructed a two-hybrid library of the organ of Corti and probed it with syntaxin 1A. Here we report the cloning of a novel syntaxin-binding protein that is concentrated in a previously uncharacterized organelle at the apex of inner hair cells.

  14. Loss of function of Ywhah in mice induces deafness and cochlear outer hair cells' degeneration

    PubMed Central

    Buret, L; Rebillard, G; Brun, E; Angebault, C; Pequignot, M; Lenoir, M; Do-cruzeiro, M; Tournier, E; Cornille, K; Saleur, A; Gueguen, N; Reynier, P; Amati-Bonneau, P; Barakat, A; Blanchet, C; Chinnery, P; Yu-Wai-Man, P; Kaplan, J; Roux, A-F; Van Camp, G; Wissinger, B; Boespflug-Tanguy, O; Giraudet, F; Puel, J-L; Lenaers, G; Hamel, C; Delprat, B; Delettre, C

    2016-01-01

    In vertebrates, 14-3-3 proteins form a family of seven highly conserved isoforms with chaperone activity, which bind phosphorylated substrates mostly involved in regulatory and checkpoint pathways. 14-3-3 proteins are the most abundant protein in the brain and are abundantly found in the cerebrospinal fluid in neurodegenerative diseases, suggesting a critical role in neuron physiology and death. Here we show that 14-3-3eta-deficient mice displayed auditory impairment accompanied by cochlear hair cells' degeneration. We show that 14-3-3eta is highly expressed in the outer and inner hair cells, spiral ganglion neurons of cochlea and retinal ganglion cells. Screening of YWHAH, the gene encoding the 14-3-3eta isoform, in non-syndromic and syndromic deafness, revealed seven non-synonymous variants never reported before. Among them, two were predicted to be damaging in families with syndromic deafness. In vitro, variants of YWHAH induce mild mitochondrial fragmentation and severe susceptibility to apoptosis, in agreement with a reduced capacity of mutated 14-3-3eta to bind the pro-apoptotic Bad protein. This study demonstrates that YWHAH variants can have a substantial effect on 14-3-3eta function and that 14-3-3eta could be a critical factor in the survival of outer hair cells. PMID:27275396

  15. Cell Source and Mechanism of Hair Cell Regeneration in the Neonatal Mouse Cochlea

    DTIC Science & Technology

    2015-09-30

    VA 22060-6218 As required, enclosed is the final technical report for Award N00014-13-1-0569, "Cell source and mechanism of hair cell regeneration...IL 62702 C. Award# N00014-13-1-0569 D. Cell source and mechanism of hair cell regeneration in the neonatal mouse cochlea Scientific and Technical...Objectives Specific Aims: Aim 1: To determine the cell source of regenerated hair cells in the neonatal mouse cochlea. Aim 2: To determine the

  16. Proliferation of Functional Hair Cells in Vivo in the Absence of the Retinoblastoma Protein

    NASA Astrophysics Data System (ADS)

    Sage, Cyrille; Huang, Mingqian; Karimi, Kambiz; Gutierrez, Gabriel; Vollrath, Melissa A.; Zhang, Duan-Sun; García-Añoveros, Jaime; Hinds, Philip W.; Corwin, Jeffrey T.; Corey, David P.; Chen, Zheng-Yi

    2005-02-01

    In mammals, hair cell loss causes irreversible hearing and balance impairment because hair cells are terminally differentiated and do not regenerate spontaneously. By profiling gene expression in developing mouse vestibular organs, we identified the retinoblastoma protein (pRb) as a candidate regulator of cell cycle exit in hair cells. Differentiated and functional mouse hair cells with a targeted deletion of Rb1 undergo mitosis, divide, and cycle, yet continue to become highly differentiated and functional. Moreover, acute loss of Rb1 in postnatal hair cells caused cell cycle reentry. Manipulation of the pRb pathway may ultimately lead to mammalian hair cell regeneration.

  17. Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea.

    PubMed

    Sendin, Gaston; Bourien, Jérôme; Rassendren, François; Puel, Jean-Luc; Nouvian, Régis

    2014-02-04

    Inner hair cells (IHCs) are the primary transducer for sound encoding in the cochlea. In contrast to the graded receptor potential of adult IHCs, immature hair cells fire spontaneous calcium action potentials during the first postnatal week. This spiking activity has been proposed to shape the tonotopic map along the ascending auditory pathway. Using perforated patch-clamp recordings, we show that developing IHCs fire spontaneous bursts of action potentials and that this pattern is indistinguishable along the basoapical gradient of the developing cochlea. In both apical and basal IHCs, the spiking behavior undergoes developmental changes, where the bursts of action potential tend to occur at a regular time interval and have a similar length toward the end of the first postnatal week. Although disruption of purinergic signaling does not interfere with the action potential firing pattern, pharmacological ablation of the α9α10 nicotinic receptor elicits an increase in the discharge rate. We therefore suggest that in addition to carrying place information to the ascending auditory nuclei, the IHCs firing pattern controlled by the α9α10 receptor conveys a temporal signature of the cochlear development.

  18. Behavioral disturbances and hair cell loss in the inner ear following nitrile exposure in mice, guinea pigs, and frogs.

    PubMed

    Soler-Martín, Carla; Díez-Padrisa, Núria; Boadas-Vaello, Pere; Llorens, Jordi

    2007-03-01

    Several nitriles have been demonstrated to cause hair cell loss in the inner ear of the rat, but the susceptibility of other species to this toxic effect has not been investigated. Adult male Swiss mice were administered (po) control vehicle, cis-crotononitrile (2.75 mmol/kg), or 3,3'-iminodipropionitrile (IDPN, at 8, 16, and 24 mmol/kg), and the changes in vestibular function were assessed by behavioral endpoints. In addition, surface preparations of the vestibular sensory epithelia were examined for hair cell loss using scanning electron microscopy (SEM). IDPN, in a dose-dependent manner, and cis-crotononitrile induced both vestibular dysfunction and loss of hair bundles. Male Dunkin Hartley guinea pigs were administered IDPN (0, 1.6, 2.4, or 3.2 mmol/kg, ip), and their vestibular and auditory sensory epithelia were examined by SEM. The guinea pigs developed behavioral abnormalities indicative of vestibular dysfunction, with more overt effects observed in the animals treated with larger doses, and displayed a dose-dependent loss of hair bundles in both the vestibular and the auditory epithelia. Frogs (Rana perezi) were administered IDPN (0, 16, 24, or 32 mmol/kg, ip), and their sensory epithelia in the inner ear were examined by SEM. IDPN caused behavioral abnormalities indicative of vestibular dysfunction and loss of hair bundles. We conclude that some nitriles are thorough ototoxic compounds affecting hair cells in a wide range of species. This conclusion highlights the potential interest of this toxic effect and offers new animal models in which to decipher its basis.

  19. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine.

    PubMed

    Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-12-01

    Multipotent adult stem cells have many potential therapeutic applications. Our recent findings suggest that hair follicles are a promising source of easily accessible multipotent stem cells. Stem cells in the hair follicle area express the neural stem cell marker nestin, suggesting that hair-follicle stem cells and neural stem cells have common features. Nestin-expressing hair follicle stem cells can form neurons and other cell types, and thus adult hair follicle stem cells could have important therapeutic applications, particularly for neurologic diseases. Transplanted hair follicle stem cells promote the functional recovery of injured peripheral nerve and spinal cord. Recent findings suggest that direct transplantation of hair-follicle stem cells without culture can promote nerve repair, which makes them potentially clinically practical. Human hair follicle stem cells as well as mouse hair follicle stem cells promote nerve repair and can be applied to test the hypothesis that human hair follicle stem cells can provide a readily available source of neurologically therapeutic stem cells. The use of hair follicle stem cells for nerve regeneration overcomes critical problems of embryonic stem cells or induced pluripotent stem cells in that the hair follicle stem cells are multipotent, readily accessible, non-oncogenic, and are not associated with ethical issues.

  20. Coenzyme Q10 protects hair cells against aminoglycoside.

    PubMed

    Sugahara, Kazuma; Hirose, Yoshinobu; Mikuriya, Takefumi; Hashimoto, Makoto; Kanagawa, Eiju; Hara, Hirotaka; Shimogori, Hiroaki; Yamashita, Hiroshi

    2014-01-01

    It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10) is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group). In the neomycin group, utricles were cultured with neomycin (1 mM) to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30-0.3 µM). Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear.

  1. Coenzyme Q10 Protects Hair Cells against Aminoglycoside

    PubMed Central

    Sugahara, Kazuma; Hirose, Yoshinobu; Mikuriya, Takefumi; Hashimoto, Makoto; Kanagawa, Eiju; Hara, Hirotaka; Shimogori, Hiroaki; Yamashita, Hiroshi

    2014-01-01

    It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10) is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group). In the neomycin group, utricles were cultured with neomycin (1 mM) to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30–0.3 µM). Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear. PMID:25265538

  2. Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding

    PubMed Central

    Johnson, Stuart L

    2015-01-01

    The auditory pathway faithfully encodes and relays auditory information to the brain with remarkable speed and precision. The inner hair cells (IHCs) are the primary sensory receptors adapted for rapid auditory signaling, but they are not thought to be intrinsically tuned to encode particular sound frequencies. Here I found that under experimental conditions mimicking those in vivo, mammalian IHCs are intrinsically specialized. Low-frequency gerbil IHCs (~0.3 kHz) have significantly more depolarized resting membrane potentials, faster kinetics, and shorter membrane time constants than high-frequency cells (~30 kHz). The faster kinetics of low-frequency IHCs allow them to follow the phasic component of sound (frequency-following), which is not required for high-frequency cells that are instead optimally configured to encode sustained, graded responses (intensity-following). The intrinsic membrane filtering of IHCs ensures accurate encoding of the phasic or sustained components of the cell’s in vivo receptor potential, crucial for sound localization and ultimately survival. DOI: http://dx.doi.org/10.7554/eLife.08177.001 PMID:26544545

  3. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK.

    PubMed

    Hill, Kayla; Yuan, Hu; Wang, Xianren; Sha, Su-Hua

    2016-07-13

    Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy. Copyright © 2016 the authors 0270-6474/16/367497-14$15.00/0.

  4. Fate of Mammalian Cochlear Hair Cells and Stereocilia after Loss of the Stereocilia

    PubMed Central

    Jia, Shuping; Yang, Shiming; Guo, Weiwei; He, David Z.Z.

    2009-01-01

    Cochlear hair cells transduce mechanical stimuli into electrical activity. The site of hair cell transduction is the hair bundle, an array of stereocilia with different height arranged in a staircase. Tip links connect the apex of each stereocilium to the side of its taller neighbor. The hair bundle and tip links of hair cells are susceptible to acoustic trauma and ototoxic drugs. It has been shown that hair cells in lower vertebrates and in the mammalian vestibular system may survive bundle loss and undergo self-repair of the stereocilia. Our goals were to determine whether cochlear hair cells could survive the trauma and whether the tip link and/or the hair bundle could be regenerated. We simulated the acoustic trauma-induced tip link damage or stereociliary loss by disrupting tip links or ablating the hair bundles in the cultured organ of Corti from neonatal gerbils. Hair-cell fate and stereociliary morphology and function were examined using confocal and scanning electron microscopies and electrophysiology. Most bundleless hair cells survived and developed for about 2 weeks. However, no spontaneous hair-bundle regeneration was observed. When tip links were ruptured, repair of tip links and restoration of mechanotransduction were observed in less than 24 hours. Our study suggests that the dynamic nature of the hair cell's transduction apparatus is retained despite the fact that regeneration of the hair bundle is lost in mammalian cochlear hair cells. PMID:19955380

  5. Perivascular hair follicle stem cells associate with a venule annulus.

    PubMed

    Xiao, Ying; Woo, Wei-Meng; Nagao, Keisuke; Li, Wenling; Terunuma, Atsushi; Mukouyama, Yoh-Suke; Oro, Anthony E; Vogel, Jonathan C; Brownell, Isaac

    2013-10-01

    The perivascular microenvironment helps in maintaining stem cells in many tissues. We sought to determine whether there is a perivascular niche for hair follicle stem cells. The association of vessels and follicle progenitor cells began by embryonic day 14.5, when nascent hair placodes had blood vessels approaching them. By birth, a vascular annulus stereotypically surrounded the keratin 15 negative (K15-) stem cells in the upper bulge and remained associated with the K15- upper bulge throughout the hair cycle. The angiogenic factor Egfl6 was expressed by the K15- bulge and was localized adjacent to the vascular annulus, which comprised post-capillary venules. Although denervation altered the phenotype of upper bulge stem cells, the vascular annulus persisted in surgically denervated mouse skin. The importance of the perivascular niche was further suggested by the fact that vascular annuli formed around the upper bulge of de novo-reconstituted hair follicles before their innervation. Together, these findings demonstrate that the upper bulge is associated with a perivascular niche during the establishment and maintenance of this specialized region of hair follicle stem cells.

  6. Perivascular Hair Follicle Stem Cells Associate with a Venule Annulus

    PubMed Central

    Xiao, Ying; Woo, Wei-Meng; Nagao, Keisuke; Li, Wenling; Terunuma, Atsushi; Mukouyama, Yoh-suke; Oro, Anthony E.; Vogel, Jonathan C.; Brownell, Isaac

    2013-01-01

    The perivascular microenvironment helps maintain stem cells in many tissues. We sought to determine if there is a perivascular niche for hair follicle stem cells. The association of vessels and follicle progenitor cells began by embryonic day 14.5 (E14.5), when nascent hair placodes had blood vessels approaching them. By birth, a vascular annulus stereotypically surrounded the Keratin 15 negative (K15−) stem cells in the upper bulge, and remained associated with the K15− upper bulge throughout the hair cycle. The angiogenic factor Egfl6 was expressed by the K15− bulge and localized adjacent to the vascular annulus, which was comprised of post-capillary venules. Although denervation altered the phenotype of upper bulge stem cells, the vascular annulus persisted in surgically denervated mouse skin. The importance of the perivascular niche was further suggested by the fact that vascular annuli formed around the upper bulge of de novo reconstituted hair follicles prior to their innervation. Together, these findings demonstrate that the upper bulge is associated with a perivascular niche during the establishment and maintenance of this specialized region of hair follicle stem cells. PMID:23558405

  7. Structure and Function of the Hair Cell Ribbon Synapse

    PubMed Central

    Nouvian, R.; Beutner, D.; Parsons, T.D.

    2006-01-01

    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years. PMID:16773499

  8. Mechanical amplification by hair cells in the semicircular canals.

    PubMed

    Rabbitt, Richard D; Boyle, Richard; Highstein, Stephen M

    2010-02-23

    Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes approximately 97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below approximately 5 degrees /s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).

