Sample records for hair follicle openings

  1. The hair follicle enigma.

    PubMed

    Bernard, Bruno A

    2017-06-01

    The hair follicle is a mini-organ endowed with a unique structure and cyclic behaviour. Despite the intense research efforts which have been devoted at deciphering the hair follicle biology over the past 70 years, one must admit that hair follicle remains an enigma. In this brief review, various aspects of hair follicle biology will be addressed, and more importantly, unsolved questions and new possible research tracks will be highlighted, including hair follicle glycobiology and exosome-mediated cell-cell interactions. Even though bricks of knowledge are solidly being acquired, an integrative picture remains to emerge. One can predict that computer science, algorithms and bioinformatics will assist in fostering our understanding hair biology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Reflectance spectroscopy for evaluating hair follicle cycle

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhu, Dan

    2014-02-01

    Hair follicle, as a mini-organ with perpetually cycling of telogen, anagen and catagen, provides a valuable experimental model for studying hair and organ regeneration. The transition of hair follicle from telogen to anagen is a significant sign for successful regeneration. So far discrimination of the hair follicle stage is mostly based on canonical histological examination and empirical speculation based on skin color. Hardly a method has been proposed to quantitatively evaluate the hair follicle stage. In this work, a commercial optical fiber spectrometer was applied to monitor diffuse reflectance of mouse skin with hair follicle cycling, and then the change of reflectance was obtained. Histological examination was used to verify the hair follicle stage. In comparison with the histological examination, the skin diffuse reflectance was relatively high for mouse with telogen hair follicles; it decreased once hair follicles transited to anagen stage; then it increased reversely at catagen stage. This study provided a new method to quantitatively evaluate the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  3. Ion beam microanalysis of human hair follicles

    NASA Astrophysics Data System (ADS)

    Kertész, Zs.; Szikszai, Z.; Pelicon, P.; Simčič, J.; Telek, A.; Bíró, T.

    2007-07-01

    Hair follicle is an appendage organ of the skin which is of importance to the survival of mammals and still maintains significance for the human race - not just biologically, but also through cosmetic and commercial considerations. However data on composition of hair follicles are scarce and mostly limited to the hair shaft. In this study we provide detailed information on the elemental distribution in human hair follicles in different growth phases (anagen and catagen) using a scanning proton microprobe. The analysis of skin samples obtained from human adults undergoing plastic surgery and of organ-cultured human hair follicles may yield a new insight into the function, development and cyclic activity of the hair follicle.

  4. Morphometry of human terminal and vellus hair follicles.

    PubMed

    Vogt, Annika; Hadam, Sabrina; Heiderhoff, Marc; Audring, Heike; Lademann, Juergen; Sterry, Wolfram; Blume-Peytavi, Ulrike

    2007-11-01

    Previous studies suggest that drug delivery systems based on particles can be used to deposit active compounds in hair follicles and to target hair follicle-associated cell populations. The development of application protocols is complicated by the fact that there is no information available on the size and the position of key target structures in the different hair follicle types and their intra- and interindividual variation. Therefore, we performed morphometric measurements on histological sections of human terminal (THF) and vellus hair follicles (VHF) from the scalp and the retroauricular region. With 3864 +/- 605 microm and 580 +/- 84 microm in THF compared to 646 +/- 140 microm and 225 +/- 34 microm in VHF, the total length and the length of the infundibulum differed significantly as determined by paired t-test (P < 0.0001). The same level of significance was observed for the position and the length of the bulge region. The thickness of the epithelial lining was lowest in VHF (45 +/- 14 microm at 100 microm from skin surface) compared to 65 +/- 20 microm at 150 microm in THF, while the thickness of the interfollicular epidermis ranged between 64 +/- 12 microm and 99 +/- 18 microm in VHF-bearing skin and 72 +/- 16 microm and 136 +/- 37 microm in THF-bearing skin. In addition, the diameter of the hair follicle opening was determined at 50 microm intervals from the skin surface. Our data suggest that hair follicle types in defined body regions represent rather homogenous groups and that particle-based drug delivery may be a feasible approach, also in larger numbers of individuals. We provide precise information on the size and the position of key target structures in VHF and THF.

  5. Cryopreservation of Hair-Follicle Associated Pluripotent (HAP) Stem Cells Maintains Differentiation and Hair-Growth Potential.

    PubMed

    Hoffman, Robert M; Kajiura, Satoshi; Cao, Wenluo; Liu, Fang; Amoh, Yasuyuki

    2016-01-01

    Hair follicles contain nestin-expressing pluripotent stem cells which originate above the bulge area of the follicle, below the sebaceous gland. We have termed these cells hair follicle-associated pluripotent (HAP) stem cells. We have established efficient cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells as well as hair growth. We cryopreserved the whole hair follicle by slow-rate cooling in TC-Protector medium or in DMSO-containing medium and storage in liquid nitrogen or at -80 °C. After thawing and culture of the cryopreserved whisker follicles, growing HAP stem cells formed hair spheres. The hair spheres contained cells that differentiated to neurons, glial cells, and other cell types. The hair spheres derived from slow-cooling cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. We have also previously demonstrated that cryopreserved mouse whisker hair follicles maintain their hair-growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. DMSO-cryopreserved hair follicles also maintained the HAP stem cells, evidenced by P75 ntr expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair-shaft growth of cryopreserved hair follicles. HAP stem cells can be used for nerve and spinal-cord repair. This biobanking of hair follicles can allow each patient the potential for their own stem cell use for regenerative medicine or hair transplantation.

  6. Hair follicle nevus - A dermoscopic approach.

    PubMed

    Okada, Junna; Moroi, Yoichi; Tsujita, Jun; Takahara, Masakazu; Urabe, Kazunori; Kiryu, Hiromaro; Furue, Masutaka

    2008-01-01

    We report the case of a 26-year-old man who presented with small soft nodules with tiny hairs that had been present on his nose since childhood. The nodules were initially diagnosed as melanocytic nevi. However, dermoscopy showed many uniform hair follicles and an interfollicular 'pseudo-pigment network' in the nodules. Histologically, many well-differentiated hair follicles and sebaceous glands were seen in the dermis. Serial sectioning revealed neither central cysts nor a central canal. We therefore diagnosed this case as hair follicle nevus. Dermoscopy is now widely used as a non-invasive, in vivo technique for the diagnosis of pigmented skin lesions. Hair follicle nevus is a very rare disease and this is the first report to demonstrate the manifestation of this clinical entity by dermoscopy.

  7. Unravelling hair follicle-adipocyte communication.

    PubMed

    Schmidt, Barbara; Horsley, Valerie

    2012-11-01

    Here, we explore the established and potential roles for intradermal adipose tissue in communication with hair follicle biology. The hair follicle delves deep into the rich dermal macroenvironment as it grows to maturity where it is surrounded by large lipid-filled adipocytes. Intradermal adipocytes regenerate with faster kinetics than other adipose tissue depots and in parallel with the hair cycle, suggesting an interplay exists between hair follicle cells and adipocytes. While adipocytes have well-established roles in metabolism and energy storage, until recently, they were overlooked as niche cells that provide important growth signals to neighbouring skin cells. We discuss recent data supporting adipocytes as niche cells for the skin and skin pathologies that may be related to alterations in skin adipose tissue defects. © 2012 John Wiley & Sons A/S.

  8. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    PubMed

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  9. Modulating hair follicle size with Wnt10b-DKK1 pair during hair regeneration

    PubMed Central

    Lei, Mingxing; Guo, Haiying; Qiu, Weiming; Lai, Xiangdong; Yang, Tian; Widelitz, Randall B.; Chuong, Cheng-Ming; Lian, Xiaohua; Yang, Li

    2015-01-01

    Hair follicles have characteristic sizes corresponding to their cycle specific stage. However, how the anagen hair follicle specifies its size remains elusive. Here, we show that in response to prolonged ectopic Wnt10b-mediated β-catenin activation, regenerating anagen hair follicles grow larger in size. In particular, the hair bulb, dermal papilla and hair shaft become enlarged. While the formation of different hair types (Guard, Awl, Auchene, and Zigzag) is unaffected. Interestingly, we found the effect of exogenous WNT10b was mainly on Zigzag and less on the other kinds of hairs. We observed dramatically enhanced proliferation within the matrix, DP and hair shaft of the enlarged AdWnt10b-treated hair follicles compared with those of normal hair follicles at P98. Furthermore, expression of CD34, a specific hair stem cell marker, was increased in its number to the bulge region after AdWnt10b treatment. Ectopic expression of CD34 throughout the ORS region was also observed. Many CD34 positive hair stem cells were actively proliferating in AdWnt10b-induced hair follicles. Importantly, subsequent co-treatment with the Wnt inhibitor, DKK1, reduced hair follicle enlargement, decreased proliferation and maintained proper hair stem cell localization. Moreover, injection of DKK1 during early anagen significantly reduced the width of prospective hairs. Together, these findings strongly suggest that a balance of Wnt10b/DKK1 governs reciprocal signaling between cutaneous epithelium and mesenchyme to regulate proper hair follicle size. PMID:24750467

  10. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling

    PubMed Central

    Sennett, Rachel; Rendl, Michael

    2012-01-01

    Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. PMID:22960356

  11. Expression and localization of VEGFR-2 in hair follicles during induced hair growth in mice.

    PubMed

    Wu, Xian-Jie; Jing, Jing; Lu, Zhong-Fa; Zheng, Min

    2018-06-16

    Recently, VEGFR-2 has been detected not only in vascular and lymphatic endothelial cells but also in some non-vascular endothelial cells, particularly human hair follicles, sebaceous glands, and sweat glands. In addition, VEGFR-2 has been confirmed to play direct roles in hair follicle keratinocyte regulation beyond simply angiogenesis. To elucidate whether VEGFR-2 activation plays a role in hair follicle cycling regulation, immunofluorescence of VEGFR-2 expression was performed during hair cycling of the dorsum of the mouse induced by hair plucking. We observed that staining for VEGFR-2 in hair follicles during anagen II and IV was much stronger than during anagen VI, catagen and telogen. During anagen II, intense staining for VEGFR-2 was observed on the keratinocyte strands of the hair follicle. Subsequently, we detected intense staining for VEGFR-2 in the ORS, IRS and hair bulb during anagen IV. Moderate staining for VEGFR-2 was detected in the ORS and hair bulb, but staining was most intense in IRS during anagen VI. During catagen, staining for VEGFR-2 in the IRS remained intense, while staining in the ORS and hair bulb was significantly weakened and was negative in the dermal papilla. During telogen, we detected VEGFR-2 in germ cells, cap, and club hair adjoining the epidermis. In conclusion, VEGFR-2 was expressed on the hair follicles of the dorsum of the mouse and varied in expression on the mouse hair follicles during hair cycling, suggesting that VEGFR-2 may exert roles in hair cycle regulation in hair follicles on the dorsum of mice.

  12. Bulge Region as a Putative Hair Follicle Stem Cells Niche: A Brief Review

    PubMed Central

    JOULAI VEIJOUYE, Sanaz; YARI, Abazar; HEIDARI, Fatemeh; SAJEDI, Nayereh; GHOROGHI MOGHANI, Fatemeh; NOBAKHT, Maliheh

    2017-01-01

    Background: Hair follicle stem cells exist in different sites. Most of the hair follicle stem cells are reside in niche called bulge. Bulge region is located between the opening of sebaceous gland and the attachment site of the arrector pili muscle. Methods: Data were collected using databases and resources of PubMed, Web of Science, Science Direct, Scopus, MEDLINE and their references from the earliest available published to identify English observational studies on hair follicle bulge region. Results: Bulge stem cells are pluripotent with high proliferative capacity. Specific markers allow the bulge cells to be isolated from mouse or human hair follicle. Stem cells isolated from bulge region are label retaining and slow cycling hence these cells are defined as label-retaining cells. Bulge cell populations, due to their plasticity nature are able to differentiate into distinct linage and could contribute in tissue regeneration. Conclusion: The current review discuss about bulge stem cells characteristics and biology including their cycle, location, plasticity, specific markers and regenerative nature. Also the differences between mouse and human hair follicles are investigated. PMID:29026781

  13. Reflectance spectroscopy for noninvasive evaluation of hair follicle stage

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhong, Xiewei; Liu, Xiuli; Zhu, Dan

    2015-05-01

    Hair follicle offers an excellent model for systems biology and regenerative medicine. So far, the stages of hair follicle growth have been evaluated by histological examination. In this work, a noninvasive spectroscopy was proposed by measuring the diffuse reflectance of mouse skin and analyzing the melanin value. Results show that the skin diffuse reflectance was relatively high when hair follicles were at the telogen stage and at the beginning of the anagen stage, and decreased with the progression of the anagen stage. When the hair follicle entered into the catagen stage, the diffuse reflectance gradually increased. The changes in the melanin content of skin had contrary dynamics. Substages of the hair follicle cycle could be distinguished by comparing the changes in melanin value with the histological examination. This study provided a new method for noninvasive evaluation of the hair follicle stage, and should be valuable for basic and therapeutic investigations on hair regeneration.

  14. Activin B promotes initiation and development of hair follicles in mice.

    PubMed

    Jia, Qin; Zhang, Min; Kong, Yanan; Chen, Shixuan; Chen, Yinghua; Wang, Xueer; Zhang, Lei; Lang, Weiya; Zhang, Lu; Zhang, Lin

    2013-01-01

    Activin B has been reported to promote the regeneration of hair follicles during wound healing. However, its role in the development and life cycle of hair follicles has not been elucidated. In our study, the effect of activin B on mouse hair follicles of cultured and neonatal mouse skin was investigated. In these models, PBS or activin B (5, 10 or 50 ng/ml) was applied, and hair follicle development was monitored. Hair follicle initiation and development was examined using hematoxylin and eosin staining, alkaline phosphatase activity staining, Oil Red O+ staining, and the detection of TdT-mediated dUTP-biotin nick end-labeling cell apoptosis. Activin B was found to efficiently induce the initiation of hair follicles in the skin of both cultured and neonatal mice and to promote the development of hair follicles in neonatal mouse skin. Moreover, activin-B-treated hair follicles were observed to enter the anagen stage from the telogen stage and to remain in the anagen stage. These results demonstrate that activin B promotes the initiation and development of hair follicles in mice.

  15. Hair follicle nevus in a 2-year old.

    PubMed

    Motegi, Sei-ichiro; Amano, Hiroo; Tamura, Atsushi; Ishikawa, Osamu

    2008-01-01

    We report a 2-year-old boy with an elastic soft, flatly elevated, skin-colored nodule on his nasal ala. Histologic examination revealed numerous small hair follicles in several stages of maturation in the dermis. Serial sections did not show any cartilage or a central epithelial lined cystic structure. Based on clinico-pathologic findings, we diagnosed this lesion as a hair follicle nevus. Hair follicle nevus is quite rare. Histologically, it is very important not to find cartilage or a central epithelial lined cystic structure for distinction from an accessory auricle and from a trichofolliculoma, respectively. Awareness of the clinical and pathologic characterization of hair follicle nevus is an aid to a correct diagnosis.

  16. The role of hair follicles in the percutaneous absorption of caffeine.

    PubMed

    Otberg, Nina; Patzelt, Alexa; Rasulev, Utkur; Hagemeister, Timo; Linscheid, Michael; Sinkgraven, Ronald; Sterry, Wolfram; Lademann, Jürgen

    2008-04-01

    utilized a selective closure technique of hair follicle orifices in vivo, for the comparison of interfollicular and follicular absorption rates of caffeine in humans. Every single hair follicle within a delimited area of skin was blocked with a microdrop of a special varnish-wax-mixture in vivo. Caffeine in solution was topically applied and transcutaneous absorption into the blood was measured by a new surface ionization mass spectrometry (SI/MS) technique, which enabled a clear distinction to be made between interfollicular and follicular penetration of a topically applied substance. Caffeine (3.75 ng ml(-1)) was detected in blood samples, 5 min after topical application, when the follicles remained open. When the follicles were blocked, caffeine was detectable after 20 min (2.45 ng ml(-1)). Highest values (11.75 ng caffeine ml(-1)) were found 1 h after application when the follicles were open. Our findings demonstrate that hair follicles are considerable weak spots in our protective sheath against certain hydrophilic drugs and may allow a fast delivery of topically applied substances.

  17. Aging of the Hair Follicle Pigmentation System

    PubMed Central

    Tobin, Desmond J

    2009-01-01

    Skin and hair phenotypes are powerful cues in human communication. They impart much information, not least about our racial, ethnic, health, gender and age status. In the case of the latter parameter, we experience significant change in pigmentation in our journey from birth to puberty and through to young adulthood, middle age and beyond. The hair follicle pigmentary unit is perhaps one of our most visible, accessible and potent aging sensors, with marked dilution of pigment intensity occurring long before even subtle changes are seen in the epidermis. This dichotomy is of interest as both skin compartments contain melanocyte subpopulations of similar embryologic (i.e., neural crest) origin. Research groups are actively pursuing the study of the differential aging of melanocytes in the hair bulb versus the epidermis and in particular are examining whether this is in part linked to the stringent coupling of follicular melanocytes to the hair growth cycle. Whether some follicular melanocyte subpopulations are affected, like epidermal melanocytes, by UV irradiation is not yet clear. A particular target of research into hair graying or canities is the nature of the melanocyte stem compartment and whether this is depleted due to reactive oxygen species-associated damage, coupled with an impaired antioxidant status, and a failure of melanocyte stem cell renewal. Over the last few years, we and others have developed advanced in vitro models and assay systems for isolated hair follicle melanocytes and for intact anagen hair follicle organ culture which may provide research tools to elucidate the regulatory mechanisms of hair follicle pigmentation. Long term, it may be feasible to develop strategies to modulate some of these aging-associated changes in the hair follicle that impinge particularly on the melanocyte populations. PMID:20927229

  18. Activating Hair Follicle Stem Cells via R-spondin2 to Stimulate Hair Growth.

    PubMed

    Smith, Andrew A; Li, Jingtao; Liu, Bo; Hunter, Daniel; Pyles, Malcolm; Gillette, Martin; Dhamdhere, Girija R; Abo, Arie; Oro, Anthony; Helms, Jill A

    2016-08-01

    Wnt signaling is required for the development of the hair follicle, and for inciting the growth (anagen) phase of the hair cycle. Most strategies to enhance Wnt signaling for hair growth create a state of constitutive Wnt activation, which leads to neoplastic transformation of the epithelial hair matrix. Using Axin2(LacZ/+) and Axin2(Cre/+)R26R(mTmG/+) reporter mice and RNA analyses, we show that Wnt signaling is elevated during anagen, is reduced at the onset of catagen, and can be reamplified in the skin and surrounding hair follicles via intradermal injection of recombinant R-spondin2 protein. Using Lgr5(LacZ/+) reporter mice, we demonstrate that this amplified Wnt environment leads to activation of leucine-rich repeat-containing G-protein coupled receptor 5-positive stem cells in the hair follicle. The onset of catagen is repressed by R-spondin2 injection, and the anagen phase persists. As a consequence, hair shafts grow longer. We conclude that R-spondin2 treatment activates hair follicle stem cells and therefore may have therapeutic potential to promote hair growth. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Expression of Mineralized Tissue Associated Proteins: Dentin Sialoprotein and Phosphophoryn in Rodent Hair Follicles

    PubMed Central

    Tang, Xu-na; Zhu, Ya-qin; Marcelo, Cynthia L.; Ritchie, Helena H.

    2012-01-01

    Background Mammalian hair development and tooth development are controlled by a series of reciprocal epithelial-mesenchymal interactions. Similar growth factors and transcription factors, such as fibroblast growth factor (FGF), sonic hedgehog homolog (SHH), bone morphogenetic proteins (BMPs) and Wnt10a, were reported to be involved in both of these interactions. Dentin sialoprotein (DSP) and phosphophoryn (PP) are the two major non-collagenous proteins secreted by odontoblasts that participate in dentin mineralization during tooth development. Because of striking similarities between tooth development and hair follicle development, we investigated whether DSP and/or PP proteins may also play a role in hair follicle development. Objective In this study, we examined the presence and location of DSP/PP proteins during hair follicle development. Methods Rat PP proteins were detected using immunohistochemical/immunofluorescent staining. DSP-PP mRNAs were detected by in situ hybridization with riboprobes. LacZ expression was detected in mouse tissues using a DSP-PP promoter-driven LUC in transgenic mice. Results We found that PP proteins and DSP-PP mRNAs are present in rat hair follicles. We also demonstrate that an 8 kb DSP-PP promoter is able to drive lacZ expression in hair follicles. Conclusion We have firmly established the presence of DSP/PP in mouse and rat hair follicles by immunohistochemical/immunofluorescent staining, in situ hybridization with riboprobes and transgenic mice studies. The expression of DSP/PP in hair follicles is the first demonstration that major mineralization proteins likely may also contribute to soft tissue development. This finding opens a new avenue for future investigations into the molecular-genetic management of soft tissue development. PMID:21908176

  20. Effects of gamma rays on the regeneration of murine hair follicles in the natural hair cycle.

    PubMed

    Sugaya, Kimihiko

    2017-09-01

    This review evaluates the effects of γ-rays on the regeneration of murine hair follicles in the natural hair cycle. A series of studies were performed to investigate this issue, in which the whole bodies of C57BL/10JHir mice in the 1st telogen phase of the hair cycle were irradiated with γ-rays. The dermis of the irradiated skin showed a decrease in hair follicle density and induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs in the 2nd and 3rd anagen phases. An increased frequency of hypopigmented hair bulbs was still observed in the later hair cycle at postnatal day 200. There was no significant difference in the number of stem cells in the hair bulge region between control and irradiated skin. These results show that the effects of γ-rays on the pigmentation of murine hair follicles are persistently carried over to later hair cycles, although those on the number and structure of hair follicles appear to be hidden by the effects of aging. Our findings may be important for understanding the mechanisms of the actions of stem cells on hair regeneration in connection with age-related phenotypes.

  1. ILK modulates epithelial polarity and matrix formation in hair follicles.

    PubMed

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-03-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical-basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.

  2. ILK modulates epithelial polarity and matrix formation in hair follicles

    PubMed Central

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-01-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical–basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage. PMID:24371086

  3. Expression of mineralized tissue associated proteins: dentin sialoprotein and phosphophoryn in rodent hair follicles.

    PubMed

    Tang, Xu-na; Zhu, Ya-qin; Marcelo, Cynthia L; Ritchie, Helena H

    2011-11-01

    Mammalian hair development and tooth development are controlled by a series of reciprocal epithelial-mesenchymal interactions. Similar growth factors and transcription factors, such as fibroblast growth factor (FGF), sonic hedgehog homolog (SHH), bone morphogenetic proteins (BMPs) and Wnt10a, were reported to be involved in both of these interactions. Dentin sialoprotein (DSP) and phosphophoryn (PP) are the two major non-collagenous proteins secreted by odontoblasts that participate in dentin mineralization during tooth development. Because of striking similarities between tooth development and hair follicle development, we investigated whether DSP and/or PP proteins may also play a role in hair follicle development. In this study, we examined the presence and location of DSP/PP proteins during hair follicle development. Rat PP proteins were detected using immunohistochemical/immunofluorescent staining. DSP-PP mRNAs were detected by in situ hybridization with riboprobes. LacZ expression was detected in mouse tissues using a DSP-PP promoter-driven LUC in transgenic mice. We found that PP proteins and DSP-PP mRNAs are present in rat hair follicles. We also demonstrate that an 8 kb DSP-PP promoter is able to drive lacZ expression in hair follicles. We have firmly established the presence of DSP/PP in mouse and rat hair follicles by immunohistochemical/immunofluorescent staining, in situ hybridization with riboprobes and transgenic mice studies. The expression of DSP/PP in hair follicles is the first demonstration that major mineralization proteins likely may also contribute to soft tissue development. This finding opens a new avenue for future investigations into the molecular-genetic management of soft tissue development. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Foxi3 deficiency compromises hair follicle stem cell specification and activation

    PubMed Central

    Shirokova, Vera; Biggs, Leah C.; Jussila, Maria; Ohyama, Takahiro; Groves, Andrew K.; Mikkola, Marja L.

    2017-01-01

    The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ. Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary hair germ marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary hair germ activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. PMID:26992132

  5. Extensive Hair Shaft Growth after Mouse Whisker Follicle Isolation, Cryopreservation and Transplantation in Nude Mice

    PubMed Central

    Cao, Wenluo; Li, Lingna; Tran, Benjamin; Kajiura, Satoshi; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M.

    2015-01-01

    We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles. PMID:26716690

  6. Extensive Hair Shaft Growth after Mouse Whisker Follicle Isolation, Cryopreservation and Transplantation in Nude Mice.

    PubMed

    Cao, Wenluo; Li, Lingna; Tran, Benjamin; Kajiura, Satoshi; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles.

  7. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  8. Ratchet effect for nanoparticle transport in hair follicles.

    PubMed

    Radtke, Matthias; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen; Netz, Roland R

    2017-07-01

    The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Stem cell dynamics in the hair follicle niche

    PubMed Central

    Rompolas, Panteleimon; Greco, Valentina

    2014-01-01

    Hair follicles are skin appendages of the mammalian skin that have the ability to periodically and stereotypically regenerate in order to continuously produce new hair over our lifetime. The ability of the hair follicle to regenerate is due to the presence of stem cells that along with other cell populations and non-cellular components, including molecular signals and extracellular material, make up a niche microenvironment. Mounting evidence suggests that the niche is critical for regulating stem cell behavior and thus the process of regeneration. Here we review the literature concerning past and current studies that have utilized mouse genetic models, combined with other approaches to dissect the molecular and cellular composition of the hair follicle niche. We also discuss our current understanding of how stem cells operate within the niche during the process of tissue regeneration and the factors that regulate their behavior. PMID:24361866

  10. Expression and function of glycogen synthase kinase-3 in human hair follicles.

    PubMed

    Yamauchi, Koichi; Kurosaka, Akira

    2010-05-01

    Beta-catenin is involved in the hair follicle morphogenesis and stem cell differentiation, and inhibition of glycogen synthase kinase-3 (GSK-3) increases beta-catenin concentration in the cytoplasm. To examine the effects of GSK-3 inhibition on the hair follicle epithelium, we first examined the expression of GSK-3 in plucked human hair follicles by RT-PCR and found GSK-3 expression in hair follicles. Western blotting with a GSK-3beta-specific antibody, Y174, also demonstrated GSK-3beta expression in the follicles. Moreover, GSK-3beta immunostaining with Y174 showed that GSK-3beta colocalized with hair follicle bulge markers. Contrary to GSK-3beta, GSK-3 alpha was widely expressed throughout the follicles when immunostained with a specific antibody, EP793Y. We then investigated the influence of GSK-3 inhibition. A GSK-3 inhibitor, BIO, promoted the growth of human outer root sheath cells, which could be cultured for up to four passages. The BIO-treated cells exhibited smaller and more undifferentiated morphology than control cells. Moreover, in organ culture of plucked human hair, outer root sheath cells in the middle of a hair follicle proliferated when cultured with BIO. These results indicate that GSK-3beta is expressed in hair bulge stem cells and BIO promotes the growth of ORS cells, possibly by regulating the GSK-3 signaling pathway.

  11. Analysis of the expression pattern of the carrier protein transthyretin and its receptor megalin in the human scalp skin and hair follicles: hair cycle-associated changes.

    PubMed

    Adly, Mohamed A

    2010-12-01

    Transthyretin is a serum and cerebrospinal fluid protein synthesized early in development by the liver, choroid plexus and several other tissues. It is a carrier protein for the antioxidant vitamins, retinol, and thyroid hormones. Transthyretin helps internalize thyroxine and retinol-binding protein into cells by binding to megalin, which is a multi-ligand receptor expressed on the luminal surface of various epithelia. We investigated the expression of transthyretin and its receptor megalin in the human skin; however, their expression pattern in the hair follicle is still to be elucidated. This study addresses this issue and tests the hypothesis that "the expression of transthyretin and megalin undergoes hair follicle cycle-dependent changes." A total of 50 normal human scalp skin biopsies were examined (healthy females, 53-62 years) using immunofluorescence staining methods and real-time PCR. In each case, 50 hair follicles were analyzed (35, 10, and 5 follicles in anagen, catagen, and telogen, respectively). Transthyretin and megalin were prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The concentrations of transthyretin and megalin were 0.12 and 0.03 Ul/ml, respectively, as indicated by PCR. The expression showed hair follicle cycle-associated changes i.e., strong expression during early and mature anagen, very weak expression during catagen and moderate expression during telogen. The expression values of these proteins in the anagen were statistically significantly higher than those of either catagen or telogen hair follicles (P ≤ 0.001). This study provides the first morphologic indication that transthyretin and megalin are variably expressed in the human scalp skin and hair follicles. It also reports variations in the expression of these proteins during hair follicle cycling. The clinical ramifications of these findings are open for further investigations.

  12. p53 Involvement in the Control of Murine Hair Follicle Regression

    PubMed Central

    Botchkarev, Vladimir A.; Komarova, Elena A.; Siebenhaar, Frank; Botchkareva, Natalia V.; Sharov, Andrei A.; Komarov, Pavel G.; Maurer, Marcus; Gudkov, Andrei V.; Gilchrest, Barbara A.

    2001-01-01

    p53 is a transcription factor mediating a variety of biological responses including apoptotic cell death. p53 was recently shown to control apoptosis in the hair follicle induced by ionizing radiation and chemotherapy, but its role in the apoptosis-driven physiological hair follicle regression (catagen) remains to be elucidated. Here, we show that p53 protein is strongly expressed and co-localized with apoptotic markers in the regressing hair follicle compartments during catagen. In contrast to wild-type mice, p53 knockout mice show significant retardation of catagen accompanied by significant decrease in the number of apoptotic cells in the hair matrix. Furthermore, p53 null hair follicles are characterized by alterations in the expression of markers that are encoded by p53 target genes and are implicated in the control of catagen (Bax, Bcl-2, insulin-like growth factor binding protein-3). These data suggest that p53 is involved in the control of apoptosis in the hair follicle during physiological regression and imply that p53 antagonists may be useful for the management of hair growth disorders characterized by premature entry into catagen, such as androgenetic alopecia, alopecia areata, and telogen effluvium. PMID:11395365

  13. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation

    PubMed Central

    Tsai, Su-Yi; Sennett, Rachel; Rezza, Amélie; Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Najam, Sara; Rendl, Michael

    2014-01-01

    Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18Cre knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2+ dermal condensates initiate normally, however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events. PMID:24309208

  14. 7-Phloroeckol promotes hair growth on human follicles in vitro.

    PubMed

    Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon

    2014-08-01

    7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.

  15. A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle.

    PubMed

    Buscone, Serena; Mardaryev, Andrei N; Raafs, Bianca; Bikker, Jan W; Sticht, Carsten; Gretz, Norbert; Farjo, Nilofer; Uzunbajakava, Natallia E; Botchkareva, Natalia V

    2017-09-01

    Though devices for hair growth based on low levels of light have shown encouraging results, further improvements of their efficacy is impeded by a lack of knowledge on the exact molecular targets that mediate physiological response in skin and hair follicle. The aim of this study was to investigate the expression of selected light-sensitive receptors in the human hair follicle and to study the impact of UV-free blue light on hair growth ex vivo. The expression of Opsin receptors in human skin and hair follicles has been characterized using RT-qPCR and immunofluorescence approaches. The functional significance of Opsin 3 was assessed by silencing its expression in the hair follicle cells followed by a transcriptomic profiling. Proprietary LED-based devices emitting two discrete visible wavelengths were used to access the effects of selected optical parameters on hair growth ex vivo and outer root sheath cells in vitro. The expression of OPN2 (Rhodopsin) and OPN3 (Panopsin, Encephalopsin) was detected in the distinct compartments of skin and anagen hair follicle. Treatment with 3.2 J/cm 2 of blue light with 453 nm central wavelength significantly prolonged anagen phase in hair follicles ex vivo that was correlated with sustained proliferation in the light-treated samples. In contrast, hair follicle treatment with 3.2 J/cm 2 of 689 nm light (red light) did not significantly affect hair growth ex vivo. Silencing of OPN3 in the hair follicle outer root sheath cells resulted in the altered expression of genes involved in the control of proliferation and apoptosis, and abrogated stimulatory effects of blue light (3.2 J/cm 2 ; 453 nm) on proliferation in the outer root sheath cells. We provide the first evidence that (i) OPN2 and OPN3 are expressed in human hair follicle, and (ii) A 453 nm blue light at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. Lasers Surg. Med. 49:705-718, 2017. © 2017 Wiley

  16. Limitations of human occipital scalp hair follicle organ culture for studying the effects of minoxidil as a hair growth enhancer.

    PubMed

    Magerl, Markus; Paus, Ralf; Farjo, Nilofer; Müller-Röver, Sven; Peters, Eva M J; Foitzik, Kerstin; Tobin, Desmond J

    2004-10-01

    Minoxidil induces new hair growth in approximately one-third of patients with androgenetic alopecia after 1 year of treatment. With several conflicting reports in the literature based on small-scale studies, the current study aimed to clarify whether organ culture of human scalp anagen VI hair follicles is a suitable in vitro test system for reproducing, and experimentally dissecting, the recognized in vivo hair-growth-promoting capacity of minoxidil. Hair shaft elongation was studied in terminal anagen VI hair follicles microdissected from the occipital scalp of 36 healthy adults. A total of 2300 hair follicles, approximately 65 per individual, were tested using modifications of a basic organ culture protocol. It is shown here that minoxidil does not significantly increase hair shaft elongation or the duration of anagen VI in ex vivo culture despite several enhancements on the conventional methodology. This disparity to what is seen clinically in minoxidil responders may be explained by the following: (i) use of occipital (rather than frontotemporal or vertex) hair follicles; (ii) use of, already maximally growing, anagen VI hair follicles; (iii) a predominance of hair follicles from minoxidil unresponsive-donors; (iv) use of minoxidil rather than its sulfate metabolite; and/or (v) use of a suboptimal minoxidil dosage. This disparity questions the usefulness of standard human hair follicle organ culture in minoxidil research. Unexpectedly, minoxidil even inhibited hair shaft elongation in the absence of insulin, which may indicate that the actual hair-growth-modulatory effects of minoxidil depend on the concomitant local presence/absence of other growth modulators.

  17. Gene expression profiling in psoriatic scalp hair follicles: clobetasol propionate shampoo 0.05% normalizes psoriasis disease markers.

    PubMed

    Aubert, J; Reiniche, P; Fogel, P; Poulin, Y; Lui, H; Lynde, C; Shapiro, J; Villemagne, H; Soto, P; Voegel, J J

    2010-11-01

    Clobetasol propionate shampoo is effective and safe in treatment of scalp psoriasis (SP). Gene expression profiling of psoriatic skin biopsies led to the identification of numerous disease-related genes. However, it remained unknown whether the gene expression profile of hair follicles of SP patients was also affected. To determine whether psoriasis-related genes are differentially regulated in the hair follicles of SP patients and whether the modulation of these genes can be correlated with clinical severity scores. A single arm, open study was conducted in three centres. SP patients received daily treatment with clobetasol propionate shampoo. At Baseline, Weeks 2 and 4, investigators assessed clinical severity parameters and collected scalp hair follicles in anagen phase. Total RNA extracted from hair follicles was used to determine the expression level of 44 genes, which were reported previously to be upregulated in the skin of psoriasis patients. RNA of good quality and sufficient quantity was obtained from hair follicles of psoriasis patients and healthy volunteers (HV). The expression level of 10 inflammation-related genes was significantly increased in psoriatic hair follicles. The patient's exploratory transcriptomic score, defined as the mean fold modulation of these 10 genes compared with HV, correlated with clinical severity scores. Clobetasol propionate shampoo was effective in decreasing both the exploratory transcriptomics and the clinical severity scores. Hair follicles of SP patients are affected by the inflammatory process. The change in the expression level of inflammation-related genes correlates with the severity of the disease. © 2010 Galderma R&D. Journal of the European Academy of Dermatology and Venereology © 2010 European Academy of Dermatology and Venereology.

  18. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    PubMed

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia. (c) 2009 S. Karger AG, Basel.

  19. Regenerative metamorphosis in hairs and feathers: follicle as a programmable biological printer

    PubMed Central

    Oh, Ji Won; Lin, Sung-Jan; Plikus, Maksim V.

    2015-01-01

    Present-day hairs and feathers are marvels of biological engineering perfected over 200 million years of convergent evolution. Prominently, both follicle types coevolved regenerative cycling, wherein active filament making (anagen) is intermitted by a phase of relative quiescence (telogen). Such regenerative cycling enables follicles to “reload” their morphogenetic program and make qualitatively different filaments in the consecutive cycles. Indeed, many species of mammals and birds undergo regenerative metamorphosis, prominently changing their integument between juvenile and adult forms. This phenomenon is inconspicuous in mice, which led to the conventional perception that hair type is hardwired during follicle morphogenesis and cannot switch. A series of recent works by Chi and Morgan change this perception, and show that many mouse follicles naturally switch hair morphologies, for instance from “wavy” zigzag to straight awl, in the second growth cycle. A series of observations and genetic experiments show that back and forth hair type switching depends on the number of cells in the follicle's dermal papilla, with the critical threshold being around 40-50 cells. Pigmentation is another parameter that hair and feather follicles can reload between cycles, and even midway through anagen. Recent works show that hair and feather pigmentation “printing” programs coevolved to rely on pulsed expression of Agouti, a melanocortin receptor-1 antagonist, in the follicular mesenchyme. Here, we discuss broader implications of hair and feather regenerative plasticity. PMID:25557541

  20. Regeneration of Murine Hair Follicles is Inhibited by Low-Dose-Rate Gamma Irradiation.

    PubMed

    Sugaya, Kimihiko; Hirobe, Tomohisa; Ishihara, Yoshie; Inoue, Sonoe

    2016-10-01

    To determine whether the effects of low-dose-rate gamma (γ) irradiation are identifiable in the regeneration of murine hair follicles, we irradiated whole bodies of C57BL/10JHir mice in the first telogen phase of the hair cycle with 137 Cs γ-rays. The mice were examined for effects on hair follicles, including number, morphology, and pigmentation in the second anagen phase. Effects of γ-radiation on melanocyte stem cells were also investigated by the indirect immunolabeling of tyrosinase-related protein 2 (TRP2). Irradiated skin showed a decrease in hair follicle density and the induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs. There was a small, but not significant, change in the number of TRP2-positive melanocyte stem cells in the hair bulge region of the irradiated skin. These results suggest that low-dose rate γ-irradiation does not deplete melanocyte stem cells, but can damage stem cells and progenitors for both keratinocytes and melanocytes, thereby affecting the structure and pigmentation of regenerated hair follicles in the 2 nd anagen phase.

  1. Hair-follicle Transplant Into Chronic Ulcers: A New Graft Concept.

    PubMed

    Martínez Martínez, M L; Escario Travesedo, E; Jiménez Acosta, F

    Chronic venous leg ulcers are a major therapeutic challenge in clinical practice, and the search for new approaches to improve wound healing is essential. Many ulcers do not heal with traditional treatment using compression, debridement, and dressings. Skin-grafts variants, such as pinch grafts, punch grafts, split- or full-thickness skin grafts, and grafts derived from cells cultured in the laboratory, are among the most widely used options in ulcers that do not heal. In recent years, numerous studies have brought to our attention the important role of the hair follicle in the healing process of cutaneous wounds. Putting knowledge into practice, hair follicles from the scalp have been used in punch-type grafts transplanted to the base of chronic ulcers to stimulate healing. Results appear to be better than those with traditional hairless punch grafts, opening new lines of treatment for recalcitrant chronic venous ulcers. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Hair follicle nevus occurring in frontonasal dysplasia: an electron microscopic observation.

    PubMed

    Kuwahara, H; Lao, L M; Kiyohara, T; Kumakiri, M; Igawa, H

    2001-06-01

    We report a rare hair follicle nevus that occurred in a three-month-old Japanese boy with mild frontonasal dysplasia. It had been present since birth. Histologically, numerous tiny vellus hair follicles were found within the dermis. The constituent cells of these follicles showed the features of follicular germ cells under the electron microscope. The fibroblasts around the follicles were active and merged with the colloid substance. Many myofibroblasts were found in a collagenous stroma in the atrophic lesion of the frontonasal dysplasia.

  3. The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles

    PubMed Central

    Li, Lishi; Ginty, David D

    2014-01-01

    In mouse hairy skin, lanceolate complexes associated with three types of hair follicles, guard, awl/auchene and zigzag, serve as mechanosensory end organs. These structures are formed by unique combinations of low-threshold mechanoreceptors (LTMRs), Aβ RA-LTMRs, Aδ-LTMRs, and C-LTMRs, and their associated terminal Schwann cells (TSCs). In this study, we investigated the organization, ultrastructure, and maintenance of longitudinal lanceolate complexes at each hair follicle subtype. We found that TSC processes at hair follicles are tiled and that individual TSCs host axonal endings of more than one LTMR subtype. Electron microscopic analyses revealed unique ultrastructural features of lanceolate complexes that are proposed to underlie mechanotransduction. Moreover, Schwann cell ablation leads to loss of LTMR terminals at hair follicles while, in contrast, TSCs remain associated with hair follicles following skin denervation in adult mice and, remarkably, become re-associated with newly formed axons, indicating a TSC-dependence of lanceolate complex maintenance and regeneration in adults. DOI: http://dx.doi.org/10.7554/eLife.01901.001 PMID:24569481

  4. The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles.

    PubMed

    Li, Lishi; Ginty, David D

    2014-02-25

    In mouse hairy skin, lanceolate complexes associated with three types of hair follicles, guard, awl/auchene and zigzag, serve as mechanosensory end organs. These structures are formed by unique combinations of low-threshold mechanoreceptors (LTMRs), Aβ RA-LTMRs, Aδ-LTMRs, and C-LTMRs, and their associated terminal Schwann cells (TSCs). In this study, we investigated the organization, ultrastructure, and maintenance of longitudinal lanceolate complexes at each hair follicle subtype. We found that TSC processes at hair follicles are tiled and that individual TSCs host axonal endings of more than one LTMR subtype. Electron microscopic analyses revealed unique ultrastructural features of lanceolate complexes that are proposed to underlie mechanotransduction. Moreover, Schwann cell ablation leads to loss of LTMR terminals at hair follicles while, in contrast, TSCs remain associated with hair follicles following skin denervation in adult mice and, remarkably, become re-associated with newly formed axons, indicating a TSC-dependence of lanceolate complex maintenance and regeneration in adults. DOI: http://dx.doi.org/10.7554/eLife.01901.001.

  5. Comparison of hair follicle histology between horses with pituitary pars intermedia dysfunction and excessive hair growth and normal aged horses.

    PubMed

    Innerå, Marie; Petersen, Annette D; Desjardins, Danielle R; Steficek, Barbara A; Rosser, Edmund J; Schott, Harold C

    2013-02-01

    Pituitary pars intermedia dysfunction (PPID) in older equids is commonly recognized by a long hair coat that fails to shed. The aim of this study was to compare hair follicle stages in PPID-affected horses with excessively long hair coats with the stages of normal aged horses (controls) and to compare hair follicle stages in PPID-affected horses after 6 months of treatment with pergolide mesylate with those of control horses. Eight PPID-affected horses and four normal, age-matched, control horses. Skin biopsies were collected from the neck and rump of PPID-affected and control horses. A diagnosis of PPID was established based on hair coat changes and supportive overnight dexamethasone suppression test results. Skin biopsies were repeated after 6 months of treatment with pergolide. The number of hair follicles in anagen (A) or telogen (T) was counted for each skin biopsy using transverse sections. Pretreatment biopsies had a greater percentage of A follicles (neck 96%, rump 95%) and a lower percentage of T follicles (neck 4%, rump 5%) in PPID-affected horses than in control horses (A, neck 15%, rump 25%; and T, neck 85%, rump 75%). After treatment with pergolide, all PPID-affected horses had improved shedding, and the percentages of A follicles (neck 69%, rump 70%) and T follicles (neck 31%, rump 30%) were not different from untreated control horses (A, neck 68%, rump 82%; and T, neck 32%, rump 18%). These findings document that excessive hair growth (hypertrichosis) in PPID-affected horses is due to persistence of hair follicles in A. Furthermore, treatment with pergolide improved shedding and reduced the percentage of A follicles in PPID-affected horses. © 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD.

  6. HAIR FOLLICLE CHARACTERISTICS AS EARLY MARKER OF TYPE 2 DIABETES

    PubMed Central

    Miranda, J. Jaime; Taype-Rondan, Alvaro; Tapia, Jose Carlos; Gastanadui-Gonzalez, Maria Gabriela; Roman-Carpio, Ricardo

    2016-01-01

    Type 2 Diabetes mellitus (DM2) includes a continuum of metabolic disorders characterized by hyperglycemia that causes several chronic long-term complications such as coronary artery disease, peripheral arterial disease, nephropathy, and neuropathy. The hair follicle could reveal signs of early vascular impairment, yet its relationship to early metabolic injuries has been largely ignored. We propose that in earlier stages of the continuum of DM2-related metabolic disorders, a group of susceptible patients who do not yet meet the diagnostic criteria to be considered as persons with DM2 may present chronic vascular impairment and end organ damage, including hair follicle damage, which can be evaluated to identify an early risk marker. This hypothesis is based in the association found between insulin resistance and alopecia in non-diabetic persons, and the hair loss on the lower limbs as a manifestation of long-term peripheral arterial disease among subjects with DM2. In order to test this hypothesis, studies are required to evaluate if hair follicle characteristics are related to and can predict hyperglycemic complications, and if they do so, which feature of the hair follicle, such as hair growth, best characterizes such DM2-related conditions. If this hypothesis were proven to be true, significant advances towards a personalized approach for early prevention strategies and management of DM2 would be made. By focusing on the hair follicles, early stages of metabolic-related organ damage could be identified using non-invasive low-cost techniques. In so doing, this approach could provide early identification of DM2-susceptible individuals and lead to the early initiation of adequate primary prevention strategies to reduce or avoid the onset of large internal organ damage. PMID:27692164

  7. Hair follicle characteristics as early marker of Type 2 Diabetes.

    PubMed

    Miranda, J Jaime; Taype-Rondan, Alvaro; Tapia, Jose Carlos; Gastanadui-Gonzalez, Maria Gabriela; Roman-Carpio, Ricardo

    2016-10-01

    Type 2 Diabetes mellitus (DM2) includes a continuum of metabolic disorders characterized by hyperglycemia that causes several chronic long-term complications such as coronary artery disease, peripheral arterial disease, nephropathy, and neuropathy. The hair follicle could reveal signs of early vascular impairment, yet its relationship to early metabolic injuries has been largely ignored. We propose that in earlier stages of the continuum of DM2-related metabolic disorders, a group of susceptible patients who do not yet meet the diagnostic criteria to be considered as persons with DM2 may present chronic vascular impairment and end organ damage, including hair follicle damage, which can be evaluated to identify an early risk marker. This hypothesis is based in the association found between insulin resistance and alopecia in non-diabetic persons, and the hair loss on the lower limbs as a manifestation of long-term peripheral arterial disease among subjects with DM2. In order to test this hypothesis, studies are required to evaluate if hair follicle characteristics are related to and can predict hyperglycemic complications, and if they do so, which feature of the hair follicle, such as hair growth, best characterizes such DM2-related conditions. If this hypothesis were proven to be true, significant advances towards a personalized approach for early prevention strategies and management of DM2 would be made. By focusing on the hair follicles, early stages of metabolic-related organ damage could be identified using non-invasive low-cost techniques. In so doing, this approach could provide early identification of DM2-susceptible individuals and lead to the early initiation of adequate primary prevention strategies to reduce or avoid the onset of large internal organ damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Hybrid eccrine gland and hair follicle hamartoma: a new entity of adnexal nevus.

    PubMed

    Luo, Di-Qing; Huang, Chang-Zheng; Xie, Wen-Lin; Xu, Feng-Feng; Mo, Li-Qiu

    2015-02-01

    Eccrine nevus shows increase in number or size of eccrine glands, whereas hair follicle nevus is composed of densely packed normal vellus hairs, and eccrine-pilar angiomatous nevus reveals increase of eccrine, pilar, and angiomatous structures. No case with increased number of both eccrine glands and hair follicles only in the dermis has been previously reported. A 10-month-old girl presented with cutaneous hamartoma with overlying skin hyperpigmentation on her left hypochondrium since 3 months of age, in whom the lesion was completely excised. Histopathology demonstrated evidently increased number of both eccrine glands and hair follicles in the dermis with reactive hyperplasia of collagen fibers. No recurrence occurred after the tumor was completely excised. A term "hybrid eccrine gland and hair follicle hamartoma" is proposed for this unique lesion.

  9. Disruption of the hedgehog signaling pathway contributes to the hair follicle cycling deficiency in Vdr knockout mice.

    PubMed

    Teichert, Arnaud; Elalieh, Hashem; Bikle, Daniel

    2010-11-01

    Mice null for the Vitamin D receptor (VdrKO) have a disrupted first hair follicle cycle and aborted subsequent hair follicle cycling. We examined the expression of different markers and mediators of hair follicle cycling in the hair follicle of the VdrKO mouse during days 13-22 when the hair follicle normally initiates and completes the first catagen. We compared the expression of those genes in mice with a nonsense mutation in hairless (Rhino), which have a similar alopecia phenotype, and to Cyp27b1 null mice which are deficient in the production of 1,25(OH)2D3, the Vdr ligand, but display normal hair follicle cycling. Our results demonstrate the down regulation of hair follicle markers and the alteration of expression of hedgehog (Hh), Wnt, Fgf, and Tgfbeta pathways in VdrKO and Rhino mice, but not in Cyp27b1KO mice. Treatment of VdrKO mice with an agonist to the Hh pathway partially restored hair follicle cycling, suggesting a role of this pathway in the regulation of hair follicle cycling by VDR. These results suggest that Vdr regulates directly or indirectly the expression of genes required for hair follicle cycling, including Hh signaling, independent of 1,25(OH)2D3. (c) 2010 Wiley-Liss, Inc.

  10. Hair Follicle Miniaturization in a Woolly Hair Nevus: A Novel "Root" Perspective for a Mosaic Hair Disorder.

    PubMed

    Veraitch, Ophelia; Perez, Alfonso; Hoque, Shamali R; Vizcay-Barrena, Gema; Fleck, Roland A; Fenton, David A; Stefanato, Catherine M

    2016-03-01

    Woolly hair nevus is a mosaic disorder characterized by unruly, tightly curled hair in a circumscribed area of the scalp. This condition may be associated with epidermal nevi. We describe an 11-year-old boy who initially presented with multiple patches of woolly hair and with epidermal nevi on his left cheek and back. He had no nail, teeth, eye, or cardiac abnormalities. Analysis of plucked hairs from patches of woolly hair showed twisting of the hair shaft and an abnormal hair cuticle. Histopathology of a woolly hair patch showed diffuse hair follicle miniaturization with increased vellus hairs.

  11. Trps1 deficiency inhibits the morphogenesis of secondary hair follicles via decreased Noggin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yujing; Nakanishi, Masako; Sato, Fuyuki

    Highlights: • The number of secondary hair follicles is reduced by half in Trps1 KO embryonic skin compared to wild-type skin. • Noggin expression is significantly decreased and BMP signaling is promoted in Trps1 KO embryonic skin. • Treatment with a Noggin or BMP inhibitor rescued the decreased number of hair follicles in Trps1 KO skin graft cultures. • Cell proliferation and apoptosis of the epidermis were normalized by Noggin treatment. - Abstract: A representative phenotype of patients with tricho-rhino-phalangeal syndrome (TRPS) is sparse hair. To understand the developmental defects of these patient’s hair follicles, we analyzed the development ofmore » hair follicles histologically and biochemically using Trps1 deficient (KO) mice. First, we compared the numbers of primary hair follicles in wild-type (WT) and KO embryos at different developmental stages. No differences were observed in the E14.5 skins of WT and KO mice. However, at later time points, KO fetal skin failed to properly develop secondary hair follicles, and the number of secondary hair follicles present in E18.5 KO skin was approximately half compared to that of WT skin. Sonic hedgehog expression was significantly decreased in E17.5 KO skin, whereas no changes were observed in Eda/Edar expression in E14.5 or E17.5 skins. In addition, Noggin expression was significantly decreased in E14.5 and E17.5 KO skin compared to WT skin. In parallel with the suppression of Noggin expression, BMP signaling was promoted in the epidermal cells of KO skins compared to WT skins as determined by immunohistochemistry for phosphorylated Smad1/5/8. The reduced number of secondary hair follicles was restored in skin graft cultures treated with a Noggin and BMP inhibitor. Furthermore, decreased cell proliferation, and increased apoptosis in KO skin was rescued by Noggin treatment. Taken together, we conclude that hair follicle development in Trps1 KO embryos is impaired directly or indirectly by decreased

  12. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.

  13. Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles

    PubMed Central

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-01-01

    Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  14. Preliminary analysis of facial hair follicle distribution for forensic identification using OCT

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Wang, Chengming; Li, Zhigang; Xie, Lanchi; Guo, Jingjing; Xu, Lei; Yan, Yuwen; Li, Zhihui; Huang, Wei; Xu, Xiaojing

    2018-02-01

    In most deaths caused by explosions, the fragment of explosive remained on the victim's body can provide valuable clues to forensic investigation. However, the examination of the skin and appendages at the scene of explosion, which may reveal clue to the identity of an individual, has not been extensively studied. Compared with visual appearance of the epidermis surface that affected by various wounds, skin adnexa embedded in the dermis has a more stable morphology as an inner biometric. Hair follicles are formed when a fetus is 5 months old and distributed fairly evenly throughout the body, with the exception of hairless palms and soles. Therefore, we focus on the distribution of hair follicles in order to infer information of age, gender, and race/ethnicity. Optical coherence tomography (OCT) is a novel forensic imaging method, which achieves non-destructive, high-resolution and most importantly cross-sectional imaging. In this study, we design and develop a custom-built spectral-domain three-dimensional (3D) OCT system with a portable handheld probe to detect and reconstruct the hair follicles in the facial skin. We test our system on the forehead and preauricular skin of 2 adult volunteers and demonstrate the high quality visualization of hair follicles beneath the epidermis. The diameter, orientation, density and shape of hair follicles can be extracted from the 3D volume data. The preliminary analysis suggests that these parameters vary from different part of body and have individual difference. Eventually, we believe 3D OCT is promising tool for the examination of hair follicles for forensic purpose.

  15. [Effect of Tribulus terrestris extract on melanocyte-stimulating hormone expression in mouse hair follicles].

    PubMed

    Yang, Liu; Lu, Jian-wei; An, Jing; Jiang, Xuan

    2006-12-01

    To observe the effect of Tribulus terrestris extract on melanocyte stimulating hormone (MSH) expression in C57BL/6J mouse hair follicles, and investigate the role of Tribulus terrestris extract in activation, proliferation, epidermal migration of dormant hair follicle melanocytes. The aqueous extract of Tribulus terrestris was administered orally in specific pathogen-free C57BL/6J mouse at the daily dose equivalent to 1 g/1 kg in adult human, and the expression and distribution of MSH in the mouse hair follicles was observed with immunohistochemistry. The positivity rate of MSH expression in the hair follicle melanocytes was 75% in mice treated with the extract, significantly higher than the rate of only 18.75% in the control group (P<0.01). The aqueous extract of Tribulus terrestris can significantly increase MSH expression in the hair follicle melanocytes by activating tyrosinase activity and promoting melanocyte proliferation, melanine synthesis, and epidermal migration of dormant melanocytes.

  16. Proteomic Analysis of Hair Follicles

    NASA Astrophysics Data System (ADS)

    Ishioka, Noriaki; Terada, Masahiro; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Majima, Hideyuki J.; Higashibata, Akira; Mukai, Chiaki

    2013-02-01

    Hair root cells actively divide in a hair follicle, and they sensitively reflect physical conditions. By analyzing the human hair, we can know stress levels on the human body and metabolic conditions caused by microgravity environment and cosmic radiation. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. During long-term flights, the physiological effects on astronauts include muscle atrophy and bone calcium loss. Furthermore, radiation and psychological effects are important issue to consider. Therefore, an understanding of the effects of the space environment is important for developing countermeasures against the effects experienced by astronauts. In this experiment, we identify functionally important target proteins that integrate transcriptome, mineral metabolism and proteome profiles from human hair. To compare the protein expression data with the gene expression data from hair roots, we developed the protein processing method. We extracted the protein from five strands of hair using ISOGEN reagents. Then, these extracted proteins were analyzed by LC-MS/MS. These collected profiles will give us useful physiological information to examine the effect of space flight.

  17. Three different clinical faces of the same histopathological entity: hair follicle nevus, trichofolliculoma and accessory tragus*

    PubMed Central

    Karabulut, Yasemin Yuyucu; Şenel, Engin; Karabulut, Hacı Halil; Dölek, Yasemin

    2015-01-01

    BACKGROUND Hair follicle nevus is a rare, congenital hamartoma with follicular differentiation characterized histologically by numerous, tiny, mature hair follicles. Trichofolliculoma, the histopathological features of which are quite similar to those of hair follicle nevus, is also a hamartoma that differs from hair follicle. Accessory tragus is a relatively common, benign congenital abnormality of the external ear with an incidence rate of 1 to 10 per 1,000 live births. OBJECTIVE This study seeks to assess the discriminatory value of currently available, histological criteria in the differential diagnosis of hair follicle nevus, accessory tragi and trichofolliculoma. METHODS Twenty-one patients comprising 9 cases of hair follicle nevus, 8 accessory tragi patients and 4 trichofolliculoma cases, were recruited to perform the study. RESULTS There were 10 males and 11 females in the study group. No significant difference was observed between the three study groups in terms of age, gender or histopathological parameters such as density of hair follicles, subcutaneous fat score and presence of connective tissue framework. Cartilaginous component was seen in 8 cases that were diagnosed as accessory tragi, while central cyst and radiating hair follicles were seen in 4 cases which were diagnosed as trichofolliculoma. CONCLUSION The results of our study showed that diagnostic discrimination of these diseases could be made only with the clinicopathologic correlation because of their clinical and histopathological similarities. PMID:26375221

  18. Three different clinical faces of the same histopathological entity: hair follicle nevus, trichofolliculoma and accessory tragus.

    PubMed

    Karabulut, Yasemin Yuyucu; Şenel, Engin; Karabulut, Hacı Halil; Dölek, Yasemin

    2015-01-01

    Hair follicle nevus is a rare, congenital hamartoma with follicular differentiation characterized histologically by numerous, tiny, mature hair follicles. Trichofolliculoma, the histopathological features of which are quite similar to those of hair follicle nevus, is also a hamartoma that differs from hair follicle. Accessory tragus is a relatively common, benign congenital abnormality of the external ear with an incidence rate of 1 to 10 per 1,000 live births. This study seeks to assess the discriminatory value of currently available, histological criteria in the differential diagnosis of hair follicle nevus, accessory tragi and trichofolliculoma. Twenty-one patients comprising 9 cases of hair follicle nevus, 8 accessory tragi patients and 4 trichofolliculoma cases, were recruited to perform the study. There were 10 males and 11 females in the study group. No significant difference was observed between the three study groups in terms of age, gender or histopathological parameters such as density of hair follicles, subcutaneous fat score and presence of connective tissue framework. Cartilaginous component was seen in 8 cases that were diagnosed as accessory tragi, while central cyst and radiating hair follicles were seen in 4 cases which were diagnosed as trichofolliculoma. The results of our study showed that diagnostic discrimination of these diseases could be made only with the clinicopathologic correlation because of their clinical and histopathological similarities.

  19. KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin

    PubMed Central

    Richardson, Gavin D.; Bazzi, Hisham; Fantauzzo, Katherine A.; Waters, James M.; Crawford, Heather; Hynd, Phil; Christiano, Angela M.; Jahoda, Colin A. B.

    2009-01-01

    Summary A key initial event in hair follicle morphogenesis is the localised thickening of the skin epithelium to form a placode, partitioning future hair follicle epithelium from interfollicular epidermis. Although many developmental signalling pathways are implicated in follicle morphogenesis, the role of epidermal growth factor (EGF) and keratinocyte growth factor (KGF, also known as FGF7) receptors are not defined. EGF receptor (EGFR) ligands have previously been shown to inhibit developing hair follicles; however, the underlying mechanisms have not been characterised. Here we show that receptors for EGF and KGF undergo marked downregulation in hair follicle placodes from multiple body sites, whereas the expression of endogenous ligands persist throughout hair follicle initiation. Using embryonic skin organ culture, we show that when skin from the sites of primary pelage and whisker follicle development is exposed to increased levels of two ectopic EGFR ligands (HBEGF and amphiregulin) and the FGFR2(IIIb) receptor ligand KGF, follicle formation is inhibited in a time- and dose-dependent manner. We then used downstream molecular markers and microarray profiling to provide evidence that, in response to KGF and EGF signalling, epidermal differentiation is promoted at the expense of hair follicle fate. We propose that hair follicle initiation in placodes requires downregulation of the two pathways in question, both of which are crucial for the ongoing development of the interfollicular epidermis. We have also uncovered a previously unrecognised role for KGF signalling in the formation of hair follicles in the mouse. PMID:19474150

  20. Fluorine-induced apoptosis and lipid peroxidation in human hair follicles in vitro.

    PubMed

    Wang, Zheng-hui; Li, Xiao-li; Yang, Zhuang-qun; Xu, Min

    2010-12-01

    Fluoride is an essential trace element for human body; however, exposure to high amounts of fluoride has been documented to be correlated with an increasing risk of hair loss. To date, little is known about the mechanism(s) of how fluoride affects hair follicles. Here, we demonstrated that middle (1.0 mmol/L) and high (10.0 mmol/L) concentrations of sodium fluoride (NaF) significantly inhibited hair follicle elongation in vitro, but low NaF (0.1 mmol/L) showed little influence. Moreover, treatment with high levels of NaF resulted in a marked increase in terminal dUTP nick end labeling-positive cells in the outer layer of the outer root sheath, the dermal sheath, and the lower bulb matrix surrounding dermal papilla. Furthermore, the enhanced apoptosis was coupled with an increased oxidative stress manifested as higher malondialdehyde content. Additionally, the presence of selenium considerably antagonized the effects of middle NaF on hair follicles, with regard to either the suppression of hair growth or the induction of oxidative stress and apoptosis. In conclusion, exposure to high levels of fluoride compromises hair follicle growth and accelerate cell apoptosis in vitro. The toxicity of fluoride can be reduced by selenium, at least partially via the suppression of intracellular oxidative stress.

  1. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding

    PubMed Central

    Gay, Denise; Kwon, Ohsang; Zhang, Zhikun; Spata, Michelle; Plikus, Maksim V; Holler, Phillip D; Ito, Mayumi; Yang, Zaixin; Treffeisen, Elsa; Kim, Chang D; Nace, Arben; Zhang, Xiaohong; Baratono, Sheena; Wang, Fen; Ornitz, David M; Millar, Sarah E; Cotsarelis, George

    2014-01-01

    Understanding molecular mechanisms for regeneration of hair follicles provides new opportunities for developing treatments for hair loss and other skin disorders. Here we show that fibroblast growth factor 9 (Fgf9), initially secreted by γδ T cells, modulates hair follicle regeneration after wounding the skin of adult mice. Reducing Fgf9 expression decreases this wound-induced hair neogenesis (WIHN). Conversely, overexpression of Fgf9 results in a two- to threefold increase in the number of neogenic hair follicles. We found that Fgf9 from γδ T cells triggers Wnt expression and subsequent Wnt activation in wound fibroblasts. Through a unique feedback mechanism, activated fibroblasts then express Fgf9, thus amplifying Wnt activity throughout the wound dermis during a crucial phase of skin regeneration. Notably, humans lack a robust population of resident dermal γδ T cells, potentially explaining their inability to regenerate hair after wounding. These findings highlight the essential relationship between the immune system and tissue regeneration. The importance of Fgf9 in hair follicle regeneration suggests that it could be used therapeutically in humans. PMID:23727932

  2. A case of unilateral, systematized linear hair follicle nevi associated with epidermal nevus-like lesions.

    PubMed

    Ikeda, Shigaku; Kawada, Juri; Yaguchi, Hitoshi; Ogawa, Hideoki

    2003-01-01

    Multiple hair follicle nevi are an extremely rare condition. In 1998, a case of unilateral multiple hair follicle nevi, ipsilateral alopecia and ipsilateral leptomeningeal angiomatosis of the brain was first reported from Japan. Very recently, hair follicle nevus in a distribution following Blaschko's lines has also been reported. In this paper, we observed a congenital case of unilateral, systematized linear hair follicle nevi associated with congenital, ipsilateral, multiple plaque lesions resembling epidermal nevi but lacking leptomeningeal angiomatosis of the brain. These cases implicate the possibility of a novel neurocutaneous syndrome. Additional cases should be sought in order to determine whether this condition is pathophysiologically distinct. Copyright 2003 S. Karger AG, Basel

  3. Monte Carlo simulation of near-infrared light propagation in realistic adult head models with hair follicles

    NASA Astrophysics Data System (ADS)

    Pan, Boan; Fang, Xiang; Liu, Weichao; Li, Nanxi; Zhao, Ke; Li, Ting

    2018-02-01

    Near infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) has been used to measure brain activation, which are clinically important. Monte Carlo simulation has been applied to the near infrared light propagation model in biological tissue, and has the function of predicting diffusion and brain activation. However, previous studies have rarely considered hair and hair follicles as a contributing factor. Here, we attempt to use MCVM (Monte Carlo simulation based on 3D voxelized media) to examine light transmission, absorption, fluence, spatial sensitivity distribution (SSD) and brain activation judgement in the presence or absence of the hair follicles. The data in this study is a series of high-resolution cryosectional color photograph of a standing Chinse male adult. We found that the number of photons transmitted under the scalp decreases dramatically and the photons exported to detector is also decreasing, as the density of hair follicles increases. If there is no hair follicle, the above data increase and has the maximum value. Meanwhile, the light distribution and brain activation have a stable change along with the change of hair follicles density. The findings indicated hair follicles make influence of NIRS in light distribution and brain activation judgement.

  4. Complex changes in the apoptotic and cell differentiation programs during initiation of the hair follicle response to chemotherapy.

    PubMed

    Sharova, Tatyana Y; Poterlowicz, Krzysztof; Botchkareva, Natalia V; Kondratiev, Nikita A; Aziz, Ahmar; Spiegel, Jeffrey H; Botchkarev, Vladimir A; Sharov, Andrey A

    2014-12-01

    Chemotherapy has severe side effects in normal rapidly proliferating organs, such as hair follicles, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin (DXR), and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in DXR-treated hair follicles versus controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors 1/2), as well as of a large number of keratin-associated protein genes, were seen after DXR treatment. Hair follicle apoptosis induced by DXR was significantly inhibited by either TRAIL-neutralizing antibody or caspase-8 inhibitor, thus suggesting a previously unreported role for TRAIL receptor signaling in mediating DXR-induced hair loss. These data demonstrate that the early phase of the hair follicle response to DXR includes upregulation of apoptosis-associated markers, as well as substantial reorganization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies toward the design of effective approaches for the management of chemotherapy-induced hair loss.

  5. Complex changes in the apoptotic and cell differentiation programs during initiation of the hair follicle response to chemotherapy

    PubMed Central

    Sharova, Tatyana Y.; Poterlowicz, Krzysztof; Botchkareva, Natalia V.; Kondratiev, Nikita A.; Aziz, Ahmar; Spiegel, Jeffrey H.; Botchkarev, Vladimir A.; Sharov, Andrey A.

    2014-01-01

    Chemotherapy has severe side-effects for normal rapidly proliferating organs, such as hair follicle, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in doxorubicin-treated hair follicles versus the controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL receptors 1/2), as well as of a large number of the keratin-associated protein genes were seen after doxorubicin treatment. Hair follicle apoptosis induced by doxorubicin was significantly inhibited by either TRAIL neutralizing antibody or caspase 8 inhibitor, thus suggesting a novel role for TRAIL receptor signaling in mediating doxorubicin-induced hair loss. These data demonstrate that the early phase of the hair follicle response to doxorubicin includes upregulation of apoptosis-associated markers, as well as substantial re-organization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies towards the design of novel approaches for management of chemotherapy-induced hair loss. PMID:24999588

  6. Effect of sinapic acid on hair growth promoting in human hair follicle dermal papilla cells via Akt activation.

    PubMed

    Woo, Hyunju; Lee, Seungjun; Kim, Seungbeom; Park, Deokhoon; Jung, Eunsun

    2017-07-01

    Hair loss known as alopecia is caused by abnormal hair follicle cycling including shortening of the anagen (growth) phase and changing of hair follicle morphology with miniaturization. In accordance with the life extension, the quality of life is considered to be a most important thing. The yearning for healthy and beautiful hair and low self esteem due to hair loss had negative influence on the quality of life with psychosocial maladjustment. The objective of this research was to identify new compound that can be used as a drug to promote hair growth. We investigated whether the function of sinapic acid (SA) is able to promote hair growth in human hair follicle dermal papilla cells (hHFDPC). We showed that treatment of SA in hHFDPC could induce proliferation and the activation of Akt signaling in HFDPC. In addition, SA could stimulate the expressions of the several growth factors, insulin-like growth factor 1, and vascular endothelial growth factor for hair growth. We showed that SA led to an increased level of phospho-GSK-3β and β-catenin accumulation in HFDPC. Finally, the promoting effect of SA in hHFDPC cell growth occurred by the induction of cell cycle progression. These results suggest that SA could be one of the potential candidate compounds for the treatment of alopecia by inducing hair growth through triggering the expressions of growth factors via activation of Akt and subsequent inactivation of GSK-3β /β-catenin pathway.