  9. Identification of Modulators of Hair Cell Regeneratin in the Zebrafish Lateral Line

    PubMed Central

    Namdaran, Parhum; Reinhart, Katherine E.; Owens, Kelly N.; Raible, David W.; Rubel, Edwin W

    2012-01-01

    The external location of the zebrafish lateral line makes it a powerful model for studying mechanosensory hair cell regeneration. We have developed a chemical screen to identify FDA-approved drugs and biologically active compounds that modulate hair cell regeneration in zebrafish. Of the 1,680 compounds evaluated, we identified 2 enhancers and 6 inhibitors of regeneration. The two enhancers, dexamethasone and prednisolone, are synthetic glucocorticoids that potentiated hair cell numbers during regeneration and also induced hair cell addition in the absence of damage. BrdU analysis confirmed that the extra hair cells arose from mitotic activity. We found that dexamethasone and prednisolone, like other glucocorticoids, suppress zebrafish caudal fin regeneration, indicating that hair cell regeneration occurs by a distinctly different process. Further analyses of the regeneration inhibitors revealed that two of the six, flubendazole and topotecan, significantly suppress hair cell regeneration by preventing proliferation of hair cell precursors. Flubendazole halted support cell division in M-phase, possibly by interfering with normal microtubule activity. Topotecan, a topoisomerase inhibitor, killed both hair cells and proliferating hair cell precursors. A third inhibitor, fulvestrant, moderately delays hair cell regeneration by reducing support cell proliferation. Our observation that hair cells do not regenerate when support cell proliferation is impeded confirms previous observations that cell division is the primary route for hair cell regeneration after neomycin treatment in zebrafish. PMID:22399774

  10. [Synergetic protective effects of glial cell line-derived neurotrophic factor combined with neurotrophin-3 in F-actin on hair cell after noise trauma].

    PubMed

    Yang, W; Hu, B; Guo, W; Hu, Y; Wang, P; Jiang, S

    2001-10-01

    To investigate if glial cell line-derived neurotrophic factor (GDNF) combined with neurotrophin-3 (NT-3) provides synergetic protection in filamentous actin (F-actin) on hair cell (HC) from acoustic trauma. Guinea pigs were exposed to 4 kHz narrow band noise at 115 dB SPL for 4 h. Test group (n = 12) with a mixture of GDNF (100 ng/ml) and NT-3(2.5 micrograms/ml) or control group (n = 9) with artificial perilymph (AP) was delivered to the scala tympani via a mini-osmotic pump (0.5 microliter/h) for a total of 14 days. Auditory function was assessed by measuring thresholds of auditory brainstem responses (ABRs) elicited by clicks prior to surgery, 3 days after surgery (1 day before noise exposure) and 10 days following noise exposure (before animals were sacrificed), respectively. F-actin, labeled by rhodamine-phalloidin, was examined in the guinea pig cochlea using fluorescence microscopy for quantitative assessment of hair cell damage. There was a statistically significant increase the survival of out hair cell(P < 0.001, P < 0.01) and inner hair cell(P < 0.01, P < 0.01) and decrease in ABR threshold (P < 0.05, P < 0.01) in both the GDNF and NT-3 treated and untreated ear of animals. Our findings indicate that GDNF combined with NT-3 may effectively protect the inner ear from noise--induced hearing loss.

  11. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    PubMed Central

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  12. Ocsyn and mitochondrial-canalicular complexes in vestibular hair cells.

    PubMed

    Vautrin, Jean; Travo, Cécile; Boyer, Catherine; Ventéo, Stéphanie; Favre, Daniel; Dechesne, Claude J

    2006-12-01

    Ocsyn, a syntaxin-interacting protein characterized by Safieddine et al. [Safieddine, S., Ly, C.D., Wang, Y.-X., Kachar, B., Petralia, R.S., Wenthold, R.J., 2002. Ocsyn, a novel syntaxin-interacting protein enriched in the subapical region of inner hair cells. Mol. Cell. Neurosci., 20, 343-353] in the guinea pig organ of Corti was primarily identified in organelles located at the subapical region of inner hair cells. They proposed that in cochlear inner hair cells, ocsyn was involved in protein trafficking associated to recycling endosomes. Ocsyn happens to be highly homologous to syntabulin with an almost identical syntaxin-binding domain. Syntabulin is believed to attach syntaxin-containing vesicles to kinesin for their axonal transport along microtubules. The present study shows the distribution of ocsyn in guinea pig and rat vestibular hair cells using immunocytochemistry and confocal microscopy. Ocsyn was characterized by intense immunolabeled spots distributed exclusively in type I and II vestibular hair cells. The subcuticular region under the cuticular plate exhibited particularly densely packed spots. In the neck region of the sensory cells, where microtubules are abundant, there was no colocalization of ocsyn and alpha-tubulin. Ocsyn labeled spots were also present in the medial and basal hair cell regions, particularly in the supranuclear and infranuclear regions. Mitochondria are particularly numerous in these three regions (subcuticular, supranuclear and infranuclear). Double labeling of ocsyn and cytochrome c showed that ocsyn was present in the same zones that mitochondria. This, together with the great similarity of ocsyn and syntabulin, suggest that, akin to syntabulin, ocsyn is involved in addressing organelles. We propose that ocsyn is involved in the formation of the canalicular-mitochondrial complexes depicted by Spicer et al. [Spicer, S.S., Thomopoulos, G.N., Schulte, B.A., 1999. Novel membranous structures in apical and basal compartments of

  13. Optimizing atoh1 induced vestibular hair cell regeneration

    PubMed Central

    Staecker, Hinrich; Schlecker, Christina; Kraft, Shannon; Praetorius, Mark; Hsu, Chi; Brough, Douglas E.

    2016-01-01

    Objectives/Hypothesis Determine the optimal design characteristics of an adenoviral vector to deliver atoh1 and induce regeneration of vestibular hair cells. Study Design Evaluation of a mouse model of intra-labyrinthine gene delivery. Tissue culture of mouse and human macular organs. Methods Macular organs from adult C57Bl/6 mice were treated with binding modified and alternate adenovectors expressing green fluorescent protein (gfp) or luciferase (L). Expression of marker genes was determined over time to determine vector transfection efficiency. The inner ear of adult mice was then injected with modified vectors. Expression of gfp and distribution of vector DNA was followed. Hearing and balance function was evaluated in normal animals to ensure safety of the novel vector designs. An optimized vector was identified and tested for its ability to induce hair cell regeneration in a mouse vestibulopathy model. Finally this vector was tested for its ability to induce hair cell regeneration in human tissue. Results Ad5 serotype based vectors were identified as having a variety of different binding capacities for inner ear tissue. This makes it difficult to limit the dose of vector due to entry into non-targeted cells. Screening of rare adenovector serotypes demonstrated that Ad28 based vectors were ideally suited for delivery to supporting cells and therefore useful for hair cell regeneration studies. Utilization of an Ad28 based vector to deliver atoh1 to a mouse model of vestibular loss resulted significant functional recovery of balance. This vector was also capable of transfecting human macular organs and inducing regeneration of human vestibular hair cells in vitro. Conclusions Improvement in vector design can lead to more specific cell based delivery and reduction of non specific delivery of the trans gene leading to the development of optimized molecular therapeutics to induce hair cell regeneration. Level of Evidence N/A Controlled basic science study. PMID

  14. Apoptotic hair cell death after transient cochlear ischemia in gerbils.

    PubMed

    Taniguchi, Masafumi; Hakuba, Nobuhiro; Koga, Kenichiro; Watanabe, Futoshi; Hyodo, Jun; Gyo, Kiyofumi

    2002-12-20

    The mechanisms of cochlear hair cell death following exposure to transient inner ear ischemia were investigated in gerbils histologically. The animals were subjected to ischemic insult by occluding both vertebral arteries for 15 min. Hoechst 33342 nuclear staining showed that inner hair cells (IHCs) underwent sporadic degeneration via nuclear condensation, which peaked 12 hours after the ischemia. Furthermore, nuclear DNA fragmentation was noted by the terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-biotin nick end labeling method. Transmission electron microscopy revealed morphological changes in the IHCs characteristic of apoptosis, including karyopyknosis, chromatin condensation. These findings suggest that apoptotic cell death is the major process in hair cell degeneration in this animal model.

  15. Pterins in human hair follicle cells and in the synchronized murine hair cycle.

    PubMed

    Schallreuter, K U; Beazley, W D; Hibberts, N A; Tobin, D J; Paus, R; Wood, J M

    1998-10-01

    Human dermal papilla cells (HDPC) express mRNA for the key enzymes for de novo synthesis/recycling and regulation of the pterin (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH4). HDPC had significantly higher enzyme activities and 6BH4 levels in a comparative study with dermal fibroblasts, epidermal melanocytes, and keratinocytes under in vitro conditions. In addition, a significantly more rapid uptake of 14C-L-phenylalanine was demonstrated in HDPC compared with fibroblasts, whereas the differences in turnover to L-tyrosine were insignificant, suggesting a pooling of L-phenylalanine in HDPC. These results suggested that HDPC driven 6BH4 synthesis could be of major functional importance in the hair cycle. In order to follow this hypothesis in vivo, expression of enzyme activities and levels of the produced cofactor during the synchronized hair cycle were determined employing the murine model C57BL/6. These data revealed a significantly increased de novo synthesis for 6BH4 via GTP-cyclohydrolase I concomitant with high levels of 6BH4, and the induction of phenylalanine hydroxylase activities during the telogen/early anagen stage (days 0-1). Pterin levels and enzyme activities fall on day 3 and plateau during the rest of the entire cycle. In addition, thioredoxin reductase and glutathione reductase activities were measured, where the latter enzyme remained constant but thioredoxin reductase activities showed a biphasic behavior. The first peak coincided with the induction of 6BH4 de novo synthesis at the beginning of the hair cycle. The second peak was observed at mid-anagen, when melanogenesis takes place. Taken together, our results show the presence of autocrine pterin synthesis/recycling in human hair follicle cells under in vitro conditions, and a possible role for 6BH4 in the synchronized murine hair cycle.

  16. Heat pulse excitability of vestibular hair cells and afferent neurons

    PubMed Central

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at −68 mV and in 67% of hair cells at −60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  17. Efficacy of three drugs for protecting against gentamicin-induced hair cell and hearing losses

    PubMed Central

    Bas, E; Van De Water, TR; Gupta, C; Dinh, J; Vu, L; Martínez-Soriano, F; Láinez, JM; Marco, J

    2012-01-01

    BACKGROUND AND PURPOSE Exposure to an ototoxic level of an aminoglycoside can result in hearing loss. In this we study investigated the otoprotective efficacy of dexamethasone (DXM), melatonin (MLT) and tacrolimus (TCR) in gentamicin (GM)-treated animals and cultures. EXPERIMENTAL APPROACH Wistar rats were divided into controls (treated with saline); exposed to GM only (GM); and three GM-exposed groups treated with either DXM, MLT or TCR. Auditory function and cochlear surface preparations were studied. In vitro studies of oxidative stress, pro-inflammatory cytokine mRNA levels, the MAPK pathway and caspase-3 activation were performed in organ of Corti explants from 3-day-old rats. KEY RESULTS DXM, MLT and TCR decreased levels of reactive oxygen species in GM-exposed explants. The mRNA levels of TNF-α, IL-1β and TNF-receptor type 1 were significantly reduced in GM + DXM and GM + MLT groups. Phospho-p38 MAPK levels decreased in GM + MLT and GM + TCR groups, while JNK phosphorylation was reduced in GM + DXM and GM + MLT groups. Caspase-3 activation decreased in GM + DXM, GM + MLT and GM + TCR groups. These results were consistent with in vivo results. Local treatment of GM-exposed rat cochleae with either DXM, MLT or TCR preserved auditory function and prevented auditory hair cell loss. CONCLUSIONS AND IMPLICATIONS In organ of Corti explants, GM increased oxidative stress and initiated an inflammatory response that led to the activation of MAPKs and apoptosis of hair cells. The three compounds tested demonstrated otoprotective properties that could be beneficial in the treatment of ototoxicity-induced hearing loss. PMID:22320124

  18. Semicircular Canals Circumvent Brownian Motion Overload of Mechanoreceptor Hair Cells.

    PubMed

    Muller, Mees; Heeck, Kier; Elemans, Coen P H

    2016-01-01

    Vertebrate semicircular canals (SCC) first appeared in the vertebrates (i.e. ancestral fish) over 600 million years ago. In SCC the principal mechanoreceptors are hair cells, which as compared to cochlear hair cells are distinctly longer (70 vs. 7 μm), 10 times more compliant to bending (44 vs. 500 nN/m), and have a 100-fold higher tip displacement threshold (< 10 μm vs. <400 nm). We have developed biomechanical models of vertebrate hair cells where the bundle is approximated as a stiff, cylindrical elastic rod subject to friction and thermal agitation. Our models suggest that the above differences aid SCC hair cells in circumventing the masking effects of Brownian motion noise of about 70 nm, and thereby permit transduction of very low frequency (<10 Hz) signals. We observe that very low frequency mechanoreception requires increased stimulus amplitude, and argue that this is adaptive to circumvent Brownian motion overload at the hair bundles. We suggest that the selective advantage of detecting such low frequency stimuli may have favoured the evolution of large guiding structures such as semicircular canals and otoliths to overcome Brownian Motion noise at the level of the mechanoreceptors of the SCC.

  19. Semicircular Canals Circumvent Brownian Motion Overload of Mechanoreceptor Hair Cells

    PubMed Central

    Muller, Mees; Heeck, Kier

    2016-01-01

    Vertebrate semicircular canals (SCC) first appeared in the vertebrates (i.e. ancestral fish) over 600 million years ago. In SCC the principal mechanoreceptors are hair cells, which as compared to cochlear hair cells are distinctly longer (70 vs. 7 μm), 10 times more compliant to bending (44 vs. 500 nN/m), and have a 100-fold higher tip displacement threshold (< 10 μm vs. <400 nm). We have developed biomechanical models of vertebrate hair cells where the bundle is approximated as a stiff, cylindrical elastic rod subject to friction and thermal agitation. Our models suggest that the above differences aid SCC hair cells in circumventing the masking effects of Brownian motion noise of about 70 nm, and thereby permit transduction of very low frequency (<10 Hz) signals. We observe that very low frequency mechanoreception requires increased stimulus amplitude, and argue that this is adaptive to circumvent Brownian motion overload at the hair bundles. We suggest that the selective advantage of detecting such low frequency stimuli may have favoured the evolution of large guiding structures such as semicircular canals and otoliths to overcome Brownian Motion noise at the level of the mechanoreceptors of the SCC. PMID:27448330

  20. Usher protein functions in hair cells and photoreceptors.

    PubMed

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    PubMed

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  2. Magnetic Bead Actuation of Saccular Hair Cells

    NASA Astrophysics Data System (ADS)

    Rowland, David; Ramunno-Johnson, Damien; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-11-01

    When decoupled from the overlying membrane, hair bundles of the amphibian sacculus exhibit spontaneous oscillation. To explore the dynamics of this innate motility without an imposed external load, we recorded their oscillations with a high-speed CMOS camera, and applied mechanical manipulation that minimally alters the geometry of an individual hair bundle. We present a technique that utilizes micron-sized magnetic particles to actuate the stereociliary bundle with a magnetized probe. Quasi-steady-state displacements were imposed on freely oscillating bundles. Our data indicate that deflection of the bundle affects both the frequency and the amplitude of the oscillations, with a crossing of the bifurcation that is dependent on the direction and speed of the applied offset.

  3. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice

    PubMed Central

    Bucks, Stephanie A; Cox, Brandon C; Vlosich, Brittany A; Manning, James P; Nguyen, Tot B; Stone, Jennifer S

    2017-01-01

    Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury. DOI: http://dx.doi.org/10.7554/eLife.18128.001 PMID:28263708

  4. Characterization of Transcriptomes of Cochlear Inner and Outer Hair Cells

    PubMed Central

    Liu, Huizhan; Pecka, Jason L.; Zhang, Qian; Soukup, Garrett A.; Beisel, Kirk W.

    2014-01-01

    Inner hair cells (IHCs) and outer hair cells (OHCs) are the two types of sensory receptor cells that are critical for hearing in the mammalian cochlea. IHCs and OHCs have different morphology and function. The genetic mechanisms that define their morphological and functional specializations are essentially unknown. The transcriptome reflects the genes that are being actively expressed in a cell and holds the key to understanding the molecular mechanisms of the biological properties of the cell. Using DNA microarray, we examined the transcriptome of 2000 individually collected IHCs and OHCs from adult mouse cochleae. We show that 16,647 and 17,711 transcripts are expressed in IHCs and OHCs, respectively. Of those genes, ∼73% are known genes, 22% are uncharacterized sequences, and 5.0% are noncoding RNAs in both populations. A total of 16,117 transcripts are expressed in both populations. Uniquely and differentially expressed genes account for <15% of all genes in either cell type. The top 10 differentially expressed genes include Slc17a8, Dnajc5b, Slc1a3, Atp2a3, Osbpl6, Slc7a14, Bcl2, Bin1, Prkd1, and Map4k4 in IHCs and Slc26a5, C1ql1, Strc, Dnm3, Plbd1, Lbh, Olfm1, Plce1, Tectb, and Ankrd22 in OHCs. We analyzed commonly and differentially expressed genes with the focus on genes related to hair cell specializations in the apical, basolateral, and synaptic membranes. Eighty-three percent of the known deafness-related genes are expressed in hair cells. We also analyzed genes involved in cell-cycle regulation. Our dataset holds an extraordinary trove of information about the molecular mechanisms underlying hair cell morphology, function, pathology, and cell-cycle control. PMID:25122905

  5. The Efferent Medial Olivocochlear-Hair Cell Synapse

    PubMed Central

    Elgoyhen, Ana Belén; Katz, Eleonora

    2011-01-01

    Amplification of incoming sounds in the inner ear is modulated by an efferent pathway which travels back from the brain all the way to the cochlea. The medial olivocochlear system makes synaptic contacts with hair cells, where the neurotransmitter acetylcholine is released. Synaptic transmission is mediated by a unique nicotinic cholinergic receptor composed of α9 and α10 subunits, which is highly Ca2+ permeable and is coupled to a Ca2+-activated SK potassium channel. Thus, hyperpolarization of hair cells follows efferent fiber activation. In this work we review the literature that has enlightened our knowledge concerning the intimacies of this synapse. PMID:21762779

  6. A model for mammalian cochlear hair cell differentiation in vitro: effects of retinoic acid on cytoskeletal proteins and potassium conductances.

    PubMed

    Helyer, R; Cacciabue-Rivolta, D; Davies, D; Rivolta, M N; Kros, C J; Holley, M C

    2007-02-01

    We have established a model for the in-vitro differentiation of mouse cochlear hair cells and have used it to explore the influence of retinoic acid on proliferation, cytoskeletal proteins and voltage-gated potassium conductances. The model is based on the conditionally immortal cell line University of Sheffield/ventral otocyst-epithelial cell line clone 36 (US/VOT-E36), derived from ventral otic epithelial cells of the mouse at embryonic day 10.5 and transfected with a reporter for myosin VIIa. Retinoic acid did not increase cell proliferation but led to up-regulation of myosin VIIa and formation of prominent actin rings that gave rise to numerous large, linear actin bundles. Cells expressing myosin VIIa had larger potassium conductances and did not express the cyclin-dependent kinase inhibitor p27(kip1). US/VOT-E36 endogenously expressed the voltage-gated potassium channel alpha-subunits Kv1.3 and Kv2.1, which we subsequently identified in embryonic and neonatal hair cells in both auditory and vestibular sensory epithelia in vivo. These subunits could underlie the embryonic and neonatal delayed-rectifiers recorded in nascent hair cells in vivo. Kv2.1 was particularly prominent on the basolateral membrane of cochlear inner hair cells. Kv1.3 was distributed throughout all hair cells but tended to be localized to the cuticular plates. US/VOT-E36 recapitulates a coherent pattern of cell differentiation under the influence of retinoic acid and will provide a convenient model for screening the effects of other extrinsic factors on the differentiation of cochlear epithelial cell types in vitro.

  7. Interaural attention modulates outer hair cell function

    PubMed Central

    Srinivasan, Sridhar; Keil, Andreas; Stratis, Kyle; Osborne, A. Fletcher; Cerwonka, Colin; Wong, Jennifer; Rieger, Brenda L.; Polcz, Valerie; Smith, David W.

    2014-01-01

    Mounting evidence suggests that auditory attention tasks may modulate the sensitivity of the cochlea by way of the corticofugal and the medial olivocochlear (MOC) efferent pathways. Here, we studied the extent to which a separate efferent tract, the “uncrossed” MOC, which functionally connects the two ears, mediates inter-aural selective attention. We compared distortion product otoacoustic emissions (DPOAEs) in one ear to binaurally-presented primaries, using an intermodal target detection task in which participants were instructed to report the occurrence of brief target events (visual changes, tones). Three tasks were compared under identical physical stimulation: (1) report brief tones in the ear in which DPOAE responses were recorded; (2) report brief tones presented to the contralateral, non-recorded ear; (3) report brief phase shifts of a visual grating at fixation. Effects of attention were observed as parallel shifts in overall DPOAE contour level, with DPOAEs relatively higher in overall level when subjects ignored the auditory stimuli and attended to the visual stimulus, compared with both of the auditory-attending conditions. Importantly, DPOAE levels were statistically lowest when attention was directed to the ipsilateral ear in which the DPOAE recordings were made. These data corroborate notions that top-down mechanisms, via the corticofugal and medial efferent pathways, mediate cochlear responses during intermodal attention. New findings show attending to one ear can significantly alter the physiological response of the contralateral, unattended ear, likely through the uncrossed-medial olivocochlear efferent fibers connecting the two ears. PMID:25302959

  8. Interaural attention modulates outer hair cell function.

    PubMed

    Srinivasan, Sridhar; Keil, Andreas; Stratis, Kyle; Osborne, Aaron F; Cerwonka, Colin; Wong, Jennifer; Rieger, Brenda L; Polcz, Valerie; Smith, David W

    2014-12-01

    Mounting evidence suggests that auditory attention tasks may modulate the sensitivity of the cochlea by way of the corticofugal and the medial olivocochlear (MOC) efferent pathways. Here, we studied the extent to which a separate efferent tract, the 'uncrossed' MOC, which functionally connects the two ears, mediates inter-aural selective attention. We compared distortion product otoacoustic emissions (DPOAEs) in one ear with binaurally presented primaries, using an intermodal target detection task in which participants were instructed to report the occurrence of brief target events (visual changes, tones). Three tasks were compared under identical physical stimulation: (i) report brief tones in the ear in which DPOAE responses were recorded; (ii) report brief tones presented to the contralateral, non-recorded ear; and (iii) report brief phase shifts of a visual grating at fixation. Effects of attention were observed as parallel shifts in overall DPOAE contour level, with DPOAEs relatively higher in overall level when subjects ignored the auditory stimuli and attended to the visual stimulus, compared with both of the auditory-attending conditions. Importantly, DPOAE levels were statistically lowest when attention was directed to the ipsilateral ear in which the DPOAE recordings were made. These data corroborate notions that top-down mechanisms, via the corticofugal and medial efferent pathways, mediate cochlear responses during intermodal attention. New findings show attending to one ear can significantly alter the physiological response of the contralateral, unattended ear, probably through the uncrossed-medial olivocochlear efferent fibers connecting the two ears.

  9. Harmonin mutations cause mechanotransduction defects in cochlear hair cells

    PubMed Central

    Grillet, Nicolas; Xiong, Wei; Reynolds, Anna; Kazmierczak, Piotr; Sato, Takashi; Lillo, Concepcion; Dumont, Rachel A.; Hintermann, Edith; Sczaniecka, Anna; Schwander, Martin; Williams, David; Kachar, Bechara; Gillespie, Peter G.; Müller, Ulrich

    2009-01-01

    In hair cells, mechanotransduction channels are gated by tip links, the extracellular filaments that consist of cadherin 23 (CDH23) and protocadherin 15 (PCDH15) and connect the stereocilia of each hair cell. However, which molecules mediate cadherin function at tip links is not known. Here we show that the PDZ-domain protein harmonin is a component of the upper tip-link density (UTLD), where CDH23 inserts into the stereociliary membrane. Harmonin domains that mediate interactions with CDH23 and F-actin control harmonin localization in stereocilia and are necessary for normal hearing. In mice expressing a mutant harmonin protein that prevents UTLD formation, the sensitivity of hair bundles to mechanical stimulation is reduced. We conclude that harmonin is a UTLD component and contributes to establishing the sensitivity of mechanotransduction channels to displacement. PMID:19447093

  10. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance

    PubMed Central

    Cruz, Ivan A.; Kappedal, Ryan; Mackenzie, Scott M.; Hailey, Dale W.; Hoffman, Trevor L.; Schilling, Thomas F.; Raible, David W.

    2015-01-01

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity. PMID:25869855

  11. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. 1: Responses to intracellular current

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog sacculus are specifically adapted to sense small-amplitude, high-frequency linear accelerations. These hair cells display many properties that are undesirable or inappropriate for hair cells that must provide static gravity sensitivity. This study resulted in part due to an interest in seeing how the transduction mechanisms of hair cells in a gravity-sensing otolith endorgan would differ from those in the bullfrog sacculus. The bullfrog utriculus is an appropriate model for these studies, because its structure is representative of higher vertebrates in general and its function as a sensor of static gravity and dynamic linear acceleration is well known. Hair cells in the bullfrog utriculus, classifiable as Type 2 by cell body and synapse morphology, differ markedly in hair bundle morphology from those in the bullfrog sacculus. Moreover, the hair bundle morphologies of utricular hair cells, unlike those in the sacculus, differ in different membrane regions.

  12. Localized Cell and Drug Delivery for Auditory Prostheses

    PubMed Central

    Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.

    2011-01-01

    Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323

  13. Activation of CHK1 in Supporting Cells Indirectly Promotes Hair Cell Survival

    PubMed Central

    Jadali, Azadeh; Ying, Yu-Lan M.; Kwan, Kelvin Y.

    2017-01-01

    The sensory hair cells of the inner ear are exquisitely sensitive to ototoxic insults. Loss of hair cells after exposure to ototoxic agents causes hearing loss. Chemotherapeutic agents such as cisplatin causes hair cell loss. Cisplatin forms DNA mono-adducts as well as intra- and inter-strand DNA crosslinks. DNA cisplatin adducts are repaired through the DNA damage response. The decision between cell survival and cell death following DNA damage rests on factors that are involved in determining damage tolerance, cell survival and apoptosis. Cisplatin damage on hair cells has been the main focus of many ototoxic studies, yet the effect of cisplatin on supporting cells has been largely ignored. In this study, the effects of DNA damage response in cochlear supporting cells were interrogated. Supporting cells play a major role in the development, maintenance and oto-protection of hair cells. Loss of supporting cells may indirectly affect hair cell survival or maintenance. Activation of the Phosphoinositide 3-Kinase (PI3K) signaling was previously shown to promote hair cell survival. To test whether activating PI3K signaling promotes supporting cell survival after cisplatin damage, cochlear explants from the neural subset (NS) Cre Pten conditional knockout mice were employed. Deletion of Phosphatase and Tensin Homolog (PTEN) activates PI3K signaling in multiple cell types within the cochlea. Supporting cells lacking PTEN showed increased cell survival after cisplatin damage. Supporting cells lacking PTEN also showed increased phosphorylation of Checkpoint Kinase 1 (CHK1) levels after cisplatin damage. Nearest neighbor analysis showed increased numbers of supporting cells with activated PI3K signaling in close proximity to surviving hair cells in cisplatin damaged cochleae. We propose that increased PI3K signaling promotes supporting cell survival through phosphorylation of CHK1 and increased survival of supporting cells indirectly increases hair cell survival after

  14. Insulin resistance due to dietary iron overload disrupts inner hair cell ribbon synapse plasticity in male mice.

    PubMed

    Yu, Fei; Hao, Shuai; Yang, Bo; Zhao, Yue; Zhang, Rui; Zhang, Wenyue; Yang, Jun; Chen, Jie

    2015-06-15

    To evaluate whether cochlear inner hair cells (IHCs) ribbon synapse plasticity would be interrupted by insulin resistance (IR) due to dietary iron overload, we established an IR model in C57Bl/6 male mice with an iron-enriched diet for 16 weeks. Glucose levels were measured at weeks 4, 8, 12, 16. Glucose tolerance test and insulin tolerance test were performed at week 16 after overnight fasting. Then, auditory brainstem responses (ABRs) measurements were performed for hearing threshold shifts. After ABR measurements, cochleae were harvested for assessment of the number of IHC ribbon synapses by immunostaining, the morphology of cochlear hair cells and spiral ganglion neurons (SGNs) by transmission electron microscopy or immunostaining. Here, we show that IR due to dietary iron overload decreased the number of ribbon synapses, and induced moderate ABR threshold elevations. Besides, additional components including outer hair cells (OHCs), IHCs, and SGNs were unaffected. Moreover, IR did not disrupt the expression of vesicular glutamate transporter 3 (VGLUT3), myosin VIIa and prestin in hair cells. These results indicate that IHC ribbon synapses may be more susceptible to IR due to dietary iron overload.

  15. Predicting the location of missing outer hair cells using the electrical signal recorded at the round window

    PubMed Central

    Chertoff, Mark E.; Earl, Brian R.; Diaz, Francisco J.; Sorensen, Janna L.; Thomas, Megan L. A.; Kamerer, Aryn M.; Peppi, Marcello

    2014-01-01

    The electrical signal recorded at the round window was used to estimate the location of missing outer hair cells. The cochlear response was recorded to a low frequency tone embedded in high-pass filtered noise conditions. Cochlear damage was created by either overexposure to frequency-specific tones or laser light. In animals with continuous damage along the partition, the amplitude of the cochlear response increased as the high-pass cutoff frequency increased, eventually reaching a plateau. The cochlear distance at the onset of the plateau correlated with the anatomical onset of outer hair cell loss. A mathematical model replicated the physiologic data but was limited to cases with continuous hair cell loss in the middle and basal turns. The neural contribution to the cochlear response was determined by recording the response before and after application of Ouabain. Application of Ouabain eliminated or reduced auditory neural activity from approximately two turns of the cochlea. The amplitude of the cochlear response was reduced for moderate signal levels with a limited effect at higher levels, indicating that the cochlear response was dominated by outer hair cell currents at high signal levels and neural potentials at low to moderate signal levels. PMID:25190395

  16. Mast cells as modulators of hair follicle cycling.

    PubMed

    Maurer, M; Paus, R; Czarnetzki, B M

    1995-08-01

    While the central role of mast cells (MC) in allergy and inflammation is well-appreciated, much less is known about their physiological functions. The impressive battery of potent growth modulatory MC products, and increasing evidence of MC involvement in hyperproliferative and fibrotic disorders suggest that tissue remodelling may be one of those, namely in the skin. Here, we delineate why this may best be studied by analysing the potential role of MC in hair growth regulation. On the background of numerous, yet widely under-appreciated hints from the older literature, we summarize and discuss our recent observations from the C57BL/6 mouse model for hair research which support the concept that MC are functionally important modulators of hair follicle cycling, specifically during anagen development. This invites to exploit the murine hair cycle as a model for dissecting the physiological growth modulatory functions of MC and encourages the exploration of MC-targeting pharmaceutical strategies for the treatment of hair growth disorders.