  7. Long-Term Extensive Ectopic Hair Growth on the Spinal Cord of Mice from Transplanted Whisker Follicles.

    PubMed

    Cao, Wenluo; Li, Lingna; Mii, Sumiyuki; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We have previously demonstrated that hair follicles contain nestin-expressing pluripotent stem cells that can effect nerve and spinal cord repair upon transplantation. In the present study, isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice were histocultured on Gelfoam for 3 weeks for the purpose of transplantation to the spinal cord to heal an induced injury. The hair shaft was cut off from Gelfoam-histocultured whisker follicles, and the remaining part of the whisker follicles containing GFP-nestin expressing pluripotent stem cells were transplanted into the injured spinal cord of nude mice, along with the Gelfoam. After 90 days, the mice were sacrificed and the spinal cord lesion was observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the hair follicle stem cells were involved in healing the spinal cord. Unexpectedly, the transplanted whisker follicles sprouted out remarkably long hair shafts in the spinal cord during the 90 days after transplantation of Gelfoam whisker histocultures to the injured spine. The pigmented hair fibers, grown from the transplanted whisker histocultures, curved and enclosed the spinal cord. The unanticipated results demonstrate the great potential of hair growth after transplantation of Gelfoam hair follicle histocultures, even at an ectopic site.

  8. Porokeratotic eccrine and hair follicle nevus: a report of two cases and review of the literature.

    PubMed

    Agulló-Pérez, Alfredo Daniel; Resano-Abarzuza, Miguel Ángel; Córdoba-Iturriagagoitia, Alicia; Yanguas-Bayona, Juan Ignacio

    2017-01-01

    Porokeratotic eccrine and hair follicle nevus is a very rare non-hereditary disorder of keratinization with eccrine and hair follicle involvement with only 9 cases described in the literature. In 2009 the term porokeratotic anexial ostial nevus was proposed to comprehend porokeratotic eccrine and hair follicle nevus and a related and more common process without follicular involvement: porokeratotic eccrine ostial and dermal duct nevus Recent findings suggest that both entities may be produced by a mutation in GJB2 gene, which is associated to KID syndrome. Herein we report 2 cases of porokeratotic eccrine and hair follicle nevus and review the existing cases in the Spanish and English literature.

  9. Porokeratotic eccrine and hair follicle nevus: a report of two cases and review of the literature*

    PubMed Central

    Agulló-Pérez, Alfredo Daniel; Resano-Abarzuza, Miguel Ángel; Córdoba-Iturriagagoitia, Alicia; Yanguas-Bayona, Juan Ignacio

    2017-01-01

    Porokeratotic eccrine and hair follicle nevus is a very rare non-hereditary disorder of keratinization with eccrine and hair follicle involvement with only 9 cases described in the literature. In 2009 the term porokeratotic anexial ostial nevus was proposed to comprehend porokeratotic eccrine and hair follicle nevus and a related and more common process without follicular involvement: porokeratotic eccrine ostial and dermal duct nevus Recent findings suggest that both entities may be produced by a mutation in GJB2 gene, which is associated to KID syndrome. Herein we report 2 cases of porokeratotic eccrine and hair follicle nevus and review the existing cases in the Spanish and English literature. PMID:29267468

  10. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: an update.

    PubMed

    Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf

    2013-01-01

    Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Alterations in Hair Follicle Dynamics in Women

    PubMed Central

    Piérard-Franchimont, Claudine; Piérard, Gérald E.

    2013-01-01

    Endocrine changes supervening after parturition and menopause participate in the control of sebum production and hair growth modulation. The ensuing conditions include some peculiar aspects of hair loss (effluvium), alopecia, and facial hirsutism. The hair cycling is of major clinical relevance because most hair growth disorders result from disturbances in this chronobiological feature. Of note, any correlation between a biologic abnormality and hair cycling disturbance does not prove a relationship of causality. The proportion of postmenopausal women is rising in the overall population. Therefore, the prevalence of these hair follicle disturbances is globally on the rise. Current therapies aim at correcting the underlying hormonal imbalances, and at improving the overall cosmetic appearance. However, in absence of pathogenic diagnosis and causality criteria, chances are low that a treatment given by the whims of fate will adequately control hair effluvium. The risk and frequency of therapeutic inertia are further increased. When the hair loss is not controlled and/or compensated by growth of new hairs, several clinical aspects of alopecia inexorably develop. Currently, there is little evidence supporting any specific treatment for these endocrine hair disorders in post-partum and postmenopausal women. Current hair treatment strategies are symptomatic and nonspecific so current researchers aim at developing new, targeted methods. PMID:24455742

  12. Alterations in hair follicle dynamics in women.

    PubMed

    Piérard-Franchimont, Claudine; Piérard, Gérald E

    2013-01-01

    Endocrine changes supervening after parturition and menopause participate in the control of sebum production and hair growth modulation. The ensuing conditions include some peculiar aspects of hair loss (effluvium), alopecia, and facial hirsutism. The hair cycling is of major clinical relevance because most hair growth disorders result from disturbances in this chronobiological feature. Of note, any correlation between a biologic abnormality and hair cycling disturbance does not prove a relationship of causality. The proportion of postmenopausal women is rising in the overall population. Therefore, the prevalence of these hair follicle disturbances is globally on the rise. Current therapies aim at correcting the underlying hormonal imbalances, and at improving the overall cosmetic appearance. However, in absence of pathogenic diagnosis and causality criteria, chances are low that a treatment given by the whims of fate will adequately control hair effluvium. The risk and frequency of therapeutic inertia are further increased. When the hair loss is not controlled and/or compensated by growth of new hairs, several clinical aspects of alopecia inexorably develop. Currently, there is little evidence supporting any specific treatment for these endocrine hair disorders in post-partum and postmenopausal women. Current hair treatment strategies are symptomatic and nonspecific so current researchers aim at developing new, targeted methods.

  13. The ciliopathy gene Rpgrip1l is essential for hair follicle development.

    PubMed

    Chen, Jiang; Laclef, Christine; Moncayo, Alejandra; Snedecor, Elizabeth R; Yang, Ning; Li, Li; Takemaru, Ken-Ichi; Paus, Ralf; Schneider-Maunoury, Sylvie; Clark, Richard A

    2015-03-01

    The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgrip1l gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.

  14. Analysis of the penetration of a caffeine containing shampoo into the hair follicles by in vivo laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Richter, H.; Schanzer, S.; Klenk, A.; Sterry, W.; Patzelt, A.

    2010-02-01

    In previous in vitro investigations, it was demonstrated that caffeine is able to stimulate the hair growth. Therefore, a penetration of caffeine into the hair follicle is necessary. In the present study, in vivo laser scanning microscopy (LSM) was used to investigate the penetration and storage of a caffeine containing shampoo into the hair follicles. It was shown that a 2-min contact time of the shampoo with the skin was enough to accumulate significant parts of the shampoo in the hair follicles. A penetration of the shampoo up to a depth of approx. 200 μm could be detected, which represents the detection limit of the LSM. At this depth, the close network of the blood capillaries surrounding the hair follicles commences. Even after 24 h, the substance was still detectable in the hair follicles. This demonstrates the long-term reservoir function of the hair follicles for topically applied substances such as caffeine.

  15. Compartmentation of Mitochondrial and Oxidative Metabolism in Growing Hair Follicles: A Ring of Fire.

    PubMed

    Lemasters, John J; Ramshesh, Venkat K; Lovelace, Gregory L; Lim, John; Wright, Graham D; Harland, Duane; Dawson, Thomas L

    2017-07-01

    Little is known about the energetics of growing hair follicles, particularly in the mitochondrially abundant bulb. Here, mitochondrial and oxidative metabolism was visualized by multiphoton and light sheet microscopy in cultured bovine hair follicles and plucked human hairs. Mitochondrial membrane potential (ΔΨ), cell viability, reactive oxygen species (ROS), and secretory granules were assessed with parameter-indicating fluorophores. In growing follicles, lower bulb epithelial cells had high viability, and mitochondria were polarized. Most epithelially generated ROS co-localized with polarized mitochondria. As the imaging plane captured more central and distal cells, ΔΨ disappeared abruptly at a transition to a nonfluorescent core continuous with the hair shaft. Approaching the transition, ΔΨ and ROS increased, and secretory granules disappeared. ROS and ΔΨ were strongest in a circumferential paraxial ring at putative sites for formation of the outer cortex/cuticle of the hair shaft. By contrast, polarized mitochondria in dermal papillar fibroblasts produced minimal ROS. Plucked hairs showed a similar abrupt transition of degranulation/depolarization near sites of keratin deposition, as well as an ROS-generating paraxial ring of fire. Hair movement out of the follicle appeared to occur independently of follicular bulb bioenergetics by a tractor mechanism involving the inner and outer root sheaths. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Coexistence of esophageal blue nevus, hair follicles and basaloid sqamous carcinoma: a case report.

    PubMed

    Wang, Dong-Guan; Li, Xin-Gong; Gao, Hong; Sun, Xi-Yin; Zhou, Xiao-Qiu

    2008-07-14

    We present the case of a 57-year-old man who underwent esophagectomy for esophageal carcinoma found at barium meal and gastroscopic examination. He was diagnosed as esophageal basaloid squamous carcinoma (BSC) and gastric stromal tumor, which were associated with focal proliferation of melanocytes/pigmentophages and hair follicles in esophageal mucosa. Melanocytic hyperplasia (melanocytosis) has previously been recognized as an occasional reactive lesion, which can accompany esophageal inflammation and invasive squamous carcinoma. The present case is unusual because of its hyperplasia of not only melanocytes but also hair follicles. To our knowledge, this is the first report of esophageal blue nevus and hair follicle coexisting with BSC.

  17. Keratin 17 modulates hair follicle cycling in a TNFα-dependent fashion

    PubMed Central

    Tong, Xuemei; Coulombe, Pierre A.

    2006-01-01

    Mammalian hair follicles cycle between stages of rapid growth (anagen) and metabolic quiescence (telogen) throughout life. Transition from anagen to telogen involves an intermediate stage, catagen, consisting of a swift, apoptosis-driven involution of the lower half of the follicle. How catagen is coordinated, and spares the progenitor cells needed for anagen re-entry, is poorly understood. Keratin 17 (K17)-null mice develop alopecia in the first week post-birth, correlating with hair shaft fragility and untimely apoptosis in the hair bulb. Here we show that this abnormal apoptosis reflects premature entry into catagen. Of the proapoptotic challenges tested, K17-null skin keratinocytes in primary culture are selectively more sensitive to TNFα. K17 interacts with TNF receptor 1 (TNFR1)-associated death domain protein (TRADD), a death adaptor essential for TNFR1-dependent signal relay, suggesting a functional link between this keratin and TNFα signaling. The activity of NF-κB, a downstream target of TNFα, is increased in K17-null skin. We also find that TNFα is required for a timely anagen–catagen transition in mouse pelage follicles, and that its ablation partially rescues the hair cycling defect of K17-null mice. These findings identify K17 and TNFα as two novel and interdependent regulators of hair cycling. PMID:16702408

  18. Isolation of Mouse Hair Follicle Bulge Stem Cells and Their Functional Analysis in a Reconstitution Assay.

    PubMed

    Zheng, Ying; Hsieh, Jen-Chih; Escandon, Julia; Cotsarelis, George

    2016-01-01

    The hair follicle (HF) is a dynamic structure readily accessible within the skin, and contains various pools of stem cells that have a broad regenerative potential during normal homeostasis and in response to injury. Recent discoveries demonstrating the multipotent capabilities of hair follicle stem cells and the easy access to skin tissue make the HF an attractive source for isolating stem cells and their subsequent application in tissue engineering and regenerative medicine. Here, we describe the isolation and purification of hair follicle bulge stem cells from mouse skin, and hair reconstitution assays that allows the functional analysis of multipotent stem cells.

  19. CD34 Expression by Hair Follicle Stem Cells Is Required for Skin Tumor Development in Mice

    PubMed Central

    Trempus, Carol S.; Morris, Rebecca J.; Ehinger, Matthew; Elmore, Amy; Bortner, Carl D.; Ito, Mayumi; Cotsarelis, George; Nijhof, Joanne G.W.; Peckham, John; Flagler, Norris; Kissling, Grace; Humble, Margaret M.; King, Leon C.; Adams, Linda D.; Desai, Dhimant; Amin, Shantu; Tennant, Raymond W.

    2007-01-01

    The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice. PMID:17483328

  20. Porokeratotic eccrine duct and hair follicle nevus (PEHFN) associated with keratitis-ichthyosis-deafness (KID) syndrome.

    PubMed

    Criscione, Vincent; Lachiewicz, Anne; Robinson-Bostom, Leslie; Grenier, Nicole; Dill, Sara Worthing

    2010-01-01

    Porokeratotic eccrine ostial and dermal duct nevus is a rare hamartomatous malformation, histologically characterized by cornoid lamellae overlying dilated eccrine ostia. The nevus most commonly presents in the form of multiple filiform keratotic spines in a linear arrangement, usually on the distal extremities. Porokeratotic eccrine and hair follicle nevus is thought to be a variant of porokeratotic eccrine ostial and dermal duct nevus that additionally involves hair follicle infundibula. We report a case of widespread Porokeratotic eccrine and hair follicle nevus that developed in a 15-year-old woman with keratitis-ichthyosis-deafness syndrome. © 2010 Wiley Periodicals, Inc.

  1. CD34 expression in human hair follicles and tricholemmoma: a comprehensive study.

    PubMed

    Misago, Noriyuki; Toda, Shuji; Narisawa, Yutaka

    2011-08-01

    There has recently been controversy regarding whether clone My10 is superior to clone QBEND-10 for labeling cells of tricholemmal lineage. Moreover, there have been no previous reports on the CD34 expression in human vellus hair follicles. We performed a comprehensive study of the CD34 expression in human terminal and vellus hair follicles and in 10 tricholemmomas using both the QBEND-10 and the My10 clones. We also performed two different procedures of immunostaining, which included the using of the standard avidin-biotin-peroxidase (ABC) complex system and the Envision system. The most sensitive marker of CD34 for normal human hair follicles and tricholemmomas is QBEND-10 using the ABC system. The degree and strength of the CD34 positive staining mainly depended on the method being used (whether it was the ABC system or the Envision system) rather than the clone. CD34 staining was rarely (20-30%) seen in the anagen and catagen vellus hair follicles, and could only be seen by the QBEND-10 clone using the ABC system. CD34 expression in the tricholemmomas represented either a diffuse or peripheral pattern. CD34 may not be a tricholemmal lineage-specific antigen, but may be related to certain functions of the cells. Copyright © 2011 John Wiley & Sons A/S.

  2. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  3. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    PubMed Central

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J.; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003

  4. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station.

    PubMed

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles.

  5. GENE EXPRESSION IN HEAD HAIR FOLLICLES PLUCKED FROM MEN AND WOMEN

    EPA Science Inventory

    Characterizing gene expression in hair follicles can help to elucidate the hair growth cycle by delineating the genes and pathways involved in follicular growth and degeneration. The objectives of this study were to determine whether intact RNA could be extracted from a small num...

  6. Proanthocyanidins from grape seeds promote proliferation of mouse hair follicle cells in vitro and convert hair cycle in vivo.

    PubMed

    Takahashi, T; Kamiya, T; Yokoo, Y

    1998-11-01

    For the purpose of discovering natural products which possess hair growing activity, we examined about 1000 kinds of plant extracts concerning growth-promoting activity with respect to hair follicle cells. After an extensive search, we discovered that proanthocyanidins extracted from grape seeds promote proliferation of hair follicle cells isolated from mice by about 230% relative to controls (100%); and that proanthocyanidins possess remarkable hair-cycle-converting activity from the telogen phase to the anagen phase in C3H mice in vivo test systems. The profile of the active fraction of the proanthocyanidins was elucidated by thiolytic degradation and tannase hydrolysis. We found that the constitutive monomers were epicatechin and catechin; and that the degree of polymerization was 3.5. We demonstrated the possibility of using the proanthocyanidins extracted from grape seeds as agents inducing hair growth.

  7. Bulge Hair Follicle Stem Cells Accelerate Cutaneous Wound Healing in Rats.

    PubMed

    Heidari, Fatemeh; Yari, Abazar; Rasoolijazi, Homa; Soleimani, Mansoureh; Dehpoor, Ahmadreza; Sajedi, Nayereh; Joulai Veijouye, Sanaz; Nobakht, Maliheh

    2016-04-01

    Skin wound healing is a serious clinical problem especially after surgery and severe injury of the skin. Cell therapy is an innovative technique that can be applied to wound healing. One appropriate source of stem cells for therapeutic use is stem cells from the adult bulge of hair follicles. This study examined the effects of adult bulge hair follicle stem cells (HFSC) in wound healing. Hair follicle stem cells were obtained from rat vibrissa and labeled with DiI (Invitrogen, Carlsbad, CA), then special markers were detected using flow cytometry. A full-thickness excisional wound model was created and DiI-labeled HFSC were injected around the wound bed. Wound healing was recorded with digital photographs. Animals were sacrificed at 3, 7, or 14 days after surgery, and were used for the following histological analyses. Flow cytometry analysis showed that HFSC were CD34 positive and nestin positive, but K15 negative. Morphological analysis of HFSC-treated wounds exhibited accelerated wound closure. Histological analysis of hematoxylin and eosin stained and Masson's trichrome-stained photomicrographs showed significantly more re-epithelialization and dermal structural regeneration in HFSC-treated wounds than in the control group. Immunohistochemical analysis of CD31 protein-positive cells showed angiogenesis was also more significant in HFSC-treated wounds than in the control group. Hair follicle stem cells accelerate skin wound healing. Isolating HFSC from a small skin biopsy could repair less-extensive full-thickness skin wounds by autologous stem cells and overcome major challenges regarding the use of stem cells in clinical application, while avoiding immune rejection and ethical concerns.

  8. Noninvasive method for assessing the human circadian clock using hair follicle cells

    PubMed Central

    Akashi, Makoto; Soma, Haruhiko; Yamamoto, Takuro; Tsugitomi, Asuka; Yamashita, Shiko; Yamamoto, Takuya; Nishida, Eisuke; Yasuda, Akio; Liao, James K.; Node, Koichi

    2010-01-01

    A thorough understanding of the circadian clock requires qualitative evaluation of circadian clock gene expression. Thus far, no simple and effective method for detecting human clock gene expression has become available. This limitation has greatly hampered our understanding of human circadian rhythm. Here we report a convenient, reliable, and less invasive method for detecting human clock gene expression using biopsy samples of hair follicle cells from the head or chin. We show that the circadian phase of clock gene expression in hair follicle cells accurately reflects that of individual behavioral rhythms, demonstrating that this strategy is appropriate for evaluating the human peripheral circadian clock. Furthermore, using this method, we indicate that rotating shift workers suffer from a serious time lag between circadian gene expression rhythms and lifestyle. Qualitative evaluation of clock gene expression in hair follicle cells, therefore, may be an effective approach for studying the human circadian clock in the clinical setting. PMID:20798039

  9. Hair Follicle Nevus Located on the Chin of an Infant: Case Report and Review of Literature.

    PubMed

    Larson, Krista N; O'Shea, Patrick; Zedek, Daniel C; Morrell, Dean S

    2016-01-01

    Hair follicle nevi are rare, benign, congenital hamartomas that usually occur in the distribution of the first brachial arch. Histopathologically, the distinction between hair follicle nevus, trichofolliculoma, and accessory tragus has recently come into question, and it may be that they are all on a spectrum of the same condition. We report the case of a 7-day-old boy who presented with a "tag"-like lesion on his midline chin that had been present since birth. Biopsy of the lesion proved it to be a hair follicle nevus. © 2016 Wiley Periodicals, Inc.

  10. Molecular genetics of the hair follicle: the state of the art.

    PubMed

    Van Steensel, M A; Happle, R; Steijlen, P M

    2000-01-01

    For those who are interested in the biology of skin and its derivatives, these are interesting times indeed. In a mere 5 years, the field has been revolutionized by the application of molecular genetics to human congenital skin disorders. Where dermatology first was limited to observation and empirics, there are now DNA-diagnostics, rational drug design, and perhaps even gene therapy available soon. In particular, the study of rare human syndromes involving abnormalities of hair growth and structure has yielded new insights into the regulation of cell growth and differentiation in the hair follicle. As this structure shows a cyclic pattern of differentiation, it may give new information concerning the regulation of cell differentiation in general. This review covers the recent developments in this fast-moving field. First, we will give a short introduction to (structural) hair biology. Next, we will try to fit these data into the framework of what is already known and attempt to present a unified model for hair follicle growth and differentiation.

  11. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    PubMed

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  12. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors

    PubMed Central

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E.; Cao, Mengjun

    2016-01-01

    Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. Significance In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. PMID:27458264

  13. Melatonin promotes Cashmere goat (Capra hircus) secondary hair follicle growth: A view from integrated analysis of long non-coding and coding RNAs.

    PubMed

    Ge, Wei; Wang, Shan-He; Sun, Bing; Zhang, Yue-Lang; Shen, Wei; Khatib, Hasan; Wang, Xin

    2018-06-12

    The role of melatonin in promoting the yield of Cashmere goat wool has been demonstrated for decades though there remains a lack of knowledge regarding melatonin mediated hair follicle growth. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are widely transcribed in the genome and play ubiquitous roles in regulating biological processes. However, the role of lncRNAs in regulating melatonin mediated hair follicle growth remains unclear. In this study, we established an in vitro Cashmere goat secondary hair follicle culture system, and demonstrated that 500 ng/L melatonin exposure promoted hair follicle fiber growth. Based on long intergenic RNA sequencing, we demonstrated that melatonin promoted hair follicle elongation via regulating genes involved in focal adhesion and extracellular matrix receptor pathways and further cis predicting of lncRNAs targeted genes indicated that melatonin mediated lncRNAs mainly targeted vascular smooth muscle contraction and signaling pathways regulating the pluripotency of stem cells. We proposed that melatonin exposure not only perturbed key signals secreted from hair follicle stem cells to regulate hair follicle development, but also mediated lncRNAs mainly targeted to pathways involved in the microvascular system and extracellular matrix, which constitute the highly orchestrated microenvironment for hair follicle stem cell. Taken together, our findings here provide a profound view of lncRNAs in regulating Cashmere goat hair follicle circadian rhythms and broaden our knowledge on melatonin mediated hair follicle morphological changes.

  14. Expression and distribution patterns of spermine, spermidine, and putrescine in rat hair follicle.

    PubMed

    Yamamoto, Yutaro; Makino, Takamitsu; Kudo, Hideo; Ihn, Hironobu; Murakami, Yasuko; Matsufuji, Senya; Fujiwara, Kunio; Shin, Masashi

    2018-02-01

    No expression and distribution patterns of polyamines (PAs), spermine, spermidine, and their precursor putrescine in mammalian hair follicle are available, although polyamines are known to correlate well with hair growth and epidermal tumor genesis. Immunohistochemistry (IHC) using our original two monoclonal antibodies (mAbs) ASPM-29 specific for spermine or spermidine, and APUT-32 specific for putrescine allowed us to detect immunoreactivity for polyamines in hair follicles from normal adult rats. A wide range of immunoreactivity for the total spermine and spermidine was observed in the compartments of hair follicle: The highest degree of immunoreactivity for polyamines was observed in the matrix, in the Huxley's layer, in the deeper Henle's layer, and in the cuticle of the inner root sheath/the hair cuticle, while moderate immunoreactivity existed in the lower-to-mid cortex and the companion layer, followed by lower immunoreactivity in the outer root sheath, including the bulge region and in the deeper medulla, in which the immunoreactivity was also evident in their nuclei. In addition, somewhat surprisingly, with IHC by APUT-32 mAb, we detected significant levels of putrescine in the compartments, in which the immunostaining pattern was the closely similar to that of the total spermine and spermidine. Thus, among these compartments, the cell types of the matrix, the Huxley's layer, the deeper Henle's layer, and the cuticle of the inner root sheath/the hair cuticle seem to have the biologically higher potential in compartments of anagen hair follicle, maybe suggesting that they are involved more critically in the biological event of hair growth. In addition, we noted sharp differences of immunostaining by IHCs between ASPM-29 mAb and APUT-32 mAb in the epidermis cells and fibroblast. ASPM-29 mAb resulted in strong staining in both the cell types, but APUT-32 mAb showed only very light staining in both types. Consequently, the use of the two IHCs could be

  15. Development of a Model for Chemotherapy-Induced Alopecia: Profiling of Histological Changes in Human Hair Follicles after Chemotherapy.

    PubMed

    Yoon, Ji-Seon; Choi, Mira; Shin, Chang Yup; Paik, Seung Hwan; Kim, Kyu Han; Kwon, Ohsang

    2016-03-01

    Optimized research models are required to further understand the pathogenesis and prophylaxis of chemotherapy-induced alopecia. Our aim was to develop a mouse model for chemotherapy-induced alopecia by follicular unit transplantation of human hair follicles onto immunodeficient mice. Twenty-two weeks after transplantation, a single dose of cyclophosphamide (Cph) was administered to mice in the Cph100 (100 mg/kg) and Cph150 (150 mg/kg) groups. On day 6, hair follicles showed dystrophic changes, with swollen dermal papilla and ectopic melanin clumping in the hair bulb. In addition, upregulated expression of apoptotic regulators [P53, Fas/Fas-ligand, tumor necrosis factor-related apoptosis-inducing ligand/tumor necrosis factor-related apoptosis-inducing ligand receptor (TRAIL/TRAIL receptor), and Bax], increased apoptotic matrix keratinocytes, downregulated Ki67 expression, and decreased melanogenic protein in the hair bulb were noted in both groups. After 12 treatment days, hair follicles in Cph100 mice appeared to diminish dystrophic changes. In contrast, hair follicles of Cph150 mice prematurely entered a dystrophic catagen phase after 9 treatment days, and immunofluorescence staining for Ki67 and melanogenic protein expressions was barely visible. Two hair follicle damage response pathways were observed in this model, namely dystrophic anagen (Cph100) and catagen (Cph150) pathways. Our model might be useful for further understanding the impact of chemotherapy on human hair follicles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Reflections on how wound healing-promoting effects of the hair follicle can be translated into clinical practice.

    PubMed

    Jimenez, Francisco; Poblet, Enrique; Izeta, Ander

    2015-02-01

    Clinicians have long reported that hair-bearing areas tend to heal more rapidly than those lacking hair follicles. In the past decade, numerous scientific studies have corroborated clinical evidence, showing a direct nexus between the human hair follicle and the wound healing process. The migration of epithelial follicular stem cells to the skin surface to help in the wound re-epithelialization and the effect of the hair cycle on the wound healing rate underline the influence of the hair follicle in the healing process. In clinical practice, non-healing wounds are pathologies of high prevalence with significant associated burden costs for the healthcare system. As the population ages, the prevalence of this pathology is expected to increase in future years. The recent advances in understanding the biology of hair follicle stem cells have created the challenges of using this newly acquired knowledge in practical therapeutic applications. Chronic leg ulcers are an example of the targeted pathologies that urgently need better therapies. In this essay, our aim is to raise interest in this question, reviewing what is known in relation to the connections between hair follicles and wound healing, and elaborating on future directions that the field might take, including implications for clinical practice. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    PubMed

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  18. 6-Gingerol Inhibits Hair Shaft Growth in Cultured Human Hair Follicles and Modulates Hair Growth in Mice

    PubMed Central

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal. PMID:23437345

  19. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches

    PubMed Central

    Toyoshima, Koh-ei; Asakawa, Kyosuke; Ishibashi, Naoko; Toki, Hiroshi; Ogawa, Miho; Hasegawa, Tomoko; Irié, Tarou; Tachikawa, Tetsuhiko; Sato, Akio; Takeda, Akira; Tsuji, Takashi

    2012-01-01

    Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy. PMID:22510689

  20. Targeted inactivation of integrin-linked kinase in hair follicle stem cells reveals an important modulatory role in skin repair after injury.

    PubMed

    Nakrieko, Kerry-Ann; Rudkouskaya, Alena; Irvine, Timothy S; D'Souza, Sudhir J A; Dagnino, Lina

    2011-07-15

    Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.

  1. Targeted inactivation of integrin-linked kinase in hair follicle stem cells reveals an important modulatory role in skin repair after injury

    PubMed Central

    Nakrieko, Kerry-Ann; Rudkouskaya, Alena; Irvine, Timothy S.; D'souza, Sudhir J. A.; Dagnino, Lina

    2011-01-01

    Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15–expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury. PMID:21593206

  2. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles.

    PubMed

    Matos, Breno Noronha; Reis, Thaiene Avila; Gratieri, Taís; Gelfuso, Guilherme Martins

    2015-04-01

    This work developed minoxidil sulphate-loaded chitosan nanoparticles (MXS-NP) for targeted delivery to hair follicles, which could sustain drug release and improve the topical treatment of alopecia. Chitosan nanoparticles were obtained using low-molecular weight chitosan and tripolyphosphate as crosslink agent. MXS-NP presented a monomodal distribution with hydrodynamic diameter of 235.5 ± 99.9 nm (PDI of 0.31 ± 0.01) and positive zeta potential (+38.6 ± 6.0 mV). SEM analysis confirmed nanoparticles average size and spherical shape. A drug loading efficiency of 73.0 ± 0.3% was obtained with polymer:drug ratio of 1:1 (w/w). Drug release through cellulose acetate membranes from MXS-NP was sustained in about 5 times in comparison to the diffusion rate of MXS from the solution (188.9 ± 6.0 μg/cm(2)/h and 35.4 ± 1.8 μg/cm(2)/h). Drug permeation studies through the skin in vitro, followed by selective recovery of MXS from the hair follicles, showed that MXS-NP application resulted in a two-fold MXS increase into hair follicles after 6h in comparison to the control solution (5.9 ± 0.6 μg/cm(2) and 2.9 ± 0.8 μg/cm(2)). MXS-loading in nanoparticles appears as a promising and easy strategy to target and sustain drug delivery to hair follicles, which may improve the topical treatment of alopecia. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Antimicrobial peptide lysozyme has the potential to promote mouse hair follicle growth in vitro.

    PubMed

    Su, Yongsheng; Liu, Hui; Wang, Jin; Lin, Bojie; Miao, Yong; Hu, Zhiqi

    2015-10-01

    Lysozyme is a well-known antimicrobial peptide that exists widely in mammalian skin and it is also expressed by pilosebaceous units. However, the exact location of lysozyme in hair follicles and whether it exerts any direct effects on hair follicle growth are unclear. To determine whether lysozyme affected hair growth in vitro, micro-dissected mouse vibrissae follicles (VFs) were treated in serum-free organ culture for 3 days with lysozyme (1-10μg/ml). After that, the effects of lysozyme on dermal papilla (DP) cells were also investigated. Lysozyme was mainly identified in DP and dermal sheath regions of VF by immunochemistry. In addition, 5-10μg/ml lysozyme had a promoting effect on shaft production. It was also associated with significant proliferation of matrix keratinocytes by immunofluorescence observation. Furthermore, lysozyme promoted hair growth by increasing the levels of alkaline phosphatase and lymphoid enhancer factor 1 in DP, as determined by Western blotting. These results indicate that lysozyme is a promoter of VF growth via enhancing the hair-inductive capacity of DP cells during organ culture. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Towards a "free radical theory of graying": melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage.

    PubMed

    Arck, Petra Clara; Overall, Rupert; Spatz, Katharina; Liezman, Christiane; Handjiski, Bori; Klapp, Burghard F; Birch-Machin, Mark A; Peters, Eva Milena Johanne

    2006-07-01

    Oxidative stress is generated by a multitude of environmental and endogenous challenges such as radiation, inflammation, or psychoemotional stress. It also speeds the aging process. Graying is a prominent but little understood feature of aging. Intriguingly, the continuous melanin synthesis in the growing (anagen) hair follicle generates high oxidative stress. We therefore hypothesize that hair bulb melanocytes are especially susceptible to free radical-induced aging. To test this hypothesis, we subjected human scalp skin anagen hair follicles from graying individuals to macroscopic and immunohistomorphometric analysis and organ culture. We found evidence of melanocyte apoptosis and increased oxidative stress in the pigmentary unit of graying hair follicles. The "common" deletion, a marker mitochondrial DNA-deletion for accumulating oxidative stress damage, occurred most prominently in graying hair follicles. Cultured unpigmented hair follicles grew better than pigmented follicles of the same donors. Finally, cultured pigmented hair follicles exposed to exogenous oxidative stress (hydroquinone) showed increased melanocyte apoptosis in the hair bulb. We conclude that oxidative stress is high in hair follicle melanocytes and leads to their selective premature aging and apoptosis. The graying hair follicle, therefore, offers a unique model system to study oxidative stress and aging and to test antiaging therapeutics in their ability to slow down or even stop this process.

  5. Hair follicle nevus in a distribution following Blaskho's lines.

    PubMed

    Germain, Marguerite; Smith, Kathleen J

    2002-05-01

    We present a case of a rare follicular hamartoma, a hair follicle nevus. Although most previous reports have been solitary lesions, the case we are reporting had multiple papules and nodules following Blaskho's lines. There have been no reports of malignancies arising in these hamartomas.

  6. Exogenous R-Spondin1 Induces Precocious Telogen-to-Anagen Transition in Mouse Hair Follicles

    PubMed Central

    Li, Na; Liu, Shu; Zhang, Hui-Shan; Deng, Zhi-Li; Zhao, Hua-Shan; Zhao, Qian; Lei, Xiao-Hua; Ning, Li-Na; Cao, Yu-Jing; Wang, Hai-Bin; Liu, Shuang; Duan, En-Kui

    2016-01-01

    R-spondin proteins are novel Wnt/β-catenin agonists, which signal through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR) 4/5/6 and substantially enhance Wnt/β-catenin activity. R-spondins are reported to function in embryonic development. They also play important roles in stem cell functions in adult tissues, such as the intestine and mammary glands, which largely rely on Wnt/β-catenin signaling. However, in the skin epithelium and hair follicles, the information about R-spondins is deficient, although the expressions and functions of their receptors, LGR4/5/6, have already been studied in detail. In the present study, highly-enriched expression of the R-spondin family genes (Rspo1/2/3/4) in the hair follicle dermal papilla is revealed. Expression of Rspo1 in the dermal papilla is specifically and prominently upregulated before anagen entry, and exogenous recombinant R-spondin1 protein injection in mid-telogen leads to precocious anagen entry. Moreover, R-spondin1 activates Wnt/β-catenin signaling in cultured bulge stem cells in vitro, changing their fate determination without altering the cell proliferation. Our pioneering study uncovers a role of R-spondin1 in the activation of cultured hair follicle stem cells and the regulation of hair cycle progression, shedding new light on the governance of Wnt/β-catenin signaling in skin biology and providing helpful clues for future treatment of hair follicle disorders. PMID:27104524

  7. Does D matter? The role of vitamin D in hair disorders and hair follicle cycling.

    PubMed

    Amor, Karrie T; Rashid, Rashid M; Mirmirani, Paradi

    2010-02-15

    The role of vitamin D in the proliferation and differentiation of keratinocytes is well known within the field of dermatology. We sought to evaluate the role that vitamin D and the vitamin D receptor play in the hair cycle and assess how this can be clinically applied to the treatment of hair disorders. A MEDLINE search (1955-July 2009) was preformed to find relevant articles pertaining to vitamin D, the vitamin D receptor, and hair loss. The vitamin D receptor, independent of vitamin D, plays an important role in hair cycling, specifically anagen initiation. The role of vitamin D in hair follicle cycling is not as well understood. The review is broad and there are limited human studies available to date. Additional studies to evaluate the role of vitamin D in the hair cycle should be done. Treatments that up regulate the vitamin D receptor may be successful in treating hair disorders and are a potential area of further study.

  8. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira

    2006-06-30

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/cmore » nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis.« less

  9. Dynamic Wnt5a expression in murine hair follicle cycle and its inhibitory effects on follicular.

    PubMed

    Fang, De-Ren; Lv, Zhong-Fa; Qiao, Gang

    2014-04-01

    To analyze the dynamic expression of Wnt family member 5A (Wingless-type MMTV integration Wnt site family, member 5a) in murine hair cycle and its inhibitory effects on follicle in vivo. Situ hybridization in full-thickness skin was used to observe the change of mouse protein expression in different growth stages, and Ad-Wnt5a was injected after defeathering to observe the hair follicle growth in vivo. The Wnt5a mRNA was expressed at birth, and was firstly increased then decreased along with the progress of the hair cycle. It reached the peak in advanced stage of growth cycle (P<0.05). Rhoa and β-catenin expression levels were significantly decreased in three groups. Rac2 expression was significantly up-regulated, and the expression level of Wnt5a, Shh and Frizzled2 was increased, but less significantly than group 2. The expression of Wnt5a mRNA is consistent with change of murine follicle cycle, and has obvious inhibitory effects on the growth of hair follicle in vivo, indicating that it is antagonistic to Wnts pathway and interferes the growth of follicle together. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  10. Androgens trigger different growth responses in genetically identical human hair follicles in organ culture that reflect their epigenetic diversity in life.

    PubMed

    Miranda, Benjamin H; Charlesworth, Matthew R; Tobin, Desmond J; Sharpe, David T; Randall, Valerie A

    2018-02-01

    Male sex hormones-androgens-regulate male physique development. Without androgen signaling, genetic males appear female. During puberty, increasing androgens harness the hair follicle's unique regenerative ability to replace many tiny vellus hairs with larger, darker terminal hairs ( e.g., beard). Follicle response is epigenetically varied: some remain unaffected ( e.g., eyelashes) or are inhibited, causing balding. How sex steroid hormones alter such developmental processes is unclear, despite high incidences of hormone-driven cancer, hirsutism, and alopecia. Unfortunately, existing development models are not androgen sensitive. Here, we use hair follicles to establish an androgen-responsive human organ culture model. We show that women's intermediate facial follicles respond to men's higher androgen levels by synthesizing more hair over several days, unlike donor-matched, androgen-insensitive, terminal follicles. We demonstrate that androgen receptors-androgen-activated gene transcription regulators-are required and are present in vivo within these follicles. This is the first human organ that involves multiple cell types that responds appropriately to hormones in prolonged culture, in a way which mirrors its natural behavior. Thus, intermediate hair follicles offer a hormone-switchable human model with exceptional, unique availability of genetically identical, but epigenetically hormone-insensitive, terminal follicles. This should enable advances in understanding sex steroid hormone signaling, gene regulation, and developmental and regenerative systems and facilitate better therapies for hormone-dependent disorders.-Miranda, B. H., Charlesworth, M. R., Tobin, D. J., Sharpe, D. T., Randall, V. A. Androgens trigger different growth responses in genetically identical human hair follicles in organ culture that reflect their epigenetic diversity in life.

  11. Hair follicle response of the golden Syrian hamster flank organ to continuous testosterone stimulation using silastic capsules.

    PubMed

    Lucky, A W; McGuire, J; Nydorf, E; Halpert, G; Nuck, B A

    1986-01-01

    The hamster flank organ has served as a model to study androgen-dependent responses of the skin, but the quantitative response of hair follicles to androgenic stimulation has been neglected. We assayed the hair follicle response to testosterone (T) and compared it to the response of the sebaceous glands and of the dermal pigment in the Golden Syrian hamster flank organ. Because of biologic variation in male animals and uneven absorption of hormone from parenteral injections, we implanted silastic capsules 0.25, 0.5, 1, and 2 cm in length filled with crystalline T subcutaneously into female hamsters for 6 weeks. Hair follicle response to T was more sensitive than sebaceous gland or pigment. Diameters of hairs under the sebaceous gland increased significantly from control values of 27.7 +/- 1.0 micron to 38.0 +/- 1.6 micron at the lowest dose of T tested, the 0.25-cm capsule (p less than 0.001). There was an increase in the absolute number of hairs under the sebaceous gland as the flank organ enlarged, from 27.9 +/- 9.9 control to 55.3 +/- 5.8 with the 2-cm T capsule. There was no concomitant increase in hair density, 14.4 +/- 3.5 hairs/mm control vs 12.5 +/- 1.1 hairs/mm with the 2-cm capsule. Hair follicles lateral to the sebaceous gland did not show the same response to androgen stimulation. Sebaceous gland and pigmentation responded in a dose-dependent fashion, the maximum effect being achieved with a 1-cm T capsule. We conclude that T affects hair by specifically stimulating growth of individual hairs physically under the sebaceous gland. As the whole flank organ enlarges more hairs are recruited to become larger but no new follicles appear. These studies also confirm that there are different sensitivities to androgen within the various androgen-dependent components of the hamster flank organ, with increase in hair diameter being highly sensitive. This model should be useful for the specific and quantitative assessment of androgenic and antiandrogenic substances

  12. Structural and Functional Analysis of Intact Hair Follicles and Pilosebaceous Units by Volumetric Multispectral Optoacoustic Tomography.

    PubMed

    Ford, Steven J; Bigliardi, Paul L; Sardella, Thomas C P; Urich, Alexander; Burton, Neal C; Kacprowicz, Marcin; Bigliardi, Mei; Olivo, Malini; Razansky, Daniel

    2016-04-01

    Visualizing anatomical and functional features of hair follicle development in their unperturbed environment is key in understanding complex mechanisms of hair pathophysiology and in discovery of novel therapies. Of particular interest is in vivo visualization of the intact pilosebaceous unit, vascularization of the hair bulb, and evaluation of the hair cycle, particularly in humans. Furthermore, noninvasive visualization of the sebaceous glands could offer crucial insight into the pathophysiology of follicle-related diseases and dry or seborrheic skin, in particular by combining in vivo imaging with other phenotyping, genotyping, and microbial analyses. The available imaging techniques are limited in their ability for deep tissue in vivo imaging of hair follicles and lipid-rich sebaceous glands in their entirety without biopsy. We developed a noninvasive, painless, and risk-free volumetric multispectral optoacoustic tomography method for deep tissue three-dimensional visualization of whole hair follicles and surrounding structures with high spatial resolution below 80 μm. Herein we demonstrate on-the-fly assessment of key morphometric parameters of follicles and lipid content as well as functional oxygenation parameters of the associated capillary bed. The ease of handheld operation and versatility of the newly developed approach poise it as an indispensable tool for early diagnosis of disorders of the pilosebaceous unit and surrounding structures, and for monitoring the efficacy of cosmetic and therapeutic interventions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle

    PubMed Central

    Xu, Zijian; Wang, Wenjie; Jiang, Kaiju; Yu, Zhou; Huang, Huanwei; Wang, Fengchao; Zhou, Bin; Chen, Ting

    2015-01-01

    Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryonic progenitor cells occupying a niche location that is defined by attenuated Wnt/β-catenin signaling. Hair follicle initiation is marked by placode formation, which depends on the activation of Wnt/β-catenin signaling. Soon afterwards, a region with attenuated Wnt/β-catenin signaling emerges in the upper follicle. Embryonic progenitor cells residing in this region gain expression of adult stem cell markers and become definitive long-term hair follicle stem cells at the end of organogenesis. Attenuation of Wnt/β-catenin signaling is a prerequisite for hair follicle stem cell specification because it suppresses Sox9, which is required for stem cell formation. DOI: http://dx.doi.org/10.7554/eLife.10567.001 PMID:26653852

  14. Improved Poly (D,L-lactide) nanoparticles-based formulation for hair follicle targeting.

    PubMed

    Fernandes, B; Silva, R; Ribeiro, A; Matamá, T; Gomes, A C; Cavaco-Paulo, A M

    2015-06-01

    Hair follicles are widely recognized as the preferential target and site of accumulation for nanoparticles after topical application. This feature is of particular importance for hair cosmetics, having the potential to refine the treatment of several hair follicle-related disorders. The aim of this work was to improve the preparation of Poly (D,L-lactide) (PLA) nanoparticles for in vivo follicular target and drug delivery. Envisaging a future industrial scale-up of the process, nanoprecipitation method was used to prepare PLA nanoparticles: the effect of several processing parameters on their properties was examined and the yield of nanoparticles formation determined. Encapsulation efficiencies and in vitro release profiles of lipophilic and hydrophilic model compounds were also assessed. In vitro cytotoxicity and ex vivo penetration studies were performed on a reference skin cell line (NCTC2455, human skin keratinocytes) and porcine skin, respectively. Using acetone : ethanol (50 : 50, v/v) as the solvent phase, 0.6% (w/w) of Pluronic(®) F68 as a surfactant agent and agitation to mix the solvent and non-solvent phases, a monodispersed population of non-cytotoxic spherical nanoparticles of approximately 150 nm was obtained. The yield of nanoparticles for this formulation was roughly 90%. After encapsulation of model compounds, no significant changes were found in the properties of particles and the entrapment efficiencies were above 80%. The release kinetics of dyes from PLA nanoparticles indicate an anomalous transport mechanism (diffusion and polymer degradation) for Nile Red (lipophilic) and a Fickian diffusion of first order for fluorescein 5(6)-isothiocyanate (hydrophilic). Ex vivo skin penetration studies confirmed the presence of nanoparticles along the entire follicular ducts. The optimized method allows the preparation of ideal PLA nanoparticles-based formulations for hair follicle targeting. PLA nanoparticles can effectively transport and release

  15. Expression and localization of the vascular endothelial growth factor and changes of microvessel density during hair follicle development of Liaoning cashmere goats.

    PubMed

    Zhang, Q L; Li, J P; Li, Y M; Chang, Q; Chen, Y; Jiang, H Z; Zhao, Z H; Guo, D

    2013-12-10

    Vascular endothelial growth factors (VEGFs) play important roles in neovascularization, tissue development, and angiogenesis. In this study, changes in VEGF expression patterns and microvessel density (MVD), and their correlations, were investigated during hair follicle development in epidermal appendages of Liaoning cashmere goats. Polyclonal antibodies to VEGF and microvessels were used for monthly immunohistochemical examinations of normal skin specimens from adult female goats for one year. VEGF was expressed in the hair bulb of primary and secondary hair follicles, the outer and inner root sheaths, sebaceous glands (ductal and secretory portions), eccrine sweat glands (ductal and secretory portions), and the epidermis. Abundant expression of VEGF was observed in the follicular basement membrane zone surrounding the bulb matrix and in ductal and secretory portions of eccrine sweat glands. The change in VEGFs in primary hair follicles showed a bimodal pattern, with the first peak observed from March to May, and the second in August. Maximal expression in secondary hair follicles occurred in May and August. Therefore, VEGF expression in primary and secondary hair follicles is synchronized throughout the year, and is correlated to hair development. In the later telogen and anagen phases, VEGF expression was higher in the secondary, compared to the primary, hair follicle. Changes in MVD also showed a bimodal pattern with peaks in May and August. VEGF expression and MVD showed moderate and strongly positive correlation in the primary and secondary hair follicles, respectively. Therefore, MVD and VEGF are closely related to the processes involved in hair cycle regulation.

  16. Innovative modified hair follicle harvesting technique with reverse rake scalp elevator for lower occipital donor area in follicular unit extraction hair transplantation

    PubMed Central

    Gharwade, Chandrakant Rambhau

    2016-01-01

    Follicular unit extraction (FUE) is one of the widely practiced minimally invasive follicular harvesting techniques employed during hair transplantation. FUE technique has an advantage of utilising lower occipital area and supra-auricular region as a safe donor area described by Unger, in addition to the standard occipital donor area used in strip method (follicular unit transplant). Despite its potential advantages such as rapid recovery, minimal scarring and reduced post-operative pain; its widespread acceptance is limited due to various factors in variable contribution like steeper learning curve and potentially higher follicular transection rates (FTRs). The main practical drawbacks in harvesting FUE from lower occipital donor region that lie inferior to the standard donor area, is its acute angle (10°–15°) of emergent hair from scalp skin, higher variance angle (15°–35°) between hairs below the skin and hair exit angle above the skin and comparatively loose scalp, preventing to provide stable platform for punching. Hair transplant surgeon faces difficulty in aligning and engaging the FUE punch leading to very high hair follicle transection rate, and therefore, it is not a preferred site for harvesting follicles in FUE. Authors description of modified technique using reverse rake scalp elevator helps in negating the acute angle of the hair follicles exit from scalp skin and reducing the variance angle between emergent hair and hair below the skin in lower occipital region thereby reducing FTR. Furthermore, an added advantage of reducing the overall operative time and surgeon fatigue, improve donor area healing, availability of a comparatively larger donor area which increases the confidence of the beginners. This method will be of help as it is easy to duplicate and follow by novice hair transplant surgeons and also for those who are routinely doing mega hair transplants sessions. PMID:28216821

  17. Skin transcriptome reveals the intrinsic molecular mechanisms underlying hair follicle cycling in Cashmere goats under natural and shortened photoperiod conditions.

    PubMed

    Yang, Min; Song, Shen; Dong, Kunzhe; Chen, XiaoFei; Liu, Xuexue; Rouzi, Marhaba; Zhao, Qianjun; He, Xiaohong; Pu, Yabin; Guan, Weijun; Ma, Yuehui; Jiang, Lin

    2017-10-18

    The growth of cashmere exhibits a seasonal pattern arising from photoperiod change. However, the underlying molecular mechanism remains unclear. We profiled the skin transcriptome of six goats at seven time points during hair follicle cycling via RNA-seq. The six goats comprised three goats exposed to a natural photoperiod and three exposed to a shortened photoperiod. During hair cycle transition, 1713 genes showed differential expression, and 332 genes showed a pattern of periodic expression. Moreover, a short photoperiod induced the hair follicle to enter anagen early, and 246 genes overlapped with the periodic genes. Among these key genes, cold-shock domain containing C2 (CSDC2) was highly expressed in the epidermis and dermis of Cashmere goat skin, although its function in hair-follicle development remains unknown. CSDC2 silencing in mouse fibroblasts resulted in the decreased mRNA expression of two key hair-follicle factors, leading to reduced cell numbers and a lower cell density. Cashmere growth or molting might be controlled by a set of periodic regulatory genes. The appropriate management of short light exposure can induce hair follicles to enter full anagen early through the activation of these regulators. The CSDC2 gene is a potentially important transcription factor in the hair growth cycle.

  18. [Hair growth effect of minoxidil].

    PubMed

    Otomo, Susumu

    2002-03-01

    The length and size of hair are depend on the anagen term in its hair cycle. It has been reported that the some cell growth factors, such as VEGF, FGF-5S, IGF-1 and KGF, induce the proliferation of cells in the matrix, dermal papilla and dermal papillary vascular system and increase the amount of extra cellular matrix in dermal papilla and then maintain follicles in the anagen phase. On the other hand, negative factors, like FGF-5, thrombospondin, or still unknown ones, terminate the anagen phase. If the negative factors become dominant against cell proliferation factors according to fulfilling some time set by the biological clock for hair follicles, TGF beta induced in the matrix tissues evokes apoptosis of matrix cells and shifts the follicles from anagen to catagen. Androgenetic alopecia is caused by miniaturizing of hair follicles located in the frontal or crown part of scalp and are hereditarily more sensitive to androgen. In their hair cycles, the androgen shortens the anagen phase of follicles and shifts them to the catagen phase earlier than usual. The mode of action of hair growth effect of minoxidil is not completely elucidated, but the most plausible explanation proposed here is that minoxidil works as a sulfonylurea receptor (SUR) activator and prolongs the anagen phase of hair follicles in the following manner: minoxidil (1) induces cell growth factors such as VEGF, HGF, IGF-1 and potentiates HGF and IGF-1 actions by the activation of uncoupled SUR on the plasma membrane of dermal papilla cells, (2) inhibits of TGF beta induced apoptosis of hair matrix cells by opening the Kir 6.0 channel pore coupled with SUR on the mitochondrial inner membrane, and (3) dilates hair follicle arteries and increases blood flow in dermal papilla by opening the Kir 6.0 channel pore coupled with SUR on the plasma membrane of vascular smooth muscle cells.

  19. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.

    2011-05-01

    Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.

  20. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration

    PubMed Central

    Zhang, Peipei; Kling, Russell E; Ravuri, Sudheer K; Kokai, Lauren E; Rubin, J Peter; Chai, Jia-ke

    2014-01-01

    Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration. PMID:25383178

  1. Icariin promotes mouse hair follicle growth by increasing insulin-like growth factor 1 expression in dermal papillary cells.

    PubMed

    Su, Y-S; Fan, Z-X; Xiao, S-E; Lin, B-J; Miao, Y; Hu, Z-Q; Liu, H

    2017-04-01

    Icariin is a major flavonoid isolated from Epimedium spp. leaves (Epimedium Herba), and has multiple pharmacological functions, including anti-angiogenesis, anti-oxidant, anti-inflammatory and immunoprotective effects. To investigate whether icariin can stimulate growth of hair follicles in mice and the underlying mechanism. In vitro, the effect of icariin on hair growth was assessed by using a vibrissae hair follicle (VHF) organ-culture model. The proliferation of hair matrix keratinocytes and the expression of insulin-like growth factor (IGF)-1 in follicles were examined by double immunostaining for 5-bromo-2'-deoxyuridine and IGF-1, in the presence or absence of icariin. Dermal papilla cells (DPCs) were cultured and IGF-1 level was measured by reverse transcription-PCR and ELISA after icariin treatment. In vivo, the effect of icariin on hair growth was examined by gavage feeding of icariin to mice whose backs had been depilated, and the conversion of telogen to anagen hair was observed. Treatment with icariin promoted hair shaft elongation, prolonged the hair cycle growth phase (anagen) in cultured VHFs, and accelerated transition of hair cycle from telogen to anagen phase in the dorsal skin of mice. There was significant proliferation of matrix keratinocytes and an increased level of IGF-1 in cultured VHFs. Moreover, icariin treatment upregulated IGF-1 mRNA expression in DPCs and increased IGF-1 protein content in the conditioned medium of DPCs. These results suggest that icariin can promote mouse hair follicle growth via stimulation of IGF-1 expression in DPCs. © 2017 British Association of Dermatologists.

  2. Transcriptional profiling in rat hair follicles following simulated Blast insult: a new diagnostic tool for traumatic brain injury.

    PubMed

    Zhang, Jing; Carnduff, Lisa; Norman, Grant; Josey, Tyson; Wang, Yushan; Sawyer, Thomas W; Martyniuk, Christopher J; Langlois, Valerie S

    2014-01-01

    With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis.

  3. Transcriptional Profiling in Rat Hair Follicles following Simulated Blast Insult: A New Diagnostic Tool for Traumatic Brain Injury

    PubMed Central

    Zhang, Jing; Carnduff, Lisa; Norman, Grant; Josey, Tyson; Wang, Yushan; Sawyer, Thomas W.; Martyniuk, Christopher J.; Langlois, Valerie S.

    2014-01-01

    With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis. PMID:25136963

  4. Enhancing hair follicle regeneration by nonablative fractional laser: Assessment of irradiation parameters and tissue response.

    PubMed

    Wu, Yueh-Feng; Wang, Shiou-Han; Wu, Pei-Shan; Fan, Sabrina Mai-Yi; Chiu, Hsien-Yi; Tsai, Tsung-Hua; Lin, Sung-Jan

    2015-04-01

    Identification of methods to enhance anagen entry can be helpful for alopecia. Recently, nonablative laser has been proposed as a potential treatment for alopecia. However, how the laser parameters affect stem cell activity, hair cycles and the associated side effects have not been well characterized. Here we examine the effects of irradiation parameters of 1,550-nm fractional laser on hair cycles. The dorsal skin of eight-week-old female C57BL/6 mice with hair follicles in synchronized telogen was shaved and irradiated with a 1,550-nm fractional erbium-glass laser (Fraxel RE:STORE (SR1500) Laser System, Solta Medical, U.S.A.) with varied beam energies (5-35 mJ) and beam densities (500-3500 microthermal zones/cm(2) ). The cutaneous changes were evaluated both grossly and histologically. Hair follicle stem cell activity was detected by BrdU incorporation and changes in gene expression were quantified by real-time PCR. Direct thermal injury to hair follicles could be observed early after irradiation, especially at higher beam energy. Anagen induction in the irradiated skin showed an all-or-non change. Anagen induction and ulcer formation were affected by the combination of beam energy and density. The lowest beam energy of 5 mJ failed to promote anagen entry at all beam densities tested. As beam energy increased from 10 mJ to 35 mJ, we found a decreasing trend of beam density that could induce anagen entry within 7-9 days with activation of hair follicle stem cells. Beam density above the pro-regeneration density could lead to ulcers and scarring followed by anagen entry in adjacent skin. Analysis of inflammatory cytokines, including TNF-α, IL-1β, and IL-6, revealed that transient moderate inflammation was associated with anagen induction and intense prolonged inflammation preceded ulcer formation. To avoid side effects of hair follicle injury and scarring, appropriate combination of beam energy and density is required. Parameters outside the therapeutic

  5. Differential effect of testosterone on pigmented spot, sebaceous glands and hair follicles in the Syrian hamster flank organ.

    PubMed

    Wuest, P A; Lucky, A W

    1989-01-01

    The androgen-dependent flank organ of the Golden Syrian hamster has been used as a model for acne and hair growth. 1-cm silastic capsules of testosterone (T) were implanted subcutaneously into female hamsters. Serum levels of T remained relatively constant after 1 week. Maximum growth of the pigmented spot occurred at 4 weeks but regressed by 6 weeks. In contrast, the growth of the pilosebaceous unit continued for 6 weeks. Total sebaceous area and number of sebaceous lobules increased by 3 weeks with a further increase in total area by 6 weeks. The distribution of lobule size shifted to more large lobules. Diameters of hair follicles increased at 3 and 6 weeks with a concomitant recruitment to large follicles. The density of hairs remained constant. The diminution in size of the pigmented spot between 4 and 6 weeks of T stimulation was not related to a reduction in serum T. In fact, there was persistent growth of the sebaceous glands and hair follicles at this time. The measurement of the pigmented spot of the flank organ is not a reliable indicator of the androgen responsiveness of sebaceous glands and/or hair follicles.

  6. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth

    PubMed Central

    Higgins, Claire A.; Chen, James C.; Cerise, Jane E.; Jahoda, Colin A. B.; Christiano, Angela M.

    2013-01-01

    De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture. Here, we performed global gene expression analysis of human dermal papilla cells in culture and discovered very rapid and profound molecular signature changes linking their transition from a 3D to a 2D environment with early loss of their hair-inducing capacity. We demonstrate that the intact dermal papilla transcriptional signature can be partially restored by growth of papilla cells in 3D spheroid cultures. This signature change translates to a partial restoration of inductive capability, and we show that human dermal papilla cells, when grown as spheroids, are capable of inducing de novo hair follicles in human skin. PMID:24145441

  7. [Prevalence of human papillomavirus in the pubic hair follicles of healthy men and male patients with genital warts].

    PubMed

    Wang, You-bao; Han, Tao; Zhao, Chun-xiong

    2010-09-01

    Human papillomavirus (HPV) commonly exists in healthy individuals, but its prevalence in the pubic hair follicles is not yet clear, nor is the relationship between HPV infection in the pubic hair follicles and the recurrence of genital warts in men. This study aimed to investigate HPV infection in the pubic hair follicles of healthy men and patients with genital warts, and to look into the correlation of HPV infection with recurrent genital warts. We included in this study 122 healthy men aged 21-80 years and 86 male patients with genital warts aged 24-61 years, detected HPV in their pubic hair follicles by PCR, and made comparative analysis of the data obtained from the two groups. The positive rate of HPV in the pubic hair follicles of the healthy males was 17.21% (21/122), including 15 cases of HPV6, 4 HPV11, 1 non-HPV6/11 and 1 the mixed type (both HPV6 and HPV11), while that of the genital wart patients was 32.55% (28/86), including 17 cases of HPV6, 7 HPV11, 2 non-HPV6/11 and 2 the mixed type. The incidence of HPV infection is higher in patients with genital warts than in healthy men, while the types of HPV involved are basically the same in the two groups, mainly HPV6 and HPV11.

  8. Modulatory role of sensory innervation on hair follicle stem cell progeny during wound healing of the rat skin.

    PubMed

    Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel

    2012-01-01

    The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU(+)) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU(+) nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU(+)/CldU(+)). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU(+)/CldU(+) cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34(+) and BrdU-retaining cells of the hair follicles. Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation may play a functional role in the modulation of hair

  9. Lactate dehydrogenase activity drives hair follicle stem cell activation

    PubMed Central

    Aimee, Flores; John, Schell; Abby, Krall; David, Jelinek; Matilde, Miranda; Melina, Grigorian; Daniel, Braas; White Andrew, C; Jessica, Zhou; Nick, Graham; Thomas, Graeber; Pankaj, Seth; Denis, Evseenko; Hilary, Coller; Jared, Rutter; Heather, Christofk; Lowry William, E

    2017-01-01

    Summary While normally dormant, Hair Follicle Stem Cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allow them to remain dormant and yet quickly respond to appropriate proliferative stimuli. PMID:28812580

  10. Communication network in the follicular papilla and connective tissue sheath through gap junctions in human hair follicles.

    PubMed

    Iguchi, Makiko; Hara, Masahiro; Manome, Hideaki; Kobayasi, Hiromi; Tagami, Hachiro; Aiba, Setsuya

    2003-06-01

    Epithelial-mesenchymal interactions play a crucial role in the induction of life-long cyclic transformations of hair follicles. Many studies have already demonstrated several candidates for the soluble factors secreted from the mesenchymal components of the hair follicle, i.e. the follicular papilla (FP) and connective tissue sheath (CTS), which may be responsible for hair cycling. In this paper, we focused on cell-cell contact between FP cells (FPCs), between CTS cells (CTSCs), and between FPCs and CTSCs that may allow these mesenchymal components to function as a syncytium during hair cycling. Electron microscopic examination of the FP and the CTS obtained from human scalp revealed a tri-lamellar structure of the plasma membranes, which is a characteristic of gap junctions at the cell-cell contacting area. The immunohistochemical study with anticonnexin 43 Ab using a confocal laser scanning microscope demonstrated numerous spotted positive signals scattered throughout the FP. In the CTS, spotted positive signals were arranged linearly along the basement membrane of the hair follicle. In particular, these positive spots were aggregated in the transitional region between the FP and the CTS. By Western blot analysis of total protein extracts from the cultured FPCs and neonatal human dermal fibroblasts using anticonnexin 43 antibody, a positive band corresponding to connexin 43 was detected at 43 kDa on both the FPC lane and fibroblast lane. These findings suggest that the FP and the CTS form a communicating network through gap junctions, which may play a role in controlling the dynamic structural changes of hair follicles during hair cycling.

  11. Hair Follicle Nevus With Features of Comedo Nevus: An Expanding Spectrum.

    PubMed

    Nagarajan, Priyadharsini; Bartholomew, Timothy S; Allen, Carl M; Peters, Sara B

    2016-06-01

    Hair follicle nevus (HFN) is a rare hamartomatous lesion of the folliculosebaceous unit, with or without admixed fibroadipose or muscular tissue. It typically has a congenital presentation in the preauricular area of infants and is frequently confused with an accessory tragus. Acquired tumors with similar histopathologic features have been described infrequently during adolescence and adult life. We report yet another unique presentation of this unusual lesion in a 4-year-old girl who had a long-standing tumor of the nasal columella that started growing rapidly after trauma. Histopathologic examination revealed increased numbers of hair follicles, some of which were associated with diminutive sebaceous glands, with no associated central cystic structure. In addition, the infundibula of the follicles were dilated and filled with keratinous debris. Although these hamartomas are common in the head and neck region, to our knowledge, this is the first report of a HFN at this anatomic location. In addition, this tumor has an overall architecture of a HFN but is accompanied by features of a comedo nevus. We also present a review of the literature and summarize the current diagnostic criteria for HFN.

  12. Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells

    PubMed Central

    Takeda, Norifumi; Jain, Rajan; LeBoeuf, Matthew R.; Padmanabhan, Arun; Wang, Qiaohong; Li, Li; Lu, Min Min; Millar, Sarah E.; Epstein, Jonathan A.

    2013-01-01

    The mammalian hair follicle relies on adult resident stem cells and their progeny to fuel and maintain hair growth throughout the life of an organism. The cyclical and initially synchronous nature of hair growth makes the hair follicle an ideal system with which to define homeostatic mechanisms of an adult stem cell population. Recently, we demonstrated that Hopx is a specific marker of intestinal stem cells. Here, we show that Hopx specifically labels long-lived hair follicle stem cells residing in the telogen basal bulge. Hopx+ cells contribute to all lineages of the mature hair follicle and to the interfollicular epidermis upon epidermal wounding. Unexpectedly, our analysis identifies a previously unappreciated progenitor population that resides in the lower hair bulb of anagen-phase follicles and expresses Hopx. These cells co-express Lgr5, do not express Shh and escape catagen-induced apoptosis. They ultimately differentiate into the cytokeratin 6-positive (K6) inner bulge cells in telogen, which regulate the quiescence of adjacent hair follicle stem cells. Although previous studies have suggested that K6+ cells arise from Lgr5-expressing lower outer root sheath cells in anagen, our studies indicate an alternative origin, and a novel role for Hopx-expressing lower hair bulb progenitor cells in contributing to stem cell homeostasis. PMID:23487314

  13. Unscheduled DNA synthesis in human hair follicles after in vitro exposure to 11 chemicals: comparison with unscheduled DNA synthesis in rat hepatocytes.

    PubMed

    van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J

    1992-06-01

    A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.

  14. Effects of in utero retinoic acid exposure on mouse pelage hair follicle development.

    PubMed

    García-Fernández, Rosa A; Pérez-Martínez, Claudia; Escudero-Diez, Alfredo; García-Iglesias, Maria J

    2002-06-01

    We investigated in vivo the histological and immunohistochemical responses of mouse hair pelage follicle morphogenesis to prenatal exposure to a potentially nonteratogenic dose of all-trans-retinoic acid (RA), as a basis studying the preventive effect of RA on adult mouse skin carcinogenesis. In pregnant mice, a single oral dose of RA at 30 mg kg-1 body weight given on day 11.5 of gestation caused no RA-induced changes in the morphology or temporal expression patterns of keratins during pelage hair follicle morphogenesis. The only differential effect of RA was a statistically significant increase in the number of BrdU-positive nuclei in hair bulbs from RA exposed fetuses compared with nonexposed mice. The absence of adverse RA effects suggests that this experimental design may represent a valuable protocol for use in studies on the in vivo effects of this retinoid on different skin diseases.

  15. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling

    PubMed Central

    Zhao, Jianzhi; Li, Hanjun; Zhou, Rujiang; Ma, Gang; Dekker, Joseph D.; Tucker, Haley O.; Yao, Zhengju; Guo, Xizhi

    2015-01-01

    Hair follicle stem cells (HFSCs) in the bugle circularly generate outer root sheath (ORS) through linear proliferation within limited cycles during anagen phases. However, the mechanisms controlling the pace of HFSC proliferation remain unclear. Here we revealed that Foxp1, a transcriptional factor, was dynamically relocated from the nucleus to the cytoplasm of HFSCs in phase transitions from anagen to catagen, coupled with the rise of oxidative stress. Mass spectrum analyses revealed that the S468 phosphorylation of Foxp1 protein was responsive to oxidative stress and affected its nucleocytoplasmic translocation. Foxp1 deficiency in hair follicles led to compromised ROS accrual and increased HFSC proliferation. And more, NAC treatment profoundly elongated the anagen duration and HFSC proliferation in Foxp1-deficient background. Molecularly, Foxp1 augmented ROS levels through suppression of Trx1-mediated reductive function, thereafter imposing the cell cycle arrest by modulating the activity of p19/p53 pathway. Our findings identify a novel role for Foxp1 in controlling HFSC proliferation with cellular dynamic location in response to oxidative stress during hair cycling. PMID:26171970

  16. A guide to studying human hair follicle cycling in vivo

    PubMed Central

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A.; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan

    2015-01-01

    Hair follicles (HFs) undergo life-long cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative “quiescence” (telogen). Since HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. While available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. Here, we present such a guide, which uses objective, well-defined, and reproducible criteria and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in sub-optimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. PMID:26763421

  17. A Guide to Studying Human Hair Follicle Cycling In Vivo.

    PubMed

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan; Kim, Moonkyu; Paus, Ralf; Plikus, Maksim V

    2016-01-01

    Hair follicles (HFs) undergo lifelong cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative "quiescence" (telogen). Given that HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. Although available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. In this article, we present such a guide, which uses objective, well-defined, and reproducible criteria, and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in suboptimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Detailed histological structure of human hair follicle bulge region at different ages: a visible niche for nesting adult stem cells.