  17. Restorative effect of hair follicular dermal cells on injured human hair follicles in a mouse model.

    PubMed

    Yamao, Mikaru; Inamatsu, Mutsumi; Okada, Taro; Ogawa, Yuko; Ishida, Yuji; Tateno, Chise; Yoshizato, Katsutoshi

    2015-03-01

    No model is available for examining whether in vivo-damaged human hair follicles (hu-HFs) are rescued by transplanting cultured hu-HF dermal cells (dermal papilla and dermal sheath cells). Such a model might be valuable for examining whether in vivo-damaged hu-HFs such as miniaturized hu-HFs in androgenic alopecia are improvable by auto-transplanting hu-HF dermal cells. In this study, we first developed mice with humanized skin composed of hu-keratinocytes and hu-dermal fibroblasts. Then, a 'humanized scalp model mouse' was generated by transplanting hu-scalp HFs into the humanized skin. To demonstrate the usability of the model, the lower halves of the hu-HFs in the model were amputated in situ, and cultured hu-HF dermal cells were injected around the amputated area. The results demonstrated that the transplanted cells contributed to the restoration of the damaged HFs. This model could be used to explore clinically effective technologies for hair restoration therapy by autologous cell transplantation.

  18. Mechanisms of Aminoglycoside-Induced Hair Cell Death

    ERIC Educational Resources Information Center

    Mangiardi, Dominic A.; Cotanche, Douglas A.

    2005-01-01

    Aminoglycoside antibiotics are commonly used because of their ability to treat bacterial infections, yet they also are a major cause of deafness. Aminoglycosides selectively damage the cochlea's sensory hair cells, the receptors that respond to the fluid movement in the cochlea to produce neural signals that are relayed to the brain. Sensory hair…

  19. Mechanisms of Aminoglycoside-Induced Hair Cell Death

    ERIC Educational Resources Information Center

    Mangiardi, Dominic A.; Cotanche, Douglas A.

    2005-01-01

    Aminoglycoside antibiotics are commonly used because of their ability to treat bacterial infections, yet they also are a major cause of deafness. Aminoglycosides selectively damage the cochlea's sensory hair cells, the receptors that respond to the fluid movement in the cochlea to produce neural signals that are relayed to the brain. Sensory hair…

  20. Hair-Cell Versus Afferent Adaptation in the Semicircular Canals

    PubMed Central

    Rabbitt, R. D.; Boyle, R.; Holstein, G. R.; Highstein, S. M.

    2010-01-01

    The time course and extent of adaptation in semicircular canal hair cells was compared to adaptation in primary afferent neurons for physiological stimuli in vivo to study the origins of the neural code transmitted to the brain. The oyster toadfish, Opsanus tau, was used as the experimental model. Afferent firing-rate adaptation followed a double-exponential time course in response to step cupula displacements. The dominant adaptation time constant varied considerably among afferent fibers and spanned six orders of magnitude for the population (~1 ms to >1,000 s). For sinusoidal stimuli (0.1–20 Hz), the rapidly adapting afferents exhibited a 90° phase lead and frequency-dependent gain, whereas slowly adapting afferents exhibited a flat gain and no phase lead. Hair-cell voltage and current modulations were similar to the slowly adapting afferents and exhibited a relatively flat gain with very little phase lead over the physiological bandwidth and dynamic range tested. Semicircular canal microphonics also showed responses consistent with the slowly adapting subset of afferents and with hair cells. The relatively broad diversity of afferent adaptation time constants and frequency-dependent discharge modulations relative to hair-cell voltage implicate a subsequent site of adaptation that plays a major role in further shaping the temporal characteristics of semicircular canal afferent neural signals. PMID:15306633

  1. Outer Hair Cells and Prestin—A Moderated Discussion

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Gummer, Anthony W.

    2011-11-01

    A discussion moderated by the authors on the topic "Outer Hair Cells and Prestin" was held on 18 July 2011 at the 11th International Mechanics of Hearing Workshop in Williamstown, Massachusetts. The paper provides an edited transcript of the session.

  2. Hair Cells: Bundles, Tuning, Transduction—A Moderated Discussion

    NASA Astrophysics Data System (ADS)

    Karavitaki, K. Domenica; Ricci, Anthony J.

    2011-11-01

    A discussion moderated by the authors on the topic "Hair Cells: Bundles, Tuning, Transduction" was held on 17 July 2011 at the 11th International Mechanics of Hearing Workshop in Williamstown, Massachusetts. The paper provides an edited transcript of the session.

  3. The expression of NLRX1 in C57BL/6 mice cochlear hair cells: Possible relation to aging- and neomycin-induced deafness.

    PubMed

    Yang, Qianqian; Sun, Gaoying; Cao, Zhixin; Yin, Haiyan; Qi, Qi; Wang, Jinghan; Liu, Wenwen; Bai, Xiaohui; Wang, Haibo; Li, Jianfeng

    2016-03-11

    Nucleotide-binding domain and leucine-rich-repeat-containing family member X1 (NLRX1) is a cytoplasmic pattern recognition receptor that is predominantly located in mitochondria, which is tightly related to mitochondrial damage, reactive oxygen species (ROS) production, inflammation and apoptosis. The present study was designed to explore whether NLRX1 expresses in C57BL/6 mice cochlear hair cells and, if so, to investigate the possible correlations between NLRX1 and hearing. The location and dynamic expression of NLRX1 were investigated by immunofluorescence, real-time PCR and Western blotting. Hearing thresholds of C57BL/6 mice were measured by auditory brainstem response (ABR). Moreover, the downstream inflammatory and apoptotic pathways regulated by NLRX1 were examined in age-related and neomycin-induced hair cell damage. Data showed that NLRX1 expressed in cytoplasm of C57BL/6 cochlear hair cells, especially in the cilia, which were essential for sound sensation. The expression of NLRX1 in hair cells increased as the mice grew up, and, decreased as they aged. Additionally, the activated apoptotic JNK pathway was detected in 9-month old mice with worse-hearing and 3-month old mice treated with neomycin. Overall, results indicate that NLRX1 may relate to hair cell maturity, hearing formation and maintenance, and promote hair cell apoptosis through JNK pathway induced by aging and neomycin.

  4. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Torres, M. A.; Schuff, N. R.

    1993-01-01

    Adult bullfrog were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 microM gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence or absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest stereocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier than hair cell types with shorter kinocilia. In the sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  5. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Torres, M. A.; Schuff, N. R.

    1993-01-01

    Adult bullfrog were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 microM gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence or absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest stereocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier than hair cell types with shorter kinocilia. In the sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  6. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Torres, M. A.; Schuff, N. R.

    1994-01-01

    Adult bullfrogs were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 (mu) M gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence of absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest sterocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier times than hair cell types with shorter kinocilia. In the same sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  7. Coupling and elastic loading affect the active response by the inner ear hair cell bundles.

    PubMed

    Strimbu, Clark Elliott; Fredrickson-Hemsing, Lea; Bozovic, Dolores

    2012-01-01

    Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures.

  8. Diverse and Dynamic Expression Patterns of Voltage-Gated Ion Channel Genes in Rat Cochlear Hair Cells

    NASA Astrophysics Data System (ADS)

    Beisel, K. W.; Fritzsch, B.

    2003-02-01

    Both qualitative and quantitative differences in ion-channel conductances are observed along the tonotopic axis of the mammalian cochlea. We have used a molecular approach to characterize these longitudinal expression patterns of voltage-gated ion-channel (VgCN) superfamily members in the peripheral auditory system. Initially RT-PCR and sequence analyses identified the VgCN α and accessory subunits of the cochlear hair cell (HC). Next, whole mount in situ hybridizations demonstrated at least seven common longitudinal expression patterns with the apex tip and basal hook region having the greatest in disparity. These data suggest potential topological variations in hair-cell electrophysiological signatures and these gradients may contribute to cochlear HC's ability to function as efficient frequency analyzers.

  9. Direct effects of music in non-auditory cells in culture.

    PubMed

    Lestard, Nathalia Dos Reis; Valente, Raphael C; Lopes, Anibal G; Capella, Márcia A M

    2013-01-01

    The biological effects of electromagnetic waves are widely studied, especially due to their harmful effects, such as radiation-induced cancer and to their application in diagnosis and therapy. However, the biological effects of sound, another physical agent to which we are frequently exposed have been considerably disregarded by the scientific community. Although a number of studies suggest that emotions evoked by music may be useful in medical care, alleviating stress and nociception in patients undergoing surgical procedures as well as in cancer and burned patients, little is known about the mechanisms by which these effects occur. It is generally accepted that the mechanosensory hair cells in the ear transduce the sound-induced mechanical vibrations into neural impulses, which are interpreted by the brain and evoke the emotional effects. In the last decade; however, several studies suggest that the response to music is even more complex. Moreover, recent evidence comes out that cell types other than auditory hair cells could response to audible sound. However, what is actually sensed by the hair cells, and possible by other cells in our organism, are physical differences in fluid pressure induced by the sound waves. Therefore, there is no reasonable impediment for any cell type of our body to respond to a pure sound or to music. Hence, the aim of the present study was to evaluate the response of a human breast cancer cell line, MCF7, to music. The results' obtained suggest that music can alter cellular morpho-functional parameters, such as cell size and granularity in cultured cells. Moreover, our results suggest for the 1 st time that music can directly interfere with hormone binding to their targets, suggesting that music or audible sounds could modulate physiological and pathophysiological processes.

  10. Stem cell plasticity enables hair regeneration following Lgr5(+) cell loss.

    PubMed

    Hoeck, Joerg D; Biehs, Brian; Kurtova, Antonina V; Kljavin, Noelyn M; de Sousa E Melo, Felipe; Alicke, Bruno; Koeppen, Hartmut; Modrusan, Zora; Piskol, Robert; de Sauvage, Frederic J

    2017-06-01

    Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5(+) (leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5(+) cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34(+) (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34(+) cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5(+) cells and inhibition of Wnt signalling prevents Lgr5(+) cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.

  11. Hair cell mechano-transduction: its influence on the gross mechanical characteristics of a hair cell sense organ.

    PubMed

    van Netten, S M

    1997-10-01

    The complex mechanical behaviour of a hair cell bundle appears to be a direct consequence of the gating forces on the individual transduction channels. The mechanical molecular interactions involved in transduction channel gating, therefore, also bear a reciprocal influence, via the hair bundles, on the mechanical properties of accessory structures driving them. This allows for the possibility to investigate, under in vivo conditions, the mechanical gating machinery of ion channels via the dynamics of accessory structures. We have performed such studies on the lateral line organ of fish and were thus able to relate the mechanics of elementary molecular events to the macroscopical dynamics of an intact organ.

  12. Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells

    PubMed Central

    Li, Hongzhe; Kachelmeier, Allan; Furness, David N.; Steyger, Peter S.

    2015-01-01

    Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS) and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs). Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy. Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR) for 30 min prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses (ABRs) before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET) channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy. We found wide-band noise (WBN) levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS. These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic synergy. PMID

  13. Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells.

    PubMed

    Li, Hongzhe; Kachelmeier, Allan; Furness, David N; Steyger, Peter S

    2015-01-01

    Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS) and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs). Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy. Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR) for 30 min prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses (ABRs) before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET) channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy. We found wide-band noise (WBN) levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS. These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic synergy.

  14. NO-Sensitive Guanylate Cyclase Isoforms NO-GC1 and NO-GC2 Contribute to Noise-Induced Inner Hair Cell Synaptopathy.

    PubMed

    Möhrle, Dorit; Reimann, Katrin; Wolter, Steffen; Wolters, Markus; Varakina, Ksenya; Mergia, Evanthia; Eichert, Nicole; Geisler, Hyun-Soon; Sandner, Peter; Ruth, Peter; Friebe, Andreas; Feil, Robert; Zimmermann, Ulrike; Koesling, Doris; Knipper, Marlies; Rüttiger, Lukas

    2017-10-01

    Nitric oxide (NO) activates the NO-sensitive soluble guanylate cyclase (NO-GC, sGC) and triggers intracellular signaling pathways involving cGMP. For survival of cochlear hair cells and preservation of hearing, NO-mediated cascades have both protective and detrimental potential. Here we examine the cochlear function of mice lacking one of the two NO-sensitive guanylate cyclase isoforms [NO-GC1 knockout (KO) or NO-GC2 KO]. The deletion of NO-GC1 or NO-GC2 did not influence electromechanical outer hair cell (OHC) properties, as measured by distortion product otoacoustic emissions, neither before nor after noise exposure, nor were click- or noise-burst-evoked auditory brainstem response thresholds different from controls. Yet inner hair cell (IHC) ribbons and auditory nerve responses showed significantly less deterioration in NO-GC1 KO and NO-GC2 KO mice after noise exposure. Consistent with a selective role of NO-GC in IHCs, NO-GC β1 mRNA was found in isolated IHCs but not in OHCs. Using transgenic mice expressing the fluorescence resonance energy transfer-based cGMP biosensor cGi500, NO-induced elevation of cGMP was detected in real-time in IHCs but not in OHCs. Pharmacologic long-term treatment with a NO-GC stimulator altered auditory nerve responses but did not affect OHC function and hearing thresholds. Interestingly, NO-GC stimulation exacerbated the loss of auditory nerve response in aged animals but attenuated the loss in younger animals. We propose NO-GC2 and, to some degree, NO-GC1 as targets for early pharmacologic prevention of auditory fiber loss (synaptopathy). Both isoforms provide selective benefits for hearing function by maintaining the functional integrity of auditory nerve fibers in early life rather than at old age. Copyright © 2017 by The Author(s).

  15. Multiple Quantitative Trait Loci Modify Cochlear Hair Cell Degeneration in the Beethoven (Tmc1Bth) Mouse Model of Progressive Hearing Loss DFNA36

    PubMed Central

    Noguchi, Yoshihiro; Kurima, Kiyoto; Makishima, Tomoko; de Angelis, Martin Hrabé; Fuchs, Helmut; Frolenkov, Gregory; Kitamura, Ken; Griffith, Andrew J.

    2006-01-01

    Dominant mutations of transmembrane channel-like gene 1 (TMC1) cause progressive sensorineural hearing loss in humans and Beethoven (Tmc1Bth/+) mice. Here we show that Tmc1Bth/+ mice on a C3HeB/FeJ strain background have selective degeneration of inner hair cells while outer hair cells remain structurally and functionally intact. Inner hair cells primarily function as afferent sensory cells, whereas outer hair cells are electromotile amplifiers of auditory stimuli that can be functionally assessed by distortion product otoacoustic emission (DPOAE) analysis. When C3H-Tmc1Bth/Bth is crossed with either C57BL/6J or DBA/2J wild-type mice, F1 hybrid Tmc1Bth/+ progeny have increased hearing loss associated with increased degeneration of outer hair cells and diminution of DPOAE amplitudes but no difference in degeneration of inner hair cells. We mapped at least one quantitative trait locus (QTL), Tmc1m1, for DPOAE amplitude on chromosome 2 in [(C/B)F1 × C]N2-Tmc1Bth/+ backcross progeny, and three other QTL on chromosomes 11 (Tmc1m2), 12 (Tmc1m3), and 5 (Tmc1m4) in [(C/D)F1 × C]N2-Tmc1Bth/+ progeny. The polygenic basis of outer hair cell degeneration in Beethoven mice provides a model system for the dissection of common, complex hearing loss phenotypes, such as presbycusis, that involve outer hair cell degeneration in humans. PMID:16648588

  16. Multiple quantitative trait loci modify cochlear hair cell degeneration in the Beethoven (Tmc1Bth) mouse model of progressive hearing loss DFNA36.

    PubMed

    Noguchi, Yoshihiro; Kurima, Kiyoto; Makishima, Tomoko; de Angelis, Martin Hrabé; Fuchs, Helmut; Frolenkov, Gregory; Kitamura, Ken; Griffith, Andrew J

    2006-08-01

    Dominant mutations of transmembrane channel-like gene 1 (TMC1) cause progressive sensorineural hearing loss in humans and Beethoven (Tmc1Bth/+) mice. Here we show that Tmc1Bth/+ mice on a C3HeB/FeJ strain background have selective degeneration of inner hair cells while outer hair cells remain structurally and functionally intact. Inner hair cells primarily function as afferent sensory cells, whereas outer hair cells are electromotile amplifiers of auditory stimuli that can be functionally assessed by distortion product otoacoustic emission (DPOAE) analysis. When C3H-Tmc1Bth/Bth is crossed with either C57BL/6J or DBA/2J wild-type mice, F1 hybrid Tmc1Bth/+ progeny have increased hearing loss associated with increased degeneration of outer hair cells and diminution of DPOAE amplitudes but no difference in degeneration of inner hair cells. We mapped at least one quantitative trait locus (QTL), Tmc1m1, for DPOAE amplitude on chromosome 2 in [(C/B)F1xC]N2-Tmc1Bth/+ backcross progeny, and three other QTL on chromosomes 11 (Tmc1m2), 12 (Tmc1m3), and 5 (Tmc1m4) in [(C/D)F1xC]N2-Tmc1Bth/+ progeny. The polygenic basis of outer hair cell degeneration in Beethoven mice provides a model system for the dissection of common, complex hearing loss phenotypes, such as presbycusis, that involve outer hair cell degeneration in humans.

  17. Foxi3 deficiency compromises hair follicle stem cell specification and activation

    PubMed Central

    Shirokova, Vera; Biggs, Leah C.; Jussila, Maria; Ohyama, Takahiro; Groves, Andrew K.; Mikkola, Marja L.

    2017-01-01

    The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ. Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary hair germ marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary hair germ activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. PMID:26992132

  18. Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells.

    PubMed

    Pangrsic, Tina; Lasarow, Livia; Reuter, Kirsten; Takago, Hideki; Schwander, Martin; Riedel, Dietmar; Frank, Thomas; Tarantino, Lisa M; Bailey, Janice S; Strenzke, Nicola; Brose, Nils; Müller, Ulrich; Reisinger, Ellen; Moser, Tobias

    2010-07-01

    Inner hair cell ribbon synapses indefatigably transmit acoustic information. The proteins mediating their fast vesicle replenishment (hundreds of vesicles per s) are unknown. We found that an aspartate to glycine substitution in the C(2)F domain of the synaptic vesicle protein otoferlin impaired hearing by reducing vesicle replenishment in the pachanga mouse model of human deafness DFNB9. In vitro estimates of vesicle docking, the readily releasable vesicle pool (RRP), Ca(2+) signaling and vesicle fusion were normal. Moreover, we observed postsynaptic excitatory currents of variable size and spike generation. However, mutant active zones replenished vesicles at lower rates than wild-type ones and sound-evoked spiking in auditory neurons was sparse and only partially improved during longer interstimulus intervals. We conclude that replenishment does not match the release of vesicles at mutant active zones in vivo and a sufficient standing RRP therefore cannot be maintained. We propose that otoferlin is involved in replenishing synaptic vesicles.

  19. Rock `N' Rho in Outer Hair Cell Motility

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Kalinec, G.; Kalinec, F.; Billadeau, D. D.; Urrutia, R.

    2003-02-01

    RhoA, Cdc42 and Rac1, small GTPases of the Rho family, are crucial regulators of the actin cytoskeleton and mediate different types of cell motility. They also help to maintain cellular homeostasis, actively regulating the structure and mechanical properties of the cells. We investigated the expression in the guinea-pig cochlea of the serine/threonine kinase ROCK, a well-known effector of RhoA, and measured electromotile amplitude in outer hair cells (OHCs) internally perfused with C3 and Y-27632, pharmacological inhibitors of RhoA and ROCK respectively, and dominant-negative mutants of Rac1 and Cdc42. We found that a RhoA/ROCK-mediated signaling pathway is important for mechanical homeostasis of cochlear OHCs, and identified ROCK as a potential target to selectively modulate outer hair cell electromotility.

  20. In vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice.

    PubMed

    Lichti, U; Weinberg, W C; Goodman, L; Ledbetter, S; Dooley, T; Morgan, D; Yuspa, S H

    1993-07-01

    The nude mouse graft model for testing the hair-forming ability of selected cell populations has considerable potential for providing insights into factors that are important for hair follicle development and proper hair formation. We have developed a minimal component system consisting of immature hair follicle buds from newborn pigmented C57BL/6 mice and adenovirus E1A-immortalized rat vibrissa dermal papilla cells. Hair follicle buds contribute to formation of hairless skin when grafted alone or with Swiss 3T3 cells, but produce densely haired skin when grafted with a fresh dermal cell preparation. The fresh dermal cell preparation represents the single cell fraction after hair follicles have been removed from a collagenase digest of newborn mouse dermis. It provides dermal papilla cells, fibroblasts, and possibly other important growth factor-producing cell types. Rat vibrissa dermal papilla cells supported dense hair growth at early passage in culture but progressively lost this potential during repeated passage in culture. Of 19 E1A-immortalized, clonally derived rat vibrissa dermal papilla cell lines, the four most positive clones supported hair growth to the extent of approximately 200 to 300 hairs per 1-2 cm2 graft area. The remaining clones were moderately positive (five clones), weakly positive (three clones), or negative (seven clones). Swiss 3T3 cells prevented contraction of the graft area but did not appear to affect the number of hairs in the graft site produced by dermal papilla cells plus hair follicle buds alone. The relatively low hair density (estimated 1-5% of normal) resulting from grafts of hair follicle buds with the most positive of the immortalized dermal papilla cell clones compared to fresh dermal cells suggests that optimal reconstitution of hair growth requires some function of dermal papilla cells partially lost during the immortalization process and possibly the contribution of other cell types present in the fresh dermal cell

  1. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line.

    PubMed

    Thomas, Andrew J; Hailey, Dale W; Stawicki, Tamara M; Wu, Patricia; Coffin, Allison B; Rubel, Edwin W; Raible, David W; Simon, Julian A; Ou, Henry C

    2013-03-06

    Cisplatin, one of the most commonly used anticancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analog of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line.

  2. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line

    PubMed Central

    Thomas, Andrew J.; Hailey, Dale W.; Stawicki, Tamara M.; Wu, Patricia; Coffin, Allison B.; Rubel, Edwin W.; Raible, David W.; Simon, Julian A.; Ou, Henry C.

    2013-01-01

    Cisplatin, one of the most commonly used anti-cancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analogue of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line. PMID:23467357

  3. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear

    PubMed Central

    Pan, Bifeng; Géléoc, Gwenaelle S.; Asai, Yukako; Horwitz, Geoffrey C.; Kurima, Kiyoto; Ishikawa, Kotaro; Kawashima, Yoshiyuki; Griffith, Andrew J.; Holt, Jeffrey R.

    2013-01-01

    SUMMARY Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2 or mutant Tmc1. Cells that expressed mutant Tmc1 had reduced calcium permeability and reduced single-channel currents, while Tmc2 cells had high calcium permeability and large single-channel currents. Cells that expressed both Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea. PMID:23871232

  4. A membrane bending model of outer hair cell electromotility.

    PubMed Central

    Raphael, R M; Popel, A S; Brownell, W E

    2000-01-01

    We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be capable of predicting the electromotility voltage displacement function. We calculate the electrical and mechanical contributions to the force balance and show that the model is consistent with experimentally measured values for electromechanical properties. The model rationalizes several experimental observations associated with outer hair cell electromotility and provides for constant surface area of the plasma membrane. The model accounts for the isometric force generated by the cell and explains the observation that the disruption of spectrin by diamide reduces force generation in the cell. We discuss the relation of this mechanism to other proposed models of outer hair cell electromotility. Our analysis suggests that rotation of membrane dipoles and the accompanying mechanical deformation may be the molecular mechanism of electromotility. PMID:10827967

  5. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line.

    PubMed

    Steiner, Aaron B; Kim, Taeryn; Cabot, Victoria; Hudspeth, A J

    2014-04-08

    Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells.

  6. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line

    PubMed Central

    Kim, Taeryn; Cabot, Victoria; Hudspeth, A. J.

    2014-01-01

    Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells. PMID:24706895

  7. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses.

    PubMed

    Roux, Isabelle; Hosie, Suzanne; Johnson, Stuart L; Bahloul, Amel; Cayet, Nadège; Nouaille, Sylvie; Kros, Corné J; Petit, Christine; Safieddine, Saaid

    2009-12-01

    The ribbon synapses of auditory inner hair cells (IHCs) undergo morphological and electrophysiological transitions during cochlear development. Here we report that myosin VI (Myo6), an actin-based motor protein involved in genetic forms of deafness, is necessary for some of these changes to occur. By using post-embedding immunogold electron microscopy, we showed that Myo6 is present at the IHC synaptic active zone. In Snell's waltzer mutant mice, which lack Myo6, IHC ionic currents and ribbon synapse maturation proceeded normally until at least post-natal day 6. In adult mutant mice, however, the IHCs displayed immature potassium currents and still fired action potentials, as normally only observed in immature IHCs. In addition, the number of ribbons per IHC was reduced by 30%, and 30% of the remaining ribbons were morphologically immature. Ca2+-dependent exocytosis probed by capacitance measurement was markedly reduced despite normal Ca2+ currents and the large proportion of morphologically mature synapses, which suggests additional defects, such as loose Ca2+-exocytosis coupling or inefficient vesicular supply. Finally, we provide evidence that Myo6 and otoferlin, a putative Ca2+ sensor of synaptic exocytosis also involved in a genetic form of deafness, interact at the IHC ribbon synapse, and we suggest that this interaction is involved in the recycling of synaptic vesicles. Our findings thus uncover essential roles for Myo6 at the IHC ribbon synapse, in addition to that proposed in membrane turnover and anchoring at the apical surface of the hair cells.

  8. ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss.

    PubMed

    Kurioka, Takaomi; Matsunobu, Takeshi; Satoh, Yasushi; Niwa, Katsuki; Endo, Shogo; Fujioka, Masato; Shiotani, Akihiro

    2015-11-18

    Extracellular signal-regulated kinase (ERK) is a member of the family of mitogen-activated protein kinases (MAPKs) and coordinately regulates a multitude of cellular processes. In response to a variety of extracellular stimuli, phosphorylation of both threonine and tyrosine residues activates ERK. Recent evidence indicates that ERK is activated in response to cellular stress such as acoustic trauma. However, the specific role of ERK isoforms in auditory function is not fully understood. Here, we show that the isoform ERK2 plays an important role in regulating hair cell (HC) survival and noise-induced hearing loss (NIHL) in mice (C57BL/6J). We found that conditional knockout mice deficient for Erk2 in the inner ear HCs had hearing comparable to control mice and exhibited no HC loss under normal conditions. However, we found that these knockout mice were more vulnerable to noise and had blunted recovery from NIHL compared to control mice. Furthermore, we observed a significantly lower survival rate of inner hair cells in these mice compared to control mice. Our results indicate that ERK2 plays important roles in the survival of HC in NIHL.

  9. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement

    NASA Technical Reports Server (NTRS)

    Baird, R. A.

    1994-01-01

    1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The sensitivity and response dynamics of selected hair cells to natural stimulation were examined by recording their voltage responses to step and sinusoidal hair bundle displacements applied to their longest stereocilia. 2. The voltage responses of 31 hair cells to sinusoidal hair bundle displacements were characterized by their gains and phases, taken with respect to peak hair bundle displacement. The gains of Type B and Type C cells at both 0.5 and 5.0 Hz were markedly lower than those of Type F and Type E cells. Phases, with the exception of Type C cells, lagged hair bundle displacement at 0.5 Hz. Type C cells had phase leads of 25-40 degrees. At 5.0 Hz, response phases in all cells were phase lagged with respect to those at 0.5 Hz. Type C cells had larger gains and smaller phase leads at 5.0 Hz than at 0.5 Hz, suggesting the presence of low-frequency adaptation. 3. Displacement-response curves, derived from the voltage responses to 5.0-Hz sinusoids, were sigmoidal in shape and asymmetrical, with the depolarizing response having a greater magnitude and saturating less abruptly than the hyperpolarizing response. When normalized to their largest displacement the linear ranges of these curves varied from < 0.5 to 1.25 microns and were largest in Type B and smallest in Type F and Type E cells. Sensitivity, defined as the slope of the normalized displacement-response curve, was inversely correlated with linear range. 4. The contribution of geometric factors associated with the hair bundle to linear range and sensitivity were predicted from realistic models of utricular hair bundles created using morphological data obtained from light and electron microscopy. Three factors, including 1) the inverse ratio of the lengths of the kinocilium and longest stereocilia, representing the

  10. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement

    NASA Technical Reports Server (NTRS)

    Baird, R. A.