    PubMed

    Wang, Xiong; Shi, Ying; Zhou, Qiong; Liu, Xiaoming; Xu, Shizheng; Lei, Tiechi

    2012-10-01

    In the bulge region of the hair follicle, a densely and concentrically packed cell mass is encircled by the arrector pili muscle (APM), which offers a specilized microenvironment (niche) for housing heterogeneous adult stem cells. However, the detailed histological architecture and the cellular composition of the bulge region warrants intensive study and may have implications for the regulation of hair follicle growth regulation. This study was designed to define the gene-expression profiles of putative stem cells and lineage-specific precursors in the mid-portions of plucked hair follicles prepared according to the presence of detectable autofluorescence. The structure was also characterized by using a consecutive sectioning technique. The bulge region of the hair follicle with autofluorescence was precisely excised by employing a micro-dissection procedure. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to identify the gene expression profiles specific for epithelial, melanocyte and stromal stem cells in the bulge region of the hair follicle visualized by autofluorescence. The morphology and its age-dependent changes of bulge region of the hair follicles with autofluorescence segment were also examined in 9 scalp skin specimens collected from patients aged 30 weeks to 75 years, by serial sectioning and immuno-staining. Gene expression profile analysis revealed that there were cells with mRNA transcripts of Dct(Hi)Tyrase(Lo)-Tyrp1(Lo)MC1R(Lo)MITF(Lo)/K15(Hi)/NPNT(Hi) in the bulge region of the hair follicle with autofluorescence segments, which differed from the patterns in hair bulbs. Small cell-protrusions that sprouted from the outer root sheath (ORS) were clearly observed at the APM inserting level in serial sections of hair follicles by immunohistological staining, which were characteristically replete with K15+/K19+expressing cells. Likewise, the muscle bundles of APM positive for smooth muscle actin intimately

  19. Modulatory Role of Sensory Innervation on Hair Follicle Stem Cell Progeny during Wound Healing of the Rat Skin

    PubMed Central

    Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I.; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel

    2012-01-01

    Background The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. Methodology/Principal Findings We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU+) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU+ nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU+/CldU+). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU+/CldU+ cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34+ and BrdU-retaining cells of the hair follicles. Conclusions/Significance Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation

  20. Triggered release of model drug from AuNP-doped BSA nanocarriers in hair follicles using IRA radiation.

    PubMed

    Lademann, J; Richter, H; Knorr, F; Patzelt, A; Darvin, M E; Rühl, E; Cheung, K Y; Lai, K K; Renneberg, R; Mak, W C

    2016-01-01

    Recent advances in the field of dermatotherapy have resulted in research efforts focusing on the use of particle-based drug delivery systems for the stimuli-responsive release of drugs in the skin and skin appendages, i.e. hair follicles and sebaceous glands. However, effective and innocuous trigger mechanisms which result in the release of the drugs from the nanocarriers upon reaching the target structures are still lacking. For the first time, the present study demonstrated the photo-activated release of the model drug fluorescein isothiocyanate (FITC) from topically applied gold nanoparticle-doped bovine serum albumin (AuNPs-doped BSA) particles (approx. 545nm) using water-filtered infrared A (IRA) radiation in the hair follicles of an ex vivo porcine skin model. The IRA radiation-induced plasmonic heating of the AuNPs results in the partial decomposition or opening of the albumin particles and release the model drug, while control particles without AuNPs show insignificant release. The results demonstrate the feasibility of using IRA radiation to induce release of encapsulated drugs from plasmonic nanocarriers for the targeting of follicular structures. However, the risk of radiation-induced skin damage subsequent to repeated applications of high infrared dosages may be significant. Future studies should aim at determining the suitability of lower infrared A dosages, such as for medical treatment regimens which may necessitate repeated exposure to therapeutics. Follicular targeting using nanocarriers is of increasing importance in the prophylaxis and treatment of dermatological or other diseases. For the first time, the present study demonstrated the photo-activated release of the model drug fluorescein isothiocyanate (FITC) from topically applied gold nanoparticle-doped bovine serum albumin (AuNPs-doped BSA) particles using water-filtered infrared A (IRA) radiation in the hair follicles of an ex vivo porcine skin model. The results demonstrate the feasibility

  1. Human hair pigmentation--biological aspects.

    PubMed

    Tobin, D J

    2008-08-01

    Skin and hair colour contribute significantly to our overall visual appearance and to social/sexual communication. Despite their shared origins in the embryologic neural crest, the hair follicle and epidermal pigmentary units occupy distinct, although open, cutaneous compartments. They can be distinguished principally on the basis of the former's stringent coupling to the hair growth cycle compared with the latter's continuous melanogenesis. The biosynthesis of melanin and its subsequent transfer from melanocyte to hair bulb keratinocytes depend on the availability of melanin precursors and on a raft of signal transduction pathways that are both highly complex and commonly redundant. These signalling pathways can be both dependent and independent of receptors, act through auto-, para- or intracrine mechanisms and can be modified by hormonal signals. Despite many shared features, follicular melanocytes appear to be more sensitive than epidermal melanocytes to ageing influences. This can be seen most dramatically in hair greying/canities and this is likely to reflect significant differences in the epidermal and follicular microenvironments. The hair follicle pigmentary unit may also serve as an important environmental sensor, whereby hair pigment contributes to the rapid excretion of heavy metals, chemicals and toxins from the body by their selective binding to melanin; rendering the hair fibre a useful barometer of exposures. The recent availability of advanced cell culture methodologies for isolated hair follicle melanocytes and for intact anagen hair follicle organ culture should provide the research tools necessary to elucidate the regulatory mechanisms of hair follicle pigmentation. In the longer term, it may be feasible to develop hair colour modifiers of a biological nature to accompany those based on chemicals.

  2. Hairless Streaks in Cattle Implicate TSR2 in Early Hair Follicle Formation

    PubMed Central

    Murgiano, Leonardo; Shirokova, Vera; Welle, Monika Maria; Jagannathan, Vidhya; Plattet, Philippe; Oevermann, Anna; Pienkowska-Schelling, Aldona; Gallo, Daniele; Gentile, Arcangelo; Mikkola, Marja; Drögemüller, Cord

    2015-01-01

    Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal

  3. Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles

    PubMed Central

    1990-01-01

    The major histological components of the hair follicle are the hair cortex and cuticle. The hair cuticle cells encase and protect the cortex and undergo a different developmental program to that of the cortex. We report the molecular characterization of a set of evolutionarily conserved hair genes which are transcribed in the hair cuticle late in follicle development. Two genes were isolated and characterized, one expressed in the human follicle and one in the sheep follicle. Each gene encodes a small protein of 16 kD, containing greater than 50 cysteine residues, ranging from 31 to 36 mol% cysteine. Their high cysteine content and in vitro expression data identify them as ultra-high-sulfur (UHS) keratin proteins. The predicted proteins are composed almost entirely of cysteine-rich and glycine-rich repeats. Genomic blots reveal that the UHS keratin proteins are encoded by related multigene families in both the human and sheep genomes. Tissue in situ hybridization demonstrates that the expression of both genes is localized to the hair fiber cuticle and occurs at a late stage in fiber morphogenesis. PMID:1703541

  4. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy.

    PubMed

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  5. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  6. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    PubMed Central

    Wang, Xiaojie; Hao, Jianqiang; Leung, Gigi; Breitkopf, Trisia; Wang, Eddy; Kwong, Nicole; Akhoundsadegh, Noushin; Warnock, Garth L.; Shapiro, Jerry; McElwee, Kevin J.

    2015-01-01

    Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1) or fibroblasts (FB, group 2) under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P < 0.001) without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation. PMID:26000314

  7. The in vitro use of the hair follicle closure technique to study the follicular and percutaneous permeation of topically applied drugs.

    PubMed

    Stahl, Jessica; Niedorf, Frank; Wohlert, Mareike; Kietzmann, Manfred

    2012-03-01

    Recent studies on follicular permeation emphasise the importance of hair follicles as diffusion pathways, but only a limited amount of data are available about the follicular permeation of topically applied drugs. This study examines the use of a hair follicle closure technique in vitro, to determine the participation of hair follicles in transdermal drug penetration. Various substances, with different lipophilicities, were tested: caffeine, diclofenac, flufenamic acid, ibuprofen, paracetamol, salicylic acid and testosterone. Diffusion experiments were conducted with porcine skin, the most common replacement material for human skin, in Franz-type diffusion cells over 28 hours. Different experimental settings allowed the differentiation between interfollicular and follicular permeation after topical application of the test compounds. A comparison of the apparent permeability coefficients of the drugs demonstrates that the percutaneous permeations of caffeine and flufenamic acid were significantly higher along the hair follicles. In the cases of paracetamol and testosterone, the follicular pathway appears to be of importance, while no difference was found between interfollicular and follicular permeation for diclofenac, ibuprofen and salicylic acid. Thus, the hair follicle closure technique represents an adequate in vitro method for gaining information about follicular or percutaneous permeation, and can replace in vivo testing in animals or humans. 2012 FRAME.

  8. Ginsenoside Rg3 up-regulates the expression of vascular endothelial growth factor in human dermal papilla cells and mouse hair follicles.

    PubMed

    Shin, Dae Hyun; Cha, Youn Jeong; Yang, Kyeong Eun; Jang, Ik-Soon; Son, Chang-Gue; Kim, Bo Hyeon; Kim, Jung Min

    2014-07-01

    Crude Panax ginseng has been documented to possess hair growth activity and is widely used to treat alopecia, but the effects of ginsenoside Rg3 on hair growth have not to our knowledge been determined. The aim of the current study was to identify the molecules through which Rg3 stimulates hair growth. The thymidine incorporation for measuring cell proliferation was determined. We used DNA microarray analysis to measure gene expression levels in dermal papilla (DP) cells upon treatment with Rg3. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in human DP cells were measured by real-time polymerase chain reaction and immunohistochemistry, respectively. We also used immunohistochemistry assays to detect in vivo changes in VEGF and 3-stemness marker expressions in mouse hair follicles. Reverse transcription polymerase chain reaction showed dose-dependent increases in VEGF mRNA levels on treatment with Rg3. Immunohistochemical analysis showed that expression of VEGF was significantly up-regulated by Rg3 in a dose-dependent manner in human DP cells and in mouse hair follicles. In addition, the CD8 and CD34 were also up-regulated by Rg3 in the mouse hair follicles. It may be concluded that Rg3 might increase hair growth through stimulation of hair follicle stem cells and it has the potential to be used in hair growth products. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Apoptosis of hair follicle cells in the second-degree burn wound unders hypernatremic conditions.

    PubMed

    Harada, T; Izaki, S; Tsutsumi, H; Kobayashi, M; Kitamura, K

    1998-08-01

    Progressive burn wound necrosis is an important factor as a cause of delayed healing during clinical therapy of burns. Among the causes of progressive necrosis have been attributed an insufficient blood supply or a dehydration at the zone of stasis just beneath the zone of coagulation. In a previous study evidence was presented that hypernatremia, an osmotic injury, may act to promote progressive tissue or cell death of the superficial dermal wound resulting from a heat injury. To test this hypothesis pathological features of cell death in the second-degree burn wound in the rat with hypernatremia were investigated and evidence for apoptosis in hair follicle cells was observed. Rats in the hypernatremic group were administered 10 ml of hypertonic sodium solution (850 meq 1(-1)) and the control rats were treated with 10 ml of hyponatremic solution (100 meq 1(-1)) to prevent hypernatremia. After 24 h postburn the average incidence of hair follicles (ratio to the normal skin) in the hypernatremic group was 30.1 +/-11.6 per cent and significantly lower when compared with the control group (87.6+/-6.0 per cent). The numbers of hair follicles were studied by haematoxylin and eosin stain, and the apoptotic process was investigated by an immunochemical assay and electron microscopy.

  10. Arachidonate 12-Lipoxygenase Inhibitors Promote S100A3 Citrullination in Cultured SW480 Cells and Isolated Hair Follicles.

    PubMed

    Kizawa, Kenji; Fujimori, Takeshi; Kawai, Tomomitsu

    2017-01-01

    The human hair shaft is covered with multiple scale-like cuticular layers. During the terminal differentiation stage of immature cuticular cells within the hair follicle, cysteine-rich calcium binding S100A3 protein is predominantly translated, and its arginine residues are converted to citrullines by peptidylarginine deiminases (PADI). In this study, we found several naturally occurring compounds (e.g., hinokitiol, escletin, and quercetin) elevate S100A3 citrullination in a human colorectal adenocarcinoma cell line (SW480). Selected compounds similarly promoted cuticular differentiation within isolated human hair follicles. Their promotive activities correlated with the previously reported inhibitory activities of arachidonate 12-lipoxygenase (ALOX12) in vitro. Microarray analysis revealed that ALOX12 inhibitor remarkably up-regulated heparin-binding epidermal growth factor-like growth factor (HBEGF). ALOX12 inhibitor and recombinant HBEGF similarly regulated expression of PADI genes in SW480 cells. In isolated hair follicles, arachidonic acid strongly promoted S100A3 citrullination along with elevation of HBEGF. These results suggest that ALOX12 inhibition efficiently triggers hair cuticle maturation by modulating arachidonate metabolism in concert with HBEGF.

  11. Morphological analysis of the growth stages of in-vivo mouse hair follicles by using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jha, Rakesh Kumar; Kim, Kanghae; Jeon, Mansik; Kim, Jeehyun; Kang, Minyoung; Han, Insook; Kim, Moonkyu

    2016-09-01

    Swept-source optical coherence tomography (SS-OCT), a bio-photonic imaging modality, was used to demonstrate an initial feasibility experiment for detecting morphological variations of in-vivo mouse hair follicles for the anagen and the telogen growth stages. Two C57BL/6 adult male mice, one undergoing the anagen stage and the other undergoing the telogen stage of the hair follicle growth cycle, were selected for the experiment. The OCT cross-sectional images of mice skin were acquired in-vivo within an interval of 15 days, and the observed morphological changes were analyzed. The micro-structural features of mice skin on the 15th experimental day were further compared with corresponding histological observations. The preliminary result of this study provides clear insights into the structural details of mouse skin, confirming the resemblance of the OCT images with the corresponding histological measurements, and ensures the suitability of SS-OCT for non-invasive analysis of hair follicle conditions.

  12. [Human papillomavirus in the pubic hair follicles of men and cervical lesions in their female sexual partners].

    PubMed

    Han, Tao; Sun, Xuan; Wang, You-Bao; Zhu, Chang-Ming; Xu, Xiang-Qian

    2013-09-01

    To investigate the association of human papillomavirus (HPV) in the pubic hair follicles of males with HPV infection in their female sexual partners. We included in this study 21 female patients with HPV infection, including 8 cases of cervical cancer, 5 cases of atypical cervical hyperplasia, 5 cases of cervical condyloma, and 3 cases with unidentified causes. We also enlisted 52 men without visible condyloma acuminatum in the external genitalia as healthy controls. We detected HPV in the pubic hair follicles of the female patients' male sexual partners and the healthy male controls by PCR and reverse hybridization in situ. HPV positive was found in 6 (28.6%) of the 21 women's male partners, in whom the HPV types were correspondent situ. to those of the female patients. HPV in the pubic hair follicles of men might be one of the causes of HPV-related cervical lesions in their female sexual partners.

  13. Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles.

    PubMed

    Cetera, Maureen; Leybova, Liliya; Joyce, Bradley; Devenport, Danelle

    2018-05-01

    Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.

  14. Androgen regulation of the human hair follicle: the type I hair keratin hHa7 is a direct target gene in trichocytes.

    PubMed

    Jave-Suarez, Luis F; Langbein, Lutz; Winter, Hermelita; Praetzel, Silke; Rogers, Michael A; Schweizer, Juergen

    2004-03-01

    Previous work had shown that most members of the complex human hair keratin family were expressed in terminal scalp hairs. An exception to this rule was the type I hair keratin hHa7, which was only detected in some but not all vellus hairs of the human scalp (Langbein et al, 1999). Here we show that hHa7 exhibits constitutive expression in medullary cells of all types of male and female sexual hairs. Medullated beard, axillary, and pubic hairs arise during puberty from small, unmedullated vellus hairs under the influence of circulating androgens. This suggested an androgen-controlled expression of the hHa7 gene. Further evidence for this assumption was provided by the demonstration of androgen receptor (AR) expression in the nuclei of medullary cells of beard hairs. Moreover, homology search for the semipalindromic androgen receptor-binding element (ARE) consensus sequence GG(A)/(T)ACAnnnTGTTCT in the proximal hHa7 promoter revealed three putative ARE motifs. Electrophoretic mobility shift assays demonstrated the specific binding of AR to all three hHa7 AREs. Their function as AR-responsive elements, either individually or in concert within the hHa7 promoter, could be further confirmed by transfection studies with or without an AR expression vector in PtK2 and prostate PC3-Arwt cells, respectively in the presence or absence of a synthetic androgen. Our study detected hHa7 as the first gene in hair follicle trichocytes whose expression appears to be directly regulated by androgens. As such, hHa7 represents a marker for androgen action on hair follicles and might be a suitable tool for investigations of androgen-dependent hair disorders.

  15. [Tufted hair folliculitis].

    PubMed

    Trüeb, R M; Pericin, M; Hafner, J; Burg, G

    1997-04-01

    A case of tufted hair folliculutis presenting as circumscribed, tender and inflamed areas in the occiput with residual tufted follicles in a 28-year old man is reported. Tufted hair folliculitis is a characteristic localized scarring bacterial folliculitis of the scalp due to Staphylococcus aureus. Histopathological studies reveal perifollicular inflammation around the upper portions of the follicles sparing the hair root level. Within areas of inflammation, several follicles converge toward a common follicular duct with a widely dilated opening. Currently, tufted hair folliculitis is considered a variant of folliculitis decalvans of Quinquaud. Staphylococcal infection is believed to be an initial causative factor, and underlying differences in follicular anatomy or host response may be important in determining which reaction pattern occurs in an affected individual. The development of atrophy with loss of adnexal structures (in folliculitis decalvans) or of hair tufts (in tufting folliculitis) may depend upon the depth and destructive potential of the inflammatory process. The therapeutic approach is problematic; prolonged treatment with oral antibiotics may stabilize the disease, but good and at times more definitive results (as in the presented case) have been reported after radical surgical excision of the involved areas.

  16. Co-option of Hair Follicle Keratins into Amelogenesis Is Associated with the Evolution of Prismatic Enamel: A Hypothesis

    PubMed Central

    Beniash, Elia

    2017-01-01

    Recent discovery of hair follicle keratin 75 (KRT75) in enamel raises questions about the function of this protein in enamel and the mechanisms of its secretion. It is also not clear how this protein with a very specific and narrow expression pattern, limited to the inner root sheath of the hair follicle, became associated with enamel. We propose a hypothesis that KRT75 was co-opted by ameloblasts during the evolution of Tomes' process and the prismatic enamel in synapsids. PMID:29114231

  17. Protease activity, localization and inhibition in the human hair follicle.

    PubMed

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-02-01

    In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen) and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (U.K., Brazil, China, first-generation Mexicans in the U.S.A., Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen and climbazole. This technology may have potential to reduce excessive hair shedding. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil.

    PubMed

    Shorter, Katie; Farjo, Nilofer P; Picksley, Steven M; Randall, Valerie A

    2008-06-01

    Hair disorders cause psychological distress but are generally poorly controlled; more effective treatments are required. Despite the long-standing use of minoxidil for balding, its mechanism is unclear; suggestions include action on vasculature or follicle cells. Similar drugs also stimulate hair, implicating ATP-sensitive potassium (K(ATP)) channels. To investigate whether K(ATP) channels are present in human follicles, we used organ culture, molecular biological, and immunohistological approaches. Minoxidil and tolbutamide, a K(ATP) channel blocker, opposed each other's effects on the growing phase (anagen) of scalp follicles cultured in media with and without insulin. Reverse transcriptase-polymerase chain reaction identified K(ATP) channel component gene expression including regulatory sulfonylurea receptors (SUR) SUR1 and SUR2B but not SUR2A and pore-forming subunits (Kir) Kir6.1 and Kir6.2. When hair bulb tissues were examined separately, epithelial matrix expressed SUR1 and Kir6.2, whereas both dermal papilla and sheath exhibited SUR2B and Kir6.1. Immunohistochemistry demonstrated similar protein distributions. Thus, human follicles respond biologically to K(ATP) channel regulators in culture and express genes and proteins for two K(ATP) channels, Kir6.2/SUR1 and Kir6.1/SUR2B; minoxidil only stimulates SUR2 channels. These findings indicate that human follicular dermal papillae contain K(ATP) channels that can respond to minoxidil and that tolbutamide may suppress hair growth clinically; novel drugs designed specifically for these channels could treat hair disorders.

  19. Demodex injai: a new species of hair follicle mite (Acari: Demodecidae) from the domestic dog (Canidae).

    PubMed

    Desch, Clifford E; Hillier, Andrew

    2003-03-01

    Demondex injai sp. nov. is described from the hair follicles of a domestic dog in Columbus, OH in October 1996. The mites occupy follicles from the orifice down to and into the sebaceous glands. The individual host may harbor both this new species and D. canis. A comparison of these two species is provided for identification purposes.

  20. The metabolism of testosterone by dermal papilla cells cultured from human pubic and axillary hair follicles concurs with hair growth in 5 alpha-reductase deficiency.

    PubMed

    Hamada, K; Thornton, M J; Laing, I; Messenger, A G; Randall, V A

    1996-05-01

    Androgens regulate the growth of many human hair follicles, but only pubic, axillary, and scalp hair growth occur in men with 5 alpha-reductase deficiency. This suggests that 5 alpha-dihydrotestosterone is the active intracellular androgen in androgen-dependent follicles, except in the axilla and pubis. Since the dermal papilla plays a major regulatory role in hair follicles and may be the site of androgen action, we have investigated androgen metabolism in six primary lines of cultured dermal papilla cells from pubic and axillary hair follicles; previous studies have shown that beard cells take up and metabolize testosterone, retaining and secreting 5 alpha-dihydrotestosterone. After 24 h preincubation in serum-free Eagle's medium 199, 100-mm dishes of confluent cells were incubated for 2 h with 5 nM [1,2,6,7-3H]testosterone. Media were collected and the cells washed with phosphate-buffered saline and extracted with chloroform: methanol (2:1). After the addition of unlabeled and 14C-labeled marker steroids, the extracts were analyzed by a two-step thin-layer chromatography system; steroid identity was confirmed by recrystallization to a constant 3H/14C ratio. Beard and pubic dermal papilla cells were also incubated for 24 h, and the medium was analyzed at various times. The results from pubic and axillary primary cell lines were similar. In both cells and media the major steroid identified was testosterone, but significant amounts of androstenedione were present, indicating 17 beta-hydroxysteroid dehydrogenase activity; androstenedione was also identified within the cells, but a small amount of 5 alpha-dihydrotestosterone was only identified in one pubic cell line. Beard dermal papilla cells secreted large amounts of 5 alpha-dihydrotestosterone into the medium over 24 h in contrast to pubic cells, which produced only very small amounts. The pubic and axillary cell results contrasts with the observations of pronounced 5 alpha-dihydrotestosterone in beard cells and

  1. Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model

    PubMed Central

    Keum, Dong In; Pi, Long-Quan; Hwang, Sungjoo Tommy; Lee, Won-Soo

    2015-01-01

    Background Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression. PMID:27158238

  2. Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model.

    PubMed

    Keum, Dong In; Pi, Long-Quan; Hwang, Sungjoo Tommy; Lee, Won-Soo

    2016-04-01

    Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression.

  3. Functional anatomy of the hair follicle: The Secondary Hair Germ.

    PubMed

    Panteleyev, Andrey A

    2018-07-01

    The secondary hair germ (SHG)-a transitory structure in the lower portion of the mouse telogen hair follicle (HF)-is directly involved in anagen induction and eventual HF regrowth. Some crucial aspects of SHG functioning and ontogenetic relations with other HF parts, however, remain undefined. According to recent evidence (in contrast to previous bulge-centric views), the SHG is the primary target of anagen-inducing signalling and a source of both the outer root sheath (ORS) and ascending HF layers during the initial (morphogenetic) anagen subphase. The SHG is comprised of two functionally distinct cell populations. Its lower portion (originating from lower HF cells that survived catagen) forms all ascending HF layers, while the upper SHG (formed by bulge-derived cells) builds up the ORS. The predetermination of SHG cells to a specific morphogenetic fate contradicts their attribution to the "stem cell" category and supports SHG designation as a "germinative" or a "founder" cell population. The mechanisms of this predetermination driving transition of the SHG from "refractory" to the "competent" state during the telogen remain unknown. Functionally, the SHG serves as a barrier, protecting the quiescent bulge stem cell niche from the extensive follicular papilla/SHG signalling milieu. The formation of the SHG is a prerequisite for efficient "precommitment" of these cells and provides for easier sensing and a faster response to anagen-inducing signals. In general, the formation of the SHG is an evolutionary adaptation, which allowed the ancestors of modern Muridae to acquire a specific, highly synchronized pattern of hair cycling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Hair organ regeneration via the bioengineered hair follicular unit transplantation

    PubMed Central

    Asakawa, Kyosuke; Toyoshima, Koh-ei; Ishibashi, Naoko; Tobe, Hirofumi; Iwadate, Ayako; Kanayama, Tatsuya; Hasegawa, Tomoko; Nakao, Kazuhisa; Toki, Hiroshi; Noguchi, Shotaro; Ogawa, Miho; Sato, Akio; Tsuji, Takashi

    2012-01-01

    Organ regenerative therapy aims to reproduce fully functional organs to replace organs that have been lost or damaged as a result of disease, injury, or aging. For the fully functional regeneration of ectodermal organs, a concept has been proposed in which a bioengineered organ is developed by reproducing the embryonic processes of organogenesis. Here, we show that a bioengineered hair follicle germ, which was reconstituted with embryonic skin-derived epithelial and mesenchymal cells and ectopically transplanted, was able to develop histologically correct hair follicles. The bioengineered hair follicles properly connected to the host skin epithelium by intracutaneous transplantation and reproduced the stem cell niche and hair cycles. The bioengineered hair follicles also autonomously connected with nerves and the arrector pili muscle at the permanent region and exhibited piloerection ability. Our findings indicate that the bioengineered hair follicles could restore physiological hair functions and could be applicable to surgical treatments for alopecia. PMID:22645640

  5. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning.

    PubMed

    Wang, Qixuan; Oh, Ji Won; Lee, Hye-Lim; Dhar, Anukriti; Peng, Tao; Ramos, Raul; Guerrero-Juarez, Christian Fernando; Wang, Xiaojie; Zhao, Ran; Cao, Xiaoling; Le, Jonathan; Fuentes, Melisa A; Jocoy, Shelby C; Rossi, Antoni R; Vu, Brian; Pham, Kim; Wang, Xiaoyang; Mali, Nanda Maya; Park, Jung Min; Choi, June-Hyug; Lee, Hyunsu; Legrand, Julien M D; Kandyba, Eve; Kim, Jung Chul; Kim, Moonkyu; Foley, John; Yu, Zhengquan; Kobielak, Krzysztof; Andersen, Bogi; Khosrotehrani, Kiarash; Nie, Qing; Plikus, Maksim V

    2017-07-11

    The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs.

  6. Post-transcriptional Regulation of Keratinocyte Progenitor Cell Expansion, Differentiation and Hair Follicle Regression by miR-22

    PubMed Central

    Meng, Qingyong; Zhao, Yiqiang; Chen, Lei; Zhang, Hongquan; Xue, Lixiang; Zhang, Xiuqing; Lengner, Christopher; Yu, Zhengquan

    2015-01-01

    Hair follicles (HF) undergo precisely regulated recurrent cycles of growth, cessation, and rest. The transitions from anagen (growth), to catagen (regression), to telogen (rest) involve a physiological involution of the HF. This process is likely coordinated by a variety of mechanisms including apoptosis and loss of growth factor signaling. However, the precise molecular mechanisms underlying follicle involution after hair keratinocyte differentiation and hair shaft assembly remain poorly understood. Here we demonstrate that a highly conserved microRNA, miR-22 is markedly upregulated during catagen and peaks in telogen. Using gain- and loss-of-function approaches in vivo, we find that miR-22 overexpression leads to hair loss by promoting anagen-to-catagen transition of the HF, and that deletion of miR-22 delays entry to catagen and accelerates the transition from telogen to anagen. Ectopic activation of miR-22 results in hair loss due to the repression a hair keratinocyte differentiation program and keratinocyte progenitor expansion, as well as promotion of apoptosis. At the molecular level, we demonstrate that miR-22 directly represses numerous transcription factors upstream of phenotypic keratin genes, including Dlx3, Foxn1, and Hoxc13. We conclude that miR-22 is a critical post-transcriptional regulator of the hair cycle and may represent a novel target for therapeutic modulation of hair growth. PMID:26020521

  7. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization

    PubMed Central

    Su, Rui; Fan, Wufa; Yu, Qin; Dong, Xiaochun; Qi, Jianping; Zhu, Quangang; Zhao, Weili; Wu, Wei; Chen, Zhongjian; Li, Ye; Lu, Yi

    2017-01-01

    Nanoemulsions have been widely applied to dermal and transdermal drug delivery. However, whether and to what depth the integral nanoemulsions can permeate into the skin is not fully understood. In this study, an environment-responsive dye, P4, was loaded into nanoemulsions to track the transdermal translocation of the nanocarriers, while coumarin-6 was embedded to represent the cargoes. Particle size has great effects on the transdermal transportation of nanoemulsions. Integral nanoemulsions with particle size of 80 nm can diffuse into but not penetrate the viable epidermis. Instead, these nanoemulsions can efficiently fill the whole hair follicle canals and reach as deep as 588 μm underneath the dermal surfaces. The cargos are released from the nanoemulsions and diffuse into the surrounding dermal tissues. On the contrary, big nanoemulsions, with mean particle size of 500 nm, cannot penetrate the stratum corneum and can only migrate along the hair follicle canals. Nanoemulsions with median size, e.g. 200 nm, show moderate transdermal permeation effects among the three-size nanoemulsions. In addition, colocalization between nanoemulsions and immunofluorescence labeled antigen-presenting cells was observed in the epidermis and the hair follicles, implying possible capture of nanoemulsions by these cells. In conclusion, nanoemulsions are advantageous for transdermal delivery and potential in transcutaneous immunization. PMID:28465469

  8. Inhibition of hair follicle growth by a laminin-1 G-domain peptide, RKRLQVQLSIRT, in an organ culture of isolated vibrissa rudiment.

    PubMed

    Hayashi, Kazuhiro; Mochizuki, Mayumi; Nomizu, Motoyoshi; Uchinuma, Eijyu; Yamashina, Shohei; Kadoya, Yuichi

    2002-04-01

    We established a serum-free organ culture system of isolated single vibrissa rudiments taken from embryonic day 13 mice. This system allowed us to test more than 30 laminin-derived cell adhesive peptides to determine their roles on the growth and differentiation of vibrissa hair follicles. We found that the RKRLQVQLSIRT sequence (designated AG-73), which mapped to the LG-4 module of the laminin-alpha1 chain carboxyl-terminal G domain, perturbed the growth of hair follicles in vitro. AG-73 is one of the cell-binding peptides identified from more than 600 systematically synthesized 12 amino acid peptides covering the whole amino acid sequence of the laminin-alpha1, -beta1, and -gamma1 chains, by cell adhesion assay. Other cell-adhesive laminin peptides and a control scrambled peptide, LQQRRSVLRTKI, however, failed to show any significant effects on the growth of hair follicles. The AG-73 peptide binds to syndecan-1, a transmembrane heparan-sulfate proteoglycan. Syndecan-1 was expressed in both the mesenchymal condensation and the epithelial hair peg of developing vibrissa, suggesting that AG-73 binding to the cell surface syndecan-1 perturbed the epithelial-mesenchymal interactions of developing vibrissa. The formation of hair bulbs was aberrant in the explants treated with AG-73. In addition, impaired basement membrane formation, an abnormal cytoplasmic bleb formation, and an unusual basal formation of actin bundles were noted in the AG-73-treated-hair matrix epithelium, indicating that AG-73 binding perturbs various steps of epithelial morphogenesis, including the basement membrane remodeling. We also found a region-specific loss of the laminin-alpha1 chain in the basement membrane at the distal region of the invading hair follicle epithelium, indicating that laminins play a part in hair morphogenesis.

  9. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway.

    PubMed

    Fan, Sabrina Mai-Yi; Chang, Yi-Ting; Chen, Chih-Lung; Wang, Wei-Hung; Pan, Ming-Kai; Chen, Wen-Pin; Huang, Wen-Yen; Xu, Zijian; Huang, Hai-En; Chen, Ting; Plikus, Maksim V; Chen, Shih-Kuo; Lin, Sung-Jan

    2018-06-29

    Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.

  10. Adenovirus-mediated Wnt5a expression inhibits the telogen-to-anagen transition of hair follicles in mice.

    PubMed

    Xing, Yi-Zhan; Wang, Rui-Min; Yang, Ke; Guo, Hai-Ying; Deng, Fang; Li, Yu-Hong; Ye, Ji-Xing; He, Long; Lian, Xiao-Hua; Yang, Tian

    2013-01-01

    The canonical Wnt/β-catenin pathway plays an important role in hair cycle induction. Wnt5a is a non-canonical Wnt family member that generally antagonizes canonical Wnt signaling in other systems. In hair follicles, Wnt5a and canonical Wnt are both expressed in cells in the telogen stage. Wnt5a has been shown to be critical for controlling hair cell fate. However, the role that Wnt5a plays in the transition from the telogen to anagen stage is unknown. In this study, using whole-mount in situ hybridization, we show that Wnt5a is produced by several other cell types, excluding dermal papilla cells, throughout the hair cycle. For example, Wnt5a is expressed in bulge and secondary hair germ cells in the telogen stage. Our studies focused on the depilated 8-week-old mouse as a synchronized model of hair growth. Interestingly, overexpression of adenovirus Wnt5a in the dorsal skin of mice led to the elongation of the telogen stage and inhibition of the initiation of the anagen stage. However, following an extended period of time, four pelage hair types grew from hairless skin that was induced by Wnt5a, and the structure of these new hair shafts was normal. Using microarray analysis and quantitative arrays, we showed that the expression of β-catenin and some target genes of canonical Wnt signaling decreased after Wnt5a treatment. These data demonstrate that Wnt5a may inhibit the telogen stage to maintain a quiescent state of the hair follicle.

  11. The biology, structure, and function of eyebrow hair.

    PubMed

    Nguyen, Jennifer V

    2014-01-01

    Eyebrow hair serves many important biologic and aesthetic functions. This article reviews the structure and function of the hair follicle, as well as hair follicle morphogenesis and cycling. Eyebrow hair follicles share the same basic structure as hair follicles elsewhere on the body, but are distinguished by their shorter anagen (growing) phase. Knowledge of the hair follicle structure and cycle is important for understanding the pathophysiology of alopecia, as diseases affecting the stem cell portion of the hair follicle in the bulge region may cause permanent hair loss. Furthermore, therapeutic agents that target distinct phases and hormones involved in the hair cycle may be useful for promoting hair growth.

  12. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning

    PubMed Central

    Wang, Qixuan; Oh, Ji Won; Lee, Hye-Lim; Dhar, Anukriti; Peng, Tao; Ramos, Raul; Guerrero-Juarez, Christian Fernando; Wang, Xiaojie; Zhao, Ran; Cao, Xiaoling; Le, Jonathan; Fuentes, Melisa A; Jocoy, Shelby C; Rossi, Antoni R; Vu, Brian; Pham, Kim; Wang, Xiaoyang; Mali, Nanda Maya; Park, Jung Min; Choi, June-Hyug; Lee, Hyunsu; Legrand, Julien M D; Kandyba, Eve; Kim, Jung Chul; Kim, Moonkyu; Foley, John; Yu, Zhengquan; Kobielak, Krzysztof; Andersen, Bogi; Khosrotehrani, Kiarash; Nie, Qing; Plikus, Maksim V

    2017-01-01

    The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs. DOI: http://dx.doi.org/10.7554/eLife.22772.001 PMID:28695824

  13. The hair follicle bulge: a niche for adult stem cells.

    PubMed

    Pasolli, Hilda Amalia

    2011-08-01

    Adult stem cells (SCs) are essential for tissue homeostasis and wound repair. They have the ability to both self-renew and differentiate into multiple cell types. They often reside in specialized microenvironments or niches that preserve their proliferative and tissue regenerative capacity. The murine hair follicle (HF) has a specialized and permanent compartment--the bulge, which safely lodges SCs and provides the necessary molecular cues to regulate their function. The HF undergoes cyclic periods of destruction, regeneration, and rest, making it an excellent system to study SC biology.

  14. Structural changes in hair follicles and sebaceous glands of hairless mice following exposure to sulfur mustard.

    PubMed

    Joseph, Laurie B; Heck, Diane E; Cervelli, Jessica A; Composto, Gabriella M; Babin, Michael C; Casillas, Robert P; Sinko, Patrick J; Gerecke, Donald R; Laskin, Debra L; Laskin, Jeffrey D

    2014-06-01

    Sulfur mustard (SM) is a bifunctional alkylating agent causing skin inflammation, edema and blistering. A hallmark of SM-induced toxicity is follicular and interfollicular epithelial damage. In the present studies we determined if SM-induced structural alterations in hair follicles and sebaceous glands were correlated with cell damage, inflammation and wound healing. The dorsal skin of hairless mice was treated with saturated SM vapor. One to seven days later, epithelial cell karyolysis within the hair root sheath, infundibulum and isthmus was apparent, along with reduced numbers of sebocytes. Increased numbers of utriculi, some with connections to the skin surface, and engorged dermal cysts were also evident. This was associated with marked changes in expression of markers of DNA damage (phospho-H2A.X), apoptosis (cleaved caspase-3), and wound healing (FGFR2 and galectin-3) throughout pilosebaceous units. Conversely, fatty acid synthase and galectin-3 were down-regulated in sebocytes after SM. Decreased numbers of hair follicles and increased numbers of inflammatory cells surrounding the utriculi and follicular cysts were noted within the wound 3-7 days post-SM exposure. Expression of phospho-H2A.X, cleaved caspase-3, FGFR2 and galectin-3 was decreased in dysplastic follicular epidermis. Fourteen days after SM, engorged follicular cysts which expressed galectin-3 were noted within hyperplastic epidermis. Galectin-3 was also expressed in basal keratinocytes and in the first few layers of suprabasal keratinocytes in neoepidermis formed during wound healing indicating that this lectin is important in the early stages of keratinocyte differentiation. These data indicate that hair follicles and sebaceous glands are targets for SM in the skin. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. RBM28, a protein deficient in ANE syndrome, regulates hair follicle growth via miR-203 and p63.

    PubMed

    Warshauer, Emily; Samuelov, Liat; Sarig, Ofer; Vodo, Dan; Bindereif, Albrecht; Kanaan, Moien; Gat, Uri; Fuchs-Telem, Dana; Shomron, Noam; Farberov, Luba; Pasmanik-Chor, Metsada; Nardini, Gil; Winkler, Eyal; Meilik, Benjamin; Petit, Isabelle; Aberdam, Daniel; Paus, Ralf; Sprecher, Eli; Nousbeck, Janna

    2015-08-01

    Alopecia-neurological defects-endocrinopathy (ANE) syndrome is a rare inherited hair disorder, which was shown to result from decreased expression of the RNA-binding motif protein 28 (RBM28). In this study, we attempted to delineate the role of RBM28 in hair biology. First, we sought to obtain evidence for the direct involvement of RBM28 in hair growth. When RBM28 was downregulated in human hair follicle (HF) organ cultures, we observed catagen induction and HF growth arrest, indicating that RBM28 is necessary for normal hair growth. We also aimed at identifying molecular targets of RBM28. Given that an RBM28 homologue was recently found to regulate miRNA biogenesis in C. elegans and given the known pivotal importance of miRNAs for proper hair follicle development, we studied global miRNA expression profile in cells knocked down for RBM28. This analysis revealed that RBM28 controls the expression of miR-203. miR-203 was found to regulate in turn TP63, encoding the transcription factor p63, which is critical for hair morphogenesis. In conclusion, RBM28 contributes to HF growth regulation through modulation of miR-203 and p63 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture.

    PubMed

    Kloepper, Jennifer Elisabeth; Sugawara, Koji; Al-Nuaimi, Yusur; Gáspár, Erzsébet; van Beek, Nina; Paus, Ralf

    2010-03-01

    The organ culture of human scalp hair follicles (HFs) is the best currently available assay for hair research in the human system. In order to determine the hair growth-modulatory effects of agents in this assay, one critical read-out parameter is the assessment of whether the test agent has prolonged anagen duration or induced catagen in vitro. However, objective criteria to distinguish between anagen VI HFs and early catagen in human HF organ culture, two hair cycle stages with a deceptively similar morphology, remain to be established. Here, we develop, document and test an objective classification system that allows to distinguish between anagen VI and early catagen in organ-cultured human HFs, using both qualitative and quantitative parameters that can be generated by light microscopy or immunofluorescence. Seven qualitative classification criteria are defined that are based on assessing the morphology of the hair matrix, the dermal papilla and the distribution of pigmentary markers (melanin, gp100). These are complemented by ten quantitative parameters. We have tested this classification system by employing the clinically used topical hair growth inhibitor, eflornithine, and show that eflornithine indeed produces the expected premature catagen induction, as identified by the novel classification criteria reported here. Therefore, this classification system offers a standardized, objective and reproducible new experimental method to reliably distinguish between human anagen VI and early catagen HFs in organ culture.

  17. 15-deoxy prostaglandin J2, the nonenzymatic metabolite of prostaglandin D2, induces apoptosis in keratinocytes of human hair follicles: a possible explanation for prostaglandin D2-mediated inhibition of hair growth.

    PubMed

    Joo, Hyun Woo; Kang, Yoo Ri; Kwack, Mi Hee; Sung, Young Kwan

    2016-07-01

    Recent studies have shown that prostaglandin D2 (PGD2) and its nonenzymatic metabolite, 15-deoxy-Δ(12,14)-prostaglandin J2 (15-dPGJ2), inhibit in vitro growth of explanted human hair follicles and inhibit hair growth in mice through the GPR44 (DP2). However, the underlying mechanism is still unclear. In this study, we first investigated the expression of DP2 in human hair follicles and in cultured follicular cells. We found that DP2 is strongly expressed in the outer root sheath (ORS) cells and weakly expressed in the dermal papilla (DP) cells. We observed slight growth stimulation when ORS and DP cells were treated with PGD2. We also observed slight growth stimulation when DP and ORS cells were treated with low concentrations (0.5 and 1 μM) of 15-dPGJ2. However, 5 μM 15-dPGJ2 inhibited the viability and caused apoptosis of both cell types. Exposure of cultured human hair follicles to 15-dPGJ2 resulted in significant apoptosis in follicular keratinocytes. Altogether, our data provide an evidence that 15-dPGJ2 promotes apoptosis in follicular keratinocytes and provide rationale for developing remedies for the prevention and treatment of hair loss based on DP2 antagonism.

  18. [Effects of Huoxue Bushen Mixture on skin blood vessel neogenesis and vascular endothelial growth factor expression in hair follicle of C57BL/6 mice].

    PubMed

    Gao, Shang-pu; Huang, Lan; Yang, Xin-wei

    2007-03-01

    To investigate the possible stimulating mechanism of Huoxue Bushen Mixture (HXBSM), a traditional Chinese compound medicine, on hair growth of mice via measuring the variance of skin blood vessel neogenesis and vascular endothelial growth factor (VEGF) expression in the hair follicle. Hot rosin and paraffin mixture depilation were used to induce C57BL/6 mice hair follicle to enter from telogen into anagen. Ninety C57BL/6 mice were divided into 3 groups randomly: HXBSM group, Yangxue Shengfa Capsule (YXSFC, another traditional Chinese compound medicine) group and untreated group. The mice were fed with corresponding drugs after modeling. The hair growth of the mice was observed every day. Every ten mice out of each group were executed respectively at day 4, 11 and day 17. Skin blood vessel neogenesis was counted through pathological section and VEGF expression in the hair follicle was measured via immunohistochemical method. The number of local blood vessel neogenisis in the HXBSM group observed was larger than that in the untreated group at day 4 (P<0.05); and evidently larger than that in the YXSFC group and the untreated group at day 11 (P<0.05). The expression of VEGF in the hair follicle was distinctively higher than that in the YXSFC group and the untreated group at day 11 and day 17 (P<0.05). HXBSM up-regulates VEGF expression to accelerate blood vessel neogenesis and hair growth.

  19. STAT5 Activation in the Dermal Papilla Is Important for Hair Follicle Growth Phase Induction.

    PubMed

    Legrand, Julien M D; Roy, Edwige; Ellis, Jonathan J; Francois, Mathias; Brooks, Andrew J; Khosrotehrani, Kiarash

    2016-09-01

    Hair follicles are skin appendages that undergo periods of growth (anagen), regression (catagen), and rest (telogen) regulated by their mesenchymal component, the dermal papilla (DP). On the basis of the reports of its specific expression in the DP, we investigated signal transducer and activator of transcription (STAT5) activation during hair development and cycling. STAT5 activation in the DP began in late catagen, reaching a peak in early anagen before disappearing for the rest of the cycle. This was confirmed by the expression profile of suppressor of cytokine signaling 2, a STAT5 target in the DP. This pattern of expression starts after the first postnatal hair cycle. Quantification of hair cycling using the Flash canonical Wnt signaling in vivo bioluminescence reporter found that conditional knockout of STAT5A/B in the DP targeted through Cre-recombinase under the control of the Sox18 promoter resulted in delayed anagen entry compared with control. Microarray analysis of STAT5 deletion versus control revealed key changes in tumor necrosis factor-α, Wnt, and fibroblast growth factor ligands, known for their role in inducing anagen entry. We conclude that STAT5 activation acts as a mesenchymal switch to trigger natural anagen entry in postdevelopmental hair follicle cycling. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Balance between fibroblast growth factor 10 and secreted frizzled-relate protein-1 controls the development of hair follicle by competitively regulating β-catenin signaling.

    PubMed

    Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Si, Huazhe; Li, Guangyu

    2018-07-01

    Growth of hairs depends on the regular development of hair follicles which are hypothesized to be regulated by fibroblast growth factor 10 (FGF10) and secreted frizzled-relate protein-1 (sFRP1). In the current study, the effect of FGF10 or sFRP1 on hair follicle cells was assessed and the possible mechanism mediating the interaction between FGF10 and sFRP1 in hair follicle cells was explored. Out root sheath (ORS) and dermal papilla (DP) cells were isolated from mink skin tissues and subjected to administrations of FGF10 (50 ng/ml) or sFRP1 (10 ng/ml). Then proliferation, cell cycle distribution, and migration potentials of both cell types were detected. Moreover, the nuclear translocation of β-catenin was determined. The results showed that the administration of FGF10 increased cell proliferation and migration potential in both cell types, which was associated with the up-regulated nuclear level of β-catenin. To the contrary, the administration of sFRP1 decreased cell proliferation and migration potentials while induced the G1 cell cycle arrest in both cell types by inhibiting nuclear translocation of β-catenin. Compared with the sole administrations, the co-treatment of FGF10 and sFRP1 had a medium effect on cell proliferation, cell cycle distribution, cell migration, and nuclear β-catenin level, representing an antagonistic interaction between the two factors, which was exerted by competitively regulating β-catenin pathway. Conclusively, the cycle of hair follicles was promoted by FGF10 while blocked by sFRP1 and the interplay between the two factors controlled the development of hair follicles by competitively regulating β-catenin signaling. Copyright © 2018. Published by Elsevier Masson SAS.

  1. Hair follicle nevus of the abdominal skin: an unusual extracephalic presentation.

    PubMed

    Jedrych, Jaroslaw; Akilov, Oleg; Gehris, Robin; Ho, Jonhan

    2014-01-01

    Hair follicle nevus (HFN) is a rare hamartoma typically diagnosed on the face of infants, where it may clinically mimic an accessory tragus. We report a 6-month-old boy who presented with a congenital fleshy, bilobed papule in the midline of his upper abdomen that upon excision was classified as an HFN based on detailed histopathologic examination. Our report documents a previously undescribed extracephalic location of the HFN and therefore expands the spectrum of clinical presentations of this rare hamartoma. © 2014 Wiley Periodicals, Inc.

  2. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling.

    PubMed

    Müller-Röver, S; Tokura, Y; Welker, P; Furukawa, F; Wakita, H; Takigawa, M; Paus, R

    1999-08-01

    The role of adhesion molecules in the control of hair follicle (HF) morphogenesis, regression and cycling is still rather enigmatic. Since the adhesion molecules E- and P-cadherin (Ecad and Pcad) are functionally important, e.g. during embryonic pattern formation, we have studied their expression patterns during neonatal HF morphogenesis and cycling in C57/BL6 mice by immunohistology and semi-quantitative RT-PCR. The expression of both cadherins was strikingly hair cycle-dependent and restricted to distinct anatomical HF compartments. During HF morphogenesis, hair bud keratinocytes displayed strong Ecad and Pcad immunoreactivity (IR). While neonatal epidermis showed Ecad IR in all epidermal layers, Pcad IR was restricted to the basal layer. During later stages of HF morphogenesis and during anagen IV-VI of the adolescent murine hair cycle, the outer root sheath showed strong E- and Pcad IR. Instead, the outermost portion of the hair matrix and the inner root sheath displayed isolated Ecad IR, while the innermost portion of the hair matrix exhibited isolated Pcad IR. During telogen, all epidermal and follicular keratinocytes showed strong Ecad IR. This is in contrast to Pcad, whose IR was stringently restricted to matrix and secondary hair germ keratinocytes which are in closest proximity to the dermal papilla. These findings suggest that isolated or combined E- and/or Pcad expression is involved in follicular pattern formation by segregating HF keratinocytes into functionally distinct subpopulations; most notably, isolated Pcad expression may segregate those hair matrix keratinocytes into one functional epithelial tissue unit, which is particularly susceptible to growth control by dermal papilla-derived morphogens. The next challenge is to define which secreted agents implicated in hair growth control modulate these follicular cadherin expression patterns, and to define how these basic parameters of HF topobiology are altered during common hair growth disorders.

  3. Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus)

    PubMed Central

    Wu, Zhenyang; Fu, Yuhua; Cao, Jianhua; Yu, Mei; Tang, Xiaohui; Zhao, Shuhong

    2014-01-01

    MicroRNAs (miRNAs) play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black) using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%). MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats. PMID:24879525

  4. LncRNAs in Secondary Hair Follicle of Cashmere Goat: Identification, Expression, and Their Regulatory Network in Wnt Signaling Pathway.

    PubMed

    Bai, Wen L; Zhao, Su J; Wang, Ze Y; Zhu, Yu B; Dang, Yun L; Cong, Yu Y; Xue, Hui L; Wang, Wei; Deng, Liang; Guo, Dan; Wang, Shi Q; Zhu, Yan X; Yin, Rong H

    2018-07-03

    Long noncoding RNAs (lncRNAs) are a novel class of eukaryotic transcripts. They are thought to act as a critical regulator of protein-coding gene expression. Herein, we identified and characterized 13 putative lncRNAs from the expressed sequence tags from secondary hair follicle of Cashmere goat. Furthermore, we investigated their transcriptional pattern in secondary hair follicle of Liaoning Cashmere goat during telogen and anagen phases. Also, we generated intracellular regulatory networks of upregulated lncRNAs at anagen in Wnt signaling pathway based on bioinformatics analysis. The relative expression of six putative lncRNAs (lncRNA-599618, -599556, -599554, -599547, -599531, and -599509) at the anagen phase is significantly higher than that at telogen. Compared with anagen, the relative expression of four putative lncRNAs (lncRNA-599528, -599518, -599511, and -599497) was found to be significantly upregulated at telogen phase. The network generated showed that a rich and complex regulatory relationship of the putative lncRNAs and related miRNAs with their target genes in Wnt signaling pathway. Our results from the present study provided a foundation for further elucidating the functional and regulatory mechanisms of these putative lncRNAs in the development of secondary hair follicle and cashmere fiber growth of Cashmere goat.

  5. Targeting of CXXC5 by a Competing Peptide Stimulates Hair Regrowth and Wound-Induced Hair Neogenesis.

    PubMed

    Lee, Soung-Hoon; Seo, Seol Hwa; Lee, Dong-Hwan; Pi, Long-Quan; Lee, Won-Soo; Choi, Kang-Yell

    2017-11-01

    The Wnt/β-catenin pathway has been implicated in hair follicle development and hair regeneration in adults. We discovered that CXXC-type zinc finger protein 5 (CXXC5) is a negative regulator of the Wnt/β-catenin pathway involved in hair regrowth and wound-induced hair follicle neogenesis via an interaction with Dishevelled. CXXC5 was upregulated in miniaturized hair follicles and arrector pili muscles in human balding scalps. The inhibitory effects of CXXC5 on alkaline phosphatase activity and cell proliferation were demonstrated using human hair follicle dermal papilla cells. Moreover, CXXC5 -/- mice displayed accelerated hair regrowth, and treatment with valproic acid, a glycogen synthase kinase 3β inhibitor that activates the Wnt/β-catenin pathway, further induced hair regrowth in the CXXC5 -/- mice. Disrupting the CXXC5-Dishevelled interaction with a competitor peptide activated the Wnt/β-catenin pathway and accelerated hair regrowth and wound-induced hair follicle neogenesis. Overall, these findings suggest that the CXXC5-Dishevelled interaction is a potential target for the treatment of hair loss. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Dissecting the bulge in hair regeneration

    PubMed Central

    Ito, Mayumi; Myung, Peggy

    2012-01-01

    The adult hair follicle houses stem cells that govern the cyclical growth and differentiation of multiple cell types that collectively produce a pigmented hair. Recent studies have revealed that hair follicle stem cells are heterogeneous and dynamic throughout the hair cycle. Moreover, interactions between heterologous stem cells, including both epithelial and melanocyte stem cells, within the hair follicle are just now being explored. This review will describe how recent findings have expanded our understanding of the development, organization, and regeneration of hair follicle stem cells. At a basic level, this review is intended to help construct a reference point to integrate the surge of studies on the molecular mechanisms that regulate these cells. PMID:22293183

  7. Molecular Dissection of Mesenchymal–Epithelial Interactions in the Hair Follicle

    PubMed Central

    Rendl, Michael; Lewis, Lisa

    2005-01-01

    De novo hair follicle formation in embryonic skin and new hair growth in adult skin are initiated when specialized mesenchymal dermal papilla (DP) cells send cues to multipotent epithelial stem cells. Subsequently, DP cells are enveloped by epithelial stem cell progeny and other cell types to form a niche orchestrating hair growth. Understanding the general biological principles that govern the mesenchymal–epithelial interactions within the DP niche, however, has been hampered so far by the lack of systematic approaches to dissect the complete molecular make-up of this complex tissue. Here, we take a novel multicolor labeling approach, using cell type–specific transgenic expression of red and green fluorescent proteins in combination with immunolabeling of specific antigens, to isolate pure populations of DP and four of its surrounding cell types: dermal fibroblasts, melanocytes, and two different populations of epithelial progenitors (matrix and outer root sheath cells). By defining their transcriptional profiles, we develop molecular signatures characteristic for the DP and its niche. Validating the functional importance of these signatures is a group of genes linked to hair disorders that have been largely unexplored. Additionally, the DP signature reveals novel signaling and transcription regulators that distinguish them from other cell types. The mesenchymal–epithelial signatures include key factors previously implicated in ectodermal-neural fate determination, as well as a myriad of regulators of bone morphogenetic protein signaling. These findings establish a foundation for future functional analyses of the roles of these genes in hair development. Overall, our strategy illustrates how knowledge of the genes uniquely expressed by each cell type residing in a complex niche can reveal important new insights into the biology of the tissue and its associated disease states. PMID:16162033

  8. The Transient Role for Calcium and Vitamin D during the Developmental Hair Follicle Cycle.

    PubMed

    Mady, Leila J; Ajibade, Dare V; Hsaio, Connie; Teichert, Arnaud; Fong, Chak; Wang, Yongmei; Christakos, Sylvia; Bikle, Daniel D

    2016-07-01

    The role for 1,25-dihydroxyvitamin D3 and/or calcium in hair follicle cycling is not clear despite their impact on keratinocyte differentiation. We found that calbindin-D9k null (knockout) pups generated from calbindin-D9k knockout females fed a vitamin D-deficient, low-calcium (0.47%) diet develop transient alopecia. The pups appear phenotypically normal until 13 days of age, after which the hair progressively sheds in a caudocephalic direction, resulting in truncal alopecia totalis by 20-23 days, with spontaneous recovery by 28 days. Histological studies showed markedly dystrophic hair follicles, loss of hair shafts with increased apoptosis, and hyperplastic epidermis during this time. Ha1 expression is lost during catagen in all mice but recovers more slowly in the knockout pups on the vitamin D-deficient, low-calcium diet. Keratin 1 expression is reduced throughout days 19-28. The expressions of involucrin, loricrin, and cathepsin L is initially increased by day 19 but subsequently falls below those of controls by day 23, as does that of desmoglein 3. Feeding the mothers a high-vitamin D/high-calcium (2%)/lactose (20%) diet lessens the phenotype, and knockout pups fostered to mothers fed a normal diet do not develop alopecia. Our results show that in calbindin-D9k knockout pups, a maternal vitamin D-deficient/low-calcium diet leads to transient noncicatricial alopecia. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration.

    PubMed

    Chen, Chih-Chiang; Plikus, Maksim V; Tang, Pin-Chi; Widelitz, Randall B; Chuong, Cheng Ming

    2016-04-10

    Hair and feathers are unique because (1) their stem cells are contained within a follicle structure, (2) they undergo cyclic regeneration repetitively throughout life, (3) regeneration occurs physiologically in healthy individuals and (4) regeneration is also induced in response to injury. Precise control of this cyclic regeneration process is essential for maintaining the homeostasis of living organisms. While stem cells are regulated by the intra-follicle-adjacent micro-environmental niche, this niche is also modulated dynamically by extra-follicular macro-environmental signals, allowing stem cells to adapt to a larger changing environment and physiological needs. Here we review several examples of macro-environments that communicate with the follicles: intradermal adipose tissue, innate immune system, sex hormones, aging, circadian rhythm and seasonal rhythms. Related diseases are also discussed. Unveiling the mechanisms of how stem cell niches are modulated provides clues for regenerative medicine. Given that stem cells are hard to manipulate, focusing translational therapeutic applications at the environments appears to be a more practical approach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin.

    PubMed

    Qiao, W; Li, A G; Owens, P; Xu, X; Wang, X-J; Deng, C-X

    2006-01-12

    Smad4 is the common mediator for TGFbeta signals, which play important functions in many biological processes. To study the role of Smad4 in skin development and epidermal tumorigenesis, we disrupted this gene in skin using the Cre-loxP approach. We showed that absence of Smad4 blocked hair follicle differentiation and cycling, leading to a progressive hair loss of mutant (MT) mice. MT hair follicles exhibited diminished expression of Lef1, and increased proliferative cells in the outer root sheath. Additionally, the skin of MT mice exhibited increased proliferation of basal keratinocytes and epidermal hyperplasia. Furthermore, we provide evidence that the absence of Smad4 resulted in a block of both TGFbeta and bone morphogenetic protein (BMP) signaling pathways, including p21, a well-known cyclin-dependent kinase inhibitor. Consequently, all MT mice developed spontaneous malignant skin tumors from 3 months to 13 months of age. The majority of tumors are malignant squamous cell carcinomas. A most notable finding is that tumorigenesis is accompanied by inactivation of phosphatase and tensin homolog deleted on chromosome 10 (Pten), activation of AKT, fast proliferation and nuclear accumulation of cyclin D1. These observations revealed the essential functions of Smad4-mediated signals in repressing skin tumor formation through the TGFbeta/BMP pathway, which interacts with the Pten signaling pathway.

  11. Hair follicle is a target of stress hormone and autoimmune reactions.

    PubMed

    Ito, Taisuke

    2010-11-01

    Interest in the hair follicle (HF) has recently increased, yet the detailed mechanisms of HF function and immune privilege (IP) have not yet been elucidated. This review discusses the critical points of immunobiology and hormonal aspects of HFs. The HF is a unique mini-organ because it has its own immune system and hormonal milieu. In addition, the HF immune and hormonal systems may greatly affect skin immunobiology. Therefore, knowledge of HF immunobiology and hormonal aspects will lead to a better understanding of skin biology. The HF has a unique hair cycle (anagen, catagen and telogen) and contains stem cells in the bulge area. The HF is closely related to sebaceous glands and the nervous system. This article reviews the interaction between the endocrine/immune system and HFs, including the pathogenesis of alopecia areata associated with stress. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. The dog mite, Demodex canis: prevalence, fungal co-infection, reactions to light, and hair follicle apoptosis.

    PubMed

    Tsai, Yu-Jen; Chung, Wen-Cheng; Wang, Lian-Chen; Ju, Yu-Ten; Hong, Chin-Lin; Tsai, Yu-Yang; Li, Yi-Hung; Wu, Ying-Ling

    2011-01-01

    Infection rate, reaction to light, and hair follicle apoptosis are examined in the dogmite, Demodex canis Leydig (Prostigmata: Demodicidae), in dogs from the northern area of Taiwan. An analysis of relevant samples revealed 7.2% (73/1013) prevalence of D. canis infection. Infection during the investigation peaked each winter, with an average prevalence of 12.5% (32/255). The infection rates significantly varied in accordance with month, sex, age, and breed (p < 0.05). Most of the lesions were discovered on the backs of the infected animals, where the infection rate was 52.1% (38/73) (P < 0.05). The epidemiologic analysis of infection based on landscape area factor, found that employing a map-overlapping method showed a higher infection rate in the eastern distribution of Taiwan's northern area than other areas. Isolation tests for Microsporum canis Bodin (Onygenales: Arthrodermataceae) and Trichophyton mentagrophyte Robin (Blanchard) on the D. canis infected dogs revealed prevalence rates of 4.4% (2/45) and 2.2% (1/45), respectively. Observations demonstrated that D. canis slowly moved from a light area to a dark area. Skin samples were examined for cellular apoptosis by activated caspase3 immunohistochemical staining. Cells that surrounded the infected hair follicles were activated caspase3-positive, revealing cell apoptosis in infected follicles via the activation of caspase3.

  13. The Dog Mite, Demodex canis: Prevalence, Fungal Co-Infection, Reactions to Light, and Hair Follicle Apoptosis

    PubMed Central

    Tsai, Yu-Jen; Chung, Wen-Cheng; Wang, Lian-Chen; Ju, Yu-Ten; Hong, Chin-Lin; Tsai, Yu-Yang; Li, Yi-Hung; Wu, Ying-Ling

    2011-01-01

    Infection rate, reaction to light, and hair follicle apoptosis are examined in the dogmite, Demodex canis Leydig (Prostigmata: Demodicidae), in dogs from the northern area of Taiwan. An analysis of relevant samples revealed 7.2% (73/1013) prevalence of D. canis infection. Infection during the investigation peaked each winter, with an average prevalence of 12.5% (32/255). The infection rates significantly varied in accordance with month, sex, age, and breed (p < 0.05). Most of the lesions were discovered on the backs of the infected animals, where the infection rate was 52.1% (38/73) (P < 0.05). The epidemiologic analysis of infection based on landscape area factor, found that employing a map-overlapping method showed a higher infection rate in the eastern distribution of Taiwan's northern area than other areas. Isolation tests for Microsporum canis Bodin (Onygenales: Arthrodermataceae) and Trichophyton mentagrophyte Robin (Blanchard) on the D. canis infected dogs revealed prevalence rates of 4.4% (2/45) and 2.2% (1/45), respectively. Observations demonstrated that D. canis slowly moved from a light area to a dark area. Skin samples were examined for cellular apoptosis by activated caspase3 immunohistochemical staining. Cells that surrounded the infected hair follicles were activated caspase3-positive, revealing cell apoptosis in infected follicles via the activation of caspase3. PMID:21867442

  14. Human hair follicle organ culture: theory, application and perspectives.

    PubMed

    Langan, Ewan A; Philpott, Michael P; Kloepper, Jennifer E; Paus, Ralf

    2015-12-01

    For almost a quarter of a century, ex vivo studies of human scalp hair follicles (HFs) have permitted major advances in hair research, spanning diverse fields such as chronobiology, endocrinology, immunology, metabolism, mitochondrial biology, neurobiology, pharmacology, pigmentation and stem cell biology. Despite this, a comprehensive methodological guide to serum-free human HF organ culture (HFOC) that facilitates the selection and analysis of standard HF biological parameters and points out both research opportunities and pitfalls to newcomers to the field is still lacking. The current methods review aims to close an important gap in the literature and attempts to promote standardisation of human HFOC. We provide basic information outlining the establishment of HFOC through to detailed descriptions of the analysis of standard read-out parameters alongside practical examples. The guide closes by pointing out how serum-free HFOC can be utilised optimally to obtain previously inaccessible insights into human HF biology and pathology that are of interest to experimental dermatologists, geneticists, developmental biologists and (neuro-) endocrinologists alike and by highlighting novel applications of the model, including gene silencing and gene expression profiling of defined, laser capture-microdissected HF compartments. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Isolation of hair follicle bulge stem cells from YFP-expressing reporter mice.

    PubMed

    Nakrieko, Kerry-Ann; Irvine, Timothy S; Dagnino, Lina

    2013-01-01

    In this article we provide a method to isolate hair follicle stem cells that have undergone targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26-yellow fluorescent protein (YFP) reporter background, which results in YFP expression in the targeted stem cell population. These cells are isolated and purified by fluorescence-activated cell sorting, using epidermal stem cell-specific markers in conjunction with YFP fluorescence. The purified cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as viability and capacity for directional migration.

  16. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats.

    PubMed

    He, Xiaolin; Chao, Yuan; Zhou, Guangxian; Chen, Yulin

    2016-01-10

    To determine the relationship between fibroblast growth factor 5 (FGF5) and FGF5-short (FGF5s) in dermal papilla cells of cashmere goat primary and secondary hair follicles. We isolated dermal papilla cells from primary hair follicle (PHF) and secondary hair follicle (SHF) of cashmere goat, and found that the FGF5 receptor, fibroblast growth factor receptor 1 (FGFR1), was expressed in these two types of dermal papilla cells. Moreover, adenovirus-mediated overexpression of FGF5 could upregulate the mRNA expression of insulin-like growth factor-1 (IGF-1), versican and noggin that were important for follicle growth maintenance, whereas downregulate the expression of anagen chalone bone morphogenetic protein 4 (BMP4) in dermal papilla cells. However, these alterations were partly reversed by FGF5s overexpression. In conclusion, our results demonstrated that FGF5s acted as an inhibitor of FGF5 in the regulation of anagen-catagen transition of cashmere goat dermal papilla cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Canonical and non-canonical Wnt signaling control the regeneration of amputated rodent vibrissae follicles.

    PubMed

    Yuan, Yan-Ping; Huang, Keng; Xu, Yan-Min; Chen, Xian-Cai; Li, Hai-Hong; Cai, Bo-Zhi; Liu, Yang; Zhang, Huan; Li, Yu; Lin, Chang-Min

    2016-02-01

    Although mammals are notoriously poor at regeneration compared with many lower-order species, the hair follicle, particular to mammals, is capable of regeneration following partial amputation. The detailed internal mechanism of this phenomenon is still unclear. Development and regrowth of the hair follicle depends on dermal-epidermal interaction within the hair follicle. Previous studies have shown that Wnt/β-catenin, Shh, Bmp, PDGF, TGF and Notch signals all take part in the development and growth of the hair follicle, and the Wnt/β-catenin signaling additionally plays an indispensable role in hair follicle morphogenesis and regrowth. In this study, we investigated the localization, as well as, protein levels of Wnt/β-catenin signaling molecules during amputated whisker follicle regeneration.

  18. Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing.

    PubMed

    Yuan, Chao; Wang, Xiaolong; Geng, Rongqing; He, Xiaolin; Qu, Lei; Chen, Yulin

    2013-07-28

    MicroRNAs (miRNAs) are a large family of endogenous, non-coding RNAs, about 22 nucleotides long, which regulate gene expression through sequence-specific base pairing with target mRNAs. Extensive studies have shown that miRNA expression in the skin changes remarkably during distinct stages of the hair cycle in humans, mice, goats and sheep. In this study, the skin tissues were harvested from the three stages of hair follicle cycling (anagen, catagen and telogen) in a fibre-producing goat breed. In total, 63,109,004 raw reads were obtained by Solexa sequencing and 61,125,752 clean reads remained for the small RNA digitalisation analysis. This resulted in the identification of 399 conserved miRNAs; among these, 326 miRNAs were expressed in all three follicular cycling stages, whereas 3, 12 and 11 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. We also identified 172 potential novel miRNAs by Mireap, 36 miRNAs were expressed in all three cycling stages, whereas 23, 29 and 44 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. The expression level of five arbitrarily selected miRNAs was analyzed by quantitative PCR, and the results indicated that the expression patterns were consistent with the Solexa sequencing results. Gene Ontology and KEGG pathway analyses indicated that five major biological pathways (Metabolic pathways, Pathways in cancer, MAPK signalling pathway, Endocytosis and Focal adhesion) accounted for 23.08% of target genes among 278 biological functions, indicating that these pathways are likely to play significant roles during hair cycling. During all hair cycle stages of cashmere goats, a large number of conserved and novel miRNAs were identified through a high-throughput sequencing approach. This study enriches the Capra hircus miRNA databases and provides a comprehensive miRNA transcriptome profile in the skin of goats during the hair follicle cycle.