    1994-01-01

    1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The sensitivity and response dynamics of selected hair cells to natural stimulation were examined by recording their voltage responses to step and sinusoidal hair bundle displacements applied to their longest stereocilia. 2. The voltage responses of 31 hair cells to sinusoidal hair bundle displacements were characterized by their gains and phases, taken with respect to peak hair bundle displacement. The gains of Type B and Type C cells at both 0.5 and 5.0 Hz were markedly lower than those of Type F and Type E cells. Phases, with the exception of Type C cells, lagged hair bundle displacement at 0.5 Hz. Type C cells had phase leads of 25-40 degrees. At 5.0 Hz, response phases in all cells were phase lagged with respect to those at 0.5 Hz. Type C cells had larger gains and smaller phase leads at 5.0 Hz than at 0.5 Hz, suggesting the presence of low-frequency adaptation. 3. Displacement-response curves, derived from the voltage responses to 5.0-Hz sinusoids, were sigmoidal in shape and asymmetrical, with the depolarizing response having a greater magnitude and saturating less abruptly than the hyperpolarizing response. When normalized to their largest displacement the linear ranges of these curves varied from < 0.5 to 1.25 microns and were largest in Type B and smallest in Type F and Type E cells. Sensitivity, defined as the slope of the normalized displacement-response curve, was inversely correlated with linear range. 4. The contribution of geometric factors associated with the hair bundle to linear range and sensitivity were predicted from realistic models of utricular hair bundles created using morphological data obtained from light and electron microscopy. Three factors, including 1) the inverse ratio of the lengths of the kinocilium and longest stereocilia, representing the

  11. Voltage-sensitive prestin orthologue expressed in zebrafish hair cells

    PubMed Central

    Albert, Jörg T; Winter, Harald; Schaechinger, Thorsten J; Weber, Thomas; Wang, Xiang; He, David Z Z; Hendrich, Oliver; Geisler, Hyun-Soon; Zimmermann, Ulrike; Oelmann, Katrin; Knipper, Marlies; Göpfert, Martin C; Oliver, Dominik

    2007-01-01

    Prestin, a member of the solute carrier (SLC) family SLC26A, is the molecular motor that drives the somatic electromotility of mammalian outer hair cells (OHCs). Its closest reported homologue, zebrafish prestin (zprestin), shares ∼70% strong amino acid sequence similarity with mammalian prestin, predicting an almost identical protein structure. Immunohistochemical analysis now shows that zprestin is expressed in hair cells of the zebrafish ear. Similar to mammalian prestin, heterologously expressed zprestin is found to generate voltage-dependent charge movements, giving rise to a non-linear capacitance (NLC) of the cell membrane. Compared with mammalian prestin, charge movements mediated by zprestin display a weaker voltage dependence and slower kinetics; they occur at more positive membrane voltages, and are not associated with electromotile responses. Given this functional dissociation of NLC and electromotility and the structural similarity with mammalian prestin, we anticipate that zprestin provides a valuable tool for tracing the molecular and evolutionary bases of prestin motor function. PMID:17272340

  12. Sound-induced length changes in outer hair cell stereocilia.

    PubMed

    Hakizimana, Pierre; Brownell, William E; Jacob, Stefan; Fridberger, Anders

    2012-01-01

    Hearing relies on mechanical stimulation of stereocilia bundles on the sensory cells of the inner ear. When sound hits the ear, each stereocilium pivots about a neck-like taper near their base. More than three decades of research have established that sideways deflection of stereocilia is essential for converting mechanical stimuli into electrical signals. Here we show that mammalian outer hair cell stereocilia not only move sideways but also change length during sound stimulation. Currents that enter stereocilia through mechanically sensitive ion channels control the magnitude of both length changes and bundle deflections in a reciprocal manner: the smaller the length change, the larger is the bundle deflection. Thus, the transduction current is important for maintaining the resting mechanical properties of stereocilia. Hair cell stimulation is most effective when bundles are in a state that ensures minimal length change.

  13. Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells.

    PubMed

    Vogl, Christian; Cooper, Benjamin H; Neef, Jakob; Wojcik, Sonja M; Reim, Kerstin; Reisinger, Ellen; Brose, Nils; Rhee, Jeong-Seop; Moser, Tobias; Wichmann, Carolin

    2015-02-15

    Ribbon synapses of cochlear inner hair cells (IHCs) employ efficient vesicle replenishment to indefatigably encode sound. In neurons, neuroendocrine and immune cells, vesicle replenishment depends on proteins of the mammalian uncoordinated 13 (Munc13, also known as Unc13) and Ca(2+)-dependent activator proteins for secretion (CAPS) families, which prime vesicles for exocytosis. Here, we tested whether Munc13 and CAPS proteins also regulate exocytosis in mouse IHCs by combining immunohistochemistry with auditory systems physiology and IHC patch-clamp recordings of exocytosis in mice lacking Munc13 and CAPS isoforms. Surprisingly, we did not detect Munc13 or CAPS proteins at IHC presynaptic active zones and found normal IHC exocytosis as well as auditory brainstem responses (ABRs) in Munc13 and CAPS deletion mutants. Instead, we show that otoferlin, a C2-domain protein that is crucial for vesicular fusion and replenishment in IHCs, clusters at the plasma membrane of the presynaptic active zone. Electron tomography of otoferlin-deficient IHC synapses revealed a reduction of short tethers holding vesicles at the active zone, which might be a structural correlate of impaired vesicle priming in otoferlin-deficient IHCs. We conclude that IHCs use an unconventional priming machinery that involves otoferlin.

  14. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling

    PubMed Central

    Plikus, Maksim V.; Vollmers, Christopher; de la Cruz, Damon; Chaix, Amandine; Ramos, Raul; Panda, Satchidananda; Chuong, Cheng-Ming

    2013-01-01

    Regenerative cycling of hair follicles offers an unique opportunity to explore the role of circadian clock in physiological tissue regeneration. We focused on the role of circadian clock in actively proliferating transient amplifying cells, as opposed to quiescent stem cells. We identified two key sites of peripheral circadian clock activity specific to regenerating anagen hair follicles, namely epithelial matrix and mesenchymal dermal papilla. We showed that peripheral circadian clock in epithelial matrix cells generates prominent daily mitotic rhythm. As a consequence of this mitotic rhythmicity, hairs grow faster in the morning than in the evening. Because cells are the most susceptible to DNA damage during mitosis, this cycle leads to a remarkable time-of-day–dependent sensitivity of growing hair follicles to genotoxic stress. Same doses of γ-radiation caused dramatic hair loss in wild-type mice when administered in the morning, during mitotic peak, compared with the evening, when hair loss is minimal. This diurnal radioprotective effect becomes lost in circadian mutants, consistent with asynchronous mitoses in their hair follicles. Clock coordinates cell cycle progression with genotoxic stress responses by synchronizing Cdc2/Cyclin B-mediated G2/M checkpoint. Our results uncover diurnal mitotic gating as the essential protective mechanism in highly proliferative hair follicles and offer strategies for minimizing or maximizing cytotoxicity of radiation therapies. PMID:23690597

  15. Effects of extracellular Ca2+ concentration on hair-bundle stiffness and gating-spring integrity in hair cells.

    PubMed

    Marquis, R E; Hudspeth, A J

    1997-10-28

    When a hair cell is stimulated by positive deflection of its hair bundle, increased tension in gating springs opens transduction channels, permitting cations to enter stereocilia and depolarize the cell. Ca2+ is thought to be required in mechanoelectrical transduction, for exposure of hair bundles to Ca2+ chelators eliminates responsiveness by disrupting tip links, filamentous interstereociliary connections that probably are the gating springs. Ca2+ also participates in adaptation to stimuli by controlling the activity of a molecular motor that sets gating-spring tension. Using a flexible glass fiber to measure hair-bundle stiffness, we investigated the effect of Ca2+ concentration on stiffness before and after the disruption of gating springs. The stiffness of intact hair bundles depended nonmonotonically on the extracellular Ca2+ concentration; the maximal stiffness of approximately 1200 microN.m-1 occurred when bundles were bathed in solutions containing 250 microM Ca2+, approximately the concentration found in frog endolymph. For cells exposed to solutions with sufficient chelator capacity to reduce the Ca2+ concentration below approximately 100 nM, hair-bundle stiffness fell to approximately 200 microN.m-1 and no longer exhibited Ca2+-dependent changes. Because cells so treated lost mechanoelectrical transduction, we attribute the reduction in bundle stiffness to tip-link disruption. The results indicate that gating springs are not linearly elastic; instead, they stiffen with increased strain, which rises with adaptation-motor activity at the physiological extracellular Ca2+ concentration.

  16. The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear

    PubMed Central

    Mantela, Johanna; Jiang, Zhe; Ylikoski, Jukka; Fritzsch, Bernd; Zacksenhaus, Eldad; Pirvola, Ulla

    2005-01-01

    Precursors of cochlear and vestibular hair cells of the inner ear exit the cell cycle at midgestation. Hair cells are mitotically quiescent during late-embryonic differentiation stages and postnatally. We show here that the retinoblastoma gene Rb and the encoded protein pRb are expressed in differentiating and mature hair cells. In addition to Rb, the cyclin dependent kinase inhibitor (CKI) p21 is expressed in developing hair cells, suggesting that p21 is an upstream effector of pRb activity. p21 apparently cooperates with other CKIs, as p21-null mice exhibited an unaltered inner ear phenotype. By contrast, Rb inactivation led to aberrant hair cell proliferation, as analysed at birth in a loss-of-function/transgenic mouse model. Supernumerary hair cells expressed various cell typespecific differentiation markers, including components of stereocilia. The extent of alterations in stereociliary bundle morphology ranged from near-normal to severe disorganization. Apoptosis contributed to the mutant phenotype, but did not compensate for the production of supernumerary hair cells, resulting in hyperplastic sensory epithelia. The Rb-null-mediated proliferation led to a distinct pathological phenotype, including multinucleated and enlarged hair cells, and infiltration of hair cells into the mesenchyme. Our findings demonstrate that the pRb pathway is required for hair cell quiescence and that manipulation of the cell cycle machinery disrupts the coordinated development within the inner ear sensory epithelia. PMID:15843406

  17. Spatial and Age-Dependent Hair Cell Generation in the Postnatal Mammalian Utricle.

    PubMed

    Gao, Zhen; Kelly, Michael C; Yu, Dehong; Wu, Hao; Lin, Xi; Chi, Fang-Lu; Chen, Ping

    2016-04-01

    Loss of vestibular hair cells is a common cause of balance disorders. Current treatment options for bilateral vestibular dysfunction are limited. During development, atonal homolog 1 (Atoh1) is sufficient and necessary for the formation of hair cells and provides a promising gene target to induce hair cell generation in the mammals. In this study, we used a transgenic mouse line to test the age and cell type specificity of hair cell induction in the postnatal utricle in mice. We found that forced Atoh1 expression in vivo can induce hair cell formation in the utricle from postnatal days 1 to 21, while the efficacy of hair cell induction is progressively reduced as the animals become older. In the utricle, the induction of hair cells occurs both within the sensory region and in cells in the transitional epithelium next to the sensory region. Within the sensory epithelium, the central region, known as the striola, is most subjective to the induction of hair cell formation. Furthermore, forced Atoh1 expression can promote proliferation in an age-dependent manner that mirrors the progressively reduced efficacy of hair cell induction in the postnatal utricle. These results suggest that targeting both cell proliferation and Atoh1 in the utricle striolar region may be explored to induce hair cell regeneration in mammals. The study also demonstrates the usefulness of the animal model that provides an in vivo Atoh1 induction model for vestibular regeneration studies.

  18. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    PubMed

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells.

  19. Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian.

    PubMed

    Taylor, Ruth R; Forge, Andrew

    2005-03-28

    The capacity of urodele amphibians to regenerate a variety of body parts is providing insight into mechanisms of tissue regeneration in vertebrates. In this study the ability of the newt, Notophthalmus viridescens, to regenerate inner ear hair cells in vitro was examined. Intact otic capsules were maintained in organotypic culture. Incubation in 2 mM gentamicin for 48 hours resulted in ablation of all hair cells from the saccular maculae. Thus, any hair cell recovery was not due to repair of damaged hair cells. Immature hair cells were subsequently observed at approximately 12 days posttreatment. Their number increased over the following 7-14 days to reach approximately 30% of the normal number. Following incubation of damaged tissue with bromodeoxyuridine (BrdU), labeled nuclei were confined strictly within regions of hair cell loss, indicating that supporting cells entered S-phase. Double labeling of tissue with two different hair cell markers and three different antibodies to BrdU in various combinations, however, all showed that the nuclei of cells that labeled with hair cell markers did not label for BrdU. This suggested that the new hair cells were not derived from those cells that had undergone mitosis. When mitosis was blocked with aphidicolin, new hair cells were still generated. The results suggest that direct phenotypic conversion of supporting cells into hair cells without an intervening mitotic event is a major mechanism of hair cell regeneration in the newt. A similar mechanism has been proposed for the hair cell recovery phenomenon observed in the vestibular organs of mammals. Copyright 2005 Wiley-Liss, Inc.

  20. Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells.

    PubMed

    McLean, Will J; Yin, Xiaolei; Lu, Lin; Lenz, Danielle R; McLean, Dalton; Langer, Robert; Karp, Jeffrey M; Edge, Albert S B

    2017-02-21

    Death of cochlear hair cells, which do not regenerate, is a cause of hearing loss in a high percentage of the population. Currently, no approach exists to obtain large numbers of cochlear hair cells. Here, using a small-molecule approach, we show significant expansion (>2,000-fold) of cochlear supporting cells expressing and maintaining Lgr5, an epithelial stem cell marker, in response to stimulation of Wnt signaling by a GSK3β inhibitor and transcriptional activation by a histone deacetylase inhibitor. The Lgr5-expressing cells differentiate into hair cells in high yield. From a single mouse cochlea, we obtained over 11,500 hair cells, compared to less than 200 in the absence of induction. The newly generated hair cells have bundles and molecular machinery for transduction, synapse formation, and specialized hair cell activity. Targeting supporting cells capable of proliferation and cochlear hair cell replacement could lead to the discovery of hearing loss treatments.

  1. [L-NAC protect hair cells in the rat cochlea from injury of exposure to styrene].

    PubMed

    Yang, Weiping; Hu, Bohua; Chen, Guangdi; Bielefeld, Eric C; Henderson, Donald

    2011-02-01

    To observe the effects of N-acetyl-L-cysteine (L-NAC) protect hair cells in the rat cochlea from injury of exposure to styrene. Seventeen adult Long Evans rats were used in present study. The animals were randomly assigned into test group (n=9) and control group (n=8). The animals were exposed to styrene by gavage at 400 mg/kg (2 g styrene was mixed with 1 ml olive oil). Test group animals received styrene exposure plus L-NAC 325 mg/kg (L-NAC was dissolved in physiological saline solution) by intraperitoneal injection. Treatment was performed once a day, 5 days per week for 3 weeks. Control group animals received the same volume of saline injection on an identical time schedule used for the test group. The auditory brainstem response (ABR) thresholds of both ears elicited with clicks were measured before and at the end of the 3-week styrene or styrene plus L-NAC treatment. After hearing was re-assessed, animals were sacrificed and cochleae were quickly removed from the skull. Following fixation, whole specimens comprising the basilar membrane with Corti's organ were separated from the modiolus. The organs of Corti were stained with propidium iodide (PI) and the TUNEL assay to visualize the morphologic viability of hair cell nuclei, FITC-labeled phalloidin, a F-actin intercalating fluorescent probe used to visualize the morphologic viability of cuticular plate and the stereocilia in the hair cells. Each organ of Corti was thoroughly examined using fluorescence microscopy. The numbers of damaged OHCs (apoptotic, necrotic and missing OHCs) were documented. There was a statistically significant decrease in ABR threshold shift (P<0.05) in the styrene-plus-L-NAC treated animals. The average percentage of damaged OHCs in the styrene-treated animals was 28.3%. In contrast, the average percentage of OHC damage in the styrene-plus-L-NAC treated group was only 10.6% (P<0.01). The percentage of reduction in the number of apoptotic cells in styrene-plus-L-NAC treated group was

  2. The hair follicle and its stem cells as drug delivery targets.

    PubMed

    Hoffman, Robert M

    2006-05-01

    The hair follicle is a skin appendage with a complex structure containing many cell types that produce highly specialised proteins. The hair follicle is in a continuous cycle: anagen is the hair growth phase, catagen the involution phase and telogen is the resting phase. The follicle offers many potential therapeutic targets. Hoffman and colleagues have pioneered hair-follicle-specific targeting using liposomes to deliver small and large molecules, including genes. They have also pioneered ex vivo hair-follicle targeting with continued expression of the introduced gene following transplantation. Recently, it has been discovered that hair follicle stem cells are highly pluripotent and can form neurons, glial cells and other cell types, and this has suggested that hair follicle stem cells may serve as gene therapy targets for regenerative medicine.

  3. Developing an active artificial hair cell using nonlinear feedback control

    NASA Astrophysics Data System (ADS)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2015-09-01

    The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.