  19. Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re‐epithelialization

    PubMed Central

    Garcin, Clare L.; Ansell, David M.; Headon, Denis J.; Paus, Ralf

    2016-01-01

    Abstract The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re‐establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15+ve bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo‐epidermis. However, the identity of the first‐responding cells, and in particular whether this process involves a direct contribution of K15+ve bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin‐mediated partial ablation of K15+ve bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377–1385 PMID:26756547

  20. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties

    PubMed Central

    Rendl, Michael; Polak, Lisa; Fuchs, Elaine

    2008-01-01

    Hair follicle (HF) formation is initiated when epithelial stem cells receive cues from specialized mesenchymal dermal papilla (DP) cells. In culture, DP cells lose their HF-inducing properties, but during hair growth in vivo, they reside within the HF bulb and instruct surrounding epithelial progenitors to orchestrate the complex hair differentiation program. To gain insights into the molecular program that maintains DP cell fate, we previously purified DP cells and four neighboring populations and defined their cell-type-specific molecular signatures. Here, we exploit this information to show that the bulb microenvironment is rich in bone morphogenetic proteins (BMPs) that act on DP cells to maintain key signature features in vitro and hair-inducing activity in vivo. By employing a novel in vitro/in vivo hybrid knockout assay, we ablate BMP receptor 1a in purified DP cells. When DPs cannot receive BMP signals, they lose signature characteristics in vitro and fail to generate HFs when engrafted with epithelial stem cells in vivo. These results reveal that BMP signaling, in addition to its key role in epithelial stem cell maintenance and progenitor cell differentiation, is essential for DP cell function, and suggest that it is a critical feature of the complex epithelial–mesenchymal cross-talk necessary to make hair. PMID:18281466

  1. Mutations in gasdermin 3 cause aberrant differentiation of the hair follicle and sebaceous gland.

    PubMed

    Lunny, Declan P; Weed, Erica; Nolan, Patrick M; Marquardt, Andreas; Augustin, Martin; Porter, Rebecca M

    2005-03-01

    Defolliculated (Dfl) is a spontaneous mouse mutant with a hair-loss phenotype that includes altered sebaceous gland differentiation, short hair shafts, aberrant catagen stage of the hair cycle, and eventual loss of the hair follicle. Recently a similar mutant, finnegan (Fgn), with an identical phenotype was discovered during a phenotypic screen for mutations induced by chemical mutagenesis. The gene underlying the phenotype of both finnegan and defolliculated has been mapped to chromosome 11 and here we show that both mice harbor mutations in gasdermin 3 (Gsdm3), a gene of unknown function. Gsdm3(Dfl) is a B2 insertion near the 3' splice site of exon 7 and Gsdm3(Fgn) is a point mutation T278P. To investigate the role of the gasdermin gene family an antiserum was raised to a peptide highly homologous to all three mouse gasdermins and human gasdermin. Immunohistochemical analysis revealed that gasdermins are expressed specifically in cells at advanced stages of differentiation in the upper epidermis, the differentiating inner root sheath and hair shaft and in the most mature sebocytes of the sebaceous gland and preputial, meibomium, ceruminous gland, and anal glands. This expression pattern suggests a role for gasdermins in differentiation of the epidermis and its appendages.

  2. Hair-cycle dependent differential expression of ADAM 10 and ADAM 12

    PubMed Central

    Cho, Baik-Kee; Schramme, Anja; Gutwein, Paul; Tilgen, Wolfgang; Reichrath, Jörg

    2009-01-01

    Background ADAM proteases play important roles in processes of development and differentiation. However, no report has been found in the literature addressing the expression and function of ADAM proteases during hair cycling. Results Cytoplasmic expression pattern of ADAM 10, 12 was similar between normal epidermis and hair infundibulum. In addition, cytoplasmic expression of ADAM 10 was observed in the hair bulb keratinocytes and fibroblasts of dermal papilla in anagen I–III hair follicles. In contrast, decreased ADAM 10 expression was observed in the hair matrix keratinocytes as compared to the hair bulb keratinocytes in anagen I–III hair follicles. Interestingly, ADAM 10 immunoreactivity was expressed weakly in the lower portion of outer root sheath (ORS) of anagen VI hair follicles, and strong ADAM 10 expression was detected in the ORS of catagen and telogen hair follicles. By contrast, ADAM 12 expression was not detected in the hair bulb keratinocytes of anagen I–III hair follicles. ADAM 12 immunoreactivity firstly appeared in the inner root sheath ( IRS ) of anagen IV—V hair follicles and was down-regulated in the IRS and hair cortex and medulla of catagen hair follicles, Strong ADAM 12 immunoreactivity was observed in the ORS of catagen and telogen hair follicles. Material and methods Samples of normal human skin (n = 30) were used. Immunohistochemical analysis was performed using ADAM 10, 12 specific polyclonal antibodies and a sensitive streptavidin-peroxidase technique. Conclusion Our study demonstrates a comparable staining pattern of decreased ADAM 10 immunoreactivity in hair matrix keratinocytes and the basal cell layer of normal epidermis and hair infundibulum. Expression of ADAM 10 in dermal papilla cells may imply a role in the induction and development of anagen hair follicles. In addition, expression of ADAM 10 in the ORS and hair bulb assume the involvment of ADAM 10 in the downward migration of anagen hair follicles. Furthermore ADAM 12

  3. Epidermal dysplasia and abnormal hair follicles in transgenic mice overexpressing homeobox gene MSX-2.

    PubMed

    Jiang, T X; Liu, Y H; Widelitz, R B; Kundu, R K; Maxson, R E; Chuong, C M

    1999-08-01

    The homeobox gene Msx-2 is expressed specifically in sites of skin appendage formation. To explore its part in skin morphogenesis, we produced transgenic mice expressing Msx-2 under the control of the cytomegalovirus promoter. The skin of these transgenic mice was flaky, exhibiting desquamation and shorter hairs. Histologic analysis showed thickened epidermis with hyperproliferation, which was restricted to the basal layer. Hyperkeratosis was also evident. A wide zone of suprabasal cells were misaligned and coexpressed keratins 14 and 10. There was reduced expression of integrin beta 1 and DCC in the basal layer. Hair follicles were misaligned with a shrunken matrix region. The dermis showed increased cellularity and empty vacuoles. We suggest that Msx-2 is involved in the growth control of skin and skin appendages.

  4. Exposure to non-ionizing electromagnetic fields emitted from mobile phones induced DNA damage in human ear canal hair follicle cells.

    PubMed

    Akdag, Mehmet; Dasdag, Suleyman; Canturk, Fazile; Akdag, Mehmet Zulkuf

    2018-01-01

    The aim of this study was to investigate effect of radiofrequency radiation (RFR) emitted from mobile phones on DNA damage in follicle cells of hair in the ear canal. The study was carried out on 56 men (age range: 30-60 years old)in four treatment groups with n = 14 in each group. The groups were defined as follows: people who did not use a mobile phone (Control), people use mobile phones for 0-30 min/day (second group), people use mobile phones for 30-60 min/day (third group) and people use mobile phones for more than 60 min/day (fourth group). Ear canal hair follicle cells taken from the subjects were analyzed by the Comet Assay to determine DNA damages. The Comet Assay parameters measured were head length, tail length, comet length, percentage of head DNA, tail DNA percentage, tail moment, and Olive tail moment. Results of the study showed that DNA damage indicators were higher in the RFR exposure groups than in the control subjects. In addition, DNA damage increased with the daily duration of exposure. In conclusion, RFR emitted from mobile phones has a potential to produce DNA damage in follicle cells of hair in the ear canal. Therefore, mobile phone users have to pay more attention when using wireless phones.

  5. Widespread porokeratotic adnexal ostial nevus: clinical features and proposal of a new name unifying porokeratotic eccrine ostial and dermal duct nevus and porokeratotic eccrine and hair follicle nevus.

    PubMed

    Goddard, Deborah S; Rogers, Maureen; Frieden, Ilona J; Krol, Alfons L; White, Clifton R; Jayaraman, Anu G; Robinson-Bostom, Leslie; Bruckner, Anna L; Ruben, Beth S

    2009-12-01

    Porokeratotic eccrine ostial and dermal duct nevus and a similar condition, porokeratotic eccrine and hair follicle nevus, are rare disorders of keratinization with eccrine and hair follicle involvement. We describe the clinical features in 5 patients, all of whom had widespread skin involvement following the lines of Blaschko. Two patients presented with erosions in the newborn period as the initial manifestation of their disease; one had an associated structural anomaly, unilateral breast hypoplasia; and one adult had malignant transformation in the nevus with development of multifocal squamous cell carcinomas. Three patients had histologic involvement of both acrosyringia and acrotrichia. Based on the observation of overlapping histologic features, we propose the name "porokeratotic adnexal ostial nevus" to incorporate the previously described entities porokeratotic eccrine ostial and dermal duct nevus and porokeratotic eccrine and hair follicle nevus.

  6. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep

    PubMed Central

    Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling

    2016-01-01

    Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves

  7. Gene Expression Profiling of the Intact Dermal Sheath Cup of Human Hair Follicles.

    PubMed

    Niiyama, Shiro; Ishimatsu-Tsuji, Yumiko; Nakazawa, Yosuke; Yoshida, Yuzo; Soma, Tsutomu; Ideta, Ritsuro; Mukai, Hideki; Kishimoto, Jiro

    2018-04-24

    Cells that constitute the dermal papillae of hair follicles might be derived from the dermal sheath, the peribulbar component of which is the dermal sheath cup. The dermal sheath cup is thought to include the progenitor cells of the dermal papillae and possesses hair inductive potential; however, it has not yet been well characterized. This study investigated the gene expression profile of the intact dermal sheath cup, and identified dermal sheath cup signature genes, including extracellular matrix components and BMP-binding molecules, as well as TGF-b1 as an upstream regulator. Among these, GREM2, a member of the BMP antagonists, was found by in situ hybridization to be highly specific to the dermal sheath cup, implying that GREM2 is a key molecule contributing to maintenance of the properties of the dermal sheath cup.

  8. Central anatomy of individual rapidly adapting low-threshold mechanoreceptors innervating the "hairy" skin of newborn mice: early maturation of hair follicle afferents.

    PubMed

    Woodbury, C J; Ritter, A M; Koerber, H R

    2001-07-30

    Adult skin sensory neurons exhibit characteristic projection patterns in the dorsal horn of the spinal gray matter that are tightly correlated with modality. However, little is known about how these patterns come about during the ontogeny of the distinct subclasses of skin sensory neurons. To this end, we have developed an intact ex vivo somatosensory system preparation in neonatal mice, allowing single, physiologically identified cutaneous afferents to be iontophoretically injected with Neurobiotin for subsequent histological analyses. The present report, centered on rapidly adapting mechanoreceptors, represents the first study of the central projections of identified skin sensory neurons in neonatal animals. Cutaneous afferents exhibiting rapidly adapting responses to sustained natural stimuli were encountered as early as recordings were made. Well-stained representatives of coarse (tylotrich and guard) and fine-diameter (down) hair follicle afferents, along with a putative Pacinian corpuscle afferent, were recovered from 2-7-day-old neonates. All were characterized by narrow, uninflected somal action potentials and generally low mechanical thresholds, and many could be activated via deflection of recently erupted hairs. The central collaterals of hair follicle afferents formed recurrent, flame-shaped arbors that were essentially miniaturized replicas of their adult counterparts, with identical laminar terminations. The terminal arbors of down hair afferents, previously undescribed in rodents, were distinct and consistently occupied a more superficial position than tylotrich and guard hair afferents. Nevertheless, the former extended no higher than the middle of the incipient substantia gelatinosa, leaving a clear gap more dorsally. In all major respects, therefore, hair follicle afferents display the same laminar specificity in neonates as they do in adults. The widely held misperception that their collaterals extend exuberant projections into pain

  9. To grow or not to grow: Hair morphogenesis and human genetic hair disorders

    PubMed Central

    Duverger, Olivier; Morasso, Maria I.

    2014-01-01

    Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. PMID:24361867

  10. To grow or not to grow: hair morphogenesis and human genetic hair disorders.

    PubMed

    Duverger, Olivier; Morasso, Maria I

    2014-01-01

    Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. Published by Elsevier Ltd.

  11. Probing the Effects of Stress Mediators on the Human Hair Follicle

    PubMed Central

    Peters, Eva M.J.; Liotiri, Sofia; Bodó, Enikő; Hagen, Evelin; Bíró, Tamás; Arck, Petra C.; Paus, Ralf

    2007-01-01

    Stress alters murine hair growth, depending on substance P-mediated neurogenic inflammation and nerve growth factor (NGF), a key modulator of hair growth termination (catagen induction). Whether this is of any relevance in human hair follicles (HFs) is completely unclear. Therefore, we have investigated the effects of substance P, the central cutaneous prototypic stress-associated neuropeptide, on normal, growing human scalp HFs in organ culture. We show that these prominently expressed substance P receptor (NK1) at the gene and protein level. Organ-cultured HFs responded to substance P by premature catagen development, down-regulation of NK1, and up-regulation of neutral endopeptidase (degrades substance P). This was accompanied by mast cell degranulation in the HF connective tissue sheath, indicating neurogenic inflammation. Substance P down-regulated immunoreactivity for the growth-promoting NGF receptor (TrkA), whereas it up-regulated NGF and its apoptosis- and catagen-promoting receptor (p75NTR). In addition, MHC class I and β2-microglobulin immunoreactivity were up-regulated and detected ectopically, indicating collapse of the HF immune privilege. In conclusion, we present a simplistic, but instructive, organ culture assay to demonstrate sensitivity of the human HF to key skin stress mediators. The data obtained therewith allow one to sketch the first evidence-based biological explanation for how stress may trigger or aggravate telogen effluvium and alopecia areata. PMID:18055548

  12. Overexpression of Wnt5a in mouse epidermis causes no psoriasis phenotype but an impairment of hair follicle anagen development.

    PubMed

    Zhu, Xuming; Wu, Yumei; Huang, Sixia; Chen, Yingwei; Tao, Yixin; Wang, Yushu; He, Shigang; Shen, Sanbing; Wu, Ji; Guo, Xizhi; Li, Baojie; He, Lin; Ma, Gang

    2014-12-01

    Increased Wnt5a expression has been observed in psoriatic plaques. However, whether Wnt5a overexpression directly causes psoriasis is unknown. In this study, we generated transgenic (TG) mice with epidermal Wnt5a overexpression under the control of the human K14 promoter. The skin of Wnt5a TG mice was not psoriatic, but characterized with normal proliferation and homeostasis of epidermis. Instead, these TG mice displayed impaired hair follicle transition from telogen to anagen, most likely due to impaired canonical Wnt signalling. These results suggest that increased Wnt5a expression alone is inadequate to induce psoriasis in the skin and possible involvement of Wnt5a in hair follicle cycling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Impaired hair follicle morphogenesis and polarized keratinocyte movement upon conditional inactivation of integrin-linked kinase in the epidermis.

    PubMed

    Nakrieko, Kerry-Ann; Welch, Ian; Dupuis, Holly; Bryce, Dawn; Pajak, Agnieszka; St Arnaud, René; Dedhar, Shoukat; D'Souza, Sudhir J A; Dagnino, Lina

    2008-04-01

    Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function.

  14. Impaired Hair Follicle Morphogenesis and Polarized Keratinocyte Movement upon Conditional Inactivation of Integrin-linked Kinase in the Epidermis

    PubMed Central

    Nakrieko, Kerry-Ann; Welch, Ian; Dupuis, Holly; Bryce, Dawn; Pajak, Agnieszka; St. Arnaud, René; Dedhar, Shoukat

    2008-01-01

    Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function. PMID:18234842

  15. The Effect of 0.02% Mitomycin C Injection into the Hair Follicle with Radiofrequency Ablation in Trichiasis Patients

    PubMed Central

    Kim, Gyu-Nam; Yoo, Woong-Sun; Kim, Seong-Jae; Han, Yong-Seop; Chung, In-Young; Park, Jong-Moon; Yoo, Ji-Myong

    2014-01-01

    Purpose To investigate the inhibitory effect of 0.02% mitomycin C on eyelash regrowth when injected to the eyelash hair follicle immediately after radiofrequency ablation. Methods We prospectively included 21 trichiasis patients from June 2011 to October 2012. Twenty eyes of 14 patients were treated with 0.02% mitomycin C to the hair follicle immediately after radiofrequency ablation in group 1, while radiofrequency ablation only was conducted in ten eyes of seven patients in group 2. Recurrences and complications were evaluated until six months after treatment. Results One hundred sixteen eyelashes of 20 eyes in group 1 underwent treatment, and 19 (16.4%) eyelashes recurred. Eighty-four eyelashes of ten eyes in group 2 underwent treatment, and 51 (60.7%) eyelashes recurred. No patients developed any complications related to mitomycin C. Conclusions Application of 0.02% mitomycin C in conjunction with radiofrequency ablation may help to improve the success rate of radiofrequency ablation treatment in trichiasis patients. PMID:24505196

  16. Stem Cell-Associated Marker Expression in Canine Hair Follicles

    PubMed Central

    Gerhards, Nora M.; Sayar, Beyza S.; Origgi, Francesco C.; Galichet, Arnaud; Müller, Eliane J.; Welle, Monika M.; Wiener, Dominique J.

    2016-01-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  17. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. © 2016 The Histochemical Society.

  18. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-β2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro.

    PubMed

    Fischer, T W; Herczeg-Lisztes, E; Funk, W; Zillikens, D; Bíró, T; Paus, R

    2014-11-01

    Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ). © 2014 British Association of Dermatologists.

  19. Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re-epithelialization.

    PubMed

    Garcin, Clare L; Ansell, David M; Headon, Denis J; Paus, Ralf; Hardman, Matthew J

    2016-05-01

    The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re-establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15(+ve) bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo-epidermis. However, the identity of the first-responding cells, and in particular whether this process involves a direct contribution of K15(+ve) bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin-mediated partial ablation of K15(+ve) bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377-1385. © 2016 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. [Technologies for hair reconstruction and their applicability for pharmaceutical research].

    PubMed

    Matsuzaki, Takashi

    2008-01-01

    Hair follicles are the organs that produce hair shafts. They periodically regenerate throughout the life of the organisms, which is called the hair cycle. To develop new drugs to treat hair disorders and diseases, reproducible and high throughput assays or screening methods have been required to estimate the efficacy of various factors on hair follicle function. Although organ culture of hair follicles is one of the useful ways to carry out such research, it is not suitable for manipulating the genes or cells present in hair follicles. Patch assay is a method used to reconstruct hair follicles from enzymatically dissociated skin cells and has many advantages compared to the conventional Chamber method. Using the Patch method, transferring genes into follicular cells becomes easier than ever before. Chimeric follicles could be produced with dissociated cells by modifying the combination of cells or by simply merging cells of different origins. These applications certainly help the progress of hair research. However, we recently found that some functions of dermal papillae and follicular epithelia change during the growing phase (anagen) of the hair cycle. Dermal papillae produce different factors in early anagen and mid anagen. The signals from dermal papillae in early anagen could produce hair bulbs with clonogenic epithelial precursors but not with dormant epithelial precursors. On the other hand, the signals from dermal papillae in mid anagen strongly promote hair formation with dormant epithelial precursors. Therefore, more attention should be given to the hair cycle stages when using organ culture of hair follicles and conducting reconstruction experiments with follicularly derived cells.

  1. Sulfotransferase activity in plucked hair follicles predicts response to topical minoxidil in the treatment of female androgenetic alopecia.

    PubMed

    Roberts, Janet; Desai, Nisha; McCoy, John; Goren, Andy

    2014-01-01

    Two percent topical minoxidil is the only US Food and Drug Administration-approved drug for the treatment of female androgenetic alopecia (AGA). Its success has been limited by the low percentage of responders. Meta-analysis of several studies reporting the number of responders to 2% minoxidil monotherapy indicates moderate hair regrowth in only 13-20% of female patients. Five percent minoxidil solution, when used off-label, may increase the percentage of responders to as much as 40%. As such, a biomarker for predicting treatment response would have significant clinical utility. In a previous study, Goren et al. reported an association between sulfotransferase activity in plucked hair follicles and minoxidil response in a mixed cohort of male and female patients. The aim of this study was to replicate these findings in a well-defined cohort of female patients with AGA treated with 5% minoxidil daily for a period of 6 months. Consistent with the prior study, we found that sulfotransferase activity in plucked hair follicles predicts treatment response with 93% sensitivity and 83% specificity. Our study further supports the importance of minoxidil sulfation in eliciting a therapeutic response and provides further insight into novel targets for increasing minoxidil efficacy. © 2014 Wiley Periodicals, Inc.

  2. Mouse models for human hair loss disorders

    PubMed Central

    Porter, Rebecca M

    2003-01-01

    The outer surface of the hand, limb and body is covered by the epidermis, which is elaborated into a number of specialized appendages, evolved not only to protect and reinforce the skin but also for social signalling. The most prominent of these appendages is the hair follicle. Hair follicles are remarkable because of their prolific growth characteristics and their complexity of differentiation. After initial embryonic morphogenesis, the hair follicle undergoes repeated cycles of regression and regeneration throughout the lifetime of the organism. Studies of mouse mutants with hair loss phenotypes have suggested that the mechanisms controlling the hair cycle probably involve many of the major signalling molecules used elsewhere in development, although the complete pathway of hair follicle growth control is not yet understood. Mouse studies have also led to the discovery of genes underlying several human disorders. Future studies of mouse hair-loss mutants are likely to benefit the understanding of human hair loss as well as increasing our knowledge of mechanisms controlling morphogenesis and tumorigenesis. PMID:12587927

  3. Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges.

    PubMed

    Purba, Talveen S; Haslam, Iain S; Poblet, Enrique; Jiménez, Francisco; Gandarillas, Alberto; Izeta, Ander; Paus, Ralf

    2014-05-01

    Epithelial hair follicle stem cells (eHFSCs) are required to generate, maintain and renew the continuously cycling hair follicle (HF), supply cells that produce the keratinized hair shaft and aid in the reepithelialization of injured skin. Therefore, their study is biologically and clinically important, from alopecia to carcinogenesis and regenerative medicine. However, human eHFSCs remain ill defined compared to their murine counterparts, and it is unclear which murine eHFSC markers really apply to the human HF. We address this by reviewing current concepts on human eHFSC biology, their immediate progeny and their molecular markers, focusing on Keratin 15 and 19, CD200, CD34, PHLDA1, and EpCAM/Ber-EP4. After delineating how human eHFSCs may be selectively targeted experimentally, we close by defining as yet unmet key challenges in human eHFSC research. The ultimate goal is to transfer emerging concepts from murine epithelial stem cell biology to human HF physiology and pathology. © 2014 WILEY Periodicals, Inc.

  4. Dissecting the Impact of Chemotherapy on the Human Hair Follicle

    PubMed Central

    Bodó, Enikő; Tobin, Desmond J.; Kamenisch, York; Bíró, Tamás; Berneburg, Mark; Funk, Wolfgang; Paus, Ralf

    2007-01-01

    Chemotherapy-induced alopecia represents one of the major unresolved problems of clinical oncology. The underlying molecular pathogenesis in humans is virtually unknown because of the lack of adequate research models. Therefore, we have explored whether microdissected, organ-cultured, human scalp hair follicles (HFs) in anagen VI can be exploited for dissecting and manipulating the impact of chemotherapy on human HFs. Here, we show that these organ-cultured HFs respond to a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC), in a manner that resembles chemotherapy-induced HF dystrophy as it occurs in vivo: namely, 4-HC induced melanin clumping and melanin incontinence, down-regulated keratinocyte proliferation, massively up-regulated apoptosis of hair matrix keratinocytes, prematurely induced catagen, and up-regulated p53. In addition, 4-HC induced DNA oxidation and the mitochondrial DNA common deletion. The organ culture system facilitated the identification of new molecular targets for chemotherapy-induced HF damage by microarray technology (eg, interleukin-8, fibroblast growth factor-18, and glypican 6). It was also used to explore candidate chemotherapy protectants, for which we used the cytoprotective cytokine keratinocyte growth factor as exemplary pilot agent. Thus, this novel system serves as a powerful yet pragmatic tool for dissecting and manipulating the impact of chemotherapy on the human HF. PMID:17823286

  5. Protopanaxatirol type ginsenoside Re promotes cyclic growth of hair follicles via inhibiting transforming growth factor β signaling cascades.

    PubMed

    Li, Zheng; Ryu, Seung-Wook; Lee, Jungsul; Choi, Kyungsun; Kim, Sunchang; Choi, Chulhee

    2016-02-19

    Ginsenosides, the major bio-active ingredients included in Panax ginseng, have been known for the hair growth activity and used to treat patients who suffer from hair loss; however, the detailed mechanisms of this action are still largely unknown. This study was conducted to investigate the molecular and cellular mechanisms responsible for hair growth promoting effect of ginsenoside Re (GRe) in vitro and in vivo. Different doses of minoxidil and GRe were administered topically to the back regions of nude mice for up to 45 days, and hair shaft length and hair cycles were determined for hair promoting activities. Topical treatment of GRe significantly increased the hair shaft length and hair existent time, which was comparable to the action of minoxidil. We also demonstrated that GRe stimulated hair shaft elongation in the ex vivo cultures of vibrissa hair follicles isolated from C57BL/6 mouse. Systemic transcriptome analysis by next generation sequencing demonstrated that TGF-β-pathway related genes were selectively down-regulated by treatment of GRe in vivo, and the same treatment suppressed TGF-β-induced phosphorylation of ERK in HeLa cells. The results clearly indicated that GRe is the effective constituent in the ginseng on hair promotion via selective inhibition of the hair growth phase transition related signaling pathways, TGF-β signaling cascades. Copyright © 2016. Published by Elsevier Inc.

  6. Panax ginseng extract antagonizes the effect of DKK-1-induced catagen-ike changes of hair follicles

    PubMed Central

    Lee, Yonghee; Kim, Su Na; Hong, Yong Deog; Park, Byung Cheol; Na, Yongjoo

    2017-01-01

    It is well known that Panax ginseng (PG) has various pharmacological effects such as anti-aging and anti-inflammation. In a previous study, the authors identified that PG extract induced hair growth by means of a mechanism similar to that of minoxidil. In the present study, the inhibitory effect of PG extract on Dickkopf-1 (DKK-1)-induced catagen-like changes in hair follicles (HFs) was investigated in addition to the underlying mechanism of action. The effects of PG extract on cell proliferation, anti-apoptotic effect, and hair growth were observed using cultured outer root sheath (ORS) keratinocytes and human HFs with or without DKK-1 treatment. The PG extract significantly stimulated proliferation and inhibited apoptosis, respectively, in ORS keratinocytes. PG extract treatment affected the expression of apoptosis-related genes Bcl-2 and Bax. DKK-1 inhibited hair growth, and PG extract dramatically reversed the effect of DKK-1 on ex vivo human hair organ culture. PG extract antagonizes DKK-1-induced catagen-like changes, in part, through the regulation of apoptosis-related gene expression in HFs. These findings suggested that PG extract may reduce hair loss despite the presence of DKK-1, a strong catagen inducer via apoptosis. PMID:28849028

  7. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats.

    PubMed

    Gao, Ye; Wang, Xiaolong; Yan, Hailong; Zeng, Jie; Ma, Sen; Niu, Yiyuan; Zhou, Guangxian; Jiang, Yu; Chen, Yulin

    2016-01-01

    Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members

  8. Normal and aging hair biology and structure 'aging and hair'.

    PubMed

    Goodier, Molly; Hordinsky, Maria

    2015-01-01

    Much like an individual's hairstyle, hair fibers along the scalp see a number of changes over the course of one's lifetime. As the decades pass, the shine and volume synonymous with youthful hair may give way to thin, dull, and brittle hair commonly associated with aging. These changes are a result of a compilation of genetic and environmental elements influencing the cells of the hair follicle, specifically the hair follicle stem cells and melanocytes. Telomere shortening, decrease in cell numbers, and particular transcription factors have all been implicated in this process. In turn, these molecular alterations lead to structural modifications of the hair fiber, decrease in melanin production, and lengthening of the telogen phase of the hair cycle. Despite this inevitable progression with aging, there exists an array of treatments such as light therapy, minoxidil, and finasteride which have been designed to mitigate the effects of aging, particularly balding and thinning hair. Although each works through a different mechanism, all aim to maintain or potentially restore the youthful quality of hair. © 2015 S. Karger AG, Basel.

  9. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism.

    PubMed

    Luanpitpong, Sudjit; Nimmannit, Ubonthip; Chanvorachote, Pithi; Leonard, Stephen S; Pongrakhananon, Varisa; Wang, Liying; Rojanasakul, Yon

    2011-08-01

    Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy.

  10. Identification of hair shaft progenitors that create a niche for hair pigmentation

    PubMed Central

    Liao, Chung-Ping; Booker, Reid C.; Morrison, Sean J.; Le, Lu Q.

    2017-01-01

    Hair differentiates from follicle stem cells through progenitor cells in the matrix. In contrast to stem cells in the bulge, the identities of the progenitors and the mechanisms by which they regulate hair shaft components are poorly understood. Hair is also pigmented by melanocytes in the follicle. However, the niche that regulates follicular melanocytes is not well characterized. Here, we report the identification of hair shaft progenitors in the matrix that are differentiated from follicular epithelial cells expressing transcription factor KROX20. Depletion of Krox20 lineage cells results in arrest of hair growth, confirming the critical role of KROX20+ cells as antecedents of structural cells found in hair. Expression of stem cell factor (SCF) by these cells is necessary for the maintenance of differentiated melanocytes and for hair pigmentation. Our findings reveal the identities of hair matrix progenitors that regulate hair growth and pigmentation, partly by creating an SCF-dependent niche for follicular melanocytes. PMID:28465357

  11. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  12. Parathyroid hormone-related peptide and the hair cycle - is it the agonists or the antagonists that cause hair growth?

    PubMed

    Gensure, Robert C

    2014-12-01

    While the effects of PTHrP have been studied for almost 20 years, most of these studies have focused on effects on the termination of the anagen phase, giving an incomplete picture of the overall effect of PTHrP on the hair cycle. PTHrP was determined in several experimental models to promote transition of hair follicles from anagen to catagen phase, which by itself would suggest that PTHrP blockade might prolong the anagen phase and promote hair growth. However, clinical trials with topically applied PTHrP antagonists have been disappointing, leading to a reconsideration of this model. Additional studies performed in mouse models where hair follicles are damaged (alopecia areata, chemotherapy-induced alopecia) suggest that PTHrP has effects early in the hair cycle as well, promoting hair follicles' entry into anagen phase and initiates the hair cycle. While the mechanism of this has yet to be elucidated, it may involve activation of the Wnt pathway. Thus, the overall effect of PTHrP is to stimulate and accelerate the hair cycle, and in the more clinically relevant models of hair loss where hair follicles have been damaged or become quiescent, it is the agonists, not the antagonists, which would be expected to promote hair growth. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Skin physiology in microgravity: a 3-month stay aboard ISS induces dermal atrophy and affects cutaneous muscle and hair follicles cycling in mice.

    PubMed

    Neutelings, Thibaut; Nusgens, Betty V; Liu, Yi; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Gabriel, Maude; Colige, Alain; Lambert, Charles

    2015-01-01

    The Mice Drawer System (MDS) Tissue Sharing program was the longest rodent space mission ever performed. It provided 20 research teams with organs and tissues collected from mice having spent 3 months on the International Space Station (ISS). Our participation to this experiment aimed at investigating the impact of such prolonged exposure to extreme space conditions on mouse skin physiology. Mice were maintained in the MDS for 91 days aboard ISS (space group (S)). Skin specimens were collected shortly after landing for morphometric, biochemical, and transcriptomic analyses. An exact replicate of the experiment in the MDS was performed on ground (ground group (G)). A significant reduction of dermal thickness (-15%, P =0.05) was observed in S mice accompanied by an increased newly synthetized procollagen (+42%, P =0.03), likely reflecting an increased collagen turnover. Transcriptomic data suggested that the dermal atrophy might be related to an early degradation of defective newly formed procollagen molecules. Interestingly, numerous hair follicles in growing anagen phase were observed in the three S mice, validated by a high expression of specific hair follicles genes, while only one mouse in the G controls showed growing hairs. By microarray analysis of whole thickness skin, we observed a significant modulation of 434 genes in S versus G mice. A large proportion of the upregulated transcripts encoded proteins related to striated muscle homeostasis. These data suggest that a prolonged exposure to space conditions may induce skin atrophy, deregulate hair follicle cycle, and markedly affect the transcriptomic repertoire of the cutaneous striated muscle panniculus carnosus.

  14. The hair follicle mites (Demodex spp.). Could they be vectors of pathogenic microorganisms?

    PubMed

    Wolf, R; Ophir, J; Avigad, J; Lengy, J; Krakowski, A

    1988-01-01

    The hair follicle mites Demodex folliculorum and D. brevis are the most common permanent ectoparasites of Man. Ordinarily they are harmless to their human host and appear to be of no medical significance. We present, however, an unusual finding regarding this mite, namely, that in a potassium hydroxide mount of a skin scraping from a mycotic plaque we found numerous Demodex mites containing inside them spores of Microsporum canis. This could mean that the putatively inoffensive Demodex has the potential to ingest various microorganisms that are found in its niche and transport them to other areas of the skin or possibly to other individuals.

  15. Anti-CXCL4 monoclonal antibody accelerates telogen to anagen transition and attenuates apoptosis of the hair follicle in mice

    PubMed Central

    Guan, Wen; Yu, Xiaolan; Li, Jingjing; Deng, Qing; Zhang, Yang; Gao, Jing; Xia, Peng; Yuan, Yunsheng; Gao, Jin; Zhou, Liang; Han, Wei; Yu, Yan

    2017-01-01

    Although hair loss or alopecia is a common disease, its exact mechanisms are not yet well understood. The present study investigated the hypothesis that the homeostatic regulation of genes during hair regeneration may participate in hair loss, based on the cyclicity of hair growth. A cluster of such genes was identified by an expression gene-array from the dorsal skin in a depilated mouse model, and CXCL4 was identified as a significantly regulated gene during the hair regeneration process. To elucidate the function of CXCL4 in hair growth, CXCL4 activity was blocked by the administration of an anti-CXCL4 monoclonal antibody (mAb). Histomorphometric analysis indicated that anti-CXCL4 mAb induced an earlier anagen phase and delayed hair follicle regression, in contrast with that in the control group. Moreover, CXCL4 mAb upregulated the transcription levels of several hair growth-related genes, including Lef1, Wnt10b, Bmp4 and Bmp2. In addition, CXCL4 mAb increased the levels of the proliferation-related protein PCNA and Bcl-2 during the anagen phase, while it reduced the expression of pro-apoptotic protein Bax and cleaved caspase-3 during the catagen phase. These findings reveal that CXCL4 plays an important role in hair growth, and that blockade of CXCL4 activity promotes hair growth. PMID:28810552

  16. Anti-CXCL4 monoclonal antibody accelerates telogen to anagen transition and attenuates apoptosis of the hair follicle in mice.

    PubMed

    Guan, Wen; Yu, Xiaolan; Li, Jingjing; Deng, Qing; Zhang, Yang; Gao, Jing; Xia, Peng; Yuan, Yunsheng; Gao, Jin; Zhou, Liang; Han, Wei; Yu, Yan

    2017-08-01

    Although hair loss or alopecia is a common disease, its exact mechanisms are not yet well understood. The present study investigated the hypothesis that the homeostatic regulation of genes during hair regeneration may participate in hair loss, based on the cyclicity of hair growth. A cluster of such genes was identified by an expression gene-array from the dorsal skin in a depilated mouse model, and CXCL4 was identified as a significantly regulated gene during the hair regeneration process. To elucidate the function of CXCL4 in hair growth, CXCL4 activity was blocked by the administration of an anti-CXCL4 monoclonal antibody (mAb). Histomorphometric analysis indicated that anti-CXCL4 mAb induced an earlier anagen phase and delayed hair follicle regression, in contrast with that in the control group. Moreover, CXCL4 mAb upregulated the transcription levels of several hair growth-related genes, including Lef1, Wnt10b, Bmp4 and Bmp2. In addition, CXCL4 mAb increased the levels of the proliferation-related protein PCNA and Bcl-2 during the anagen phase, while it reduced the expression of pro-apoptotic protein Bax and cleaved caspase-3 during the catagen phase. These findings reveal that CXCL4 plays an important role in hair growth, and that blockade of CXCL4 activity promotes hair growth.

  17. Identification of hair shaft progenitors that create a niche for hair pigmentation.

    PubMed

    Liao, Chung-Ping; Booker, Reid C; Morrison, Sean J; Le, Lu Q

    2017-04-15

    Hair differentiates from follicle stem cells through progenitor cells in the matrix. In contrast to stem cells in the bulge, the identities of the progenitors and the mechanisms by which they regulate hair shaft components are poorly understood. Hair is also pigmented by melanocytes in the follicle. However, the niche that regulates follicular melanocytes is not well characterized. Here, we report the identification of hair shaft progenitors in the matrix that are differentiated from follicular epithelial cells expressing transcription factor KROX20. Depletion of Krox20 lineage cells results in arrest of hair growth, confirming the critical role of KROX20 + cells as antecedents of structural cells found in hair. Expression of stem cell factor (SCF) by these cells is necessary for the maintenance of differentiated melanocytes and for hair pigmentation. Our findings reveal the identities of hair matrix progenitors that regulate hair growth and pigmentation, partly by creating an SCF-dependent niche for follicular melanocytes. © 2017 Liao et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Distribution of caspase-14 in epidermis and hair follicles is evolutionarily conserved among mammals.

    PubMed

    Alibardi, Lorenzo; Tschachler, Erwin; Eckhart, Leopold

    2005-10-01

    Caspase-14, a member of the caspase family of cysteine proteases, is almost exclusively expressed in the epidermis. Studies on human and mouse cells and tissues have implicated caspase-14 in terminal differentiation of epidermal keratinocytes and in the formation of the stratum corneum. Here we investigated evolutionary aspects of the role of caspase-14 by analyzing its distribution in the epidermis and hair follicles of representative species of placental mammals, marsupials, and monotremes. Immunocytochemical staining showed that caspase-14 is consistently expressed in the granular and corneous layer of the epidermis of all mammalian species investigated. Ultrastructural analysis using gold-labeled anticaspase-14 antibodies revealed that caspase-14 is associated preferentially with keratin bundles and amorphous material of keratohyalin granules, but is also present in nuclei of transitional cells of the granular layer and in corneocytes. In hair follicles, caspase-14 was diffusely present in cornifying cells of the outer root sheath, in the companion layer, and, most abundantly, in the inner root sheath of all mammalian species here analyzed. In Henle and Huxley layers of the inner root sheath, labeling was seen in nuclei and, more diffusely, among trichohyalin granules of cornifying cells. In summary, the tissue expression pattern and the intracellular localization of caspase-14 are highly conserved among diverse mammalian species, suggesting that this enzyme is involved in a molecular process that appeared early in the evolution of mammalian skin. The association of caspase-14 with keratohyalin and trichohyalin granules may indicate a specific role of caspase-14 in the maturation of these keratinocyte-specific structures.

  19. Hair Follicle-Associated Pluripotent (HAP) Stem Cells in Gelfoam® Histoculture for Use in Spinal Cord Repair.

    PubMed

    Liu, Fang; Hoffman, Robert M

    2018-01-01

    The stem cell marker, nestin, is expressed in the hair follicle, both in cells in the bulge area (BA) and the dermal papilla (DP). Nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells of both the BA and DP have been previously shown to be able to form neurons, heart muscle cells, and other non-follicle cell types. The ability of the nestin-expressing HAP stem cells from the BA and DP to repair spinal cord injury was compared. Nestin-expressing HAP stem cells from both the BA and DP grew very well on Gelfoam ® . The HAP stem cells attached to the Gelfoam ® within 1 h. They grew along the grids of the Gelfoam ® during the first 2 or 3 days. Later they spread into the Gelfoam ® . After transplantation of Gelfoam ® cultures of nestin-expressing BA or DP HAP stem cells into the injured spinal cord (including the Gelfoam ® ) nestin-expressing BA and DP cells were observed to be viable over 100 days post-surgery. Hematoxylin and eosin (H&E) staining showed connections between the transplanted cells and the host spine tissue. Immunohistochemistry showed many Tuj1-, Isl 1/2, and EN1-positive cells and nerve fibers in the transplanted area of the spinal cord after BA Gelfoam ® or DP Gelfoam ® cultures were transplanted to the spine. The spinal cord of mice was injured to effect hind-limb paralysis. Twenty-eight days after transplantation with BA or DP HAP stem cells on Gelfoam ® to the injured area of the spine, the mice recovered normal locomotion.

  20. Fullerene nanomaterials potentiate hair growth.

    PubMed

    Zhou, Zhiguo; Lenk, Robert; Dellinger, Anthony; MacFarland, Darren; Kumar, Krishan; Wilson, Stephen R; Kepley, Christopher L

    2009-06-01

    Hair loss is a common symptom resulting from a wide range of disease processes and can lead to stress in affected individuals. The purpose of this study was to examine the effect of fullerene nanomaterials on hair growth. We used shaved mice as well as SKH-1 "bald" mice to determine if fullerene-based compounds could affect hair growth and hair follicle numbers. In shaved mice, fullerenes increase the rate of hair growth as compared with mice receiving vehicle only. In SKH-1 hairless mice fullerene derivatives given topically or subdermally markedly increased hair growth. This was paralleled by a significant increase in the number of hair follicles in fullerene-treated mice as compared with those mice treated with vehicle only. The fullerenes also increased hair growth in human skin sections maintained in culture. These studies have wide-ranging implications for those conditions leading to hair loss, including alopecia, chemotherapy, and reactions to various chemicals.

  1. DNA profiling in peripheral blood, buccal swabs, hair follicles and semen from a patient following allogeneic hematopoietic stem cells transplantation

    PubMed Central

    LI, YA-TING; XIE, MING-KUN; WU, JIN

    2014-01-01

    Allogeneic peripheral blood stem cells transplantation (allo-PBSCT) or allogeneic bone marrow transplantation (allo-BMT) have been widely used to treat patients exhibiting certain severe illnesses. However, previous studies have shown that the biological materials of allo-PBSCT or allo-BMT recipients may not constitute credible materials for personal identification. In the present study, four types of commonly used samples were collected from a male individual following gender-matched allo-BMT. Autosomal short tandem repeat (STR) and Y-STR markers analysis, based on polymerase chain reaction, were used to evaluate the chimerism status. The results showed that the blood sample were all donor type, the buccal swab sample were mixed chimerism, and the sperm and hair follicle samples maintained a recipient origin of 100%. In conclusion, identical results were obtained by the two methods and it was confirmed that DNA extracted from hair follicles and sperm can be used as a reference for the pre-transplant genotype DNA profile of the recipient in the gender-match allo-BMT or -PBSCT. PMID:25279149

  2. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 andmore » keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly

  3. Recent Advances in the Pathogenesis of Autoimmune Hair Loss Disease Alopecia Areata

    PubMed Central

    2013-01-01

    Alopecia areata is considered to be a cell-mediated autoimmune disease, in which autoreactive cytotoxic T cells recognize melanocyte-associated proteins such as tyrosinase. This review discusses recent advances in the understanding of the pathogenesis of alopecia areata, focusing on immunobiology and hormonal aspects of hair follicles (HFs). The HF is a unique “miniorgan” with its own immune and hormonal microenvironment. The immunosuppressive milieu of the anagen hair bulb modulated by immunosuppressive factors is known as “hair follicle immune privilege.” The collapse of the hair follicle immune privilege leads to autoimmune reactions against hair follicle autoantigens. Alopecia areata is sometimes triggered by viral infections such as influenza that causes excess production of interferons (IFN). IFN-γ is one of the key factors that lead to the collapse of immune privilege. This paper reviews the interactions between the endocrine and immune systems and hair follicles in the pathogenesis of alopecia areata. PMID:24151515

  4. Ultrastructure study of hair damage after ultraviolet irradiation.

    PubMed

    Zuel-Fakkar, Nehal Mohamed; El Khateeb, Ekramy Ahmed; Cousha, Hala Sobhi; Hamed, Dina Mohamed

    2013-12-01

    Natural ultraviolet exposure induces hair damage, which is difficult to avoid. Most of the research work is focused on the effect of ultraviolet on the epidermis, dermis as well as the immune system, whereas the long-term effect of ultraviolet on hair has not been investigated. we performed our experiment to find out the changes induced in hair follicle and shaft in those patients exposed to high doses of ultraviolet (A and B) during treatment of other skin conditions. Light and transmission electron microscopy examination of scalp hair follicles and shafts of 10 patients with vitiligo under psoralen plus ultraviolet A (group 1) and 10 patients with vitiligo under narrow band ultraviolet B (group 2) was carried out and compared with those of 10 healthy volunteers (group 3). Physical changes in the appearance of hair were more in groups 1 and 2 than control. Reduced hair follicle thickness and perifollicular infiltrate and hyaline disorganized perifollicular collagen were observed more in group 1 than in group 2 with the absence of these changes in group 3. Transmission electron microscopy showed nonspecific cell injury in hair follicles in group 1 more than the other 2 groups, while the damaging effect on hair was more in the second group than the others. Due to the damaging effect of ultraviolet on hair, patients under treatment with this modality should be cautious to protect their hair during treatment. © 2013 Wiley Periodicals, Inc.

  5. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans

    PubMed Central

    2013-01-01

    Background Hair is one of the main distinguishing characteristics of mammals and it has many important biological functions. Cetaceans originated from terrestrial mammals and they have evolved a series of adaptations to aquatic environments, which are of evolutionary significance. However, the molecular mechanisms underlying their aquatic adaptations have not been well explored. This study provided insights into the evolution of hair loss during the transition from land to water by investigating and comparing two essential regulators of hair follicle development and hair follicle cycling, i.e., the Hairless (Hr) and FGF5 genes, in representative cetaceans and their terrestrial relatives. Results The full open reading frame sequences of the Hr and FGF5 genes were characterized in seven cetaceans. The sequence characteristics and evolutionary analyses suggested the functional loss of the Hr gene in cetaceans, which supports the loss of hair during their full adaptation to aquatic habitats. By contrast, positive selection for the FGF5 gene was found in cetaceans where a series of positively selected amino acid residues were identified. Conclusions This is the first study to investigate the molecular basis of the hair loss in cetaceans. Our investigation of Hr and FGF5, two indispensable regulators of the hair cycle, provide some new insights into the molecular basis of hair loss in cetaceans. The results suggest that positive selection for the FGF5 gene might have promoted the termination of hair growth and early entry into the catagen stage of hair follicle cycling. Consequently, the hair follicle cycle was disrupted and the hair was lost completely due to the loss of the Hr gene function in cetaceans. This suggests that cetaceans have evolved an effective and complex mechanism for hair loss. PMID:23394579

  6. Notch Signaling Regulates Late-Stage Epidermal Differentiation and Maintains Postnatal Hair Cycle Homeostasis

    PubMed Central

    Lin, Hsien-Yi; Kao, Cheng-Heng; Lin, Kurt Ming-Chao; Kaartinen, Vesa; Yang, Liang-Tung

    2011-01-01

    Background Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis. Methodology and Principal Findings We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes. Significance our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is

  7. Lack of Collagen VI Promotes Wound-Induced Hair Growth.

    PubMed

    Chen, Peiwen; Cescon, Matilde; Bonaldo, Paolo

    2015-10-01

    Collagen VI is an extracellular matrix molecule that is abundantly expressed in the skin. However, the role of collagen VI in hair follicle growth is unknown. Here, we show that collagen VI is strongly deposited in hair follicles, and is markedly upregulated by skin wounding. Lack of collagen VI in Col6a1(-/-) mice delays hair cycling and growth under physiological conditions, but promotes wound-induced hair regrowth without affecting skin regeneration. Conversely, addition of purified collagen VI rescues the abnormal wound-induced hair regrowth in Col6a1(-/-) mice. Mechanistic studies revealed that the increased wound-induced hair regrowth of Col6a1(-/-) mice is triggered by activation of the Wnt/β-catenin signaling pathway, and is abolished by inhibition of this pathway. These findings highlight the essential relationships between extracellular matrix (ECM) and hair follicle regeneration, and suggest that collagen VI could be a potential therapeutic target for hair loss and other skin-related diseases.

  8. Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration

    PubMed Central

    Zhen, Hanson H.; Oro, Anthony E.

    2013-01-01

    Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models. PMID:23486463

  9. Hair regrowth in alopecia areata patients following Stem Cell Educator therapy.

    PubMed

    Li, Yanjia; Yan, Baoyong; Wang, Hepeng; Li, Heng; Li, Quanhai; Zhao, Dong; Chen, Yana; Zhang, Ye; Li, Wenxia; Zhang, Jun; Wang, Shanfeng; Shen, Jie; Li, Yunxiang; Guindi, Edward; Zhao, Yong

    2015-04-20

    Alopecia areata (AA) is one of the most common autoimmune diseases and targets the hair follicles, with high impact on the quality of life and self-esteem of patients due to hair loss. Clinical management and outcomes are challenged by current limited immunosuppressive and immunomodulating regimens. We have developed a Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, allows the cells to briefly interact with adherent human cord blood-derived multipotent stem cells (CB-SC), and returns the "educated" autologous cells to the patient's circulation. In an open-label, phase 1/phase 2 study, patients (N = 9) with severe AA received one treatment with the Stem Cell Educator therapy. The median age was 20 years (median alopecic duration, 5 years). Clinical data demonstrated that patients with severe AA achieved improved hair regrowth and quality of life after receiving Stem Cell Educator therapy. Flow cytometry revealed the up-regulation of Th2 cytokines and restoration of balancing Th1/Th2/Th3 cytokine production in the peripheral blood of AA subjects. Immunohistochemistry indicated the formation of a "ring of transforming growth factor beta 1 (TGF-β1)" around the hair follicles, leading to the restoration of immune privilege of hair follicles and the protection of newly generated hair follicles against autoimmune destruction. Mechanistic studies revealed that co-culture with CB-SC may up-regulate the expression of coinhibitory molecules B and T lymphocyte attenuator (BTLA) and programmed death-1 receptor (PD-1) on CD8β(+)NKG2D(+) effector T cells and suppress their proliferation via herpesvirus entry mediator (HVEM) ligands and programmed death-1 ligand (PD-L1) on CB-SCs. Current clinical data demonstrated the safety and efficacy of the Stem Cell Educator therapy for the treatment of AA. This innovative approach produced lasting improvement in hair regrowth in

  10. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells

    PubMed Central

    Ni, Yuxin; Zhang, Kaizhi; Liu, Xuejuan; Yang, Tingting; Wang, Baixiang; Fu, Li; A, Lan; Zhou, Yanmin

    2014-01-01

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair follicles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regulating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA. PMID:25206896

  11. Tight junctions form a barrier in porcine hair follicles.

    PubMed

    Mathes, Christiane; Brandner, Johanna M; Laue, Michael; Raesch, Simon S; Hansen, Steffi; Failla, Antonio V; Vidal, Sabine; Moll, Ingrid; Schaefer, Ulrich F; Lehr, Claus-Michael

    2016-02-01

    Follicular penetration has gained increasing interest regarding (i) safety concerns about (environmentally born) xenobiotics available to the hair follicle (HF), e.g. nanomaterials or allergens which should not enter the skin, and (ii) the possibility for non-invasive follicular drug and antigen delivery. However, not much is known about barriers in the HF which have to be surpassed upon uptake and/or penetration into surrounding tissue. Thus, aim of this work was a detailed investigation of this follicular barrier function, as well as particle uptake into the HF of porcine skin which is often used as a model system for human skin for such purposes. We show that follicular tight junctions (TJs) form a continuous barrier from the infundibulum down to the suprabulbar region, complementary to the stratum corneum in the most exposed upper follicular region, but remaining as the only barrier in the less accessible lower follicular regions. In the bulbar region of the HF no TJ barrier was found, demonstrating the importance of freely supplying this hair-forming part with e.g. nutrients or hormones from the dermal microenvironment. Moreover, the dynamic character of the follicular TJ barrier was shown by modulating its permeability using EDTA. After applying polymeric model-nanoparticles (154 nm) to the skin, transmission electron microscopy revealed that the majority of the particles were localized in the upper part of the HF where the double-barrier is present. Only few penetrated deeper, reaching regions where TJs act as the only barrier, and no particles were observed in the bulbar, barrier-less region. Lastly, the equivalent expression and distribution of TJ proteins in human and porcine HF further supports the suitability of porcine skin as a predictive model to study the follicular penetration and further biological effects of dermally applied nanomaterials in humans. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Hair growth-promoting activity of hot water extract of Thuja orientalis.

    PubMed

    Zhang, Nan-nan; Park, Dong Ki; Park, Hye-Jin

    2013-01-10

    Thuja orientalis has been traditionally used to treat patients who suffer from baldness and hair loss in East Asia. The present study sought to investigate the hair growth-promoting activity of T. orientalis hot water extract and the underlying mechanism of action. After T. orientalis extract was topically applied to the shaved dorsal skin of telogenic C57BL/6 N mice, the histomorphometric analysis was employed to study induction of the hair follicle cycle. To determine the effect of T. orientalis extract on the telogen to anagen transition, the protein expression levels of β-catenin and Sonic hedgehog (Shh) in hair follicles were determined by immunohistochemistry. We observed that T. orientalis extract promoted hair growth by inducing the anagen phase in telogenic C57BL/6 N mice. Specifically, the histomorphometric analysis data indicates that topical application of T. orientalis extract induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to either the control or 1% minoxidil-treated group. We also observed increases in both the number and size of hair follicles of the T. orientalis extract-treated group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Shh proteins in hair follicles of the T. orientalis extract-treated group, compared to the control or 1% minoxidil-treated group. These results suggest that T. orientalis extract promotes hair growth by inducing the anagen phase in resting hair follicles and might therefore be a potential hair growth-promoting agent.

  13. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway

    PubMed Central

    Ahmed, Mohammed I.; Alam, Majid; Emelianov, Vladimir U.; Poterlowicz, Krzysztof; Patel, Ankit; Sharov, Andrey A.; Mardaryev, Andrei N.

    2014-01-01

    Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging. PMID:25422376

  14. Hair cycle in dogs with different hair types in a tropical region of Brazil.

    PubMed

    Favarato, Evandro S; Conceição, Lissandro Gonçalves

    2008-02-01

    Hair cycle activity has been extensively studied in humans, sheep and laboratory animals, but there is a lack of information in dogs. Besides varying according to species, breed, sex and general health, hair growth is mainly affected by climatic variations. The aim of the study was to evaluate the follicle activity in three breeds of dogs with different hair types, in the city of Viçosa, Minas Gerais (latitude 20 degrees 45'S), Brazil. Twenty-one male dogs of boxer, labrador and schnauzer breeds were trichographically analysed monthly over 12 consecutive months. Hair percentage of telogen and anagen hairs at the different stages of the hair cycle in boxers and labradors was not significantly different, but both differed from the schnauzers. A significant correlation between hair follicle cycle and environmental temperature and photoperiod was noted in the boxers and labradors. In these breeds, a larger number of telogen hairs were observed during the hottest months of the year, and an increase in anagen hairs during the coldest months. The mean percentage of telogen hairs was 93, 90 and 55.3% for boxer, labrador and schnauzer, respectively.

  15. iTRAQ-Based Quantitative Proteomic Comparison of Early- and Late-Passage Human Dermal Papilla Cell Secretome in Relation to Inducing Hair Follicle Regeneration.

    PubMed

    Zhang, Huan; Zhu, Ning-Xia; Huang, Keng; Cai, Bo-Zhi; Zeng, Yang; Xu, Yan-Ming; Liu, Yang; Yuan, Yan-Ping; Lin, Chang-Min

    2016-01-01

    Alopecia is an exceedingly prevalent problem that lacks effective therapy. Recently, research has focused on early-passage dermal papilla cells (DPCs), which have hair inducing activity both in vivo and in vitro. Our previous study indicated that factors secreted from early-passage DPCs contribute to hair follicle (HF) regeneration. To identify which factors are responsible for HF regeneration and why late-passage DPCs lose this potential, we collected 48-h-culture medium (CM) from both of passage 3 and 9 DPCs, and subcutaneously injected the DPC-CM into NU/NU mice. Passage 3 DPC-CM induced HF regeneration, based on the emergence of a white hair coat, but passage 9 DPC-CM did not. In order to identify the key factors responsible for hair induction, CM from passage 3 and 9 DPCs was analyzed by iTRAQ-based quantitative proteomic technology. We identified 1360 proteins, of which 213 proteins were differentially expressed between CM from early-passage vs. late-passage DPCs, including SDF1, MMP3, biglycan and LTBP1. Further analysis indicated that the differentially-expressed proteins regulated the Wnt, TGF-β and BMP signaling pathways, which directly and indirectly participate in HF morphogenesis and regeneration. Subsequently, we selected 19 proteins for further verification by multiple reaction monitoring (MRM) between the two types of CM. These results indicate DPC-secreted proteins play important roles in HF regeneration, with SDF1, MMP3, biglycan, and LTBP1 being potential key inductive factors secreted by dermal papilla cells in the regeneration of hair follicles.

  16. Role of Arachidonic Acid in Promoting Hair Growth

    PubMed Central

    Munkhbayar, Semchin; Jang, Sunhyae; Cho, A-Ri; Choi, Soon-Jin; Shin, Chang Yup; Eun, Hee Chul; Kim, Kyu Han

    2016-01-01

    Background Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle. Objective This study investigated the effect of AA on hair growth by using in vivo and in vitro models. Methods The effect of AA on human dermal papilla cells (hDPCs) and hair shaft elongation was evaluated by MTT assay and hair follicle organ culture, respectively. The expression of various growth and survival factors in hDPCs were investigated by western blot or immunohistochemistry. The ability of AA to induce and prolong anagen phase in C57BL/6 mice was analyzed. Results AA was found to enhance the viability of hDPCs and promote the expression of several factors responsible for hair growth, including fibroblast growth factor-7 (FGF-7) and FGF-10. Western blotting identified the role of AA in the phosphorylation of various transcription factors (ERK, CREB, and AKT) and increased expression of Bcl-2 in hDPCs. In addition, AA significantly promoted hair shaft elongation, with increased proliferation of matrix keratinocytes, during ex vivo hair follicle culture. It was also found to promote hair growth by induction and prolongation of anagen phase in telogen-stage C57BL/6 mice. Conclusion This study concludes that AA plays a role in promoting hair growth by increasing the expression of growth factors in hDPCs and enhancing follicle proliferation and survival. PMID:26848219

  17. Hair growth induction by substance P.

    PubMed

    Paus, R; Heinzelmann, T; Schultz, K D; Furkert, J; Fechner, K; Czarnetzki, B M

    1994-07-01

    In vitro, some neuropeptides, including the tachykinin, substance P (SP), act as growth factors. The cyclic growth of the richly innervated hair follicle offers a model for probing such functions in a complex, developmentally regulated tissue interaction system under physiologic conditions. Dissecting the role of neuropeptides in this system may also reveal as yet obscure neural mechanisms of hair growth control. The neuropeptide-releasing neurotoxin, capsaicin was injected intradermally, or SP slow-release formulations were implanted subcutaneously in the back skin of C57BL/6 mice with all follicles in the resting stage of the hair cycle (telogen) in order to see whether this induced hair growth (anagen). In addition, the endogenous SP skin concentration and the activity of the main SP-degrading enzyme, neutral endopeptidase, were determined during the induced murine hair cycle by high performance liquid chromatography-controlled radioimmuno-assay (SP) or by fluorometry (neutral endopeptidase). Both capsaicin and SP induced significant hair growth (anagen) in the back skin of telogen mice. This was associated with substantial mast cell degranulation. The endogenous SP skin concentration showed significant, hair cycle-dependent fluctuations during the induced murine hair cycle, which were largely independent of the activity of neutral endopeptidase. SP may play a role in the neural control of hair growth. Whereas this pilot study does not address the underlying mechanisms of action, it demonstrates that SP has potential as a hair growth-stimulatory agent in vivo, and serves as a basis for exploring the role of tachykinins in epithelial-mesenchymal-neuroectodermal interaction systems like the hair follicle.

  18. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting.

    PubMed

    Hsu, Ching-Yun; Yang, Shih-Chun; Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You

    2017-01-01

    Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5-125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions.

  19. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting

    PubMed Central

    Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You

    2017-01-01

    Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5–125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions. PMID:29184410

  20. Hair growth-promoting activity of hot water extract of Thuja orientalis

    PubMed Central

    2013-01-01

    Background Thuja orientalis has been traditionally used to treat patients who suffer from baldness and hair loss in East Asia. The present study sought to investigate the hair growth-promoting activity of T. orientalis hot water extract and the underlying mechanism of action. Methods After T. orientalis extract was topically applied to the shaved dorsal skin of telogenic C57BL/6 N mice, the histomorphometric analysis was employed to study induction of the hair follicle cycle. To determine the effect of T. orientalis extract on the telogen to anagen transition, the protein expression levels of β-catenin and Sonic hedgehog (Shh) in hair follicles were determined by immunohistochemistry. Results We observed that T. orientalis extract promoted hair growth by inducing the anagen phase in telogenic C57BL/6 N mice. Specifically, the histomorphometric analysis data indicates that topical application of T. orientalis extract induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to either the control or 1% minoxidil-treated group. We also observed increases in both the number and size of hair follicles of the T. orientalis extract-treated group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Shh proteins in hair follicles of the T. orientalis extract-treated group, compared to the control or 1% minoxidil-treated group. Conclusion These results suggest that T. orientalis extract promotes hair growth by inducing the anagen phase in resting hair follicles and might therefore be a potential hair growth-promoting agent. PMID:23305186

  1. Hair radioactivity as a measure of exposure to radioisotopes

    NASA Technical Reports Server (NTRS)

    Strain, W. H.; Pories, W. J.; Fratianne, R. B.; Flynn, A.

    1972-01-01

    Since many radioisotopes accumulate in hair, this tropism was investigated by comparing the radioactivity of shaved with plucked hair collected from rats at various time intervals up to 24 hrs after intravenous injection of the ecologically important radioisotopes, iodine-131, manganese-54, strontium-85, and zinc-65. The plucked hair includes the hair follicles where biochemical transformations are taking place. The data indicate a slight surge of each radioisotpe into the hair immediately after injection, a variation of content of each radionuclide in the hair, and a greater accumulation of radioactivity in plucked than in shaved hair. These results have application not only to hair as a measure of exposure to radioisotopes, but also to tissue damage and repair at the hair follicle.

  2. Stress and the Hair Growth Cycle: Cortisol-Induced Hair Growth Disruption.

    PubMed

    Thom, Erling

    2016-08-01

    The stress hormone, cortisol, is known to affect the function and cyclic regulation of the hair follicle. When cortisol is present at high levels it has been demonstrated to reduce the synthesis and accelerate the degradation of important skin elements, namely hyaluronan and proteoglycans by approximately 40%. The following discussion outlines the relationship between stress, cortisol, and the effect on the normal function of the hair follicle. As a result of this connection, important correlations have been established in the literature to form a basis for novel, effective treatments of stress-related hair growth disorders.
    Amongst various treatment methods and substances, oral supplementation with a specific bioavailable proteoglycan stands out as a promising new therapeutic treatment method.

    J Drugs Dermatol. 2016;15(8):1001-1004.

  3. [Hair and their environment].

    PubMed

    Piérard-Franchimont, C; Piérard, G E

    2015-02-01

    Hair is influenced by the effects of the daily environment. Some toxic xenobiotics slow down or block the cell renewal of the hair matrix, thus inhibiting hair growth. The ultraviolet light obviously influences the physical structure and physiology of the hair follicle. Tobacco is similarly responsible for negative influences on the evolution of various alopecias. Several cosmetic procedures for maintaining and making hair more attractive are not always harmless, and they occasionally represent a possible origin for alopecia.

  4. Ingrowing Hair

    PubMed Central

    Luo, Di-Qing; Liang, Yu-Hua; Li, Xi-Qing; Zhao, Yu-Kun; Wang, Fang; Sarkar, Rashmi

    2016-01-01

    Abstract Cutaneous pili migrans and creeping eruption caused by parasitic diseases may present as a moving linear lesion in skin. The former, caused by a hair shaft or fragment embedded in the superficial skin or middle dermis, is a rare condition characterized by creeping eruption with a black line observed at the advancing end. In exceptionally rare instance, the hair grows inside the skin and burrows in the uppermost dermis, such a condition has been called “ingrown hair.” We report a 30-year-old Chinese man, who was accustomed to pull or extrude the beard hairs, with 1-year history of slowly extending black linear eruption on his right chin. Cutaneous examination revealed a 4-cm long black linear lesion beneath the skin associated with edematous erythema around and folliculitis on both ends of the lesion. After treatment with topical mupirocin ointment, the erythema and folliculitis improved and 2 hairs of the beard with hair follicles were pulled out from the skin. Two weeks later, another similar black line about 1 cm in length in the skin presented on the prior lesional area, which was pulled out by a shallow incision of the skin and was also demonstrated as a beard hair with hair follicle. The patient was diagnosed as “ingrowing hair” with multiple recurrences. The lesions recovered after the beard hairs were pulled out. No recurrence occurred in a year of follow-up. We suggest that “ingrowing hair” is better than “ingrown hair” to describe such a condition. Pulling out the involved hair and correcting the bad practice are its optimal management strategies. PMID:27175694

  5. Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells.

    PubMed

    Wu, Xunwei; Scott, Larry; Washenik, Ken; Stenn, Kurt

    2014-12-01

    The goal of regenerative medicine is to reconstruct fully functional organs from tissue culture expanded human cells. In this study, we report a method for human reconstructed skin (hRSK) when starting with human cells. We implanted tissue culture expanded human epidermal and dermal cells into an excision wound on the back of immunodeficient mice. Pigmented skin covered the wound 4 weeks after implantation. Hair shafts were visible at 12 weeks and prominent at 14 weeks. Histologically, the hRSK comprises an intact epidermis and dermis with mature hair follicles, sebaceous glands and most notably, and unique to this system, subcutis. Morphogenesis, differentiation, and maturation of the hRSK mirror the human fetal process. Human antigen markers demonstrate that the constituent cells are of human origin for at least 6 months. The degree of new skin formation is most complete when using tissue culture expanded cells from fetal skin, but it also occurs with expanded newborn and adult cells; however, no appendages formed when we grafted both adult dermal and epidermal cells. The hRSK system promises to be valuable as a laboratory model for studying biological, pathological, and pharmaceutical problems of human skin.

  6. Ecklonia cava promotes hair growth.

    PubMed

    Bak, S S; Ahn, B N; Kim, J A; Shin, S H; Kim, J C; Kim, M K; Sung, Y K; Kim, S K

    2013-12-01

    Previous studies have reported the protective effects on skin elasticity of the edible marine seaweed Ecklonia cava, which acts through regulation of both antioxidative and anti-inflammatory responses. We evaluated the effect of E. cava and one of its components, dioxinodehydroeckol, on hair-shaft growth in cultured human hair follicles and on hair growth in mice. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to check cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells after treatment with E. cava and its metabolite, dioxinodehydroeckol. Hair-shaft growth was measured using the in vitro hair-follicle organ-culture system, in the presence or absence of E. cava and dioxinodehydroeckol. Anagen induction activity was examined by topical application of E. cava to the dorsal skin of C57BL/6 mice. Insulin-like growth factor (IGF)-1 expression was measured by reverse transcriptase PCR and ELISA. The proliferation activity was found to be highest for the ethyl acetate-soluble fraction of E. cava (EAFE) in DPCs and in ORS cells. Treatment with EAFE resulted in elongation of the hair shaft in cultured human hair follicles, and promoted transition of the hair cycle from the telogen to the anagen phase in the dorsal skin of C57BL/6 mice. In addition, EAFE induced an increase in IGF-1 expression in DPCs. Dioxinodehydroeckol, a component of E. cava, induced elongation of the hair shaft, an increase in proliferation of DPCs and ORS cells, and an increase in expression of IGF-1 in DPCs. These results suggest that E. cava containing dioxinodehydroeckol promotes hair growth through stimulation of DPCs and ORS cells. © 2013 British Association of Dermatologists.

  7. Hair Follicular Expression and Function of Group X Secreted Phospholipase A2 in Mouse Skin*

    PubMed Central

    Yamamoto, Kei; Taketomi, Yoshitaka; Isogai, Yuki; Miki, Yoshimi; Sato, Hiroyasu; Masuda, Seiko; Nishito, Yasumasa; Morioka, Kiyokazu; Ishimoto, Yoshikazu; Suzuki, Noriko; Yokota, Yasunori; Hanasaki, Kohji; Ishikawa, Yukio; Ishii, Toshiharu; Kobayashi, Tetsuyuki; Fukami, Kiyoko; Ikeda, Kazutaka; Nakanishi, Hiroki; Taguchi, Ryo; Murakami, Makoto

    2011-01-01

    Although perturbed lipid metabolism can often lead to skin abnormality, the role of phospholipase A2 (PLA2) in skin homeostasis is poorly understood. In the present study we found that group X-secreted PLA2 (sPLA2-X) was expressed in the outermost epithelium of hair follicles in synchrony with the anagen phase of hair cycling. Transgenic mice overexpressing sPLA2-X (PLA2G10-Tg) displayed alopecia, which was accompanied by hair follicle distortion with reduced expression of genes related to hair development, during a postnatal hair cycle. Additionally, the epidermis and sebaceous glands of PLA2G10-Tg skin were hyperplasic. Proteolytic activation of sPLA2-X in PLA2G10-Tg skin was accompanied by preferential hydrolysis of phosphatidylethanolamine species with polyunsaturated fatty acids as well as elevated production of some if not all eicosanoids. Importantly, the skin of Pla2g10-deficient mice had abnormal hair follicles with noticeable reduction in a subset of hair genes, a hypoplasic outer root sheath, a reduced number of melanin granules, and unexpected up-regulation of prostanoid synthesis. Collectively, our study highlights the spatiotemporal expression of sPLA2-X in hair follicles, the presence of skin-specific machinery leading to sPLA2-X activation, a functional link of sPLA2-X with hair follicle homeostasis, and compartmentalization of the prostanoid pathway in hair follicles and epidermis. PMID:21266583

  8. Dermal Papilla Cells Improve the Wound Healing Process and Generate Hair Bud-Like Structures in Grafted Skin Substitutes Using Hair Follicle Stem Cells

    PubMed Central

    Leirós, Gustavo José; Kusinsky, Ana Gabriela; Drago, Hugo; Bossi, Silvia; Sturla, Flavio; Castellanos, María Lía; Stella, Inés Yolanda

    2014-01-01

    Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair. PMID:25161315

  9. Dietary vitamin A regulates wingless-related MMTV integration site signaling to alter the hair cycle.

    PubMed

    Suo, Liye; Sundberg, John P; Everts, Helen B

    2015-05-01

    Alopecia areata (AA) is an autoimmune hair loss disease caused by a cell-mediated immune attack of the lower portion of the cycling hair follicle. Feeding mice 3-7 times the recommended level of dietary vitamin A accelerated the progression of AA in the graft-induced C3H/HeJ mouse model of AA. In this study, we also found that dietary vitamin A, in a dose dependent manner, activated the hair follicle stem cells (SCs) to induce the development and growth phase of the hair cycle (anagen), which may have made the hair follicle more susceptible to autoimmune attack. Our purpose here is to determine the mechanism by which dietary vitamin A regulates the hair cycle. We found that vitamin A in a dose-dependent manner increased nuclear localized beta-catenin (CTNNB1; a marker of canonical wingless-type Mouse Mammary Tumor Virus integration site family (WNT) signaling) and levels of WNT7A within the hair follicle bulge in these C3H/HeJ mice. These findings suggest that feeding mice high levels of dietary vitamin A increases WNT signaling to activate hair follicle SCs. © 2014 by the Society for Experimental Biology and Medicine.

  10. Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy

    NASA Technical Reports Server (NTRS)

    Walker, Brian; Lu, Thomas; Chao, Tien-Hsin

    2012-01-01

    We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.

  11. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse

    PubMed Central

    SUZUKI, Maasa; EBARA, Satomi; KOIKE, Taro; TONOMURA, Sotatsu; KUMAMOTO, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4–54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10–32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1–3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement. PMID:23229751

  12. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse.

    PubMed

    Suzuki, Maasa; Ebara, Satomi; Koike, Taro; Tonomura, Sotatsu; Kumamoto, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4-54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10-32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1-3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement.

  13. Roles of GasderminA3 in Catagen-Telogen Transition During Hair Cycling.

    PubMed

    Bai, Xiufeng; Lei, Mingxing; Shi, Jiazhong; Yu, Yu; Qiu, Weiming; Lai, Xiangdong; Liu, Yingxin; Yang, Tian; Yang, Li; Widelitz, Randall B; Chuong, Cheng-Ming; Lian, Xiaohua

    2015-09-01

    Hair follicles undergo cyclic behavior through regression (catagen), rest (telogen), and regeneration (anagen) during postnatal life. The hair cycle transition is strictly regulated by the autonomous and extrinsic molecular environment. However, whether there is a switch controlling catagen-telogen transition remains largely unknown. Here we show that hair follicles cycle from catagen to the next anagen without transitioning through a morphologically typical telogen after Gsdma3 mutation. This leaves an ESLS (epithelial strand-like structure) during the time period corresponding to telogen phase in WT mice. Molecularly, Wnt10b is upregulated in Gsdma3 mutant mice. Restoration of Gsdma3 expression in AE (alopecia and excoriation) mouse skin rescues hair follicle telogen entry and significantly decreases the Wnt10b-mediated Wnt/β-catenin signaling pathway. Overexpression of Wnt10b inhibits telogen entry by increasing epithelial strand cell proliferation. Subsequently, hair follicles with a Gsdma3 mutation enter the second anagen simultaneously as WT mice. Hair follicles cannot enter the second anagen with ectopic WT Gsdma3 overexpression. A luciferase reporter assay proves that Gsdma3 directly suppresses Wnt signaling. Our findings suggest that Gsdma3 has an important role in catagen-telogen transition by balancing the Wnt signaling pathway and that morphologically typical telogen is not essential for the initiation of a new hair cycle.

  14. Roles of GasderminA3 in catagen- telogen transition during hair cycling

    PubMed Central

    Bai, Xiufeng; Lei, Mingxing; Shi, Jiazhong; Yu, Yu; Qiu, Weiming; Lai, Xiangdong; Liu, Yingxin; Yang, Tian; Yang, Li; Widelitz, Randall Bruce; Chuong, Cheng-Ming; Lian, Xiaohua

    2015-01-01

    Hair follicles undergo cyclic behavior through regression (catagen), rest (telogen) and regeneration (anagen) during postnatal life. The hair cycle transition is strictly regulated by the autonomous and extrinsic molecular environment. However, whether there is a switch controlling catagen-telogen transition remains largely unknown. Here we show that hair follicles cycle from catagen to the next anagen without transitioning through a morphologically typical telogen after Gsdma3 mutation. This leaves an ESLS (epithelial strand-like structure) during the time period corresponding to telogen phase in WT mice. Molecularly, Wnt10b is upregulated in Gsdma3 mutant mice. Restoration of Gsdma3 expression in AE (alopecia and excoriation) mouse skin rescues hair follicle telogen entry and significantly decreases the Wnt10b-mediated Wnt/β-catenin signaling pathway. Overexpression of Wnt10b inhibits telogen entry by increasing epithelial strand cell proliferation. Subsequently, hair follicles with a Gsdma3 mutation enter the second anagen simultaneously as WT mice. Hair follicles cannot enter the second anagen with ectopic WT Gsdma3 overexpression. A luciferase reporter assay proves Gsdma3 directly suppresses Wnt signaling. Our findings suggest Gsdma3 plays an important role in catagen-telogen transition by balancing the Wnt signaling pathway, and that morphologically typical telogen is not essential for the initiation of a new hair cycle. PMID:25860385

  15. Protease activity, localization and inhibition in the human hair follicle

    PubMed Central

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-01-01

    Synopsis Objective In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. Methods We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Results Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen® and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (UK, Brazil, China, first-generation Mexicans in the USA, Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. Conclusion These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen® and climbazole. This technology may have potential to reduce excessive hair shedding. Résumé Objectif Chez l'homme, le processus de perte de cheveux, désigné comme exog

  16. Exploring the "brain-skin connection": Leads and lessons from the hair follicle.

    PubMed

    Paus, R

    Research into how the central nervous system (CNS) and the skin of mammals are physiologically connected and how this "brain-skin connection" may be therapeutically targeted in clinical medicine has witnessed a renaissance. A key element in this development has been the discovery that mammalian skin and its appendages, namely human scalp hair follicles (HFs), not only are important, long-underestimated target tissues for classical neurohormones, neurotrophins and neuropeptides, but also are eminent peripheral tissue sources for the production and/or release of these neuromediators. This essay summarizes the many different levels of biology at which human scalp HFs respond to and generate a striking variety of neurohormones, and portrays HFs as prototypic, cyclically remodelled miniorgans that utilize these neurohormones to autoregulate their growth, hair shaft production, rhythmic organ transformation, pigmentation, mitochondrial energy metabolism, and immune status. The essay also explores how preclinical research on human scalp HFs can be exploited to unveil and explore "novel" and clinically as yet untapped, but most likely ancestral functions of neurohormones within mammalian epithelial biology that still impact substantially on human skin physiology. Arguably, systematic investigation of the "brain-skin connection" is one of the most intriguing current research frontiers in investigative dermatology, not the least since it has reversed the traditional CNS focus in studying the interactions between two key organ systems by placing the skin epithelium on center stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Vitamin D3 analogs stimulate hair growth in nude mice.

    PubMed

    Vegesna, Vijaya; O'Kelly, James; Uskokovic, Milan; Said, Jonathan; Lemp, Nathan; Saitoh, Takayuki; Ikezoe, Takayuki; Binderup, Lise; Koeffler, H Phillip

    2002-11-01

    The active form of vitamin D3 can regulate epidermal keratinization by inducing terminal differentiation; and mice lacking the vitamin D receptor display defects leading to postnatal alopecia. These observations implicate the vitamin D3 pathway in regulation of hair growth. We tested the ability of 1,25 dihydroxyvitamin D3 and its synthetic analogs to stimulate hair growth in biege/nude/xid (BNX) nu/nu (nude) mice exhibiting congenital alopecia. Nude mice were treated with different vitamin D3 analogs at doses that we had previously found to be the highest dose without inducing toxicity (hypercalcemia). The mice were monitored for hair growth and were scored according to a defined scale. Skin samples were taken for histological observation of hair follicles and for extraction of RNA and protein. Vitamin D3 analogs dramatically stimulated the hair growth of nude mice, although parental 1,25 dihydroxyvitamin D3 had no effect. Hair growth occurred in a cyclical pattern, accompanied by formation of normal hair follicles and increased expression of certain keratins (Ha7, Ha8, and Hb3). Vitamin D3 analogs seem to act on keratinocytes to initiate hair follicle cycling and stimulate hair growth in mice that otherwise do not grow hair.

  18. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.

    PubMed

    Rezza, Amélie; Wang, Zichen; Sennett, Rachel; Qiao, Wenlian; Wang, Dongmei; Heitman, Nicholas; Mok, Ka Wai; Clavel, Carlos; Yi, Rui; Zandstra, Peter; Ma'ayan, Avi; Rendl, Michael

    2016-03-29

    The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Expression profiling and bioinformatic analyses suggest new target genes and pathways for human hair follicle related microRNAs.

    PubMed

    Hochfeld, Lara M; Anhalt, Thomas; Reinbold, Céline S; Herrera-Rivero, Marisol; Fricker, Nadine; Nöthen, Markus M; Heilmann-Heimbach, Stefanie

    2017-02-22

    Human hair follicle (HF) cycling is characterised by the tight orchestration and regulation of signalling cascades. Research shows that micro(mi)RNAs are potent regulators of these pathways. However, knowledge of the expression of miRNAs and their target genes and pathways in the human HF is limited. The objective of this study was to improve understanding of the role of miRNAs and their regulatory interactions in the human HF. Expression levels of ten candidate miRNAs with reported functions in hair biology were assessed in HFs from 25 healthy male donors. MiRNA expression levels were correlated with mRNA-expression levels from the same samples. Identified target genes were tested for enrichment in biological pathways and accumulation in protein-protein interaction (PPI) networks. Expression in the human HF was confirmed for seven of the ten candidate miRNAs, and numerous target genes for miR-24, miR-31, and miR-106a were identified. While the latter include several genes with known functions in hair biology (e.g., ITGB1, SOX9), the majority have not been previously implicated (e.g., PHF1). Target genes were enriched in pathways of interest to hair biology, such as integrin and GnRH signalling, and the respective gene products showed accumulation in PPIs. Further investigation of miRNA expression in the human HF, and the identification of novel miRNA target genes and pathways via the systematic integration of miRNA and mRNA expression data, may facilitate the delineation of tissue-specific regulatory interactions, and improve our understanding of both normal hair growth and the pathobiology of hair loss disorders.

  20. Contribution of the Hair Follicular Pathway to Total Skin Permeation of Topically Applied and Exposed Chemicals

    PubMed Central

    Mohd, Fadli; Todo, Hiroaki; Yoshimoto, Masato; Yusuf, Eddy; Sugibayashi, Kenji

    2016-01-01

    Generally, the blood and skin concentration profiles and steady-state skin concentration of topically applied or exposed chemicals can be calculated from the in vitro skin permeation profile. However, these calculation methods are particularly applicable to chemicals for which the main pathway is via the stratum corneum. If the contribution of hair follicles to the total skin permeation of chemicals can be obtained in detail, their blood and skin concentrations can be more precisely predicted. In the present study, the contribution of the hair follicle pathway to the skin permeation of topically applied or exposed chemicals was calculated from the difference between their permeability coefficients through skin with and without hair follicle plugging, using an in vitro skin permeation experiment. The obtained results reveal that the contribution of the hair follicle pathway can be predicted by using the chemicals’ lipophilicity. For hydrophilic chemicals (logarithm of n-octanol/water partition coefficient (log Ko/w) < 0), a greater reduction of permeation due to hair follicle plugging was observed than for lipophilic chemicals (log Ko/w ≥ 0). In addition, the ratio of this reduction was decreased with an increase in log Ko/w. This consideration of the hair follicle pathway would be helpful to investigate the efficacy and safety of chemicals after topical application or exposure to them because skin permeation and disposition should vary among skins in different body sites due to differences in the density of hair follicles. PMID:27854289

  1. Contribution of the Hair Follicular Pathway to Total Skin Permeation of Topically Applied and Exposed Chemicals.

    PubMed

    Mohd, Fadli; Todo, Hiroaki; Yoshimoto, Masato; Yusuf, Eddy; Sugibayashi, Kenji

    2016-11-15

    Generally, the blood and skin concentration profiles and steady-state skin concentration of topically applied or exposed chemicals can be calculated from the in vitro skin permeation profile. However, these calculation methods are particularly applicable to chemicals for which the main pathway is via the stratum corneum. If the contribution of hair follicles to the total skin permeation of chemicals can be obtained in detail, their blood and skin concentrations can be more precisely predicted. In the present study, the contribution of the hair follicle pathway to the skin permeation of topically applied or exposed chemicals was calculated from the difference between their permeability coefficients through skin with and without hair follicle plugging, using an in vitro skin permeation experiment. The obtained results reveal that the contribution of the hair follicle pathway can be predicted by using the chemicals' lipophilicity. For hydrophilic chemicals (logarithm of n -octanol/water partition coefficient (log K o/w ) < 0), a greater reduction of permeation due to hair follicle plugging was observed than for lipophilic chemicals (log K o/w ≥ 0). In addition, the ratio of this reduction was decreased with an increase in log K o/w . This consideration of the hair follicle pathway would be helpful to investigate the efficacy and safety of chemicals after topical application or exposure to them because skin permeation and disposition should vary among skins in different body sites due to differences in the density of hair follicles.

  2. Personal samplers of bioavailable pesticides integrated with a hair follicle assay of DNA damage to assess environmental exposures and their associated risks in children.

    PubMed

    Vidi, Pierre-Alexandre; Anderson, Kim A; Chen, Haiying; Anderson, Rebecca; Salvador-Moreno, Naike; Mora, Dana C; Poutasse, Carolyn; Laurienti, Paul J; Daniel, Stephanie S; Arcury, Thomas A

    2017-10-01

    Agriculture in the United States employs youth ages ten and older in work environments with high pesticide levels. Younger children in rural areas may also be affected by indirect pesticide exposures. The long-term effects of pesticides on health and development are difficult to assess and poorly understood. Yet, epidemiologic studies suggest associations with cancer as well as cognitive deficits. We report a practical and cost-effective approach to assess environmental pesticide exposures and their biological consequences in children. Our approach combines silicone wristband personal samplers and DNA damage quantification from hair follicles, and was tested as part of a community-based participatory research (CBPR) project involving ten Latino children from farmworker households in North Carolina. Our study documents high acceptance among Latino children and their caregivers of these noninvasive sampling methods. The personal samplers detected organophosphates, organochlorines, and pyrethroids in the majority of the participants (70%, 90%, 80%, respectively). Pesticides were detected in all participant samplers, with an average of 6.2±2.4 detections/participant sampler. DNA damage in epithelial cells from the sheath and bulb of plucked hairs follicles was quantified by immunostaining 53BP1-labled DNA repair foci. This method is sensitive, as shown by dose response analyses to γ radiations where the lowest dose tested (0.1Gy) led to significant increased 53BP1 foci density. Immunolabeling of DNA repair foci has significant advantages over the comet assay in that specific regions of the follicles can be analyzed. In this cohort of child participants, significant association was found between the number of pesticide detections and DNA damage in the papilla region of the hairs. We anticipate that this monitoring approach of bioavailable pesticides and genotoxicity will enhance our knowledge of the biological effects of pesticides to guide education programs and

  3. Sensory Hairs in the Bowhead Whale, Balaena mysticetus (Cetacea, Mammalia).

    PubMed

    Drake, Summer E; Crish, Samuel D; George, John C; Stimmelmayr, Raphaella; Thewissen, J G M

    2015-07-01

    We studied the histology and morphometrics of the hairs of bowhead whales (Balaena mysticetus). These whales are hairless except for two patches of more than 300 hairs on the rostral tip of the lower lip and chin, the rostral tip of the upper lip, and a bilateral row of approximately ten hairs caudal to the blowhole. Histological data indicate that hairs in all three of these areas are vibrissae: they show an outermost connective tissue capsule, a circumferential blood sinus system surrounding the hair shaft, and dense innervation to the follicle. Morphometric data were collected on hair diameters, epidermal recess diameters, hair follicle length, and external hair lengths. The main difference between the hairs in the different regions is that blowhole hairs have larger diameters than the hairs in the chin and rostrum regions. We speculate that the hair shaft thickness patterns in bowheads reflect functional specializations. © 2015 Wiley Periodicals, Inc.

  4. 6-Gingerol inhibits hair cycle via induction of MMP2 and MMP9 expression.

    PubMed

    Hou, Chun; Miao, Yong; Ji, Hang; Wang, Susheng; Liang, Gang; Zhang, Zhihua; Hong, Weijin

    2017-01-01

    6-Gingerol is the major active constituent of ginger. In the current study, we aimed to investigate the mechanisms underlying the effects of 6-Gingerol on hair growth. Mice were randomly divided into five groups; after hair depilation (day 0), mice were treated with saline, or different concentrations of 6-Gingerol for 11 days. The histomorphological characteristics of the growing hair follicles were examined after hematoxylin and eosin staining. The results indicated that 6-Gingerol significantly suppressed hair growth compared with that in the control group. And choose the concentration of 6-Gingerol at 1 mg/mL to treated with mice. Moreover, 6-Gingerol (1 mg/mL) significantly reduced hair re-growth ratio, hair follicle number, and hair follicle length, which were associated with increased expression of MMP2 and MMP9. Furthermore, the growth factors, such as EGF, KGF, VEGF, IGF-1 and TGF-β participate in the hair follicle cycle regulation and regulate hair growth. We then measured the concentrations of them using ELISA assays, and the results showed that 6-Gingerol decreased EGF, KGF, VEGF, and IGF-1 concentrations, and increased TGF-β concentration. Thus, this study showed that 6-Gingerol might act as a hair growth suppressive drug via induction of MMP2 and MMP9 expression, which could interfere with the hair cycle.

  5. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential

    PubMed Central

    Lay, Kenneth; Kume, Tsutomu; Fuchs, Elaine

    2016-01-01

    Adult tissue stem cells (SCs) reside in niches, which orchestrate SC behavior. SCs are typically used sparingly and exist in quiescence unless activated for tissue growth. Whether parsimonious SC use is essential to conserve long-term tissue-regenerating potential during normal homeostasis remains poorly understood. Here, we examine this issue by conditionally ablating a key transcription factor Forkhead box C1 (FOXC1) expressed in hair follicle SCs (HFSCs). FOXC1-deficient HFSCs spend less time in quiescence, leading to markedly shortened resting periods between hair cycles. The enhanced hair cycling accelerates HFSC expenditure, and impacts hair regeneration in aging mice. Interestingly, although FOXC1-deficient HFs can still form a new bulge that houses HFSCs for the next hair cycle, the older bulge is left unanchored. As the new hair emerges, the entire old bulge, including its reserve HFSCs and SC-inhibitory inner cell layer, is lost. We trace this mechanism first, to a marked increase in cell cycle-associated transcripts upon Foxc1 ablation, and second, to a downstream reduction in E-cadherin–mediated inter-SC adhesion. Finally, we show that when the old bulge is lost with each hair cycle, overall levels of SC-inhibitory factors are reduced, further lowering the threshold for HFSC activity. Taken together, our findings suggest that HFSCs have restricted potential in vivo, which they conserve by coupling quiescence to adhesion-mediated niche maintenance, thereby achieving long-term tissue homeostasis. PMID:26912458

  6. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth

    PubMed Central

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A.; Andl, Thomas; Zhang, Yuhang

    2016-01-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. PMID:27462123

  7. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells

    PubMed Central

    Veraitch, Ophelia; Mabuchi, Yo; Matsuzaki, Yumi; Sasaki, Takashi; Okuno, Hironobu; Tsukashima, Aki; Amagai, Masayuki; Okano, Hideyuki; Ohyama, Manabu

    2017-01-01

    The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases. PMID:28220862

  8. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    PubMed

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.

  9. Evaluation Indicators of Aesthetic Effects on Hair Transplantation.

    PubMed

    Miao, Yong; Liu, Bing-Cheng; Fan, Zhe-Xiang; Hu, Zhi-Qi

    2016-02-01

    Hair transplantation involves the transplantation of hair, beard, eyebrows, eyelashes, and pubic hair. Based on our experience, the aesthetic result of hair transplantation mainly relies on 4 indicators, including selection of the donor site, direction and angle of grafted hairs, density, and survival rate of implanted hair follicles. We believe that good results can be achieved as long as attention is paid to the above 4 points.

  10. Feasibility of human hair follicle-derived mesenchymal stem cells/CultiSpher(®)-G constructs in regenerative medicine.

    PubMed

    Li, Pengdong; Liu, Feilin; Wu, Chunling; Jiang, Wenyue; Zhao, Guifang; Liu, Li; Bai, Tingting; Wang, Li; Jiang, Yixu; Guo, Lili; Qi, Xiaojuan; Kou, Junna; Fan, Ruirui; Hao, Deshun; Lan, Shaowei; Li, Yulin; Liu, Jin Yu

    2015-10-01

    The use of human mesenchymal stem cells (hMSCs) in cell therapies has increased the demand for strategies that allow efficient cell scale-up. Preliminary data on the three-dimensional (3D) spinner culture describing the potential use of microcarriers for hMSCs culture scale-up have been reported. We exploited a rich source of autologous stem cells (human hair follicle) and demonstrated the robust in vitro long-term expansion of human hair follicle-derived mesenchymal stem cells (hHF-MSCs) by using CultiSpher(®)-G microcarriers. We analyzed the feasibility of 3D culture by using hHF-MSCs/CultiSpher(®)-G microcarrier constructs for its potential applicability in regenerative medicine by comparatively analyzing the performance of hHF-MSCs adhered to the CultiSpher(®)-G microspheres in 3D spinner culture and those grown on the gelatin-coated plastic dishes (2D culture), using various assays. We showed that the hHF-MSCs seeded at various densities quickly adhered to and proliferated well on the microspheres, thus generating at least hundreds of millions of hHF-MSCs on 1 g of CultiSpher(®)-G within 12 days. This resulted in a cumulative cell expansion of greater than 26-fold. Notably, the maximum and average proliferation rates in 3D culture were significantly greater than that of the 2D culture. However, the hHF-MSCs from both the cultures retained surface marker and nestin expression, proliferation capacity and differentiation potentials toward adipocytes, osteoblasts and smooth muscle cells and showed no significant differences as evidenced by Edu incorporation, cell cycle, colony formation, apoptosis, biochemical quantification and qPCR assays.

  11. Further Clinical Evidence for the Effect of IGF-1 on Hair Growth and Alopecia.

    PubMed

    Trüeb, Ralph M

    2018-04-01

    Observations on the Laron syndrome originally offered the opportunity to explore the effect of insulin-like growth factor 1 (IGF-1) deficiency on human hair growth and differentiation. According to its expression in the dermal hair papilla, IGF-1 is likely involved in reciprocal signaling. It has been shown to affect follicular proliferation, tissue remodeling, and the hair growth cycle, as well as follicular differentiation, identifying IGF-1 signaling as an important mitogenic and morphogenetic regulator in hair follicle biology. Of all the cytokines or growth factors that have been postulated to play a role in hair follicles, ultimately IGF-1 is known to be regulated by androgens. Accordingly, dermal papillary cells from balding scalp follicles were found to secrete significantly less IGF-1 than their counterparts from nonbalding scalp follicles. Herein, hypotrichosis in primary growth hormone deficiency, and a lack of response of female and male androgenetic-type alopecia to treatment with topical minoxidil and oral finasteride in patients who had undergone surgical resection of the pituitary gland, provide further evidence for an effect of IGF-1 on hair growth and alopecia.

  12. Gradient-dependent release of the model drug TRITC-dextran from FITC-labeled BSA hydrogel nanocarriers in the hair follicles of porcine ear skin.

    PubMed

    Tran, Ngo Bich Nga Nathalie; Knorr, Fanny; Mak, Wing Cheung; Cheung, Kwan Yee; Richter, Heike; Meinke, Martina; Lademann, Jürgen; Patzelt, Alexa

    2017-07-01

    Hair follicle research is currently focused on the development of drug-loaded nanocarriers for the targeting of follicular structures in the treatment of skin and hair follicle-related disorders. In the present study, a dual-label nanocarrier system was implemented in which FITC-labeled BSA hydrogel nanocarriers loaded with the model drug and dye TRITC-dextran were applied topically to porcine ear skin. Follicular penetration and the distribution of both dyes corresponding to the nanocarriers and the model drug in the follicular ducts subsequent to administration to the skin were investigated using confocal laser scanning microscopy. The release of TRITC-dextran from the particles was induced by washing of the nanocarriers, which were kept in a buffer containing TRITC-labeled dextran to balance out the diffusion of the dextran during storage, thereby changing the concentration gradient. The results showed a slightly but statistically significantly deeper follicular penetration of fluorescent signals corresponding to TRITC-dextran as opposed to fluorescence corresponding to the FITC-labeled particles. The different localizations of the dyes in the cross-sections of the skin samples evidenced the release of the model drug from the labeled nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A role of placental growth factor in hair growth.

    PubMed

    Yoon, Sun-Young; Yoon, Ji-Seon; Jo, Seong Jin; Shin, Chang Yup; Shin, Jong-Yeon; Kim, Jong-Il; Kwon, Ohsang; Kim, Kyu Han

    2014-05-01

    The dermal papilla (DP) comprises specialized mesenchymal cells at the bottom of the hair follicle and plays a pivotal role in hair formation, anagen induction and the hair cycle. In this study, DPs were isolated from human hair follicles and serially subcultured. From each subculture at passages 1, 3, and 5 (n=4), we compared gene expression profiles using mRNA sequencing. Among the growth factors that were down-regulated in later passages of human DP cells (hDPCs), placental growth factor (PlGF) was selected. To elucidate the effect of PlGF on hair growth. We evaluated the effect of PlGF on hDPCs and on ex vivo hair organ culture. We investigated the effect of PlGF on an in vivo model of depilation-induced hair regeneration. We confirmed that the mRNA and protein expression levels of PlGF significantly decreased following subculture of the cells. It was shown that PlGF enhanced hair shaft elongation in ex vivo hair organ culture. Furthermore, PlGF significantly accelerated hair follicle growth and markedly prolonged anagen hair growth in an in vivo model of depilation-induced hair regeneration. PlGF prevented cell death by increasing the levels of phosphorylated extracellular signal-regulated kinase (ERK) and cyclin D1 and promoted survival by up-regulation of phosphorylated Akt and Bcl2, as determined by Western blotting. Our results suggest that PlGF plays a role in the promotion of hair growth and therefore may serve as an additional therapeutic target for the treatment of alopecia. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. The Female Pattern Hair Loss: Review of Etiopathogenesis and Diagnosis

    PubMed Central

    Vujovic, Anja; Del Marmol, Véronique

    2014-01-01

    Female pattern hair loss (FPHL) is the most common hair loss disorder in women. Initial signs may develop during teenage years leading to a progressive hair loss with a characteristic pattern distribution. The condition is characterized by progressive replacement of terminal hair follicles over the frontal and vertex regions by miniaturized follicles, that leads progressively to a visible reduction in hair density. Women diagnosed with FPHL may undergo significant impairment of quality of life. FPHL diagnosis is mostly clinical. Depending on patient history and clinical evaluation, further diagnostic testing may be useful. The purpose of the paper is to review the current knowledge about epidemiology, pathogenesis, clinical manifestations, and diagnosis of FPHL. PMID:24812631

  15. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth.

    PubMed

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A; Andl, Thomas; Zhang, Yuhang

    2016-10-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  16. Exogenous IGF-1 promotes hair growth by stimulating cell proliferation and down regulating TGF-β1 in C57BL/6 mice in vivo.

    PubMed

    Li, Jingjie; Yang, Zhihong; Li, Zheng; Gu, Lijuan; Wang, Yunbo; Sung, Changkeun

    2014-01-01

    Insulin-like growth factor 1 (IGF-1) increases the growth of cultured hair follicles and plays a role in regulating hair migration during the development of hair follicles in transgenic mice. However, the exogenous effect of IGF-1 on hair growth in wild-type mice has not been reported. In the present study, we examined whether IGF-1 was an important regulator of hair follicle growth in wide-type mice in vivo. C57BL/6 mice were injected with different concentrations of IGF-1 on dorsal skin. The treated tissues were analyzed by immunoassay methods for TGF-β1 and BrdU. Local injection of IGF-1 increased hair follicle number and prolonged the growing phase during the transition from anagen to telogen. Meanwhile, immunology analyses revealed that IGF-1 also stimulated the proliferation of follicle cells in anagen of the matrix and down regulated TGF-β1 expression in hair follicles. These observations suggest that IGF-1 is an effective stimulator of hair follicle development in wide-type mice in vivo and may be a promising drug candidate for baldness therapy. Copyright © 2014. Published by Elsevier Ltd.

  17. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    PubMed

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. © 2014 AlphaMed Press.

  18. Valproic acid promotes human hair growth in in vitro culture model.

    PubMed

    Jo, Seong Jin; Choi, Soon-Jin; Yoon, Sun-Young; Lee, Ji Yeon; Park, Won-Seok; Park, Phil-June; Kim, Kyu Han; Eun, Hee Chul; Kwon, Ohsang

    2013-10-01

    β-Catenin, the transducer of Wnt signaling, is critical for the development and growth of hair follicles. In the absence of Wnt signals, cytoplasmic β-catenin is phosphorylated by glycogen synthase kinase (GSK)-3 and then degraded. Therefore, inhibition of GSK-3 may enhance hair growth via β-catenin stabilization. Valproic acid is an anticonvulsant and a mood-stabilizing drug that has been used for decades. Recently, valproic acid was reported to inhibit GSK-3β in neuronal cells, but its effect on human hair follicles remains unknown. To determine the effect of VPA on human hair growth. We investigated the effect of VPA on cultured human dermal papilla cells and outer root sheath cells and on an in vitro culture of human hair follicles, which were obtained from scalp skin samples of healthy volunteers. Anagen induction by valproic acid was evaluated using C57BL/6 mice model. Valproic acid not only enhanced the viability of human dermal papilla cells and outer root sheath cells but also promoted elongation of the hair shaft and reduced catagen transition of human hair follicles in organ culture model. Valproic acid treatment of human dermal papilla cells led to increased β-catenin levels and nuclear accumulation and inhibition of GSK-3β by phosphorylation. In addition, valproic acid treatment accelerated the induction of anagen hair in 7-week-old female C57BL/6 mice. Valproic acid enhanced human hair growth by increasing β-catenin and therefore may serve as an alternative therapeutic option for alopecia. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Tamoxifen-loaded liposomal topical formulation arrests hair growth in mice.

    PubMed

    Bhatia, A; Singh, B; Amarji, B; Katare, O P

    2010-08-01

    For several decades, androgens have dominated endocrine research in the domain of hair growth control. However, it has long been known that oestrogens also tend to alter hair follicle (HF) growth and cycling significantly by binding to locally expressed high-affinity oestrogen receptors (ORs). Tamoxifen (TAM) is a selective OR modulator. The current work aims to investigate the effect of topically applied TAM on the hair growth of mice. Test formulations were applied once daily on the shaved back area of the mice for a period of 5 weeks. The effect of these formulations was studied by visual and histological examinations. Animals treated with saline and placebo gel formulation showed significant hair growth on the 20th day. The number and length of follicles were also found to be normal. In contrast, no hair growth was observed in the animals treated with TAM gel, even after the termination of treatment. The HFs were found to be arrested in telogen phase with clear signs of follicle dystrophy. The hair growth-retarding effect of TAM observed in the current study clearly demonstrates its OR agonistic effect on hair growth. This work also provides a distinct lead towards the possible potential of TAM liposomal gel in the treatment of hirsutism.

  20. Morphological analysis of patchy thickening and reddish discoloration of active hair growth areas in the skin of New Zealand White rabbits.

    PubMed

    Ishihara, Tomoko; Yamashita, Haruhiro; Sakurai, Takanobu; Morita, Junya; Sakamoto, Kouji; Ishii, Aiko; Sasaki, Minoru

    2017-10-01

    Patchy thickening and reddish discoloration of active hair growth areas of skin in rabbits are occasionally found, and this gross feature could affect precise evaluation when conducting a dermal irritation test. Since little is known about the mechanism of this phenomenon, we examined the dorsal skin of New Zealand White rabbits morphologically and immunohistochemically in order to identify the possible mechanism responsible for developing these skin changes in relation to the hair cycle. Skin samples from 4 rabbits were divided into three groups (5 samples/group) based on their macroscopic characteristics: a thickened skin, erythematous skin, and smooth skin group. Histomorphological examination revealed that the percentage of hair follicles in the anagen phase, hair follicle length, hair follicle area, and proliferating cell nuclear antigen-positive cells in the hair follicles were greater in the thickened skin and erythematous skin groups than in the smooth skin group. Unlike mice and rats, the dermis was nearly adjacent to the muscular layer with a thin hypodermis, and the whole lengths of hair follicles in the anagen phase were located in the dermis in the rabbit skin. These results suggest that large hair follicles in the anagen phase compressed the surrounding dermis; therefore, the skin was grossly raised and showed thickening. A higher number of CD31-positive blood vessels, suggesting the occurrence of angiogenesis, was observed around the hair follicles in the erythematous skin group, and they seemed to affect the reddish discoloration of skin noted grossly.

  1. Activating β-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity

    PubMed Central

    Zhou, Linli; Yang, Kun; Xu, Mingang; Andl, Thomas; Millar, Sarah; Boyce, Steven; Zhang, Yuhang

    2016-01-01

    Bioengineering hair follicles using cells isolated from human tissue remains as a difficult task. Dermal papilla (DP) cells are known to guide the growth and cycling activities of hair follicles by interacting with keratinocytes. However, DP cells quickly lose their inductivity during in vitro passaging. Rodent DP cell cultures need external addition of chemical factors, including WNT and BMP molecules, to maintain the hair inductive property. CD133 is expressed by a small subpopulation of DP cells that are capable of inducing hair follicle formation in vivo. We report here that expression of a stabilized form of β-catenin promoted clonal growth of CD133-positive (CD133+) DP cells in in vitro three-dimensional hydrogel culture while maintaining expression of DP markers, including alkaline phosphatase (AP), CD133, and Integrin α8. After a two-week in vitro culture, cultured CD133+ DP cells with up-regulated β-catenin activity led to an accelerated in vivo hair growth in reconstituted skin than control cells. Further analysis showed that matrix cell proliferation and differentiation were significantly promoted in hair follicles when β-catenin signaling was upregulated in CD133+ DP cells. Our data highlight an important role for β-catenin signaling in promoting the inductive capability of CD133+ DP cells for in vitro expansion and in vivo hair follicle regeneration, which could potentially be applied to cultured human DP cells. PMID:27312243

  2. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.

    PubMed

    Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf

    2015-01-01

    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.

  3. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses

    PubMed Central

    Imsland, Freyja; McGowan, Kelly; Rubin, Carl-Johan; Henegar, Corneliu; Sundström, Elisabeth; Berglund, Jonas; Schwochow, Doreen; Gustafson, Ulla; Imsland, Páll; Lindblad-Toh, Kerstin; Lindgren, Gabriella; Mikko, Sofia; Millon, Lee; Wade, Claire; Schubert, Mikkel; Orlando, Ludovic; Penedo, Maria Cecilia T; Barsh, Gregory S; Andersson, Leif

    2016-01-01

    Dun is a wild-type coat color in horses characterized by pigment dilution with a striking pattern of dark areas termed primitive markings. Here we show that pigment dilution in Dun horses is due to radially asymmetric deposition of pigment in the growing hair caused by localized expression of the T-box 3 (TBX3) transcription factor in hair follicles, which in turn determines the distribution of hair follicle melanocytes. Most domestic horses are non-dun, a more intensely pigmented phenotype caused by regulatory mutations impairing TBX3 expression in the hair follicle, resulting in a more circumferential distribution of melanocytes and pigment granules in individual hairs. We identified two different alleles (non-dun1 and non-dun2) causing non-dun color. non-dun2 is a recently derived allele, whereas the Dun and non-dun1 alleles are found in ancient horse DNA, demonstrating that this polymorphism predates horse domestication. These findings uncover a new developmental role for T-box genes and new aspects of hair follicle biology and pigmentation. PMID:26691985

  4. Nutrition and hair: deficiencies and supplements.

    PubMed

    Finner, Andreas M

    2013-01-01

    Hair follicle cells have a high turnover. A caloric deprivation or deficiency of several components, such as proteins, minerals, essential fatty acids, and vitamins, caused by inborn errors or reduced uptake, can lead to structural abnormalities, pigmentation changes, or hair loss, although exact data are often lacking. The diagnosis is established through a careful history, clinical examination of hair loss activity, and hair quality and confirmed through targeted laboratory tests. Examples of genetic hair disorders caused by reduced nutritional components are zinc deficiency in acrodermatitis enteropathica and copper deficiency in Menkes kinky hair syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Blockade of S100A3 activity inhibits murine hair growth.

    PubMed

    Guan, W; Deng, Q; Yu, X L; Yuan, Y S; Gao, J; Li, J J; Zhou, L; Xia, P; Han, G Y Q; Han, W; Yu, Y

    2015-10-28

    Using mouse gene expression microarray analysis, we obtained dynamic expression profiles of the whole genome in a depilation-induced hair growth mouse model. S100A3 expression increased during the anagen phase and returned to normal during the telogen phase. The effects of S100A3 blockade on the hair growth cycle were examined in mice after subcutaneous injection of an anti-mouse S100A3 antibody. Protein localization of S100A3 was confined to the hair shafts during the anagen phase and the sebaceous glands during the telogen phase. S100A3 blockade delayed hair follicle entry into the anagen phase, decreased hair elongation, and reduced the number of hair follicles in the subcutis, which correlated with the downregulated expression of hair growth induction-related genes in vivo. The present study demonstrates that anti-S100A3 antibody inhibits mouse hair growth, suggesting that S100A3 can be used as a target for hair loss treatment.

  6. Autophagy is essential for maintaining the growth of a human (mini-)organ: Evidence from scalp hair follicle organ culture

    PubMed Central

    Allavena, Giulia; Marotta, Roberto; Catelani, Tiziano; Bertolini, Marta; Paus, Ralf

    2018-01-01

    Autophagy plays a crucial role in health and disease, regulating central cellular processes such as adaptive stress responses, differentiation, tissue development, and homeostasis. However, the role of autophagy in human physiology is poorly understood, highlighting a need for a model human organ system to assess the efficacy and safety of strategies to therapeutically modulate autophagy. As a complete, cyclically remodelled (mini-)organ, the organ culture of human scalp hair follicles (HFs), which, after massive growth (anagen), spontaneously enter into an apoptosis-driven organ involution (catagen) process, may provide such a model. Here, we reveal that in anagen, hair matrix keratinocytes (MKs) of organ-cultured HFs exhibit an active autophagic flux, as documented by evaluation of endogenous lipidated Light Chain 3B (LC3B) and sequestosome 1 (SQSTM1/p62) proteins and the ultrastructural visualization of autophagosomes at all stages of the autophagy process. This autophagic flux is altered during catagen, and genetic inhibition of autophagy promotes catagen development. Conversely, an anti–hair loss product markedly enhances intrafollicular autophagy, leading to anagen prolongation. Collectively, our data reveal a novel role of autophagy in human hair growth. Moreover, we show that organ-cultured scalp HFs are an excellent preclinical research model for exploring the role of autophagy in human tissue physiology and for evaluating the efficacy and tissue toxicity of candidate autophagy-modulatory agents in a living human (mini-)organ. PMID:29590104

  7. In vivo evaluation of insect wax for hair growth potential.

    PubMed

    Ma, Jinju; Ma, Liyi; Zhang, Zhongquan; Li, Kai; Wang, Youqiong; Chen, Xiaoming; Zhang, Hong

    2018-01-01

    Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential.

  8. In vivo evaluation of insect wax for hair growth potential

    PubMed Central

    Ma, Jinju

    2018-01-01

    Insect wax is secreted by Ericerus pela Chavanness. It has been traditionally used to treat hair loss in China, but few reports have been published on the hair growth-promoting effect of insect wax. In this work, we examined the hair growth-promoting effects of insect wax on model animals. Different concentrations of insect wax were topically applied to the denuded backs of mice, and 5% minoxidil was applied topically as a positive control. We found that insect wax significantly promoted hair growth in a dose-dependent manner, 45% and 30% insect wax both induced hair to regrow, while less visible hair growth was observed in blank controls on the 16th day. The experimental areas treated with 45% and 30% insect wax exhibited significant differences in hair scores compared to blank controls, and hair lengths in the 45% and 30% insect wax group was significantly longer than in blank controls on the 16th and 20th days. There were no new hair follicles forming in the treated areas, and the hair follicles were prematurely converted to the anagen phase from the telogen phase in experimental areas treated with 45% and 30% insect wax. Both 45% and 30% insect wax upregulated vascular endothelial growth factor expression. The results indicated that 45% and 30% insect wax showed hair growth-promoting potential approximately as potent as 5% minoxidil by inducing the premature conversion of telogen-to-anagen and by prolonging the mature anagen phase rather than increasing the number of hair follicles, which was likely related to the upregulation of VEGF expression. The dissociative policosanol in insect wax was considered the key ingredient most likely responsible for the hair growth promoting potential. PMID:29438422

  9. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches.

    PubMed

    Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N; Belkadi, Abdelmadjid; Veniaminova, Natalia A; Verhaegen, Monique E; Bichakjian, Christopher K; Ward, Nicole L; Dlugosz, Andrzej A; Wong, Sunny Y

    2015-04-02

    Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches

    PubMed Central

    Peterson, Shelby C.; Eberl, Markus; Vagnozzi, Alicia N.; Belkadi, Abdelmadjid; Veniaminova, Natalia A.; Verhaegen, Monique E.; Bichakjian, Christopher K.; Ward, Nicole L.; Dlugosz, Andrzej A.; Wong, Sunny Y.

    2015-01-01

    SUMMARY Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well-established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as “hot spots” for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. PMID:25842978

  11. Hair Growth-Promoting Effects of Lavender Oil in C57BL/6 Mice

    PubMed Central

    Lee, Boo Hyeong; Lee, Jae Soon; Kim, Young Chul

    2016-01-01

    The purpose of this study was to determine the hair growth effects of lavender oil (LO) in female C57BL/6 mice. The experimental animals were divided into a normal group (N: saline), a vehicle control group (VC: jojoba oil), a positive control group (PC: 3% minoxidil), experimental group 1 (E1: 3% LO), and experimental group 2 (E2: 5% LO). Test compound solutions were topically applied to the backs of the mice (100 μL per application), once per day, 5 times a week, for 4 weeks. The changes in hair follicle number, dermal thickness, and hair follicle depth were observed in skin tissues stained with hematoxylin and eosin, and the number of mast cells was measured in the dermal and hypodermal layers stained with toluidine blue. PC, E1, and E2 groups showed a significantly increased number of hair follicles, deepened hair follicle depth, and thickened dermal layer, along with a significantly decreased number of mast cells compared to the N group. These results indicated that LO has a marked hair growth-promoting effect, as observed morphologically and histologically. There was no significant difference in the weight of the thymus among the groups. However, both absolute and relative weights of the spleen were significantly higher in the PC group than in the N, VC, E1, or E2 group at week 4. Thus, LO could be practically applied as a hair growth-promoting agent. PMID:27123160

  12. Hair Growth-Promoting Effects of Lavender Oil in C57BL/6 Mice.

    PubMed

    Lee, Boo Hyeong; Lee, Jae Soon; Kim, Young Chul

    2016-04-01

    The purpose of this study was to determine the hair growth effects of lavender oil (LO) in female C57BL/6 mice. The experimental animals were divided into a normal group (N: saline), a vehicle control group (VC: jojoba oil), a positive control group (PC: 3% minoxidil), experimental group 1 (E1: 3% LO), and experimental group 2 (E2: 5% LO). Test compound solutions were topically applied to the backs of the mice (100 μL per application), once per day, 5 times a week, for 4 weeks. The changes in hair follicle number, dermal thickness, and hair follicle depth were observed in skin tissues stained with hematoxylin and eosin, and the number of mast cells was measured in the dermal and hypodermal layers stained with toluidine blue. PC, E1, and E2 groups showed a significantly increased number of hair follicles, deepened hair follicle depth, and thickened dermal layer, along with a significantly decreased number of mast cells compared to the N group. These results indicated that LO has a marked hair growth-promoting effect, as observed morphologically and histologically. There was no significant difference in the weight of the thymus among the groups. However, both absolute and relative weights of the spleen were significantly higher in the PC group than in the N, VC, E1, or E2 group at week 4. Thus, LO could be practically applied as a hair growth-promoting agent.

  13. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.

    PubMed

    Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina

    2015-06-04

    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis.

  14. Targeted disruption of glutathione peroxidase 4 (GPx4) in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2

    PubMed Central

    Sengupta, Aniruddha; Lichti, Ulrike F.; Carlson, Bradley A.; Cataisson, Christophe; Ryscavage, Andrew O.; Mikulec, Carol; Conrad, Marcus; Fischer, Susan M.; Hatfield, Dolph L.; Yuspa, Stuart H.

    2013-01-01

    Selenoproteins are essential molecules for the mammalian antioxidant network. We previously demonstrated that targeted loss of all selenoproteins in mouse epidermis disrupted skin and hair development and caused premature death. In the current study we targeted specific selenoproteins for epidermal deletion to determine whether similar phenotypes developed. Keratinocyte-specific knockout mice lacking either the glutathione peroxidase 4 (GPx4) or thioredoxin reductase 1 (TR1) gene were generated by cre-lox technology using K14-cre. TR1 knockout mice had a normal phenotype in resting skin while GPx4 loss in epidermis caused epidermal hyperplasia, dermal inflammatory infiltrate, dysmorphic hair follicles and alopecia in perinatal mice. Unlike epidermal ablation of all selenoproteins, mice ablated for GPx4 recovered after 5 weeks and had a normal lifespan. GPx1 and TR1 were upregulated in the skin and keratinocytes of GPx4 knockout mice. GPx4 deletion reduces keratinocyte adhesion in culture and increases lipid peroxidation and COX-2 levels in cultured keratinocytes and whole skin. Feeding a COX-2 inhibitor to nursing mothers partially prevents development of the abnormal skin phenotype in knockout pups. These data link the activity of cutaneous GPx4 to the regulation of COX-2 and hair follicle morphogenesis and provide insight into the function of individual selenoprotein activity in maintaining cutaneous homeostasis. PMID:23364477

  15. Hair growth-promoting effect of Carthamus tinctorius floret extract.

    PubMed

    Junlatat, Jintana; Sripanidkulchai, Bungorn

    2014-07-01

    The florets of Carthamus tinctorius L. have traditionally been used for hair growth promotion. This study aimed to examine the potential of hydroxysafflor yellow A-rich C. tinctorius extract (CTE) on hair growth both in vitro and in vivo. The effect of CTE on cell proliferation and hair growth-associated gene expression in dermal papilla cells and keratinocytes (HaCaT) was determined. In addition, hair follicles from mouse neonates were isolated and cultured in media supplemented with CTE. Moreover, CTE was applied topically on the hair-shaved skin of female C57BL/6 mice, and the histological profile of the skin was investigated. C. tinctorius floret ethanolic extract promoted the proliferation of both dermal papilla cells and HaCaT and significantly stimulated hair growth-promoting genes, including vascular endothelial growth factor and keratinocyte growth factor. In contrast, CTE suppressed the expression of transforming growth factor-β1 that is the hair loss-related gene. Furthermore, CTE treatment resulted in a significant increase in the length of cultured hair follicles and stimulated the growth of hair with local effects in mice. The results provided the preclinical data to support the potential use of CTE as a hair growth-promoting agent. Copyright © 2013 John Wiley & Sons, Ltd.

  16. TGF-beta is specifically expressed in human dermal papilla cells and modulates hair folliculogenesis.

    PubMed

    Inoue, Keita; Aoi, Noriyuki; Yamauchi, Yuji; Sato, Takahiro; Suga, Hirotaka; Eto, Hitomi; Kato, Harunosuke; Tabata, Yasuhiko; Yoshimura, Kotaro

    2009-01-01

    Dermal papilla cells (DPCs) in the mammalian hair follicle have been shown to develop hair follicles through epithelial-mesenchymal interactions. A cell therapy to regenerate human hair is theoretically possible by expanding autologous human DPCs (hDPCs) and transplanting them into bald skin, though much remains to be overcome before clinical success. In this study, we compared gene signatures of hDPCs at different passages and human dermal fibroblasts, and found transforming growth factor (TGF)-beta(2) to be highly expressed in cultured hDPCs. Keratinocyte conditioned medium, which is known to help preserve the hair-inducing capacity of hDPCs, up-regulated TGF-beta(2) expression of hDPCs and also enhanced their alkaline phosphatase (ALP) activity, a known index for hair-inductive capacity. Through screening of components secreted from keratinocytes, the vitamin D(3) analogue was found to promote TGF-beta(2) expression and ALP activity of hDPCs. In animal hair folliculogenesis models using rat epidermis and expanded hDPCs, inhibition of TGF-beta(2) signalling at the ligand or receptor level significantly impaired hair folliculogenesis and maturation. These results suggest an important role for TGF-beta(2) in hair follicle morphogenesis and provide insights into the establishment of future cell therapies for hair regrowth by transplanting expanded DPCs.

  17. Functional assessment of a novel COL4A5 splice region variant and immunostaining of plucked hair follicles as an alternative method of diagnosis in X-linked Alport syndrome.

    PubMed

    Malone, Andrew F; Funk, Steven D; Alhamad, Tarek; Miner, Jeffrey H

    2017-06-01

    Many COL4A5 splice region variants have been described in patients with X-linked Alport syndrome, but few have been confirmed by functional analysis to actually cause defective splicing. We sought to demonstrate that a novel COL4A5 splice region variant in a family with Alport syndrome is pathogenic using functional studies. We also describe an alternative method of diagnosis. Targeted next-generation sequencing results of an individual with Alport syndrome were analyzed and the results confirmed by Sanger sequencing in family members. A splicing reporter minigene assay was used to examine the variant's effect on splicing in transfected cells. Plucked hair follicles from patients and controls were examined for collagen IV proteins using immunofluorescence microscopy. A novel splice region mutation in COL4A5, c.1780-6T>G, was identified and segregated with disease in this family. This variant caused frequent skipping of exon 25, resulting in a frameshift and truncation of collagen α5(IV) protein. We also developed and validated a new approach to characterize the expression of collagen α5(IV) protein in the basement membranes of plucked hair follicles. Using this approach we demonstrated reduced collagen α5(IV) protein in affected male and female individuals in this family, supporting frequent failure of normal splicing. Differing normal to abnormal transcript ratios in affected individuals carrying splice region variants may contribute to variable disease severity observed in Alport families. Examination of plucked hair follicles in suspected X-linked Alport syndrome patients may offer a less invasive alternative method of diagnosis and serve as a pathogenicity test for COL4A5 variants of uncertain significance.

  18. Functional assessment of a novel COL4A5 splice region variant and immunostaining of plucked hair follicles as an alternative method of diagnosis in X-linked Alport syndrome

    PubMed Central

    Malone, Andrew F.; Funk, Steven D.; Alhamad, Tarek; Miner, Jeffrey H.

    2016-01-01

    Introduction Many COL4A5 splice region variants have been described in patients with X-linked Alport syndrome, but few have been confirmed by functional analysis to actually cause defective splicing. We sought to demonstrate that a novel COL4A5 splice region variant in a family with Alport syndrome is pathogenic using functional studies. We also describe an alternative method of diagnosis. Methods We analyzed targeted next-generation sequencing results of an individual with Alport syndrome and confirmed results by Sanger sequencing in family members. A splicing reporter minigene assay was used to examine the variant’s effect on splicing in transfected cells. Plucked hair follicles from patients and controls were examined for collagen IV proteins using immunofluorescence microscopy. Results A novel splice region mutation in COL4A5, c.1780-6T>G, was identified and segregated with disease in this family. This variant caused frequent skipping of exon 25, resulting in a frameshift and truncation of collagen α5(IV) protein. We also developed and validated a new approach to characterize the expression of collagen α5(IV) protein in the basement membranes of plucked hair follicles. We demonstrated reduced collagen α5(IV) protein in affected male and female individuals in this family, supporting frequent failure of normal splicing. Conclusions Differing normal to abnormal transcript ratios in affected individuals carrying splice region variants may contribute to variable disease severity observed in Alport families. Examination of plucked hair follicles in suspected X-linked Alport syndrome patients may offer a less invasive alternative method of diagnosis and serve as a pathogenicity test for COL4A5 variants of uncertain significance. PMID:28013382

  19. Cuttlefish Ink Melanin Encapsulated in Nanolipid Bubbles and Applied Through a Micro-Needling Procedure Easily Stains White Hair Facilitating Photoepilation.

    PubMed

    Trelles, Mario A; Almudever, Patricia; Alcolea, Justo M; Cortijo, Julio; Serrano, Gabriel; Expósito, Inmaculada; Royo, Josefina; Leclère, Franck Marie

    2016-05-01

    Photothermolysis of unwanted hair depends on the presence of melanin in the hair follicle as the chromophore, but is not effective in patients with non-pigmented, melanin-sparse hair shafts and follicles. This split-scalp, double-blind study was to monitor the efficacy of melanin bound in nanosomes to inject exogenous melanin into the hair follicles thus potentiating successful photothermolysis.
    Twelve patients, phototypes II-III, with white or very fair hair, were treated with a compound containing melanin encapsulated in nanosomes (Melaser®) together with a fluorescent marker. Two equal 6 cm² areas were marked on each side of the occiput of the subjects. The compound was applied to a randomly selected experimental side on each patient (area A), and a saline solution applied in the same manner to the contralateral control side (area B). Penetration of the melanin into the hair follicle was assessed using optical and fluorescence microscopy. Also, condition of hair structure was checked in vivo after standard laser settings used for epilation.
    A slight transient erythema was observed in those areas where the compound was applied with some perifollicular edema. No such effects were noticed in those areas where saline solution was applied. No persistent complications such as scarring, hypo- or hyperpigmentation were observed in any of the experimental or control areas. Under fluorescence microscopy, the hair structures in the areas to which the compound had been applied showed a clear melanin deposit confirmed by the immunofluorescence intensity, which was highest at 2 hours after application. By optical microscopy, external melanin was deposited in hair follicles. Tests with standard settings for epilation were efficacious in damaging melanin-marked white hair.
    This study strongly suggests the safety and efficacy of the application of nanosomes encapsulating melanin for the introduction of melanin into hair follicles. Changes noticed

  20. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Sung, Calvin T; Shen, Feng-Ming; Huang, Chi-Ting; Fang, Jia-You

    2014-01-01

    Delivery of diphencyprone (DPCP) and minoxidil to hair follicles and related cells is important in the treatment of alopecia. Here we report the development of "squarticles," nanoparticles formed from sebum-derived lipids such as squalene and fatty esters, for use in achieving targeted drug delivery to the follicles. Two different nanosystems, nanostructured lipid carriers (NLC) and nanoemulsions (NE), were prepared. The physicochemical properties of squarticles, including size, zeta potential, drug encapsulation efficiency, and drug release, were examined. Squarticles were compared to a free control solution with respect to skin absorption, follicular accumulation, and dermal papilla cell targeting. The particle size of the NLC type was 177 nm; that of the NE type was 194 nm. Approximately 80% of DPCP and 60% of minoxidil were entrapped into squarticles. An improved drug deposition in the skin was observed in the in vitro absorption test. Compared to the free control, the squarticles reduced minoxidil penetration through the skin. This may indicate a minimized absorption into systemic circulation. Follicular uptake by squarticles was 2- and 7-fold higher for DPCP and minoxidil respectively compared to the free control. Fluorescence and confocal images of the skin confirmed a great accumulation of squarticles in the follicles and the deeper skin strata. Vascular endothelial growth factor expression in dermal papilla cells was significantly upregulated after the loading of minoxidil into the squarticles. In vitro papilla cell viability and in vivo skin irritancy tests in nude mice suggested a good tolerability of squarticles to skin. Squarticles provide a promising nanocarrier for topical delivery of DPCP and minoxidil.

  1. Hair growth promoting activity of discarded biocomposite keratin extract.

    PubMed

    Akanda, Md Rashedunnabi; Kim, Hak-Yong; Park, Mira; Kim, In-Shik; Ahn, Dongchoon; Tae, Hyun-Jin; Park, Byung-Yong

    2017-08-01

    Keratin biomaterial has been used in regenerative medicine owing to its in-vivo and in-vitro biocompatibility. The present study was aimed to investigate the hair growth promoting activity of keratin extract and its mechanism of action. Keratin extract was topically applied on the synchronized depilated dorsal skin of telogenic C57BL/6 mice and promoted hair growth by inducing the anagen phase. The histomorphometric observation indicated significantly increases the number, shaft of hair follicles and deep subcutis area in the keratin extract treated group in contrast to the control group, which was considered an indication of anagen phase induction. Subsequently, the quantitative real-time polymerase chain reaction analysis revealed that fibroblast growth factor-10, vascular endothelial growth factor, insulin-like growth factor-1, β-catenin, and Shh were expressed earlier in the keratin extract-treated group than in the control group. Besides, keratin extract has been observed to be biocompatible when analyzed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 4',6-diamidino-2-phenylindole staining using immortalized human keratinocyte cells, showing more than 90% cell viability. Our study demonstrated that keratin extract stimulating hair follicle growth by inducing the growth phase; anagen in telogenic C57BL/6 mice and thus the topical application of keratin extract may represent a promising biomaterial for the management and applications of hair follicle disorder.

  2. LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development

    PubMed Central

    Lough, Kendall J.; Patel, Jeet H.; Descovich, Carlos Patiño; Curtis, T. Anthony

    2016-01-01

    Oral epithelia protect against constant challenges by bacteria, viruses, toxins and injury while also contributing to the formation of ectodermal appendages such as teeth, salivary glands and lingual papillae. Despite increasing evidence that differentiation pathway genes are frequently mutated in oral cancers, comparatively little is known about the mechanisms that regulate normal oral epithelial development. Here, we characterize oral epithelial stratification and describe multiple distinct functions for the mitotic spindle orientation gene LGN (Gpsm2) in promoting differentiation and tissue patterning in the mouse oral cavity. Similar to its function in epidermis, apically localized LGN directs perpendicular divisions that promote stratification of the palatal, buccogingival and ventral tongue epithelia. Surprisingly, however, in dorsal tongue LGN is predominantly localized basally, circumferentially or bilaterally and promotes planar divisions. Loss of LGN disrupts the organization and morphogenesis of filiform papillae but appears to be dispensable for embryonic hair follicle development. Thus, LGN has crucial tissue-specific functions in patterning surface ectoderm and its appendages by controlling division orientation. PMID:27317810

  3. Establishment of an evaluation method to detect drug distribution in hair follicles.

    PubMed

    Abe, Akinari; Saito, Miyuki; Kadhum, Wesam R; Todo, Hiroaki; Sugibayashi, Kenji

    2018-05-05

    Development of an appropriate method to evaluate drug disposition or targeting ability in hair follicles (HFs) is urgently needed in order to develop useful pharmaceutical products with pharmacological effects in HFs. In the present study, a cyanoacrylate biopsy (CB) method was used to measure drug disposition in HFs using a model hydrophilic drug, caffeine (CAF), and a lipophilic drug, 4-butylresorcinol (BR), in excised porcine skin. As a result, the height of HF replicas and the recovery ratio decreased with an increase in the application times of the CB method. HF replicas with a length of approximately 175 µm were obtained using a single application of the CB method. Drug distribution in the HF was detected even 5 min after topical application regardless of the lipophilicity of the drugs, although no drug disposition was observed in the deeper layers of the stratum corneum at the same time (5 min). Furthermore, significantly higher amounts of BR were observed in the stratum corneum and HF, compared with those of CAF. These results suggested that the CB method could be useful to evaluate the safety and efficacy as well as the disposition of topically applied chemicals, especially for HF-targeting drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. l-Ascorbic acid 2-phosphate promotes elongation of hair shafts via the secretion of insulin-like growth factor-1 from dermal papilla cells through phosphatidylinositol 3-kinase.

    PubMed

    Kwack, M H; Shin, S H; Kim, S R; Im, S U; Han, I S; Kim, M K; Kim, J C; Sung, Y K

    2009-06-01

    l-Ascorbic acid 2-phosphate (Asc 2-P), a derivative of l-ascorbic acid, promotes elongation of hair shafts in cultured human hair follicles and induces hair growth in mice. To investigate whether the promotion of hair growth by Asc 2-P is mediated by insulin-like growth factor-1 (IGF-1) and, if so, to investigate the mechanism of the Asc 2-P-induced IGF-1 expression. Dermal papilla (DP) cells were cultured and IGF-1 level was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay after Asc 2-P treatment in the absence or presence of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Also, hair shaft elongation in cultured human scalp hair follicles and proliferation of cocultured keratinocytes were examined after Asc 2-P treatment in the absence or presence of neutralizing antibody against IGF-1. In addition, keratinocyte proliferation in cultured hair follicles after Asc 2-P treatment in the absence or presence of LY294002 was examined by Ki-67 immunostaining. IGF-1 mRNA in DP cells was upregulated and IGF-1 protein in the conditioned medium of DP cells was significantly increased after treatment with Asc 2-P. Immunohistochemical staining showed that IGF-1 staining is increased in the DP of cultured human hair follicles by Asc 2-P. The neutralizing antibody against IGF-1 significantly suppressed the Asc 2-P-mediated elongation of hair shafts in hair follicle organ culture and significantly attenuated Asc 2-P-induced growth of cocultured keratinocytes. LY294002 significantly attenuated Asc 2-P-inducible IGF-1 expression and proliferation of follicular keratinocytes in cultured hair follicles. These data show that Asc 2-P-inducible IGF-1 from DP cells promotes proliferation of follicular keratinocytes and stimulates hair follicle growth in vitro via PI3K.

  5. Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    PubMed Central

    Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina

    2015-01-01

    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  6. Ultra-structural hair alterations in Friedreich's ataxia: A scanning electron microscopic investigation.

    PubMed

    Turkmenoglu, F Pinar; Kasirga, U Baran; Celik, H Hamdi

    2015-08-01

    Friedreich's ataxia (FRDA) is an autosomal recessive inherited disorder involving progressive damage to the central and peripheral nervous systems and cardiomyopathy. FRDA is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. Skin disorders including hair abnormalities have previously been reported in patients with mitochondrial disorders. However, to our knowledge, ultra-structural hair alterations in FRDA were not demonstrated. The purpose of this study was to determine ultra-structural alterations in the hairs of FRDA patients as well as carriers. Hair specimen from four patients, who are in different stages of the disease, and two carriers were examined by scanning electron microscope. Thin and weak hair follicles with absence of homogeneities on the cuticular surface, local damages of the cuticular layer, cuticular fractures were detected in both carriers and patients, but these alterations were much more prominent in the hair follicles of patients. In addition, erosions on the surface of the cuticle and local deep cavities just under the cuticular level were observed only in patients. Indistinct cuticular pattern, pores on the cuticular surface, and presence of concavities on the hair follicle were also detected in patients in later stages of the disease. According to our results, progression of the disease increased the alterations on hair structure. We suggest that ultra-structural alterations observed in hair samples might be due to oxidative stress caused by deficient frataxin expression in mitochondria. © 2015 Wiley Periodicals, Inc.

  7. Promotion of hair growth by newly synthesized ceramide mimetic compound.

    PubMed

    Park, Bu-Mahn; Bak, Soon-Sun; Shin, Kyung-Oh; Kim, Minhee; Kim, Daehwan; Jung, Sang-Hun; Jeong, Sekyoo; Sung, Young Kwan; Kim, Hyun Jung

    2017-09-09

    Based on the crucial roles of ceramides in skin barrier function, use of ceramides or their structural mimetic compounds, pseudoceramides, as cosmetic ingredients are getting more popular. While currently used pseudoceramides are intended to substitute the structural roles of ceramides in stratum corneum, development of bioactive pseudoceramides has been repeatedly reported. In this study, based on the potential involvement of sphingolipids in hair cycle regulation, we investigated the effects of newly synthesized pseudoceramide, bis-oleamido isopropyl alcohol (BOI), on hair growth using cultured human hair follicles and animal models. BOI treatment promoted hair growth in cultured human hair follicles ex vivo and induced earlier conversion of telogen into anagen. Although we did not find a significant enhancement of growth factor expression and follicular cell proliferation, BOI treatment resulted in an increased sphinganine and sphingosine contents as well as increased ceramides contents in cultured dermal papilla (DP) cells. Taken together, our data strongly suggest that biologically active pseudoceramide promotes hair growth by stimulating do novo synthesis of sphingolipids in DP cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Sterol intermediates of cholesterol biosynthesis inhibit hair growth and trigger an innate immune response in cicatricial alopecia.

    PubMed

    Panicker, Sreejith P; Ganguly, Taneeta; Consolo, Mary; Price, Vera; Mirmirani, Paradi; Honda, Kord; Karnik, Pratima

    2012-01-01

    Primary cicatricial alopecia (PCA) is a group of inflammatory hair disorders that cause scarring and permanent hair loss. Previous studies have implicated PPARγ, a transcription factor that integrates lipogenic and inflammatory signals, in the pathogenesis of PCA. However, it is unknown what triggers the inflammatory response in these disorders, whether the inflammation is a primary or secondary event in disease pathogenesis, and whether the inflammatory reaction reflects an autoimmune process. In this paper, we show that the cholesterol biosynthetic pathway is impaired in the skin and hair follicles of PCA patients. Treatment of hair follicle cells with BM15766, a cholesterol biosynthesis inhibitor, or 7-dehydrocholesterol (7-DHC), a sterol precursor, stimulates the expression of pro-inflammatory chemokine genes. Painting of mouse skin with 7-DHC or BM15766 inhibits hair growth, causes follicular plugging and induces the infiltration of inflammatory cells into the interfollicular dermis. Our results demonstrate that cholesterologenic changes within hair follicle cells trigger an innate immune response that is associated with the induction of toll-like receptor (TLR) and interferon (IFN) gene expression, and the recruitment of macrophages that surround the hair follicles and initiate their destruction. These findings reveal a previously unsuspected role for cholesterol precursors in PCA pathogenesis and identify a novel link between sterols and inflammation that may prove transformative in the diagnosis and treatment of these disorders.

  9. Topical Treatment of Hair Loss with Formononetin by Modulating Apoptosis.

    PubMed

    Kim, Mi Hye; Choi, You Yeon; Lee, Ji Eun; Kim, Kyuseok; Yang, Woong Mo

    2016-01-01

    Formononetin is one of the main components of red clover plants and its role on hair regrowth against hair loss has not been established yet. In the present study, we assessed the potential effects of formononetin on alopecia, along with impaired hair cycles by induction of apoptosis-regression.Depilated C57BL/6 mice were used for monitoring the hair cycles. Formononetin (1 and 100 µM) was topically treated to the dorsal skin for 14 days. Topical formononetin treatment induced miniaturized hair follicles to recover to normal sizes. Tapering hair shaft began to grow newly, emerging from the hair follicles by formononetin. In addition, formononetin inhibited the activation of caspase-8 and decreased the procaspase-9 expression. As a result of formononetin treatment, anti-apoptotic Bcl-2 was up-regulated, whereas pro-apoptotic Bax and p53 were down-regulated, resulting in a decrease of caspase-3 activation. Formononetin showed the obvious inhibition of apoptosis under terminal deoxynucleotidyl transferase dUTP nick end labeling staining thereafter.Taken together, our findings demonstrate that formononetin exerted the hair regrowth effect on hair loss, in which the underlying mechanisms were associated with Fas/Fas L-induced caspase activation, thus inhibiting apoptosis. Georg Thieme Verlag KG Stuttgart · New York.

  10. Self-Organizing and Stochastic Behaviors During the Regeneration of Hair Stem Cells

    PubMed Central

    Plikus, Maksim V.; Baker, Ruth E.; Chen, Chih-Chiang; Fare, Clyde; de la Cruz, Damon; Andl, Thomas; Maini, Philip K.; Millar, Sarah E.; Widelitz, Randall; Chuong, Cheng-Ming

    2012-01-01

    Stem cells cycle through active and quiescent states. Large populations of stem cells in an organ may cycle randomly or in a coordinated manner. Although stem cell cycling within single hair follicles has been studied, less is known about regenerative behavior in a hair follicle population. By combining predictive mathematical modeling with in vivo studies in mice and rabbits, we show that a follicle progresses through cycling stages by continuous integration of inputs from intrinsic follicular and extrinsic environmental signals based on universal patterning principles. Signaling from the WNT/bone morphogenetic protein activator/inhibitor pair is coopted to mediate interactions among follicles in the population. This regenerative strategy is robust and versatile because relative activator/inhibitor strengths can be modulated easily, adapting the organism to different physiological and evolutionary needs. PMID:21527712

  11. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration.

    PubMed

    Lin, Bojie; Miao, Yong; Wang, Jin; Fan, Zhexiang; Du, Lijuan; Su, Yongsheng; Liu, Bingcheng; Hu, Zhiqi; Xing, Malcolm

    2016-03-09

    Human dermal papilla (DP) cells have been studied extensively when grown in the conventional monolayer. However, because of great deviation from the real in vivo three-dimensional (3D) environment, these two-dimensional (2D) grown cells tend to lose the hair-inducible capability during passaging. Hence, these 2D caused concerns have motivated the development of novel 3D culture techniques to produce cellular microtissues with suitable mimics. The hanging-drop approach is based on surface tension-based technique and the interaction between surface tension and gravity field that makes a convergence of liquid drops. This study used this technique in a converged drop to form cellular spheroids of dermal papilla cells. It leads to a controllable 3Dspheroid model for scalable fabrication of inductive DP microtissues. The optimal conditions for culturing high-passaged (P8) DP spheroids were determined first. Then, the morphological, histological and functional studies were performed. In addition, expressions of hair-inductive markers including alkaline phosphatase, α-smooth muscle actin and neural cell adhesion molecule were also analyzed by quantitative RT-PCR, immunostaining and immunoblotting. Finally, P8-DP microtissues were coimplanted with newborn mouse epidermal cells (EPCs) into nude mice. Our results indicated that the formation of 3D microtissues not only endowed P8-DP microtissues many similarities to primary DP, but also confer these microtissues an enhanced ability to induce hair-follicle (HF) neogenesis in vivo. This model provides a potential to elucidate the native biology of human DP, and also shows the promising for the controllable and scalable production of inductive DP cells applied in future follicle regeneration.

  12. Adenosine increases anagen hair growth and thick hairs in Japanese women with female pattern hair loss: a pilot, double-blind, randomized, placebo-controlled trial.

    PubMed

    Oura, Hajimu; Iino, Masato; Nakazawa, Yosuke; Tajima, Masahiro; Ideta, Ritsuro; Nakaya, Yutaka; Arase, Seiji; Kishimoto, Jiro

    2008-12-01

    Adenosine upregulates the expression of vascular endothelial growth factor and fibroblast growth factor-7 in cultured dermal papilla cells. It has been shown that, in Japanese men, adenosine improves androgenetic alopecia due to the thickening of thin hair due to hair follicle miniaturization. To investigate the efficacy and safety of adenosine treatment to improve hair loss in women, 30 Japanese women with female pattern hair loss were recruited for this double-blind, randomized, placebo-controlled study. Volunteers used either 0.75% adenosine lotion or a placebo lotion topically twice daily for 12 months. Efficacy was evaluated by dermatologists and by investigators and in phototrichograms. As a result, adenosine was significantly superior to the placebo according to assessments by dermatologists and investigators and by self-assessments. Adenosine significantly increased the anagen hair growth rate and the thick hair rate. No side-effects were encountered during the trial. Adenosine improved hair loss in Japanese women by stimulating hair growth and by thickening hair shafts. Adenosine is useful for treating female pattern hair loss in women as well as androgenetic alopecia in men.

  13. In vivo hair growth-promoting effect of rice bran extract prepared by supercritical carbon dioxide fluid.

    PubMed

    Choi, Jae-Suk; Jeon, Min-Hee; Moon, Woi-Sook; Moon, Jin-Nam; Cheon, Eun Jin; Kim, Joo-Wan; Jung, Sung Kyu; Ji, Yi-Hwa; Son, Sang Wook; Kim, Mi-Ryung

    2014-01-01

    The potential hair growth-promoting activity of rice bran supercritical CO2 extract (RB-SCE) and major components of RB-SCE, linoleic acid, policosanol, γ-oryzanol, and γ-tocotrienol, were evaluated with the histological morphology and mRNA expression levels of cell growth factors using real-time reverse transcriptase-polymerase chain reaction (PCR) in C57BL/6 mice. RB-SCE showed hair growth-promoting potential to a similar extent as 3% minoxidil, showing that the hair follicles were induced to be in the anagen stage. The numbers of the hair follicles were significantly increased. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and keratinocyte growth factor (KGF) were also significantly increased and that of transforming growth factor-β (TGF-β) decreased in RB-SCE-treated groups. Among the major components of RB-SCE, linoleic acid and γ-oryzanol induced the formation of hair follicles according to examination of histological morphology and mRNA expression levels of cell growth factors. In conclusion, our results demonstrate that RB-SCE, particularly linoleic acid and γ-oryzanol, promotes hair growth and suggests RB-SCE can be applied as hair loss treatment.

  14. Contribution of hair density and hair diameter to the appearance and progression of androgenetic alopecia in Japanese men.

    PubMed

    Ishino, A; Takahashi, T; Suzuki, J; Nakazawa, Y; Iwabuchi, T; Tajima, M

    2014-11-01

    Androgenetic alopecia (AGA) is the most common type of baldness in men. The balding process is associated with the gradual miniaturization of hair follicles and successive hair loss. However, the relative contributions of hair density and diameter to AGA are still unclear. Hair density and hair diameter were investigated in Japanese men with or without AGA to elucidate the importance of these factors in the balding process. Male Japanese subjects with or without AGA (n = 369) were included in this study. Hair appearance at the vertex was evaluated by comparison with a series of standard photographs. Hair density was measured using a phototrichogram-based videomicroscopy technique, and hair diameter was assessed by comparison with a series of calibrated threads on the phototrichogram image. All subjects with AGA were ≥ 25 years of age. The mean percentage of thick hairs (> 80 μm) in all subjects with AGA was significantly lower than that in subjects without AGA aged ≥ 25 years (P < 0·01), but the mean percentage of vellus hairs (< 40 μm) in subjects with AGA was significantly higher (P < 0·001). By contrast, the mean density of the hair in all patients with AGA did not significantly differ from the density of those without AGA aged ≥ 25 years. However, the mean density of the hair in subjects without AGA aged < 25 years was significantly higher than that of both subjects without AGA aged ≥ 25 years (P < 0·001) and all subjects with AGA. Hair loss in men with AGA results mainly from the miniaturization of hair follicles rather than the loss of hair (shedding), at least for individuals who are ≥ 25 years of age and present with AGA. © 2014 British Association of Dermatologists.

  15. A PAIR OF TRANSMEMBRANE RECEPTORS ESSENTIAL FOR THE RETENTION AND PIGMENTATION OF HAIR

    PubMed Central

    Han, Rong; Beppu, Hideyuki; Lee, Yun-Kyoung; Georgopoulos, Katia; Larue, Lionel; Li, En; Weiner, Lorin; Brissette, Janice L.

    2012-01-01

    Hair follicles are simple, accessible models for many developmental processes. Here, using mutant mice, we show that Bmpr2, a known receptor for bone morphogenetic proteins (Bmps), and Acvr2a, a known receptor for Bmps and activins, are individually redundant but together essential for multiple follicular traits. When Bmpr2/Acvr2a function is reduced in cutaneous epithelium, hair follicles undergo rapid cycles of hair generation and loss. Alopecia results from a failure to terminate hair development properly, as hair clubs never form, and follicular retraction is slowed. Hair regeneration is rapid due to premature activation of new hair-production programs. Hair shafts differentiate aberrantly due to impaired arrest of medullary-cell proliferation. When Bmpr2/Acvr2a function is reduced in melanocytes, gray hair develops, as melanosomes differentiate but fail to grow, resulting in organelle miniaturization. We conclude that Bmpr2 and Acvr2a normally play cell-type-specific, necessary roles in organelle biogenesis and the shutdown of developmental programs and cell division. PMID:22611050

  16. Peppermint Oil Promotes Hair Growth without Toxic Signs

    PubMed Central

    Park, Min Ah; Kim, Young Chul

    2014-01-01

    Peppermint (Mentha piperita) is a plant native to Europe and has been widely used as a carminative and gastric stimulant worldwide. This plant also has been used in cosmetic formulations as a fragrance component and skin conditioning agent. This study investigated the effect of peppermint oil on hair growth in C57BL/6 mice. The animals were randomized into 4 groups based on different topical applications: saline (SA), jojoba oil (JO), 3% minoxidil (MXD), and 3% peppermint oil (PEO). The hair growth effects of the 4-week topical applications were evaluated in terms of hair growth, histological analysis, enzymatic activity of alkaline phosphatase (ALP), and gene expression of insulin-like growth factor-1 (IGF-1), known bio-markers for the enhanced hair growth. Of the 4 experimental groups, PEO group showed the most prominent hair growth effects; a significant increase in dermal thickness, follicle number, and follicle depth. ALP activity and IGF-1 expression also significantly increased in PEO group. Body weight gain and food efficiency were not significantly different between groups. These results suggest that PEO induces a rapid anagen stage and could be used for a practical agent for hair growth without change of body weight gain and food efficiency. PMID:25584150

  17. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles.

    PubMed

    Ikeda, Ryo; Gu, Jianguo

    2016-01-01

    Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers.

  18. Differential diagnosis of the scalp hair folliculitis.

    PubMed

    Lugović-Mihić, Liborija; Barisić, Freja; Bulat, Vedrana; Buljan, Marija; Situm, Mirna; Bradić, Lada; Mihić, Josip

    2011-09-01

    Scalp hair folliculitis is a relatively common condition in dermatological practice and a major diagnostic and therapeutic challenge due to the lack of exact guidelines. Generally, inflammatory diseases of the pilosebaceous follicle of the scalp most often manifest as folliculitis. There are numerous infective agents that may cause folliculitis, including bacteria, viruses and fungi, as well as many noninfective causes. Several noninfectious diseases may present as scalp hair folliculitis, such as folliculitis decalvans capillitii, perifolliculitis capitis abscendens et suffodiens, erosive pustular dermatitis, lichen planopilaris, eosinophilic pustular folliculitis, etc. The classification of folliculitis is both confusing and controversial. There are many different forms of folliculitis and several classifications. According to the considerable variability of histologic findings, there are three groups of folliculitis: infectious folliculitis, noninfectious folliculitis and perifolliculitis. The diagnosis of folliculitis occasionally requires histologic confirmation and cannot be based solely on clinical appearance of scalp lesions. This article summarizes prominent variants of inflammatory diseases of the scalp hair follicle with differential diagnosis and appertaining histological features.

  19. Organ-level quorum sensing directs regeneration in hair stem cell populations

    PubMed Central

    Chen, Chih-Chiang; Wang, Lei; Plikus, Maksim V.; Jiang, Ting Xin; Murray, Philip J.; Ramos, Raul; Guerrero-Juarez, Christian F.; Hughes, Michael W; Lee, Oscar K.; Shi, Songtao; Widelitz, Randall B.; Lander, Arthur D.; Chuong, Cheng Ming

    2015-01-01

    SUMMARY Coordinated organ behavior is crucial for an effective response to environmental stimuli. By studying regeneration of hair follicles in response to patterned hair removal, we demonstrate that organ-level quorum sensing allows coordinated responses to skin injury. Removing hair at different densities leads to a regeneration of up to 5 times more neighboring, unplucked resting hairs, indicating activation of a collective decision-making process. Through data modeling, the range of the quorum signal was estimated to be on the order of 1 mm, greater than expected for a diffusible molecular cue. Molecular and genetic analysis uncovered a two-step mechanism, where release of CCL2 from injured hairs leads to recruitment of TNF-α secreting macrophages, which accumulate and signal to both plucked and unplucked follicles. By coupling immune response with regeneration, this mechanism allows skin to respond predictively to distress, disregarding mild injury, while meeting stronger injury with full-scale cooperative activation of stem cells. PMID:25860610

  20. Tufted hair folliculitis: a case report and literature review.

    PubMed

    Broshtilova, V; Bardarov, E; Kazandjieva, J; Marina, S

    2011-01-01

    Tufted hair folliculitis is a rare folliculitis of the scalp that resolves with patches of scarring alopecia within multiple hair tufts emerging from dilated follicular orifices. Tufting of hair is caused by clustering of adjacent follicular units due to a fibrosing process and to retention of telogen hairs within a dilated follicular orifice. Various pathogenetic mechanisms have been proposed including nevoid abnormalities, recurrent infections of the follicles, and retention of telogen hair in the tufts. We present a patient with tufted hair folliculitis who was effectively treated with antibacterial medications, verifying the infectious nature of the disease.

  1. Inhibitory activities of some traditional Chinese herbs against testosterone 5α-reductase and effects of Cacumen platycladi on hair re-growth in testosterone-treated mice.

    PubMed

    Zhang, Bei; Zhang, Rong-weng; Yin, Xi-quan; Lao, Zi-zhao; Zhang, Zhe; Wu, Qing-guang; Yu, Liang-wen; Lai, Xiao-ping; Wan, Yu-hua; Li, Geng

    2016-01-11

    Many traditional Chinese medicines (TCM) have been used for hundreds of years for hair blackening and hair nourishing, and now many of them are commonly used in Chinese herbal shampoo to nourish the hair and promote hair growth. The present study was performed to screen 5α-reductase (5αR) inhibitors from traditional Chinese medicines, evaluate its hair growth promoting activity in vivo, and further investigate its effects on androgen metabolism and the expression of 5αR II in hair follicles. Nine TCM which were dried, ground and extracted by maceration with 75% ethanol or distilled water were used for screening 5αR inhibitors, and enzymes were extracted from the rat epididymis. The leaves of Platycladus orientalis (L.) Franco was used to evaluate the in vivo anti-androgenic activity. Skin color was observed daily and the hair re-growth was assessed by assigning the hair growth score. The longitudinal sections of hair follicles were used for observing follicle morphology, classifying of distinct stages of hair follicle morphogenesis and calculate the average score. The transverse sections were used for determination of hair follicle counts. Testosterone (T), Dihydrotestosterone (DHT) and Estradiol (E2) levels in serum and skin tissue were detected by ELISA kits. The immunofluorescence assay was used to detect the influence of CP-ext on 5αR expression in dorsal skin. We found the extract of Ganoderma lucidum (GL-ext), Polygonum multiflori (PM-ext), Cacumen platycladi (CP-ext) and Cynomorium songaricum (CS-ext) showed stronger 5αR inhibitory activity. CP-ext (5mg and 2mg/mouse/day) could significantly shorten the time of the dorsal skin darkening and got longhaired (P<0.01), and showed high hair re-growth promoting activity. Furthermore the histological data of hair follicles in each group showed that CP-ext could promote the growth of hair follicle and slowed down hair follicles enter the telogen. What's more CP-ext significantly reduced DHT levels and down

  2. Genetic DNA profile in urine and hair follicles from patients who have undergone allogeneic hematopoietic stem cell transplantation.

    PubMed

    Santurtún, Ana; Riancho, José A; Santurtún, Maite; Richard, Carlos; Colorado, M Mercedes; García Unzueta, Mayte; Zarrabeitia, María T

    2017-09-01

    Biological samples from patients who have undergone allogeneic hematopoietic stem cell transplantation (HSCT) constitute a challenge for individual identification. In this study we analyzed the genetic profiles (by the amplification of 15 autosomic STRs) of HSCT patients found in different types of samples (blood, hair and urine) that may be the source of DNA in civil or criminal forensic cases. Our results show that while in hair follicles the donor component was not detected in any patient, thus being a reliable source of biological material for forensic identification, mixed chimerism was detected in urine samples from all patient, and no correlation was found between the time elapsed from the transplant and the percentage of chimerism. These results certainly have practical implications if the urine is being considered as a source of DNA for identification purposes in HSTC patients. Moreover, taking into consideration that chimerism was found not only in patients with leukocyturia (given the hematopoietic origin of leukocytes, this was expected), but also in those without observable leukocytes in the sediment, we conclude that an alternative source or sources of donor DNA must be implicated. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  3. Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs

    PubMed Central

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2012-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312

  4. Module-based complexity formation: periodic patterning in feathers and hairs.

    PubMed

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2013-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. © 2012 Wiley Periodicals, Inc.

  5. The effect of sebocytes cultured from nevus sebaceus on hair growth.

    PubMed

    Lee, Weon Ju; Cha, Hyun Wuk; Lim, Hyun Jung; Lee, Seok-Jong; Kim, Do Won

    2012-10-01

    Sebaceous glands are known to affect hair growth. Nevus sebaceus, a sebaceous gland hamartomas, presents as hairless patches. In this study, cultures of nevus sebaceus sebocytes (NSS) and normal scalp hair follicle sebocytes (NS) were used in performance of microarray, RT-PCR, western blot assay and immunofluorescence staining. NSS- and NS-conditioned media were also added to the culture of outer root sheath cells (ORSCs), dermal papilla cells (DPCs) or normal scalp hair follicle sebocytes. Results of this study showed a decrease in the survival rate of ORSCs and DPCs and hair growth in the NSS-conditioned medium-treated group, compared with the control and NS-conditioned medium-treated groups. An increase in expression of fibroblast growth factor (FGF)-5, Dickkopf-1 and inflammatory cytokines and a decrease in expression of Wnt10b and Lef1 were observed. In conclusion, NSS showed an increase in expression of hair growth-suppressing bioactive factors, including FGF-5, and a decrease in expression of hair growth-stimulating factors. © 2012 John Wiley & Sons A/S.

  6. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline

    PubMed Central

    Chi, Woo; Wu, Eleanor; Morgan, Bruce A.

    2013-01-01

    Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss. PMID:23487317

  7. FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells.

    PubMed

    Nguyen, Minh Binh; Cohen, Idan; Kumar, Vinod; Xu, Zijian; Bar, Carmit; Dauber-Decker, Katherine L; Tsai, Pai-Chi; Marangoni, Pauline; Klein, Ophir D; Hsu, Ya-Chieh; Chen, Ting; Mikkola, Marja L; Ezhkova, Elena

    2018-06-13

    Merkel cells are innervated mechanosensory cells responsible for light-touch sensations. In murine dorsal skin, Merkel cells are located in touch domes and found in the epidermis around primary hairs. While it has been shown that Merkel cells are skin epithelial cells, the progenitor cell population that gives rise to these cells is unknown. Here, we show that during embryogenesis, SOX9-positive (+) cells inside hair follicles, which were previously known to give rise to hair follicle stem cells (HFSCs) and cells of the hair follicle lineage, can also give rise to Merkel Cells. Interestingly, while SOX9 is critical for HFSC specification, it is dispensable for Merkel cell formation. Conversely, FGFR2 is required for Merkel cell formation but is dispensable for HFSCs. Together, our studies uncover SOX9(+) cells as precursors of Merkel cells and show the requirement for FGFR2-mediated epithelial signalling in Merkel cell specification.

  8. On the physics of laser-induced selective photothermolysis of hair follicles: Influence of wavelength, pulse duration, and epidermal cooling.

    PubMed

    Svaasand, Lars O; Nelson, J Stuart

    2004-01-01

    The physical basis for optimization of wavelength, pulse duration, and cooling for laser-induced selective photothermolysis of hair follicles in human skin is discussed. The results indicate that the most important optimization parameter is the cooling efficiency of the technique utilized for epidermal protection. The optical penetration is approximately the same for lasers at 694, 755, and 800 nm. The penetration of radiation from Nd:yttrium-aluminum-garnet lasers at 1064 nm is, however, somewhat larger. Photothermal damage to the follicle is shown to be almost independent of laser pulse duration up to 100 ms. The results reveal that epidermal cooling by a 30-80-ms-long cryogen spurt immediately before laser exposure is the only efficient technique for laser pulse durations less than 10 ms. For longer pulse durations in the 30-100 ms range, protection can be done efficiently by skin cooling during laser exposure. For laser pulses of 100 ms, an extended precooling period, e.g., by bringing a cold object into good thermal contact with the skin for about 1 s, can be of value. Thermal quenching of laser induced epidermal temperature rise after pulsed exposure can most efficiently be done with a 20 ms cryogen spurt applied immediately after irradiation. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  9. Low-Level Laser (Light) Therapy (LLLT) for Treatment of Hair Loss

    PubMed Central

    Avci, Pinar; Gupta, Gaurav K.; Clark, Jason; Wikonkal, Norbert; Hamblin, Michael R.

    2013-01-01

    Objective Alopecia is a common disorder affecting more than half of the population worldwide. Androgenetic alopecia, the most common type, affects 50% of males over the age of 40 and 75% of females over 65. Only two drugs have been approved so far (minoxidil and finasteride) and hair transplant is the other treatment alternative. This review surveys the evidence for low-level laser therapy (LLLT) applied to the scalp as a treatment for hair loss and discusses possible mechanisms of actions. Methods and Materials Searches of PubMed and Google Scholar were carried out using keywords alopecia, hair loss, LLLT, photobiomodulation. Results Studies have shown that LLLT stimulated hair growth in mice subjected to chemotherapy-induced alopecia and also in alopecia areata. Controlled clinical trials demonstrated that LLLT stimulated hair growth in both men and women. Among various mechanisms, the main mechanism is hypothesized to be stimulation of epidermal stem cells in the hair follicle bulge and shifting the follicles into anagen phase. Conclusion LLLT for hair growth in both men and women appears to be both safe and effective. The optimum wavelength, coherence and dosimetric parameters remain to be determined. PMID:23970445

  10. Low-level laser (light) therapy (LLLT) for treatment of hair loss.

    PubMed

    Avci, Pinar; Gupta, Gaurav K; Clark, Jason; Wikonkal, Norbert; Hamblin, Michael R

    2014-02-01

    Alopecia is a common disorder affecting more than half of the population worldwide. Androgenetic alopecia, the most common type, affects 50% of males over the age of 40 and 75% of females over 65. Only two drugs have been approved so far (minoxidil and finasteride) and hair transplant is the other treatment alternative. This review surveys the evidence for low-level laser therapy (LLLT) applied to the scalp as a treatment for hair loss and discusses possible mechanisms of actions. Searches of PubMed and Google Scholar were carried out using keywords alopecia, hair loss, LLLT, photobiomodulation. Studies have shown that LLLT stimulated hair growth in mice subjected to chemotherapy-induced alopecia and also in alopecia areata. Controlled clinical trials demonstrated that LLLT stimulated hair growth in both men and women. Among various mechanisms, the main mechanism is hypothesized to be stimulation of epidermal stem cells in the hair follicle bulge and shifting the follicles into anagen phase. LLLT for hair growth in both men and women appears to be both safe and effective. The optimum wavelength, coherence and dosimetric parameters remain to be determined. © 2013 Wiley Periodicals, Inc.

  11. β-Catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching

    PubMed Central

    Enshell-Seijffers, David; Lindon, Catherine; Wu, Eleanor; Taketo, Makoto M.; Morgan, Bruce A.

    2010-01-01

    The switch between black and yellow pigment is mediated by the interaction between Melanocortin receptor 1 (Mc1r) and its antagonist Agouti, but the genetic and developmental mechanisms that modify this interaction to obtain different coat color in distinct environments are poorly understood. Here, the role of Wnt/β-catenin signaling in the regulation of pigment-type switching was studied. Loss and gain of function of β-catenin in the dermal papilla (DP) of the hair follicle results in yellow and black animals, respectively. β-Catenin activity in the DP suppresses Agouti expression and activates Corin, a negative regulator of Agouti activity. In addition, β-catenin activity in the DP regulates melanocyte activity by a mechanism that is independent of both Agouti and Corin. The coordinate and inverse regulation of Agouti and Corin renders pelage pigmentation sensitive to changes in β-catenin activity in the DP that do not alter pelage structure. As a result, the signals that specify two biologically distinct quantitative traits are partially uncoupled despite their common regulation by the β-catenin pathway in the same cells. PMID:21098273

  12. Variability of hair coat and skin traits as related to adaptation in Criollo Limonero cattle.

    PubMed

    Landaeta-Hernández, Antonio; Zambrano-Nava, Sunny; Hernández-Fonseca, Juan P; Godoy, Rosario; Calles, Marcos; Iragorri, José L; Añez, Lauderys; Polanco, Miguel; Montero-Urdaneta, Merilio; Olson, Tim

    2011-03-01

    The variation in hair coat and skin histology traits of Criollo Limonero cattle was analyzed using 213 Criollo Limonero females. Skin biopsies were obtained from slick-haired (N=16) and normal-haired (N=14) animals. Measured traits included hair length (HL), color coat (CC), number of hair follicles per square centimeter (NHF), sweat glands per square centimeter (NSG), sweat glands size (SGS), sebaceous glands per square centimeter (NSBG), blood vessels per square centimeter (NBV), and thickness of epidermis (TE). Hair length differed (P<0.001) between slick- and normal-haired animals (4.9 ± 0.12 vs 10.9 ± 0.20, respectively). Differences (P<0.01) in CC (Bayo = 144/67.6% vs Red = 69/32.4%) and HL (slick-haired = 199/93.4% vs normal-haired = 14/6.5%) were found. Distribution of slick- and normal-haired animals differed (P<0.01) between bayo-coated and red-coated (139/62.2% vs 9/4.2%; respectively). Most (P<0.05) red-coated animals belonged to a single family. No differences (P>0.05) were found between slick-haired and normal-haired animals in NHF (637 ± 164 vs 587 ± 144, respectively), NSG (556 ± 134 vs 481 ± 118, respectively), NSBG (408 ± 87 vs 366 ± 77, respectively), NBV (1628 ± 393 vs 1541 ± 346, respectively), and TE (1.24 ± 0.14 vs 1.32 ± 0.12, respectively). However, SGS was greater (P<0.01) in slick-haired than normal-haired animals. In conclusion, Criollo Limonero cattle are predominantly bayo-coated, slick-haired, with a reduced number of hair follicles relative to Zebu cattle, sweat and sebaceous glands in proportion to hair follicle numbers, and with a high blood flow irrigating the skin. There is a sub-group of red-coated animals with yellow or cream skin, thicker epidermis, and with a higher frequency of normal-haired animals. It appears that the slick hair gene has been favored by natural selection in this breed.

  13. The preventive effect of vitamin D3 on radiation-induced hair toxicity in a rat model.

    PubMed

    Baltalarli, Bahar; Bir, Ferda; Demirkan, Neşe; Abban, Gülçin

    2006-02-28

    Our aim is to investigate the protective effect of vitamin D3 especially from radiation-induced hair toxicity. A model of skin radiation injury was developed and a single fraction of 20 Gy Gamma irradiation was applied to the right dorsal skin of fourteen rats. All animals were randomly divided into 2 groups: Group I: irradiation alone (n = 7) and Group II: irradiation and 0.2 microg vitamin D3 given IM (n = 7). Fifty days after post-irradiation rats were sacrificed. The outcomes were evaluated on the basis of histopathological findings and immunohistochemical staining for Vitamin D receptor (VDR) in skin and hair follicles. The number of hair follicles in the radiation field for the group of animals irradiated without pretreatment was significantly lower than outside of the irradiated area (p = 0.016) as it is expected. Contrarily the number of hair follicles did not show significant difference in the pretreated group between the irradiated field and outside of the fields (p = 0,14). Skin of the vitamin D3 pretreated group demonstrated stronger immunoreactivity for VDR compared to irradiation alone group. These results indicate that administration of vitamin D3 may protect hair follicles from radiation toxicity. Further clinical trials should be conducted to prove the preventive effect of vitamin D3 as well as dosing and timing of the agent on radiation-induced alopecia.

  14. Substance P as an immunomodulatory neuropeptide in a mouse model for autoimmune hair loss (alopecia areata).

    PubMed

    Siebenhaar, Frank; Sharov, Andrey A; Peters, Eva M J; Sharova, Tatyana Y; Syska, Wolfgang; Mardaryev, Andrei N; Freyschmidt-Paul, Pia; Sundberg, John P; Maurer, Marcus; Botchkarev, Vladimir A

    2007-06-01

    Alopecia areata (AA) is an autoimmune disorder of the hair follicle characterized by inflammatory cell infiltrates around actively growing (anagen) hair follicles. Substance P (SP) plays a critical role in the cutaneous neuroimmune network and influences immune cell functions through the neurokinin-1 receptor (NK-1R). To better understand the role of SP as an immunomodulatory neuropeptide in AA, we studied its expression and effects on immune cells in a C3H/HeJ mouse model for AA. During early stages of AA development, the number of SP-immunoreactive nerve fibers in skin is increased, compared to non-affected mice. However, during advanced stages of AA, the number of SP-immunoreactive nerves and SP protein levels in skin are decreased, whereas the expression of the SP-degrading enzyme neutral endopeptidase (NEP) is increased, compared to control skin. In AA, NK-1R is expressed on CD8+ lymphocytes and macrophages accumulating around affected hair follicles. Additional SP supply to the skin of AA-affected mice leads to a significant increase of mast cell degranulation and to accelerated hair follicle regression (catagen), accompanied by an increase of CD8+ cells-expressing granzyme B. These data suggest that SP, NEP, and NK-1R serve as important regulators in the molecular signaling network modulating inflammatory response in autoimmune hair loss.

  15. Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix.

    PubMed

    Purba, Talveen S; Brunken, Lars; Peake, Michael; Shahmalak, Asim; Chaves, Asuncion; Poblet, Enrique; Ceballos, Laura; Gandarillas, Alberto; Paus, Ralf

    2017-09-01

    Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21 CIP1 , p27 KIP1 and p57 KIP2 ) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21 CIP1 , p27 KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57 KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically

  16. Cornu cervi pantotrichum Pharmacopuncture Solution Facilitate Hair Growth in C57BL/6 Mice

    PubMed Central

    Lee, Seon-Yong; Lee, Dong-Jin; Kwon, Kang; Lee, Chang-Hyun; Shin, Hyun Jong; Kim, Jai Eun; Ha, Ki-Tae; Jeong, Han-Sol

    2016-01-01

    Objectives: Cornu cervi pantotrichum (CCP) has been widely used in Korean and China, as an anti-fatigue, anti-aging, and tonic agent to enhance the functions of the reproductive and the immune systems. Because CCP has various growth factors that play important roles in the development of hair follicles, we examined whether CCP pharmacopuncture solution (CCPPS) was capable of promoting hair growth in an animal model. Methods: One day after hair depilation, CCPPS were topically applied to the dorsal skin of C57BL/6 mice once a day for 15 days. Hair growth activity was evaluated by using macro- and microscopic observations. Dorsal skin tissues were stained with hematoxylin and eosin. Expressions of bromodeoxyuridine (BrdU), proliferating cell nuclear antigen (PCNA), and fibroblast growth factor (FGF)-7 were examined by using immunohistochemical staining. A reverse transcription polymerase chain reaction (RT-PCR) analysis was also conducted to measure the messenger RNA (mRNA) expression of FGF-7. Results: CCPPS induced more active hair growth than normal saline. Histologic analysis showed enlargement of the dermal papilla, elongation of the hair shaft, and expansion of hair thickness in CCPPS treated mice, indicating that CCPPS effectively induced the development of anagen. CCPPS treatment markedly increased the expressions of BrdU and PCNA in the hair follicles of C57BL/6 mice. In addition, CCPPS up regulated the expression of FGF-7, which plays an important role in the development of hair follicles. Conclusion: These results reveal that CCPPS facilitates hair re-growth by proliferation of hair follicular cells and up-regulation of FGF-7 and suggest that CCPPS can potentially be applied as an alternative treatment for patients with alopecia. PMID:27386145

  17. Glutamatergic modulation of synaptic-like vesicle recycling in mechanosensory lanceolate nerve terminals of mammalian hair follicles

    PubMed Central

    Banks, Robert W; Cahusac, Peter M B; Graca, Anna; Kain, Nakul; Shenton, Fiona; Singh, Paramjeet; Njå, Arild; Simon, Anna; Watson, Sonia; Slater, Clarke R; Bewick, Guy S

    2013-01-01

    Our aim in the present study was to determine whether a glutamatergic modulatory system involving synaptic-like vesicles (SLVs) is present in the lanceolate ending of the mouse and rat hair follicle and, if so, to assess its similarity to that of the rat muscle spindle annulospiral ending we have described previously. Both types of endings are formed by the peripheral sensory terminals of primary mechanosensory dorsal root ganglion cells, so the presence of such a system in the lanceolate ending would provide support for our hypothesis that it is a general property of fundamental importance to the regulation of the responsiveness of the broad class of primary mechanosensory endings. We show not only that an SLV-based system is present in lanceolate endings, but also that there are clear parallels between its operation in the two types of mechanosensory endings. In particular, we demonstrate that, as in the muscle spindle: (i) FM1-43 labels the sensory terminals of the lanceolate ending, rather than the closely associated accessory (glial) cells; (ii) the dye enters and leaves the terminals primarily by SLV recycling; (iii) the dye does not block the electrical response to mechanical stimulation, in contrast to its effect on the hair cell and dorsal root ganglion cells in culture; (iv) SLV recycling is Ca2+ sensitive; and (v) the sensory terminals are enriched in glutamate. Thus, in the lanceolate sensory ending SLV recycling is itself regulated, at least in part, by glutamate acting through a phospholipase D-coupled metabotropic glutamate receptor. PMID:23440964

  18. Low-level laser treatment stimulates hair growth via upregulating Wnt10b and β-catenin expression in C3H/HeJ mice.

    PubMed

    Zhang, Tiran; Liu, Liqiang; Fan, Jincai; Tian, Jia; Gan, Cheng; Yang, Zengjie; Jiao, Hu; Han, Bing; Liu, Zheng

    2017-07-01

    This study was conducted in order to evaluate the role of low-level laser treatment (LLLT) in hair growth in C3H/HeJ mice. Healthy C57BL/6 mice were randomly divided into two groups: with and without low-level laser treatment. The skin color of each mouse was observed each day. Skin samples were collected for H&E, immunofluorescence, PCR, and western blot analysis, to observe the morphology of hair follicles and detect the expression levels of Wnt10b and β-catenin. Observation of skin color demonstrated that black pigmentation started significantly earlier in the laser group than in the control group. Hair follicle number in both groups showed no difference; however, the hair follicle length presented a significant difference. Wnt10b protein was detected on the second day in hair matrix cells in the LLLT group but not in the control group. PCR and western blot results both illustrated that expression of Wnt10b and β-catenin was significantly higher in the LLLT group than in the control group. Our study illustrated that low-level laser treatment can promote hair regrowth by inducing anagen phase of hair follicles via initiating the Wnt10b/β-catenin pathway.

  19. Stem cell plasticity enables hair regeneration following Lgr5+ cell loss.

    PubMed

    Hoeck, Joerg D; Biehs, Brian; Kurtova, Antonina V; Kljavin, Noelyn M; de Sousa E Melo, Felipe; Alicke, Bruno; Koeppen, Hartmut; Modrusan, Zora; Piskol, Robert; de Sauvage, Frederic J

    2017-06-01

    Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5 + (leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5 + cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34 + (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34 + cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5 + cells and inhibition of Wnt signalling prevents Lgr5 + cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.

  20. Immunofluorescence findings in rapid whitening of scalp hair.

    PubMed

    Guin, J D; Kumar, V; Petersen, B H

    1981-09-01

    Rapid whitening of scalp hair developed during a three-month period along with a diffuse, subtotal alopecia in a patient. Immunofluorescence microscopy of biopsy material showed prominent deposits of IgG and IgM in a granular pattern in the epithelium of the lower portions of hair follicles. Some return of the color and amount of scalp hair occurred within a year, but occasional bouts of hair loss continued to occur. It is theorized that the rapid graying was caused by a selective loss of pigmented hair, which was perhaps caused by an immunologic mechanism. Some of the findings suggest that the cause of this patient's loss of hair color may be different from those of patients who have been previously described as having rapid whitening of scalp hair because of alopecia areata or vitiligo.

  1. Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat.

    PubMed

    Han, Wenjing; Li, Xiaoyan; Wang, Lele; Wang, Honghao; Yang, Kun; Wang, Zhixin; Wang, Ruijun; Su, Rui; Liu, Zhihong; Zhao, Yanhong; Zhang, Yanjun; Li, Jinquan

    2018-03-01

    This study investigated the expression of genes in cashmere goats at different periods of their fetal development. Bioinformatics analysis was used to evaluate data obtained by transcriptome sequencing of fetus skin samples collected from Inner Mongolia cashmere goats on days 45, 55, and 65 of fetal age. We found that FoxN1 , FoxE1 , and FoxI3 genes of the Fox gene family were probably involved in the growth and development of the follicle and the formation of hair, which is consistent with previous findings. Real-time quantitative polymerase chain reaction detecting system and Western blot analysis were employed to study the relative differentially expressed genes FoxN1 , FoxE1 , and FoxI3 in the body skin of cashmere goat fetuses and adult individuals. This study provided new fundamental information for further investigation of the genes related to follicle development and exploration of their roles in hair follicle initiation, growth, and development.

  2. The male beard hair and facial skin - challenges for shaving.

    PubMed

    Maurer, M; Rietzler, M; Burghardt, R; Siebenhaar, F

    2016-06-01

    The challenge of shaving is to cut the beard hair as closely as possible to the skin without unwanted effects on the skin. To achieve this requires the understanding of beard hair and male facial skin biology as both, the beard hair and the male facial skin, contribute to the difficulties in obtaining an effective shave without shaving-induced skin irritation. Little information is available on the biology of beard hairs and beard hair follicles. We know that, in beard hairs, the density, thickness, stiffness, as well as the rates of elliptical shape and low emerging angle, are high and highly heterogeneous. All of this makes it challenging to cut it, and shaving techniques commonly employed to overcome these challenges include shaving with increased pressure and multiple stroke shaving, which increase the probability and extent of shaving-induced skin irritation. Several features of male facial skin pose problems to a perfect shave. The male facial skin is heterogeneous in morphology and roughness, and male skin has a tendency to heal slower and to develop hyperinflammatory pigmentation. In addition, many males exhibit sensitive skin, with the face most often affected. Finally, the hair follicle is a sensory organ, and the perifollicular skin is highly responsive to external signals including mechanical and thermal stimulation. Perifollicular skin is rich in vasculature, innervation and cells of the innate and adaptive immune system. This makes perifollicular skin a highly responsive and inflammatory system, especially in individuals with sensitive skin. Activation of this system, by shaving, can result in shaving-induced skin irritation. Techniques commonly employed to avoid shaving-induced skin irritation include shaving with less pressure, pre- and post-shave skin treatment and to stop shaving altogether. Recent advances in shaving technology have addressed some but not all of these issues. A better understanding of beard hairs, beard hair follicles and male

  3. Managing hair loss in midlife women.

    PubMed

    Mirmirani, Paradi

    2013-02-01

    Hair is considered one of the most defining aspects of human appearance. Hair loss, or alopecia in women is often met with significant emotional distress and anxiety. In midlife, women may encounter various hormonal and age-related physiologic changes that can lead to alterations in hair texture and growth. The most significant hormonal alteration is the onset of menopause in which there is a cessation of ovarian estrogen production. This decrease in estrogen is known to have deleterious effects on the skin and cutaneous appendages. As our understanding of the molecular and hormonal controls on the hair follicle has grown, there has been increased interest in the various modulators of hair growth, including the potential role of estrogen. Further study of hair changes in midlife women provides an important opportunity for identification of the complex regulation of hair growth as well as identification of treatment targets that may specifically benefit women. In this review, management of hair loss in midlife women is discussed with a focus on three most commonly encountered clinical conditions: female pattern hair loss, hair shaft alterations due to hair care, and telogen effluvium. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Doppler laser imaging predicts response to topical minoxidil in the treatment of female pattern hair loss.

    PubMed

    McCoy, J; Kovacevic, M; Situm, M; Stanimirovic, A; Bolanca, Z; Goren, A

    2016-01-01

    Topical minoxidil is the only drug approved by the US FDA for the treatment of female pattern hair loss. Unfortunately, following 16 weeks of daily application, less than 40% of patients regrow hair. Several studies have demonstrated that sulfotransferase enzyme activity in plucked hair follicles predicts topical minoxidil response in female pattern hair loss patients. However, due to patients’ discomfort with the procedure, and the time required to perform the enzymatic assay it would be ideal to develop a rapid, non-invasive test for sulfotransferase enzyme activity. Minoxidil is a pro-drug converted to its active form, minoxidil sulfate, by sulfotransferase enzymes in the outer root sheath of hair. Minoxidil sulfate is the active form required for both the promotion of hair regrowth and the vasodilatory effects of minoxidil. We thus hypothesized that laser Doppler velocimetry measurement of scalp blood perfusion subsequent to the application of topical minoxidil would correlate with sulfotransferase enzyme activity in plucked hair follicles. In this study, plucked hair follicles from female pattern hair loss patients were analyzed for sulfotransferase enzyme activity. Additionally, laser Doppler velocimetry was used to measure the change in scalp perfusion at 15, 30, 45, and 60 minutes, after the application of minoxidil. In agreement with our hypothesis, we discovered a correlation (r=1.0) between the change in scalp perfusion within 60 minutes after topical minoxidil application and sulfotransferase enzyme activity in plucked hairs. To our knowledge, this is the first study demonstrating the feasibility of using laser Doppler imaging as a rapid, non-invasive diagnostic test to predict topical minoxidil response in the treatment of female pattern hair loss.

  5. Efficacy of low-level laser therapy on hair regrowth in dogs with noninflammatory alopecia: a pilot study.

    PubMed

    Olivieri, Lara; Cavina, Damiano; Radicchi, Giada; Miragliotta, Vincenzo; Abramo, Francesca

    2015-02-01

    Canine noninflammatory alopecia (CNA) is a heterogeneous group of skin diseases with different underlying pathogenesis. The therapeutic approach is challenging, and new options for treatment are desirable. To test the clinical efficacy of low-level laser therapy (LLLT) on hair regrowth in CNA. Seven dogs of different ages, breeds and genders with a clinical and histopathological diagnosis of noninflammatory alopecia. Each dog was treated twice weekly for a maximum of 2 months with a therapeutic laser producing the following three different wavelengths emerging simultaneously from 21 foci: 13 × 16 mW, 470 nm; 4 × 50 mW, 685 nm; and 4 × 200 mW, 830 nm. The fluence given was 3 J/cm(2) , frequency 5 Hz, amplitude of the irradiated area was 25 cm(2) and application time was 1.34 min. A predetermined alopecic area was left untreated and served as a control area. From one dog, post-treatment biopsies of treated and untreated sites were obtained for histological evaluation of hair density and the percentage of haired and nonhaired follicles. At the end of the study, coat regrowth was greatly improved in six of seven animals and improved in one of seven. By morphometry, the area occupied by hair follicles was 18% in the treated sample and 11% in the untreated one (11%); haired follicles were (per area) 93% in the treated sample and only 9% in the control sample. Our clinical and histological data document promising effects of LLLT on hair regrowth in CNA. Further studies investigating the biological mechanism underlying the effect of LLLT on hair follicle cycling are warranted. © 2014 ESVD and ACVD.

  6. Epidermal E-Cadherin Dependent β-Catenin Pathway Is Phytochemical Inducible and Accelerates Anagen Hair Cycling.

    PubMed

    Ahmed, Noha S; Ghatak, Subhadip; El Masry, Mohamed S; Gnyawali, Surya C; Roy, Sashwati; Amer, Mohamed; Everts, Helen; Sen, Chandan K; Khanna, Savita

    2017-11-01

    Unlike the epidermis, which regenerates continually, hair follicles anchored in the subcutis periodically regenerate by spontaneous repetitive cycles of growth (anagen), degeneration (catagen), and rest (telogen). The loss of hair follicles in response to injuries or pathologies such as alopecia endangers certain inherent functions of the skin. Thus, it is of interest to understand mechanisms underlying follicular regeneration in adults. In this work, a phytochemical rich in the natural vitamin E tocotrienol (TRF) served as a productive tool to unveil a novel epidermal pathway of hair follicular regeneration. Topical TRF application markedly induced epidermal hair follicle development akin to that during fetal skin development. This was observed in the skin of healthy as well as diabetic mice, which are known to be resistant to anagen hair cycling. TRF suppressed epidermal E-cadherin followed by 4-fold induction of β-catenin and its nuclear translocation. Nuclear β-catenin interacted with Tcf3. Such sequestration of Tcf3 from its otherwise known function to repress pluripotent factors induced the plasticity factors Oct4, Sox9, Klf4, c-Myc, and Nanog. Pharmacological inhibition of β-catenin arrested anagen hair cycling by TRF. This work reports epidermal E-cadherin/β-catenin as a novel pathway capable of inducing developmental folliculogenesis in the adult skin. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Characterization of hair-follicle side population cells in mouse epidermis and skin tumors

    PubMed Central

    Kim, Sun Hye; Sistrunk, Christopher; Miliani de Marval, Paula L.; Rodriguez-Puebla, Marcelo L.

    2017-01-01

    A subset of cells, termed side-population (SP), which have the ability to efflux Hoeschst 33342, have previously been demonstrated to act as a potential method to isolate stem cells. Numerous stem/progenitor cells have been localized in different regions of the mouse hair follicle (HF). The present study identified a SP in the mouse HF expressing the ABCG2 transporter and MTS24 surface marker. These cells are restricted to the upper isthmus of the HF and have previously been described as progenitor cells. Consistent with their SP characteristic, they demonstrated elevated expression of ABCG2 transporter, which participates in the dye efflux. Analysis of tumor epidermal cell lines revealed a correlation between the number of SP keratinocytes and the grade of malignancy, suggesting that the SP may play a role in malignant progression. Consistent with this idea, the present study observed an increased number of cells expressing ABCG2 and MTS24 in chemically induced skin tumors and skin tumor cell lines. This SP does not express the CD34 surface marker detected in the multipotent stem cells of the bulge region of the HF, which have been defined as tumor initiation cells. The present study concluded that a SP with properties of progenitor cells is localized in the upper isthmus of the HF and is important in mouse skin tumor progression. PMID:29181098

  8. Drug discovery for alopecia: gone today, hair tomorrow.

    PubMed

    Santos, Zenildo; Avci, Pinar; Hamblin, Michael R

    2015-03-01

    Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8(+)NK group 2D-positive (NKG2D(+)) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play.

  9. Drug discovery for alopecia: gone today, hair tomorrow

    PubMed Central

    Santos, Zenildo; Avci, Pinar; Hamblin, Michael R

    2015-01-01

    Introduction Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. Areas covered In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8+NK group 2D-positive (NKG2D+) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. Expert opinion The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play. PMID:25662177

  10. Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem Cells

    PubMed Central

    Li, Chunyi; McMahon, Chris

    2013-01-01

    We have made comparisons between hair follicles (HFs) and antler units (AUs)—two seemingly unrelated mammalian organs. HFs are tiny and concealed within skin, whereas AUs are gigantic and grown externally for visual display. However, these two organs share some striking similarities. Both consist of permanent and cyclic/temporary components and undergo stem-cell-based organogenesis and cyclic regeneration. Stem cells of both organs reside in the permanent part and the growth centres are located in the temporary part of each respective organ. Organogenesis and regeneration of both organs depend on epithelial-mesenchymal interactions. Establishment of these interactions requires stem cells and reactive/niche cells (dermal papilla cells for HFs and epidermal cells for AUs) to be juxtaposed, which is achieved through destruction of the cyclic part to bring the reactive cells into close proximity to the respective stem cell niche. Developments of HFs and AUs are regulated by similar endocrine (particularly testosterone) and paracrine (particularly IGF1) factors. Interestingly, these two organs come to interplay during antlerogenesis. In conclusion, we believe that investigators from the fields of both HF and AU biology could greatly benefit from a comprehensive comparison between these two organs. PMID:24383056

  11. Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice

    PubMed Central

    Lin, Wei-hong; Xiang, Li-Jun; Shi, Hong-Xue; Zhang, Jian; Jiang, Li-ping; Cai, Ping-tao; Lin, Zhen-Lang; Lin, Bei-Bei; Huang, Yan; Zhang, Hai-Lin; Fu, Xiao-Bing; Guo, Ding-Jiong; Li, Xiao-Kun; Wang, Xiao-Jie; Xiao, Jian

    2015-01-01

    Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent. PMID:25685806

  12. Evaluation of the effect of formic acid and sodium formate on hair reduction in rat

    PubMed Central

    Banihashemi, Mahnaz; Rad, Abolfazl Khajavi; Yazdi, Seyed Abbas Tabatabaee; Rakhshande, Hasan; Ghoyonlo, Vahid Mashayekhi; Zabihi, Zahra; Yousefzadeh, Hadis

    2011-01-01

    Hirsutism is a common problem in dermatology that imposes high socioeconomical costs on medical care. Consequently, researchers are actively searching for cheaper and safer methods for therapeutic treatment. The objective of the present study is to evaluate formic oil, enriched from formic acid, for the removal of unwanted hair. In this study, 32 female rats (150–200 g) were randomly divided into four groups and maintained with normal water and food availability. A patch of skin was shaved on each rat for application of test solutions. The control group was treated with local once-daily applications of normal saline. The formic acid, acetic acid, and sodium formate groups were treated with once-daily applications of formic acid (pH 5.5), acetic acid (pH 5.5), or sodium formate, respectively. After 2 weeks, horizontally cut sample biopsies were removed, and the numbers of hair follicles were counted under high field microscopy by a specialist blinded to the treatments. Kolmogorov–Smirnov test results indicated a nonparametric distribution for the rat groups. ANOVA analysis indicated no statistically significant differences between groups (P < 0.05). There weren’t any side effects or evidence for toxicity during the study period. However, hair follicle counts showed a descending order of control, acetic acid, formic acid, and sodium formate. Although the sodium formate group had the lowest hair follicle numbers, the difference was not statistically significant (P > 0.05). Formic acid was not effective in reducing hair follicle numbers in rats. PMID:21760741

  13. Enhancing hair growth in male androgenetic alopecia by a combination of fractional CO2 laser therapy and hair growth factors.

    PubMed

    Huang, Yue; Zhuo, Fenglin; Li, Linfeng

    2017-11-01

    Laser therapy and growth factors have been used as alternative treatments for male androgenetic alopecia (MAA). The aim of this study is to determine the efficacy and safety of hair growth factors alone or combined with ablative carbon dioxide (CO 2 ) fractional laser therapy in MAA. Twenty-eight men were enrolled in this randomized half-split study based on a left-head to right-head pattern. Fractional CO 2 laser treatment was unilaterally performed; hair growth factors were bilaterally applied. Six sessions with 2-week intervals were performed. Global photographs and dermoscopy assessments were performed at the baseline and 4 months after first treatment. Global photographs underwent blinded review by three independent dermatologists. Scanning electron microscopy was used to compare changes in hair-follicle phase and hair-shaft diameter. Twenty-seven participants completed the 4-month treatment schedule. One patient was lost. Mean hair density increased from 114 ± 27 to 143 ± 25/cm 2 (P < 0.001) in the combined group and from 113 ± 24 to 134 ± 19/cm 2 in the growth factor group (P < 0.001). The mean change from baseline between two groups was also compared (P = 0.003). Global photographs showed improvement in 93% (25/27) patients in the combined group and 67% (18/27) patients in the growth factor group. Under scanning electron microscopy, hair follicles appeared to transition from telogen to anagen, and hair-shaft diameter increased in five randomly selected patients. Ablative fractional CO 2 laser combined with hair growth factors may serve as an alternative treatment for MAA in individuals unwilling/unable to undergo medical or surgical treatment.

  14. 1α,25-dihydroxyvitamin D3 modulates the hair-inductive capacity of dermal papilla cells: therapeutic potential for hair regeneration.

    PubMed

    Aoi, Noriyuki; Inoue, Keita; Chikanishi, Toshihiro; Fujiki, Ryoji; Yamamoto, Hanako; Kato, Harunosuke; Eto, Hitomi; Doi, Kentaro; Itami, Satoshi; Kato, Shigeaki; Yoshimura, Kotaro

    2012-08-01

    Dermal papilla cells (DPCs) have the potential to induce differentiation of epithelial stem cells into hair, and Wnt signaling is deeply involved in the initiation process. The functional limitation of expanded adult DPCs has been a difficult challenge for cell-based hair regrowth therapy. We previously reported that 1α,25-dihydroxyvitamin D(3) (VD(3)) upregulates expression of transforming growth factor (TGF)-β2 and alkaline phosphatase (ALP) activity, both features of hair-inducing human DPCs (hDPCs). In this study, we further examined the effects and signaling pathways associated with VD(3) actions on DPCs. VD(3) suppressed hDPC proliferation in a dose-dependent, noncytotoxic manner. Among the Wnt-related genes investigated, Wnt10b expression was significantly upregulated by VD(3) in hDPCs. Wnt10b upregulation, as well as upregulation of ALPL (ALP, liver/bone/kidney) and TGF-β2, by VD(3) was specific in hDPCs and not detected in human dermal fibroblasts. Screening of paracrine or endocrine factors in the skin indicated that all-trans retinoic acid (atRA) upregulated Wnt10b gene expression, although synergistic upregulation (combined atRA and VD(3)) was not seen. RNA interference with vitamin D receptor (VDR) revealed that VD(3) upregulation of Wnt10b, ALPL, and TGF-β2 was mediated through the genomic VDR pathway. In a rat model of de novo hair regeneration by murine DPC transplantation, pretreatment with VD(3) significantly enhanced hair folliculogenesis. Specifically, a greater number of outgrowing hair shafts and higher maturation of regenerated follicles were observed. Together, these data suggest that VD(3) may promote functional differentiation of DPCs and be useful in preserving the hair follicle-inductive capacity of cultured DPCs for hair regeneration therapies.

  15. 1α,25-Dihydroxyvitamin D3 Modulates the Hair-Inductive Capacity of Dermal Papilla Cells: Therapeutic Potential for Hair Regeneration

    PubMed Central

    Aoi, Noriyuki; Inoue, Keita; Chikanishi, Toshihiro; Fujiki, Ryoji; Yamamoto, Hanako; Kato, Harunosuke; Eto, Hitomi; Doi, Kentaro; Itami, Satoshi; Kato, Shigeaki

    2012-01-01

    Dermal papilla cells (DPCs) have the potential to induce differentiation of epithelial stem cells into hair, and Wnt signaling is deeply involved in the initiation process. The functional limitation of expanded adult DPCs has been a difficult challenge for cell-based hair regrowth therapy. We previously reported that 1α,25-dihydroxyvitamin D3 (VD3) upregulates expression of transforming growth factor (TGF)-β2 and alkaline phosphatase (ALP) activity, both features of hair-inducing human DPCs (hDPCs). In this study, we further examined the effects and signaling pathways associated with VD3 actions on DPCs. VD3 suppressed hDPC proliferation in a dose-dependent, noncytotoxic manner. Among the Wnt-related genes investigated, Wnt10b expression was significantly upregulated by VD3 in hDPCs. Wnt10b upregulation, as well as upregulation of ALPL (ALP, liver/bone/kidney) and TGF-β2, by VD3 was specific in hDPCs and not detected in human dermal fibroblasts. Screening of paracrine or endocrine factors in the skin indicated that all-trans retinoic acid (atRA) upregulated Wnt10b gene expression, although synergistic upregulation (combined atRA and VD3) was not seen. RNA interference with vitamin D receptor (VDR) revealed that VD3 upregulation of Wnt10b, ALPL, and TGF-β2 was mediated through the genomic VDR pathway. In a rat model of de novo hair regeneration by murine DPC transplantation, pretreatment with VD3 significantly enhanced hair folliculogenesis. Specifically, a greater number of outgrowing hair shafts and higher maturation of regenerated follicles were observed. Together, these data suggest that VD3 may promote functional differentiation of DPCs and be useful in preserving the hair follicle-inductive capacity of cultured DPCs for hair regeneration therapies. PMID:23197867

  16. Pharmacologic interventions in aging hair

    PubMed Central

    Trüeb, Ralph M

    2006-01-01

    The appearance of hair plays an important role in people’s overall physical appearance and self-perception. With today’s increasing life-expectations, the desire to look youthful plays a bigger role than ever. The hair care industry has become aware of this and is delivering active products directed towards meeting this consumer demand. The discovery of pharmacological targets and the development of safe and effective drugs also indicate strategies of the drug industry for maintenance of healthy and beautiful hair. Hair aging comprises weathering of the hair shaft, decrease of melanocyte function, and decrease in hair production. The scalp is subject to intrinsic and extrinsic aging. Intrinsic factors are related to individual genetic and epigenetic mechanisms with interindividual variation: prototypes are familial premature graying, and androgenetic alopecia. Currently available pharmacologic treatment modalities with proven efficacy for treatment of androgenetic alopecia are topical minoxidil and oral finasteride. Extrinsic factors include ultraviolet radiation and air pollution. Experimental evidence supports the hypothesis that oxidative stress also plays a role in hair aging. Topical anti-aging compounds include photoprotectors and antioxidants. In the absence of another way to reverse hair graying, hair colorants remain the mainstay of recovering lost hair color. Topical liposome targeting for melanins, genes, and proteins selectively to hair follicles are currently under investigation. PMID:18044109

  17. Sox2 in the dermal papilla niche controls hair growth by fine-tuning Bmp signaling in differentiating hair shaft progenitors

    PubMed Central

    Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Rezza, Amelie; Barros, Rita; Sennett, Rachel; Mazloom, Amin; Chung, Chi-Yeh; Cai, Xiaoqiang; Cai, Chen-Leng; Pevny, Larysa; Nicolis, Silvia; Ma’ayan, Avi; Rendl, Michael

    2012-01-01

    SUMMARY How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18Cre to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration rate of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased Bmp inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated Bmp signaling in knockout hair shaft progenitors and demonstrate that Bmps inhibit cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased Bmp activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning Bmp-mediated mesenchymal-epithelial crosstalk. PMID:23153495

  18. Persistent Pemphigus Vulgaris Showing Features of Tufted Hair Folliculitis

    PubMed Central

    Ko, Dong Kyun; Chae, In Soo; Chung, Ki Hun; Chung, Hyun

    2011-01-01

    Pemphigus vulgaris is an autoimmune blistering disease that commonly involves the scalp. Lesions of pemphigus vulgaris that persist on the scalp for a long period may be accompanied by tufted hair folliculitis. Only two previous accounts of tufted hair folliculitis developing in a lesion of pemphigus vulgaris have been reported. We report a 51-year-old-man with erosions and clusters of hair on the scalp. The scalp lesion had persisted for about 20 years. A histopathological examination of the skin lesion on the scalp revealed separation of the epidermis and clusters of several adjacent hair follicles. The patient was diagnosed with persistent pemphigus vulgaris of the scalp showing features of tufted hair folliculitis. PMID:22148026

  19. Follicular and percutaneous penetration pathways of topically applied minoxidil foam.

    PubMed

    Blume-Peytavi, Ulrike; Massoudy, Lida; Patzelt, Alexa; Lademann, Jürgen; Dietz, Ekkehart; Rasulev, Utkur; Garcia Bartels, Natalie

    2010-11-01

    In the past, it was assumed that the intercellular route was the only relevant penetration pathway for topically applied substances. Recent results on follicular penetration emphasize that the hair follicles represent a highly relevant and efficient penetration pathway and reservoir for topically applied substances. This study investigates a selective closure technique of hair follicle orifices in vivo assessing interfollicular and follicular absorption rates of topical minoxidil foam in humans. In delimited skin area, single hair orifices or interfollicular skin were blocked with a microdrop of special varnish-wax-mixture in vivo. Minoxidil foam (5%) was topically applied, and transcutaneous absorption was measured by a new surface ionization mass spectrometry technique in serum. Different settings (open, closed or none of both) enabled to clearly distinguish between interfollicular and follicular penetration of the topically applied minoxidil foam. Five minutes after topical application, minoxidil was detected in blood samples when follicles remained open, whereas with closed follicles 30 min were needed. Highest levels were found first when both pathways were open, followed by open follicles and subsequently by closed follicles. These results demonstrate the high importance of the follicular penetration pathway. Hair follicles are surrounded by a dense network of blood capillaries and dendritic cells and have stem cells in their immediate vicinity, making them ideal targets for drug delivery. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Hair curvature: a natural dialectic and review.

    PubMed

    Nissimov, Joseph N; Das Chaudhuri, Asit Baran

    2014-08-01

    Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways

  1. Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle

    PubMed Central

    Paterson, Elyse K.; Fielder, Thomas J.; MacGregor, Grant R.; Ito, Shosuke; Wakamatsu, Kazumasa; Gillen, Daniel L.; Eby, Victoria; Boissy, Raymond E.; Ganesan, Anand K.

    2015-01-01

    The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes. PMID:26619124

  2. Dermal Blimp1 Acts Downstream of Epidermal TGFβ and Wnt/β-Catenin to Regulate Hair Follicle Formation and Growth.

    PubMed

    Telerman, Stephanie B; Rognoni, Emanuel; Sequeira, Inês; Pisco, Angela Oliveira; Lichtenberger, Beate M; Culley, Oliver J; Viswanathan, Priyalakshmi; Driskell, Ryan R; Watt, Fiona M

    2017-11-01

    B-lymphocyte-induced maturation protein 1 (Blimp1) is a transcriptional repressor that regulates cell growth and differentiation in multiple tissues, including skin. Although in the epidermis Blimp1 is important for keratinocyte and sebocyte differentiation, its role in dermal fibroblasts is unclear. Here we show that Blimp1 is dynamically regulated in dermal papilla cells during hair follicle (HF) morphogenesis and the postnatal hair cycle, preceding dermal Wnt/β-catenin activation. Blimp1 ablation in E12.5 mouse dermal fibroblasts delayed HF morphogenesis and growth and prevented new HF formation after wounding. By combining targeted quantitative PCR screens with bioinformatic analysis and experimental validation we demonstrated that Blimp1 is both a target and a mediator of key dermal papilla inductive signaling pathways including transforming growth factor-β and Wnt/β-catenin. Epidermal overexpression of stabilized β-catenin was able to override the HF defects in Blimp1 mutant mice, underlining the close reciprocal relationship between the dermal papilla and adjacent HF epithelial cells. Overall, our study reveals the functional role of Blimp1 in promoting the dermal papilla inductive signaling cascade that initiates HF growth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Two waves of anisotropic growth generate enlarged follicles in the spiny mouse

    PubMed Central

    2014-01-01

    Background Mammals exhibit a remarkable variety of phenotypes and comparative studies using novel model species are needed to uncover the evolutionary developmental mechanisms generating this diversity. Here, we undertake a developmental biology and numerical modeling approach to investigate the development of skin appendages in the spiny mouse, Acomys dimidiatus. Results We demonstrate that Acomys spines, possibly involved in display and protection, are enlarged awl hairs with a concave morphology. The Acomys spines originate from enlarged placodes that are characterized by a rapid downwards growth which results in voluminous follicles. The dermal condensation (dermal papilla) at the core of the follicle is very large and exhibits a curved geometry. Given its off-centered position, the dermal papilla generates two waves of anisotropic proliferation, first of the posterior matrix, then of the anterior inner root sheath (IRS). Higher in the follicle, the posterior and anterior cortex cross-section areas substantially decrease due to cortex cell elongation and accumulation of keratin intermediate filaments. Milder keratinization in the medulla gives rise to a foamy material that eventually collapses under the combined compression of the anterior IRS and elongation of the cortex cells. Simulations, using linear elasticity theory and the finite-element method, indicate that these processes are sufficient to replicate the time evolution of the Acomys spine layers and the final shape of the emerging spine shaft. Conclusions Our analyses reveal how hair follicle morphogenesis has been altered during the evolution of the Acomys lineage, resulting in a shift from ancestral awl follicles to enlarged asymmetrical spines. This study contributes to a better understanding of the evolutionary developmental mechanisms that generated the great diversity of skin appendage phenotypes observed in mammals. PMID:25705371

  4. Beam shaping for cosmetic hair removal

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Tuttle, Tracie

    2007-09-01

    Beam shaping has the potential to provide comfort to people who require or seek laser based cosmetic skin procedures. Of immediate interest is the procedure of aesthetic hair removal. Hair removal is performed using a variety of wavelengths from 480 to 1200 nm by means of filtered Xenon flash lamps (pulsed light) or 810 nm diode lasers. These wavelengths are considered the most efficient means available for hair removal applications, but current systems use simple reflector designs and plane filter windows to direct the light to the surface being exposed. Laser hair removal is achieved when these wavelengths at sufficient energy levels are applied to the epidermis. The laser energy is absorbed by the melanin (pigment) in the hair and hair follicle which in turn is transformed into heat. This heat creates the coagulation process, which causes the removal of the hair and prevents growth of new hair [1]. This paper outlines a technique of beam shaping that can be applied to a non-contact based hair removal system. Several features of the beam shaping technique including beam uniformity and heat dispersion across its operational treatment area will be analyzed. A beam shaper design and its fundamental testing will be discussed in detail.

  5. In vivo hair growth promotion effects of ultra-high molecular weight poly-γ-glutamic acid from Bacillus subtilis (Chungkookjang).

    PubMed

    Choi, Jae-Chul; Uyama, Hiroshi; Lee, Chul-Hoon; Sung, Moon-Hee

    2015-03-01

    We investigated the effect of ultra-high molecular weight poly-γ-glutamic acid (UHMW γ-PGA) on hair loss in vitro and in vivo. 5-Alpha reductase is an enzyme that metabolizes the male hormone testosterone into dihydrotestosterone. By performing an in vitro experiment to analyze the inhibitory effects of UHMW γ-PGA on 5-alpha reductase activity, we determined that UHMW γ-PGA did in fact inhibit 5-alpha reductase activity, indicating the use of UHMW γ-PGA as a potential 5-alpha reductase inhibitor in the treatment of men with androgenetic alopecia. To evaluate the promotion of hair growth in vivo, we topically applied UHMW γ-PGA and minoxidil on the shaved dorsal skin of telogenic C57BL/6 mice for 4 weeks. At 4 weeks, the groups treated with UHMW γ-PGA showed hair growth on more than 50% of the shaved skin, whereas the control group showed less hair growth. To investigate the progression of hair follicles in the hair cycle, hematoxylin and eosin staining was performed. Histological observations revealed that the appearance of hair follicles was earlier in the UHMW γ-PGA-treated group than in the control group. The number of hair follicles on the relative area of shaved skin in the UHMW γ-PGA-treated group was higher than that observed on the shaved skin in the control group. These results indicate that UHMW γ-PGA can promote hair growth by effectively inducing the anagen phase in telogenic C57BL/6 mice.

  6. Novel insights into the pathways regulating the canine hair cycle and their deregulation in alopecia X.

    PubMed

    Brunner, Magdalena A T; Jagannathan, Vidhya; Waluk, Dominik P; Roosje, Petra; Linek, Monika; Panakova, Lucia; Leeb, Tosso; Wiener, Dominique J; Welle, Monika M

    2017-01-01

    Alopecia X is a hair cycle arrest disorder in Pomeranians. Histologically, kenogen and telogen hair follicles predominate, whereas anagen follicles are sparse. The induction of anagen relies on the activation of hair follicle stem cells and their subsequent proliferation and differentiation. Stem cell function depends on finely tuned interactions of signaling molecules and transcription factors, which are not well defined in dogs. We performed transcriptome profiling on skin biopsies to analyze altered molecular pathways in alopecia X. Biopsies from five affected and four non-affected Pomeranians were investigated. Differential gene expression revealed a downregulation of key regulator genes of the Wnt (CTNNB1, LEF1, TCF3, WNT10B) and Shh (SHH, GLI1, SMO, PTCH2) pathways. In mice it has been shown that Wnt and Shh signaling results in stem cell activation and differentiation Thus our findings are in line with the lack of anagen hair follicles in dogs with Alopecia X. We also observed a significant downregulation of the stem cell markers SOX9, LHX2, LGR5, TCF7L1 and GLI1 whereas NFATc1, a quiescence marker, was upregulated in alopecia X. Moreover, genes coding for enzymes directly involved in the sex hormone metabolism (CYP1A1, CYP1B1, HSD17B14) were differentially regulated in alopecia X. These findings are in agreement with the so far proposed but not yet proven deregulation of the sex hormone metabolism in this disease.

  7. Investigation of Hair Follicle and Plasma Biomarkers for Low-Level VX Vapor Exposure

    DTIC Science & Technology

    2006-11-01

    hydroxyxanthotoxin L-Methionine response 5 Poly- L – Glutamate L-Valine Pyridoxal 2-Naphthylamine Uridine 4- oxoproline L-Citrulline e 5 ...verified in the bulb region of the follicle except Na+/K+-ATPase α1. Figure 1. 5 Figure 1: Western Blot of total rat follicle bulb...protein separated by 10-20% SDS-PAGE. The lanes are: 1: BioRad Kaleidoscope Molecular Weight Ladder; 2: BRCA 1; 3: GAPDH; 4: Keratin 10; 5

  8. Female Pattern Hair Loss: a clinical and pathophysiological review*

    PubMed Central

    Ramos, Paulo Müller; Miot, Hélio Amante

    2015-01-01

    Female Pattern Hair Loss or female androgenetic alopecia is the main cause of hair loss in adult women and has a major impact on patients' quality of life. It evolves from the progressive miniaturization of follicles that lead to a subsequent decrease of the hair density, leading to a non-scarring diffuse alopecia, with characteristic clinical, dermoscopic and histological patterns. In spite of the high frequency of the disease and the relevance of its psychological impact, its pathogenesis is not yet fully understood, being influenced by genetic, hormonal and environmental factors. In addition, response to treatment is variable. In this article, authors discuss the main clinical, epidemiological and pathophysiological aspects of female pattern hair loss. PMID:26375223

  9. Hair cycle control by leptin as a new anagen inducer.

    PubMed

    Sumikawa, Yasuyuki; Inui, Shigeki; Nakajima, Takeshi; Itami, Satoshi

    2014-01-01

    Our purpose is to clarify the physiological role of leptin in hair cycle as leptin reportedly causes activation of Stat3, which is indispensable for hair cycling. While hair follicles in dorsal skin of 5-week-old C57/BL6 mice had progressed to late anagen phase, those in dorsal skin of 5-week-old leptin receptor deficient db/db mice remained in the first telogen and later entered the anagen at postnatal day 40, indicating that deficiency in leptin receptor signalling delayed the second hair cycle progression. Next, we shaved dorsal hairs on wild-type mice at postnatal 7 weeks and injected skin with mouse leptin or a mock. After 20 days, although mock injection showed no effect, hair growth occurred around leptin injection area. Human leptin fragment (aa22-56) had similar effects. Although the hair cycle of ob/ob mice was similar to that of wild-type mice, injection of mouse leptin on ob/ob mice at postnatal 7 weeks induced anagen transition. Immunohistochemically, leptin is expressed in hair follicles from catagen to early anagen in wild-type mice, suggesting that leptin is an anagen inducer in vivo. Phosphorylation of Erk, Jak2 and Stat3 in human keratinocytes was stimulated by leptin and leptin fragment. In addition, RT-PCR and ELISA showed that the production of leptin by human dermal papilla cells increased under hypoxic condition, suggesting that hypoxia in catagen/telogen phase promotes leptin production, preparing for entry into the next anagen. In conclusion, leptin, a well-known adipokine, acts as an anagen inducer and represents a new player in hair biology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The biology of hair diversity.

    PubMed

    Westgate, Gillian E; Botchkareva, Natalia V; Tobin, Desmond J

    2013-08-01

    Hair diversity, its style, colour, shape and growth pattern is one of our most defining characteristics. The natural versus temporary style is influenced by what happens to our hair during our lifetime, such as genetic hair loss, sudden hair shedding, greying and pathological hair loss in the various forms of alopecia because of genetics, illness or medication. Despite the size and global value of the hair care market, our knowledge of what controls the innate and within-lifetime characteristics of hair diversity remains poorly understood. In the last decade, drivers of knowledge have moved into the arena of genetics where hair traits are obvious and measurable and genetic polymorphisms are being found that raise valuable questions about the biology of hair growth. The recent discovery that the gene for trichohyalin contributes to hair shape comes as no surprise to the hair biologists who have believed for 100 years that hair shape is linked to the structure and function of the inner root sheath. Further conundrums awaiting elucidation include the polymorphisms in the androgen receptor (AR) described in male pattern alopecia whose location on the X chromosome places this genetic contributor into the female line. The genetics of female hair loss is less clear with polymorphisms in the AR not associated with female pattern hair loss. Lifestyle choices are also implicated in hair diversity. Greying, which also has a strong genetic component, is often suggested to have a lifestyle (stress) influence and hair follicle melanocytes show declining antioxidant protection with age and lowered resistance to stress. It is likely that hair research will undergo a renaissance on the back of the rising information from genetic studies as well as the latest contributions from the field of epigenetics. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. A homozygous missense variant in type I keratin KRT25 causes autosomal recessive woolly hair.

    PubMed

    Ansar, Muhammad; Raza, Syed Irfan; Lee, Kwanghyuk; Irfanullah; Shahi, Shamim; Acharya, Anushree; Dai, Hang; Smith, Joshua D; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Santos-Cortez, Regie Lyn P; Ahmad, Wasim; Leal, Suzanne M

    2015-10-01

    Woolly hair (WH) is a hair abnormality that is primarily characterised by tightly curled hair with abnormal growth. In two unrelated consanguineous Pakistani families with non-syndromic autosomal recessive (AR) WH, homozygosity mapping and linkage analysis identified a locus within 17q21.1-q22, which contains the type I keratin gene cluster. A DNA sample from an affected individual from each family underwent exome sequencing. A homozygous missense variant c.950T>C (p.(Leu317Pro)) within KRT25 segregated with ARWH in both families, and has a combined maximum two-point LOD score of 7.9 at ϴ=0. The KRT25 variant is predicted to result in disruption of the second α-helical rod domain and the entire protein structure, thus possibly interfering with heterodimerisation of K25 with type II keratins within the inner root sheath (IRS) of the hair follicle and the medulla of the hair shaft. Our findings implicate a novel gene involved in human hair abnormality, and are consistent with the curled, fragile hair found in mice with Krt25 mutations, and further support the role of IRS-specific type I keratins in hair follicle development and maintenance of hair texture. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Characteristics of MIC-1 antlerogenic stem cells and their effect on hair growth in rabbits.

    PubMed

    Cegielski, Marek; Izykowska, Ilona; Chmielewska, Magdalena; Dziewiszek, Wojciech; Bochnia, Marek; Calkosinski, Ireneusz; Dziegiel, Piotr

    2013-01-01

    We characterized growth factors produced by MIC-1 antlerogenic stem cells and attempted to apply those cells to stimulate hair growth in rabbits. We evaluated the gene and protein expression of growth factors by immunocytochemical and molecular biology techniques in MIC-1 cells. An animal model was used to assess the effects of xenogenous stem cells on hair growth. In the experimental group, rabbits were intradermally injected with MIC-1 stem cells, whereas the control group rabbits were given vehicle-only. After 1, 2 and 4 weeks, skin specimen were collected for histological and immunohistochemical tests. MIC-1 antlerogenic stem cells express growth factors, as confirmed at the mRNA and protein levels. Histological and immunohistochemical analysis demonstrated an increase in the number of hair follicles, as well as the amount of secondary hair in the follicles, without an immune response in animals injected intradermally with MIC-1 cells, compared to animals receiving vehicle-alone. MIC-1 cells accelerated hair growth in rabbits due to the activation of cells responsible for the regulation of the hair growth cycle through growth factors. Additionally, the xenogenous cell implant did not induce immune response.

  13. Trps1 activates a network of secreted Wnt inhibitors and transcription factors crucial to vibrissa follicle morphogenesis

    PubMed Central

    Fantauzzo, Katherine A.; Christiano, Angela M.

    2012-01-01

    Mutations in TRPS1 cause trichorhinophalangeal syndrome types I and III, which are characterized by sparse scalp hair in addition to craniofacial and skeletal abnormalities. Trps1 is a vertebrate transcription factor that contains nine zinc-finger domains, including a GATA-type zinc finger through which it binds DNA. Mice in which the GATA domain of Trps1 has been deleted (Trps1Δgt/Δgt) have a reduced number of pelage follicles and lack vibrissae follicles postnatally. To identify the transcriptional targets of Trps1 in the developing vibrissa follicle, we performed microarray hybridization analysis, comparing expression patterns in the whisker pads of wild-type versus Trps1Δgt/Δgt embryos. We identified a number of transcription factors and Wnt inhibitors among transcripts downregulated in the mutant embryos and several extracellular matrix proteins that were upregulated in the mutant samples, and demonstrated that target gene expression levels were altered in vivo in Trps1Δgt/Δgt vibrissae. Unexpectedly, we discovered that Trps1 can directly bind the promoters of its target genes to activate transcription, expanding upon its established role as a transcriptional repressor. Our findings identify Trps1 as a novel regulator of the Wnt signaling pathway and of early hair follicle progenitors in the developing vibrissa follicle. PMID:22115758

  14. Hairless controls hair fate decision via Wnt/β-catenin signaling.

    PubMed

    Zhu, Kuicheng; Xu, Cunshuan; Liu, Mengduan; Zhang, Jintao

    2017-09-23

    The hairless (Hr) gene plays a central role in the hair cycle, considering that mutations in the gene result in hair loss with the exception of a few vibrissae after the first hair growth cycle in both mice and humans. This study examinedthe uncommon phenotype and using microarray analyses and functional studies, we found that β-catenin was mediated by Hr. Progenitor keratinocytes from the bulge region differentiate into both epidermis and sebaceous glands, and fail to adopt the hair keratinocytes fate in the mutant scalp, due to the decreased Wnt/β-catenin signaling in the absence of the hairless protein. This may be attributed to the dysfunction of normal epithelial-mesenchymal interactions in the hair follicle (HF). Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model

    PubMed Central

    2013-01-01

    Background Alopecia areata is the hair loss usually reversible, in sharply defined areas. The treatment of alopecia using growth factors shows interesting activity in promoting hair growth. In this concept, VEGF (vascular endothelial growth factor) is a marker of angiogenesis, stimulating hair growth by facilitating the supply of nutrients to the hair follicle, increasing follicular diameter. The aim of this study was the evaluation of a topical gel enriched with VEGF liposomes on the hair growth stimulation and its toxicological aspects. Methods Mesocricetus auratus were randomly divided into three groups. Control group was treated with Aristoflex® gel, 1% group with the same gel but added 1% VEGF and 3% group with 3% VEGF. Biochemical, hematological and histological analyses were done. Results At the end of the experiment (15th day of VEGF treatment) efficacy was determined macroscopically by hair density dermatoscopy analysis, and microscopically by hair diameter analysis. They both demonstrated that hair of the VEGF group increased faster and thicker than control. On the other hand, biochemical and hematological results had shown that VEGF was not 100% inert. Conclusions VEGF increased hair follicle area, but more studies are necessary to confirm its toxicity. PMID:24168457

  16. Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model.

    PubMed

    Gnann, Laís Angelo; Castro, Rafael Ferreira; Azzalis, Ligia Ajaime; Feder, David; Perazzo, Fabio Ferreira; Pereira, Edimar Cristiano; Rosa, Paulo César Pires; Junqueira, Virginia Berlanga Campos; Rocha, Katya Cristina; Machado, Carlos D' Aparecida; Paschoal, Francisco Camargo; de Abreu, Luiz Carlos; Valenti, Vitor Engrácia; Fonseca, Fernando Luiz Affonso

    2013-10-29

    Alopecia areata is the hair loss usually reversible, in sharply defined areas. The treatment of alopecia using growth factors shows interesting activity in promoting hair growth. In this concept, VEGF (vascular endothelial growth factor) is a marker of angiogenesis, stimulating hair growth by facilitating the supply of nutrients to the hair follicle, increasing follicular diameter. The aim of this study was the evaluation of a topical gel enriched with VEGF liposomes on the hair growth stimulation and its toxicological aspects. Mesocricetus auratus were randomly divided into three groups. Control group was treated with Aristoflex® gel, 1% group with the same gel but added 1% VEGF and 3% group with 3% VEGF. Biochemical, hematological and histological analyses were done. At the end of the experiment (15th day of VEGF treatment) efficacy was determined macroscopically by hair density dermatoscopy analysis, and microscopically by hair diameter analysis. They both demonstrated that hair of the VEGF group increased faster and thicker than control. On the other hand, biochemical and hematological results had shown that VEGF was not 100% inert. VEGF increased hair follicle area, but more studies are necessary to confirm its toxicity.

  17. Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of γδT-cells

    PubMed Central

    Dutta, Abhik; Pincha, Neha; Rana, Isha; Ghosh, Subhasri; Witherden, Deborah; Kandyba, Eve; MacLeod, Amanda; Kobielak, Krzysztof; Havran, Wendy L

    2017-01-01

    The cutaneous wound-healing program is a product of a complex interplay among diverse cell types within the skin. One fundamental process that is mediated by these reciprocal interactions is the mobilization of local stem cell pools to promote tissue regeneration and repair. Using the ablation of epidermal caspase-8 as a model of wound healing in Mus musculus, we analyzed the signaling components responsible for epithelial stem cell proliferation. We found that IL-1α and IL-7 secreted from keratinocytes work in tandem to expand the activated population of resident epidermal γδT-cells. A downstream effect of activated γδT-cells is the preferential proliferation of hair follicle stem cells. By contrast, IL-1α-dependent stimulation of dermal fibroblasts optimally stimulates epidermal stem cell proliferation. These findings provide new mechanistic insights into the regulation and function of epidermal cell–immune cell interactions and into how components that are classically associated with inflammation can differentially influence distinct stem cell niches within a tissue. PMID:29199946

  18. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    NASA Astrophysics Data System (ADS)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  19. Hair Follicle-Derived Smooth Muscle Cells and Small Intestinal Submucosa for Engineering Mechanically Robust and Vasoreactive Vascular Media

    PubMed Central

    Peng, Hao-Fan; Liu, Jin Yu

    2011-01-01

    Our laboratory recently reported a new source of smooth muscle cells (SMCs) derived from hair follicle (HF) mesenchymal stem cells. HF-SMCs demonstrated high proliferation and clonogenic potential as well as contractile function. In this study, we aimed at engineering the vascular media using HF-SMCs and a natural biomaterial, namely small intestinal submucosa (SIS). Engineering functional vascular constructs required application of mechanical force, resulting in actin reorganization and cellular alignment. In turn, cell alignment was necessary for development of receptor- and nonreceptor-mediated contractility as soon as 24 h after cell seeding. Within 2 weeks in culture, the cells migrated into SIS and secreted collagen and elastin, the two major extracellular matrix components of the vessel wall. At 2 weeks, vascular reactivity increased significantly up to three- to fivefold and mechanical properties were similar to those of native ovine arteries. Taken together, our data demonstrate that the combination of HF-SMCs with SIS resulted in mechanically strong, biologically functional vascular media with potential for arterial implantation. PMID:21083418

  20. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions.

    PubMed

    Havlickova, B; Bíró, T; Mescalchin, A; Arenberger, P; Paus, R

    2004-10-01

    Human hair growth can currently be studied in vitro by the use of organ-cultured scalp hair follicles (HFs). However, simplified organotypic systems are needed for dissecting the underlying epithelial-mesenchymal interactions and as screening tools for candidate hair growth-modulatory agents. To optimize the design and culture conditions of previously published organotypic systems that imitate epithelial-mesenchymal interactions in the human HF as closely as possible. Continuous submerged organotypic 'sandwich' cultures were established. These consist of a pseudodermis (collagen I mixed with and contracted by human interfollicular dermal fibroblasts) on which one of two upper layers is placed: either a mixture of Matrigel basement membrane matrix (BD Biosciences, Bedford, MA, U.S.A.) and follicular dermal papilla fibroblasts (DPC), with outer root sheath keratinocytes (ORSK) layered on the top ('layered' system), or a mixture of Matrigel, DPC and ORSK ('mixed' system). Morphological and functional characteristics of these 'folliculoid sandwiches' were then assessed by routine histology, histomorphometry and immunohistochemistry. In both 'layered' and 'mixed' systems, the ORSK formed spheroid epithelial cell aggregates, which retained their characteristic keratin expression pattern (i.e. cytokeratin 6). In the 'mixed' sandwich model the size of the epithelial cell aggregates was smaller, but the numbers of ORSK were significantly higher than in the 'layered' model at day 14 in the culture. ORSK proliferated better in the 'mixed' than in the 'layered' sandwich system, regardless of the calcium or serum content of the media, whereas apoptosis of ORSK was lowest in the 'mixed' system in serum-free, low calcium medium. The kinetics of proliferation and apoptosis of DPC, which retained their characteristic expression of versican, were similar in both systems. However, proliferation and apoptosis of DPC were higher in the presence of serum and/or under high calcium

  1. Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis.

    PubMed

    Zhang, Yan; Han, Ling; Chen, Shan-Shan; Guan, Jian; Qu, Fan-Zhi; Zhao, Yu-Qing

    2016-10-01

    Platycladus orientalis (L.) Franco is traditionally known to potentiate hair growth promotion. However, there has been no report on its main active ingredient responsible for the hair growth activity. In the current work, cedrol as a major constituent from P. orientalis was evaluated for its potential on hair growth in vivo. Different concentrations of cedrol (10, 20 and 30mg/mL) were applied topically over the shaved skin of C57BL/6 mice and monitored for 21days. Results indicated that cedrol significantly promoted hair growth in a dose-dependent manner, particularly for the female mice. Both male and female mice groups treated with 30mg/mL cedrol required shorter time than the blank control and 2% minoxidil groups at different growth stages. Compared with the blank control (8.87mm) and 2% minoxidil (9.94mm) groups at 21days, the hair length of female mice treated with 30mg/mL cedrol showed a remarkable increase with the value of 11.07mm. Hair in male and female mice groups treated with 30mg/mL cedrol was heavier than the 2% minoxidil (38.2 and 35.9mg, respectively) groups with the weight of 42.6 and 45.2mg, respectively. Further observation of the hair follicle demonstrated that cedrol exerted a remarkable effect on the hair follicle length. These findings suggested that cedrol may be the main active ingredient of P. orientalis and have the potential of becoming a new hair growth promoter. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    PubMed

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  3. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    PubMed

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  4. Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in in vitro culture model.

    PubMed

    Han, Le; Liu, Ben; Chen, Xianyan; Chen, Haiyan; Deng, Wenjia; Yang, Changsheng; Ji, Bin; Wan, Miaojian

    2018-04-01

    Activation of the Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis and hair growth. Recently, low-level laser therapy (LLLT) was evaluated for stimulating hair growth in numerous clinical studies, in which 655-nm red light was found to be most effective and practical for stimulating hair growth. We evaluated whether 655-nm red light + light-emitting diode (LED) could promote human hair growth by activating Wnt/β-catenin signaling. An in vitro culture of human hair follicles (HFs) was irradiated with different intensities of 655-nm red light + LED, 21 h7 (an inhibitor of β-catenin), or both. Immunofluorescence staining was performed to assess the expression of β-catenin, GSK3β, p-GSK3β, and Lef1 in the Wnt/β-catenin signaling. The 655-nm red light + LED not only enhanced hair shaft elongation, but also reduced catagen transition in human hair follicle organ culture, with the greatest effectiveness observed at 5 min (0.839 J/cm 2 ). Additionally, 655-nm red light + LED enhanced the expression of β-catenin, p-GSK3β, and Lef1, signaling molecules of the Wnt/β-catenin pathway, in the hair matrix. Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in vitro and therefore may serve as an alternative therapeutic option for alopecia.

  5. Expression characteristics of BMP2, BMPR-IA and Noggin in different stages of hair follicle in yak skin.

    PubMed

    Song, Liang-Li; Cui, Yan; Yu, Si-Jiu; Liu, Peng-Gang; Liu, Jun; Yang, Xue; He, Jun-Feng; Zhang, Qian

    2018-05-01

    Bone morphogenetic protein 2 (BMP2), BMP receptor-IA (BMPR-IA), and the BMP2 antagonist Noggin are important proteins involved in regulating the hair follicle (HF) cycle in skin. In order to explore the expression profiles of BMP2, BMPR-IA, and Noggin in the HF cycle of yak skin, we collected adult yak skin in the telogen, proanagen, and midanagen phases of HFs and evaluated gene and protein expression by real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. qRT-PCR and western blotting results showed that BMP2 and BMPR-IA expression levels were highest in the telogen of HFs and higher than that of Noggin in the same phase. The expression of Noggin was significantly higher in proanagen and midanagen phases of HFs than in the telogen phase, with the highest expression observed in the proanagen phase. Moreover, the expression of Noggin in the proanagen phase was significantly higher than those of BMP2 and BMPR-IA during the same phase. Immunohistochemistry results showed that BMP2, BMPR-IA, and Noggin were expressed in the skin epidermis, sweat glands, sebaceous glands, HF outer root sheath, and hair matrix. In summary, the characteristic expression profiles of BMP2, BMPR-IA, and Noggin suggested that BMP2 and BMPR-IA had inhibitory effects on the growth of HFs in yaks, whereas Noggin promoted the growth of yak HFs, mainly by affecting skin epithelial cell activity. These results provide a basis for further studies of HF development and cycle transition in yak skin. Copyright © 2017. Published by Elsevier Inc.

  6. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4.

    PubMed

    Chen, Chih-Chiang; Murray, Philip J; Jiang, Ting Xin; Plikus, Maksim V; Chang, Yun-Ting; Lee, Oscar K; Widelitz, Randall B; Chuong, Cheng-Ming

    2014-08-01

    Hair cycling is modulated by factors both intrinsic and extrinsic to hair follicles. Cycling defects lead to conditions such as aging-associated alopecia. Recently, we demonstrated that mouse skin exhibits regenerative hair waves, reflecting a coordinated regenerative behavior in follicle populations. Here, we use this model to explore the regenerative behavior of aging mouse skin. Old mice (>18 months) tracked over several months show that with progressing age, hair waves slow down, wave propagation becomes restricted, and hair cycle domains fragment into smaller domains. Transplanting aged donor mouse skin to a young host can restore donor cycling within a 3 mm range of the interface, suggesting that changes are due to extracellular factors. Therefore, hair stem cells in aged skin can be reactivated. Molecular studies show that extra-follicular modulators Bmp2, Dkk1, and Sfrp4 increase in early anagen. Further, we identify follistatin as an extra-follicular modulator, which is highly expressed in late telogen and early anagen. Indeed, follistatin induces hair wave propagation and its level decreases in aging mice. We present an excitable medium model to simulate the cycling behavior in aging mice and illustrate how the interorgan macroenvironment can regulate the aging process by integrating both "activator" and "inhibitor" signals.

  7. Coexistence of giant blue nevus of the scalp with hair loss and alopecia areata.

    PubMed

    Takeichi, Sachiko; Kubo, Yoshiaki; Murao, Kazutoshi; Inoue, Natsuko; Ansai, Shin-ichi; Arase, Seiji

    2011-04-01

    A 43-year-old Japanese man presented with a 13-year history of a grayish macule measuring 7 cm in diameter with sparse hairs on the vertex. Histopathological examination demonstrated two types of melanocytes, spindle-shaped and ovoid cells, with abundant melanin aggregated around the upper part of the pilosebaceous apparatus. Fibrous, thick collagen bundles were also seen surrounding the upper part of the small hair follicles. There was no infiltration of melanocytes or lymphocytes in the lower dermis or adipose tissue. Based on these findings, a diagnosis of blue nevus, cellular type, was made. Giant cellular blue nevi on the scalp are rare, and 11 cases reported in the published work have shown characteristic features such as hair loss and cranial invasion of nevus cells. It should be noted that melanocytes of giant blue nevi have a high potential to damage other organs such as underlying bone and hair follicles. The patient also showed a typical lesion of alopecia areata on the left temporal which was successfully treated with topical corticosteroid. © 2010 Japanese Dermatological Association.

  8. The effect of cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, on human hair growth with the dual promoting mechanisms.

    PubMed

    Choi, Hye-In; Kim, Dong Young; Choi, Soon-Jin; Shin, Chang-Yup; Hwang, Sungjoo Tommy; Kim, Kyu Han; Kwon, Ohsang

    2018-07-01

    Cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, increases the intracellular level of cyclic adenosine monophosphate to cause vasodilation. Topical application of cilostazol is reported to improve local blood flow and enhance wound healing; however, its effect on human hair follicles is unknown. The purpose of this study was to determine the effect of cilostazol on hair growth. We investigated the expression of PDE3 in human dermal papilla cells (DPCs), outer root sheath cells (ORSCs), and hair follicles. The effects of cilostazol on DPC and ORSC proliferation were evaluated using BrdU and WST-1 assays. The expression of various growth factors in DPCs was investigated by growth factor antibody array. Additionally, hair shaft elongation was measured using ex vivo hair follicle organ cultures, and anagen induction was evaluated in C57BL/6 mice. Finally, the effects of cilostazol on vessel formation and activation of the mitogen-activated protein kinase pathway were evaluated. We confirmed high mRNA and protein expression of PDE3 in human DPCs. Cilostazol not only enhanced the proliferation of human DPCs but also regulated the secretion of several growth factors responsible for hair growth. Furthermore, it promoted hair shaft elongation ex vivo, with increased proliferation of matrix keratinocytes. Cilostazol also accelerated anagen induction by stimulating vessel formation and upregulating the levels of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase, and P38 after its topical application in C57BL/6 mice. Our results show that cilostazol promotes hair growth and may serve as a therapeutic agent for the treatment of alopecia. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  9. Autosomal Recessive Hypotrichosis with Woolly Hair Caused by a Mutation in the Keratin 25 Gene Expressed in Hair Follicles.

    PubMed

    Zernov, Nikolay V; Skoblov, Mikhail Y; Marakhonov, Andrey V; Shimomura, Yutaka; Vasilyeva, Tatyana A; Konovalov, Fedor A; Abrukova, Anna V; Zinchenko, Rena A

    2016-06-01

    Hypotrichosis is an abnormal condition characterized by decreased hair density and various defects in hair structure and growth patterns. In particular, in woolly hair, hypotrichosis is characterized by a tightly curled structure and abnormal growth. In this study, we present a detailed comparative examination of individuals affected by autosomal-recessive hypotrichosis (ARH), which distinguishes two types of ARH. Earlier, we demonstrated that exon 4 deletion in the lipase H gene caused an ARH (hypotrichosis 7; MIM: 604379) in populations of the Volga-Ural region of Russia. Screening for this mutation in all affected individuals revealed its presence only in the group with the hypotrichosis 7 phenotype. Other patients formed a separate group of woolly hair-associated ARH, with a homozygous missense mutation c.712G>T (p.Val238Leu) in a highly conserved position of type I keratin KRT25 (K25). Haplotype analysis indicated a founder effect. An expression study in the HaCaT cell line demonstrated a deleterious effect of the p.Val238Leu mutation on the formation of keratin intermediate filaments. Hence, we have identified a previously unreported missense mutation in the KRT25 gene causing ARH with woolly hair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. A Microarray-Based Analysis Reveals that a Short Photoperiod Promotes Hair Growth in the Arbas Cashmere Goat

    PubMed Central

    Guo, Jun; Wu, Dubala; Hao, Bayasihuliang; Li, Yurong; Zhao, Cunfa

    2016-01-01

    Many animals exhibit different behaviors in different seasons. The photoperiod can have effects on migration, breeding, fur growth, and other processes. The cyclic growth of the fur and feathers of some species of mammals and birds, respectively, is stimulated by the photoperiod as a result of hormone-dependent regulation of the nervous system. To further examine this phenomenon, we evaluated the Arbas Cashmere goat (Capra hircus), a species that is often used in this type of research. The goats were exposed to an experimentally controlled short photoperiod to study the regulation of cyclic cashmere growth. Exposure to a short photoperiod extended the anagen phase of the Cashmere goat hair follicle to increase cashmere production. Assessments of tissue sections indicated that the short photoperiod significantly induced cashmere growth. This conclusion was supported by a comparison of the differences in gene expression between the short photoperiod and natural conditions using gene chip technology. Using the gene chip data, we identified genes that showed altered expression under the short photoperiod compared to natural conditions, and these genes were found to be involved in the biological processes of hair follicle growth, structural composition of the hair follicle, and the morphogenesis of the surrounding skin appendages. Knowledge about differences in the expression of these genes as well as their functions and periodic regulation patterns increases our understanding of Cashmere goat hair follicle growth. This study also provides preliminary data that may be useful for the development of an artificial method to improve cashmere production by controlling the light cycle, which has practical significance for livestock breeding. PMID:26814503

  11. A Microarray-Based Analysis Reveals that a Short Photoperiod Promotes Hair Growth in the Arbas Cashmere Goat.

    PubMed

    Liu, Bin; Gao, Fengqin; Guo, Jun; Wu, Dubala; Hao, Bayasihuliang; Li, Yurong; Zhao, Cunfa

    2016-01-01

    Many animals exhibit different behaviors in different seasons. The photoperiod can have effects on migration, breeding, fur growth, and other processes. The cyclic growth of the fur and feathers of some species of mammals and birds, respectively, is stimulated by the photoperiod as a result of hormone-dependent regulation of the nervous system. To further examine this phenomenon, we evaluated the Arbas Cashmere goat (Capra hircus), a species that is often used in this type of research. The goats were exposed to an experimentally controlled short photoperiod to study the regulation of cyclic cashmere growth. Exposure to a short photoperiod extended the anagen phase of the Cashmere goat hair follicle to increase cashmere production. Assessments of tissue sections indicated that the short photoperiod significantly induced cashmere growth. This conclusion was supported by a comparison of the differences in gene expression between the short photoperiod and natural conditions using gene chip technology. Using the gene chip data, we identified genes that showed altered expression under the short photoperiod compared to natural conditions, and these genes were found to be involved in the biological processes of hair follicle growth, structural composition of the hair follicle, and the morphogenesis of the surrounding skin appendages. Knowledge about differences in the expression of these genes as well as their functions and periodic regulation patterns increases our understanding of Cashmere goat hair follicle growth. This study also provides preliminary data that may be useful for the development of an artificial method to improve cashmere production by controlling the light cycle, which has practical significance for livestock breeding.

  12. The biology and genetics of curly hair.

    PubMed

    Westgate, Gillian E; Ginger, Rebecca S; Green, Martin R

    2017-06-01

    Hair fibres show wide diversity across and within all human populations, suggesting that hair fibre form and colour have been subject to much adaptive pressure over thousands of years. All human hair fibres typically have the same basic structure. However, the three-dimensional shape of the entire fibre varies considerably depending on ethnicity and geography, with examples from very straight hair with no rotational turn about the long axis, to the tightly sprung coils of African races. The creation of the highly complex biomaterials in hair follicle and how these confer mechanical functions on the fibre so formed is a topic that remains relatively unexplained thus far. We review the current understanding on how hair fibres are formed into a nonlinear coiled form and which genetic and biological factors are thought to be responsible for hair shape. We report on a new GWAS comparing low and high curl individuals in South Africa, revealing strong links to polymorphic variation in trichohyalin, a copper transporter protein CUTC and the inner root sheath component keratin 74. This builds onto the growing knowledge base describing the control of curly hair formation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Induction of synapse associated protein 102 expression in cyclosporin A-stimulated hair growth.

    PubMed

    Kim, Chang Deok; Lee, Min-Ho; Sohn, Kyung-Cheol; Kim, Jin-Man; Li, Sheng Jin; Rang, Moon-Jeong; Roh, Seok-Seon; Oh, Young-Seon; Yoon, Tae-Jin; Im, Myung; Seo, Young-Joon; Lee, Jeung-Hoon; Park, Jang-Kyu

    2008-08-01

    Cyclosporin A (CsA) has been used as a potent immunosuppressive agent for inhibiting the graft rejection after organ transplantation. However, CsA provokes lots of side effects including hirsutism, the phenomenon of abnormal hair growth in the body. In the present study, we investigated the hair growth stimulating effect of CsA using in vivo and in vitro test models. When topically applied on the back skin of mice, CsA induced fast telogen to anagen transition. In contrast, CsA had no effect on the growth of human hair follicle tissues cultured in vitro, indicating that it might not have the mitogenic effect on hair follicles. To identify the genes related with CsA-induced hair growth, we performed differential display RT-PCR. Among the genes obtained, the expression of synapse associated protein 102 (SAP102) was verified using competitive RT-PCR. The result showed that the expression of SAP102 was significantly induced by CsA treatment in the back skin of C57BL/6 mice. However, the increase of SAP102 mRNA was also seen in spontaneous anagen mice, suggesting that induction of SAP102 is one event of the anagen hair growth response regardless of how the growth state was induced. SAP102 was not expressed in cultured human hair outer root sheath and dermal papilla cells. Immunohistochemistry analysis showed that CsA induced the expression of SAP102 in perifollicular region of mouse anagen hair. Together, these results suggest that SAP102 is one of hair-cycle-dependent genes, whose expression is related with the anagen progression.

  14. Hair plucking, stress, and urinary cortisol among captive bonobos (Pan paniscus).

    PubMed

    Brand, Colin M; Boose, Klaree J; Squires, Erica C; Marchant, Linda F; White, Frances J; Meinelt, Audra; Snodgrass, J Josh

    2016-09-01

    Hair plucking has been observed in many captive primate species, including the great apes; however, the etiology of this behavioral pattern is poorly understood. While this behavior has not been reported in wild apes, an ethologically identical behavior in humans, known as trichotillomania, is linked to chronic psychosocial stress and is a predominantly female disorder. This study examines hair plucking (defined here as a rapid jerking away of the hair shaft and follicle by the hand or mouth, often accompanied by inspection and consumption of the hair shaft and follicle) in a captive group of bonobos (N = 13) at the Columbus Zoo and Aquarium in Columbus, Ohio. Plucking data were collected using behavior and all-occurrence sampling; 1,450 social and self-directed grooming bouts were recorded during 128 hr of observation. Twenty-one percent of all grooming bouts involved at least one instance of plucking. Urine samples (N = 55) were collected and analyzed for the stress hormone cortisol. Analyses of urinary cortisol levels showed a significant positive correlation between mean cortisol and self-directed plucking for females (r = 0.88, P < 0.05) but not for males (r = -0.73, P = 0.09). These results demonstrate an association between relative self-directed hair plucking and cortisol among female bonobos. This is the first study to investigate the relationship between hair plucking and cortisol among apes. Overall, these data add to our knowledge of a contemporary issue in captive ape management. Zoo Biol. 35:415-422, 2016. © Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. A prototypic mathematical model of the human hair cycle.

    PubMed

    Al-Nuaimi, Yusur; Goodfellow, Marc; Paus, Ralf; Baier, Gerold

    2012-10-07

    The human hair cycle is a complex, dynamic organ-transformation process during which the hair follicle repetitively progresses from a growth phase (anagen) to a rapid apoptosis-driven involution (catagen) and finally a relative quiescent phase (telogen) before returning to anagen. At present no theory satisfactorily explains the origin of the hair cycle rhythm. Based on experimental evidence we propose a prototypic model that focuses on the dynamics of hair matrix keratinocytes. We argue that a plausible feedback-control structure between two key compartments (matrix keratinocytes and dermal papilla) leads to dynamic instabilities in the population dynamics resulting in rhythmic hair growth. The underlying oscillation consists of an autonomous switching between two quasi-steady states. Additional features of the model, namely bistability and excitability, lead to new hypotheses about the impact of interventions on hair growth. We show how in silico testing may facilitate testing of candidate hair growth modulatory agents in human HF organ culture or in clinical trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Hair loss in elderly women.

    PubMed

    Chen, WenChieh; Yang, Chao-Chun; Todorova, Antonia; Al Khuzaei, Safaa; Chiu, Hsien-Ching; Worret, Wolf-Ingo; Ring, Johannes

    2010-01-01

    Hair loss in elderly women has been becoming a major topic in the daily practice of dermatology. Aging of hair follicles seems to affect hair growth and pigmentation, the molecular mechanisms of which remain to be elucidated. Further senile changes in physiology and immunity may influence the onset and course of hair diseases. Some preexisting diseases such as androgenetic alopecia usually worsen after menopause, while others, like discoid lupus erythematosus, may attenuate. Hormone surveying, especially with regard to internal androgen-producing tumors, is indicated in postmenopausal women with androgenetic alopecia of sudden exacerbation or with unusual manifestation or other virilizing signs. The prevalence of alopecia totalis and alopecia universalis appears to be much lower in postmenopausal ages as compared to earlier onset. Acute or chronic telogen effluvium is not uncommonly superimposed on androgenetic alopecia. Trichotillomania shows a marked female predominance in the senile age group with a higher rate of psychopathology. Worldwide, tinea capitis has been increasingly observed in postmenopausal women. Frontal fibrosing alopecia, giant cell arteritis and erosive pustular dermatosis involve mainly elder women leading to scarring alopecia. Alopecia induced by tumor metastasis to the scalp must be considered in women with underlying neoplasms, especially breast cancer. Overall, hair loss in postmenopausal women is often multifactorial and warrants a close inspection.

  17. First transplantation of isolated murine follicles in alginate.

    PubMed

    Vanacker, Julie; Dolmans, Marie-Madeleine; Luyckx, Valérie; Donnez, Jacques; Amorim, Christiani A

    2014-01-01

    Our aim is to develop an artificial ovary allowing survival and growth of isolated follicles and ovarian cells, to restore fertility in women diagnosed with pathologies at high risk of ovarian involvement. For this, alginate beads containing isolated preantral follicles and ovarian cells were autografted to immunocompetent mice. One week after grafting, the beads were invaded by proliferating murine cells (12.1%) and capillaries. The recovery rate of follicles per graft ranged from 0% to 35.5%. Of the analyzed follicles, 77% were Ki67-positive and 81%, TUNEL-negative. Three antral follicles were also identified, evidencing their ability to grow in the matrix. Our results suggest that an artificial ovary is now conceivable, opening new perspectives to restore fertility in women.

  18. Undariopsis peterseniana Promotes Hair Growth by the Activation of Wnt/β-Catenin and ERK Pathways

    PubMed Central

    Kang, Jung-Il; Kim, Min-Kyoung; Lee, Ji-Hyeok; Jeon, You-Jin; Hwang, Eun-Kyoung; Koh, Young-Sang; Hyun, Jin-Won; Kwon, Soon-Young; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2017-01-01

    In this study, we investigated the effect and mechanism of Undariopsis peterseniana, an edible brown alga, on hair growth. The treatment of vibrissa follicles with U. peterseniana extract ex vivo for 21 days significantly increased the hair-fiber lengths. The U. peterseniana extract also significantly accelerated anagen initiation in vivo. Moreover, we found that U. peterseniana extract was able to open the KATP channel, which may contribute to increased hair growth. The U. peterseniana extract decreased 5α-reductase activity and markedly increased the proliferation of dermal papilla cells, a central regulator of the hair cycle. The U. peterseniana extract increased the levels of cell cycle proteins, such as Cyclin D1, phospho(ser780)-pRB, Cyclin E, phospho-CDK2, and CDK2. The U. peterseniana extract also increased the phosphorylation of ERK and the levels of Wnt/β-catenin signaling proteins such as glycogen synthase kinase-3β (GSK-3β) and β-catenin. These results suggested that the U. peterseniana extract had the potential to influence hair growth by dermal papilla cells proliferation through the activation of the Wnt/β-catenin and ERK pathways. We isolated a principal of the U. peterseniana extract, which was subsequently identified as apo-9′-fucoxanthinone, a trichogenic compound. The results suggested that U. peterseniana extract may have a pivotal role in the treatment of alopecia. PMID:28475144

  19. Undariopsis peterseniana Promotes Hair Growth by the Activation of Wnt/β-Catenin and ERK Pathways.

    PubMed

    Kang, Jung-Il; Kim, Min-Kyoung; Lee, Ji-Hyeok; Jeon, You-Jin; Hwang, Eun-Kyoung; Koh, Young-Sang; Hyun, Jin-Won; Kwon, Soon-Young; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2017-05-05

    In this study, we investigated the effect and mechanism of Undariopsis peterseniana , an edible brown alga, on hair growth. The treatment of vibrissa follicles with U. peterseniana extract ex vivo for 21 days significantly increased the hair-fiber lengths. The U. peterseniana extract also significantly accelerated anagen initiation in vivo. Moreover, we found that U. peterseniana extract was able to open the K ATP channel, which may contribute to increased hair growth. The U. peterseniana extract decreased 5α-reductase activity and markedly increased the proliferation of dermal papilla cells, a central regulator of the hair cycle. The U. peterseniana extract increased the levels of cell cycle proteins, such as Cyclin D1, phospho(ser780)-pRB, Cyclin E, phospho-CDK2, and CDK2. The U. peterseniana extract also increased the phosphorylation of ERK and the levels of Wnt/β-catenin signaling proteins such as glycogen synthase kinase-3β (GSK-3β) and β-catenin. These results suggested that the U. peterseniana extract had the potential to influence hair growth by dermal papilla cells proliferation through the activation of the Wnt/β-catenin and ERK pathways. We isolated a principal of the U. peterseniana extract, which was subsequently identified as apo-9'-fucoxanthinone, a trichogenic compound. The results suggested that U. peterseniana extract may have a pivotal role in the treatment of alopecia.

  20. Preclinical and Clinical Studies Demonstrate That the Proprietary Herbal Extract DA-5512 Effectively Stimulates Hair Growth and Promotes Hair Health.

    PubMed

    Yu, Jae Young; Gupta, Biki; Park, Hyoung Geun; Son, Miwon; Jun, Joon-Ho; Yong, Chul Soon; Kim, Jeong Ah; Kim, Jong Oh

    2017-01-01

    The proprietary DA-5512 formulation comprises six herbal extracts from traditional oriental plants historically associated with therapeutic and other applications related to hair. Here, we investigated the effects of DA-5512 on the proliferation of human dermal papilla cells (hDPCs) in vitro and on hair growth in C57BL/6 mice and conducted a clinical study to evaluate the efficacy and safety of DA-5512. DA-5512 significantly enhanced the viability of hDPCs in a dose-dependent manner ( p < 0.05), and 100 ppm of DA-5512 and 1  μ M minoxidil (MXD) significantly increased the number of Ki-67-positive cells, compared with the control group ( p < 0.05). MXD (3%) and DA-5512 (1%, 5%) significantly stimulated hair growth and increased the number and length of hair follicles (HFs) versus the controls (each p < 0.05). The groups treated with DA-5512 exhibited hair growth comparable to that induced by MXD. In clinical study, we detected a statistically significant increase in the efficacy of DA-5512 after 16 weeks compared with the groups treated with placebo or 3% MXD ( p < 0.05). In conclusion, DA-5512 might promote hair growth and enhance hair health and can therefore be considered an effective option for treating hair loss.

  1. Eruptive vellus hair cysts: report of a pediatric case with partial response to calcipotriene therapy.

    PubMed

    Erkek, Emel; Kurtipek, Gülcan Saylam; Duman, Deniz; Sanli, Cihat; Erdoğan, Sibel

    2009-12-01

    Eruptive vellus hair cysts (EVHCs) are characterized by asymptomatic, follicular, comedonelike papules usually located on the anterior chest and abdomen. We present a pediatric case of EVHC associated with attention deficit hyperactivity disorder that partially responded to calcipotriene cream within 2 months. Our aim is to refamiliarize clinicians with a common albeit frequently unrecognized disorder of vellus hair follicles.

  2. Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal.

    PubMed

    Foster, April R; Nicu, Carina; Schneider, Marlon R; Hinde, Eleanor; Paus, Ralf

    2018-07-01

    In murine skin, dermal white adipose tissue (DWAT) undergoes major changes in thickness in synchrony with the hair cycle (HC); however, the underlying mechanisms remain unclear. We sought to elucidate whether increased DWAT thickness during anagen is mediated by adipocyte hypertrophy or adipogenesis, and whether lipolysis or apoptosis can explain the decreased DWAT thickness during catagen. In addition, we compared HC-associated DWAT changes between spontaneous and depilation-induced hair follicle (HF) cycling to distinguish between spontaneous and HF trauma-induced events. We show that HC-dependent DWAT remodelling is not an artefact caused by fluctuations in HF down-growth, and that dermal adipocyte (DA) proliferation and hypertrophy are HC-dependent, while classical DA apoptosis is absent. However, none of these changes plausibly accounts for HC-dependent oscillations in DWAT thickness. Contrary to previous studies, in vivo BODIPY uptake suggests that increased DWAT thickness during anagen occurs via hypertrophy rather than hyperplasia. From immunohistomorphometry, DWAT thickness likely undergoes thinning during catagen by lipolysis. Hence, we postulate that progressive, lipogenesis-driven DA hypertrophy followed by dynamic switches between lipogenesis and lipolysis underlie DWAT fluctuations in the spontaneous HC, and dismiss apoptosis as a mechanism of DWAT reduction. Moreover, the depilation-induced HC displays increased DWAT thickness, area, and DA number, but decreased DA volume/area compared to the spontaneous HC. Thus, DWAT shows additional, novel HF wounding-related responses during the induced HC. This systematic reappraisal provides important pointers for subsequent functional and mechanistic studies, and introduces the depilation-induced murine HC as a model for dissecting HF-DWAT interactions under conditions of wounding/stress.

  3. Isolation and Quantification of Glycosaminoglycans from Human Hair Shaft

    PubMed Central

    Bonovas, Stefanos; Sitaras, Nikolaos

    2016-01-01

    Background There is evidence that glycosaminoglycans (GAGs) are present in the hair shaft within the follicle but there are no studies regarding GAGs isolation and measurement in the human hair shaft over the scalp surface, it means, in the free hair shaft. Objective The purpose of our research was to isolate and measure the total GAGs from human free hair shaft. Methods Seventy-five healthy individuals participated in the study, 58 adults, men and women over the age of 50 and 17 children (aged 4~9). GAGs in hair samples, received from the parietal and the occipital areas, were isolated with 4 M guanidine HCl and measured by the uronic acid-carbazole reaction assay. Results GAGs concentration was significantly higher in the occipital area than in the parietal area, in all study groups. GAG levels from both areas were significantly higher in children than in adults. GAG levels were not associated with gender, hair color or type. Conclusion We report the presence of GAGs in the human free hair shaft and the correlation of hair GAG levels with the scalp area and participants' age. PMID:27746630

  4. Tβ4-overexpression based on the piggyBac transposon system in cashmere goats alters hair fiber characteristics.

    PubMed

    Shi, Bingbo; Ding, Qiang; He, Xiaolin; Zhu, Haijing; Niu, Yiyuan; Cai, Bei; Cai, Jiao; Lei, Anming; Kang, Danju; Yan, Hailong; Ma, Baohua; Wang, Xiaolong; Qu, Lei; Chen, Yulin

    2017-02-01

    Increasing cashmere yield is one of the vital aims of cashmere goats breeding. Compared to traditional breeding methods, transgenic technology is more efficient and the piggyBac (PB) transposon system has been widely applied to generate transgenic animals. For the present study, donor fibroblasts were stably transfected via a PB donor vector containing the coding sequence of cashmere goat thymosin beta-4 (Tβ4) and driven by a hair follicle-specific promoter, the keratin-associated protein 6.1 (KAP6.1) promoter. To obtain genetically modified cells as nuclear donors, we co-transfected donor vectors into fetal fibroblasts of cashmere goats. Five transgenic cashmere goats were generated following somatic cell nuclear transfer (SCNT). Via determination of the copy numbers and integration sites, the Tβ4 gene was successfully inserted into the goat genome. Histological examination of skin tissue revealed that Tβ4-overexpressing, transgenic goats had a higher secondary to primary hair follicle (S/P) ratio compared to wild type goats. This indicates that Tβ4-overexpressing goats possess increased numbers of secondary hair follicles (SHF). Our results indicate that Tβ4-overexpression in cashmere goats could be a feasible strategy to increase cashmere yield.

  5. Mutations in the Cholesterol Transporter Gene ABCA5 Are Associated with Excessive Hair Overgrowth

    PubMed Central

    DeStefano, Gina M.; Kurban, Mazen; Anyane-Yeboa, Kwame; Dall'Armi, Claudia; Di Paolo, Gilbert; Feenstra, Heather; Silverberg, Nanette; Rohena, Luis; López-Cepeda, Larissa D.; Jobanputra, Vaidehi; Fantauzzo, Katherine A.; Kiuru, Maija; Tadin-Strapps, Marija; Sobrino, Antonio; Vitebsky, Anna; Warburton, Dorothy; Levy, Brynn; Salas-Alanis, Julio C.; Christiano, Angela M.

    2014-01-01

    Inherited hypertrichoses are rare syndromes characterized by excessive hair growth that does not result from androgen stimulation, and are often associated with additional congenital abnormalities. In this study, we investigated the genetic defect in a case of autosomal recessive congenital generalized hypertrichosis terminalis (CGHT) (OMIM135400) using whole-exome sequencing. We identified a single base pair substitution in the 5′ donor splice site of intron 32 in the ABC lipid transporter gene ABCA5 that leads to aberrant splicing of the transcript and a decrease in protein levels throughout patient hair follicles. The homozygous recessive disruption of ABCA5 leads to reduced lysosome function, which results in an accumulation of autophagosomes, autophagosomal cargos as well as increased endolysosomal cholesterol in CGHT keratinocytes. In an unrelated sporadic case of CGHT, we identified a 1.3 Mb cryptic deletion of chr17q24.2-q24.3 encompassing ABCA5 and found that ABCA5 levels are dramatically reduced throughout patient hair follicles. Collectively, our findings support ABCA5 as a gene underlying the CGHT phenotype and suggest a novel, previously unrecognized role for this gene in regulating hair growth. PMID:24831815

  6. The additive effects of minoxidil and retinol on human hair growth in vitro.

    PubMed

    Yoo, Hyeon Gyeong; Chang, In-Young; Pyo, Hyun Keol; Kang, Yong Jung; Lee, Seung Ho; Kwon, Oh Sang; Cho, Kwang Hyun; Eun, Hee Chul; Kim, Kyu Han

    2007-01-01

    Minoxidil enhances hair growth by prolonging the anagen phase and induces new hair growth in androgenetic alopecia (AGA), whereas retinol significantly improves scalp skin condition and promotes hair growth. We investigated the combined effects of minoxidil and retinol on human hair growth in vitro and on cultured human dermal papilla cells (DPCs) and epidermal keratinocytes (HaCaT). The combination of minoxidil and retinol additively promoted hair growth in hair follicle organ cultures. In addition, minoxidil plus retinol more effectively elevated phosphorylated Erk, phosphorylated Akt levels, and the Bcl-2/Bax ratio than minoxidil alone in DPCs and HaCaT. We found that the significant hair shaft elongation demonstrated after minoxidil plus retinol treatment would depend on the dual kinetics associated with the activations of Erk- and Akt-dependent pathways and the prevention of apoptosis by increasing the Bcl-2/Bax ratio.

  7. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    PubMed

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  8. Topical calcitriol enhances normal hair regrowth but does not prevent chemotherapy-induced alopecia in mice.

    PubMed

    Paus, R; Schilli, M B; Handjiski, B; Menrad, A; Henz, B M; Plonka, P

    1996-10-01

    Using a murine model that mimics chemotherapy-induced alopecia (CIA) in humans particularly well, we show here that in contrast to previously reported CIA-protective effects in neonatal rats, topical calcitriol does not prevent CIA in adolescent mice but enhances the regrowth of normally pigmented hair shafts. When, prior to injecting 1 X 120 mg/kg cyclophosphamide i.p., 0.2 microg calcitriol or vehicle alone were administered topically to the back skin of C57BL/6 mice with all hair follicles in anagen, no significant macroscopic differences in the onset and severity of CIA were seen. However, hair shaft regrowth after CIA, which is often retarded and patchy, thus displaying severe and sometimes persistent pigmentation disorders, was significantly accelerated, enhanced, and qualitatively improved in test compared with control mice. Histomorphometric analysis suggests that this is related to the fact that calcitriol-pretreated follicles favor the "dystrophic catagen pathway" of response to chemical injury, ie., a follicular repair strategy allowing for the unusually fast reconstruction of a new, undamaged anagen hair bulb. Thus, it may be unrealistic to expect that topical calcitriol can prevent human CIA, but topical calcitriols may well enhance the regrowth of a normal hair coat.

  9. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  10. Prostaglandin D2 Inhibits Hair Growth and Is Elevated in Bald Scalp of Men with Androgenetic Alopecia

    PubMed Central

    Garza, Luis A.; Liu, Yaping; Yang, Zaixin; Alagesan, Brinda; Lawson, John A.; Norberg, Scott M.; Loy, Dorothy E.; Zhao, Tailun; Blatt, Hanz B.; Stanton, David C.; Carrasco, Lee; Ahluwalia, Gurpreet; Fischer, Susan M.; FitzGerald, Garret A.; Cotsarelis, George

    2012-01-01

    Testosterone is necessary for the development of male pattern baldness, known as androgenetic alopecia (AGA); yet, the mechanisms for decreased hair growth in this disorder are unclear. We show that prostaglandin D2 synthase (PTGDS) is elevated at the mRNA and protein levels in bald scalp compared to haired scalp of men with AGA. The product of PTGDS enzyme activity, prostaglandin D2 (PGD2), is similarly elevated in bald scalp. During normal follicle cycling in mice, Ptgds and PGD2 levels increase immediately preceding the regression phase, suggesting an inhibitory effect on hair growth. We show that PGD2 inhibits hair growth in explanted human hair follicles and when applied topically to mice. Hair growth inhibition requires the PGD2 receptor G protein (heterotrimeric guanine nucleotide)–coupled receptor 44 (GPR44), but not the PGD2 receptor 1 (PTGDR). Furthermore, we find that a transgenic mouse, K14-Ptgs2, which targets prostaglandin-endoperoxide synthase 2 expression to the skin, demonstrates elevated levels of PGD2 in the skin and develops alopecia, follicular miniaturization, and sebaceous gland hyperplasia, which are all hallmarks of human AGA. These results define PGD2 as an inhibitor of hair growth in AGA and suggest the PGD2-GPR44 pathway as a potential target for treatment. PMID:22440736

  11. Hair growth activity of Crataegus pinnatifida on C57BL/6 mouse model.

    PubMed

    Shin, Heon-Sub; Lee, Jung-Min; Park, Sang-Yong; Yang, Jung-Eun; Kim, Ju-Han; Yi, Tae-Hoo

    2013-09-01

    Crataegus pinnatifida has a long history of use in traditional oriental herbal medicine to stimulating digestion and improving blood circulation. Based on nutrition of hair, the present study was conducted to assess the effect of C. pinnatifida extract on hair growth using mouse model and its mechanisms of action. The C. pinnatifida extract containing the contents of total polyphenol of 5.88□0.82 g gallic acid/100 g extract and proanthocyanidin of 9.15□1.58 mg cyaniding chloride/100 g extract was orally administered daily at a dosage of 50 mg/kg weight to the 7-week-old C57BL/6 mice in telogen. The C. pinnatifida extract promoted hair growth by inducing anagen phase in mice in telogen, reflected by color of skin, thickness of hair shaft, and density of hair. The ratio of anagento telogen was determined by shape of hair follicles in vertically sectioned slide and increased by oral administration of C. pinnatifida extract. The number and the size of hair follicles were also enlarged, indicating anagen phase induction. The proliferation of human dermal papilla cells (hDPC) was accelerated by addition of C. pinnatifida extract, which activated the signaling of mitogen-activated protein kinases (Erk, p-38, and JNK) and Akt. Moreover, the ratio of Bcl-2/Bax as the determinant of cell fate was also raised in skin. These results suggest that the C. pinnatifida extract promotes hair growth by inducing anagen phase, which might be mediated by the activation of cellular signalings that enhance the survival of cultured hDPC and the increase of the ratio of Bcl-2 to Bax that protects cells against cell death. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Black women's hair: the main scalp dermatoses and aesthetic practices in women of African ethnicity *

    PubMed Central

    Tanus, Aline; Oliveira, Camila Caberlon Cruz; Villarreal, Delky Johanna Villarreal; Sanchez, Fernando Andres Vargas; Dias, Maria Fernanda Reis Gavazzoni

    2015-01-01

    Afro-ethnic hair is different from Caucasian and Asian hair and has unique features. Ethnic hair is more prone to certain conditions or diseases. Such diseases are not only related to the fragile inner structure of the hair, but also to the cultural habits of hairstyles that often exert traction forces upon the pilosebaceous follicle. Women with African hair subject their hair to chemical treatments such as hair straightening and relaxing, and thus modify the structure of their hair shaft, making it more susceptible to damage. For this reason, hair complaints are common among black women and represent a diagnostic challenge to the dermatologist, requiring a thorough clinical examination of the hair and scalp, and a detailed medical history of the patient. The purpose of this review is to warn of the potential side effects and sequelae related to hairstyles and hair treatments used by black women, and to highlight the major diseases that affect this ethnicity. PMID:26375213

  13. Treatment of female pattern hair loss with oral antiandrogens.

    PubMed

    Sinclair, R; Wewerinke, M; Jolley, D

    2005-03-01

    It has not been conclusively established that female pattern hair loss (FPHL) is either due to androgens or responsive to oral antiandrogen therapy. To evaluate the efficacy of oral antiandrogen therapy in the management of women with FPHL using standardized photographic techniques (Canfield Scientific), and to identify clinical and histological parameters predictive of clinical response. For this single-centre, before-after, open intervention study, 80 women aged between 12 and 79 years, with FPHL and biopsy-confirmed hair follicle miniaturization [terminal/vellus (T/V) hair ratio < or = 4 : 1] were photographed at baseline and again after receiving a minimum of 12 months of oral antiandrogen therapy. Forty women received spironolactone 200 mg daily and 40 women received cyproterone acetate, either 50 mg daily or 100 mg for 10 days per month if premenopausal. Women using topical minoxidil were excluded. Standardized photographs of the midfrontal and vertex scalp were taken with the head positioned in a stereotactic device. Images were evaluated by a panel of three clinicians experienced in the assessment of FPHL, blinded to patient details and treatment and using a three-point scale. As there was no significant difference in the results or the trend between spironolactone and cyproterone acetate the results were combined. Thirty-five (44%) women had hair regrowth, 35 (44%) had no clear change in hair density before and after treatment, and 10 (12%) experienced continuing hair loss during the treatment period. Ordinal logistic regression analysis to identify predictors of response revealed no influence of patient age, menopause status, serum ferritin, serum hormone levels, clinical stage (Ludwig) or histological parameters such as T/V ratio or fibrosis. The only significant predictor was midscalp clinical grade, with higher-scale values associated with a greater response (P = 0.013). Eighty-eight percent of women receiving oral antiandrogens could expect to see no

  14. Diguanoside tetraphosphate (Gp₄G) is an epithelial cell and hair growth regulator.

    PubMed

    Severino, Divinomar; Zorn, Telma M T; Micke, Gustavo A; Costa, Ana C O; Silva, José Roberto M C; Nogueira, Leandro F; Kowaltowski, Alicia J; Kowaltowski, Alica J; Baptista, Maurício S

    2011-01-01

    Our goal was to study the effect of Gp₄G on skin tissues and unravel its intracellular action mechanisms. The effects of Gp₄G formulation, a liposomic solution of Artemia salina extract, on several epidermal, depmal, and hair follicle structures were quantified. A 50% increase in hair length and a 30% increase in the number of papilla cells were explained by the changes in the telogen/anagen hair follicle phases. Increasing skin blood vessels and fibroblast activation modified collagen arrangement in dermal tissues. Imunohistochemical staining revealed expressive increases of versican (VER) deposition in the treated animals (68%). Hela and fibroblast cells were used as in vitro models. Gp₄G enters both cell lines, with a hyperbolic saturation profile inducing an increase in the viabilities of Hela and fibroblast cells. Intracellular ATP and other nucleotides were quantified in Hela cells showing a 38% increase in intracellular ATP concentration and increases in the intracellular concentration of tri- , di- , and monophosphate nucleosides, changing the usual quasi-equilibrium state of nucleotide concentrations. We propose that this change in nucleotide equilibrium affects several biochemical pathways and explains the cell and tissue activations observed experimentally.

  15. The inductive effect of ginsenoside F2 on hair growth by altering the WNT signal pathway in telogen mouse skin.

    PubMed

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Song, Hyun-Geun; Mavlonov, Gafurjon T; Yi, Tae-Hoo

    2014-05-05

    This study was conducted to confirm the possibility of using minor ginseng saponin F2 by oral administration on hair anagen induction effects. The signaling pathway and anagen induction effect of ginsenoside F2 were investigated and compared with finasteride on the effect of hair growth induction. The cell-based MTT assay results indicated that the proliferation rates of HHDPC and HaCaT treated with F2 significantly increased by 30% compared with the finasteride-treated group. A western blot study showed that the expression of β-catenin Lef-1 and DKK-1 increased by 140, 200% and decreased by 40% in the F2-treated group, respectively compared to that of finasteride-treated group. C57BL/6 mice were subjected to the same treatments. The hair growth promotion rates were compared with groups treated with finasteride, which was 20% higher in the F2-treated group. Tissue histological analysis results showed the number of hair follicles, thickness of the epidermis, and follicles of the anagen phase which increased in the F2-treated group, compared with the finasteride-treated groups. Moreover, the effect of F2 on hair growth was confirmed through the immunofluorescence (IF) methods indicating the expression aspect of Wnt signal pathway-related factors in the tissue of C57BL/6 mouse. Our results considered the expression increase in β-catenin, Lef-1 which was suggested as a major factor related to the development and growth of hair follicle and the decrease in DKK-1 when entering catagen by F2. As the data showed, F2 might be a potential new therapeutic source for anagen induction and hair growth through the Wnt signal pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The impact of body site, topical melatonin and brushing on hair regrowth after clipping normal Siberian Husky dogs.

    PubMed

    Diaz, Sandra F; Torres, Sheila M F; Nogueira, Sandra A F; Gilbert, Sophie; Jessen, Carl R

    2006-02-01

    The aims of this study were to determine the impact of body site, vigorous brushing and topical melatonin treatment on hair regrowth after clipping normal dogs. Siberian Husky dogs were randomly assigned to three groups of eight dogs each. All dogs had the lumbosacral region and both lateral thighs clipped. The left thigh and lumbosacral area received no treatment and were compared in all 24 dogs. Eight dogs had the right thigh treated with 0.1% melatonin twice daily for 2 months, and hair regrowth was compared with the left thigh. Eight dogs had the right thigh brushed twice daily for 2 months, and hair regrowth was compared with the left thigh. Eight dogs had neither thigh treated. Hairs were plucked before and 2 months postclipping, and the proportion of hair growth from the original length was calculated and compared as described above. Biopsy samples were collected before and after treatment to determine if brushing induced dermal inflammation and melatonin increased the proportion of anagen follicles. Proportionally, left thigh hairs were significantly longer compared to lumbosacral hairs 2 months postclipping. No significant differences in hair regrowth were noted between the nontreated thigh and the thigh treated with melatonin or brushed. No significant difference in dermal inflammation was noted before and after brushing. No significant differences were observed in the proportion of anagen follicles before and after topical melatonin treatment. Our results showed that the hairs in the lumbosacral region were proportionally shorter than lateral thigh hairs 2 months postclipping. Moreover, topical melatonin and brushing had no impact on hair regrowth after clipping normal dogs.

  17. Oral zinc sulphate causes murine hair hypopigmentation and is a potent inhibitor of eumelanogenesis in vivo.

    PubMed

    Plonka, P M; Handjiski, B; Michalczyk, D; Popik, M; Paus, R

    2006-07-01

    C57BL/6 a/a mice have been widely used to study melanogenesis, including in electron paramagnetic resonance (EPR) studies. Zinc cations modulate melanogenesis, but the net effect of Zn2+ in vivo is unclear, as the reported effects of Zn2+ on melanogenesis are ambiguous: zinc inhibits tyrosinase and glutathione reductase in vitro, but also enhances the activity of dopachrome tautomerase (tyrosinase-related protein-2) and has agonistic effects on melanocortin receptor signalling. To determine in a C57BL/6 a/a murine pilot study whether excess zinc ions inhibit, enhance or in any other way alter hair follicle melanogenesis in vivo, and to test the usefulness of EPR for this study. ZnSO(4).7H2O was continuously administered orally to C57BL/6 a/a mice during spontaneous and depilation-induced hair follicle cycling (20 mg mL-1; in drinking water; mean+/-SD daily dose 1.2+/-0.53 mL), and hair pigmentation was examined macroscopically, by routine histology and by EPR. Oral zinc cations induced a bright brown lightening of new hair shafts produced during anagen, but without inducing an EPR-detectable switch from eumelanogenesis to phaeomelanogenesis. The total content of melanin in the skin and hair shafts during the subsequent telogen phase, i.e. after completion of a full hair cycle, was significantly reduced in Zn-treated mice (P=0.0005). Compared with controls, melanin granules in precortical hair matrix keratinocytes, hair bulb melanocytes and hair shafts of zinc-treated animals were reduced and poorly pigmented. Over the course of several hair cycles, lasting hair shaft depigmentation was seen during long-term exposure to high-dose oral Zn2+. High-dose oral Zn2+ is a potent downregulator of eumelanin content in murine hair shafts in vivo. The C57BL/6 mouse model offers an excellent tool for further dissecting the as yet unclear underlying molecular basis of this phenomenon, while EPR technology is well suited for the rapid, qualitative and quantitative monitoring of

  18. Naked Hair Shafts as a Marker of Cicatricial Alopecia.

    PubMed

    Doytcheva, Kristina; Tan, Timothy; Guitart, Joan; Gerami, Pedram; Yazdan, Pedram

    2018-07-01

    Naked hair shafts (NHS) are free-floating hair shafts devoid of surrounding epithelium, supporting structures, and/or embedded in inflammation that may result from destruction of hair follicles by scarring processes such as inflammation and fibroplasia. Extensive examination of NHS has not been performed in scalp biopsies of alopecia. We retrospectively evaluated 622 scalp biopsies of alopecia [345 cicatricial alopecias (central centrifugal cicatricial alopecia, lichen planopilaris, discoid lupus erythematosus, acne keloidalis nuchae, and folliculitis decalvans] and 277 non-cicatricial alopecias [alopecia areata, androgenic alopecia, telogen effluvium, and psoriatic alopecia)] for the presence of NHS. NHS occurred in 0.72% (2/277) of non-cicatricial alopecias (1/102 of alopecia areata, 1/150 of androgenic alopecia, 0/17 of telogen effluvium, and 0/8 of psoriatic alopecia) and 20% (72/345) of cicatricial alopecias (27/118 of central centrifugal cicatricial alopecia, 29/109 of lichen planopilaris, 2/75 of discoid lupus erythematosus, 11/16 of acne keloidalis nuchae, and 3/27 of folliculitis decalvans). The presence of NHS was significantly increased in cicatricial alopecias in comparison with non-cicatricial alopecias; P value <0.0001. Among the cicatricial alopecias, 26% (92/345) had mild inflammation and/or fibrosis, of which 9% (9/92) had NHS. There were 73% (253/345) that had moderate to severe inflammation and/or fibrosis, of which 24% (63/253) had NHS, indicating that as the severity of inflammation and fibrosis increases, so does the presence of NHS. NHS rarely occurs in non-cicatricial alopecias. This variation may result from destruction of hair follicles by the inflammatory and scarring processes. The presence of NHS may be a useful adjunctive histopathologic feature in the diagnosis of cicatricial alopecia.

  19. Use PCR and a Single Hair To Produce a "DNA Fingerprint."

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm; And Others

    1997-01-01

    Presents a laboratory procedure that involves students extracting their own DNA from a single hair follicle, using the polymerase chain reaction (PCR) to amplify a polymorphic locus, performing electrophoresis on the PCR products on an agarose gel, and visualizing the alleles to generate a "DNA fingerprint." Discusses theoretical background,…

  20. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system.

    PubMed

    Dong, Liang; Hao, Haojie; Liu, Jiejie; Tong, Chuan; Ti, Dongdong; Chen, Deyun; Chen, Li; Li, Meirong; Liu, Huiling; Fu, Xiaobing; Han, Weidong

    2017-05-01

    Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers

    PubMed Central

    Zhu, Haijing; Niu, Yiyuan; Ma, Baohua; Yu, Honghao; Lei, Anmin; Yan, Hailong; Shen, Qiaoyan; Shi, Lei; Zhao, Xiaoe; Hua, Jinlian; Huang, Xingxu; Qu, Lei; Chen, Yulin

    2016-01-01

    Precision genetic engineering accelerates the genetic improvement of livestock for agriculture and biomedicine. We have recently reported our success in producing gene-modified goats using the CRISPR/Cas9 system through microinjection of Cas9 mRNA and sgRNAs targeting the MSTN and FGF5 genes in goat embryos. By investigating the influence of gene modification on the phenotypes of Cas9-mediated goats, we herein demonstrate that the utility of this approach involving the disruption of FGF5 results in increased number of second hair follicles and enhanced fiber length in Cas9-mediated goats, suggesting more cashmere will be produced. The effects of genome modifications were characterized using H&E and immunohistochemistry staining, quantitative PCR, and western blotting techniques. These results indicated that the gene modifications induced by the disruption of FGF5 had occurred at the morphological and genetic levels. We further show that the knockout alleles were likely capable of germline transmission, which is essential for goat population expansion. These results provide sufficient evidences of the merit of using the CRISPR/Cas9 approach for the generation of gene-modified goats displaying the corresponding mutant phenotypes. PMID:27755602

  2. Review of human hair optical properties in possible relation to melanoma development.

    PubMed

    Huang, Xiyong; Protheroe, Michael D; Al-Jumaily, Ahmed M; Paul, Sharad P; Chalmers, Andrew N

    2018-05-01

    Immigration and epidemiological studies provide evidence indicating the correlation of high ultraviolet exposure during childhood and increased risks of melanoma in later life. While the explanation of this phenomenon has not been found in the skin, a class of hair has been hypothesized to be involved in this process by transmitting sufficient ultraviolet rays along the hair shaft to possibly cause damage to the stem cells in the hair follicle, ultimately resulting in melanoma in later life. First, the anatomy of hair and its possible contribution to melanoma development, and the tissue optical properties are briefly introduced to provide the necessary background. This paper emphasizes on the review of the experimental studies of the optical properties of human hair, which include the sample preparation, measurement techniques, results, and statistical analysis. The Monte Carlo photon simulation of human hair is next outlined. Finally, current knowledge of the optical studies of hair is discussed in the light of their possible contribution to melanoma development; the necessary future work needed to support this hypothesis is suggested. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Hair loss and regeneration performed on animal models

    PubMed Central

    ORASAN, MEDA SANDRA; ROMAN, IULIA IOANA; CONEAC, ANDREI; MURESAN, ADRIANA; ORASAN, REMUS IOAN

    2016-01-01

    Research in the field of reversal hair loss remains a challenging subject. As Minoxidil 2% or 5% and Finasteride are so far the only FDA approved topical treatments for inducing hair regrowth, research is necessary in order to improve therapeutical approach in alopecia. In vitro studies have focused on cultures of a cell type - dermal papilla or organ culture of isolated cell follicles. In vivo research on this topic was performed on mice, rats, hamsters, rabbits, sheep and monkeys, taking into consideration the advantages and disadvantages of each animal model and the depilation options. Further studies are required not only to compare the efficiency of different therapies but more importantly to establish their long term safety. PMID:27547051

  4. The topical penta-peptide Gly-Pro-Ile-Gly-Ser increases the proportion of thick hair in Japanese men with androgenetic alopecia.

    PubMed

    Iwabuchi, Tokuro; Takeda, Shunsuke; Yamanishi, Haruyo; Ideta, Ritsuro; Ehama, Ritsuko; Tsuruda, Akinori; Shibata, Hideaki; Ito, Tomoko; Komatsu, Nobuyuki; Terai, Keiko; Oka, Syuichi

    2016-06-01

    A penta-peptide, Gly-Pro-Ile-Gly-Ser (GPIGS), promotes proliferation of mouse hair keratinocytes and accelerates hair growth in mice. This study focused on the ability of the peptide to promote human hair growth. We used a human hair keratinocyte proliferation assay and organ cultures of human hair follicle as in vitro systems. The lotions with and without the penta-peptide were administered to 22 Japanese men with androgenetic alopecia (AGA) for 4 months in a double-blind and randomized clinical study. The penta-peptide significantly stimulated the proliferation of human hair keratinocytes at a concentration of 2.3 μm (P < 0.01), and 5.0 μm of this peptide had a marked effect on hair shaft elongation in the organ culture (P < 0.05). The change in the proportion of thick hair (≥60 μm) compared to baseline in patients that received the peptide was significantly higher than in the placebo (P = 0.006). The change in the proportion of vellus hair (<40 μm) was also significantly lower in the peptide group than in the placebo (P = 0.029). The penta-peptide also significantly improved the appearance of baldness (P = 0.020) when blinded reviewers graded photographs of the participants according to a standardized baldness scale. No adverse dermatological effects due to treatment were noted during this clinical study. This penta-peptide promotes proliferation of human hair keratinocytes and hair shaft elongation of human hair follicles, in vitro. This peptide increases thick hair ratio in vivo, and this compound is useful for the improvement of AGA. © 2016 Wiley Periodicals, Inc.

  5. Hair regrowth through wound healing process after ablative fractional laser treatment in a murine model.

    PubMed

    Bae, Jung Min; Jung, Han Mi; Goo, Boncheol; Park, Young Min

    2015-07-01

    Alopecia is one of the most common dermatological problems in the elderly; however, current therapies for it are limited by low efficacy and undesirable side effects. Although clinical reports on fractional laser treatment for various alopecia types are increasing, the exact mechanism remains to be clarified. The purposes of this study were to demonstrate the effect of ablative fractional laser treatment on hair follicle regrowth in vivo and investigate the molecular mechanism after laser treatment. Ablative CO2 fractional laser was applied to the shaved dorsal skin of 7-week-old C57BL/6 mice whose hair was in the telogen stage. After 12 mice were treated at various energy (10-40 mJ/spot) and density (100-400 spots/cm(2) ) settings to determine the proper dosage for maximal effect. Six mice were then treated at the decided dosage and skin specimens were sequentially obtained by excision biopsy from the dorsal aspect of each mouse. Tissue samples were used for the immunohistochemistry and reverse transcription polymerase chain reaction assays to examine hair follicle status and their related molecules. The most effective dosage was the 10 mJ/spot and 300 spots/cm(2) setting. The anagen conversion of hair was observed in the histopathological examination, while Wnt/β-catenin expression was associated with hair regrowth in the immunohistochemistry and molecular studies. Ablative fractional lasers appear to be effective for inducing hair regrowth via activation of the Wnt/β-catenin pathway in vivo. Our findings indicate that fractional laser treatment can potentially be developed as new treatment options for stimulating hair regrowth. © 2015 Wiley Periodicals, Inc.

  6. Characterization of xenobiotic metabolizing enzymes of a reconstructed human epidermal model from adult hair follicles.

    PubMed

    Bacqueville, Daniel; Jacques, Carine; Duprat, Laure; Jamin, Emilien L; Guiraud, Beatrice; Perdu, Elisabeth; Bessou-Touya, Sandrine; Zalko, Daniel; Duplan, Hélène

    2017-08-15

    In this study, a comprehensive characterization of xenobiotic metabolizing enzymes (XMEs) based on gene expression and enzyme functionality was made in a reconstructed skin epidermal model derived from the outer root sheath (ORS) of hair follicles (ORS-RHE). The ORS-RHE model XME gene profile was consistent with native human skin. Cytochromes P450 (CYPs) consistently reported to be detected in native human skin were also present at the gene level in the ORS-RHE model. The highest Phase I XME gene expression levels were observed for alcohol/aldehyde dehydrogenases and (carboxyl) esterases. The model was responsive to the CYP inducers, 3-methylcholanthrene (3-MC) and β-naphthoflavone (βNF) after topical and systemic applications, evident at the gene and enzyme activity level. Phase II XME levels were generally higher than those of Phase I XMEs, the highest levels were GSTs and transferases, including NAT1. The presence of functional CYPs, UGTs and SULTs was confirmed by incubating the models with 7-ethoxycoumarin, testosterone, benzo(a)pyrene and 3-MC, all of which were rapidly metabolized within 24h after topical application. The extent of metabolism was dependent on saturable and non-saturable metabolism by the XMEs and on the residence time within the model. In conclusion, the ORS-RHE model expresses a number of Phase I and II XMEs, some of which may be induced by AhR ligands. Functional XME activities were also demonstrated using systemic or topical application routes, supporting their use in cutaneous metabolism studies. Such a reproducible model will be of interest when evaluating the cutaneous metabolism and potential toxicity of innovative dermo-cosmetic ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Genetics Home Reference: uncombable hair syndrome

    MedlinePlus

    ... Twitter Home Health Conditions Uncombable hair syndrome Uncombable hair syndrome Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Uncombable hair syndrome is a condition that is characterized by ...

  8. Genetics Home Reference: cartilage-hair hypoplasia

    MedlinePlus

    ... Twitter Home Health Conditions Cartilage-hair hypoplasia Cartilage-hair hypoplasia Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Cartilage-hair hypoplasia is a disorder of bone growth characterized ...

  9. Static and dynamic modes of 810 nm diode laser hair removal compared: A clinical and histological study

    PubMed Central

    2017-01-01

    Background and Aims Laser hair removal has recently become a major indication. Diode lasers have become commercially available offering two modes of application: a stamping or static mode, and a dynamic mode whereby the handpiece is continuously moved across the target tissue. The present study was designed to compare the efficacy of these two approaches clinically and histologically. Subjects and Methods Twenty-five subjects participated in the study, 12 males and 13 females, ages ranging from 20 to 57 yr (Mean age 41.6 yr). A baseline hair count was performed on both the target areas. The ms-pulsed diode laser delivered 810 nm via a handpiece with a cooled tip, offering both static and dynamic modes which were used on the subjects' left and right crura, respectively. Pain during treatment was assessed using a visual analog scale (VAS) and gross inspection was performed immediately after treatment for any abnormality in the treated skin. Hair counts were performed on both crura at 1 and 3 months after the treatment, and compared with the baseline counts. Biopsies were performed in the dynamic mode treated skin at baseline and at 1 month after the treatment, and assessed with light microscopy, immunohistochemistry and transmission electron microscopy (TEM). Results All subjects completed the study. Compared with baseline, hair counts were significantly lower at 1 and 3 months post-treatment with no significant difference between the static and dynamic laser depilation modes, nor in the severity of the pain experienced during the procedure. Histologically, degenerative changes in the hair follicles were noted immediately after laser treatment. At one month, cystic formation was seen in the hair follicles showing a strong tendency towards apoptotic cell death. Conclusions With the diode laser system and at the parameters used in the present study, high depilation efficacy was seen with no significant difference between the static and dynamic modes. Interestingly

  10. [Inhibition effect of 6-gingerol on hair growth].

    PubMed

    Miao, Yong; Sun, Ya-Bin; Wang, Wen-Jun; Zhang, Zhi-Dan; Jiang, Jin-Dou; Li, Ze-Hua; Hu, Zhi-Qi

    2013-11-01

    To investigate the effect of 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo. Firstly, Hair follicles were co-cultured with 3 different concentration of 6-gingerol for 5 days and hair elongation in three groups was measured. Secondly, The proliferative effect of 6-gingerol on DPCs was measured using MTT assay. Thirdly, the expression of Bcl-2 and Bax in DPCs were measured using Western blotting. In vivo study, the influence of 6-gingerol on hair growth in C57BL/6 rats was measured through topical application of 6-gingerol on the dorsal skin of each animal. The length of hair shaft in 20 microg/ml 6-Gingerol group (0.50 +/- 0.08 mm) is less than 0 microg/ml (0.66 +/- 0.19) mm and 10 microg/ml (0.64 +/- 0.03) mm 6-Gingerol group (P < 0.05). In cell culture, compared to 0 microg/ml and 5 microg/ml 6-Gingerol, 10 microg/ml 6-Gingerol can significantly inhibited the proliferation of DPCs (P < 0.05). Along with the growth inhibition of DPCs by 6-gingerol, the Bax/Bcl-2 ratio increased obviously. In vivo study, the hair length and density decreased a lot after using 1 mg/ml 6-gingerol. 6-Gingerol can suppress human hair shaft elongation because it has pro-apoptotic effects on DPCs via increasing Bax/Bcl-2 ratio. It might inhibit hair growth by prolonging the telogen stage in vivo.

  11. Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae.

    PubMed

    Zhao, Juan; Harada, Naoaki; Okajima, Kenji

    2011-10-01

    We demonstrated that insulin-like growth factor-I (IGF-I) production in dermal papillae was increased and hair growth was promoted after sensory neuron stimulation in mice. Although the androgen metabolite dihydrotestosterone (DHT) inhibits hair growth by negatively modulating growth-regulatory effects of dermal papillae, relationship between androgen metabolism and IGF-I production in dermal papillae is not fully understood. We examined whether DHT inhibits IGF-I production by inhibiting sensory neuron stimulation, thereby preventing hair growth in mice. Effect of DHT on sensory neuron stimulation was examined using cultured dorsal root ganglion (DRG) neurons isolated from mice. DHT inhibits calcitonin gene-related peptide (CGRP) release from cultured DRG neurons. The non-steroidal androgen-receptor antagonist flutamide reversed DHT-induced inhibition of CGRP release. Dermal levels of IGF-I and IGF-I mRNA, and the number of IGF-I-positive fibroblasts around hair follicles were increased at 6h after CGRP administration. DHT administration for 3weeks decreased dermal levels of CGRP, IGF-I, and IGF-I mRNA in mice. Immunohistochemical expression of IGF-I and the number of proliferating cells in hair follicles were decreased and hair re-growth was inhibited in animals administered DHT. Co-administration of flutamide and CGRP reversed these changes induced by DHT administration. These observations suggest that DHT may decrease IGF-I production in dermal papillae by inhibiting sensory neuron stimulation through interaction with the androgen receptor, thereby inhibiting hair growth in mice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The Role of Neprilysin in Regulating the Hair Cycle

    PubMed Central

    Morisaki, Naoko; Ohuchi, Atsushi; Moriwaki, Shigeru

    2013-01-01

    In most mammals, each hair follicle undergoes a cyclic process of growing, regressing and resting phases (anagen, catagen, telogen, respectively) called the hair cycle. Various biological factors have been reported to regulate or to synchronize with the hair cycle. Some factors involved in the extracellular matrix, which is a major component of skin tissue, are also thought to regulate the hair cycle. We have focused on an enzyme that degrades elastin, which is associated with skin elasticity. Since our previous study identified skin fibroblast elastase as neprilysin (NEP), we examined the fluctuation of NEP enzyme activity and its expression during the synchronized hair cycle of rats. NEP activity in the skin was elevated at early anagen, and decreased during catagen to telogen. The expression of NEP mRNA and protein levels was modulated similarly. Immunostaining showed changes in NEP localization throughout the hair cycle, from the follicular epithelium during early anagen to the dermal papilla during catagen. To determine whether NEP plays an important role in regulating the hair cycle, we used a specific inhibitor of NEP (NPLT). NPLT was applied topically daily to the dorsal skin of C3H mice, which had been depilated in advance. Mice treated with NPLT had significantly suppressed hair growth. These data suggest that NEP plays an important role in regulating the hair cycle by its increased expression and activity in the follicular epithelium during early anagen. PMID:23418484

  13. New activators and inhibitors in the hair cycle clock: targeting stem cells’ state of competence

    PubMed Central

    Plikus, Maksim V.

    2014-01-01

    Summary The timing mechanism of the hair cycle remains poorly understood. However, it has become increasingly clear that the telogen-to-anagen transition is controlled jointly by at least the bone morphogenic protein (BMP), WNT, fibroblast growth factor (FGF), and transforming growth factor (TGF)-β signaling pathways. New research shows that Fgf18 signaling in hair follicle stem cells synergizes BMP-mediated refractivity, whereas Tgf-β2 signaling counterbalances it. Loss of Fgf18 signaling markedly accelerates anagen initiation, whereas loss of Tgf-β2 signaling significantly delays it, supporting key roles for these pathways in hair cycle timekeeping. PMID:22499035

  14. Gold thread implantation promotes hair growth in human and mice

    PubMed Central

    Kim, Jong-Hwan; Cho, Eun-Young; Kwon, Euna; Kim, Woo-Ho; Park, Jin-Sung; Lee, Yong-Soon

    2017-01-01

    Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated dorsal skin of mice, gold thread or polyglycolic acid (PGA) thread, similarly to 5% minoxidil, significantly increased the number of hair follicles on day 14 after implantation. And, hair re-growth promotion in the gold threadimplanted mice were significantly higher than that in PGA thread group on day 11 after depilation. In particular, the skin tissue of gold thread-implanted mice showed stronger PCNA staining and higher collagen density compared with control mice. These results indicate that gold thread implantation can be an effective way to promote hair re-growth although further confirmatory study is needed for more information on therapeutic mechanisms and long-term safety. PMID:29399026

  15. Efficacy of topical tofacitinib in promoting hair growth in non-scarring alopecia: possible mechanism via VEGF induction.

    PubMed

    Meephansan, Jitlada; Thummakriengkrai, J; Ponnikorn, S; Yingmema, W; Deenonpoe, R; Suchonwanit, P

    2017-11-01

    Tofacitinib is a Janus kinase 3 (JAK3) inhibitor that promotes hair growth; however, the efficacy and mechanism of this effect are not yet understood. This study aimed to evaluate the efficacy and mechanism of topical tofacitinib on hair growth in mice. Eight-week-old male C57BL/6 mice were divided equally into four groups and treated topically with tofacitinib, minoxidil, or vehicle once daily for 21 days. Weekly photographs were taken to determine the area and rate of hair growth, and tissue samples were collected for histopathological evaluation. mRNA and protein expression of anagen-maintaining growth factors, including vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1), were determined via RT-PCR and ELISA, respectively. Tofacitinib-treated mice exhibited more hair regrowth than either minoxidil-treated or control mice did between day 7 and 21 (P < 0.05). Topical tofacitinib also promoted more rapid hair growth rate than topical minoxidil or control did (P < 0.001). Histopathology showed a distinct increase in the number of hair follicles, mostly in the anagen phase, in the tofacitinib-treated group. Hair follicles in the minoxidil- and vehicle-treated groups were more often classified as catagen and anagen. VEGF mRNA and protein expression in the tofacitinib-treated group was significantly greater than those in the other groups (P < 0.05). IGF-1 mRNA expression was not upregulated in tofacitinib-treated mice. Topical tofacitinib is effective in promoting hair growth, and the possible mechanism involves increased VEGF levels and lowered inflammation. This study will help develop a new therapeutic option for non-scarring alopecia.

  16. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells.

    PubMed

    Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L

    1998-03-01

    The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.

  17. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    PubMed

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  18. Hair loss and hyperprolactinemia in women

    PubMed Central

    2012-01-01

    In the literature of the past 30 years there are only some publications concerned with hair loss and hyperprolactinemia in women. Therefore, the relevance of hyperprolactinemia was evaluated in 40 women with diffuse alopecia. Hair loss was assessed by clinical appearance and the pluck trichogram. 82.5% of the female patients had diffuse hair loss and 17.5% had androgenetic alopecia. The highest prolactin values measured were 1390 ng/ml and 255 ng/ml. Six patients had values between 150–80.4 ng/ml and 10 between 79.1–51.7 ng/ml. All others had prolactin values below 50 ng/ml. Fifteen untreated patients with elevated prolactin levels could be followed up. Without any prolactin-inhibiting drugs, reductions and normalizations beside moderate fluctuations could be detected. Thyroid-specific diagnostics showed in 95% of the patients a normal thyroid function. 2.5% had a slight hyperthyreoidism and 2.5% had a slight hypothyreoidism. No female patient had clinical signs of androgenization and the determined androgens testosterone, androstendione and dihydroepiandrostendione were in the normal range. According to these results, moderate elevated prolactin levels in association with diffuse or androgenetic hair loss can be neglected as causative for the hair loss, because there is no evidence that they have an influence to the pattern, the extent or the duration of the hair loss. These results are supported by investigations of other authors who described only in high doses of prolactin an inhibiting effect on human hair follicles in vitro. Nevertheless, moderate constantly elevated prolactin levels should induce further diagnostics to exclude a prolactin-producing tumor of the pituitary gland. PMID:22870355

  19. Detection of novel Betapapillomaviruses and Gammapapillomaviruses in eyebrow hair follicles using a single-tube 'hanging droplet' PCR assay with modified pan-PV CODEHOP primers.

    PubMed

    Chouhy, Diego; Kocjan, Boštjan J; Staheli, Jeannette P; Bolatti, Elisa M; Hošnjak, Lea; Sagadin, Martin; Giri, Adriana A; Rose, Timothy M; Poljak, Mario

    2018-01-01

    A modified pan-PV consensus-degenerate hybrid oligonucleotide primer (CODEHOP) PCR was developed for generic and sensitive detection of a broad-spectrum of human papillomaviruses (HPVs) infecting the cutaneous epithelium. To test the analytical sensitivity of the assay we examined 149 eyebrow hair follicle specimens from immunocompetent male patients. HPV DNA was detected in 60 % (89/149) of analysed eyebrow samples with a total of 48 different HPV sequences, representing 21 previously described HPVs and 27 putative novel HPV types. Evidence for ten novel HPV subtypes and seven viral variants, clustering to three out of five genera containing cutaneous HPVs, was also obtained. Thus, we have shown that the modified pan-PV CODEHOP PCR assay is able to identify multiple HPV types, even from different genera, in the same clinical sample. Overall, these results demonstrate that the pan-PV CODEHOP PCR is an excellent tool for screening and identification of novel cutaneous HPVs, even in samples with low viral loads.

  20. Action Mechanism of Chamaecyparis obtusa Oil on Hair Growth

    PubMed Central

    Park, Young-Ok; Kim, Su-Eun; Kim, Young-Chul

    2013-01-01

    This study was carried out to examine the action mechanism of Chamaecyparis obtusa oil (CO) on hair growth in C57BL/6 mice. For alkaline phosphatase (ALP) and γ-glutamyl transpeptidase (γ-GT) activities in the skin tissue, at week 4, the 3% minoxidil (MXD) and 3% CO treatment groups showed an ALP activity that was significantly higher by 85% (p < 0.001) and 48% (p < 0.05) and an γ-GT activity that was significantly higher by 294% (p < 0.01) and 254% (p < 0.05) respectively, as compared to the saline (SA) treatment group. For insulin-like growth factor-1 (IGF-1) mRNA expression in the skin tissue, at week 4, the MXD and CO groups showed a significantly higher expression by 204% (p < 0.05) and 426% (p < 0.01) respectively, as compared to the SA group. At week 4, vascular endothelial growth factor (VEGF) expression in the MXD and CO groups showed a significantly higher expression by 74% and 96% (p < 0.05) respectively, however, epidermal growth factor (EGF) expression in the MXD and CO groups showed a significantly lower expression by 66% and 61% (p < 0.05) respectively, as compared to the SA group. Stem cell factor (SCF) expression in the MXD and CO groups was observed by immunohistochemistry as significant in a part of the bulge around the hair follicle and in a part of the basal layer of the epidermis. Taking all the results together, on the basis of effects on ALP and γ-GT activity, and the expression of IGF-1, VEGF and SCF, which are related to the promotion of hair growth, it can be concluded that CO induced a proliferation and division of hair follicle cells and maintained the anagen phase. Because EGF expression was decreased significantly, CO could delay the transition to the catagen phase. PMID:24578794

  1. Grey hair: clinical investigation into changes in hair fibres with loss of pigmentation in a photoprotected population.

    PubMed

    Kaplan, P D; Polefka, T; Grove, G; Daly, S; Jumbelic, L; Harper, D; Nori, M; Evans, T; Ramaprasad, R; Bianchini, R

    2011-04-01

    Loss of pigmentation in hair fibres is one of the most obvious phenotypic changes with ageing and has been a topic of increasing interest in the study of follicle biology. The onset of greying brings cosmetic complaints that grey fibres are wild or difficult to manage. Of course, these perceptions may be the consequence of visual obviousness rather than underlying physical or chemical differences. Although several studies have compared pigmented and unpigmented fibres, few have tried to control genetic and ethnic difference as well as extrinsic factors such as photoexposure and chemical treatment. We have recruited subjects with salt-and-pepper hair from a population of Old Order Mennonites who, for cultural reasons, are not only prohibited from chemically treating their hair but also limit their exposure to sunlight. Hair samples were examined for elemental composition, surface energy, Young's modulus, break stress, bending modulus, shear modulus and water sorption/desorption isotherm. The parameters were evaluated statistically for global differences, individual differences and typical individual differences. Consistent with previous published literature, few global differences were found between pigmented and unpigmented hair across the population. We do find that many individual subjects had differences between pigmented and unpigmented fibres. These differences tend to be more pronounced in bulk than in surface properties. The small differences in mechanical properties and moisture uptake and loss lend support to the perception by consumers that grey hair is wilder, drier and less manageable. © 2011 TRI/Princeton. Journal compilation. © 2010 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Selective hair therapy: bringing science to the fiction.

    PubMed

    Vogt, Annika; Blume-Peytavi, Ulrike

    2014-02-01

    Investigations on carrier-based drug delivery systems for higher selectivity in hair therapy have clearly evolved from dye release and model studies to highly sophisticated approaches, many of which specifically tackle hair indications and the delivery of hair-relevant molecules. Here, we group recent hair disease-oriented work into efforts towards (i) improved delivery of conventional drugs, (ii) delivery of novel drug classes, for example biomolecules and (iii) targeted delivery on the cellular/molecular level. Considering the solid foundation of experimental work, it does not take a large step outside the current box of thinking to follow the idea of using large carriers (>500 nm, unlikely to penetrate as a whole) for follicular penetration, retention and protection of sensitive compounds. Yet, reports on particles <200 nm being internalized by keratinocytes and dendritic cells at sites of barrier disruption (e.g., hair follicles) combined with recent advances in nanodermatology add interesting new facets to the possibilities carrier technologies could offer, for example, unprecedented levels of selectivity. The authors provide thought-provoking ideas on how smart delivery technologies and advances in our molecular understanding of hair pathophysiology could result in a whole new era of hair therapeutics. As the field still largely remains in preclinical investigation, determined efforts towards production of medical grade material and truly translational work are needed to demonstrate surplus value of carrier systems for clinical applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Thymosin Beta-4 Induces Mouse Hair Growth.

    PubMed

    Gao, Xiaoyu; Liang, Hao; Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun

    2015-01-01

    Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts.

  4. Tufted folliculitis. A specific bacterial disease?

    PubMed

    Dalziel, K L; Telfer, N R; Wilson, C L; Dawber, R P

    1990-02-01

    Residual groups of hair follicles and unusual "tufts" of multiple hairs emerging from single follicular openings have been described in scarring alopecia associated with staphylococcal infection. Various mechanisms have been proposed to explain these findings. Histological study of four cases suggests that retention of telogen hairs through several hair cycles may be responsible for this phenomenon.

  5. Comparative Hair Restorer Efficacy of Medicinal Herb on Nude (Foxn1nu) Mice

    PubMed Central

    Begum, Shahnaz; Lee, Mi Ra; Gu, Li Juan; Hossain, Md. Jamil; Kim, Hyun Kyoung; Sung, Chang Keun

    2014-01-01

    Eclipta alba (L.) Hassk, Asiasarum sieboldii (Miq.) F. Maek (Asiasari radix), and Panax ginseng C. A. Mey (red ginseng) are traditionally acclaimed for therapeutic properties of various human ailments. Synergistic effect of each standardized plant extract was investigated for hair growth potential on nude mice, as these mutant mice genetically lack hair due to abnormal keratinization. Dried plant samples were ground and extracted by methanol. Topical application was performed on the back of nude mice daily up to completion of two hair growth generations. The hair density and length of Eclipta alba treated mice were increased significantly (P > 0.001) than control mice. Hair growth area was also distinctly visible in Eclipta alba treated mice. On the other hand, Asiasari radix and Panax ginseng treated mice developing hair loss were recognized from the abortive boundaries of hair coverage. Histomorphometric observation of nude mice skin samples revealed an increase in number of hair follicles (HFs). The presence of follicular keratinocytes was confirmed by BrdU labeling, S-phase cells in HFs. Therefore, Eclipta alba extract and/or phytochemicals strongly displayed incomparability of hair growth promotion activity than others. Thus, the standardized Eclipta alba extract can be used as an effective, alternative, and complementary treatment against hair loss. PMID:25478567

  6. Serenoa repens extracts promote hair regeneration and repair of hair loss mouse models by activating TGF-β and mitochondrial signaling pathway.

    PubMed

    Zhu, H-L; Gao, Y-H; Yang, J-Q; Li, J-B; Gao, J

    2018-06-01

    Plenty of plant extracts have been used for treating hair loss. This study aims to investigate the effects of liposterolic extracts of Serenoa repens (LSESr) on hair cell growth and regeneration of hair, and clarify the associated mechanisms. Human keratinocyte cells (HACAT) were cultured, incubated with dihydrotestosterone (DHT) and treated with LSESr. Cell viability was examined by using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H- tetrazolium bromide (MTT) assay. Hair loss C57BL/6 mouse model was established by inducing with DHT. Hair growth, density, and thickness were evaluated. Back skin samples were collected and stained with hematoxylin and eosin (HE) assay. B-cell lymphoma-2 (Bcl-2), Bcl-2 associated protein X (Bax), cleaved caspase 3 and transforming growth factor β2 (TGF-β2) were examined using Western blot assay. LSESr treatment significantly increased HACAT cell viabilities compared to DHT-only treated cells (p<0.05). LSESr treatment post injection of DHT significantly converted skin color from pink to gray and increased hair density, weight and thickness compared to DHT-only treated mice (p<0.05). LSESr treatment significantly triggered follicle growth and decreased inflammatory response. LSESr treatment significantly decreased TGF-β2 and cleaved caspase 3 expression of hair loss mouse models compared to that of DHT treated mice (p<0.05). LSESr treatment significantly enhanced Bcl-2 expression and reduced Bax expression compared to that of DHT treated mice (p<0.05). Meanwhile, effects of LSESr were substantial even achieving to the potential of finasteride. LSESr promoted the hair regeneration and repair of hair loss mouse models by activating TGF-β signaling and mitochondrial signaling pathway.

  7. The Actions of Calcium on Hair Bundle Mechanics in Mammalian Cochlear Hair Cells

    PubMed Central

    Beurg, Maryline; Nam, Jong-Hoon; Crawford, Andrew; Fettiplace, Robert

    2008-01-01

    Sound stimuli excite cochlear hair cells by vibration of each hair bundle, which opens mechanotransducer (MT) channels. We have measured hair-bundle mechanics in isolated rat cochleas by stimulation with flexible glass fibers and simultaneous recording of the MT current. Both inner and outer hair-cell bundles exhibited force-displacement relationships with a nonlinearity that reflects a time-dependent reduction in stiffness. The nonlinearity was abolished, and hair-bundle stiffness increased, by maneuvers that diminished calcium influx through the MT channels: lowering extracellular calcium, blocking the MT current with dihydrostreptomycin, or depolarizing to positive potentials. To simulate the effects of Ca2+, we constructed a finite-element model of the outer hair cell bundle that incorporates the gating-spring hypothesis for MT channel activation. Four calcium ions were assumed to bind to the MT channel, making it harder to open, and, in addition, Ca2+ was posited to cause either a channel release or a decrease in the gating-spring stiffness. Both mechanisms produced Ca2+ effects on adaptation and bundle mechanics comparable to those measured experimentally. We suggest that fast adaptation and force generation by the hair bundle may stem from the action of Ca2+ on the channel complex and do not necessarily require the direct involvement of a myosin motor. The significance of these results for cochlear transduction and amplification are discussed. PMID:18178649

  8. Hair Follicle Bulb as a Biodosimeter for Low-Level VX Vapor Exposure: Initial Studies Validating the Presence of Potential Protein Biomarkers of Exposure in the Sprague-Dawley Rat Whisker Follicle

    DTIC Science & Technology

    2006-10-01

    lead to false positive segmental hair analysis results.13 Due to the increased risk of false positives associated with segmental hair analysis ...to 200 mg of hair (to allow confirmation testing). 7 The segments are typically washed to remove external contaminants and the chemicals in the hair ...further confirmation. The method overcomes the false positives associated with traditional segmental hair analysis such. By measuring the

  9. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features

    PubMed Central

    Adhikari, Kaustubh; Fontanil, Tania; Cal, Santiago; Mendoza-Revilla, Javier; Fuentes-Guajardo, Macarena; Chacón-Duque, Juan-Camilo; Al-Saadi, Farah; Johansson, Jeanette A.; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C.; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M.; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Gonzalez-José, Rolando; Headon, Denis; López-Otín, Carlos; Tobin, Desmond J.; Balding, David; Ruiz-Linares, Andrés

    2016-01-01

    We report a genome-wide association scan in over 6,000 Latin Americans for features of scalp hair (shape, colour, greying, balding) and facial hair (beard thickness, monobrow, eyebrow thickness). We found 18 signals of association reaching genome-wide significance (P values 5 × 10−8 to 3 × 10−119), including 10 novel associations. These include novel loci for scalp hair shape and balding, and the first reported loci for hair greying, monobrow, eyebrow and beard thickness. A newly identified locus influencing hair shape includes a Q30R substitution in the Protease Serine S1 family member 53 (PRSS53). We demonstrate that this enzyme is highly expressed in the hair follicle, especially the inner root sheath, and that the Q30R substitution affects enzyme processing and secretion. The genome regions associated with hair features are enriched for signals of selection, consistent with proposals regarding the evolution of human hair. PMID:26926045

  10. Bacteria and fungi on the surface and within noninflamed hair follicles of skin biopsy specimens from horses with healthy skin or inflammatory dermatoses.

    PubMed

    Cook, Christopher P; Scott, Danny W; Erb, Hollis N; Miller, William H

    2005-02-01

    A retrospective study using light microscopy was performed to assess the prevalence of surface and follicular bacteria and fungi in skin biopsy specimens from 247 horses with inflammatory dermatoses and from 27 horses with healthy skin. Cocci were found on the surface of specimens from 23% (95% confidence interval 18%, 29%) and 7% (95% confidence interval, 0%, 19%), respectively, of horses with skin disease and horses with healthy skin. Of the nine dermatoses with at least 10 cases in our series of horses, bacterial folliculitis had a higher prevalence of surface bacteria (57%; 95% confidence interval 34%, 81%) than the other eight (which all had a prevalence < 30%). There was a significant association between the prevalence of surface cocci and the extent of epidermal hyperkeratosis. Cocci were found in the keratin of noninflamed hair follicles in only 2% of the horses with skin disease, and in none of the horses with healthy skin. Fungal poroconidia were found on the surface of 4% of the horses with skin disease, and on none of the horses with healthy skin. Yeasts were not found.

  11. Influence of Th2 cells on hair cycle/growth after repeated cutaneous application of hapten.

    PubMed

    Sugita, K; Nomura, T; Ikenouchi-Sugita, A; Ito, T; Nakamura, M; Miyachi, Y; Tokura, Y; Kabashima, K

    2014-03-01

    Exposure to contact allergens in order to produce allergic contact dermatitis (ACD) seems to induce hair cycle/growth, but the mechanism of this remains unclear. In the current study, we investigated this mechanism and found that repeated application of hapten induced production of interleukin (IL)-4 in lymph-node immune cells. In addition, hair growth was induced in mice after the adoptive transfer of T-helper (Th)2 cells that had been purified from mice exposed to repeated cutaneous application of hapten. These findings lead us to speculate that Th2 cells that are repeatedly hapten-sensitized are recruited to hapten-challenged skin areas, and thus stimulate the production of IL-4 in the vicinity of the hair follicles, which influences hair cycle/growth. Our results may provide fundamental insights into the mechanism of contact hypersensitivity-induced hair cycle/growth. © 2013 British Association of Dermatologists.

  12. Disordered follicle development

    PubMed Central

    Chang, R. Jeffrey; Cook-Andersen, Heidi

    2013-01-01

    Alterations of ovarian follicle morphology and function have been well documented in women with PCOS. These include increased numbers of growing preantral follicles, failure of follicle growth beyond the mid-antral stage, evidence of granulosa call degeneration, and theca cell hyperplasia. Functional abnormalities include paradoxical granulosa cell hyperresponsiveness to FSH which is clinically linked to ovarian hyperstimulation during ovulation induction. In addition, there is likely a primary theca cell defect that accounts for the majority of excess androgen production in this disorder. The precise mechanisms responsible for altered follicle function are not completely clear. However, several factors appear to influence normal advancement of follicle development as well as impair ovarian steroidogenesis. These include intra- as well as extraovarian influences that distort normal ovarian growth and disrupt steroid production by follicle cells. PMID:22874072

  13. Hair-growth-promoting effect of conditioned medium of high integrin α6 and low CD 71 (α6bri/CD71dim) positive keratinocyte cells.

    PubMed

    Won, Chong Hyun; Jeong, Yun-Mi; Kang, Sangjin; Koo, Tae-Sung; Park, So-Hyun; Park, Ki-Young; Sung, Young-Kwan; Sung, Jong-Hyuk

    2015-02-19

    Keratinocyte stem/progenitor cells (KSCs) reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs) and outer root sheath (ORS) cells were treated with conditioned medium (CM) of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor). A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells.

  14. Hair-Growth-Promoting Effect of Conditioned Medium of High Integrin α6 and Low CD 71 (α6bri/CD71dim) Positive Keratinocyte Cells

    PubMed Central

    Won, Chong Hyun; Jeong, Yun-Mi; Kang, Sangjin; Koo, Tae-Sung; Park, So-Hyun; Park, Ki-Young; Sung, Young-Kwan; Sung, Jong-Hyuk

    2015-01-01

    Keratinocyte stem/progenitor cells (KSCs) reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs) and outer root sheath (ORS) cells were treated with conditioned medium (CM) of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor). A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells. PMID:25706512

  15. Thymosin Beta-4 Induces Mouse Hair Growth

    PubMed Central

    Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun

    2015-01-01

    Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts. PMID:26083021

  16. Improvement of androgenetic alopecia with topical Sophora flavescens Aiton extract, and identification of the two active compounds in the extract that stimulate proliferation of human hair keratinocytes.

    PubMed

    Takahashi, T; Ishino, A; Arai, T; Hamada, C; Nakazawa, Y; Iwabuchi, T; Tajima, M

    2016-04-01

    Androgenetic alopecia (AGA) is a hair loss disorder that commonly affects middle-aged men. To date, the properties of a number of natural or synthetic substances have been investigated for their ability to improve the condition. To evaluate the hair growth-promoting activities of an extract from the root of Sophora flavescens Aiton. We used a human hair keratinocyte proliferation assay and ex vivo organ cultures of human hair follicle to examine the potential of the extract to stimulate hair growth via anagen elongation. We isolated the compounds promoting the growth of epithelial cells, and determined their chemical structures. A randomized, double-blinded, placebo-controlled clinical study for S. flavescens extract was carried out for 6 months with patients with AGA. The extract stimulated the proliferation of hair keratinocytes at a concentration of 0.1 ng/mL, while 100 ng/mL of the extract had a marked effect on hair shaft elongation in an organ culture of human hair follicle. Cell proliferation assay-directed fractionation led to the identification of two pterocarpan derivatives, L-maackiain and medicarpin, as active compounds that promote the proliferation of human hair keratinocytes. Studies in human subjects showed that improvement in the inspected alopecia scores in the lotion plus extract group were significant over a period of 6 months (P < 0.01). S. flavescens root extract is effective for the treatment of AGA. The isolated two pterocarpans might have important role in this effect. © 2015 British Association of Dermatologists.

  17. Hair cell ribbon synapses

    PubMed Central

    Brandt, Andreas; Lysakowski, Anna

    2010-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the apical compartment. Transmitter release occurs at several active zones along the basolateral membrane. The astonishing capability of the hair cell ribbon synapse for temporally precise and reliable sensory coding has been the subject of intense investigation over the past few years. This research has been facilitated by the excellent experimental accessibility of the hair cell. For the same reason, the hair cell serves as an important model for studying presynaptic Ca2+ signaling and stimulus-secretion coupling. In addition to common principles, hair cell synapses differ in their anatomical and functional properties among species, among the auditory and vestibular organs, and among hair cell positions within the organ. Here, we briefly review synaptic morphology and connectivity and then focus on stimulus-secretion coupling at hair cell synapses. PMID:16944206

  18. Role of thymosin beta 4 in hair growth.

    PubMed

    Gao, Xiao-Yu; Hou, Fang; Zhang, Zhi-Peng; Nuo, Ming-Tu; Liang, Hao; Cang, Ming; Wang, Zhi-Gang; Wang, Xin; Xu, Teng; Yan, Le-Yan; Guo, Xu-Dong; Liu, Dong-Jun

    2016-08-01

    Although thymosin beta 4 (Tβ4) is known to play a role in hair growth, its mechanism of action is unclear. We examined the levels of key genes in a Tβ4 epidermal-specific over-expressing mouse model and Tβ4 global knockout mouse model to explore how Tβ4 affects hair growth. By depilation and histological examination of the skin, we confirmed the effect of Tβ4 on hair growth, the number of hair shafts and hair follicle (HF) structure. The mRNA and protein expression of several genes involved in hair growth were detected by real-time PCR and western blotting, respectively. Changes in the expression of β-catenin and Lef-1, the two key molecules in the Wnt signaling pathway, were similar to the changes observed in Tβ4 expression. We also found that compared to the control mice, the mRNA and protein expression of MMP-2 and VEGF were increased in the Tβ4 over-expressing mice, while the level of E-cadherin (E-cad) remained the same. Further, in the Tβ4 global knockout mice, the mRNA and protein levels of MMP-2 and VEGF decreased dramatically and the level of E-cad was stable. Based on the above results, we believe that Tβ4 may regulate the levels of VEGF and MMP-2 via the Wnt/β-catenin/Lef-1 signaling pathway to influence the growth of blood vessels around HFs and to activate cell migration. Tβ4 may have potential for the treatment of hair growth problems in adults, and its effects should be further confirmed in future studies.

  19. Engineering the Follicle Microenvironment

    PubMed Central

    West, Erin R.; Shea, Lonnie D.; Woodruff, Teresa K.

    2008-01-01

    In vitro ovarian follicle culture provides a tool to investigate folliculogenesis, and may one day provide women with fertility-preservation options. The application of tissue engineering principles to ovarian follicle maturation may enable the creation of controllable microenvironments that will coordinate the growth of the multiple cellular compartments within the follicle. Three-dimensional culture systems can preserve follicle architecture, thereby maintaining critical cell–cell and cell–matrix signaling lost in traditional two-dimensional attached follicle culture systems. Maintaining the follicular structure while manipulating the biochemical and mechanical environment will enable the development of controllable systems to investigate the fundamental biological principles underlying follicle maturation. This review describes recent advances in ovarian follicle culture, and highlights the tissue engineering principles that may be applied to follicle culture, with the ultimate objective of germline preservation for females facing premature infertility. PMID:17594609

  20. Diversification of Root Hair Development Genes in Vascular Plants1[OPEN

    PubMed Central

    Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui

    2017-01-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis (Arabidopsis thaliana). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. PMID:28487476

  1. Abnormalities of hair structure and skin histology derived from CRISPR/Cas9-based knockout of phospholipase C-delta 1 in mice.

    PubMed

    Liu, Yu-Min; Liu, Wei; Jia, Jun-Shuang; Chen, Bang-Zhu; Chen, Heng-Wei; Liu, Yu; Bie, Ya-Nan; Gu, Peng; Sun, Yan; Xiao, Dong; Gu, Wei-Wang

    2018-05-25

    Hairless mice have been widely applied in skin-related researches, while hairless pigs will be an ideal model for skin-related study and other biomedical researches because of the similarity of skin structure with humans. The previous study revealed that hairlessness phenotype in nude mice is caused by insufficient expression of phospholipase C-delta 1 (PLCD1), an essential molecule downstream of Foxn1, which encouraged us to generate PLCD1-deficient pigs. In this study, we plan to firstly produce PLCD1 knockout (KO) mice by CRISPR/Cas9 technology, which will lay a solid foundation for the generation of hairless PLCD1 KO pigs. Generation of PLCD1 sgRNAs and Cas 9 mRNA was performed as described (Shao in Nat Protoc 9:2493-2512, 2014). PLCD1-modified mice (F0) were generated via co-microinjection of PLCD1-sgRNA and Cas9 mRNA into the cytoplasm of C57BL/6J zygotes. Homozygous PLCD1-deficient mice (F1) were obtained by intercrossing of F0 mice with the similar mutation. PLCD1-modified mice (F0) showed progressive hair loss after birth and the genotype of CRISPR/Cas9-induced mutations in exon 2 of PLCD1 locus, suggesting the sgRNA is effective to cause mutations that lead to hair growth defect. Homozygous PLCD1-deficient mice (F1) displayed baldness in abdomen and hair sparse in dorsa. Histological abnormalities of the reduced number of hair follicles, irregularly arranged and curved hair follicles, epidermal hyperplasia and disturbed differentiation of epidermis were observed in the PLCD1-deficient mice. Moreover, the expression level of PLCD1 was significantly decreased, while the expression levels of other genes (i.e., Krt1, Krt5, Krt13, loricrin and involucrin) involved in the differentiation of hair follicle were remarkerably increased in skin tissues of PLCD1-deficient mice. In conclusion, we achieve PLCD1 KO mice by CRISPR/Cas9 technology, which provide a new animal model for hair development research, although homozygotes don't display completely hairless

  2. DETERMINATION OF MERCURY IN HAIR OF CHILDREN.

    PubMed

    Pino, A; Bocca, B; Forte, G; Majorani, C; Petrucci, F; Senofonte, O; Alimonti, A

    2018-06-25

    Although high or repeated exposure to different forms of Hg can have serious health consequences, the most important toxicity risk for humans is as methylmercury (MeHg) which exposure is mainly through consumption of fish. Generally, more than the 80% of Hg in hair is as MeHg, which is taken up by hair follicles as MeHg-cysteine complexes. In this context, hair samples were collected from 200 children (7 years) living in a site in the North East (A) and from 299 children (6-11 years) living in a urban area of South Italy (B) to determine the levels of MeHg. Considering the neurotoxicity of MeHg, children were subjected to cognitive and neuropsychological tests. The hair values of Hg in the children population groups were comparable with data reported in other international surveys. On the other hand, combining results of the neurological tests with Hg levels, a possible relationship between Hg and an increase of the errors average reported in some neurological has been noted. Although the Hg levels were not elevated, a possible neurological influence in children, a population more susceptible than adults, might not be excluded. But the influence on neurological performances of the children could be also due to the family environment (socio economic status, educational level, etc.). Copyright © 2018. Published by Elsevier B.V.

  3. An isotopic comparison of cross-latitudinal horse hair data

    NASA Astrophysics Data System (ADS)

    Thompson, Elisabeth; Ramsey, Christopher

    2017-04-01

    This study explores whether the Rayleigh distillation process latitude effect, of depleted δ18O in precipitation toward the poles, can be observed in horse hair. This study specifically compares δ18O values in horse hair with meteorological variables, and examines whether regional changes in global climate can be observed. The sampling sites and the pony breeds used in this study will add to the increasing network of isotopic horse hair data and will create an even better understanding of the intra-species variation within the δ18O values of horse hair. By directly correlating the meteorological variables to δ18O variations, the effects of specific weather events at different latitudes can also be explored at a very high resolution. 24 horses were sampled within approximately 24 hours on the 7th March 2016 from Thordale Stud in Shetland; the Icelandic Food And Veterinary Authority in Iceland; the Exmoor Pony Centre in Exmoor; and the Pigeon House Equestrian Centre in Oxfordshire. Starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. Preliminary results confirm the hypothesis, demonstrating that a study of oxygen isotope ratios in horse hair from Oxfordshire to Iceland shows a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures.

  4. Hair growth promoting effect of white wax and policosanol from white wax on the mouse model of testosterone-induced hair loss.

    PubMed

    Wang, Zhan-di; Feng, Ying; Ma, Li-Yi; Li, Xian; Ding, Wei-Feng; Chen, Xiao-Ming

    2017-05-01

    White wax (WW) has been traditionally used to treat hair loss in China. However there has been no reporter WW and its extract responsible for hair growth-promoting effect on androgenetic alopecia. In this paper, we examined the hair growth-promoting effects of WW and policosanol of white wax (WWP) on model animal of androgenetic alopecia and the potential target cell of WW and WWP. WW (1, 10 and 20%) and WWP (0.5, 1 and 2%) were applied topically to the backs of mice. Finasteride (2%) was applied topically as a positive control. MTS assays were performed to evaluate cell proliferation in culture human follicle dermal papilla cells (HFDPCs). The inhibition of WW and WWP for 5α- reductase were tested in Vitro. Results showed more lost hairs were clearly seen in mice treated with TP only and TP plus vehicle. Mice which received TP plus WW and WWP showed less hair loss. WW and WWP showed an outstanding hair growth-promoting activity as reflected by the follicular length, follicular density, A/T ratio, and hair bulb diameter. The optimal treatment effect was observed at 10% WW and 1% WWP, which were better than 2% finasteride treatment. MTS assay results suggested that WW and WWP remarkably increased the proliferation of HFDPCs. Inhibitor assay of 5α- reductase showed that WW and WWP inhibited significantly the conversion of testosterone to dihydrotesterone, and the IC 50 values of WW and WWP were higher than that of finasteride. In Conclusion, WW and WWP could act against testosterone-induced alopecia in mice, and they promoted hair growth by inhibiting 5α-reductase activity and HFDPCs proliferation. DPCs is the target cell of WW and WWP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Containing Hair During Cutting In Zero Gravity

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1992-01-01

    Proposed device collects loose hair during barbering and shaving in zero gravity to prevent hair clippings from contaminating cabin of spacecraft. Folds for storage, opens into clear, bubblelike plastic dome surrounding user's head, tray fits around user's throat, and fanlike ring surrounds back of neck. Device fits snugly but comfortably around neck, preventing hair from escaping to outside. Flow of air into hose connected to suction pump removes hair from bubble as cut. Filter at end of hose collects hair.

  6. The Effect of Platelet-Rich Plasma in Hair Regrowth: A Randomized Placebo-Controlled Trial.

    PubMed

    Gentile, Pietro; Garcovich, Simone; Bielli, Alessandra; Scioli, Maria Giovanna; Orlandi, Augusto; Cervelli, Valerio

    2015-11-01

    Platelet-rich plasma (PRP) has emerged as a new treatment modality in regenerative plastic surgery, and preliminary evidence suggests that it might have a beneficial role in hair regrowth. Here, we report the results of a randomized, evaluator-blinded, placebo-controlled, half-head group study to compare, with the aid of computerized trichograms, hair regrowth with PRP versus placebo. The safety and clinical efficacy of autologous PRP injections for pattern hair loss were investigated. PRP, prepared from a small volume of blood, was injected on half of the selected patients' scalps with pattern hair loss. The other half was treated with placebo. Three treatments were administered to each patient at 30-day intervals. The endpoints were hair regrowth, hair dystrophy as measured by dermoscopy, burning or itching sensation, and cell proliferation as measured by Ki67 evaluation. Patients were followed for 2 years. Of the 23 patients enrolled, 3 were excluded. At the end of the 3 treatment cycles, the patients presented clinical improvement in the mean number of hairs, with a mean increase of 33.6 hairs in the target area, and a mean increase in total hair density of 45.9 hairs per cm² compared with baseline values. No side effects were noted during treatment. Microscopic evaluation showed the increase of epidermis thickness and of the number of hair follicles 2 weeks after the last PRP treatment compared with baseline value (p < .05). We also observed an increase of Ki67(+) keratinocytes in the epidermis and of hair follicular bulge cells, and a slight increase of small blood vessels around hair follicles in the treated skin compared with baseline (p < .05). Relapse of androgenic alopecia was not evaluated in all patients until 12 months after the last treatment. After 12 months, 4 patients reported progressive hair loss; this was more evident 16 months after the last treatment. Those four patients were re-treated. Our data clearly highlight the positive effects of PRP

  7. Topical Products for Human Hair Regeneration: A Comparative Study on an Animal Model

    PubMed Central

    Orasan, Meda Sandra; Coneac, Andrei; Muresan, Adriana; Mihu, Carmen

    2016-01-01

    Background Hair loss and hair growth is the subject of tremendous amount of research. Objective This study investigated the efficacy of three chemical treatments used in humans for hair loss, using a rat model of hair regrowth. The products tested were 2% minoxidil, Hairgrow (Dar-Al-Dawa Pharma), Aminexil, Dercos (Vichy Laboratoires), and Kerium, Anti-chute (La Roche-Posay). Methods Thirty-two adult female Wistar-Bratislava rats were assigned to 4 groups. Two rectangular areas (2×4 cm) were shaved on either sides of the mid dorsal line (left side - control; right side - test area). Group I was treated topically with 2% minoxidil, group II with Aminexil, and group III with Kerium. Each rat received 0.3 ml of substance applied topically to the shaved dorsal skin every day for 28 days. Rats in group IV served as sham controls receiving no treatment. Hair regrowth was evaluated by trichoscopy (with a dermatoscope), grown hair weight (from a surface area of 1 cm2), and histopathological examination for skin thickness, follicle count, and percentage of anagen induction (morphometric assessment). Results Treatment with 2% minoxidil significantly induced hair regrowth as assessed by trichoscopy, hair weight examination, and morphometric evaluation. Hair weight examination and morphometric assessment demonstrated the lowest hair growth effect with Aminexil among the tested products. Treatment with Kerium was found to significantly induce hair regrowth (p<0.05 as compared to the control group). Conclusion Our study demonstrates that hair regrowth efficacy of products recommended for human use is not similar when tested on an animal model. PMID:26848220

  8. Stimulation of hair cells with ultraviolet light

    NASA Astrophysics Data System (ADS)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  9. Preservation of Eumelanin Hair Pigmentation in Proopiomelanocortin-Deficient Mice on a Nonagouti (a/a) Genetic Background

    PubMed Central

    Slominski, Andrzej; Plonka, Przemyslaw M.; Pisarchik, Alexander; Smart, James L.; Tolle, Virginie; Wortsman, Jacobo; Low, Malcolm J.

    2005-01-01

    The original strain of proopiomelanocortin (POMC)-deficient mice (Pomc−/− ) was generated by homologous recombination in 129X1/SvJ (Aw/Aw)-derived embryonic stem cells using a targeting construct that deleted exon 3, encoding all the known functional POMC-derived peptides including αMSH, from the Pomc gene. Although these Pomc−/− mice exhibited adrenal hypoplasia and obesity similar to the syndrome of POMC deficiency in children, their agouti coat color was only subtly altered. To further investigate the mechanism of hair pigmentation in the absence of POMC peptides, we studied wild-type (Pomc+/+), heterozygous (Pomc+/−), and homozygous (Pomc−/−) mice on a nonagouti (a/a) 129;B6 hybrid genetic background. All three genotypes had similar black fur pigmentation with yellow hairs behind the ears, around the nipples, and in the perianal area characteristic of inbred C57BL/6 mice. Histologic and electron paramagnetic resonance spectrometry examination demonstrated that hair follicles in back skin of Pomc−/− mice developed with normal structure and eumelanin pigmentation; corresponding molecular analyses, however, excluded local production of αMSH and ACTH because neither Pomc nor putative Pomc pseudogene mRNAs were detected in the skin. Thus, 129;B6 Pomc null mutant mice produce abundant eumelanin hair pigmentation despite their congenital absence of melanocortin ligands. These results suggest that either the mouse melanocortin receptor 1 has sufficient basal activity to trigger and sustain eumelanogenesis in vivo or that redundant nonmelanocortin pathway(s) compensate for the melanocortin deficiency. Whereas the latter implies feedback control of melanogenesis, it is also possible that the two mechanisms operate jointly in hair follicles. PMID:15564334

  10. Dominant-negative Sox18 function inhibits dermal papilla maturation and differentiation in all murine hair types.

    PubMed

    Villani, Rehan; Hodgson, Samantha; Legrand, Julien; Greaney, Jessica; Wong, Ho Yi; Pichol-Thievend, Cathy; Adolphe, Christelle; Wainwight, Brandon; Francois, Mathias; Khosrotehrani, Kiarash

    2017-05-15

    SOX family proteins SOX2 and SOX18 have been reported as being essential in determining hair follicle type; however, the role they play during development remains unclear. Here, we demonstrate that Sox18 regulates the normal differentiation of the dermal papilla of all hair types. In guard (primary) hair dermal condensate (DC) cells, we identified transient Sox18 in addition to SOX2 expression at E14.5, which allowed fate tracing of primary DC cells until birth. Similarly, expression of Sox18 was detected in the DC cells of secondary hairs at E16.5 and in tertiary hair at E18.5. Dominant-negative Sox18 mutation (opposum) did not prevent DC formation in any hair type. However, it affected dermal papilla differentiation, restricting hair formation especially in secondary and tertiary hairs. This Sox18 mutation also prevented neonatal dermal cells or dermal papilla spheres from inducing hair in regeneration assays. Microarray expression studies identified WNT5A and TNC as potential downstream effectors of SOX18 that are important for epidermal WNT signalling. In conclusion, SOX18 acts as a mesenchymal molecular switch necessary for the formation and function of the dermal papilla in all hair types. © 2017. Published by The Company of Biologists Ltd.

  11. The Effect of One Session Low Level Laser Therapy of Extracted Follicular Units on the Outcome of Hair Transplantation.

    PubMed

    Tabaie, Seyed Mehdi; Berenji Ardestani, Hoda; Azizjalali, Mir Hadi

    2016-01-01

    Photobiostimulation with low level laser (LLL) has been used in medicine for a long time and its effects have been shown in many diseases. Some studies have evaluated the effect of LLL on androgenic alopecia. One of the most important limitations of the use of LLL in the treatment of alopecia is the requirement for multiple sessions, which is hardly accepted by patients. This study was conducted to evaluate the effect of the irradiation of extracted follicular hair units by LLL on the outcome of hair transplantation. We enrolled 10 patients with androgenic alopecia and after screening tests for infections and other diseases, we extracted hair follicular units. The hair units were divided in two groups. One group was irradiated by LLL 20 minutes before transplantation (660 nm, 80 Hz, 100 mW) and the other one was used as control. The containing plates were labeled as A and B and sent to the operation room. The surgeon was unaware of the therapy assigned to the plates and transplanted them randomly on the right or left side of the head. One hundred follicular units on each sides of the scalp were transplanted symmetrically. The follicles on both sides were evaluated at 3 and 6 months of transplantation for hair growth rate by another physician, blinded to the treatment assigned to each side. Ten patient with androgenic alopecia and mean (SD) age of 31.5 (6.6) years (range 25-45 years) completed the study. All patients had 100% hair growth at 3 and 6 months follow-up except one who had hair growth of 20% at three months of transplantation, which changed to 100% at sixth months. There was no significant difference between the groups regarding hair growth (P > 0.8). One session of LLL irradiation has no significant effect on the outcome of transplanted hair follicles. Studies with larger sample size are needed to draw a definite conclusion.

  12. The Effect of One Session Low Level Laser Therapy of Extracted Follicular Units on the Outcome of Hair Transplantation

    PubMed Central

    Tabaie, Seyed Mehdi; Berenji Ardestani, Hoda; Azizjalali, Mir Hadi

    2016-01-01

    Introduction: Photobiostimulation with low level laser (LLL) has been used in medicine for a long time and its effects have been shown in many diseases. Some studies have evaluated the effect of LLL on androgenic alopecia. One of the most important limitations of the use of LLL in the treatment of alopecia is the requirement for multiple sessions, which is hardly accepted by patients. This study was conducted to evaluate the effect of the irradiation of extracted follicular hair units by LLL on the outcome of hair transplantation. Methods: We enrolled 10 patients with androgenic alopecia and after screening tests for infections and other diseases, we extracted hair follicular units. The hair units were divided in two groups. One group was irradiated by LLL 20 minutes before transplantation (660 nm, 80 Hz, 100 mW) and the other one was used as control. The containing plates were labeled as A and B and sent to the operation room. The surgeon was unaware of the therapy assigned to the plates and transplanted them randomly on the right or left side of the head. One hundred follicular units on each sides of the scalp were transplanted symmetrically. The follicles on both sides were evaluated at 3 and 6 months of transplantation for hair growth rate by another physician, blinded to the treatment assigned to each side. Results: Ten patient with androgenic alopecia and mean (SD) age of 31.5 (6.6) years (range 25-45 years) completed the study. All patients had 100% hair growth at 3 and 6 months follow-up except one who had hair growth of 20% at three months of transplantation, which changed to 100% at sixth months. There was no significant difference between the groups regarding hair growth (P > 0.8). Conclusion: One session of LLL irradiation has no significant effect on the outcome of transplanted hair follicles. Studies with larger sample size are needed to draw a definite conclusion. PMID:27330694

  13. Combover/CG10732, a Novel PCP Effector for Drosophila Wing Hair Formation

    PubMed Central

    Fagan, Jeremy K.; Dollar, Gretchen; Lu, Qiuheng; Barnett, Austen; Pechuan Jorge, Joaquin; Schlosser, Andreas; Pfleger, Cathie; Adler, Paul; Jenny, Andreas

    2014-01-01

    The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok) are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh. PMID:25207969

  14. Intercellular junctions between palisade nerve endings and outer root sheath cells of rat vellus hairs.

    PubMed

    Kaidoh, T; Inoué, T

    2000-05-15

    Hair follicles have a longitudinal set of sensory nerve endings called palisade nerve endings (PN). We examined the junctional structures between the PN and outer root sheath (ORS) cells of hair follicles in the rat external ear. Transmission electron microscopy of serial thin sections showed that the processes of the ORS cells penetrated the basal lamina of the hair follicle, forming intercellular junctions with the PN (PN-ORS junctions). Two types of junctions were found: junctions between nerve endings and ORS cells (N-ORS junctions) and those between Schwann cell processes and ORS cells (S-ORS junctions). The N-ORS junctions had two subtypes: 1) a short process or small eminence of the ORS cell was attached to the nerve ending (type I); or 2) a process of the ORS cell was invaginated into the nerve ending (type II). The S-ORS junctions also had two subtypes: 1) a short process or small eminence of the ORS cell was abutted on the Schwann cell process (type I); or 2) a process of the ORS cell was invaginated into the Schwann cell process (type II). Vesicles, coated pits, coated vesicles, and endosomes were sometimes seen in nerve endings, Schwann cells, and ORS cells near the junctions. Computer-aided reconstruction of the serial thin sections displayed the three-dimensional structure of these junctions. These results suggested that the PN-ORS junctions provided direct relationships between the PN and ORS in at least four different patterns. The discovery of these junctions shows the PN-ORS relationship to be closer than previously realized. We speculate that these junctions may have roles in attachment of the PN to the ORS, contributing to increases in the sensitivity of the PN, and in chemical signaling between the PN and ORS.

  15. A two-step mechanism for stem cell activation during hair regeneration.

    PubMed

    Greco, Valentina; Chen, Ting; Rendl, Michael; Schober, Markus; Pasolli, H Amalia; Stokes, Nicole; Dela Cruz-Racelis, June; Fuchs, Elaine

    2009-02-06

    Hair follicles (HFs) undergo cyclic bouts of degeneration, rest, and regeneration. During rest (telogen), the hair germ (HG) appears as a small cell cluster between the slow-cycling bulge and dermal papilla (DP). Here we show that HG cells are derived from bulge stem cells (SCs) but become responsive quicker to DP-promoting signals. In vitro, HG cells also proliferate sooner but display shorter-lived potential than bulge cells. Molecularly, they more closely resemble activated bulge rather than transit-amplifying (matrix) cells. Transcriptional profiling reveals precocious activity of both HG and DP in late telogen, accompanied by Wnt signaling in HG and elevated FGFs and BMP inhibitors in DP. FGFs and BMP inhibitors participate with Wnts in exerting selective and potent stimuli to the HG both in vivo and in vitro. Our findings suggest a model where HG cells fuel initial steps in hair regeneration, while the bulge is the engine maintaining the process.

  16. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    PubMed

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  17. In vitro induction effect of 1,25(OH)2D3 on differentiation of hair follicle stem cell into keratinocyte.

    PubMed

    Joulai Veijouyeh, Sanaz; Mashayekhi, Farhad; Yari, Abazar; Heidari, Fatemeh; Sajedi, Nayereh; Moghani Ghoroghi, Fatemeh; Nobakht, Maliheh

    2017-02-01

    Stem cells are characterized by self-renewal and differentiation capabilities. The bulge hair follicle stem cells (HFSCs) are able to convert to epithelial components. The active metabolite of vitamin D, 1,25(OH) 2 D 3 , plays important roles in this differentiation process. In the present study has found that 1,25(OH) 2 D 3 induces the HFSCs differentiation into keratinocyte. HFSCs are isolated from rat whiskers and cultivated in DMEM medium. To isolate bulge stem cell population, flow cytometry and immunocytochemistry using K15, CD34 and nestin biomarkers were performed. In order to accelerate the HFSCs differentiation into eratinocyte, HFSCs were treated with 10 -12 M, 1,25(OH) 2 D 3 every 48 h for a week. Immunocytochemistry results showed that bulge stem cells are nestin and CD34 positive but K15 negative before differentiation. Subsequently flow cytometry results, showed that the expression of nestin, CD34 and K15 were 70.96%, 93.03% and 6.88% respectively. After differentiation, the immunocytochemical and flow cytometry results indicated that differentiated cells have positive reaction to K15 with 68.94% expression level. It was concluded that 10 -12 M, 1,25(OH) 2 D 3 could induce the HFSCs differentiation into keratinocytes. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  18. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    PubMed

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids. © 2015 by the Wound Healing Society.

  19. Effect of ultraviolet radiation, smoking and nutrition on hair.

    PubMed

    Trüeb, Ralph M

    2015-01-01

    Similar to the rest of the skin, the hair is exposed to noxious environmental factors. While ultraviolet radiation (UVR) and smoking are well appreciated as major factors contributing to the extrinsic aging of the skin, their effects on the condition of hair have only lately attracted the attention of the medical community. Terrestrial solar UVR ranges from approximately 290 to 400 nm; UV-B (290-315 nm) reaches only the upper dermis, while the penetration of UV-A (315-400 nm) into the dermis increases with wavelength. The two most important chronic effects of UVR on the skin and bald scalp are photocarcinogenesis and solar elastosis; however, the effects of UVR on hair have largely been ignored. As a consequence of increased leisure time and a growing popularity of outdoor activities and holidays in the sun, the awareness of sun protection of the skin has become important and should also apply to the hair. Besides being the single-most preventable cause of significant cardiovascular and pulmonary morbidity and an important cause of death, the association of tobacco smoking with various adverse effects on the skin and hair has also been recognized. Increasing public awareness of the association between smoking and hair loss seems to offer a good opportunity for the prevention or cessation of smoking, since the appearance of hair plays an important role in the overall physical appearance and self-perception of people. Finally, the quantity and quality of hair are closely related to the nutritional state of an individual. Normal supply, uptake, and transport of proteins, calories, trace elements, and vitamins are of fundamental importance in tissues with high biosynthetic activity, such as the hair follicle. In instances of protein and calorie malnutrition as well as essential amino acid, trace element, and vitamin deficiencies, hair growth and pigmentation may be impaired. Ultimately, important commercial interest lies in the question of whether increasing the

  20. Identification of a preferred substrate peptide for transglutaminase 3 and detection of in situ activity in skin and hair follicles.

    PubMed

    Yamane, Asaka; Fukui, Mina; Sugimura, Yoshiaki; Itoh, Miho; Alea, Mileidys Perez; Thomas, Vincent; El Alaoui, Said; Akiyama, Masashi; Hitomi, Kiyotaka

    2010-09-01

    Transglutaminases (TGases) are a family of enzymes that catalyze cross-linking reactions between proteins. During epidermal differentiation, these enzymatic reactions are essential for formation of the cornified envelope, which consists of cross-linked structural proteins. Two main transglutaminases isoforms, epidermal-type (TGase 3) and keratinocyte-type (TGase 1), are cooperatively involved in this process of differentiating keratinocytes. Information regarding their substrate preference is of great importance to determine the functional role of these isozymes and clarify their possible co-operative action. Thus far, we have identified highly reactive peptide sequences specifically recognized by TGases isozymes such as TGase 1, TGase 2 (tissue-type isozyme) and the blood coagulation isozyme, Factor XIII. In this study, several substrate peptide sequences for human TGase 3 were screened from a phage-displayed peptide library. The preferred substrate sequences for TGase 3 were selected and evaluated as fusion proteins with mutated glutathione S-transferase. From these studies, a highly reactive and isozyme-specific sequence (E51) was identified. Furthermore, this sequence was found to be a prominent substrate in the peptide form and was suitable for detection of in situ TGase 3 activity in the mouse epidermis. TGase 3 enzymatic activity was detected in the layers of differentiating keratinocytes and hair follicles with patterns distinct from those of TGase 1. Our findings provide new information on the specific distribution of TGase 3 and constitute a useful tool to clarify its functional role in the epidermis.