  4. Conditional telomerase induction causes proliferation of hair follicle stem cells

    PubMed Central

    Sarin, Kavita Y.; Cheung, Peggie; Gilison, Daniel; Lee, Eunice; Tennen, Ruth I.; Wang, Estee; Artandi, Maja K.; Oro, Anthony E.; Artandi, Steven E.

    2005-01-01

    TERT, the protein component of telomerase1,2, serves to maintain telomere function through the de novo addition of telomere repeats to chromosome ends and is reactivated in 90% of human cancers. In normal tissues, TERT is expressed in stem cells and in progenitor cells3, but its role in these compartments is not fully understood. Here, we show that conditional transgenic induction of TERT in mouse skin epithelium causes a rapid transition from telogen, the resting phase of the hair follicle cycle, to anagen, the active phase, thereby facilitating robust hair growth. TERT overexpression promotes this developmental transition by causing proliferation of quiescent, multipotent stem cells in the hair follicle bulge region. This new function for TERT does not require the telomerase RNA component (TERC), which encodes the template for telomere addition, and therefore operates through a novel mechanism independent of its activity in synthesizing telomere repeats. These data indicate that, in addition to its established role in extending telomeres, TERT can promote proliferation of resting stem cells through a non-canonical pathway. PMID:16107853

  5. Epigenetic DNA Demethylation Causes Inner Ear Stem Cell Differentiation into Hair Cell-Like Cells

    PubMed Central

    Zhou, Yang; Hu, Zhengqing

    2016-01-01

    The DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-aza) causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs) to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine) showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination. PMID:27536218

  6. Recovery of vestibular function following hair cell destruction by streptomycin

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Nelson, R. C.

    1992-01-01

    Can the vestibular periphery of warm-blooded vertebrates recover functionally from severe sensory hair cell loss? Recent findings in birds suggest a mechanism for recovery but in fact no direct functional evidence has been reported. We produced vestibular hair cell lesions using the ototoxic agent streptomycin sulfate (600 mg/kg/day, 8 days, chicks, Gallus domesticus). Compound action potentials of the vestibular nerve were used as a direct measure of peripheral vestibular function. Vestibular thresholds, neural activation latencies and amplitudes were documented. Eight days of drug treatment elevated thresholds significantly (P < 0.001) and eliminated all but remnants of vestibular activity. Virtually complete physiological recovery occurred in all animals studied over a period of 70 days following treatment. Thresholds recovered within two weeks of drug treatment whereas the return of response morphologies including activation latencies and amplitudes required an additional 6-8 weeks.

  7. Recovery of vestibular function following hair cell destruction by streptomycin

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Nelson, R. C.

    1992-01-01

    Can the vestibular periphery of warm-blooded vertebrates recover functionally from severe sensory hair cell loss? Recent findings in birds suggest a mechanism for recovery but in fact no direct functional evidence has been reported. We produced vestibular hair cell lesions using the ototoxic agent streptomycin sulfate (600 mg/kg/day, 8 days, chicks, Gallus domesticus). Compound action potentials of the vestibular nerve were used as a direct measure of peripheral vestibular function. Vestibular thresholds, neural activation latencies and amplitudes were documented. Eight days of drug treatment elevated thresholds significantly (P < 0.001) and eliminated all but remnants of vestibular activity. Virtually complete physiological recovery occurred in all animals studied over a period of 70 days following treatment. Thresholds recovered within two weeks of drug treatment whereas the return of response morphologies including activation latencies and amplitudes required an additional 6-8 weeks.

  8. Study of mouse induced pluripotent stem cell transplantation intoWistar albino rat cochleae after hair cell damage.

    PubMed

    Gökcan, Mustafa Kürşat; Mülazimoğlu, Selçuk; Ocak, Emre; Can, Pınar; Çalışkan, Murat; Beşaltı, Ömer; Dizbay Sak, Serpil; Kaygusuz, Gülşah

    2016-11-17

    As the regeneration capacity of hair cells is limited, inner ear stem cell therapies hold promise. Effects of mouse induced pluripotent stem cells (IPSCs) on Wistar albino rats (WARs) with hearing impairment were investigated. Thirty-five adult WARs with normal hearing were divided into 4 groups. Excluding the study group (n = 15), the other three groups served as control groups for ototoxicity and IPSC injection models. IPSC injections were performed via cochleostomy after a retroauricular approach. Auditory functions were evaluated with auditory brainstem responses (ABRs) before and after the injections. After a final hearing assessment the WARs were sacrificed and cochleae were extracted to see the biologic behavior of IPSCs in the inner ear by light microscopy and immunohistochemistry. There were no significant differences in the click-ABR thresholds in the study group after IPSC transplantation. The mean hearing threshold in the study group after ototoxic agent injection was 53.2 dB (10-90 dB). There was no significant difference between groups (P > 0.05) and no differentiated stem cells were observed immunohistochemically. Transplanted IPSCs did not show a therapeutic effect in this trial. We discuss potential pitfalls and factors affecting the therapeutic effect.

  9. Age-Related Hearing Loss and Degeneration of Cochlear Hair Cells in Mice Lacking Thyroid Hormone Receptor β1

    PubMed Central

    Ng, Lily; Cordas, Emily; Wu, Xuefeng; Vella, Kristen R.; Hollenberg, Anthony N.

    2015-01-01

    A key function of the thyroid hormone receptor β (Thrb) gene is in the development of auditory function. However, the roles of the 2 receptor isoforms, TRβ1 and TRβ2, expressed by the Thrb gene are unclear, and it is unknown whether these isoforms promote the maintenance as well as development of hearing. We investigated the function of TRβ1 in mice with a Thrbb1 reporter allele that expresses β-galactosidase instead of TRβ1. In the immature cochlea, β-galactosidase was detected in the greater epithelial ridge, sensory hair cells, spiral ligament, and spiral ganglion and in adulthood, at low levels in the hair cells, support cells and root cells of the outer sulcus. Although deletion of all TRβ isoforms causes severe, early-onset deafness, deletion of TRβ1 or TRβ2 individually caused no obvious hearing loss in juvenile mice. However, over subsequent months, TRβ1 deficiency resulted in progressive loss of hearing and loss of hair cells. TRβ1-deficient mice had minimal changes in serum thyroid hormone and thyrotropin levels, indicating that hormonal imbalances were unlikely to cause hearing loss. The results suggest mutually shared roles for TRβ1 and TRβ2 in cochlear development and an unexpected requirement for TRβ1 in the maintenance of hearing in adulthood. PMID:26241124

  10. Mechanisms of Aminoglycoside Ototoxicity and Targets of Hair Cell Protection

    PubMed Central

    Huth, M. E.; Ricci, A. J.; Cheng, A. G.

    2011-01-01

    Aminoglycosides are commonly prescribed antibiotics with deleterious side effects to the inner ear. Due to their popular application as a result of their potent antimicrobial activities, many efforts have been undertaken to prevent aminoglycoside ototoxicity. Over the years, understanding of the antimicrobial as well as ototoxic mechanisms of aminoglycosides has increased. These mechanisms are reviewed in regard to established and potential future targets of hair cell protection. PMID:22121370

  11. A molecular level prototype for mechanoelectrical transducer in mammalian hair cells

    PubMed Central

    Park, Jinkyoung

    2013-01-01

    The mechanoelectrical transducer (MET) is a crucial component of mammalian auditory system. The gating mechanism of the MET channel remains a puzzling issue, though there are many speculations, due to the lack of essential molecular building blocks. To understand the working principle of mammalian MET, we propose a molecular level prototype which constitutes a charged blocker, a realistic ion channel and its surrounding membrane. To validate the proposed prototype, we make use of a well-established ion channel theory, the Poisson-Nernst-Planck equations, for three-dimensional (3D) numerical simulations. A wide variety of model parameters, including bulk ion concentration, applied external voltage, blocker charge and blocker displacement, are explored to understand the basic function of the proposed MET prototype. We show that our prototype prediction of channel open probability in response to blocker relative displacement is in a remarkable accordance with experimental observation of rat cochlea outer hair cells. Our results appear to suggest that tip links which connect hair bundles gate MET channels. PMID:23625048

  12. BONE MARROW MESENCHYMAL STEM CELLS ARE PROGENITORS IN VITRO FOR INNER EAR HAIR CELLS

    PubMed Central

    Jeon, Sang-Jun; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2011-01-01

    Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating differentiation to inner ear sensory cells. Some of the cells displayed F-actin positive protrusions in the morphology characteristic of hair cell stereociliary bundles. Hair cell markers were also induced by culture of mouse MSC-derived cells in contact with embryonic chick inner ear cells, and this induction was not due to a cell fusion event, because the chick hair cells could be identified with a chick-specific antibody and chick and mouse antigens were never found in the same cell. PMID:17113786

  13. Different uptake of gentamicin through TRPV1 and TRPV4 channels determines cochlear hair cell vulnerability

    PubMed Central

    Lee, Jeong-Han; Park, Channy; Kim, Se-Jin; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; So, Hong-Seob; Park, Raekil

    2013-01-01

    Hair cells at the base of the cochlea appear to be more susceptible to damage by the aminoglycoside gentamicin than those at the apex. However, the mechanism of base-to-apex gradient ototoxicity by gentamicin remains to be elucidated. We report here that gentamicin caused rodent cochlear hair cell damages in a time- and dose-dependent manner. Hair cells at the basal turn were more vulnerable to gentamicin than those at the apical turn. Gentamicin-conjugated Texas Red (GTTR) uptake was predominant in basal turn hair cells in neonatal rats. Transient receptor potential vanilloid 1 (TRPV1) and 4 (TRPV4) expression was confirmed in the cuticular plate, stereocilia and hair cell body of inner hair cells and outer hair cells. The involvement of TRPV1 and TRPV4 in gentamicin trafficking of hair cells was confirmed by exogenous calcium treatment and TRPV inhibitors, including gadolinium and ruthenium red, which resulted in markedly inhibited GTTR uptake and gentamicin-induced hair cell damage in rodent and zebrafish ototoxic model systems. These results indicate that the cytotoxic vulnerability of cochlear hair cells in the basal turn to gentamicin may depend on effective uptake of the drug, which was, in part, mediated by the TRPV1 and TRPV4 proteins. PMID:23470714

  14. Observation of apical part and nerve terminals of human vestibular hair cells.

    PubMed

    Morita, I; Komatsuzaki, A; Kanda, T; Tatsuoka, H; Chiba, T

    1995-01-01

    The human vestibular sensory epithelia of macula utriculi in 3 cases of acoustic neurinoma were examined by conventional and intermediate voltage electron microscopes. The apical part and the nerve terminals of hair cells were studied by means of a computer-aided three-dimensional (3-D) reconstruction technique. The sensory epithelia were fairly well preserved. Most type I and all type II hair cells appeared as those described in the other reports. However, some type I hair cells were incompletely surrounded by nerve calyces and received direct contacts from the efferent nerve endings. These type I hair cells were also innervated by a few neighbouring afferent nerve calyces. The stereocilia and the cuticular plate of type I hair cells differed from those of type II hair cells. The mean diameter of type I hair cell stereocilia was 488 +/- 59 nm and that of type II hair cells was 373 +/- 21 nm. The cuticular plate of type I hair cells resembled a cone and was about several times as thick as that of type II hair cells which was similar to a flat disc.

  15. Streptomycin ototoxicity and hair cell regeneration in the adult pigeon utricle

    NASA Technical Reports Server (NTRS)

    Frank, T. C.; Dye, B. J.; Newlands, S. D.; Dickman, J. D.

    1999-01-01

    OBJECTIVE: The purpose of this study was to develop a technique to investigate the regeneration of utricular hair cells in the adult pigeon (Columba livia) following complete hair cell loss through administration of streptomycin. STUDY DESIGN: Experimental animal study. METHODS: Animals were divided into four groups. Group 1 received 10 to 15 days of systemic streptomycin injections. Animals in Groups 2 and 3 received a single direct placement of a 1-, 2-, 4-, or 8-mg streptomycin dose into the perilymphatic space. Animals in Groups 1 and 2 were analyzed within 1 week from injection to investigate hair cell destruction, whereas Group 3 was investigated at later dates to study hair cell recovery. Group 4 animals received a control injection of saline into the perilymphatic space. Damage and recovery were quantified by counting hair cells in isolated utricles using scanning electron microscopy. RESULTS: Although systemic injections failed to reliably achieve complete utricular hair cell destruction, a single direct placement of a 2-, 4-, or 8-mg streptomycin dose caused complete destruction within the first week. Incomplete hair cell loss was observed with the 1-mg dose. Over the long term, regeneration of the hair cells was seen with the 2-mg dose but not the 8-mg dose. Control injections of saline into the perilymphatic space caused no measurable hair cell loss. CONCLUSIONS: Direct placement of streptomycin into the perilymph is an effective, reliable method for complete destruction of utricular hair cells while preserving the regenerative potential of the neuroepithelium.

  16. Different uptake of gentamicin through TRPV1 and TRPV4 channels determines cochlear hair cell vulnerability.

    PubMed

    Lee, Jeong-Han; Park, Channy; Kim, Se-Jin; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; So, Hong-Seob; Park, Raekil

    2013-03-08

    Hair cells at the base of the cochlea appear to be more susceptible to damage by the aminoglycoside gentamicin than those at the apex. However, the mechanism of base-to-apex gradient ototoxicity by gentamicin remains to be elucidated. We report here that gentamicin caused rodent cochlear hair cell damages in a time- and dose-dependent manner. Hair cells at the basal turn were more vulnerable to gentamicin than those at the apical turn. Gentamicin-conjugated Texas Red (GTTR) uptake was predominant in basal turn hair cells in neonatal rats. Transient receptor potential vanilloid 1 (TRPV1) and 4 (TRPV4) expression was confirmed in the cuticular plate, stereocilia and hair cell body of inner hair cells and outer hair cells. The involvement of TRPV1 and TRPV4 in gentamicin trafficking of hair cells was confirmed by exogenous calcium treatment and TRPV inhibitors, including gadolinium and ruthenium red, which resulted in markedly inhibited GTTR uptake and gentamicin-induced hair cell damage in rodent and zebrafish ototoxic model systems. These results indicate that the cytotoxic vulnerability of cochlear hair cells in the basal turn to gentamicin may depend on effective uptake of the drug, which was, in part, mediated by the TRPV1 and TRPV4 proteins.

  17. [In vitro protective effect of methionine against cisplatin's damage to the cochlear hair cell of mice].

    PubMed

    Xue, Chan; Zhou, Yong-Qing; Gao, Hai-Tao; Ma, Ying-Yu; Wang, Na; Qu, Yan

    2011-02-01

    To establish an in vitro model of mouse cochlear basilar membrane impairment using cisplatin, and observe the protective effect of methionine on the hair cells. The cochlear basilar membrane samples of thirty two Kunming mice were harvested on the 2nd day after birth and randomly divided into four groups. Each group had 16 samples. Overnight preincubation the cochlear organ followed by appropriate treatment respectively as follows: the serum-free culture medium, the serum-free culture medium with methionine and cisplatin, the cisplatinum-containing serum-free culture medium, and the methionine-containing serum-free culture medium. The protective effect of methionine for injury of cochlea hair cells induced by cisplatin was observed by myosin-VI immunofluorescence, light microscopy, laser confocal scanning microscope and hair cells counting. The outer hair cells (OHC) and inner hair cells (IHC) of control group and methionine group were not damaged. The outer and inner hair cells of cisplatin group were damaged in various degree, and had remarkable difference compared with control group and methionine group (P < 0.05). The outer hair cells and inner hair cells of cisplatin + methionine group were damaged less than the cisplatin group with remarkable difference (t(IHC) = 3.929, t(OHC) = 8.582, P < 0.05). Cisplatinum could damage the cochlear hair cells of the basal membrane in Kunming mice. Methionine might protect against cisplatin's damage on the cochlear hair cells.

  18. Streptomycin ototoxicity and hair cell regeneration in the adult pigeon utricle

    NASA Technical Reports Server (NTRS)

    Frank, T. C.; Dye, B. J.; Newlands, S. D.; Dickman, J. D.

    1999-01-01

    OBJECTIVE: The purpose of this study was to develop a technique to investigate the regeneration of utricular hair cells in the adult pigeon (Columba livia) following complete hair cell loss through administration of streptomycin. STUDY DESIGN: Experimental animal study. METHODS: Animals were divided into four groups. Group 1 received 10 to 15 days of systemic streptomycin injections. Animals in Groups 2 and 3 received a single direct placement of a 1-, 2-, 4-, or 8-mg streptomycin dose into the perilymphatic space. Animals in Groups 1 and 2 were analyzed within 1 week from injection to investigate hair cell destruction, whereas Group 3 was investigated at later dates to study hair cell recovery. Group 4 animals received a control injection of saline into the perilymphatic space. Damage and recovery were quantified by counting hair cells in isolated utricles using scanning electron microscopy. RESULTS: Although systemic injections failed to reliably achieve complete utricular hair cell destruction, a single direct placement of a 2-, 4-, or 8-mg streptomycin dose caused complete destruction within the first week. Incomplete hair cell loss was observed with the 1-mg dose. Over the long term, regeneration of the hair cells was seen with the 2-mg dose but not the 8-mg dose. Control injections of saline into the perilymphatic space caused no measurable hair cell loss. CONCLUSIONS: Direct placement of streptomycin into the perilymph is an effective, reliable method for complete destruction of utricular hair cells while preserving the regenerative potential of the neuroepithelium.

  19. Tricellulin deficiency affects tight junction architecture and cochlear hair cells

    PubMed Central

    Nayak, Gowri; Lee, Sue I.; Yousaf, Rizwan; Edelmann, Stephanie E.; Trincot, Claire; Van Itallie, Christina M.; Sinha, Ghanshyam P.; Rafeeq, Maria; Jones, Sherri M.; Belyantseva, Inna A.; Anderson, James M.; Forge, Andrew; Frolenkov, Gregory I.; Riazuddin, Saima

    2013-01-01

    The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin. PMID:23979167

  20. Tricellulin deficiency affects tight junction architecture and cochlear hair cells.

    PubMed

    Nayak, Gowri; Lee, Sue I; Yousaf, Rizwan; Edelmann, Stephanie E; Trincot, Claire; Van Itallie, Christina M; Sinha, Ghanshyam P; Rafeeq, Maria; Jones, Sherri M; Belyantseva, Inna A; Anderson, James M; Forge, Andrew; Frolenkov, Gregory I; Riazuddin, Saima

    2013-09-01

    The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin.

  1. Effect of receptor potential on mechanical oscillations in a model of sensory hair cell

    NASA Astrophysics Data System (ADS)

    Khamesian, Mahvand; Neiman, Alexander B.

    2017-06-01

    Hair cells mediating the senses of hearing and balance rely on active mechanisms for amplification of mechanical signals. In amphibians, hair cells exhibit spontaneous self-sustained mechanical oscillations of their hair bundles. We study the response of the mechanical oscillations to perturbation of the cell's membrane potential in a model for hair bundle of bullfrog saccular hair cells. We identify bifurcation mechanism leading to mechanical oscillations using the membrane potential and the strength of fast adaptation as control parameters and then compute static and dynamic sensitivity of mechanical oscillations to voltage variations. We show that fast adaptation results in the static sensitivity of oscillating hair bundles in the range 0.1-0.2 nm/mV, consistent with recent experimental work. Predicted dynamic response of oscillating hair bundle to voltage variations is characterized by the values of sensitivity of up to 2 nm/mV, enhanced by the presence of fast adaptation.

  2. Human Mesenchymal Stem Cell-Derived Conditioned Media for Hair Regeneration Applications.

    PubMed

    Ramdasi, Sushilkumar; Tiwari, Shashi Kant

    Hair loss can have major psychological impact on affected population belonging to varied ethnic background. Hair is a mini organ in itself and serves many distinguishing functions ranging from maintaining body temperature to promoting social interactions. Major cause of hair loss is androgenic alopecia. Hair follicles possess receptor for androgen. However, DHT (Dihydrotestosterone) in excess results into shrinkage of hair follicle affecting hair growth adversely. The present review is focused on etiology of hair loss, traditional treatment approach and their limitations with side effects with special emphasis on unique properties of stem cells, favourable growth factors secreted by stem cells and strategies to enhance favourable growth factor/cytokine production for hair loss therapeutics. We discussed in details the present available treatment options for hair loss like drugs (Finasteride and Minoxidil), follicular hair transplant, laser therapy and serum therapy. These treatment options have their own disadvantages and side effects with appropriate alerts from regulatory authorities. The side effects of these modalities cannot be ignored and demands alternate therapy approach with less or no side effects. We feel that the stem cell therapy is advancing and is a promising modality in near future owing to its advantages and promising outcomes. This review article discusses possible stem cell therapy for hair regrowth and its advantages. We focused on use of conditioned media derived from stem cells instead of using stem cells directly for the therapy.

  3. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.

    PubMed

    Osorio, Karen M; Lee, Song Eun; McDermitt, David J; Waghmare, Sanjeev K; Zhang, Ying V; Woo, Hyun Nyun; Tumbar, Tudorita

    2008-03-01

    Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues.

  4. Tetrabromobisphenol-A induces apoptotic death of auditory cells and hearing loss.

    PubMed

    Park, Channy; Kim, Se-Jin; Lee, Won Kyo; Moon, Sung Kyun; Kwak, SeongAe; Choe, Seong-Kyu; Park, Raekil

    2016-09-30

    Phenolic tetrabromobisphenol-A (TBBPA) and its derivatives are commonly used flame-retardants, in spite of reported toxic effects including neurotoxicity, immunotoxicity, nephrotoxicity, and hepatotoxicity. However, the effects of TBBPA on ototoxicity have not yet been reported. In this study, we investigated the effect of TBBPA on hearing function in vivo and in vitro. Auditory Brainstem Response (ABR) threshold was markedly increased in mice after oral administration of TBBPA, indicating that TBBPA causes hearing loss. In addition, TBBPA induced the loss of both zebrafish neuromasts and hair cells in the rat cochlea in a dose-dependent manner. Mechanistically, hearing loss is largely attributed to apoptotic cell death, as TBBPA increased the expression of pro-apoptotic genes but decreased the expression of anti-apoptotic genes. We also found that TBBPA induced oxidative stress, and importantly, pretreatment with NAC, an anti-oxidant reagent, reduced TBBPA-induced reactive oxygen species (ROS) generation and partially prevented cell death. Our results show that TBBPA-mediated ROS generation induces ototoxicity and hearing loss. These findings implicate TBBPA as a potential environmental ototoxin by exerting its hazardous effects on the auditory system. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline

    PubMed Central

    Chi, Woo; Wu, Eleanor; Morgan, Bruce A.

    2013-01-01

    Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss. PMID:23487317

  6. Methionine sulfoxide reductase B3 deficiency causes hearing loss due to stereocilia degeneration and apoptotic cell death in cochlear hair cells.

    PubMed

    Kwon, Tae-Jun; Cho, Hyun-Ju; Kim, Un-Kyung; Lee, Eujin; Oh, Se-Kyung; Bok, Jinwoong; Bae, Yong Chul; Yi, Jun-Koo; Lee, Jang Woo; Ryoo, Zae-Young; Lee, Sang Heun; Lee, Kyu-Yup; Kim, Hwa-Young

    2014-03-15

    Methionine sulfoxide reductase B3 (MsrB3) is a protein repair enzyme that specifically reduces methionine-R-sulfoxide to methionine. A recent genetic study showed that the MSRB3 gene is associated with autosomal recessive hearing loss in human deafness DFNB74. However, the precise role of MSRB3 in the auditory system and the pathogenesis of hearing loss have not yet been determined. This work is the first to generate MsrB3 knockout mice to elucidate the possible pathological mechanisms of hearing loss observed in DFNB74 patients. We found that homozygous MsrB3(-/-) mice were profoundly deaf and had largely unaffected vestibular function, whereas heterozygous MsrB3(+/-) mice exhibited normal hearing similar to that of wild-type mice. The MsrB3 protein is expressed in the sensory epithelia of the cochlear and vestibular tissues, beginning at E15.5 and E13.5, respectively. Interestingly, MsrB3 is densely localized at the base of stereocilia on the apical surface of auditory hair cells. MsrB3 deficiency led to progressive degeneration of stereociliary bundles starting at P8, followed by a loss of hair cells, resulting in profound deafness in MsrB3(-/-) mice. The hair cell loss appeared to be mediated by apoptotic cell death, which was measured using TUNEL and caspase 3 immunocytochemistry. Taken together, our data suggest that MsrB3 plays an essential role in maintaining the integrity of hair cells, possibly explaining the pathogenesis of DFNB74 deafness in humans caused by MSRB3 deficiency.

  7. Calcium-binding sites on sensory processes in vertebrate hair cells.

    PubMed Central

    Moran, D T; Rowley, J C; Asher, D L

    1981-01-01

    Vertebrate lateral line and vestibular systems center their function on highly mechanosensitive hair cells. Each hair cell is equipped with one kinocilium (which resembles a motile cilium) and 50-100 actin-containing stereocilia (which resemble microvilli) at the site of stimulus reception. This report describes electron-microscopic localization of calcium-binding sites on the sensory processes of vertebrate hair cells. Using the Oschman-Wall technique for calcium localization [Oschman, J. L. & Wall, B. J. (1972) J. Cell Biol. 55, 58-73] together with electron-probe x-ray microanalysis of thin sections, we observed: (i) calcium- and iron-containing deposits in the region of the ciliary necklace in goldfish lateral line hair cells, (ii) calcium deposits upon the surface of stereocilia of hair cells of the bullfrog inner ear, and (iii) calcium deposits upon stereocilia of hair cells of the guinea pig vestibular system. Images PMID:6973762

  8. Analysis of apoptotic cell death in human hair follicles in vivo and in vitro.

    PubMed

    Soma, T; Ogo, M; Suzuki, J; Takahashi, T; Hibino, T

    1998-12-01

    We analyzed changes of growth and apoptotic cell death in human hair follicles. In anagen hair follicles, terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate-biotin nick labeling-positive cells were observed in the keratogenous zone of the upper bulb matrix, the inner root sheath, and the companion layer of the outer root sheath. DNA ladder formation was also detected in anagen hair follicles. In catagen hair follicles, the lower bulb matrix cells around the dermal papilla and the outer layer cells of the outer root sheath became strongly positive, showing that apoptosis in catagen hair is distinct from that in anagen hair. We also confirmed the mRNA expression of four caspases (caspase-1, caspase-3, caspase-4, and caspase-7) in anagen hair follicles by reverse transcriptase-polymerase chain reaction and in situ hybridization. When human anagen hair follicles were cultured in the presence of transforming growth factor-beta or tumor necrosis factor-alpha in the serum-free medium, transforming growth factor-beta but not tumor necrosis factor-alpha induced catagen-like morphologic changes, which were indistinguishable from normal catagen hair follicles. Tumor necrosis factor-alpha, however, strongly inhibited the elongation of the hair shaft in a dose-dependent manner, accompanied by abnormal morphology and increased cell death in the bulb matrix cells. Our results suggest that apoptosis in hair follicles involves two different types. One is related to the terminal differentiation of follicular epithelial cells in anagen hair. The other occurs as a major driving force to eliminate the distinct portion of epithelial components in catagen hair. Furthermore, this study strongly indicates that the transforming growth factor-beta pathway is involved in the induction of catagen phase in human hair cycle.

  9. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Burton, M.; Hawkins, J. R.; Schuff, N. R.; Baird, R. A.

    1997-01-01

    Earlier studies have demonstrated hair cell regeneration in the absence of cell proliferation, and suggested that supporting cells could phenotypically convert into hair cells following hair cell loss. Because calcium-binding proteins are involved in gene up-regulation, cell growth, and cell differentiation, we wished to determine if these proteins were up-regulated in scar formations and regenerating hair cells following gentamicin treatment. Calbindin and parvalbumin immunolabeling was examined in control or gentamicin-treated (GT) bullfrog saccular and utricular explants cultured for 3 days in amphibian culture medium or amphibian culture medium supplemented with aphidicolin, a blocker of nuclear DNA replication in eukaryotic cells. In control cultures, calbindin and parvalbumin immunolabeled the hair bundles and, less intensely, the cell bodies of mature hair cells. In GT or mitotically-blocked GT (MBGT) cultures, calbindin and parvalbumin immunolabeling was also seen in the hair bundles, cuticular plates, and cell bodies of hair cells with immature hair bundles. Thus, these antigens were useful markers for both normal and regenerating hair cells. Supporting cell immunolabeling was not seen in control cultures nor in the majority of supporting cells in GT cultures. In MBGT cultures, calbindin and parvalbumin immunolabeling was up-regulated in the cytosol of single supporting cells participating in scar formations and in supporting cells with hair cell-like characteristics. These data provide further evidence that non-mitotic hair cell regeneration in cultures can be accomplished by the conversion of supporting cells into hair cells.

  10. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Burton, M.; Hawkins, J. R.; Schuff, N. R.; Baird, R. A.

    1997-01-01

    Earlier studies have demonstrated hair cell regeneration in the absence of cell proliferation, and suggested that supporting cells could phenotypically convert into hair cells following hair cell loss. Because calcium-binding proteins are involved in gene up-regulation, cell growth, and cell differentiation, we wished to determine if these proteins were up-regulated in scar formations and regenerating hair cells following gentamicin treatment. Calbindin and parvalbumin immunolabeling was examined in control or gentamicin-treated (GT) bullfrog saccular and utricular explants cultured for 3 days in amphibian culture medium or amphibian culture medium supplemented with aphidicolin, a blocker of nuclear DNA replication in eukaryotic cells. In control cultures, calbindin and parvalbumin immunolabeled the hair bundles and, less intensely, the cell bodies of mature hair cells. In GT or mitotically-blocked GT (MBGT) cultures, calbindin and parvalbumin immunolabeling was also seen in the hair bundles, cuticular plates, and cell bodies of hair cells with immature hair bundles. Thus, these antigens were useful markers for both normal and regenerating hair cells. Supporting cell immunolabeling was not seen in control cultures nor in the majority of supporting cells in GT cultures. In MBGT cultures, calbindin and parvalbumin immunolabeling was up-regulated in the cytosol of single supporting cells participating in scar formations and in supporting cells with hair cell-like characteristics. These data provide further evidence that non-mitotic hair cell regeneration in cultures can be accomplished by the conversion of supporting cells into hair cells.

  11. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss.

    PubMed

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2016-04-01

    Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.

  12. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration

    PubMed Central

    Zhang, Peipei; Kling, Russell E; Ravuri, Sudheer K; Kokai, Lauren E; Rubin, J Peter; Chai, Jia-ke

    2014-01-01

    Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal