Sample records for hairy roots cultures

  1. [Induction of hairy roots of Panax ginseng and studies on suitable culture condition of ginseng hairy roots].

    PubMed

    Zhao, Shou-Jing; Li, Chang-Yu; Qian, Yan-Chun; Luo, Xiao-Pei; Zhang, Xin; Wang, Xue-Song; Kang, Bo-Yu

    2004-03-01

    Ginseng is a valuable medicinal plant with ginsenosides as its mian effective components. Because ginseng is a perennial plant and has a very strict demand for soil conditions, the way of cultivating ginseng by cutting woods is still used in China at present and thus forest resources has been extremely destroyed. Increasing attention has been paid to the hairy roots induced by the infection of Agrobacterium rhizogenes in the production of plant secondary metabolic products for the hairy roots are characterized by rapid growth and stable hereditary and biochemical traits. That has opened a new way for the industrial production of ginseosides. However, there is little report for such studies from China. In this paper, hairy roots of ginseng were induced from the root explants of two-year-old ginseng by Agrobacterium rhizogenes A4 with directly inoculating. The transformed hairy roots could grow rapidly on MS medium and 1/2 MS medium without hormones. The cultured clones of the hairy roots were established on a solid 1/2 MS medium. After 4 - 5 subcultures the hairy roots still maintained a vigorous growth. A pair of primers were designed and synthesized according to the analytical results of RiA4TL-DNA sequence by Slightom et al . 0.8kb rolC was obtained by PCR using the genome DNA of hairy root of ginseng. Transformation was confirmed by PCR amplification of rolC genes from the hairy roots of P. ginseng. Growth rate of hairy roots on liquid medium increased by 2 times then that of the solid medium. The growth of the hairy roots can be divided into three stages: high speed in the first two weeks, middle speed in the 3 - 4 weeks and low speed hereafter. Changing the culture solution at 2 weeks regular intervals is conductive to maintaining the rapid growth of the hairy roots. By means of determination for specific growth rate and ginsenosides content, the high-yield hairy root clone R9923 was selected. The content of monomer gisenoside of Rg1, Re, Rf, Rbl, Rc, Rb2 and

  2. Hernandulcin in hairy root cultures of Lippia dulcis.

    PubMed

    Sauerwein, M; Yamazaki, T; Shimomura, K

    1991-02-01

    The hairy root culture of Lippia dulcis Trev., Verbenaceae, was established by transformation with Agrobacterium rhizogenes A4. The transformed roots grew well in Murashige and Skoog medium containing 2% sucrose. The roots turned light green when they were cultured under 16 h/day light. The green hairy roots produced the sweet sesquiterpene hernandulcin (ca. 0.25 mg/g dry wt) together with 20 other mono- and sesquiterpenes, while no terpenes were detected in the nontransformed root cultures. The growth and hernandulcin production in the hairy root cultures were influenced by the addition of auxins to the medium. The addition of a low concentration of chitosan (0.2 - 10.0 mg / l) enhanced the production of hernandulcin 5-fold.

  3. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  4. Hairy root culture optimization and resveratrol production from Vitis vinifera subsp. sylvesteris.

    PubMed

    Hosseini, Sayed Mehdi; Bahramnejad, Bahman; Douleti Baneh, Hamed; Emamifar, Aryo; Goodwin, Paul H

    2017-04-01

    Resveratrol is a polyphenolic compound produced in very low levels in grapes. To achieve high yield of resveratrol in wild grape, three Agrobacterium rhizogenes strains, Ar318, ArA4 and LBA9402, were used to induce hairy roots following infection of internodes, nodes or petioles of in vitro grown Vitis vinifera subsp. sylvesteris accessions W2 and W16, and cultivar Rasha. The effects of inoculation time, age of explants, bacterial concentration and co-cultivation times were examined on the efficiency of the production of hairy roots. Strains Ar318, ArA4 and LBA9402 all induced hairy roots in the tested genotypes, but the efficiency of ArA4 strain was higher than the other strains. The highest hairy root production was with using internodes as explants. The transformation of hairy roots lines was confirmed by PCR detection of rolB gene. Half Murashige and Skoog (MS) medium was better for biomass production compared with MS medium. HPLC analysis of resveratrol production in the hairy root cultures showed that all the genotypes produced higher amounts of resveratrol than control roots. The highest amount of resveratrol was produced from W16 internode cultures, which was 31-fold higher than that of control root. Furthermore, TLC analysis showed that treatments of hairy roots with sodium acetate and jasmonate elevated resveratrol levels both in hairy root tissue and excreted into the half MS medium. These results demonstrate that endogenous and exogenous factors can affect resveratrol production in hairy root culture of grape, and this strategy could be used to increase low resveratrol production in grapes.

  5. Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica).

    PubMed

    Kim, Sun-Ju; Park, Woo Tae; Uddin, Md Romij; Kim, Yeon Bok; Nam, Sang-Yong; Jho, Kwang Hyun; Park, Sang Un

    2013-02-01

    Here we present previously unreported glucosinolate production by hairy root cultures of broccoli (B. oleracea var. italica). Growth media greatly influenced the growth and glucosinolate content of hairy root cultures of broccoli. Seven glucosinolates, glucoraphanin, gluconapin, glucoerucin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin, were identified by analysis of the broccoli hairy root cultures. Both half and full strength B5 and SH media enabled the highest accumulation of glucosinolates. In most cases, the levels of glucosinolates were higher in SH and BS media. Among the 7 glucosinolates, the accumulation of neoglucobrassicin was very high, irrespective of growth medium. The neoglucobrassicin content was 7.4-fold higher in SH medium than 1/2 MS, in which its level was the lowest. The 1/2 B5 medium supported the production of the highest amounts of glucobrassicin and 4-methoxyglucobrassicin, the levels for which were 36.2- and 7.9- fold higher, respectively, than their lowest content in 1/2 MS medium. The 1/2 SH medium enabled the highest accumulation of glucoraphanin and gluconapin in the broccoli hairy root cultures, whose levels were 1.8- and 4.6-fold higher, respectively, than their lowest content in 1/2 MS medium. Our results suggest that hairy root cultures of broccoli could be a valuable alternative approach for the production of glucosinolate compounds.

  6. Establishment of Withania somnifera hairy root cultures for the production of withanolide A.

    PubMed

    Murthy, Hosakatte N; Dijkstra, Camelia; Anthony, Paul; White, Daniel A; Davey, Mike R; Power, J Brian; Hahn, Eun J; Paek, Kee Y

    2008-08-01

    Withania sominifera (Indian ginseng) was transformed by Agrobacterium rhizogenes. Explants from seedling roots, stems, hypocotyls, cotyledonary nodal segments, cotyledons and young leaves were inoculated with A. rhizogenes strain R1601. Hairy (transformed) roots were induced from cotyledons and leaf explants. The transgenic status of hairy roots was confirmed by polymerase chain reaction using nptII and rolB specific primers and, subsequently, by Southern analysis for the presence of nptII and rolB genes in the genomes of transformed roots. Four clones of hairy roots were established; these differed in their morphology. The doubling time of faster growing cultures was 8-14 d with a fivefold increase in biomass after 28 d compared with cultured, non-transformed seedling roots. MS-based liquid medium was superior for the growth of transformed roots compared with other culture media evaluated (SH, LS and N6), with MS-based medium supplemented with 40 g/L sucrose being optimal for biomass production. Cultured hairy roots synthesized withanolide A, a steroidal lactone of medicinal and therapeutic value. The concentration of withanolide A in transformed roots (157.4 microg/g dry weight) was 2.7-fold more than in non-transformed cultured roots (57.9 microg/g dry weight).

  7. Transgenic hairy roots. recent trends and applications.

    PubMed

    Giri, A; Narasu, M L

    2000-03-01

    Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic roots produced by A. rhizogenes infection is characterized by high growth rate and genetic stability. These genetically transformed root cultures can produce higher levels of secondary metabolites or amounts comparable to that of intact plants. Hairy root cultures offer promise for production of valuable secondary metabolites in many plants. The main constraint for commercial exploitation of hairy root cultures is their scaling up, as there is a need for developing a specially designed bioreactor that permits the growth of interconnected tissues unevenly distributed throughout the vessel. Rheological characteristics of heterogeneous system should also be taken into consideration during mass scale culturing of hairy roots. Development of bioreactor models for hairy root cultures is still a recent phenomenon. It is also necessary to develop computer-aided models for different parameters such as oxygen consumption and excretion of product to the medium. Further, transformed roots are able to regenerate genetically stable plants as transgenics or clones. This property of rapid growth and high plantlet regeneration frequency allows clonal propagation of elite plants. In addition, the altered phenotype of hairy root regenerants (hairy root syndrome) is useful in plant breeding programs with plants of ornamental interest. In vitro transformation and regeneration from hairy roots facilitates application of biotechnology to tree species. The ability to manipulate trees at a cellular and molecular level shows great potential for clonal propagation and genetic improvement. Transgenic root system offers tremendous potential for introducing additional genes along with the Ri T-DNA genes for alteration of metabolic pathways and production of useful metabolites or compounds of interest. This article discusses various applications and perspectives of hairy root cultures and the recent progress achieved

  8. Study of artemisinin and sugar accumulation in Artemisia vulgaris and Artemisia dracunculus "hairy" root cultures.

    PubMed

    Drobot, Kateryna O; Matvieieva, Nadiia A; Ostapchuk, Andriy M; Kharkhota, Maxim A; Duplij, Volodymyr P

    2017-09-14

    We studied the effect of genetic transformation on biologically active compound (artemisinin and its co-products (ART) as well as sugars) accumulation in Artemisia vulgaris and Artemisia dracunculus "hairy" root cultures. Glucose, fructose, sucrose, and mannitol were accumulated in A. vulgaris and A. dracunculus "hairy" root lines. Genetic transformation has led in some cases to the sugar content increasing or appearing of nonrelevant for the control plant carbohydrates. Sucrose content was 1.6 times higher in A. vulgaris "hairy" root lines. Fructose content was found to be 3.4 times higher in A. dracunculus "hairy" root cultures than in the control roots. The accumulation of mannitol was a special feature of the leaves of A. vulgaris and A. dracunculus control roots. A. vulgaris "hairy" root lines differed also in ART accumulation level. The increase of ART content up to 1.02 mg/g DW in comparison with the nontransformed roots (up to 0.687 mg/g DW) was observed. Thus, Agrobacterium rhizogenes-mediated genetic transformation can be used for obtaining of A. vulgaris and A. dracunculus "hairy" root culture produced ART and sugars in a higher amount than mother plants.

  9. Hairy-root organ cultures for the production of human acetylcholinesterase

    PubMed Central

    Woods, Ryan R; Geyer, Brian C; Mor, Tsafrir S

    2008-01-01

    Background Human cholinesterases can be used as a bioscavenger of organophosphate toxins used as pesticides and chemical warfare nerve agents. The practicality of this approach depends on the availability of the human enzymes, but because of inherent supply and regulatory constraints, a suitable production system is yet to be identified. Results As a promising alternative, we report the creation of "hairy root" organ cultures derived via Agrobacterium rhizogenes-mediated transformation from human acetylcholinesterase-expressing transgenic Nicotiana benthamiana plants. Acetylcholinesterase-expressing hairy root cultures had a slower growth rate, reached to the stationary phase faster and grew to lower maximal densities as compared to wild type control cultures. Acetylcholinesterase accumulated to levels of up to 3.3% of total soluble protein, ~3 fold higher than the expression level observed in the parental plant. The enzyme was purified to electrophoretic homogeneity. Enzymatic properties were nearly identical to those of the transgenic plant-derived enzyme as well as to those of mammalian cell culture derived enzyme. Pharmacokinetic properties of the hairy-root culture derived enzyme demonstrated a biphasic clearing profile. We demonstrate that master banking of plant material is possible by storage at 4°C for up to 5 months. Conclusion Our results support the feasibility of using plant organ cultures as a successful alternative to traditional transgenic plant and mammalian cell culture technologies. PMID:19105816

  10. Lignan enhancement in hairy root cultures of Linum album using coniferaldehyde and methylenedioxycinnamic acid.

    PubMed

    Ahmadian Chashmi, Najmeh; Sharifi, Mohsen; Behmanesh, Mehrdad

    2016-07-03

    Feeding experiments with hairy root cultures of Linum album have established that the extracellular coniferaldehyde is a good precursor for production of two lignans: lariciresinol (LARI) and pinoresinol (PINO). The accumulation of the LARI, PINO, and podophyllotoxin (PTOX) in hairy roots were enhanced about 14.8-, 8.7-, and 1.5-fold (107.61, 8.7 and 6.42 µg g(-1) Fresh Wight), respectively, by the addition of coniferaldehyde (2 mM) to the culture media (after 24 hr). This result was correlated with an increase pinoresinol/lariciresinol reductase (PLR) expression gene and cinnamyl alcohol dehydrogenase (CAD) activity in the fed hairy roots. Adding 3,4-(methylendioxy)cinnamic acid (MDCA) precursor did not influence on the lignans accumulation, but the lignin content of the hairy roots was increased. Moreover, the expression genes of phenylalanine ammonialyase (PAL), CAD, and cinnamoyl-CoA reductase (CCR) were influenced after feeding hairy roots with MDCA.

  11. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    PubMed

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  12. Analysis of hairy root culture of Rauvolfia serpentina using direct analysis in real time mass spectrometric technique.

    PubMed

    Madhusudanan, K P; Banerjee, Suchitra; Khanuja, Suman P S; Chattopadhyay, Sunil K

    2008-06-01

    The applicability of a new mass spectrometric technique, DART (direct analysis in real time) has been studied in the analysis of the hairy root culture of Rauvolfia serpentina. The intact hairy roots were analyzed by holding them in the gap between the DART source and the mass spectrometer for measurements. Two nitrogen-containing compounds, vomilenine and reserpine, were characterized from the analysis of the hairy roots almost instantaneously. The confirmation of the structures of the identified compounds was made through their accurate molecular formula determinations. This is the first report of the application of DART technique for the characterization of compounds that are expressed in the hairy root cultures of Rauvolfia serpentina. Moreover, this also constitutes the first report of expression of reserpine in the hairy root culture of Rauvolfia serpentina. Copyright (c) 2008 John Wiley & Sons, Ltd.

  13. Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans.

    PubMed

    Zubrická, Daniela; Mišianiková, Anna; Henzelyová, Jana; Valletta, Alessio; De Angelis, Giulia; D'Auria, Felicia Diodata; Simonetti, Giovanna; Pasqua, Gabriella; Čellárová, Eva

    2015-11-01

    Highest xanthone contents were found in Hypericum pulchrum and H. annulatum untransformed roots. The best anti- Candida activity was obtained for hairy roots extracts of H. tetrapterum clone 2 ATCC 15834. Extracts of root cultures, hairy roots and cell suspensions of selected Hypericum spp. were screened for the presence of xanthones and tested for their antifungal activity against Candida albicans strain ATCC 10231. At least one of the following xanthones, 5-methoxy-2-deprenylrheediaxanthone; 1,3,6,7-tetrahydroxyxanthone; 1,3,5,6-tetrahydroxyxanthone; paxanthone; kielcorin or mangiferin was identified in methanolic extracts of the untransformed root cultures. The highest total xanthone content, with five xanthones, was found in untransformed H. pulchrum and H. annulatum root cultures. Hairy roots and the controls of H. tetrapterum contained 1,7-dihydroxyxanthone, while hairy root cultures and the corresponding controls of H. tomentosum contained toxyloxanthone B, 1,3,6,7- and 1,3,5,6-tetrahydroxyxanthone. Two xanthones, cadensin G and paxanthone, were identified in cell suspension cultures of H. perforatum. Their content increased about two-fold following elicitation with salicylic acid. The anti-Candida activity of the obtained extracts ranged from MIC 64 to >256 µg ml(-1). Among the extracts of Hypericum untransformed roots, the best antifungal activity was obtained for extracts of H. annulatum grown under CD conditions. Extracts of hairy roots clones A4 and 7 ATCC15834 of H. tomentosum and clone 2 ATCC15834 of H. tetrapterum displayed inhibition of 90% of Candida growth with 256 μg ml(-1). Extracts from chitosan-elicitated cells did not show antifungal activity.

  14. Gentiana dinarica Beck hairy root cultures and evaluation of factors affecting growth and xanthone production

    USDA-ARS?s Scientific Manuscript database

    The induction and establishment of hairy root cultures of Gentiana dinarica using two strains of Agrobacterium rhizogenes (A4M70GUS and 15834/PI) is reported for the first time. Hairy roots were formed from the shoots 25 days after inoculation, and strain 15834/PI had higher induction rate of hairy ...

  15. Production and analysis of organic acids in hairy-root cultures of Isatis indigotica Fort. (indigo woad).

    PubMed

    Xu, Tiefeng; Zhang, Lei; Sun, Xiaofen; Zhang, Hanming; Tang, Kexuan

    2004-02-01

    Hairy roots were induced from both cotyledon and hypocotyl explants of Isatis indigotica Fort. (indigo woad) through transformation with Agrobaterium rhizogenes strain A4, R1601 and ATCC15834. The results showed that the cotyledons were the preferred explants to hypocotyls and A4 was the most suitable A. rhizogenes strain for the transformation and induction of hairy roots of I. indigotica. High-voltage paper electrophoresis (HVPE) analysis demonstrated the production of mannopine in hairy roots and confirmed the successful transfer of Ri T-DNA (root-inducing transferred DNA) of A. rhizogenes into the I. indigotica genome. Five organic acids, namely CPQ [3-(2-carboxyphenol)-4(3 H )-quinazolinone], syringic acid, salicylic acid, benzoic acid and 2-aminobenzoic acid, which were considered as main antiviral components of I. indigotica, were detected in natural roots, hairy roots and liquid media with high-performance capillary electrophoresis. The results showed CPQ production in hairy roots was significantly higher than that in natural roots. Our results also revealed that all the five organic acids could be excreted from hairy roots into liquid media, and the concentrations of organic acids in the liquid media paralleled those in hairy roots. The hairy roots of I. indigotica grew fast and showed an S-shaped growth curve that reached its apex on the day 24 of culture with a 20-fold increase in fresh weight compared with the starting inoculums. The accumulation of the two organic acids CPQ and syringic acid in liquid media paralleled the growth of hairy roots. MS [Murashige, T. and Skoog, F. (1962) Physiol. Plant. 15, 473-497] medium or half-strength MS medium supplemented with 30 g/l maltose was found to be best for hairy-root culture and accumulation of CPQ.

  16. Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L.

    PubMed Central

    Schäfer, Holger; Ramamoorthy, Siva; Wink, Michael

    2017-01-01

    Hairy root culture is a potential alternative to conventional mammalian cell culture to produce recombinant proteins due to its ease in protein recovery, low costs and absence of potentially human pathogenic contaminants. The current study focussed to develop a new platform of a hairy root culture system from Nicotiana tabacum for the production of recombinant human EPO (rhEPO), which is regularly produced in mammalian cells. The human EPO construct was amplified with C-terminal hexahistidine tag from a cDNA of Caco-2 cells. Two versions of rhEPO clones, with or without the N-terminal calreticulin (cal) fusion sequence, were produced by cloning the amplified construct into gateway binary vector pK7WG2D. Following Agrobacterium rhizogenes mediated transformation of tobacco explants; integration and expression of constructs in hairy roots were confirmed by several tests at DNA, RNA and protein levels. The amount of intracellular rhEPO from hairy root cultures with cal signal peptide was measured up to 66.75 ng g-1 of total soluble protein. The presence of the ER signal peptide (cal) was essential for the secretion of rhEPO into the spent medium; no protein was detected from hairy root cultures without ER signal peptide. The addition of polyvinylpyrrolidone enhanced the stabilization of secreted rhEPO leading to a 5.6 fold increase to a maximum concentration of 185.48 pg rhEPOHR g-1 FW hairy root cultures. The rhizo-secreted rhEPO was separated by HPLC and its biological activity was confirmed by testing distinct parameters for proliferation and survival in retinal pigment epithelial cells (ARPE). In addition, the rhEPO was detected to an amount 14.8 ng g-1 of total soluble leaf protein in transgenic T0 generation plantlets regenerated from hairy root cultures with cal signal peptide. PMID:28800637

  17. Micropropagation and hairy root culture of Ophiorrhiza alata Craib for camptothecin production.

    PubMed

    Ya-ut, Pornwilai; Chareonsap, Piyarat; Sukrong, Suchada

    2011-12-01

    An efficient system was developed for the in vitro micropropagation and hairy root culture of Ophiorrhiza alata Craib for camptothecin (CPT) production. Shoot multiplication on leaf and node explants from germinated seeds of O. alata was successful on half-strength Murashige and Skoog medium supplemented with varying amounts of kinetin and α-naphthaleneacetic acid. Node explants grown in vitro were successfully infected by Agrobacterium rhizogenes TISTR 1450 for the establishment of hairy root culture. The amount of CPT in various parts of O. alata was analyzed by HPLC. The accumulation of CPT in transformed hairy roots was twice that in soil-grown plants (785 ± 52 and 388 ± 32 μg/g dry wt, respectively). In the presence of a polystyrene resin (Diaion HP-20) that absorbed CPT, the CPT content in the culture media increased sevenfold compared with controls (1,036 and 151 μg per 250 ml medium, respectively). These results enable the feasible production of CPT of O. alata by means of a cell culture strategy. These measures can help safeguard the plant from extinction. © Springer Science+Business Media B.V. 2011

  18. Hairy Root Cultures of Gymnema sylvestre R. Br. to Produce Gymnemic Acid.

    PubMed

    Rajashekar, J; Kumar, Vadlapudi; Veerashree, V; Poornima, D V; Sannabommaji, Torankumar; Gajula, Hari; Giridhara, B

    2016-01-01

    Gymnema sylvestre R. Br. (Asclepiadaceae) is an endangered species extensively used in the management of diabetes, obesity, and treatment of various diseases. Uncontrolled exploitation to meet the increasing demand and low seed viability hastens the disappearance of the plant from its natural habitat. Hairy root culture provides a suitable alternative for the enhanced production of active principles. The current protocol provides the optimized culture conditions for the establishment of hairy root cultures and elicitation studies and also confirmation of stable integration of A. rhizogenes plasmid T-DNA into host genetic material by PCR and RT-PCR. Furthermore, it also discusses the suitable methods for the extraction procedures, and qualitative and quantitative analysis of gymnemic acid by HPTLC and HPLC.

  19. Metabolomic Analysis and Phenylpropanoid Biosynthesis in Hairy Root Culture of Tartary Buckwheat Cultivars

    PubMed Central

    Li, Xiaohua; Bok Kim, Yeon; Romij Uddin, Md; Kim, Sun Ju; Suzuki, Tatsuro; Park, Nam Il; Park, Sang Un

    2013-01-01

    Buckwheat, Fagopyrum tataricum Gaertn., is an important medicinal plant, which contains several phenolic compounds, including one of the highest content of rutin, a phenolic compound with anti-inflammatory properties. An experiment was conducted to investigate the level of expression of various genes in the phenylpropanoid biosynthetic pathway to analyze in vitro production of anthocyanin and phenolic compounds from hairy root cultures derived from 2 cultivars of tartary buckwheat (Hokkai T8 and T10). A total of 47 metabolites were identified by gas chromatography–time-of-flight mass spectrometry (GC-TOFMS) and subjected to principal component analysis (PCA) in order to fully distinguish between Hokkai T8 and T10 hairy roots. The expression levels of phenylpropanoid biosynthetic pathway genes, through qRT-PCR, showed higher expression for almost all the genes in T10 than T8 hairy root except for FtF3’H-2 and FtFLS-2. Rutin, quercetin, gallic acid, caffeic acid, ferulic acid, 4-hydroxybenzoic acid, and 2 anthocyanin compounds were identified in Hokkai T8 and T10 hairy roots. The concentration of rutin and anthocyanin in Hokkai T10 hairy roots of tartary buckwheat was several-fold higher compared with that obtained from Hokkai T8 hairy root. This study provides useful information on the molecular and physiological dynamic processes that are correlated with phenylpropanoid biosynthetic gene expression and phenolic compound content in F. tataricum species. PMID:23799007

  20. Efficient production of flavonoids in Fagopyrum tataricum hairy root cultures with yeast polysaccharide elicitation and medium renewal process

    PubMed Central

    Zhao, Jiang-Lin; Zou, Liang; Zhang, Cai-Qiong; Li, Yuan-Yuan; Peng, Lian-Xin; Xiang, Da-Bing; Zhao, Gang

    2014-01-01

    Background: Tartary buckwheat (Fagopyrum tataricum), an excellent edible and medicinal crop, has been widely used as a daily diet and traditional medicine for a long time. The major functional components of Fagopyrum tataricum have been demonstrated to be flavonoids (i.e. rutin and quercetin), which had notable andioxidant, antidiabetic, hypocholesterolemic and antitumor activities. Hairy root culture is a convenient and efficient plant tissue culture system for large scale production of bioactive metabolites. Objective: To enhance the functional flavonoids production in hairy root culture of F. tataricum. Materials and Methods: The elicitation treatment in combination with medium renewal strategy was applied for efficient promoting flavonoids production in F. tataricum hairy root cultures. Results: The exogenous yeast polysaccharide (YPS) elicitor notably stimulated the functional metabolites production in F. tataricum hairy root cultures, and the stimulation effect was concentration-dependent. Combination with the YPS elicitation (200 mg/L) and medium renewal process, the maximal flavonoids yield was enhanced to 47.13 mg/L, about 3.2-fold in comparison with the control culture of 14.88 mg/L. Moreover, this research also revealed the accumulation of these bioactive metabolites resulted from the stimulation of the phenylpropanoid pathway by YPS treatment. These results indicated that the F. tataricum hairy root culture could be an effective system for rutin and quercetin production. PMID:25210309

  1. Investigation of Linum flavum (L.) Hairy Root Cultures for the Production of Anticancer Aryltetralin Lignans.

    PubMed

    Renouard, Sullivan; Corbin, Cyrielle; Drouet, Samantha; Medvedec, Barbara; Doussot, Joël; Colas, Cyril; Maunit, Benoit; Bhambra, Avninder S; Gontier, Eric; Jullian, Nathalie; Mesnard, François; Boitel, Michèle; Abbasi, Bilal Haider; Arroo, Randolph R J; Lainé, Eric; Hano, Christophe

    2018-03-26

    Linum flavum hairy root lines were established from hypocotyl pieces using Agrobacterium rhizogenes strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines. The influence of culture medium and various treatments (hormone, elicitation and precursor feeding) were evaluated. The highest accumulation was obtained in Gamborg B5 medium. Treatment with methyl jasmonate, and feeding using ferulic acid increased the accumulation of aryltetralin lignans. These results point to the use of hairy root culture lines of Linum flavum as potential sources for these valuable metabolites as an alternative, or as a complement to Podophyllum collected from wild stands.

  2. Bioactivity of Ruta graveolens and Satureja montana Essential Oils on Solanum tuberosum Hairy Roots and Solanum tuberosum Hairy Roots with Meloidogyne chitwoodi Co-cultures.

    PubMed

    Faria, Jorge M S; Rodrigues, Ana M; Sena, Inês; Moiteiro, Cristina; Bennett, Richard N; Mota, Manuel; Figueiredo, A Cristina

    2016-10-12

    As a nematotoxics screening biotechnological system, Solanum tuberosum hairy roots (StHR) and S. tuberosum hairy roots with Meloidogyne chitwoodi co-cultures (StHR/CRKN) were evaluated, with and without the addition of the essential oils (EOs) of Satureja montana and Ruta graveolens. EOs nematotoxic and phytotoxic effects were followed weekly by evaluating nematode population density in the co-cultures as well as growth and volatile profiles of both in vitro cultures types. Growth, measured by the dissimilation method and by fresh and dry weight determination, was inhibited after EO addition. Nematode population increased in control cultures, while in EO-added cultures numbers were kept stable. In addition to each of the EOs main components, and in vitro cultures constitutive volatiles, new volatiles were detected by gas chromatography and gas chromatography coupled to mass spectrometry in both culture types. StHR with CRKN co-cultures showed to be suitable for preliminary assessment of nematotoxic EOs.

  3. Light requirement for shoot regeneration in horseradish hairy roots.

    PubMed

    Saitou, T; Kamada, H; Harada, H

    1992-08-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions.

  4. Antioxidant activity of selected stilbenoids and their bioproduction in hairy root cultures of muscadine grape (Vitis rotundifolia Michx.).

    PubMed

    Nopo-Olazabal, Cesar; Hubstenberger, John; Nopo-Olazabal, Luis; Medina-Bolivar, Fabricio

    2013-12-04

    Stilbenoids are polyphenolic phytoalexins with health-related properties in humans. Muscadine grape ( Vitis rotundifolia ) hairy root cultures were established via Agrobacterium rhizogenes -mediated transformation, and the effects of growth regulators (3-indolebutyric acid and 6-benzylaminopurine) and methyl jasmonate (MeJA) on stilbenoid production were studied. Twenty-one-day-old hairy root cultures were treated with 100 μM MeJA for 24 h, and then the stilbenoids were extracted from the medium and tissue with ethyl acetate and analyzed by HPLC. Resveratrol, piceid, and ε-viniferin were observed preferentially in tissue, whereas piceatannol was observed only in medium. Growth regulators did not affect the yield of stilbenoids, whereas higher levels were found upon treatment with MeJA. Stilbenoids identified in the hairy root cultures were analyzed for their radical scavenging capacity showing piceatannol and ε-viniferin as the strongest antioxidants. Muscadine grape hairy root cultures were demonstrated to be amenable systems to study stilbenoid biosynthesis and a sustainable source of these bioactive compounds.

  5. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis L.

    PubMed

    Długosz, Marek; Wiktorowska, Ewa; Wiśniewska, Anita; Pączkowski, Cezary

    2013-01-01

    In order to initiate hairy root culture initiation cotyledons and hypocotyls of Calendula officinalis L. were infected with Agrobacterium rhizogenes strain ATCC 15834 or the same strain containing pCAMBIA 1381Z vector with β-glucuronidase reporter gene under control of promoter of NIK (Nematode Induced Kinase) gene. The efficiency of induction of hairy roots reached 33.8% for cotyledons and 66.6% for hypocotyls together for both transformation experiments. Finally, eight control and nine modified lines were established as a long-term culture. The hairy root cultures showed the ability to synthesize oleanolic acid mainly (97%) as glycosides; control lines contained it at the average 8.42 mg · g(-1) dry weight in tissue and 0.23 mg · dm(-3) in medium; modified lines: 4.59 mg · g(-1) for the tissue, and 0.48 mg · dm(-3) for the medium. Additionally lines showed high positive correlation between dry/fresh weight and oleanolic acid concentration in tissue. Using the Killiani mixture in acidic hydrolysis of oleanolic acid glycosides released free aglycones that were partially acetylated in such conditions.

  6. The shikonin derivatives and pyrrolizidine alkaloids in hairy root cultures of Lithospermum canescens (Michx.) Lehm.

    PubMed

    Pietrosiuk, A; Sykłowska-Baranek, K; Wiedenfeld, H; Wolinowska, R; Furmanowa, M; Jaroszyk, E

    2006-10-01

    Hairy root cultures of Lithospermum canescens were established using three strains of Agrobacterium rhizogenes: ATCC 15834, LBA 9402 and NCIB 8196. Eight lines resulting from infection with A. rhizogenes ATCC 15834 demonstrated sufficient biomass increase and were submitted to further investigations. The contents of acetylshikonin (ACS) and isobutyrylshikonin (IBS) in transformed hairy roots made up ca. 10% of those observed in natural roots of L. canescens (24.35 and 14.48 mg g(-1) DW, respectively). One line, Lc1-D, produced the largest amounts of ACS (2.72 mg g(-1) DW) and IBS (0.307 mg g(-1) DW). Traces of pyrrolizidine alkaloids (PA), canescine and canescenine, were found in all lines of transformed hairy roots.

  7. Light Requirement for Shoot Regeneration in Horseradish Hairy Roots 1

    PubMed Central

    Saitou, Tsutomu; Kamada, Hiroshi; Harada, Hiroshi

    1992-01-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions. PMID:16669041

  8. Use of Chenopodium murale L. transgenic hairy root in vitro culture system as a new tool for allelopathic assays.

    PubMed

    Mitić, Nevena; Dmitrović, Slavica; Djordjević, Mirka; Zdravković-Korać, Snežana; Nikolić, Radomirka; Raspor, Martin; Djordjević, Tatjana; Maksimović, Vuk; Zivković, Suzana; Krstić-Milošević, Dijana; Stanišić, Mariana; Ninković, Slavica

    2012-08-15

    We investigated Chenopodium murale transgenic hairy root in vitro culture system as a new tool for allelopathic assays. Transgenic hairy roots were induced by Agrobacterium rhizogenes A4M70GUS from roots, cotyledons, leaves, and internodes of C. murale seedlings. Roots were found to be the best target explants, providing transformation efficiency of up to 11.1%. Established hairy root clones differed in their morphology and growth potential. Molecular characterization of these clones was carried out by PCR, RT-PCR and histochemical GUS analyses. No differences in rol gene expression were observed. Liquid culture system of characterized hairy root clones was maintained for over 2 years. Six hairy root clones were selected for assaying the allelopathic effect of their growth medium against germination and seedling elongation of wheat and lettuce test plants. The inhibitory potential varied depending on the hairy root clone. Some transgenic clones showed significantly higher inhibition compared to wild-type roots. These results revealed that hairy roots as an independent system synthesize some bioactive substances with allelopathic activity and exude them into the growth medium. Concentrations of caffeic, ferulic and p-coumaric acids (0.07-2.85 μmol/L) identified by HPLC analysis in the growth media were at least 1000 times lower than the inhibitory active concentration (5 mmol/L) of pure grade phenolic acids, suggesting that they have a limited role in the allelopathic phenomena of C. murale. The presented hairy root system appears to be a suitable tool for further investigation of the potential and nature of root-mediated allelopathic interference of C. murale. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Efficient Rutin and Quercetin Biosynthesis through Flavonoids-Related Gene Expression in Fagopyrum tataricum Gaertn. Hairy Root Cultures with UV-B Irradiation

    PubMed Central

    Huang, Xuan; Yao, Jingwen; Zhao, Yangyang; Xie, Dengfeng; Jiang, Xue; Xu, Ziqin

    2016-01-01

    Transformed hairy roots had been efficiently induced from the seedlings of Fagopyrum tataricum Gaertn. due to the infection of Agrobacterium rhizogenes. Hairy roots were able to display active elongation with high root branching in 1/2 MS medium without growth regulators. The stable introduction of rolB and aux1 genes of A. rhizogenes WT strain 15834 into F. tataricum plants was confirmed by PCR analysis. Besides, the absence of virD gene confirmed hairy root was bacteria-free. After six different media and different sources of concentration were tested, the culturing of TB7 hairy root line in 1/2 MS liquid medium supplemented with 30 g l-1 sucrose for 20 days resulted in a maximal biomass accumulation (13.5 g l-1 fresh weight, 1.78 g l-1 dry weight) and rutin content (0.85 mg g-1). The suspension culture of hairy roots led to a 45-fold biomass increase and a 4.11-fold rutin content increase in comparison with the suspension culture of non-transformed roots. The transformation frequency was enhanced through preculturing for 2 days followed by infection for 20 min. The UV-B stress treatment of hairy roots resulted in a striking increase of rutin and quercetin production. Furthermore, the hairy root lines of TB3, TB7, and TB28 were chosen to study the specific effects of UV-B on flavonoid accumulation and flavonoid biosynthetic gene expression by qRT-PCR. This study has demonstrated that the UV-B radiation was an effective elicitor that dramatically changed in the transcript abundance of ftpAL, FtCHI, FtCHS, FtF3H, and FtFLS-1 in F. tataricum hairy roots. PMID:26870075

  10. Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant.

    PubMed

    Sudha, C G; Obul Reddy, B; Ravishankar, G A; Seeni, S

    2003-04-01

    Hairy roots of Rauvolfia micrantha were induced from hypocotyl explants of 2-3 weeks old aseptic seedlings using Agrobacterium rhizogenes ATCC 15834. Hairy roots grown in half-strength Murashige & Skoog (MS) medium with 0.2 mg indole 3-butyric acid l-1 and 0.1 mg alpha-naphthaleneacetic acid l-1 produced more ajmaline (0.01 mg g-1 dry wt) and ajmalicine (0.006 mg g-1 dry wt) than roots grown in auxin-free medium. Ajmaline (0.003 mg g-1 dry wt) and ajmalicine (0.0007 mg g-1 dry wt) were also produced in normal root cultures. This is the first report of production of ajmaline and ajmalicine in hairy root cultures of Rauvolfia micrantha.

  11. Scale-Up of Agrobacterium rhizogenes-Mediated Hairy Root Cultures of Rauwolfia serpentina: A Persuasive Approach for Stable Reserpine Production.

    PubMed

    Mehrotra, Shakti; Srivastava, Vikas; Goel, Manoj K; Kukreja, Arun K

    2016-01-01

    Roots of Rauwolfia serpentina, also known as "Sarpagandha" possess high pharmaceutical value due to the presence of reserpine and other medicinally important terpene indole alkaloids. Ever increasing commercial demand of R. serpentina roots is the major reason behind the unsystematic harvesting and fast decline of the species from its natural environment. Considering Agrobacterium rhizogenes-mediated hairy root cultures as an alternative source for the production of plant-based secondary metabolites, the present optimized protocol offers a commercially feasible method for the production of reserpine, the most potent alkaloid from R. serpentina roots. This end-to-end protocol presents the establishment of hairy root culture from the leaf explants of R. serpentina through the infection of A. rhizogenes strain A4 in liquid B5 culture medium and its up-scaling in a 5 L bench top, mechanically agitated bioreactor. The transformed nature of roots was confirmed through PCR-based rol A gene amplification in genomic DNA of putative hairy roots. The extraction and quantification of reserpine in bioreactor grown roots has been done using monolithic reverse phase high-performance liquid chromatography (HPLC).

  12. Optimal inductive and cultural conditions of Polygonum multiflorum transgenic hairy roots mediated with Agrobacterium rhizogenes R1601 and an analysis of their anthraquinone constituents.

    PubMed

    Huang, Bing; Lin, Huanjie; Yan, Chuanyan; Qiu, Hongyan; Qiu, Lipeng; Yu, Rongmin

    2014-01-01

    Polygonum multiflorum is an important medicinal plant. Hairy roots systems obtained by transforming plant tissues with the natural genetic engineer Agrobacterium rhizogenes can produce valuable biological active substances, which have immense potential in the pharmaceutical industry. To optimize the inductive and cultural conditions of P. multiflorum hairy roots and to identify the major active secondary metabolites in hairy roots. P. multiflorum hairy root were mediated with A. rhizogenes R1601 to induce hairy roots. Four combinations, including Murashige-Skoog (MS), 1/2 MS, B5, and White, were investigated to optimize the culture medium. MS medium was selected for the growth measurement. The qualitative and quantitative determinations of free anthraquinone in hairy roots were compared with the calli and aseptic plantlets using high-performance liquid chromatography. The inductive rates of hairy roots by leaves were higher than for any other explants. The presence of agropine in the P. multiflorum hairy roots confirmed that they were indeed transgenic. MS medium was the most suitable of the four media for hairy root growth. Meanwhile, the growth kinetics and nutrient consumption results showed that the hairy roots displayed a sigmoidal growth curve and that their optimal inoculation time was 18-21 days. The determination of the anthraquinone constituents indicated that the rhein content of the hairy roots reached 2.495 μg g(-1) and was 2.55-fold higher than that of natural plants. Transgenic hairy roots of P. multiflorum could be one of the most potent materials for industrial-scale production of bioactive anthraquinone constituents.

  13. Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization.

    PubMed

    Satdive, Ramesh K; Fulzele, Devanand P; Eapen, Susan

    2007-02-01

    Azadirachtin is one of the most potent biopesticides so far developed from a plant sources. Influence of different culture media and elicitation on growth and production of azadirachtin by hairy root cultures of Azadirachta indica was studied. Out of the three media tested, namely Ohyama and Nitsch, Gamborg's and Murashige and Skoog's basal media, hairy roots cultured on Ohyama and Nitsch's basal medium produced maximum yield of azadirachtin (0.0166% dry weight, DW). Addition of biotic elicitor enhanced the production of azadirachtin by approximately 5-fold (0.074% DW), while signal compounds such as jasmonic acid and salicylic acid showed a approximately 6 (0.095% DW) and approximately 9-fold (0.14% DW) enhancement, respectively, in the production of azadirachtin as compared to control cultures on Ohyama and Nitsch medium. Extracts from hairy roots were found to be superior to those from the leaves for antifeedant activity against the larvae of Spodoptera litura.

  14. 9-methoxycanthin-6-one production in elicited hairy roots culture of Eurycoma longifolia

    NASA Astrophysics Data System (ADS)

    Abdullah, Nazirah; Ismail, Ismanizan; Hassan, Nor Hasnida; Basherudin, Norlia

    2016-11-01

    Eurycoma longifolia (Tongkat Ali) is a highly sought after medicinal plant in Malaysia. Propagation of E. longifolia through tissue culture has been reported in order to cater the industry demands for planting and raw materials as well as for conservation purposes. E. longifolia hairy roots culture has been developed using Agrobacterium rhizogenes for the production of Tongkat Ali phytochemicals. Effects of three elicitors; methyl jasmonate, salicylic acid, and yeast extract at different concentrations were evaluated on the production of 9-methoxycanthin-6-one in E. longifolia hairy roots. The cultures were elicited at early exponential growth phase, followed by extraction of 9-methoxycanthin-6-one using methanol and HPLC analysis. Elicitation with methyl jasmonate at all concentrations increased 9-methoxycanthin-6-one up to 1-3 fold and treatment with (0.1 mM) was most efficient in enhancing 9-methoxycanthin-6-one production up to 3.902 mg/g dry weight after 7 days (168 hours) elicitation.

  15. Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa).

    PubMed

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2016-12-01

    Turnip (Brassica rapa ssp. rapa) is an important vegetable crop producing glucosinolates (GSLs) and phenolic compounds. The GSLs, phenolic compound contents and transcript levels in hairy root cultures, as well as their antioxidant, antimicrobial and anticancer activity were studied in turnip. Transgenic hairy root lines were confirmed by polymerase chain reaction (PCR) and reverse transcription-PCR. GSLs levels (glucoallysin, glucobrassicanapin, gluconasturtiin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and 4-hydroxyglucobrassicin) and their gene expression levels (BrMYB28, BrMYB29, BrMYB34, BrMYB51, BrMYB122, CYP79 and CYP83) significantly increased in hairy roots compared with that in non-transformed roots. Furthermore, hairy roots efficiently produced several important individual phenolic compounds (flavonols, hydroxybenzoic and hydroxycinnamic acids). Colorimetric analysis revealed that the highest levels of total phenol, flavonoid contents, and their gene expression levels (PAL, CHI and FLS) in hairy roots than non-transformed roots. Our study provides beneficial information on the molecular and physiological active processes that are associated with the phytochemical content and biosynthetic gene expression in turnip. Moreover, antioxidant activity, as measured by DPPH scavenging activity, reducing potential, phosphomolybdenum and ferrous ion chelating ability assays was significantly higher in hairy roots. Hairy root extracts exhibited higher antimicrobial activity against bacterial and fungal species. The extract of hairy roots showed inhibition of human breast and colon cancer cell lines.

  16. Expression of important pathway genes involved in withanolides biosynthesis in hairy root culture of Withania somnifera upon treatment with Gracilaria edulis and Sargassum wightii.

    PubMed

    Sivanandhan, Ganeshan; Arunachalam, Chinnathambi; Selvaraj, Natesan; Sulaiman, Ali Alharbi; Lim, Yong Pyo; Ganapathi, Andy

    2015-06-01

    The investigation of seaweeds, Gracilaria edulis and Sargassum wightii extracts was carried out for the estimation of growth characteristics and major withanolides production in hairy root culture of Withania somnifera. The extract of G. edulis (50%) in MS liquid basal medium enabled maximum production of dry biomass (5.46 g DW) and withanolides contents (withanolide A 5.23 mg/g DW; withaferin A 2.24 mg/g DW and withanone 4.83 mg/g DW) in hairy roots after 40 days of culture with 48 h contact time. The obtained withanolides contents were significantly higher (2.32-fold-2.66-fold) in hairy root culture when compared to the control. RT PCR analysis of important pathway genes such as SE, SS, HMGR and FPPS exhibited substantial higher expression upon the seaweed extracts treatment in hairy root culture. This experiment would paw a platform for withanolides production in hairy root culture with the influence of sea weed extracts for pharmaceutical companies in the future. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Biodegradation of γ-hexachlorocyclohexane by transgenic hairy root cultures of Cucurbita moschata that accumulate recombinant bacterial LinA.

    PubMed

    Nanasato, Yoshihiko; Namiki, Sayuri; Oshima, Masao; Moriuchi, Ryota; Konagaya, Ken-Ichi; Seike, Nobuyasu; Otani, Takashi; Nagata, Yuji; Tsuda, Masataka; Tabei, Yutaka

    2016-09-01

    γ-HCH was successfully degraded using LinA-expressed transgenic hairy root cultures of Cucurbita moschata . Fusing an endoplasmic reticulum-targeting signal peptide to LinA was essential for stable accumulation in the hairy roots. The pesticide γ-hexachlorocyclohexane (γ-HCH) is a persistent organic pollutant (POP) that raises public health and environmental pollution concerns worldwide. Although several isolates of γ-HCH-degrading bacteria are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the bacterial survival rate. Cucurbita species incorporate significant amounts of POPs from soils compared with other plant species. Here, we describe a novel bioremediation strategy that combines the bacterial degradation of γ-HCH and the efficient uptake of γ-HCH by Cucurbita species. We produced transgenic hairy root cultures of Cucurbita moschata that expressed recombinant bacterial linA, isolated from the bacterium Sphingobium japonicum UT26. The LinA protein was accumulated stably in the hairy root cultures by fusing an endoplasmic reticulum (ER)-targeting signal peptide to LinA. Then, we demonstrated that the cultures degraded more than 90 % of γ-HCH (1 ppm) overnight and produced the γ-HCH metabolite 1,2,4-trichlorobenzene, indicating that LinA degraded γ-HCH. These results indicate that the gene linA has high potential for phytoremediation of environmental γ-HCH.

  18. Redirection of metabolite biosynthesis from hydroxybenzoates to volatile terpenoids in green hairy roots of Daucus carota.

    PubMed

    Mukherjee, Chiranjit; Samanta, Tanmoy; Mitra, Adinpunya

    2016-02-01

    A metabolic shift in green hairy root cultures of carrot from phenylpropanoid/benzenoid biosynthesis toward volatile isoprenoids was observed when compared with the metabolite profile of normal hairy root cultures. Hairy roots cultures of Daucus carota turned green under continuous illumination, while the content of the major phenolic compound p-hydroxybenzoic acid (p-HBA) was reduced to half as compared to normal hairy roots cultured in darkness. p-Hydroxybenzaldehyde dehydrogenase (HBD) activity was suppressed in the green hairy roots. However, comparative volatile analysis of 14-day-old green hairy roots revealed higher monoterpene and sesquiterpene contents than found in normal hairy roots. Methyl salicylate content was higher in normal hairy roots than in green ones. Application of clomazone, an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), reduced the amount of total monoterpenes and sesquiterpenes in green hairy roots compared to normal hairy roots. However, methyl salicylate content was enhanced in both green and normal hairy roots treated with clomazone as compared to their respective controls. Because methyl-erythritol 4-phosphate (MEP) and phenylpropanoid pathways, respectively, contribute to the formation of monoterpenes and phenolic acids biosynthesis, the activities of enzymes regulating those pathways were measured in terms of their in vitro activities, in both green and normal hairy root cultures. These key enzymes were 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an early regulatory enzyme of the MEP pathway, pyruvate kinase (PK), an enzyme of primary metabolism related to the MEP pathway, shikimate dehydrogenase (SKDH) which is involved in biosynthesis of aromatic amino acids, and phenylalanine ammonia-lyase (PAL) that catalyzes the first step of phenylpropanoid biosynthesis. Activities of DXR and PK were higher in green hairy roots as compared to normal ones, whereas the opposite trend was observed for SKDH and PAL

  19. Elicitation Based Enhancement of Secondary Metabolites in Rauwolfia serpentina and Solanum khasianum Hairy Root Cultures.

    PubMed

    Srivastava, Mrinalini; Sharma, Swati; Misra, Pratibha

    2016-05-01

    Rauwolfia serpentina and Solanum khasianum are well-known medicinally important plants contained important alkaloids in their different parts. Elicitation of these alkaloids is important because of associated pharmaceutical properties. Targeted metabolites were ajmaline and ajmalicine in R. serpentina; solasodine and α-solanine in S. khasianum. Enhancement of secondary metabolites through biotic and abiotic elicitors in hairy root cultures of R. serpentina and S. khasianum. In this report, hairy root cultures of these two plants were established through Agrobacterium rhizogenes mediated transformation by optimizing various parameters as age of explants, duration of preculture, and co-cultivation period. NaCl was used as abiotic elicitors in these two plants. Cellulase from Aspergillus niger was used as biotic elicitor in S. khasianum and mannan from Saccharomyces cerevisiae was used in R. serpentina. First time we have reported the effect of biotic and abiotic elicitors on the production of important metabolites in hairy root cultures of these two plants. Ajmalicine production was stimulated up to 14.8-fold at 100 mM concentration of NaCl after 1 week of treatment. Ajmaline concentration was also increased 2.9-fold at 100 mg/l dose of mannan after 1 week. Solasodine content was enhanced up to 4.0-fold and 3.6-fold at 100 mM and 200 mM NaCl, respectively, after 6 days of treatments. This study explored the potential of the elicitation strategy in A. rhizogenes transformed cell cultures and this potential further used for commercial production of these pharmaceutically important secondary metabolites. Hairy roots of Rauwolfia serpentina were subjected to salt (abiotic stress) and mannan (biotic stress) treatment for 1 week. Ajmaline and ajmalicine secondary metabolites were quantified before and after stress treatmentAjmalicine yield was enhanced up to 14.8-fold at 100 mM concentration of NaCl. Ajmaline content was also stimulated 2.9-fold at 100 mg/l dose of mannan

  20. Exploring the Metabolic Stability of Engineered Hairy Roots after 16 Years Maintenance.

    PubMed

    Häkkinen, Suvi T; Moyano, Elisabeth; Cusidó, Rosa M; Oksman-Caldentey, Kirsi-Marja

    2016-01-01

    Plants remain a major source of new drugs, leads and fine chemicals. Cell cultures deriving from plants offer a fascinating tool to study plant metabolic pathways and offer large scale production systems for valuable compounds - commercial examples include compounds such as paclitaxel. The major constraint with undifferentiated cell cultures is that they are generally considered to be genetically unstable and cultured cells tend to produce low yields of secondary metabolites especially over time. Hairy roots, a tumor tissue caused by infection of Agrobacterium rhizogenes is a relevant alternative for plant secondary metabolite production for being fast growing, able to grow without phytohormones, and displaying higher stability than undifferentiated cells. Although genetic and metabolic stability has often been connected to transgenic hairy roots, there are only few reports on how a very long-term subculturing effects on the production capacity of hairy roots. In this study, hairy roots producing high tropane alkaloid levels were subjected to 16-year follow-up in relation to genetic and metabolic stability. Cryopreservation method for hairy roots of Hyoscyamus muticus was developed to replace laborious subculturing, and although the post-thaw recovery rates remained low, the expression of transgene remained unaltered in cryopreserved roots. It was shown that although displaying some fluctuation in the metabolite yields, even an exceedingly long-term subculturing was successfully applied without significant loss of metabolic activity.

  1. Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots.

    PubMed

    Nunes, Inês S; Faria, Jorge M S; Figueiredo, A Cristina; Pedro, Luis G; Trindade, Helena; Barroso, José G

    2009-03-01

    The biotransformation capacity of Levisticum officinale W.D.J. Koch hairy root cultures was studied by evaluating the effect of the addition of 25 mg/L menthol or geraniol on morphology, growth, and volatiles production. L. officinale hairy root cultures were maintained for 7 weeks in SH medium, in darkness at 24 degrees C and 80 r.p.m., and the substrates were added 15 days after inoculation. Growth was evaluated by measuring fresh and dry weight and by using the dissimilation method. Volatiles composition was analyzed by GC and GC-MS. Hairy roots morphology and growth were not influenced by substrate addition. No new volatiles were detected after menthol addition and, as was also the case with the control cultures, volatiles of these hairy roots were dominated by (Z)-falcarinol (1-45%), N-octanal (3-8%), palmitic acid (3-10%), and (Z)-ligustilide (2-9%). The addition of geraniol induced the production of six new volatiles: nerol/citronellol/neral (traces-15%), alpha-terpineol (0.2-3%), linalool (0.1-1.2%), and geranyl acetate (traces-2%). The relative amounts of the substrates and some of their biotransformation products decreased during the course of the experiment. Following the addition of beta-glycosidase to the remaining distillation water, analysis of the extracted volatiles showed that lovage hairy roots were able to convert both substrates and their biotransformation products into glycosidic forms. GC:gas chromatography GC-MS:gas chromatography-mass spectrometry SH:Schenk and Hildebrandt (1972) culture medium.

  2. Accumulation of cell wall-bound phenolic metabolites and their upliftment in hairy root cultures of tomato (Lycopersicon esculentum Mill.).

    PubMed

    Mandal, Sudhamoy; Mitra, Adinpunya

    2008-07-01

    Alkaline hydrolysis of cell wall material of tomato hairy roots yielded ferulic acid as the major phenolic compound. Other phenolics were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. The content of phenolics was much higher at the early stage of hairy root growth. The ferulic acid content decreased up to 30 days and then sharply increased to 360 microg/g at 60 days of growth. Elicitation of hairy root cultures with Fusarium mat extract (FME) increased ferulic acid content 4-fold after 24 h. As the pathogen-derived elicitors have specific receptors in plants, FME may thus be used for inducing resistance against Fusarium oxysporum f. sp. lycopersici.

  3. Elicitation Based Enhancement of Secondary Metabolites in Rauwolfia serpentina and Solanum khasianum Hairy Root Cultures

    PubMed Central

    Srivastava, Mrinalini; Sharma, Swati; Misra, Pratibha

    2016-01-01

    Background: Rauwolfia serpentina and Solanum khasianum are well-known medicinally important plants contained important alkaloids in their different parts. Elicitation of these alkaloids is important because of associated pharmaceutical properties. Targeted metabolites were ajmaline and ajmalicine in R. serpentina; solasodine and α-solanine in S. khasianum. Objective: Enhancement of secondary metabolites through biotic and abiotic elicitors in hairy root cultures of R. serpentina and S. khasianum. Materials and Methods: In this report, hairy root cultures of these two plants were established through Agrobacterium rhizogenes mediated transformation by optimizing various parameters as age of explants, duration of preculture, and co-cultivation period. NaCl was used as abiotic elicitors in these two plants. Cellulase from Aspergillus niger was used as biotic elicitor in S. khasianum and mannan from Saccharomyces cerevisiae was used in R. serpentina. Results: First time we have reported the effect of biotic and abiotic elicitors on the production of important metabolites in hairy root cultures of these two plants. Ajmalicine production was stimulated up to 14.8-fold at 100 mM concentration of NaCl after 1 week of treatment. Ajmaline concentration was also increased 2.9-fold at 100 mg/l dose of mannan after 1 week. Solasodine content was enhanced up to 4.0-fold and 3.6-fold at 100 mM and 200 mM NaCl, respectively, after 6 days of treatments. Conclusion: This study explored the potential of the elicitation strategy in A. rhizogenes transformed cell cultures and this potential further used for commercial production of these pharmaceutically important secondary metabolites. SUMMARY Hairy roots of Rauwolfia serpentina were subjected to salt (abiotic stress) and mannan (biotic stress) treatment for 1 week. Ajmaline and ajmalicine secondary metabolites were quantified before and after stress treatmentAjmalicine yield was enhanced up to 14.8-fold at 100 mM concentration of Na

  4. Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica.

    PubMed

    Srivastava, Smita; Srivastava, A K

    2014-02-01

    The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag(+), Hg(+2), Co(+2), Cu(+2)) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l(-1) of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g(-1)). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 % v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g(-1)) with respect to the control (3.3 mg g(-1)). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l(-1) in 25 days) was found to be the highest with cholesterol (50 mg l(-1)) addition as an indirect precursor in the medium.

  5. Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor.

    PubMed

    Srivastava, Smita; Srivastava, A K

    2012-11-01

    Present investigation involves hairy root cultivation of Azadirachta indica in a modified stirred tank reactor under optimized culture conditions for maximum volumetric productivity of azadirachtin. The selected hairy root line (Az-35) was induced via Agrobacterium rhizogenes LBA 920-mediated transformation of A. indica leaf explants (Coimbatore variety, India). Liquid culture of the hairy roots was developed in a modified Murashige and Skoog medium (MM2). To further enhance the productivity of azadirachtin, selected growth regulators (1.0 mg/l IAA and 0.025 mg/l GA(3)), permeabilizing agent (0.5 % v/v DNBP), a biotic elicitor (1 % v/v Curvularia (culture filtrate)) and an indirectly linked biosynthetic precursor (50 mg/l cholesterol) were added in the growth medium on 15th day of the hairy root cultivation period in shake flask. Highest azadirachtin production (113 mg/l) was obtained on 25th day of the growth cycle with a biomass of 21 g/l DW. Further, batch cultivation of hairy roots was carried out in a novel liquid-phase bioreactor configuration (modified stirred tank reactor with polyurethane foam as root support) to investigate the possible scale-up of the established A. indica hairy root culture. A biomass production of 15.2 g/l with azadirachtin accumulation in the hairy roots of 6.4 mg/g (97.28 mg/l) could be achieved after 25 days of the batch cultivation period, which was ~27 and ~14 % less biomass and azadirachtin concentration obtained respectively, in shake flasks. An overall volumetric productivity of 3.89 mg/(l day) of azadirachtin was obtained in the bioreactor.

  6. Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae).

    PubMed

    Zaheer, Mohd; Reddy, Vudem Dashavantha; Giri, Charu Chandra

    2016-07-01

    Daidzin (7-O-glucoside of daidzein) has several pharmacological benefits in herbal remedy, as antioxidant and shown antidipsotropic activity. Hairy root culture of Psoralea corylifolia L. was developed for biomass and enhanced daidzin production using signalling compounds such as jasmonic acid (JA) and acetyl salicylic acid (ASA). Best response of 2.8-fold daidzin (5.09% DW) with 1 μM JA treatment after second week and 7.3-fold (3.43% DW) with 10 μM JA elicitation after 10th week was obtained from hairy roots compared to untreated control. ASA at 10 μM promoted 1.7-fold increase in daidzin (1.49% DW) content after seventh week compared to control (0.83% DW). Addition of 25 μM ASA resulted in 1.44% DW daidzin (1.5-fold increase) with 0.91% DW in control after fifth week and 1.44% DW daidzin (2.3-fold increase) after eighth week when compared to untreated control (0.62% DW). Reduced biomass with increased daidzin content was facilitated by elicited hairy root cultures.

  7. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.

    PubMed

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

  8. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum

    PubMed Central

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G.

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere. PMID:26236301

  9. Enhanced Stilbene Production and Excretion in Vitis vinifera cv Pinot Noir Hairy Root Cultures.

    PubMed

    Tisserant, Leo-Paul; Aziz, Aziz; Jullian, Nathalie; Jeandet, Philippe; Clément, Christophe; Courot, Eric; Boitel-Conti, Michèle

    2016-12-10

    Stilbenes are defense molecules produced by grapevine in response to stresses including various elicitors and signal molecules. Together with their prominent role in planta, stilbenes have been the center of much attention in recent decades due to their pharmaceutical properties. With the aim of setting up a cost-effective and high purity production of resveratrol derivatives, hairy root lines were established from Vitis vinifera cv Pinot Noir 40024 to study the organ-specific production of various stilbenes. Biomass increase and stilbene production by roots were monitored during flask experiments. Although there was a constitutive production of stilbenes in roots, an induction of stilbene synthesis by methyl jasmonate (MeJA) after 18 days of growth led to further accumulation of ε-viniferin, δ-viniferin, resveratrol and piceid. The use of 100 µM MeJA after 18 days of culture in the presence of methyl-β-cyclodextrins (MCDs) improved production levels, which reached 1034µg/g fresh weight (FW) in roots and 165 mg/L in the extracellular medium, corresponding to five-and 570-foldincrease in comparison to control. Whereas a low level of stilbene excretion was measured in controls, addition of MeJA induced excretion of up to 37% of total stilbenes. The use of MCDs increased the excretion phenomenon even more, reaching up to 98%. Our results demonstrate the ability of grapevine hairy roots to produce various stilbenes. This production was significantly improved in response to elicitation by methyl jasmonate and/or MCDs. This supports the interest of using hairy roots as a potentially valuable system for producing resveratrol derivatives.

  10. Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors.

    PubMed

    Srivastava, Smita; Srivastava, Ashok K

    2013-11-01

    Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l(-1)dry weight and azadirachtin yield of 3.2 mg g(-1) leading to a volumetric productivity of azadirachtin as 1.14 mg l(-1) day(-1). The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).

  11. Combating photooxidative stress in green hairy roots of Daucus carota cultivated under light irradiation.

    PubMed

    Mukherjee, Chiranjit; Sircar, Debabrata; Chatterjee, Moniya; Das, Sampa; Mitra, Adinpunya

    2014-01-15

    The light-dependent generation of active oxygen species, which can disrupt normal metabolic process of plant, is termed as photo-oxidative stress. Plants are equipped with enzymatic and non-enzymatic antioxidative defence system to reduce the effect of such stress. Hairy root culture of Daucus carota when cultivated under continuous illumination (250 μmol m(-2)s(-1)) turned green. To know the reason behind that and photo-oxidative stress response in green hairy roots, activities of several antioxidant enzymes were measured. When compared with normal hairy roots, green hairy roots showed an enhanced superoxide dismutase (SOD) activity. Treatment with a SOD inhibitor diethyldithiocarbamate led to suppression of SOD activity in a concentration-dependent manner in green hairy roots. Interestingly, SOD-suppressed root showed three-fold enhanced caffeic acid glucoside accumulation in the soluble fraction as compared to untreated ones. While ascorbate peroxidase activity showed marginal increase in green hairy roots, a decrease in the activities of guaiacol peroxidase and catalase were observed. SDS-PAGE of crude protein profile from green hairy roots showed a distinct band, which was absent in normal hairy roots. MALDI-TOF-MS/MS analysis of the extracted protein confirmed it as the large subunit of RuBisCO. RT-PCR based expression analysis of betaine aldehyde dehydrogenase showed enhanced transcript levels in green hairy roots as compared to normal hairy roots, whereas reverse trends were observed with the transcripts accumulation for phenylalanine ammonia-lyase and chalcone synthase. These findings corroborate with the in vitro BADH activities in hairy roots, and thus indicate an important role of this stress enzyme in combating photo-oxidative stress in green hairy roots upon continuous light exposure. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Sennosides A and B production by hairy roots of Senna alata (L.) Roxb.

    PubMed

    Putalun, Waraporn; Pimmeuangkao, Suwat; De-Eknamkul, Wanchai; Tanaka, Hiroyuki; Shoyama, Yukihiro

    2006-01-01

    Hairy roots of Senna alata transformed with Agrobacterium rhizogenes, strain ATCC 15834 were induced and grown in half-strength Murashige and Skoog (MS) medium. Effects of sucrose contents and hormones on the growth and sennosides A, B production were investigated. Hairy roots cultured on hormone-free half-strength MS medium containing 5% sucrose under dark condition mostly stimulated the growth of hairy roots and increased the content of sennosides A and B yielding (169 +/- 4) and (34 +/- 3) microg g(-1) dry wt, respectively.

  13. Metabolism of oxybenzone in a hairy root culture: Perspectives for phytoremediation of a widely used sunscreen agent.

    PubMed

    Chen, Feiran; Huber, Christian; May, Robert; Schröder, Peter

    2016-04-05

    Oxybenzone (OBZ), known as Benzophenone-3, is a commonly used UV filter in sun tans and skin protectants, entering aquatic systems either directly during recreational activities or indirectly through wastewater treatment plants discharge. To study the potential degradation capacity of plants for OBZ in phytotreatment, a well-established hairy root culture (Armoracia rusticana) was treated with OBZ. More than 20% of spiked OBZ (100μM) was eliminated from the medium by hairy roots after 3h of exposure. Two metabolites were identified as oxybenzone-glucoside (OBZ-Glu) and oxybenzone-(6-O-malonyl)-glucoside (OBZ-Mal-Glu) by LC-MS/MS and TOF-MS. Formation of these metabolites was confirmed by enzymatic synthesis, as well as enzymatic and alkaline hydrolysis. Incubation with O-glucosyltransferase (O-GT) extracted from roots formed OBZ-Glu; whereas β-d-Glucosidase hydrolyzed OBZ-Glu. However, alkaline hydrolysis led to cleavage of OBZ-Mal-Glu and yielded OBZ-Glu. In the hairy root culture, an excretion of OBZ-Glu into the growth medium was observed while the corresponding OBZ-Mal-Glu remained stored in root cells over the incubation time. We propose that metabolism of oxybenzone in plants involves initial conjugation with glucose to form OBZ-Glu followed by malonylation to yield OBZ-Mal-Glu. To our best knowledge this first finding presenting the potential of plants to degrade benzophenone type UV filters by phytoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Labdane-type diterpenoids from hairy root cultures of Coleus forskohlii, possible intermediates in the biosynthesis of forskolin.

    PubMed

    Asada, Yoshihisa; Li, Wei; Terada, Tomohiro; Kuang, Xinzhu; Li, Qin; Yoshikawa, Takafumi; Hamaguchi, Shogo; Namekata, Iyuki; Tanaka, Hikaru; Koike, Kazuo

    2012-07-01

    Significant attention has been devoted to studying hairy root cultures as a promising strategy for production of various valuable secondary metabolites. These offer many advantages, such as high growth rate, genetic stability and being hormone-free. In this study, a detailed phytochemical investigation of the secondary metabolites of Coleus forskohlii hairy root cultures was undertaken and which resulted in the isolation of 22 compounds, including four forskolin derivatives and a monoterpene. Their structures were elucidated by extensive spectroscopic analyses. These compounds could be classified into four groups viz.: labdane-type diterpenes, monoterpenes, triterpenes and phenylpropanoid dimers. Apart from one compound, all labdane type diterpenes are oxygenated at C-11 as in forskolin and a scheme showing their biosynthetic relationships is proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. New alkaloids of the sarpagine group from Rauvolfia serpentina hairy root culture.

    PubMed

    Sheludko, Yuri; Gerasimenko, Irina; Kolshorn, Heinz; Stöckigt, Joachim

    2002-07-01

    Three new monoterpenoid indole alkaloids, 19(S),20(R)-dihydroperaksine (1), 19(S),20(R)-dihydroperaksine-17-al (2), and 10-hydroxy-19(S),20(R)-dihydroperaksine (3), along with 16 known alkaloids 4-19 were isolated from hairy root culture of Rauvolfia serpentina, and their structures were elucidated by 1D and 2D NMR analyses. Taking into account the stereochemistry of the new alkaloids and results of preliminary enzymatical studies, the putative biosynthetical relationships between the novel alkaloids are discussed.

  16. Carbohydrate and elicitor enhanced withanolide (withaferin A and withanolide A) accumulation in hairy root cultures of Withania somnifera (L.).

    PubMed

    Doma, Madhavi; Abhayankar, Gauri; Reddy, V D; Kavi Kishor, P B

    2012-07-01

    Leaves of Withania somnifera contained more withaferin A and withanolide A than roots indicating that these compounds mainly accumulate in leaves. With an increase in age of the plant, withaferin A was enhanced with a corresponding decrease in withanolide A. Hairy root cultures were induced from leaf explants using Agrobacterium rhizogenes and the transgenic nature of hairy roots was confirmed by partial isolation and sequencing of rolB gene, which could not be amplified in untransformed plant parts. In hairy roots, withaferin A accumulated at 2, 3 and 4% but not at 6% sucrose, the highest amount being 1733 microg/g dry weight at 4% level. High and equal amounts of withaferin A and withanolide A accumulated (890 and 886 microg/g dry tissue respectively) only at 3% sucrose. Increasing concentrations of glucose enhanced withaferin A and it peaked at 5% level (3866 microg/g dry tissue). This amount is 2842 and 34% higher compared to untransformed roots and leaves (collected from 210-day-old plants) respectively. Withanolide A was detected at 5% glucose but not at other concentrations. While chitosan and nitric oxide increased withaferin A, jasmonic acid decreased it. Acetyl salicylic acid stimulated accumulation of both withaferin A and withanolide A at higher concentrations. Triadimefon, a fungicide, enhanced withaferin A by 1626 and 3061% (not detected earlier) compared to hairy and intact roots respectively.

  17. Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids.

    PubMed

    Mehrotra, Shakti; Goel, Manoj K; Srivastava, Vikas; Rahman, Laiq Ur

    2015-02-01

    Hairy root cultures of Rauwolfia serpentina induced by Agrobacterium rhizogenes have been investigated extensively for the production of terpenoid indole alkaloids. Various biotechnological developments, such as scaling up in bioreactors, pathway engineering etc., have been explored to improve their metabolite production potential. These hairy roots are competent for regenerating into complete plants and show survival and unaltered biosynthetic potential during storage at low temperature. This review provides a comprehensive account of the hairy root cultures of R. serpentina, their biosynthetic potential and various biotechnological methods used to explore the production of pharmaceutically important terpenoid indole alkaloids. The review also indicates how biotechnological endeavors might improve the future progress of research for production of alkaloids using Rauwolfia hairy roots.

  18. In vitro azadirachtin production by hairy root cultivation of Azadirachta indica in nutrient mist bioreactor.

    PubMed

    Srivastava, Smita; Srivastava, A K

    2012-01-01

    Azadirachtin, a well-known biopesticide is a secondary metabolite conventionally extracted from the seeds of Azadirachta indica. The present study involved in vitro azadirachtin production by developing hairy roots of A. indica via Agrobacterium rhizogenes-mediated transformation of A. indica explants. Liquid culture of hairy roots was established in shake flask to study the kinetics of growth and azadirachtin production. A biomass production of 13.3 g/L dry weight (specific growth rate of 0.7 day(-1)) was obtained after 25 days of cultivation period with an azadirachtin yield of 3.3 mg/g root biomass. To overcome the mass transfer limitation in conventionally used liquid-phase reactors, batch cultivation of hairy roots was carried out in gas-phase reactors (nutrient spray and nutrient mist bioreactor) to investigate the possible scale-up of A. indica hairy root culture. The nano-size nutrient mist particles generated from the nozzle of the nutrient mist bioreactor could penetrate till the inner core of the inoculated root matrix, facilitating uniform growth during high-density cultivation of hairy roots. A biomass production of 9.8 g/L dry weight with azadirachtin accumulation of 2.8 mg/g biomass (27.4 mg/L) could be achieved in 25 days of batch cultivation period, which was equivalent to a volumetric productivity of 1.09 mg/L per day of azadirachtin.

  19. Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors.

    PubMed

    Patra, Nivedita; Srivastava, Ashok K

    2016-01-01

    Alternative biotechnological protocol for large-scale artemisinin production was established. It featured enhanced growth and artemisinin production by cultivation of hairy roots in nutrient mist bioreactor (NMB) coupled with novel cultivation strategies. Artemisinin is used for the treatment of cerebral malaria. Presently, its main source is from seasonal plant Artemisia annua. This study featured investigation of growth and artemisinin production by A. annua hairy roots (induced by Agrobacterium rhizogenes-mediated genetic transformation of explants) in three bioreactor configurations-bubble column reactor, NMB and modified NMB particularly to establish their suitability for commercial production. It was observed that cultivation of hairy roots in a non-stirred bubble column reactor exhibited a biomass accumulation of 5.68 g/l only while batch cultivation in a custom-made NMB exhibited a higher biomass concentration of 8.52 g/l but relatively lower artemisinin accumulation of 0.22 mg/g was observed in this reactor. A mixture of submerged liquid-phase growth (for 5 days) followed by gas-phase cultivation in nutrient mist reactor operation strategy (for next 15 days) was adopted for hairy root cultivation in this investigation. Reasonably, high (23.02 g/l) final dry weight along with the artemisinin accumulation (1.12 mg/g, equivalent to 25.78 mg/l artemisinin) was obtained in this bioreactor, which is the highest reported artemisinin yield in the gas-phase NMB cultivation.

  20. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedelkoska, T.V.; Doran, P.M.

    Hairy roots were used to investigate cadmium uptake by Thlaspi caerulescens, a metal hyperaccumulator plant with potential applications in phytoremediation and phytomining. Experiments were carried out in nutrient media under conditions supporting root growth. Accumulation of Cd in short-term (9-h) experiments varied with initial medium pH and increased after treating the roots with H{sup +}-ATPase inhibitor. The highest equilibrium Cd content measured in T. caerulescens roots was 62,800 {micro}g g{sup {minus}1} dry weight, or 6.3% dry weight, at a liquid Cd concentration of 3,710 ppm. Cd levels in live T. caerulescens roots were 1.5- to 1.7-fold those in hairy rootsmore » of nonhyperaccumulator species exposed to the same Cd concentration, but similar to the Cd content of auto-claved T. caerulescens roots. The ability to grow at Cd concentrations of up to 100 ppm clearly distinguished T. caerulescens hairy roots from the nonhyperaccumulators. The specific growth rate of T. caerulescens roots was essentially unaffected by 20 to 50 ppm Cd in the culture medium; in contrast, N. tabacum roots turned dark brown at 20 ppm and growth was negligible. Up to 10,600 {micro}g g{sup {minus}1} dry weight Cd was accumulated by growing T. caerulescens hairy roots. Measurement of Cd levels in while roots and in the cell wall fraction revealed significant differences in the responses of T. caerulescens and N. tabacum roots to 20 ppm Cd. Most metal was transported directly into the symplasm of N. tabacum roots within 3 days of exposure; in contrast, T. caerulescens roots stored virtually all of their Cd in the wall fraction for the first 7 to 10 days. This delay in transmembrane uptake may represent an important defensive strategy against Cd poisoning in T. caerulescens, allowing time for activation of intracellular mechanisms for heavy metal detoxification.« less

  1. Determination of escin content in androgenic embryos and hairy root culture of Aesculus hippocastanum.

    PubMed

    Calić-Dragosavac, Dusica; Zdravković-Korać, Snezana; Savikin-Fodulović, Katarina; Radojević, Ljiljana; Vinterhalter, Branka

    2010-05-01

    Escin, a group of chemically related triterpenic glycosides, is widely used in commercial preparations for the treatment of venous insufficiency. Since the zygotic embryo cotyledons accumulate the highest amount of escin, it is currently extracted from the seeds of horse chestnut, Aesculus hippocastanum L. (Hippocastanaceae), on a large scale. As this material is available during only short period of the year, we studied the possibility of using plant tissue culture to obtain escin. For this purpose, the content of escin in androgenic embryos and hairy root cultures of horse chestnut was studied. Escin content was found to be dependent on the stage of androgenic embryo development and the type of phytoregulator supplemented to the nutritive medium. In the absence of phytoregulators, androgenic embryos at the globular stage of development contained approximately four times less escin than those at the cotyledonary stage. Inclusion of various phytoregulators in the nutritive media stimulated escin production. Among them, 2,4-dichlorophenoxyacetic acid (2,4-D) showed the most pronounced effect, with escin content almost reaching that found in zygotic embryos (6.77% versus 6.96%). Two hairy root clones produced substantial amounts of escin (3.57% and 4.09%), less than zygotic embryos, but higher than cotyledonary embryos on phytoregulator-free medium.

  2. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

    PubMed

    El-Esawi, Mohamed A; Elkelish, Amr; Elansary, Hosam O; Ali, Hayssam M; Elshikh, Mohamed; Witczak, Jacques; Ahmad, Margaret

    2017-01-01

    Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones ( p < 0.01). Transgenic hairy roots exhibited a 54.8-96.7% increase in the total phenolic content, 38.1-76.2% increase in the total flavonoid content, and 56.7-96.7% increase in the total reducing power when compared with the nontransgenic roots ( p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6-50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola .

  3. Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants.

    PubMed

    Md Setamam, Nursuria; Jaafar Sidik, Norrizah; Abdul Rahman, Zainon; Che Mohd Zain, Che Radziah

    2014-06-30

    Capsicum annuum and Capsicum frutescens, also known as "chilies", belong to the Solanaceae family and have tremendous beneficial properties. The application of hairy root culture may become an alternative method for future development of these species by adding value, such as by increasing secondary metabolites and improving genetic and biochemical stability compared with normal Capsicum plants. Therefore, in this research, different types of explants of both species were infected with various Agrobacterium rhizogenes strains to provide more information about the morphology and induction efficiency of hairy roots. After 2 weeks of in vitro seed germination, young seedling explants were cut into three segments; the cotyledon, hypocotyl, and radical. Then, the explants were co-cultured with four isolated A. rhizogenes strains in Murashige & Skoog culture media (MS) containing decreasing carbenicillin disodium concentrations for one month. In this experiment, thick and short hairy roots were induced at all induction sites of C. annuum while thin, elongated hairy roots appeared mostly at wound sites of C. frutescens. Overall, the hairy root induction percentages of C. frutescens were higher compared with C. annuum. Hairy root initiation was observed earliest using radicles (1st week), followed by cotyledons (2nd week), and hypocotyls (3rd week). Cotyledon explants of both species had the highest induction frequency with all strains compared with the other explants types. Strains ATCC 13333 and ATCC 15834 were the most favourable for C. frutescens while ATCC 43056 and ATCC 43057 were the most favourable for C. annuum. The interactions between the different explants and strains showed significant differences with p-values < 0.0001 in both Capsicum species. Both Capsicum species were amenable to A. rhizogenes infection and hairy root induction is recommended for use as an alternative explants in future plant-based studies.

  4. Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants

    PubMed Central

    2014-01-01

    Background Capsicum annuum and Capsicum frutescens, also known as “chilies”, belong to the Solanaceae family and have tremendous beneficial properties. The application of hairy root culture may become an alternative method for future development of these species by adding value, such as by increasing secondary metabolites and improving genetic and biochemical stability compared with normal Capsicum plants. Therefore, in this research, different types of explants of both species were infected with various Agrobacterium rhizogenes strains to provide more information about the morphology and induction efficiency of hairy roots. After 2 weeks of in vitro seed germination, young seedling explants were cut into three segments; the cotyledon, hypocotyl, and radical. Then, the explants were co-cultured with four isolated A. rhizogenes strains in Murashige & Skoog culture media (MS) containing decreasing carbenicillin disodium concentrations for one month. Results In this experiment, thick and short hairy roots were induced at all induction sites of C. annuum while thin, elongated hairy roots appeared mostly at wound sites of C. frutescens. Overall, the hairy root induction percentages of C. frutescens were higher compared with C. annuum. Hairy root initiation was observed earliest using radicles (1st week), followed by cotyledons (2nd week), and hypocotyls (3rd week). Cotyledon explants of both species had the highest induction frequency with all strains compared with the other explants types. Strains ATCC 13333 and ATCC 15834 were the most favourable for C. frutescens while ATCC 43056 and ATCC 43057 were the most favourable for C. annuum. The interactions between the different explants and strains showed significant differences with p-values < 0.0001 in both Capsicum species. Conclusions Both Capsicum species were amenable to A. rhizogenes infection and hairy root induction is recommended for use as an alternative explants in future plant-based studies. PMID

  5. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    PubMed

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  6. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

    PubMed Central

    Elkelish, Amr; Elansary, Hosam O.; Ali, Hayssam M.; Elshikh, Mohamed; Witczak, Jacques; Ahmad, Margaret

    2017-01-01

    Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones (p < 0.01). Transgenic hairy roots exhibited a 54.8–96.7% increase in the total phenolic content, 38.1–76.2% increase in the total flavonoid content, and 56.7–96.7% increase in the total reducing power when compared with the nontransgenic roots (p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6–50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola. PMID:28835782

  7. Enhancement of ginsenoside Rg(1) in Panax ginseng hairy root by overexpressing the α-L-rhamnosidase gene from Bifidobacterium breve.

    PubMed

    Zhang, Ru; Zhang, Bian-Ling; Li, Gu-Cai; Xie, Tao; Hu, Teng; Luo, Zhi-Yong

    2015-10-01

    To improve the production of ginsenoside Rg1 in Panax ginseng. The α-L-rhamnosidase gene from Bifidobacterium breve (BbRha) was overexpressed into hairy root culture system using Agrobacterium rhizogenes A4. Ginsenoside Rg1 in hairy roots was obtained following transformation via overexpressed gene representing 2.2-fold higher than those of control lines. Several overexpression transgenic hairy root lines were obtained exhibiting markedly increased levels of the corresponding α-L-rhamnosidase enzymatic activity relative to control. Ginsenoside Rg1 levels in the transgenic lines were higher (2.2-fold) than those of control after following 30 days culturing, while ginsenoside Re contents in tested transgenic lines were found to be lower. The transgenic hairy roots harboring α-L-rhamnosidase gene improved the accumulation of ginsenoside Rg1 up to 3.6 mg g(-1) dry weight. BbRha gene selectively enhances the production of ginsenoside Rg1 in P. ginseng hairy roots.

  8. Biosynthesis of luminescent CdS quantum dots using plant hairy root culture

    NASA Astrophysics Data System (ADS)

    Borovaya, Mariya N.; Naumenko, Antonina P.; Matvieieva, Nadia A.; Blume, Yaroslav B.; Yemets, Alla I.

    2014-12-01

    CdS nanoparticles have a great potential for application in chemical research, bioscience and medicine. The aim of this study was to develop an efficient and environmentally-friendly method of plant-based biosynthesis of CdS quantum dots using hairy root culture of Linaria maroccana L. By incubating Linaria root extract with inorganic cadmium sulfate and sodium sulfide we synthesized stable luminescent CdS nanocrystals with absorption peaks for UV-visible spectrometry at 362 nm, 398 nm and 464 nm, and luminescent peaks at 425, 462, 500 nm. Transmission electron microscopy of produced quantum dots revealed their spherical shape with a size predominantly from 5 to 7 nm. Electron diffraction pattern confirmed the wurtzite crystalline structure of synthesized cadmium sulfide quantum dots. These results describe the first successful attempt of quantum dots synthesis using plant extract.

  9. Thymol derivatives from hairy roots of Arnica montana.

    PubMed

    Weremczuk-Jezyna, I; Kisiel, W; Wysokińska, H

    2006-09-01

    Five known thymol derivatives were isolated from roots of Arnica montana transformed with Agrobacterium rhizogenes LBA 9402. The compounds were characterized by spectral methods. The pattern of thymol derivatives in light-grown hairy roots was slightly different from that in dark-grown ones. This is the first report on the presence of thymol derivatives in hairy roots of the plant.

  10. Blue light decreases tanshinone IIA content in Salvia miltiorrhiza hairy roots via genes regulation.

    PubMed

    Chen, Ing-Gin J; Lee, Meng-Shiou; Lin, Ming-Kuem; Ko, Chia-Yun; Chang, Wen-Te

    2018-06-01

    The effect of light-emitting diodes (LEDs) on the production of secondary metabolites in medicinal plants and hairy roots is receiving much attention. The roots and rhizomes of the traditional Chinese medicinal plant Salvia miltiorrhiza Bunge are widely used for treating cardiovascular and cerebrovascular diseases. The main components are liposoluble tanshinones and hydrophilic phenolic acids. Moreover, hairy root culture of S. miltiorrhiza has been used in research of valuable plant-derived secondary metabolites. In this study, we examined the effect of LEDs with different combinations of wavelengths on the content of the main components in hairy roots of S. miltiorrhiza. Tanshinone IIA (TSIIA) content in hairy roots was significantly decreased with all light treatments containing blue light by >60% and was 9 times lower with LED treatment duration changed from 1 week to 3 weeks. HMGR, DXS2, DXR, GGPPS, CPS and CYP76AH1 genes involved in the tanshinone biosynthesis pathway were downregulated by blue light. Furthermore, light quality treatments have different effect on the accumulation of phenolic acids in hairy roots of S. miltiorrhiza. The light treatments 6R3B, 6B3IR, 7RGB and 2R6BUV for 3 weeks could increase rosmarinic acid (RA) content slightly but not salvianolic acid B (SAB) content. Different secondary metabolite contents could be regulated by different wavelength combinations of LEDs. Blue light could reduce TSIIA content in hairy roots of S. miltiorrhiza via gene regulation. Copyright © 2018. Published by Elsevier B.V.

  11. Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.

    PubMed

    Williams, G R; Doran, P M

    2000-01-01

    A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved

  12. Overexpression of cinnamate 4-hydroxylase gene enhances biosynthesis of decursinol angelate in Angelica gigas hairy roots.

    PubMed

    Park, Nam Il; Park, Jee Hee; Park, Sang Un

    2012-02-01

    Angelica gigas is a medicinal plant that produces pyranocoumarins, including decursin (D) and decursinol angelate (DA), which have neuroprotective, anticancer, and antiandrogenic effects. In this study, the coumarin biosynthetic pathway was engineered to increase the production of DA. Specifically, a vector was constructed which contained the A. gigas phenylalanine ammonia-lyase (AgPAL) and cinnamate 4-hydroxylase (AgC4H) genes that were driven by the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic hairy roots that overexpressed AgPAL or AgC4H genes were obtained by using an Agrobacterium rhizogenes-mediated transformation system. Among them, only AgC4H-transgenic hairy root lines produced more DA than control transgenic hairy root lines. The enhanced gene expression corresponded to elevated C4H activities. This study showed the importance of C4H in the production of DA in A. gigas hairy root culture.

  13. Induced Biosynthesis of resveratrol and the prenylated stilbenoids arachidan-1 and arachidan-3 in hairy root cultures of peanut: effects of culture medium and growth stage

    USDA-ARS?s Scientific Manuscript database

    The peanut plant has evolved specialized biosynthetic mechanisms that allowed resisting infection by producing diverse secondary metabolites. Among these unique compounds are the stilbenoids, which include resveratrol analogues. Our previous research demonstrated that peanut hairy root cultures prov...

  14. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd.) Iljin for the Production of Biomass and Caffeic Acid Derivatives

    PubMed Central

    Skała, Ewa; Kicel, Agnieszka; Olszewska, Monika A.; Kiss, Anna K.

    2015-01-01

    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots. PMID:25811023

  15. High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode.

    PubMed

    Cho, H J; Farrand, S K; Noel, G R; Widholm, J M

    2000-01-01

    Cotyledon explants of 10 soybean [Glycine max (L.) Merr.] cultivars were inoculated with Agrobacterium rhizogenes strain K599 with and without binary vectors pBI121 or pBINm-gfp5-ER possessing both neomycin phosphotransferase II (nptII) and beta-glucuronidase (gus) or nptII and green fluorescent protein (gfp) genes, respectively. Hairy roots were produced from the wounded surface of 54-95% of the cotyledon explants on MXB selective medium containing 200 microg ml(-1) kanamycin and 500 microg ml(-1) carbenicillin. Putative individual transformed hairy roots were identified by cucumopine analysis and were screened for transgene incorporation using polymerase chain reaction. All of the roots tested were found to be co-transformed with T-DNA from the Ri-plasmid and the transgene from the binary vectors. Southern blot analysis confirmed the presence of the 35S-gfp5 gene in the plant genomes. Transgene expression was also confirmed by histochemical GUS assay and Western blot analysis for the GFP. Attempts to induce shoot formation from the hairy roots failed. Infection of hairy roots of the soybean cyst nematode (Heterodera glycines Ichinohe)-susceptible cultivar, Williams 82, with eggs of H. glycines race 1, resulted in the development of mature cysts about 4-5 weeks after inoculation. Thus the soybean cyst nematode could complete its entire life cycle in transformed soybean hairy-root cultures expressing GFP. This system should be ideal for testing genes that might impart resistance to soybean cyst nematode.

  16. Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids.

    PubMed

    Sevón, Nina; Oksman-Caldentey, Kirsi-Marja

    2002-10-01

    Hairy roots, transformed with Agrobacterium rhizogenes, have been found to be suitable for the production of secondary metabolites because of their stable and high productivity in hormone-free culture conditions. A number of plant species including many medicinal plants have been successfully transformed with Agrobacterium rhizogenes. Transformed root cultures have also been found to be a potential source of high-value pharmaceuticals. In this article the most important alkaloids produced by hairy roots are summarised. Several different methods have been used to increase the alkaloid accumulation in hairy root cultures. The selection of high productive root lines based on somaclonal variation offers an interesting option to enhance the productivity. Elicitors and modification of culture conditions have been shown to increase the growth and the alkaloid production in some cases. Genetic engineering is a modern tool to regulate the secondary metabolism also in hairy roots. However, our knowledge on biosynthesis of many alkaloids is still poor. Only a limited number of enzymes and their respective genes which regulate the biosynthetic pathways are fully characterised.

  17. Genetic elicitation by inducible expression of β-cryptogein stimulates secretion of phenolics from Coleus blumei hairy roots.

    PubMed

    Vuković, Rosemary; Bauer, Nataša; Curković-Perica, Mirna

    2013-02-01

    The accumulation of phenolic compounds in plants is often part of the defense response against stress and pathogen attack, which can be triggered and activated by elicitors. Oomycetal proteinaceous elicitor, β-cryptogein, induces hypersensitive response and systemic acquired resistance against some pathogens. In order to test the effect of endogenously synthesized cryptogein protein on phenolic compounds accumulation in tissue, and secretion into the culture medium, Coleus blumei hairy roots were generated. Agrobacterium rhizogenes was employed to insert synthetic crypt gene, encoding β-cryptogein, under the control of alcohol-inducible promoter. The expression of β-cryptogein, in C. blumei hairy roots, was controlled by application of 1% and 2% ethanol, during 21 days induction period. Ethanol-induced expression of β-cryptogein caused significant decrease of soluble phenolics and rosmarinic acid (RA) in hairy root lines and increase of phenolics, RA and caffeic acid in culture medium. These data suggest that β-cryptogein might be a potential regulatory factor for phenolics secretion from the roots. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. The Relationship Between Endogenous β-Glucuronidase Activity and Biologically Active Flavones-Aglycone Contents in Hairy Roots of Baikal Skullcap.

    PubMed

    Dikaya, Varvara S; Solovyeva, Aleksandra I; Sidorov, Roman A; Solovyev, Pavel A; Stepanova, Anna Yu

    2018-02-01

    Here, we examine the relationship between contents of principal flavones in hairy roots of Scutellaria baicalensis with the activity of the β-glucuronidase (sGUS) enzyme during a culturing cycle. Using RP-HPLC, we show that the highest contents of aglycones, baicalin and wogonin is observed at the growth days 8, 14, and 71 and reach 45, 41, and 62% (based on the total weight of hairy roots of the Baikal skullcap), correspondingly. Their accumulation is accompanied by increase of the sGUS activity, which we determined fluorometrically. Moreover, the enzyme activity is characterized by significant and reasonable correlation only with the wogonin contents. Our results confirm a significant role of sGUS at the final steps of the metabolism in root-specific flavones of Baikal skullcap and suggest how one can optimize the conditions of culturing the hairy roots for biotechnological production of individual flavonoids. For example, at the culturing day 71 wogonin constituted over 80% of all flavones extracted from cells. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  19. Biomass Production of Hairy Roots of Artemisia annua and Arachis hypogaea in a Scaled-Up Mist Bioreactor

    PubMed Central

    Sivakumar, Ganapathy; Liu, Chunzhao; Towler, Melissa J.

    2014-01-01

    Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low-cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2–3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2–3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was μ = 0.173 day−1 with biomass yield of 12.75 g DWL−1. This exceeded that in shake flasks at μ = 0.166 day−1 and 11.10 g DWL−1. Best growth rate and biomass yield at 20 L was μ = 0.147 and 7.77 g DWL−1, which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots. PMID:20687140

  20. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis.

    PubMed

    Hirotani, M; Kuroda, R; Suzuki, H; Yoshikawa, T

    2000-05-01

    A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53,094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4'-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments.

  1. Hairy root biotechnology--indicative timeline to understand missing links and future outlook.

    PubMed

    Mehrotra, Shakti; Srivastava, Vikas; Ur Rahman, Laiq; Kukreja, A K

    2015-09-01

    Agrobacterium rhizogenes-mediated hairy roots (HR) were developed in the laboratory to mimic the natural phenomenon of bacterial gene transfer and occurrence of disease syndrome. The timeline analysis revealed that during 90 s, the research expanded to the hairy root-based secondary metabolite production and different yield enhancement strategies like media optimization, up-scaling, metabolic engineering etc. An outlook indicates that much emphasis has been given to the strategies that are helpful in making this technology more practical in terms of high productivity at low cost. However, a sequential analysis of literature shows that this technique is upgraded to a biotechnology platform where different intra- and interdisciplinary work areas were established, progressed, and diverged to provide scientific benefits of various hairy root-based applications like phytoremediation, molecular farming, biotransformation, etc. In the present scenario, this biotechnology research platform includes (a) elemental research like hairy root-mediated secondary metabolite production coupled with productivity enhancement strategies and (b) HR-based functional research. The latter comprised of hairy root-based applied aspects such as generation of agro-economical traits in plants, production of high value as well as less hazardous molecules through biotransformation/farming and remediation, respectively. This review presents an indicative timeline portrayal of hairy root research reflected by a chronology of research outputs. The timeline also reveals a progressive trend in the state-of-art global advances in hairy root biotechnology. Furthermore, the review also discusses ideas to explore missing links and to deal with the challenges in future progression and prospects of research in all related fields of this important area of plant biotechnology.

  2. Increased synthesis of a new oleanane-type saponin in hairy roots of marigold (Calendula officinalis) after treatment with jasmonic acid.

    PubMed

    Markowski, Michał; Długosz, Marek; Szakiel, Anna; Durli, Mathieu; Poinsignon, Sophie; Bouguet-Bonnet, Sabine; Vernex-Loset, Lionel; Krier, Gabriel; Henry, Max

    2018-04-18

    Native plant of marigold (Calendula officinalis L.) synthesizes oleanolic acid saponins classified as glucosides or glucuronides according to the first residue in sugar chain bound to C-3 hydroxyl group. Hairy root culture, obtained by transformation with Agrobacterium rhizogenes strain 15834, exhibit a potent ability of synthesis of oleanolic acid glycosides. The HPLC profile of saponin fraction obtained from C. officinalis hairy roots treated with plant stress hormone, jasmonic acid, showed the 10-times increase of the content of one particular compound, determined by NMR and MALDI TOF as a new bisdesmoside saponin, 3-O-β-d-glucuronopyranosyl-28-O-β-d-galactopyranosyl-oleanolic acid. Such a diglycoside does not occur in native C. officinalis plant. It is a glucuronide, whereas in the native plant glucuronides are mainly accumulated in flowers, while glucosides are the most abundant saponins in roots. Thus, our results revealed that the pathways of saponin biosynthesis, particularly reactions of glycosylation, are altered in C. officinalis hairy root culture.

  3. Hairy Root as a Model System for Undergraduate Laboratory Curriculum and Research

    ERIC Educational Resources Information Center

    Keyes, Carol A.; Subramanian, Senthil; Yu, Oliver

    2009-01-01

    Hairy root transformation has been widely adapted in plant laboratories to rapidly generate transgenic roots for biochemical and molecular analysis. We present hairy root transformations as a versatile and adaptable model system for a wide variety of undergraduate laboratory courses and research. This technique is easy, efficient, and fast making…

  4. Establishment of Hairy Root Cultures by Agrobacterium Rhizogenes Mediated Transformation of Isatis Tinctoria L. for the Efficient Production of Flavonoids and Evaluation of Antioxidant Activities

    PubMed Central

    Luo, Meng; Wei, Zuo-Fu; Zu, Yuan-Gang; Ma, Wei; Fu, Yu-Jie

    2015-01-01

    In this work, Isatis tinctoria hairy root cultures (ITHRCs) were established as an alternative source for flavonoids (FL) production. I. tinctoria hairy root line V was found to be the most efficient line and was further confirmed by the PCR amplification of rolB, rolC and aux1 genes. Culture parameters of ITHRCs were optimized by Box-Behnken design (BBD), and eight bioactive FL constituents (rutin, neohesperidin, buddleoside, liquiritigenin, quercetin, isorhamnetin, kaempferol and isoliquiritigenin) were quali-quantitatively determined by LC-MS/MS. Under optimal conditions, the total FL accumulation of ITHRCs (24 day-old) achieved was 438.10 μg/g dry weight (DW), which exhibited significant superiority as against that of 2 year-old field grown roots (341.73 μg/g DW). Additionally, in vitro antioxidant assays demonstrated that ITHRCs extracts exhibited better antioxidant activities with lower IC50 values (0.41 and 0.39, mg/mL) as compared to those of field grown roots (0.56 and 0.48, mg/mL). To the best of our knowledge, this is the first report describing FL production and antioxidant activities from ITHRCs. PMID:25785699

  5. Establishment of hairy root cultures by Agrobacterium rhizogenes mediated transformation of Isatis tinctoria L. For the efficient production of flavonoids and evaluation of antioxidant activities.

    PubMed

    Gai, Qing-Yan; Jiao, Jiao; Luo, Meng; Wei, Zuo-Fu; Zu, Yuan-Gang; Ma, Wei; Fu, Yu-Jie

    2015-01-01

    In this work, Isatis tinctoria hairy root cultures (ITHRCs) were established as an alternative source for flavonoids (FL) production. I. tinctoria hairy root line V was found to be the most efficient line and was further confirmed by the PCR amplification of rolB, rolC and aux1 genes. Culture parameters of ITHRCs were optimized by Box-Behnken design (BBD), and eight bioactive FL constituents (rutin, neohesperidin, buddleoside, liquiritigenin, quercetin, isorhamnetin, kaempferol and isoliquiritigenin) were quali-quantitatively determined by LC-MS/MS. Under optimal conditions, the total FL accumulation of ITHRCs (24 day-old) achieved was 438.10 μg/g dry weight (DW), which exhibited significant superiority as against that of 2 year-old field grown roots (341.73 μg/g DW). Additionally, in vitro antioxidant assays demonstrated that ITHRCs extracts exhibited better antioxidant activities with lower IC₅₀ values (0.41 and 0.39, mg/mL) as compared to those of field grown roots (0.56 and 0.48, mg/mL). To the best of our knowledge, this is the first report describing FL production and antioxidant activities from ITHRCs.

  6. Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots.

    PubMed

    Srikantan, Chitra; Suraishkumar, G K; Srivastava, Smita

    2018-06-01

    The study demonstrates for the first time that light influences the adsorption equilibrium and kinetics of a dye by root culture system. The azo dye (Reactive Red 120) adsorption by the hairy roots of H. annuus followed a pseudo first-order kinetic model and the adsorption equilibrium parameters were best estimated using Langmuir isotherm. The maximum dye adsorption capacity of the roots increased 6-fold, from 0.26 mg g -1 under complete dark conditions to 1.51 mg g -1 under 16/8 h light/dark photoperiod. Similarly, adsorption rate of the dye and removal (%) also increased in the presence of light, irrespective of the initial concentration of the dye (20-110 mg L -1 ). The degradation of the azo dye upon adsorption by the hairy roots of H. annuus was also confirmed. In addition, a strategy for simultaneous dye removal and increased alpha-tocopherol (industrially relevant) production by H. annuus hairy root cultures has been proposed and demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn)

    PubMed Central

    Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2016-01-01

    The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum ‘Hokkai T10’ cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3, H1, FtF3′H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat. PMID:27014239

  8. The c4h, tat, hppr and hppd Genes Prompted Engineering of Rosmarinic Acid Biosynthetic Pathway in Salvia miltiorrhiza Hairy Root Cultures

    PubMed Central

    Gao, Shouhong; Saechao, Saengking; Di, Peng; Chen, Junfeng; Chen, Wansheng

    2011-01-01

    Rational engineering to produce biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Here we capitalized on our previously described gene-to-metabolite network in order to engineer rosmarinic acid (RA) biosynthesis pathway for the production of beneficial RA and lithospermic acid B (LAB) in Salvia miltiorrhiza hairy root cultures. Results showed their production was greatly elevated by (1) overexpression of single gene, including cinnamic acid 4-hydroxylase (c4h), tyrosine aminotransferase (tat), and 4-hydroxyphenylpyruvate reductase (hppr), (2) overexpression of both tat and hppr, and (3) suppression of 4-hydroxyphenylpyruvate dioxygenase (hppd). Co-expression of tat/hppr produced the most abundant RA (906 mg/liter) and LAB (992 mg/liter), which were 4.3 and 3.2-fold more than in their wild-type (wt) counterparts respectively. And the value of RA concentration was also higher than that reported before, that produced by means of nutrient medium optimization or elicitor treatment. It is the first report of boosting RA and LAB biosynthesis through genetic manipulation, providing an effective approach for their large-scale commercial production by using hairy root culture systems as bioreactors. PMID:22242141

  9. Validation of a hairy roots system to study soybean-soybean aphid interactions

    PubMed Central

    Morriss, Stephanie C.; Studham, Matthew E.; Tylka, Gregory L.

    2017-01-01

    The soybean aphid (Aphis glycines) is one of the main insect pests of soybean (Glycine max) worldwide. Genomics approaches have provided important data on transcriptome changes, both in the insect and in the plant, in response to the plant-aphid interaction. However, the difficulties to transform soybean and to rear soybean aphid on artificial media have hindered our ability to systematically test the function of genes identified by those analyses as mediators of plant resistance to the insect. An efficient approach to produce transgenic soybean material is the production of transformed hairy roots using Agrobacterium rhizogenes; however, soybean aphids colonize leaves or stems and thus this approach has not been utilized. Here, we developed a hairy root system that allowed effective aphid feeding. We show that this system supports aphid performance similar to that observed in leaves. The use of hairy roots to study plant resistance is validated by experiments showing that roots generated from cotyledons of resistant lines carrying the Rag1 or Rag2 resistance genes are also resistant to aphid feeding, while related susceptible lines are not. Our results demonstrate that hairy roots are a good system to study soybean aphid-soybean interactions, providing a quick and effective method that could be used for functional analysis of the resistance response to this insect. PMID:28358854

  10. Regulation of sesquiterpenoid metabolism in recombinant and elicited Valeriana officinalis hairy roots.

    PubMed

    Ricigliano, Vincent; Kumar, Santosh; Kinison, Scott; Brooks, Christopher; Nybo, S Eric; Chappell, Joe; Howarth, Dianella G

    2016-05-01

    The medicinal properties of Valerian (Valeriana officinalis) root preparations are attributed to the anxiolytic sesquiterpenoid valerenic acid and its biosynthetic precursors valerenal and valerenadiene, as well as the anti-inflammatory sesquiterpenoid β-caryophyllene. In order to study and engineer the biosynthesis of these pharmacologically active metabolites, a binary vector co-transformation system was developed for V. officinalis hairy roots. The relative expression levels and jasmonate-inducibility of a number of genes associated with sesquiterpenoid metabolism were profiled in roots: farnesyl pyrophosphate synthase (VoFPS), valerendiene synthase (VoVDS), germacrene C synthase (VoGCS), and a cytochrome P450 (CYP71D442) putatively associated with terpene metabolism based on sequence homology. Recombinant hairy root lines overexpressing VoFPS or VoVDS were generated and compared to control cultures. Overexpression of the VoFPS cDNA increased levels of the corresponding transcript 4- to 8-fold and sesquiterpene hydrocarbon accumulation by 1.5- to 4-fold. Overexpression of the VoVDS cDNA increased the corresponding transcript levels 5- to 9-fold and markedly increased yields of the oxygenated sesquiterpenoids valerenic acid and valerenal. Our findings suggest that the availability of cytoplasmic farnesyl diphosphate and valerenadiene are potential bottlenecks in Valeriana-specific sesquiterpenoid biosynthesis, which is also subject to regulation by methyl jasmonate elicitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production.

  12. Isolation and structure elucidation of a new indole alkaloid from Rauvolfia serpentina hairy root culture: the first naturally occurring alkaloid of the raumacline group.

    PubMed

    Sheludko, Yuri; Gerasimenko, Irina; Kolshorn, Heinz; Stöckigt, Joachim

    2002-05-01

    A new monoterpenoid indole alkaloid, 10-hydroxy- N(alpha)-demethyl-19,20-dehydroraumacline ( 1), was isolated as a mixture of E- and Z-isomers from hairy root culture of Rauvolfia serpentina Benth. ex Kurz (Apocynaceae) and the structure was determined by 1D and 2D NMR analyses. The new indole alkaloid represents the first naturally occurring alkaloid of the raumacline group and its putative biosynthetical pathway is discussed.

  13. Small RNAs Derived from the T-DNA of Agrobacterium rhizogenes in Hairy Roots of Phaseolus vulgaris

    PubMed Central

    Peláez, Pablo; Hernández-López, Alejandrina; Estrada-Navarrete, Georgina; Sanchez, Federico

    2017-01-01

    Agrobacterium rhizogenes is a pathogenic bacteria that causes hairy root disease by transferring bacterial DNA into the plant genome. It is an essential tool for industry and research due to its capacity to produce genetically modified roots and whole organisms. Here, we identified and characterized small RNAs generated from the transfer DNA (T-DNA) of A. rhizogenes in hairy roots of common bean (Phaseolus vulgaris). Distinct abundant A. rhizogenes T-DNA-derived small RNAs (ArT-sRNAs) belonging to several oncogenes were detected in hairy roots using high-throughput sequencing. The most abundant and diverse species of ArT-sRNAs were those of 21- and 22-nucleotides in length. Many T-DNA encoded genes constituted phasiRNA producing loci (PHAS loci). Interestingly, degradome analysis revealed that ArT-sRNAs potentially target genes of P. vulgaris. In addition, we detected low levels of ArT-sRNAs in the A. rhizogenes-induced calli generated at the wound site before hairy root emergence. These results suggest that RNA silencing targets several genes from T-DNA of A. rhizogenes in hairy roots of common bean. Therefore, the role of RNA silencing observed in this study has implications in our understanding and usage of this unique plant-bacteria interaction. PMID:28203245

  14. Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare.

    PubMed

    de Araujo, Brancilene Santos; Dec, Jerzy; Bollag, Jean Marc; Pletsch, Marcia

    2006-04-01

    Hairy root cultures of Daucus carota L., Ipomoea batatas L. and Solanum aviculare Forst were investigated for their susceptibility to the highly toxic pollutants phenol and chlorophenols and for the involvement of inherent peroxidases in the removal of phenols from liquid media. Roots of D. carota grew normally in medium containing 1000 micromol l(-1) of phenol, whilst normal growth of roots of I. batatas and S. aviculare was only possible at levels up to 500 micromol l(-1). In the presence of chlorophenols, normal root growth was possible only in concentrations not exceeding 50 micromol l(-1), except for I. batatas which was severely affected at all concentrations. Despite the reduction in biomass, the growth of S. aviculare cultures was sustained in medium containing up to 2000 micromol l(-1) of phenol or 2-chlorophenol, and up to 500 micromol l(-1) of 2,6-dichlorophenol. The amounts of phenol removed by the roots within 72 h of treatment were 72.7%, 90.7% and 98.6% of the initial concentration for D. carota, I. batatas and S. aviculare, respectively. For the removal of 2,6-dichlorophenol the values were, respectively, 83.0%, 57.7% and 73.1%. Phenols labelled with 14C were absorbed by the root tissues and condensed with highly polar cellular substances as well as being incorporated into the cell walls or membranes. The results suggest that S. aviculare, an ornamental plant, would be best suited for remediation trials under field conditions.

  15. Metabolic shift from withasteroid formation to phenylpropanoid accumulation in cryptogein-cotransformed hairy roots of Withania somnifera (L.) Dunal.

    PubMed

    Sil, Bipradut; Mukherjee, Chiranjit; Jha, Sumita; Mitra, Adinpunya

    2015-07-01

    Cotransformed hairy roots containing a gene that encodes a fungal elicitor protein, β-cryptogein, were established in Withania somnifera, a medicinal plant widely used in Indian systems of medicine. To find out whether β-cryptogein protein endogenously elicits the pathway of withasteroid biosynthesis, withaferin A and withanolide A contents along with transcript accumulation of farnesyl pyrophosphate (FPP) synthase, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), and sterol glycosyltransferase (SGT) were analyzed in both cryptogein-cotransformed and normal hairy roots of W. somnifera. It was observed that the withaferin A and withanolide A contents were drastically higher in normal hairy roots than cryptogein-cotransformed ones. Similar trends were also observed on the levels of transcript accumulation. Subsequently, the enzyme activity of phenylalanine ammonia lyase (PAL), one of the key enzymes of phenylpropanoid pathway, was measured in both cryptogein-cotransformed and normal hairy roots of W. somnifera along with the levels of PAL transcript accumulation. Upliftment of PAL activity was observed in cryptogein-cotransformed hairy roots as compared to the normal ones, and the PAL expression also reflected a similar trend, i.e., enhanced expression in the cryptogein-cotransformed lines. Upliftment of wall-bound ferulic acid accumulation was also observed in the cryptogein-cotransformed lines, as compared to normal hairy root lines. Thus, the outcome of the above studies suggests a metabolic shift from withanolide accumulation to phenylpropanoid biosynthesis in cryptogein-cotransformed hairy roots of W. somnifera.

  16. 16D10 siRNAs inhibit root-knot nematode infection in transgenic grape hairy roots

    USDA-ARS?s Scientific Manuscript database

    To develop a biotech-based solution for controlling Root-knot nematodes (RKNs) in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constru...

  17. Genetically engineered hairy root cultures of Hyoscyamus senecionis and H. muticus: ploidy as a promising parameter in the metabolic engineering of tropane alkaloids.

    PubMed

    Dehghan, Esmaeil; Reed, Darwin W; Covello, Patrick S; Hasanpour, Zeinab; Palazon, Javier; Oksman-Caldentey, Kirsi-Marja; Ahmadi, Farajollah Shahriari

    2017-10-01

    Tetraploidy improves overexpression of h6h and scopolamine production of H. muticus, while in H. senecionis, pmt overexpression and elicitation can be used as effective methods for increasing tropane alkaloids. The effects of metabolic engineering in a polyploid context were studied by overexpression of h6h in the tetraploid hairy root cultures of H. muticus. Flow cytometry analysis indicated genetic stability in the majority of the clones, while only a few clones showed genetic instability. Among all the diploid and tetraploid clones, the highest level of h6h transgene expression and scopolamine accumulation was interestingly observed in the tetraploid clones of H. muticus. Therefore, metabolic engineering of the tropane biosynthetic pathway in polyploids is suggested as a potential system for increasing the production of tropane alkaloids. Transgenic hairy root cultures of Hyoscyamus senecionis were also established. While overexpression of pmt in H. senecionis was correlated with a sharp increase in hyoscyamine production, the h6h-overexpressing clones were not able to accumulate higher levels of scopolamine than the leaves of intact plants. Applying methyl jasmonate was followed by a sharp increase in the expression of pmt and a drop in the expression of tropinone reductase II (trII) which consequently resulted in the higher biosynthesis of hyoscyamine and total alkaloids in H. senecionis.

  18. High-speed homogenization coupled with microwave-assisted extraction followed by liquid chromatography-tandem mass spectrometry for the direct determination of alkaloids and flavonoids in fresh Isatis tinctoria L. hairy root cultures.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Zhang, Lin; Wang, Wei; Luo, Meng; Zu, Yuan-Gang; Fu, Yu-Jie

    2015-06-01

    A new, simple and efficient analysis method for fresh plant in vitro cultures-namely, high-speed homogenization coupled with microwave-assisted extraction (HSH-MAE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-was developed for simultaneous determination of six alkaloids and eight flavonoids in Isatis tinctoria hairy root cultures (ITHRCs). Compared with traditional methods, the proposed HSH-MAE offers the advantages of easy manipulation, higher efficiency, energy saving, and reduced waste. Cytohistological studies were conducted to clarify the mechanism of HSH-MAE at cellular/tissue levels. Moreover, the established LC-MS/MS method showed excellent linearity, precision, repeatability, and reproducibility. The HSH-MAE-LC-MS/MS method was also successfully applied for screening high-productivity ITHRCs. Overall, this study opened up a new avenue for the direct determination of secondary metabolic profiles from fresh plant in vitro cultures, which is valuable for improving quality control of plant cell/organ cultures and sheds light on the metabolomic analysis of biological samples. Graphical Abstract HSH-MAE-LC-MS/MS opened up a new avenue for the direct determination of alkaloids and flavonoids in fresh Isatis tinctoria hairy root cultures.

  19. Expression of rabies glycoprotein and ricin toxin B chain (RGP-RTB) fusion protein in tomato hairy roots: a step towards oral vaccination for rabies.

    PubMed

    Singh, Ankit; Srivastava, Subhi; Chouksey, Ankita; Panwar, Bhupendra Singh; Verma, Praveen C; Roy, Sribash; Singh, Pradhyumna K; Saxena, Gauri; Tuli, Rakesh

    2015-04-01

    Transgenic hairy roots of Solanum lycopersicum were engineered to express a recombinant protein containing a fusion of rabies glycoprotein and ricin toxin B chain (rgp-rtxB) antigen under the control of constitutive CaMV35S promoter. Asialofetuin-mediated direct ELISA of transgenic hairy root extracts was performed using polyclonal anti-rabies antibodies (Ab1) and epitope-specific peptidal anti-RGP (Ab2) antibodies which confirmed the expression of functionally viable RGP-RTB fusion protein. Direct ELISA based on asialofetuin-binding activity was used to screen crude protein extracts from five transgenic hairy root lines. Expressions of RGP-RTB fusion protein in different tomato hairy root lines varied between 1.4 and 8 µg in per gram of tissue. Immunoblotting assay of RGP-RTB fusion protein from these lines showed a protein band on monomeric size of ~84 kDa after denaturation. Tomato hairy root line H03 showed highest level of RGP-RTB protein expression (1.14 %) and was used further in bench-top bioreactor for the optimization of scale-up process to produce large quantity of recombinant protein. Partially purified RGP-RTB fusion protein was able to induce the immune response in BALB/c mice after intra-mucosal immunization. In the present investigation, we have not only successfully scaled up the hairy root culture but also established the utility of this system to produce vaccine antigen which subsequently will reduce the total production cost for implementing rabies vaccination programs in developing nations. This study in a way aims to provide consolidated base for low-cost preparation of improved oral vaccine against rabies.

  20. Use of Model-Based Nutrient Feeding for Improved Production of Artemisinin by Hairy Roots of Artemisia Annua in a Modified Stirred Tank Bioreactor.

    PubMed

    Patra, Nivedita; Srivastava, Ashok K

    2015-09-01

    Artemisinin has been indicated to be a potent drug for the cure of malaria. Batch growth and artemisinin production kinetics of hairy root cultures of Artemisia annua were studied under shake flask conditions which resulted in accumulation of 12.49 g/L biomass and 0.27 mg/g artemisinin. Using the kinetic data, a mathematical model was identified to understand and optimize the system behavior. The developed model was then extrapolated to design nutrient feeding strategies during fed-batch cultivation for enhanced production of artemisinin. In one of the fed-batch cultivation, sucrose (37 g/L) feeding was done at a constant feed rate of 0.1 L/day during 10-15 days, which led to improved artemisinin accumulation of 0.77 mg/g. The second strategy of fed-batch hairy root cultivation involved maintenance of pseudo-steady state sucrose concentration (20.8 g/L) during 10-15 days which resulted in artemisinin accumulation of 0.99 mg/g. Fed-batch cultivation (with the maintenance of pseudo-steady state of substrate) of Artemisia annua hairy roots was, thereafter, implemented in bioreactor cultivation, which featured artemisinin accumulation of 1.0 mg/g artemisinin in 16 days of cultivation. This is the highest reported artemisinin yield by hairy root cultivation in a bioreactor.

  1. Hairy roots of Helianthus annuus: a model system to study phytoremediation of tetracycline and oxytetracycline.

    PubMed

    Gujarathi, Ninad P; Haney, Bryan J; Park, Heidi J; Wickramasinghe, S Ranil; Linden, James C

    2005-01-01

    The release of antibiotics to the environment has to be controlled because of serious threats to human health. Hairy root cultures of Helianthus annuus (sunflower), along with their inherent rhizospheric activity, provide a fast growing, microbe-free environment for understanding plant-pollutant interactions. The root system catalyzes rapid disappearance of tetracycline (TC) and oxytetracycline (OTC) from aqueous media, which suggests roots have potential for phytoremediation of the two antibiotics in vivo. In addition, in vitro modifications of the two antibiotics by filtered, cell- and microbe-free root exudates suggest involvement of root-secreted compounds. The modification is confirmed from changes observed in UV spectra of exudate-treated OTC. Modification appears to be more dominant at the BCD chromophore of the antibiotic molecule. Kinetic analyses dismiss direct enzyme catalysis; the modification rates decrease with increasing OTC concentrations. The rates increase with increasing age of cultures from which root exudates are prepared. The decrease in modification rates upon addition of the antioxidant ascorbic acid (AA) suggests involvement of reactive oxygen species (ROS) in the antibiotic modification process.

  2. Micropropagation of Salvia wagneriana Polak and hairy root cultures with rosmarinic acid production.

    PubMed

    Ruffoni, Barbara; Bertoli, Alessandra; Pistelli, Laura; Pistelli, Luisa

    2016-01-04

    Salvia wagneriana Polak is a tropical species native to Central America, well adapted to grow in the Mediterranean basin for garden decoration. Micropropagation has been assessed from axillary shoots of adult plants using a Murashige and Skoog basal medium, with the addition of 1.33-μM 6-benzylaminopurine for shoot proliferation; the subsequent rooting phase occurred in plant growth regulator-free medium. The plants were successfully acclimatised with high survival frequency. Hairy roots were induced after co-cultivation of leaf lamina and petiole fragments with Agrobacterium rhizogenes and confirmed by PCR. The establishment and proliferation of the selected HRD3 line were obtained in hormone-free liquid medium and the production of rosmarinic acid (RA) was evaluated after elicitation. The analysis of RA was performed by LC-ESI-DAD-MS in the hydroalcoholic extracts. The addition of casein hydrolysate increased the RA production, whereas no enrichment was observed after the elicitation with jasmonic acid.

  3. Enhancement of Chlorogenic Acid Production in Hairy Roots of Platycodon grandiflorum by Over-Expression of An Arabidopsis thaliana Transcription Factor AtPAP1

    PubMed Central

    Tuan, Pham Anh; Kwon, Do Yeon; Lee, Sanghyun; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Nam Il; Park, Sang Un

    2014-01-01

    To improve the production of chlorogenic acid (CGA) in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1) using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA. PMID:25153629

  4. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities.

    PubMed

    Skała, Ewa; Rijo, Patrícia; Garcia, Catarina; Sitarek, Przemysław; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Wysokińska, Halina; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55-62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125  µ g/mL). HR and SGR essential oils also decreased the expression of IL-1 β , IL-6, and TNF- α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants.

  5. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities

    PubMed Central

    Rijo, Patrícia; Garcia, Catarina; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55–62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants. PMID:28074117

  6. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions

    PubMed Central

    2012-01-01

    Background Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA). Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM) approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation. Results We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP), to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots. Conclusions This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions. PMID:22720750

  7. Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L.

    PubMed

    Sircar, Debabrata; Cardoso, Hélia G; Mukherjee, Chiranjit; Mitra, Adinpunya; Arnholdt-Schmitt, Birgit

    2012-05-01

    Methyl-jasmonate (MJ)-treated hairy roots of Daucus carota L. were used to study the influence of alternative oxidase (AOX) in phenylpropanoid metabolism. Phenolic acid accumulation, as well as total flavonoids and lignin content of the MJ-treated hairy roots were decreased by treatment with salicylhydroxamic acid (SHAM), a known inhibitor of AOX. The inhibitory effect of SHAM was concentration dependent. Treatment with propyl gallate (PG), another inhibitor of AOX, also had a similar inhibitory effect on accumulation of phenolic acid, total flavonoids and lignin. The transcript levels of two DcAOX genes (DcAOX2a and DcAOX1a) were monitored at selected post-elicitation time points. A notable rise in the transcript levels of both DcAOX genes was observed preceding the MJ-induced enhanced accumulation of phenolics, flavonoids and lignin. An appreciable increase in phenylalanine ammonia-lyase (PAL) transcript level was also observed prior to enhanced phenolics accumulation. Both DcAOX genes showed differential transcript accumulation patterns after the onset of elicitation. The transcript levels of DcAOX1a and DcAOX2a attained peak at 6hours post elicitation (hpe) and 12hpe, respectively. An increase in the transcript levels of both DcAOX genes preceding the accumulation of phenylpropanoid-derivatives and lignin showed a positive correlation between AOX activity and phenylpropanoid biosynthesis. The results provide important new insight about the influence of AOX in phenylpropanoid biosynthesis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots.

    PubMed

    Yang, Yingzhen; Jittayasothorn, Yingyos; Chronis, Demosthenis; Wang, Xiaohong; Cousins, Peter; Zhong, Gan-Yuan

    2013-01-01

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5' end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs.

  9. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots.

    PubMed

    Cai, Daguang; Thurau, Tim; Tian, Yanyan; Lange, Tina; Yeh, Kai-Wun; Jung, Christian

    2003-04-01

    Sporamin, a sweet potato tuberous storage protein, is a Kunitz-type trypsin inhibitor. Its capability of conferring insect-resistance on transgenic tobacco and cauliflower has been confirmed. To test its potential as an anti-feedant for the beet cyst nematode (Heterodera schachtii Schm.), the sporamin gene SpTI-1 was introduced into sugar beet (Beta vulgaris L.) by Agrobacterium rhizogenes-mediated transformation. Twelve different hairy root clones expressing sporamin were selected for studying nematode development. Of these, 8 hairy root clones were found to show significant efficiency in inhibiting the growth and development of the female nematodes whereas 4 root clones did not show any inhibitory effects even though the SpTI-1 gene was regularly expressed in all of the tested hairy roots as revealed by northern and western analyses. Inhibition of nematode development correlated with trypsin inhibitor activity but not with the amount of sporamin expressed in hairy roots. These data demonstrate that the trypsin inhibitor activity is the critical factor for inhibiting growth and development of cyst nematodes in sugar beet hairy roots expressing the sporamin gene. Hence, the sweet potato sporamin can be used as a new and effective anti-feedant for controlling cyst nematodes offering an alternative strategy for establishing nematode resistance in crops.

  10. Phytoremediation of TNT: C. roseus hairy roots as a model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauritzen, J.R.; Hughes, J.B.; Shanks, J.V.

    Widespread contamination by 2,4,6-trinitrotoluene (TNT) of Soil exists at former munitions production and handling facilities. Phytoremediation may be an effective alternative to existing methods of TNT remediation: incineration is highly expensive and recalcitrant reduction products are formed in composting. Recently, the intrinsic ability of plants to transform TNT has been demonstrated using hairy root cultures of Catharanthus roseus as a model system. Kinetic studies were performed at concentrations of 30 and 50 mg/L TNT in growth medium. The pseudo-first order rate constants for disappearance ranged from 0.0103 to 0.0161 (L/g-day); TNT disappears completely within seven to ten days of exposure.more » The fate of the TNT molecule in plants is also currently under study, mass balance studies were performed with 1-{sup 14}C TNT. After a seven day exposure period, 72% of the label was associated with the roots and 30% was associated with the medium. However, HPLC analysis shows that less than 5% (wt%) of the TNT added is recoverable from both the plants and the media in the form of reduction products. 11 refs., 2 figs.« less

  11. Enhanced Production of Two Bioactive Isoflavone Aglycones in Astragalus membranaceus Hairy Root Cultures by Combining Deglycosylation and Elicitation of Immobilized Edible Aspergillus niger.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Niu, Li-Li; Wang, Xi-Qing; Guo, Na; Zang, Yu-Ping; Fu, Yu-Jie

    2017-10-18

    A cocultivation system of Astragalus membranaceus hairy root cultures (AMHRCs) and immobilized food-grade fungi was established for the enhanced production of calycosin (CA) and formononetin (FO). The highest accumulations of CA (730.88 ± 63.72 μg/g DW) and FO (1119.42 ± 95.85 μg/g DW) were achieved in 34 day-old AMHRCs cocultured with immobilized A. niger (IAN) for 54 h, which were 7.72- and 18.78-fold higher than CA and FO in nontreated control, respectively. IAN deglycosylation could promote the formation of CA and FO by conversion of their glycoside precursors. IAN elicitation could intensify the generation of endogenous signal molecules involved in plant defense response, which contributed to the significantly up-regulated expression of genes in CA and FO biosynthetic pathway. Overall, the coupled culture of IAN and AMHRCs offered a promising and effective in vitro approach to enhance the production of two health-promoting isoflavone aglycones for possible nutraceutical and pharmaceutical uses.

  12. Maize root culture as a model system for studying azoxystrobin biotransformation in plants.

    PubMed

    Gautam, Maheswor; Elhiti, Mohamed; Fomsgaard, Inge S

    2018-03-01

    Hairy roots induced by Agrobacterium rhizogenes are well established models to study the metabolism of xenobiotics in plants for phytoremediation purposes. However, the model requires special skills and resources for growing and is a time-consuming process. The roots induction process alters the genetic construct of a plant and is known to express genes that are normally absent from the non-transgenic plants. In this study, we propose and establish a non-transgenic maize root model to study xenobiotic metabolism in plants for phytoremediation purpose using azoxystrobin as a xenobiotic compound. Maize roots were grown aseptically in Murashige and Skoog medium for two weeks and were incubated in 100 μM azoxystrobin solution. Azoxystrobin was taken up by the roots to the highest concentration within 15 min of treatment and its phase I metabolites were also detected at the same time. Conjugated metabolites of azoxystrobin were detected and their identities were confirmed by enzymatic and mass spectrometric methods. Further, azoxystrobin metabolites identified in maize root culture were compared against azoxystrobin metabolites in azoxystrobin sprayed lettuce grown in green house. A very close similarity between metabolites identified in maize root culture and lettuce plant was obtained. The results from this study establish that non-transgenic maize roots can be used for xenobiotic metabolism studies instead of genetically transformed hairy roots due to the ease of growing and handling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Strategies to overcome oxygen transfer limitations during hairy root cultivation of Azadiracta indica for enhanced azadirachtin production.

    PubMed

    Srivastava, Smita; Srivastava, Ashok Kumar

    2012-07-01

    The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O(2) in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20-100% (v/v) O(2) in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O(2) in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3-2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1-4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).

  14. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis.

    PubMed

    Wiśniewska, A; Dąbrowska-Bronk, J; Szafrański, K; Fudali, S; Święcicka, M; Czarny, M; Wilkowska, A; Morgiewicz, K; Matusiak, J; Sobczak, M; Filipecki, M

    2013-06-01

    The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant-nematode interactions. The promoters of these genes were isolated and potential cis regulatory elements in their sequences were characterized using bioinformatics tools. Promoter fusions with the β-glucuronidase gene were constructed and introduced into tomato and potato genomes via transformation with Agrobacterium rhizogenes to produce hairy roots. The analysed promoters displayed different activity patterns in nematode-infected and uninfected transgenic hairy roots.

  15. Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root-Knot Nematode Infection in Transgenic Grape Hairy Roots

    PubMed Central

    Chronis, Demosthenis; Wang, Xiaohong; Cousins, Peter; Zhong, Gan-Yuan

    2013-01-01

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5′ end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs

  16. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  17. Phytochelatin homologs induced in hairy roots of horseradish.

    PubMed

    Kubota, H; Sato, K; Yamada, T; Maitani, T

    2000-01-01

    When exposed to excess heavy metals, plants induce phytochelatins and related peptides (all designated as PCAs). Thus, when hairy roots of horseradish (Armoracia rusticana) were exposed for 3 days to cadmium (1 mM) along with reduced glutathione (2 mM), PCA induction occurred. Moreover, a new family of thiol peptides was detected as well as the previously known PCAs, as revealed by postcolumn-derivatization HPLC. Two were isolated and their structures were identified as (gamma-Glu-Cys)n-Gln (n = 3 and 4) by electrospray ionization-mass spectrometer spectra, this being confirmed by chemical synthesis of the peptides. These new analogs constitute the sixth PCA family identified to date.

  18. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation.

    PubMed

    Plasencia, Anna; Soler, Marçal; Dupas, Annabelle; Ladouce, Nathalie; Silva-Martins, Guilherme; Martinez, Yves; Lapierre, Catherine; Franche, Claudine; Truchet, Isabelle; Grima-Pettenati, Jacqueline

    2016-06-01

    Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Green Roots: Photosynthesis and Photoautotrophy in an Underground Plant Organ.

    PubMed Central

    Flores, H. E.; Dai, Yr.; Cuello, J. L.; Maldonado-Mendoza, I. E.; Loyola-Vargas, V. M.

    1993-01-01

    The potential for photosynthetic and photoautotrophic growth was studied in hairy root cultures of Asteraceae and Solanaceae species. Upon transfer to light, initially heterotrophic root cultures of Acmella oppositifolia and Datura innoxia greened rapidly, differentiated chloroplasts, and developed light-dependent CO2 fixation in the cortical cells. Photosynthetic potential was expressed in root cultures of all the Asteraceae genera examined (Acmella, Artemisia, Rudbeckia, Stevia, and Tagetes). Hairy roots of A. oppositifolia and D. innoxia were further adapted to photoautotrophy by growing in the presence of light and added CO2 (1-5%) and by direct or sequential transfers into media containing progressively lower sugar concentrations. The transition to photoautotrophy was accompanied by an increase in CO2 fixation and in the specific activity of 1,5-ribulose-bisphosphate carboxylase/ oxygenase (Rubisco). During the adaptation of A. oppositifolia roots to photoautotrophy, the ratio of Rubisco to phosphoenolpyruvate carboxylase increased significantly, approaching that found in the leaves. The levels and patterns of alkaloids and polyacetylenes produced by Solanaceae and Asteraceae hairy roots, respectively, were dramatically altered in photomixotrophic and photoautotrophic cultures. Photoautotrophic roots of A. oppositifolia have been mainitained in vitro for over 2 years. PMID:12231691

  20. Tailoring tobacco hairy root metabolism for the production of stilbenes.

    PubMed

    Hidalgo, Diego; Georgiev, Milen; Marchev, Andrey; Bru-Martínez, Roque; Cusido, Rosa M; Corchete, Purificación; Palazon, Javier

    2017-12-21

    Tobacco hairy root (HR) cultures, which have been widely used for the heterologous production of target compounds, have an innate capacity to bioconvert exogenous t-resveratrol (t-R) into t-piceatannol (t-Pn) and t-pterostilbene (t-Pt). We established genetically engineered HR carrying the gene encoding stilbene synthase (STS) from Vitis vinifera and/or the transcription factor (TF) AtMYB12 from Arabidopsis thaliana, in order to generate a holistic response in the phenylpropanoid pathway and coordinate the up-regulation of multiple metabolic steps. Additionally, an artificial microRNA for chalcone synthase (amiRNA CHS) was utilized to arrest the normal flux through the endogenous chalcone synthase (CHS) enzyme, which would otherwise compete for precursors with the STS enzyme imported for the flux deviation. The transgenic HR were able to biosynthesize the target stilbenes, achieving a production of 40 μg L -1 of t-R, which was partially metabolized into t-Pn and t-Pt (up to 2.2 μg L -1 and 86.4 μg L -1 , respectively), as well as its glucoside piceid (up to 339.7 μg L -1 ). Major metabolic perturbations were caused by the TF AtMYB12, affecting both primary and secondary metabolism, which confirms the complexity of biotechnological systems based on seed plant in vitro cultures for the heterologous production of high-value molecules.

  1. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway.

    PubMed

    Ritala, Anneli; Dong, Lemeng; Imseng, Nicole; Seppänen-Laakso, Tuulikki; Vasilev, Nikolay; van der Krol, Sander; Rischer, Heiko; Maaheimo, Hannu; Virkki, Arho; Brändli, Johanna; Schillberg, Stefan; Eibl, Regine; Bouwmeester, Harro; Oksman-Caldentey, Kirsi-Marja

    2014-04-20

    The terpenoid indole alkaloids are one of the major classes of plant-derived natural products and are well known for their many applications in the pharmaceutical, fragrance and cosmetics industries. Hairy root cultures are useful for the production of plant secondary metabolites because of their genetic and biochemical stability and their rapid growth in hormone-free media. Tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots, which do not produce geraniol naturally, were engineered to express a plastid-targeted geraniol synthase gene originally isolated from Valeriana officinalis L. (VoGES). A SPME-GC-MS screening tool was developed for the rapid evaluation of production clones. The GC-MS analysis revealed that the free geraniol content in 20 hairy root clones expressing VoGES was an average of 13.7 μg/g dry weight (DW) and a maximum of 31.3 μg/g DW. More detailed metabolic analysis revealed that geraniol derivatives were present in six major glycoside forms, namely the hexose and/or pentose conjugates of geraniol and hydroxygeraniol, resulting in total geraniol levels of up to 204.3 μg/g DW following deglycosylation. A benchtop-scale process was developed in a 20-L wave-mixed bioreactor eventually yielding hundreds of grams of biomass and milligram quantities of geraniol per cultivation bag. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Transgenic studies reveal the positive role of LeEIL-1 in regulating shikonin biosynthesis in Lithospermum erythrorhizon hairy roots.

    PubMed

    Fang, Rongjun; Zou, Ailan; Zhao, Hua; Wu, Fengyao; Zhu, Yu; Zhao, Hu; Liao, Yonghui; Tang, Ren-Jie; Pang, Yanjun; Yang, Rongwu; Wang, Xiaoming; Qi, Jinliang; Lu, Guihua; Yang, Yonghua

    2016-05-26

    The phytohormone ethylene (ET) is a key signaling molecule for inducing the biosynthesis of shikonin and its derivatives, which are secondary metabolites in Lithospermum erythrorhizon. Although ETHYLENE INSENSITIVE3 (EIN3)/EIN3-like proteins (EILs) are crucial transcription factors in ET signal transduction pathway, the possible function of EIN3/EIL1 in shikonin biosynthesis remains unknown. In this study, by targeting LeEIL-1 (L. erythrorhizon EIN3-like protein gene 1) at the expression level, we revealed the positive regulatory effect of LeEIL-1 on shikonin formation. The mRNA level of LeEIL-1 was significantly up-regulated and down-regulated in the LeEIL-1-overexpressing hairy root lines and LeEIL-1-RNAi hairy root lines, respectively. Specifically, LeEIL-1 overexpression resulted in increased transcript levels of the downstream gene of ET signal transduction pathway (LeERF-1) and a subset of genes for shikonin formation, excretion and/or transportation (LePAL, LeC4H-2, Le4CL-1, HMGR, LePGT-1, LeDI-2, and LePS-2), which was consistent with the enhanced shikonin contents in the LeEIL-1-overexpressing hairy root lines. Conversely, LeEIL-1-RNAi dramatically repressed the expression of the above genes and significantly reduced shikonin production. The results revealed that LeEIL-1 is a positive regulator of the biosynthesis of shikonin and its derivatives in L. erythrorhizon hairy roots. Our findings gave new insights into the molecular regulatory mechanism of ET in shikonin biosynthesis. LeEIL-1 could be a crucial target gene for the genetic engineering of shikonin biosynthesis.

  3. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    PubMed

    Kim, Yong-Kyoung; Kim, Yeon Bok; Uddin, Md Romij; Lee, Sanghyun; Kim, Soo-Un; Park, Sang Un

    2014-10-17

    To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.

  4. [Research of mechanism of secondary metabolites of phenolic acids in Salvia miltiorrhiza hairy root induced by jasmonate].

    PubMed

    Li, Wenyuan; Gao, Wei; Zhao, Jing; Cui, Guanghong; Shao, Aijuan; Huang, Luqi

    2012-01-01

    To study the mechanism of secondary metabolites of some phenolic acids in the hairy roots of Salvia miltiorrhiza induced by methyl jasmonate. The hairy roots of S. miltiorrhiza were induced with methyl jasmonate (100 micromol x L(-1)) and collected at 0, 12, 24, 36 h after treatment. Real-time quantitative PCR was used for detecting the mRNA expression level of the key enzyme genes on the secondary metabolites pathway of rosmarinic acid, while a LC-MS method was developed to determine the content of rosmarinic acid, caffeic acid and salvianolic acid B. The concentration of phenolic acids grew up and accumulated quickly in the hairy roots with exogenous signal molecule MJ induced, and it was showed that the content of CA and RA reached the maximum after 24 h and the content of LAB reached the maximum in 36 h by MJ induced. The induction mechanism may be activated with different levels of RA synthesis in PAL, 4CL, C4H genes on the key enzyme phenylalanine pathway and TAT, HPPR genes on tyrosine pathway. The time of gene expression was different, among them, 4CL and PAL genes were more important. In a word, the result can provide some basis data about the mechanism of secondary metabolites of phenolic acids for further research.

  5. Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots

    USDA-ARS?s Scientific Manuscript database

    The effect of two-chemical elicitors, salicylic acid and methyl jasmonate, on the production of gossypol, 6-methoxy gossypol, and 6,6'-dimethoxy gossypol in Gossypium barbadense hairy roots was examined. Methyl jasmonate, but not salicylic acid, was found to increase the production of gossypol and ...

  6. Transgenic analysis reveals LeACS-1 as a positive regulator of ethylene-induced shikonin biosynthesis in Lithospermum erythrorhizon hairy roots.

    PubMed

    Fang, Rongjun; Wu, Fengyao; Zou, Ailan; Zhu, Yu; Zhao, Hua; Zhao, Hu; Liao, Yonghui; Tang, Ren-Jie; Yang, Tongyi; Pang, Yanjun; Wang, Xiaoming; Yang, Rongwu; Qi, Jinliang; Lu, Guihua; Yang, Yonghua

    2016-03-01

    The phytohormone ethylene (ET) is a crucial signaling molecule that induces the biosynthesis of shikonin and its derivatives in Lithospermum erythrorhizon shoot cultures. However, the molecular mechanism and the positive regulators involved in this physiological process are largely unknown. In this study, the function of LeACS-1, a key gene encoding the 1-aminocyclopropane-1-carboxylic acid synthase for ET biosynthesis in L. erythrorhizon hairy roots, was characterized by using overexpression and RNA interference (RNAi) strategies. The results showed that overexpression of LeACS-1 significantly increased endogenous ET concentration and shikonin production, consistent with the up-regulated genes involved in ET biosynthesis and transduction, as well as the genes related to shikonin biosynthesis. Conversely, RNAi of LeACS-1 effectively decreased endogenous ET concentration and shikonin production and down-regulated the expression level of above genes. Correlation analysis showed a significant positive linear relationship between ET concentration and shikonin production. All these results suggest that LeACS-1 acts as a positive regulator of ethylene-induced shikonin biosynthesis in L. erythrorhizon hairy roots. Our work not only gives new insights into the understanding of the relationship between ET and shikonin biosynthesis, but also provides an efficient genetic engineering target gene for secondary metabolite production in non-model plant L. erythrorhizon.

  7. Growth of plant root cultures in liquid- and gas-dispersed reactor environments.

    PubMed

    McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R

    1993-01-01

    The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.

  8. Flow cytometric investigations of diploid and tetraploid plants and in vitro cultures of Datura stramonium and Hyoscyamus niger.

    PubMed

    Weber, Jost; Georgiev, Vasil; Pavlov, Atanas; Bley, Thomas

    2008-10-01

    Plant in vitro systems are valuable sources for the production of biological active substances. However, changed profiles of secondary metabolites, and low, variable yields possibly caused by genetic instabilities complicate their industrial implementation. DNA profiling of plant in vitro cultures may provide data for the selection of highly producing in vitro cultures. Diploid and tetraploid Datura stramonium and Hyoscyamus niger plant as well as calli, and hairy root lines derived from them were analyzed by flow cytometry. Plant in vitro cultures undergo several cycles of endoreduplication more than the explants from which they were obtained. The highest cycle values were observed in calli (e.g. 1.19 for diploid H. niger) possibly induced by the growth factors. However, hairy roots cultivated without growth factor exhibited significant degrees of endoreduplication (cycle value 0.88 for diploid H. niger). Sets of five hairy root lines from each plant and ploidy level showed consistent within-set ploidy patterns. The ploidy profiles of investigated plant in vitro and in vivo differ. For the first time we report that hairy roots of two Solanaceae species undergo endoreduplication. Theploidy profiles of in vitro cultures (hairy roots and calli) seem to be influenced by the genome size, the growth factors applied, and the type of in vitro culture. The transformation of several hairy root lines showed no differences in the ploidy patterns. Copyright 2008 International Society for Advancement of Cytometry.

  9. Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase.

    PubMed

    Lozovaya, Vera V; Lygin, Anatoliy V; Zernova, Olga V; Ulanov, Alexander V; Li, Shuxian; Hartman, Glen L; Widholm, Jack M

    2007-02-01

    Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen.

  10. Gene-to-metabolite network for biosynthesis of lignans in MeJA-elicited Isatis indigotica hairy root cultures

    PubMed Central

    Chen, Ruibing; Li, Qing; Tan, Hexin; Chen, Junfeng; Xiao, Ying; Ma, Ruifang; Gao, Shouhong; Zerbe, Philipp; Chen, Wansheng; Zhang, Lei

    2015-01-01

    Root and leaf tissue of Isatis indigotica shows notable anti-viral efficacy, and are widely used as “Banlangen” and “Daqingye” in traditional Chinese medicine. The plants' pharmacological activity is attributed to phenylpropanoids, especially a group of lignan metabolites. However, the biosynthesis of lignans in I. indigotica remains opaque. This study describes the discovery and analysis of biosynthetic genes and AP2/ERF-type transcription factors involved in lignan biosynthesis in I. indigotica. MeJA treatment revealed differential expression of three genes involved in phenylpropanoid backbone biosynthesis (IiPAL, IiC4H, Ii4CL), five genes involved in lignan biosynthesis (IiCAD, IiC3H, IiCCR, IiDIR, and IiPLR), and 112 putative AP2/ERF transcription factors. In addition, four intermediates of lariciresinol biosynthesis were found to be induced. Based on these results, a canonical correlation analysis using Pearson's correlation coefficient was performed to construct gene-to-metabolite networks and identify putative key genes and rate-limiting reactions in lignan biosynthesis. Over-expression of IiC3H, identified as a key pathway gene, was used for metabolic engineering of I. indigotica hairy roots, and resulted in an increase in lariciresinol production. These findings illustrate the utility of canonical correlation analysis for the discovery and metabolic engineering of key metabolic genes in plants. PMID:26579184

  11. Transcriptome Analysis of Salicylic Acid Treatment in Rehmannia glutinosa Hairy Roots Using RNA-seq Technique for Identification of Genes Involved in Acteoside Biosynthesis

    PubMed Central

    Wang, Fengqing; Zhi, Jingyu; Zhang, Zhongyi; Wang, Lina; Suo, Yanfei; Xie, Caixia; Li, Mingjie; Zhang, Bao; Du, Jiafang; Gu, Li; Sun, Hongzheng

    2017-01-01

    Rehmannia glutinosa is a common bulk medicinal material that has been widely used in China due to its active ingredients. Acteoside, one of the ingredients, has antioxidant, antinephritic, anti-inflammatory, hepatoprotective, immunomodulatory, and neuroprotective effects, is usually selected as a quality-control component for R. glutinosa herb in the Chinese Pharmacopeia. The acteoside biosynthesis pathway in R. glutinosa has not yet been clearly established. Herein, we describe the establishment of a genetic transformation system for R. glutinosa mediated by Agrobacterium rhizogenes. We screened the optimal elicitors that markedly increased acteoside accumulation in R. glutinosa hairy roots. We found that acteoside accumulation dramatically increased with the addition of salicylic acid (SA); the optimal SA dose was 25 μmol/L for hairy roots. RNA-seq was applied to analyze the transcriptomic changes in hairy roots treated with SA for 24 h in comparison with an untreated control. A total of 3,716, 4,018, and 2,715 differentially expressed transcripts (DETs) were identified in 0 h-vs.-12 h, 0 h-vs.-24 h, and 12 h-vs.-24 h libraries, respectively. KEGG pathway-based analysis revealed that 127 DETs were enriched in “phenylpropanoid biosynthesis.” Of 219 putative unigenes involved in acteoside biosynthesis, 54 were found to be up-regulated at at least one of the time points after SA treatment. Selected candidate genes were analyzed by quantitative real-time PCR (qRT-PCR) in hairy roots with SA, methyl jasmonate (MeJA), AgNO3 (Ag+), and putrescine (Put) treatment. All genes investigated were up-regulated by SA treatment, and most candidate genes were weakly increased by MeJA to some degree. Furthermore, transcription abundance of eight candidate genes in tuberous roots of the high-acteoside-content (HA) cultivar QH were higher than those of the low-acteoside-content (LA) cultivar Wen 85-5. These results will pave the way for understanding the molecular basis of

  12. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus.

    PubMed

    Park, Yun Ji; Thwe, Aye Aye; Li, Xiaohua; Kim, Yeon Jeong; Kim, Jae Kwang; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2015-10-14

    Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-β-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.

  13. Influences of Agrobacterium rhizogenes strains, plant genotypes, and tissue types on the induction of transgenic hairy roots in Vitis species

    USDA-ARS?s Scientific Manuscript database

    Agrobacterium rhizogenes-mediated induction of transgenic hairy roots was previously demonstrated in Vitis vinifera L. and a few other Vitis species. In this study, 13 Vitis species, including V. aestivalis, V. afghanistan, V. champinii, V. doaniana, V. flexuosa, V. labrusca, V. nesbittiana, V. pal...

  14. Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata.

    PubMed

    Kirchner, Thomas W; Niehaus, Markus; Debener, Thomas; Schenk, Manfred K; Herde, Marco

    2017-01-01

    A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which

  15. Comparison of two hyoscyamine 6β-hydroxylases in engineering scopolamine biosynthesis in root cultures of Scopolia lurida.

    PubMed

    Lan, Xiaozhong; Zeng, Junlan; Liu, Ke; Zhang, Fangyuan; Bai, Ge; Chen, Min; Liao, Zhihua; Huang, Luqi

    2018-02-26

    Scopolia lurida, a medicinal plant native to the Tibetan Plateau, is among the most effective producers of pharmaceutical tropane alkaloids (TAs). The hyoscyamine 6β-hydroxylase genes of Hyoscyamus niger (HnH6H) and S. lurida (SlH6H) were cloned and respectively overexpressed in hairy root cultures of S. lurida, to compare their effects on promoting the production of TAs, especially the high-value scopolamine. Root cultures with SlH6H/HnH6H overexpression were confirmed by PCR and real-time quantitative PCR, suggesting that the enzymatic steps defined by H6H were strongly elevated at the transcriptional level. Tropane alkaloids, including hyoscyamine, anisodamine and scopolamine, were analyzed by HPLC. Scopolamine and anisodamine contents were remarkably elevated in the root cultures overexpressing SlH6H/HnH6H, whereas that of hyoscyamine was more or less reduced, when compared with those of the control. These results also indicated that SlH6H and HnH6H promoted anisodamine production at similar levels in S. lurida root cultures. More importantly, HnH6H-overexpressing root cultures had more scopolamine in them that did SlH6H-overexpressing root cultures. This study not only provides a feasible way of overexpressing H6H to produce high-value scopolamine in engineered root cultures of S. lurida but also found that HnH6H was better than SlH6H for engineering scopolamine production. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    PubMed

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  17. Effects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots

    PubMed Central

    Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants. PMID:24023778

  18. Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt.

    PubMed

    Xue, Renfeng; Wu, Xingbo; Wang, Yingjie; Zhuang, Yan; Chen, Jian; Wu, Jing; Ge, Weide; Wang, Lanfen; Wang, Shumin; Blair, Matthew W

    2017-07-01

    Plant peroxidases (POXs) are one of the most important redox enzymes in the defense responses. However, the large number of different plant POX genes makes it necessary to carefully confirm the function of each paralogous POX gene in specific tissues and disease interactions. Fusarium wilt is a devastating disease of common bean caused by Fusarium oxysporum f. sp. phaseoli. In this study, we evaluated a peroxidase gene, PvPOX1, from a resistant common bean genotype, CAAS260205 and provided direct evidence for PvPOX1's role in resistance by transforming the resistant allele into a susceptible common bean genotype, BRB130, via hairy root transformation using Agrobacterium rhizogenes. Analysis of PvPOX1 gene over-expressing hairy roots showed it increased resistance to Fusarium wilt both in the roots and the rest of transgenic plants. Meanwhile, the PvPOX1 expressive level, the peroxidase activity and hydrogen peroxide (H 2 O 2 ) accumulation were also enhanced in the interaction. The result showed that the PvPOX1 gene played an essential role in Fusarium wilt resistance through the occurrence of reactive oxygen species (ROS) induced hypersensitive response. Therefore, PvPOX1 expression was proven to be a valuable gene for further analysis which can strengthen host defense response against Fusarium wilt through a ROS activated resistance mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis

    PubMed Central

    Rana, Mohammad M.; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-01-01

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L−1 sucrose, 0.1 g·L−1 l-glutamine and 5 g·L−1 polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L−1 sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties. PMID:27428960

  20. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis.

    PubMed

    Rana, Mohammad M; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-07-15

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L(-1) sucrose, 0.1 g·L(-1) l-glutamine and 5 g·L(-1) polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L(-1) sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.

  1. Hairy root cultures of butterfly pea (Clitoria ternatea L.): Agrobacterium × plant factors influencing transformation.

    PubMed

    Swain, S S; Sahu, L; Pal, A; Barik, D P; Pradhan, C; Chand, P K

    2012-02-01

    Transformed rhizoclones were developed from Agrobacterium-treated explants of the medicinally important twinning legume Clitoria ternatea L. Several key factors influencing transformation events were optimized. A4T was the most infectious among the strains employed. Internode segments were more responsive than leaves, outdoor-grown explants preferred to those from in vitro cultures. High frequency transformation, resulting in up to 85.8% rhizogenesis, was attained using pre-pricked internodal explants for immersion (10 min) in Agrobacterium rhizogenes suspension grown overnight with acetosyringone (100 μM) to an OD(660) ≅ 0.6, diluted to a density of 10(9) cells ml(-1), followed by 5-day co-cultivation. Roots were individually cultured in MS0 supplemented with the bacteriostatic antibiotic cefotaxime (500 μg ml(-1)). Rhizoclones were renewed through successive subcultures in MS0 under diffused illumination. The T ( L )-DNA rolB and rolC ORF were detected in rhizoclones through PCR amplification. The T ( R )-DNA gene encoding mannopine synthase (man2) was revealed by positive amplification and opine gene expression substantiated by agropine and mannopine biosynthesis in all selected transformed rhizoclones. The implication of such findings is discussed on the context of utilization of such genetically transformed root cultures towards sustainable production of medicinally useful phytocompounds, besides providing a means for plant conservation.

  2. Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism.

    PubMed

    Pandey, Pallavi; Kaur, Ranjeet; Singh, Sailendra; Chattopadhyay, Sunil Kumar; Srivastava, Santosh Kumar; Banerjee, Suchitra

    2014-07-01

    The effect of 6 years of cultivation and use of table-sugar (TS) on the biomass/terpene alkaloid productivities and rol gene expression were studied in a hairy root (HR) clone of Rauvolfia serpentina. The media cost could be reduced >94 % by replacing sucrose (SUC) with TS—an unexplored avenue for HR cultivation. The overall productivities increased over long-term cultivation with sugar proving superior to SUC for biomass (24.4 ± 2.11 g/l DW after 40 days to 17.31 % higher) and reserpine (0.094 ± 0.008 % DW after 60 days to 193.8 % more) production. The latter however revealed comparatively better yields concerning ajmaline (0.507 ± 0.048 % DW after 60 days to 61.98 % higher) and yohimbine (0.628 ± 0.062 % DW after 60 days to 38.32 % higher), respectively. PCR amplification of rol genes confirmed long-term expression stability.

  3. Genetic transformation of rare Verbascum eriophorum Godr. plants and metabolic alterations revealed by NMR-based metabolomics.

    PubMed

    Marchev, Andrey; Yordanova, Zhenya; Alipieva, Kalina; Zahmanov, Georgi; Rusinova-Videva, Snezhana; Kapchina-Toteva, Veneta; Simova, Svetlana; Popova, Milena; Georgiev, Milen I

    2016-09-01

    To develop a protocol to transform Verbascum eriophorum and to study the metabolic differences between mother plants and hairy root culture by applying NMR and processing the datasets with chemometric tools. Verbascum eriophorum is a rare species with restricted distribution, which is poorly studied. Agrobacterium rhizogenes-mediated genetic transformation of V. eriophorum and hairy root culture induction are reported for the first time. To determine metabolic alterations, V. eriophorum mother plants and relevant hairy root culture were subjected to comprehensive metabolomic analyses, using NMR (1D and 2D). Metabolomics data, processed using chemometric tools (and principal component analysis in particular) allowed exploration of V. eriophorum metabolome and have enabled identification of verbascoside (by means of 2D-TOCSY NMR) as the most abundant compound in hairy root culture. Metabolomics data contribute to the elucidation of metabolic alterations after T-DNA transfer to the host V. eriophorum genome and the development of hairy root culture for sustainable bioproduction of high value verbascoside.

  4. Cell-Specific Production and Antimicrobial Activity of Naphthoquinones in Roots of Lithospermum erythrorhizon1

    PubMed Central

    Brigham, Lindy A.; Michaels, Paula J.; Flores, Hector E.

    1999-01-01

    Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on “noninducing” medium, whereas induction of additional pigment production by abiotic (CuSO4) or biotic (fungal elicitor) factors increases the amount of total pigment, changes the ratios of derivatives produced, and initiates production of pigment de novo in epidermal cells. When the biological activity of these compounds was tested against soil-borne bacteria and fungi, a wide range of sensitivity was recorded. Acetyl-shikonin and β-hydroxyisovaleryl-shikonin, the two most abundant derivatives in both Agrobacterium rhizogenes-transformed “hairy-root” cultures and greenhouse-grown plant roots, were the most biologically active of the seven compounds tested. Hyphae of the pathogenic fungi Rhizoctonia solani, Pythium aphanidermatum, and Nectria hematococca induced localized pigment production upon contact with the roots. Challenge by R. solani crude elicitor increased shikonin derivative production 30-fold. We have studied the regulation of this suite of related, differentially produced, differentially active compounds to understand their role(s) in plant defense at the cellular level in the rhizosphere. PMID:9952436

  5. Metabolic Engineering of Glycyrrhizin Pathway by Over-Expression of Beta-amyrin 11-Oxidase in Transgenic Roots of Glycyrrhiza glabra.

    PubMed

    Shirazi, Zahra; Aalami, Ali; Tohidfar, Masoud; Sohani, Mohammad Mehdi

    2018-06-01

    Glycyrrhiza glabra is one of the most important and well-known medicinal plants which produces various triterpene saponins such as glycyrrhizin. Beta-amyrin 11-oxidase (CYP88D6) plays a key role in engineering pathway of glycyrrhizin production and converts an intermediated beta-amyrin compound to glycyrrhizin. In this study, pBI121 GUS-9 :CYP88D6 construct was transferred to G. glabra using Agrobacterium rhizogene ATCC 15834. The quantitation of transgene was measured in putative transgenic hairy roots using qRT-PCR. The amount of glycyrrhizin production was measured by HPLC in transgenic hairy root lines. Gene expression analysis demonstrated that CYP88D6 was over-expressed only in one of transgenic hairy root lines and was reduced in two others. Beta-amyrin 24-hydroxylase (CYP93E6) was significantly expressed in one of the control hairy root lines. The amount of glycyrrhizin metabolite in over-expressed line was more than or similar to that of control hairy root lines. According to the obtained results, it would be recommended that multi-genes of glycyrrhizin biosynthetic pathway be transferred simultaneously to the hairy root in order to increase glycyrrhizin content.

  6. Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production.

    PubMed

    Masakapalli, Shyam K; Ritala, Anneli; Dong, Lemeng; van der Krol, Alexander R; Oksman-Caldentey, Kirsi-Marja; Ratcliffe, R George; Sweetlove, Lee J

    2014-03-01

    The goal of this study was to characterise the metabolic flux phenotype of transgenic tobacco (Nicotiana tabacum) hairy roots engineered for increased biosynthesis of geraniol, an intermediate of the terpenoid indole alkaloid pathway. Steady state, stable isotope labelling was used to determine flux maps of central carbon metabolism for transgenic lines over-expressing (i) plastid-targeted geraniol synthase (pGES) from Valeriana officinalis, and (ii) pGES in combination with plastid-targeted geranyl pyrophosphate synthase from Arabidopsis thaliana (pGES+pGPPS), as well as for wild type and control-vector-transformed roots. Fluxes were constrained by the redistribution of label from [1-¹³C]-, [2-¹³C]- or [¹³C6]glucose into amino acids, sugars and organic acids at isotopic steady state, and by biomass output fluxes determined from the fractionation of [U-¹⁴C]glucose into insoluble polymers. No significant differences in growth and biomass composition were observed between the lines. The pGES line accumulated significant amounts of geraniol/geraniol glycosides (151±24 ng/mg dry weight) and the de novo synthesis of geraniol in pGES was confirmed by ¹³C labelling analysis. The pGES+pGPPS also accumulated geraniol and geraniol glycosides, but to lower levels than the pGES line. Although there was a distinct impact of the transgenes at the level of geraniol synthesis, other network fluxes were unaffected, reflecting the capacity of central metabolism to meet the relatively modest demand for increased precursors in the transgenic lines. It is concluded that re-engineering of the terpenoid indole alkaloid pathway will only require simultaneous manipulation of the steps producing the pathway precursors that originate in central metabolism in tissues engineered to produce at least an order of magnitude more geraniol than has been achieved so far. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effects of high-intensity static magnetic fields on a root-based bioreactor system for space applications.

    PubMed

    Villani, Maria Elena; Massa, Silvia; Lopresto, Vanni; Pinto, Rosanna; Salzano, Anna Maria; Scaloni, Andrea; Benvenuto, Eugenio; Desiderio, Angiola

    2017-11-01

    Static magnetic fields created by superconducting magnets have been proposed as an effective solution to protect spacecrafts and planetary stations from cosmic radiations. This shield can deflect high-energy particles exerting injurious effects on living organisms, including plants. In fact, plant systems are becoming increasingly interesting for space adaptation studies, being useful not only as food source but also as sink of bioactive molecules in future bioregenerative life-support systems (BLSS). However, the application of protective magnetic shields would generate inside space habitats residual magnetic fields, of the order of few hundreds milli Tesla, whose effect on plant systems is poorly known. To simulate the exposure conditions of these residual magnetic fields in shielded environment, devices generating high-intensity static magnetic field (SMF) were comparatively evaluated in blind exposure experiments (250 mT, 500 mT and sham -no SMF-). The effects of these SMFs were assayed on tomato cultures (hairy roots) previously engineered to produce anthocyanins, known for their anti-oxidant properties and possibly useful in the setting of BLSS. Hairy roots exposed for periods ranging from 24 h to 11 days were morphometrically analyzed to measure their growth and corresponding molecular changes were assessed by a differential proteomic approach. After disclosing blind exposure protocol, a stringent statistical elaboration revealed the absence of significant differences in the soluble proteome, perfectly matching phenotypic results. These experimental evidences demonstrate that the identified plant system well tolerates the exposure to these magnetic fields. Results hereby described reinforce the notion of using this plant organ culture as a tool in ground-based experiments simulating space and planetary environments, in a perspective of using tomato 'hairy root' cultures as bioreactor of ready-to-use bioactive molecules during future long-term space

  8. Effects of high-intensity static magnetic fields on a root-based bioreactor system for space applications

    NASA Astrophysics Data System (ADS)

    Villani, Maria Elena; Massa, Silvia; Lopresto, Vanni; Pinto, Rosanna; Salzano, Anna Maria; Scaloni, Andrea; Benvenuto, Eugenio; Desiderio, Angiola

    2017-11-01

    Static magnetic fields created by superconducting magnets have been proposed as an effective solution to protect spacecrafts and planetary stations from cosmic radiations. This shield can deflect high-energy particles exerting injurious effects on living organisms, including plants. In fact, plant systems are becoming increasingly interesting for space adaptation studies, being useful not only as food source but also as sink of bioactive molecules in future bioregenerative life-support systems (BLSS). However, the application of protective magnetic shields would generate inside space habitats residual magnetic fields, of the order of few hundreds milli Tesla, whose effect on plant systems is poorly known. To simulate the exposure conditions of these residual magnetic fields in shielded environment, devices generating high-intensity static magnetic field (SMF) were comparatively evaluated in blind exposure experiments (250 mT, 500 mT and sham -no SMF-). The effects of these SMFs were assayed on tomato cultures (hairy roots) previously engineered to produce anthocyanins, known for their anti-oxidant properties and possibly useful in the setting of BLSS. Hairy roots exposed for periods ranging from 24 h to 11 days were morphometrically analyzed to measure their growth and corresponding molecular changes were assessed by a differential proteomic approach. After disclosing blind exposure protocol, a stringent statistical elaboration revealed the absence of significant differences in the soluble proteome, perfectly matching phenotypic results. These experimental evidences demonstrate that the identified plant system well tolerates the exposure to these magnetic fields. Results hereby described reinforce the notion of using this plant organ culture as a tool in ground-based experiments simulating space and planetary environments, in a perspective of using tomato 'hairy root' cultures as bioreactor of ready-to-use bioactive molecules during future long-term space missions.

  9. Differentials on graph complexes II: hairy graphs

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Anton; Willwacher, Thomas; Živković, Marko

    2017-10-01

    We study the cohomology of the hairy graph complexes which compute the rational homotopy of embedding spaces, generalizing the Vassiliev invariants of knot theory. We provide spectral sequences converging to zero whose first pages contain the hairy graph cohomology. Our results yield a way to construct many nonzero hairy graph cohomology classes out of (known) non-hairy classes by studying the cancellations in those sequences. This provide a first glimpse at the tentative global structure of the hairy graph cohomology.

  10. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein.

    PubMed

    Moghadam, Ali; Niazi, Ali; Afsharifar, Alireza; Taghavi, Seyed Mohsen

    2016-01-01

    In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP) with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents.

  11. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein

    PubMed Central

    Moghadam, Ali; Niazi, Ali; Afsharifar, Alireza; Taghavi, Seyed Mohsen

    2016-01-01

    In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP) with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents. PMID:27459300

  12. A Novel Dark-Inducible Protein, LeDI-2, and Its Involvement in Root-Specific Secondary Metabolism in Lithospermum erythrorhizon1

    PubMed Central

    Yazaki, Kazufumi; Matsuoka, Hideaki; Shimomura, Koichiro; Bechthold, Andreas; Sato, Fumihiko

    2001-01-01

    Lithospermum erythrorhizon produces red naphthoquinone pigments that are shikonin derivatives. They are accumulated exclusively in the roots of this plant. The biosynthesis of shikonin is strongly inhibited by light, even though other environmental conditions are optimized. Thus, L. erythrorhizon dark-inducible genes (LeDIs) were isolated to investigate the regulatory mechanism of shikonin biosynthesis. LeDI-2, showing the strict dark-specific expression, was further characterized by use of cell suspension cultures and hairy root cultures as model systems. Its mRNA accumulation showed a similar pattern with that of shikonin. In the intact plants LeDI-2 expression was observed solely in the root, and the longitudinal distribution of its mRNA was also in accordance to that of shikonin. LeDI-2 encoded a very hydrophobic polypeptide of 114 amino acids that shared significant similarities with some root-specific polypeptides such as ZRP3 (maize) and RcC3 (rice). Reduction of LeDI-2 expression by its antisense DNA in hairy roots of L. erythrorhizon decreased the shikonin accumulation, whereas other biosynthetic enzymes, e.g. p-hydroxybenzoic acid:geranyltransferase, which catalyzed a critical biosynthetic step, showed similar activity as the wild-type clone. This is the first report of the gene that is involved in production of secondary metabolites without affecting biosynthetic enzyme activities. PMID:11299363

  13. Hairy Root Transformation Using Agrobacterium rhizogenes as a Tool for Exploring Cell Type-Specific Gene Expression and Function Using Tomato as a Model1[W][OPEN

    PubMed Central

    Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A.; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B.; Bailey-Serres, Julia; Brady, Siobhan M.

    2014-01-01

    Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato. PMID:24868032

  14. [Allelopathic effects of cultured Cucurbita moschata root exudates].

    PubMed

    Li, Min; Ma, Yongqin; Shui, Junfeng

    2005-04-01

    By using the techniques of tissue culture, bio-assay and laboratory analysis, this paper studied the effects of the allelopathic chemicals from pumpkin (Cucurbita moschata) roots on the seed germination and seedling growth of pumpkin, wheat (Triticum aestivum), and radish (Raphanus sativus). The pumpkin root was cultured on a sterile B5 media, and the concentrations of macro- and microelements, organic supplements and hormones in the media were adjusted by using an orthogonal design. After culturing, the culture media was filtered and used in a bioassay to test the autotoxicity and allelopathic effects. The results showed that the pumpkin had both autotoxic and allelopathic effects, and the media having been used to culture the pumpkin roots contained the chemicals that significantly inhibited the seedling growth of wheat and radish. The allelopathic effect decreased when the culture media was diluted. The production of allelochemicals seemed to be related to the growth rate of the pumpkin roots. When the root growth was rapid, the concentration of allelochemicals was high. The allelopathic effect was stronger on radish than on wheat. The optimum concentrations of macro- and microelements, vitamins and hormones for culturing pumpkin root were determined, and the effect of pumpkin root nutrition on the production of allelochemicals was tested. The results indicated that pumpkin root nutrition had a significant effect on the production of allelochemicals.

  15. Coupling Deep Transcriptome Analysis with Untargeted Metabolic Profiling in Ophiorrhiza pumila to Further the Understanding of the Biosynthesis of the Anti-Cancer Alkaloid Camptothecin and Anthraquinones

    PubMed Central

    Yamazaki, Mami; Mochida, Keiichi; Asano, Takashi; Nakabayashi, Ryo; Chiba, Motoaki; Udomson, Nirin; Yamazaki, Yasuyo; Goodenowe, Dayan B.; Sankawa, Ushio; Yoshida, Takuhiro; Toyoda, Atsushi; Totoki, Yasushi; Sakaki, Yoshiyuki; Góngora-Castillo, Elsa; Buell, C. Robin; Sakurai, Tetsuya; Saito, Kazuki

    2013-01-01

    The Rubiaceae species, Ophiorrhiza pumila, accumulates camptothecin, an anti-cancer alkaloid with a potent DNA topoisomerase I inhibitory activity, as well as anthraquinones that are derived from the combination of the isochorismate and hemiterpenoid pathways. The biosynthesis of these secondary products is active in O. pumila hairy roots yet very low in cell suspension culture. Deep transcriptome analysis was conducted in O. pumila hairy roots and cell suspension cultures using the Illumina platform, yielding a total of 2 Gb of sequence for each sample. We generated a hybrid transcriptome assembly of O. pumila using the Illumina-derived short read sequences and conventional Sanger-derived expressed sequence tag clones derived from a full-length cDNA library constructed using RNA from hairy roots. Among 35,608 non-redundant unigenes, 3,649 were preferentially expressed in hairy roots compared with cell suspension culture. Candidate genes involved in the biosynthetic pathway for the monoterpenoid indole alkaloid camptothecin were identified; specifically, genes involved in post-strictosamide biosynthetic events and genes involved in the biosynthesis of anthraquinones and chlorogenic acid. Untargeted metabolomic analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) indicated that most of the proposed intermediates in the camptothecin biosynthetic pathway accumulated in hairy roots in a preferential manner compared with cell suspension culture. In addition, a number of anthraquinones and chlorogenic acid preferentially accumulated in hairy roots compared with cell suspension culture. These results suggest that deep transcriptome and metabolome data sets can facilitate the identification of genes and intermediates involved in the biosynthesis of secondary products including camptothecin in O. pumila. PMID:23503598

  16. Keeping warm with fur in cold water: entrainment of air in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, Pierre-Thomas; Clanet, Christophe; Hosoi, Anette

    2015-11-01

    Instead of relying on a thick layer of body fat for insulation as many aquatic mammals do, fur seals and otters trap air in their dense fur for insulation in cold water. Using a combination of model experiments and theory, we rationalize this mechanism of air trapping underwater for thermoregulation. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS. Modeling the hairy texture as a network of capillary tubes, the imbibition speed of water into the hairs is obtained through a balance of hydrostatic pressure and viscous stress. In this scenario, the bending of the hairs and capillary forces are negligible. The maximum diving depth that can be achieved before the hairs are wetted to the roots is predicted from a comparison of the diving speed and imbibition speed. The amount of air that is entrained in hairy surfaces is greater than what is expected for classic Landau-Levich-Derjaguin plate plunging. A phase diagram with the parameters from experiments and biological data allows a comparison of the model system and animals.

  17. Hairy Cell Leukemia Treatment Option Overview

    MedlinePlus

    ... Childhood ALL Treatment Childhood AML Treatment Research Hairy Cell Leukemia Treatment (PDQ®)–Patient Version General Information About Hairy Cell Leukemia Go to Health Professional Version Key Points ...

  18. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    PubMed Central

    Vuković, Rosemary; Likić, Saša; Jelaska, Sibila

    2015-01-01

    Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326

  19. Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots

    PubMed Central

    2011-01-01

    Background Tropane alkaloids (TA) including anisodamine, anisodine, hyoscyamine and scopolamine are a group of important anticholinergic drugs with rapidly increasing market demand, so it is significant to improve TA production by biotechnological approaches. Putrescine N-methyltransferase (PMT) was considered as the first rate-limiting upstream enzyme while tropinone reductase I (TRI) was an important branch-controlling enzyme involved in TA biosynthesis. However, there is no report on simultaneous introduction of PMT and TRI genes into any TA-producing plant including Anisodus acutangulus (A. acutangulus), which is a Solanaceous perennial plant that is endemic to China and is an attractive resource plant for production of TA. Results In this study, 21 AaPMT and AaTRI double gene transformed lines (PT lines), 9 AaPMT single gene transformed lines (P lines) and 5 AaTRI single gene transformed lines (T lines) were generated. RT-PCR and real-time fluorescence quantitative analysis results revealed that total AaPMT (AaPMT T) and total AaTRI (AaTRI T) gene transcripts in transgenic PT, P and T lines showed higher expression levels than native AaPMT (AaPMT E) and AaTRI (AaTRI E) gene transcripts. As compared to the control and single gene transformed lines (P or T lines), PT transgenic hairy root lines produced significantly higher levels of TA. The highest yield of TA was detected as 8.104 mg/g dw in line PT18, which was 8.66, 4.04, and 3.11-times higher than those of the control (0.935 mg/g dw), P3 (highest in P lines, 2.004 mg/g dw) and T12 (highest in T lines, 2.604 mg/g dw), respectively. All the tested samples were found to possess strong radical scavenging capacity, which were similar to control. Conclusion In the present study, the co-expression of AaPMT and AaTRI genes in A. acutangulus hairy roots significantly improved the yields of TA and showed higher antioxidant activity than control because of higher total TA content, which is the first report on

  20. General Information About Hairy Cell Leukemia

    MedlinePlus

    ... Hairy Cell Leukemia Treatment (PDQ®)–Patient Version General Information About Hairy Cell Leukemia Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  1. Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide.

    PubMed

    Nopo-Olazabal, Cesar; Condori, Jose; Nopo-Olazabal, Luis; Medina-Bolivar, Fabricio

    2014-01-01

    Stilbenoids are polyphenolic phytoalexins that exhibit potential health applications in humans. Hairy root cultures of muscadine grape (Vitis rotundifolia Michx.) were used to study the biochemical and molecular regulation of stilbenoid biosynthesis upon treatment with 100 μM methyl jasmonate (MeJA) or 10 mM hydrogen peroxide (H2O2) over a 96-h period. Resveratrol, piceid, and ε-viniferin were identified in higher concentrations in the tissue whereas resveratrol was the most abundant stilbenoid in the medium under either treatment. An earlier increase in resveratrol accumulation was observed for the MeJA-treated group showing a maximum at 12 h in the tissue and 18 h in the medium. Furthermore, the antioxidant capacity of extracts from the tissue and medium was determined by the 2,2'-azinobis[3-ethylbenzthiazoline sulfonic acid] (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays showing correlation with the stilbenoid content. Fourteen candidate reference genes for qPCR were tested under the described experimental conditions and resulted in the selection of 5 reference genes. Quantitative analyses of transcripts for phenylalanine ammonia-lyase (PAL), resveratrol synthase (RS), and two stilbene synthases (STS and STS2) showed the highest RNA level induction at 3 h for both treatments with a higher induction for the MeJA treatment. In contrast, the flavonoid-related chalcone synthase (CHS) transcripts showed induction and a decrease in expression for MeJA and H2O2 treatments, respectively. The observed responses could be related to an oxidative burst triggered by the exposure to abiotic stressor compounds with signaling function such as MeJA and H2O2 which have been previously related to the synthesis of secondary metabolites. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Transformation of Althaea officinalis L. by Agrobacterium rhizogenes for the production of transgenic roots expressing the anti-HIV microbicide cyanovirin-N.

    PubMed

    Drake, Pascal M W; de Moraes Madeira, Luisa; Szeto, Tim H; Ma, Julian K-C

    2013-12-01

    The marshmallow plant (Althaea officinalis L.) has been used for centuries in medicine and other applications. Valuable secondary metabolites have previously been identified in Agrobacterium rhizogenes-generated transgenic 'hairy' roots in this species. In the present study, transgenic roots were produced in A. officinalis using A. rhizogenes. In addition to wild-type lines, roots expressing the anti-human immunodeficiency virus microbicide candidate, cyanovirin-N (CV-N), were generated. Wild-type and CV-N root lines were transferred to liquid culture and increased in mass by 49 and 19 % respectively over a 7 day culture period. In the latter, the concentration of CV-N present in the root tissue was 2.4 μg/g fresh weight, with an average secretion rate into the growth medium of 0.02 μg/ml/24 h. A. officinalis transgenic roots may therefore in the future be used not only as a source of therapeutic secondary metabolites, but also as an expression system for the production of recombinant pharmaceuticals.

  3. Scalarized hairy black holes

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Yazadjiev, Stoytcho

    2015-05-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  4. Antibacterial, Anti-Inflammatory, Antioxidant, and Antiproliferative Properties of Essential Oils from Hairy and Normal Roots of Leonurus sibiricus L. and Their Chemical Composition.

    PubMed

    Sitarek, Przemysław; Rijo, Patricia; Garcia, Catarina; Skała, Ewa; Kalemba, Danuta; Białas, Adam J; Szemraj, Janusz; Pytel, Dariusz; Toma, Monika; Wysokińska, Halina; Śliwiński, Tomasz

    2017-01-01

    Essential oils obtained from the NR (normal roots) and HR (hairy roots) of the medicinal plant Leonurus sibiricus root were used in this study. The essential oil compositions were detected by GC-MS. Eighty-five components were identified in total. Seventy components were identified for NR essential oil. The major constituents in NR essential oil were β -selinene (9.9%), selina-4,7-diene (9.7%), (E) - β -caryophyllene (7.3%),myli-4(15)-ene (6.4%), and guaia-1(10),11-diene (5.9%). Sixty-seven components were identified in HR essential oil, the main constituents being (E) - β -caryophyllene (22.6%), and germacrene D (19.8%). The essential oils were tested for cytotoxic effect, antimicrobial, anti-inflammatory, and antioxidant activities. Both essential oils showed activity against grade IV glioma cell lines (IC 50 = 400  μ g/mL), antimicrobial (MIC and MFC values of 2500 to 125  μ g/mL), and anti-inflammatory (decreased level of IL-1 β , IL-6, TNF- α , and IFN- γ in LPS-stimulated cells).The essential oils exhibited moderate antioxidant activity in ABTS (EC 50 = 98 and 88  μ g/mL) assay. This is the first study to examine composition of the essential oils and their antimicrobial, antioxidant, antiproliferative, and anti-inflammatory activities. The results indicate that essential oils form L. sibiricus root may be used in future as an alternative to synthetic antimicrobial agents with potential application in the food and pharmaceutical industries.

  5. Air entrainment in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  6. Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome.

    PubMed

    Patel, Neha; Mohd-Radzman, Nadiatul A; Corcilius, Leo; Crossett, Ben; Connolly, Angela; Cordwell, Stuart J; Ivanovici, Ariel; Taylor, Katia; Williams, James; Binos, Steve; Mariani, Michael; Payne, Richard J; Djordjevic, Michael A

    2018-01-01

    Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP ( C -TERMINALLY E NCODED P EPTIDE), two CLE ( CL V3/ E NDOSPERM SURROUNDING REGION RELATED) and six XAP ( X YLEM SAP A SSOCIATED P EPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N - and C -terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N -terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide

  7. Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is not always accompanied with enhancement of ROS production.

    PubMed

    Soltys, Dorota; Gniazdowska, Agnieszka; Bogatek, Renata

    2013-05-01

    Mode of action of allelochemicals in target plants is currently widely studied. Cyanamide is one of the newly discovered allelochemical, biosynthesized in hairy vetch. Recently, it has been recognized that cyanamide is plant growth inhibitor, which affects mitosis in root tip cells and causes,e.g., disorder in phytohormonal balance. We also demonstrated that CA may act as oxidative stress agent but it strictly depends on plant species, exposure time and doses. Roots of tomato seedling treated with water solution of 1.2 mM cyanamide did not exhibit elevated reactive oxygen species concentration during the whole culture period.

  8. Antibacterial, Anti-Inflammatory, Antioxidant, and Antiproliferative Properties of Essential Oils from Hairy and Normal Roots of Leonurus sibiricus L. and Their Chemical Composition

    PubMed Central

    Rijo, Patricia; Garcia, Catarina; Kalemba, Danuta; Szemraj, Janusz; Pytel, Dariusz; Toma, Monika; Śliwiński, Tomasz

    2017-01-01

    Essential oils obtained from the NR (normal roots) and HR (hairy roots) of the medicinal plant Leonurus sibiricus root were used in this study. The essential oil compositions were detected by GC-MS. Eighty-five components were identified in total. Seventy components were identified for NR essential oil. The major constituents in NR essential oil were β-selinene (9.9%), selina-4,7-diene (9.7%), (E)-β-caryophyllene (7.3%),myli-4(15)-ene (6.4%), and guaia-1(10),11-diene (5.9%). Sixty-seven components were identified in HR essential oil, the main constituents being (E)-β-caryophyllene (22.6%), and germacrene D (19.8%). The essential oils were tested for cytotoxic effect, antimicrobial, anti-inflammatory, and antioxidant activities. Both essential oils showed activity against grade IV glioma cell lines (IC50 = 400 μg/mL), antimicrobial (MIC and MFC values of 2500 to 125 μg/mL), and anti-inflammatory (decreased level of IL-1β, IL-6, TNF-α, and IFN-γ in LPS-stimulated cells).The essential oils exhibited moderate antioxidant activity in ABTS (EC50 = 98 and 88 μg/mL) assay. This is the first study to examine composition of the essential oils and their antimicrobial, antioxidant, antiproliferative, and anti-inflammatory activities. The results indicate that essential oils form L. sibiricus root may be used in future as an alternative to synthetic antimicrobial agents with potential application in the food and pharmaceutical industries. PMID:28191277

  9. Role of pectolytic enzymes in the programmed separation of cells from the root cap of higher plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawes, M.C.

    1995-03-01

    The objective of this research was to develop a model system to study border cell separation in transgenic pea roots. In addition, the hypothesis that genes encoding pectolytic enzymes in the root cap play a role in the programmed separation of root border cells from the root tip was tested. The following objectives have been accomplished: (1) the use of transgenic hairy roots to study border cell separation has been optimized for Pisum sativum; (2) a cDNA encoding a root cap pectinmethylesterase (PME) has been cloned; (3) PME and polygalacturonase activities in cell walls of the root cap have beenmore » characterized and shown to be correlated with border cell separation. A fusion gene encoding pectate lyase has also been transformed into pea hairy root cells.« less

  10. Drinking with a hairy tongue: viscous entrainment by dipping hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Brun, Pierre-Thomas; Alvarado, José; Bush, John; Hosoi, Anette

    2016-11-01

    Nectar-drinking bats have tongues covered with hair-like papillae, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory reminiscent of Landau-Levich-Derjaguin dip coating, we rationalize this mechanism of viscous entrainment in a hairy texture. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS elastomer. Modeling the liquid trapped within the texture using a Darcy-Brinkman like approach, we derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the dipping speed. We find that there is an optimal hair density to maximize fluid uptake.

  11. Quantitative determination of secoiridoid and gamma-pyrone compounds in Gentiana lutea cultured in vitro.

    PubMed

    Menković, N; Savikin-Fodulović, K; Momcilović, I; Grubisić, D

    2000-02-01

    The production of secondary metabolites was studied in shoots, roots, and hairy roots of Gentiana lutea obtained in vitro. In shoots, both secoiridoid and gamma-pyrone compounds were detected in amounts similar to those found in aerial parts of plants collected from nature. The most abundant secoiridoid was gentiopicrin while mangiferin was the main compound among the gamma-pyrones. The adventitious roots obtained in vitro showed a poor biosynthetic capacity. Upon infection with Agrobacterium rhizogenes, nine hairy root clones were established which differed in the amount of secondary metabolites.

  12. Hyperforin production in Hypericum perforatum root cultures.

    PubMed

    Gaid, Mariam; Haas, Paul; Beuerle, Till; Scholl, Stephan; Beerhues, Ludger

    2016-03-20

    Extracts of the medicinal plant Hypericum perforatum are used to treat depression and skin irritation. A major API is hyperforin, characterized by sensitivity to light, oxygen and temperature. Total synthesis of hyperforin is challenging and its content in field-grown plants is variable. We have established in vitro cultures of auxin-induced roots, which are capable of producing hyperforin, as indicated by HPLC-DAD and ESI-MS analyses. The extraction yield and the productivity upon use of petroleum ether after solvent screening were ∼5 mg/g DW and ∼50 mg/L culture after six weeks of cultivation. The root cultures also contained secohyperforin and lupulones, which were not yet detected in intact plants. In contrast, they lacked another class of typical H. perforatum constituents, hypericins, as indicated by the analysis of methanolic extracts. Hyperforins and lupulones were stabilized and enriched as dicyclohexylammonium salts. Upon up-scaling of biomass production and downstream processing, H. perforatum root cultures may provide an alternative platform for the preparation of medicinal extracts and the isolation of APIs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biosynthesis of fluorescent CdS nanocrystals with semiconductor properties: Comparison of microbial and plant production systems.

    PubMed

    Al-Shalabi, Zahwa; Doran, Pauline M

    2016-04-10

    This study investigated fission yeast (Schizosaccharomyces pombe) and hairy roots of tomato (Solanum lycopersicum) as in vitro production vehicles for biological synthesis of CdS quantum dots. Cd added during the mid-growth phase of the cultures was detoxified within the biomass into inorganic sulphide-containing complexes with the quantum confinement properties of semiconductor nanocrystals. Significant differences were found between the two host systems in terms of nanoparticle production kinetics, yield and quality. The much slower growth rate of hairy roots compared with yeast is a disadvantage for commercial scaled-up production. Nanoparticle extraction from the biomass was less effective for the roots: 19% of the Cd present in the hairy roots was recovered after extraction compared with 34% for the yeast. The overall yield of CdS quantum dots was also lower for the roots: relative to the amount of Cd taken up into the biomass, 8.5% was recovered in yeast gel filtration fractions exhibiting quantum dot properties whereas the result for hairy roots was only 0.99%. Yeast-produced CdS crystallites were somewhat smaller with diameters of approximately 2-6 nm compared with those of 4-10nm obtained from the roots. The average ratio of inorganic sulphide to Cd for the purified and size-fractionated particles was 0.44 for the yeast and 1.6 for the hairy roots. Despite the limitations associated with hairy roots in terms of culture kinetics and product yield, this system produced CdS nanoparticles with enhanced photostability and 3.7-13-fold higher fluorescence quantum efficiency compared with those generated by yeast. This work demonstrates that the choice of cellular host can have a significant effect on nanoparticle functional properties as well as on the bioprocessing aspects of biological quantum dot synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Three-dimensional measurement of yarn hairiness via multiperspective images

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Xu, Bugao; Gao, Weidong

    2018-02-01

    Yarn hairiness is one of the essential parameters for assessing yarn quality. Most of the currently used yarn measurement systems are based on two-dimensional (2-D) photoelectric measurements, which are likely to underestimate levels of yarn hairiness because hairy fibers on a yarn surface are often projected or occluded in these 2-D systems. A three-dimensional (3-D) test method for hairiness measurement using a multiperspective imaging system is presented. The system was developed to reconstruct a 3-D yarn model for tracing the actual length of hairy fibers on a yarn surface. Five views of a yarn from different perspectives were created by two angled mirrors and simultaneously captured in one panoramic picture by a camera. A 3-D model was built by extracting the yarn silhouettes in the five views and transferring the silhouettes into a common coordinate system. From the 3-D model, curved hair fibers were traced spatially so that projection and occlusion occurring in the current systems could be avoided. In the experiment, the proposed method was compared with two commercial instruments, i.e., the Uster Tester and Zweigle Tester. It is demonstrated that the length distribution of hairy fibers measured from the 3-D model showed an exponential growth when the fiber length is sorted from shortest to longest. The hairiness measurements, such as H-value, measured by the multiperspective method were highly consistent with those of Uster Tester (r=0.992) but had larger values than those obtained from Uster Tester and Zweigle Tester, proving that the proposed method corrected underestimated hairiness measurements in the commercial systems.

  15. Alkaloid production in Vernonia cinerea: Callus, cell suspension and root cultures.

    PubMed

    Maheshwari, Priti; Songara, Bharti; Kumar, Shailesh; Jain, Prachi; Srivastava, Kamini; Kumar, Anil

    2007-08-01

    Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L alpha-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 microg/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 microg/g and 1.2 mg/g dry weight, respectively) of V. cinerea.

  16. Technology of compact MAb and its application for medicinal plant breeding named as missile type molecular breeding.

    PubMed

    Putalun, Waraporn

    2011-03-01

    Single chain fragment-variable (scFv) enhanced solasodine glycoside accumulation in Solanum khasianum hairy root cultures transformed by the ScFv solamargine (As)-scFv gene. The scFv protein was expressed at a high level in inclusion bodies of E. coli. After being renatured, the scFv protein was purified in a one-step manner by metal chelate affinity chromatography. The yield of refolded and purified scFv was 12.5 mg per 100 ml of cell culture. The characteristics of the As-scFv expressed in E. coli and transgenic hairy roots were similar to those of the parent monoclonal antibody (MAb). The expression of scFv protein provides a low cost and a high yield of functional scFv antibody against solamargine. The full linear range of the ELISA assay using scFv was extended from 1.5-10 µg/ml. The expressed anti-solamargine scFv protein could be useful for determination of total solasodine glycoside content in plant samples by ELISA. Solasodine glycoside levels in the transgenic hairy root were 2.3-fold higher than that in the wild-type hairy root based on the soluble protein level and binding activities. The As-scFv expressed in S. khasianum hairy roots enhanced solasodine glycosides accumulation and provide a novel medicinal plant breeding methodology that can produce a high yield of secondary metabolites.

  17. Determination of Root Exudates in a Steril Continuous Flow Culture. I. The Culture Method

    PubMed Central

    Richter, Martin; Wilms, Werner; Scheffer, Fritz

    1968-01-01

    A sterile plant culture consisting of culture vessels, culture solution container, collecting flasks for percolating nutrient solution, illumination and aeration systems and a suitable pump is described. Its difference with other culture methods is a very slow, continuous percolation of the nutrient solution through the rooting medium. Well defined and controllable conditions can thus be established in the rhizosphere over long culture periods. Samples can be collected at short intervals without disturbing the rhizosphere in any way nor endangering the sterility of the culture. One of the fundamental factors determining the special ecological characteristics of the plant rhizosphere is the liberation of organic and inorganic substances by the plant root. During the study of this phenomenon it became evident that the amount of substances liberated varies within wide limits (factors 100 to 1000) according to the conditions in which the root is developing. PMID:16656966

  18. Hairy Cell Leukemia Treatment (PDQ®)—Patient Version

    Cancer.gov

    Hairy cell leukemia treatment options include watchful waiting when there are no symptoms, chemotherapy, biologic therapy, surgery, and targeted therapy. Learn more about the diagnosis and treatment of newly diagnosed and recurrent hairy cell leukemia in this expert-reviewed summary.

  19. Oil-soluble hairy nanoparticles as lubricant additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bin

    Oil-soluble polymer brush-grafted nanoparticles (hairy NPs) were synthesized by surface-initiated atom transfer radical polymerization of lauryl methacrylate from initiator-functionalized silica nanoparticles and used as an additive for polyalphaolefin (PAO) for friction and wear reduction. Addition of 1 wt% hairy nanoparticles into PAO led to significant friction and wear reduction compared with PAO base oil.

  20. Hairy Cell Leukemia Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Hairy cell leukemia treatment options include surveillance, chemotherapy, targeted therapy/immunotherapy, and splenectomy. The decision to treat is based on cytopenias, splenomegaly, or infectious complications. Get detailed information about hairy cell leukemia in this clinician summary.

  1. Synchronous occurrence of neuroendocrine colon carcinoma and hairy cell leukemia.

    PubMed

    Salemis, Nikolaos S; Pinialidis, Dionisios; Tsiambas, Evangelos; Gakis, Christos; Nakos, Georgios; Sambaziotis, Dimitrios; Christofyllakis, Charalambos

    2011-09-01

    BACKGROUND-PURPOSE: The risk of secondary malignancy development in patients with hairy cell leukemia has been evaluated in several studies with varying results. The aim of this study is to describe a case of synchronous occurrence of neuroendocrine colon carcinoma and hairy cell leukemia. A 69-year-old man presented with rectal bleeding. Colonoscopy revealed a rectal tumor, whereas biopsy specimens revealed a poorly differentiated carcinoma. During the preoperative evaluation, pancytopenia was detected. At laparotomy, a mass was detected 16 cm from the anal verge and an anterior resection of the rectum was performed. Detailed histological and immunohistochemical analyses revealed a poorly differentiated neuroendocrine carcinoma of the rectum. Postoperative evaluation of pancytopenia revealed hairy cell leukemia. The patient was initially treated with chemotherapy for hairy cell leukemia followed by chemotherapy for neuroendocrine colon carcinoma. Survival was 44 months. To our knowledge, synchronous occurrence of neuroendocrine colon carcinoma and hairy cell leukemia has not been previously reported in the literature. Given the rare incidence of both entities in the general population, it is highly unlikely that they occurred together by chance. Further research is needed to determine what would be the optimal management options of patients with simultaneous hairy cell leukemia and a neuroendocrine colon cancer.

  2. Drag reduction of a hairy disk

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Hu, David L.

    2011-10-01

    We investigate experimentally the hydrodynamics of a hairy disk immersed in a two-dimensional flowing soap film. Drag force is measured as a function of hair length, density, and coating area. An optimum combination of these parameters yields a drag reduction of 17%, which confirms previous numerical predictions (15%). Flow visualization indicates the primary mechanism for drag reduction is the bending, adhesion, and reinforcement of hairs trailing the disk, which reduces wake width and traps "dead water." Thus, the use of hairy coatings can substantially reduce an object's drag while negligibly increasing its weight.

  3. Biosynthesis of Diterpenoids in Tripterygium Adventitious Root Cultures1[OPEN

    PubMed Central

    Inabuy, Fainmarinat S.; Fischedick, Justin T.; Lange, Iris; Xu, Meimei

    2017-01-01

    Adventitious root cultures were developed from Tripterygium regelii, and growth conditions were optimized for the abundant production of diterpenoids, which can be collected directly from the medium. An analysis of publicly available transcriptome data sets collected with T. regelii roots and root cultures indicated the presence of a large gene family (with 20 members) for terpene synthases (TPSs). Nine candidate diterpene synthase genes were selected for follow-up functional evaluation, of which two belonged to the TPS-c, three to the TPS-e/f, and four to the TPS-b subfamilies. These genes were characterized by heterologous expression in a modular metabolic engineering system in Escherichia coli. Members of the TPS-c subfamily were characterized as copalyl diphosphate (diterpene) synthases, and those belonging to the TPS-e/f subfamily catalyzed the formation of precursors of kaurane diterpenoids. The TPS-b subfamily encompassed genes coding for enzymes involved in abietane diterpenoid biosynthesis and others with activities as monoterpene synthases. The structural characterization of diterpenoids accumulating in the medium of T. regelii adventitious root cultures, facilitated by searching the Spektraris online spectral database, enabled us to formulate a biosynthetic pathway for the biosynthesis of triptolide, a diterpenoid with pharmaceutical potential. Considering the significant enrichment of diterpenoids in the culture medium, fast-growing adventitious root cultures may hold promise as a sustainable resource for the large-scale production of triptolide. PMID:28751314

  4. Increased production of plumbagin in Plumbago indica root cultures by gamma ray irradiation.

    PubMed

    Jaisi, A; Sakunphueak, A; Panichayupakaranant, P

    2013-08-01

    Plumbagin is a major active constituent of Plumbago indica L. (Plumbaginaceae). It possesses various pharmacological activities that have been shown to assist in the treatment of various diseases. This work is focused on increasing the production of plumbagin in P. indica root cultures using low doses of gamma ray irradiation as an elicitor. The effect of low doses of gamma ray irradiation (0, 5, 10, 15, 20, 25 Gy) and ages of the root cultures (0, 5, 10, 15, 20 days) for elicitation of plumbagin production was determined. The stability of the elicited root cultures to produce plumbagin was also determined during three cycles of subculture. Treatment of the root cultures with a low dose of gamma ray at 20 Gy gave the highest level of plumbagin production (1.04 mg/g DW) when compared to all other treated groups. The appropriate age of the root cultures for maximum production of plumbagin was found to be 10 days. However, treatment of 5-day-old root cultures resulted in a significant increase of dried root biomass that also had a high plumbagin production. Based on the total biomass per culture flask, the amounts of plumbagin produced by the 5- and 10-day-old treated roots were 0.59 and 0.37 mg/250 mL flask, respectively, which were 4.2- and 2.6-fold higher than the level in the control. Subculturing the root cultures until the third generation still showed an increase in plumbagin production without any effects on their growth.

  5. Rotating hairy black holes.

    PubMed

    Kleihaus, B; Kunz, J

    2001-04-23

    We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular event horizon, they represent nonperturbative rotating hairy black holes.

  6. Viscous entrainment on hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Brun, P.-T.; Hosoi, A. E.

    2018-02-01

    Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.

  7. Enhanced load-carrying capacity of hairy surfaces floating on water.

    PubMed

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-05-08

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin.

  8. Enhanced load-carrying capacity of hairy surfaces floating on water

    PubMed Central

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-01-01

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin. PMID:24808757

  9. Hairy carbon electrodes studied by cyclic voltammetry and battery discharge testing

    NASA Technical Reports Server (NTRS)

    Chung, Deborah D. L.; Shui, Xiaoping; Frysz, Christine A.

    1993-01-01

    Hairy carbon is a new material developed by growing submicron carbon filaments on conventional carbon substrates. Typical substrate materials include carbon black, graphite powder, carbon fibers, and glassy carbon. A catalyst is used to initiate hair growth with carbonaceous gases serving as the carbon source. To study the electrochemical behavior of hairy carbons, cyclic voltammetry (CV) and discharge testing were conducted. In both cases, hairy carbon results surpassed those of the substrate material alone.

  10. Hairy black holes and the endpoint of AdS4 charged superradiance

    NASA Astrophysics Data System (ADS)

    Dias, Óscar J. C.; Masachs, Ramon

    2017-02-01

    We construct hairy black hole solutions that merge with the anti-de Sitter (AdS4) Reissner-Nordström black hole at the onset of superradiance. These hairy black holes have, for a given mass and charge, higher entropy than the corresponding AdS4-Reissner-Nordström black hole. Therefore, they are natural candidates for the endpoint of the charged superradiant instability. On the other hand, hairy black holes never dominate the canonical and grand-canonical ensembles. The zero-horizon radius of the hairy black holes is a soliton (i.e. a boson star under a gauge transformation). We construct our solutions perturbatively, for small mass and charge, so that the properties of hairy black holes can be used to testify and compare with the endpoint of initial value simulations. We further discuss the near-horizon scalar condensation instability which is also present in global AdS4-Reissner-Nordström black holes. We highlight the different nature of the near-horizon and superradiant instabilities and that hairy black holes ultimately exist because of the non-linear instability of AdS.

  11. Iridovirus infection of cell cultures from the Diaprepes root weevil, Diaprepes abbreviatus

    PubMed Central

    Hunter, W. B.; Lapointe, S. L.

    2003-01-01

    We here report the development and viral infection of a Diaprepes root weevil cell culture. Embryonic tissues of the root weevil were used to establish cell cultures for use in screening viral pathogens as potential biological control agents. Tissues were seeded into a prepared solution of insect medium and kept at a temperature of 24°C. The cell culture had primarily fibroblast-like morphology with some epithelial monolayers. Root weevil cells were successfully infected in vitro with a known insect virus, Invertebrate Iridescent Virus 6. Potential uses of insect cell cultures and insect viruses are discussed. Abbreviation: IIV-6 Invertebrate Iridescent Virus 6 PMID:15841252

  12. The bHLH transcription factor, hairy, refines the terminal cell fate in the Drosophila embryonic trachea.

    PubMed

    Zhan, Yaoyao; Maung, Saw W; Shao, Bing; Myat, Monn Monn

    2010-11-30

    The pair-rule gene, hairy, encodes a basic helix-loop-helix transcription factor and is required for patterning of the early Drosophila embryo and for morphogenesis of the embryonic salivary gland. Although hairy was shown to be expressed in the tracheal primordia and in surrounding mesoderm, whether hairy plays a role in tracheal development is not known. Here, we report that hairy is required for refining the terminal cell fate in the embryonic trachea and that hairy's tracheal function is distinct from its earlier role in embryonic patterning. In hairy mutant embryos where the repressive activity of hairy is lost due to lack of its co-repressor binding site, extra terminal cells are specified in the dorsal branches. We show that hairy functions in the muscle to refine the terminal cell fate to a single cell at the tip of the dorsal branch by limiting the expression domain of branchless (bnl), encoding the FGF ligand, in surrounding muscle cells. Abnormal activation of the Bnl signaling pathway in hairy mutant tracheal cells is exemplified by increased number of dorsal branch cells expressing Bnl receptor, Breathless (Btl) and Pointed, a downstream target of the Bnl/Btl signaling pathway. We also show that hairy genetically interacts with bnl in TC fate restriction and that overexpression of bnl in a subset of the muscle surrounding tracheal cells phenocopied the hairy mutant phenotype. Our studies demonstrate a novel role for Hairy in restriction of the terminal cell fate by limiting the domain of bnl expression in surrounding muscle cells such that only a single dorsal branch cell becomes specified as a terminal cell. These studies provide the first evidence for Hairy in regulation of the FGF signaling pathway during branching morphogenesis.

  13. [Effects of culture conditions on biomass and active components of adventitious roots culture in Panax ginseng].

    PubMed

    Huang, Tao; Gao, Wenyuan; Wang, Juan; Cao, Yu

    2010-01-01

    To optimize the culture condition of adventitious roots of Panax ginseng. The adventitious roots were obtained through tissue culture by manipulation of inoculum, various sucrose concentrations and salt strength. The contents of ginsenosides Re, Rb1 and Rg1 were determined by HPLC while the contents of polysaccharides were determined by ultraviolet spectrophotometry. The multiplication of adventitious roots reached the peak when the inoculum was 20 g x L(-1). The effects of sucrose concentration and salt strength on adventitious roots were observed. The contents of polysaccharides were higher when the medium contained more sucrose. 40 g x L(-1) sucrose was favorable for roots growth and biosynthesis of Re, while 30 g x L(-1) was favorable for the biosynthesis of Rb1 and Rg1. 3/4MS medium was benefit for the growth of adventitious roots and the biosynthesis of ginsenosides. The contents of polysaccharides were decreased with the increase of salt strength. The results showed that inoculum, various sucrose concentrations and salt strength have significant influences on adventitious roots growth, secondary metabolite and polysaccharide synthesis in P. ginseng.

  14. [Acute liver failure in a patient with hairy cell leukemia].

    PubMed

    Valero, Beatriz; Picó Sala, M Dolores; Palazón, José María; Payá, Artemio

    2007-01-01

    Acute liver failure as a manifestation of primary non-Hodkin's lymphoma is a rare phenomenon with a fatal prognosis. Hairy cell leukemia (HCL) is an uncommon chronic B-cell lymphoproliferative disorder, representing about 2 percent of all leukemies. We report a 78-year-old patient with a history of hairy cell leukemia since 10 years, presenting whith fulminant liver failure due to massive liver infiltration. He have reviewed several cases of infiltration of the liver by haematological malignancies, but we only have found after a review in MEDLINE between 1980 and 2006, one case of acute liver failure in a patient with hepatic invasion by hairy cell leukaemia.

  15. Aspects of hairy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl; Astefanesei, Dumitru

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  16. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application

    PubMed Central

    Pandey, Vibha; Ansari, Waquar Akhter; Misra, Pratibha; Atri, Neelam

    2017-01-01

    Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number) of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc.) or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race. PMID:28848589

  17. Improved rooting of western white pine shoots from tissue cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amerson, H.V.; Mott, R.L.

    1982-01-01

    Adventitious shoots of Pinus monticola obtained from embryonic tissue were exposed to 4 combinations of growth regulators (6-benzylaminopurine/NAA/IAA/IBA), either continuously for 6 weeks or by pulse treatment for 7 days, followed by 5 weeks culture without growth regulators. After 6 weeks of continuous exposure, rooting of shoots varied between 0 and 20%. Pulse treatment resulted in 40-64% rooting. In paired comparisons pulse treatments always provided better rooting percentages than did constant exposure treatments. Pulse treatments also produced longer (less than 2 mm) roots and more multiple roots.

  18. Historic and Cultural Roots of Apartheid.

    ERIC Educational Resources Information Center

    Chonco, Seshi

    1987-01-01

    Reviews the historical and cultural roots of the South African system of apartheid. Covers early Dutch settlement, the Anglo-Boer War, the Native Land Act of 1913, and the rise of the National Party. Concludes with a discussion of the different perspectives held by black and white South Africans on the "progress" made in recent years.…

  19. Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures.

    PubMed

    Richter, Ute; Rothe, Grit; Fabian, Anne-Katrin; Rahfeld, Bettina; Dräger, Birgit

    2005-02-01

    The medicinally applied tropane alkaloids hyoscyamine and scopolamine are produced in Atropa belladonna L. and in a small number of other Solanaceae. Calystegines are nortropane alkaloids that derive from a branching point in the tropane alkaloid biosynthetic pathway. In A. belladonna root cultures, calystegine molar concentration is 2-fold higher than that of hyoscyamine and scopolamine. In this study, two tropinone reductases forming a branching point in the tropane alkaloid biosynthesis were overexpressed in A. belladonna. Root culture lines with strong overexpression of the transcripts contained more enzyme activity of the respective reductase and enhanced enzyme products, tropine or pseudotropine. High pseudotropine led to an increased accumulation of calystegines in the roots. Strong expression of the tropine-forming reductase was accompanied by 3-fold more hyoscyamine and 5-fold more scopolamine compared with control roots, and calystegine levels were decreased by 30-90% of control. In some of the transformed root cultures, an increase of total tropane alkaloids was observed. Thus, transformation with cDNA of tropinone reductases successfully altered the ratio of tropine-derived alkaloids versus pseudotropine-derived alkaloids.

  20. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    PubMed

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausová, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-05

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gynecomastia in a case of hairy cell leukaemia--cladribine induced?

    PubMed

    Abhyankar, D; Saikia, T; Advani, S

    2001-06-01

    Gynecomastia is benign enlargement of the male breast and is commonly drug induced. Various drugs are responsible and chemotherapeutic drugs can also cause gynecomastia. Cladribine is now widely used for the treatment of hairy cell leukaemia. We present a case report of development of unilateral gynecomastia in a case of hairy cell leukaemia treated with cladribine and question whether this was induced by the chemotherapy.

  2. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    USDA-ARS?s Scientific Manuscript database

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  3. Enhanced Mulberroside A Production from Cell Suspension and Root Cultures of Morus alba Using Elicitation.

    PubMed

    Komaikul, Jukrapun; Kitisripanya, Tharita; Tanaka, Hiroyuki; Sritularak, Boonchoo; Putalun, Waraporn

    2015-07-01

    Morus alba L. has been used in Asian traditional medicine as an anti-inflammatory, anti-asthmatic, anthelmintic and as a whitening agent in cosmetic products. Mulberroside A is the major active compound from M. alba root bark. In this study, cell suspension and root cultures of M. alba were established, and the effect of the elicitors on the enhancement of mulberroside A production in M. alba was investigated. The cell suspension and root cultures of M. alba were exposed to elicitors and then mulberroside A contents were determined by an indirect competitive ELISA method. High levels of mulberroside A were obtained by addition of 100 and 200 μM salicylic acid with 24 h exposure time in cell suspension cultures (37.9 ± 1.5 and 34.0 ± 4.7 mg/g dry wt., respectively). Furthermore, addition of yeast extract at 2 mg/mL with 24 h exposure time can significantly increase mulberroside A contents from both cell suspension (3.2-fold) and root cultures (6.6-fold). Mulberroside A contents from both cell suspension and root cultures after treatment with elicitors are similar or higher than those found in the intact root and root bark of several years old M. alba. These results indicate that mulberry tissue cultures using the elicitation method are interesting alternative sources for mulberroside A production.

  4. Rotating hairy black holes in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  5. Hairy-cell leukemia: a rare blood disorder in Asia.

    PubMed

    Josephine, F P; Nissapatorn, V

    2006-01-01

    We report a 68-year-old Indian man who was referred to the Hematology Unit for investigation for thrombocytopenia, an incidental finding during a pre-operative screening for prostatectomy. Physical examination was unremarkable. There was no splenomegaly, hepatomegaly or lymphadenopathy. Complete blood counts showed normal hemoglobin and total white cell count with moderate thrombocytopenia. Hairy-cell leukemia was diagnosed based on peripheral blood film, bone-marrow aspirate and trephine biopsy findings, supported by immunophenotyping results by flow cytometry. The purpose of this report is to create awareness of this uncommon presentation and to emphasize that a single-lineage cytopenia or absence of splenomegaly does not exclude the diagnosis of hairy-cell leukemia. Careful attention to morphological detail is important for early diagnosis, especially when low percentages of "hairy" cells are present in the peripheral blood and bone marrow. Early diagnosis is important to ensure that patients obtain maximum benefit from the newer therapeutic agents that have greatly improved the prognosis in this rare disorder.

  6. Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase.

    PubMed

    Rothe, Grit; Hachiya, Akira; Yamada, Yasuyuki; Hashimoto, Takashi; Dräger, Birgit

    2003-09-01

    Putrescine N-methyltransferase (PMT) is the first alkaloid-specific enzyme for nicotine and tropane alkaloid formation. The pmt gene from Nicotiana tabacum was fused to the CaMV 35S promoter and integrated into the Atropa belladonna genome. Transgenic plants and derived root cultures were analysed for gene expression and for levels of alkaloids and their precursors. Scopolamine, hyoscyamine, tropine, pseudotropine, tropinone, and calystegines were found unaltered or somewhat decreased in pmt-overexpressing lines compared to controls. When root cultures were treated with 5% sucrose, calystegine levels were elevated in control roots, but were not affected in pmt-overexpressing roots. 1 microM auxin reduced calystegine levels in control roots, while in pmt-overexpressing roots all alkaloids remained unaltered. Expression level of pmt alone is apparently not limiting for tropane alkaloid formation in A. belladonna.

  7. Bacterial stimulation of adventitious rooting on in vitro cultured slash pine (Pinus elliottii Engelm.) seedling explants.

    PubMed

    Burns, J A; Schwarz, O J

    1996-02-01

    A bacterium has been isolated that initiates adventitious rooting when co-cultured under in vitro conditions with seedling-produced hypocotylary explants of slash pine (Pinus elliottii). Rooting efficiencies produced through bacterial-explant co-culture range from approximately 15% to greater than 90% over non-treated controls. Explant exposure to the root inducing bacterium has produced no obvious pathology in the regenerated plantlets. Seedling explants rooted by bacterial-explant co-culture have been successfully transitioned to ambient greenhouse conditions.

  8. Taxodione and Extracts from Salvia austriaca Roots as Human Cholinesterase Inhibitors.

    PubMed

    Kuźma, Łukasz; Wysokińska, Halina; Sikora, Joanna; Olszewska, Paulina; Mikiciuk-Olasik, Elżbieta; Szymański, Paweł

    2016-02-01

    Taxodione, an abietane diterpenoid, was isolated from Salvia austriaca transformed roots grown in in vitro conditions. The compound is known to have antibacterial, cytotoxic and anti-tumour properties. This study evaluates the ability of pure taxodione and extracts obtained from the S. austriaca hairy roots and roots from field-grown plants to inhibit human acetylcholinesterase and butyrylcholinesterase. Both extracts were found to have similar actions against acetylcholinesterase. The IC50 for extracts from transformed and untransformed roots were 142.5 and 139.5 µg ml(-1), respectively. The highest activity towards human acetylcholinesterase was demonstrated by taxodione (IC50  = 54.84 µg ml(-1)). With respect to BChE inhibition, the root extracts demonstrated stronger activity (IC50  = 23.6 µg ml(-1): field-grown plants and 41.6 µg ml(-1): transformed roots) than taxodione (IC50  = 195.9 µg ml(-1)). Taxodione showed significant cytotoxicity against A549 cell line (IC50  = 9.1 µg ml(-1)), whereas the activities for the extracts from S. austriaca roots of field-grown plants (IC50  = 75.7 µg ml(-1)) and hairy roots (IC50  = 86.2 µg ml(-1)) were lower. Computer modelling suggests that taxodione should not demonstrate cardiotoxic or genotoxic activity. It also indicates that taxodione should demonstrate very rapid transport from the body with very good blood-brain barrier penetration, but with no cumulative effect on the human body. The obtained results indicate that taxodione is a safe compound and may be used for further investigations in pharmacological activities. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Scale invariant hairy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banados, Maximo; Theisen, Stefan

    Scalar fields coupled to three-dimensional gravity are considered. We uncover a scaling symmetry present in the black hole reduced action, and use it to prove a Smarr formula valid for any potential. We also prove that nonrotating hairy black holes exists only for positive total energy. The extension to higher dimensions is also considered.

  10. Hairy black holes in scalar extended massive gravity

    NASA Astrophysics Data System (ADS)

    Tolley, Andrew J.; Wu, De-Jun; Zhou, Shuang-Yong

    2015-12-01

    We construct static, spherically symmetric black hole solutions in scalar extended ghost-free massive gravity and show the existence of hairy black holes in this class of extension. While the existence seems to be a generic feature, we focus on the simplest models of this extension and find that asymptotically flat hairy black holes can exist without fine-tuning the theory parameters, unlike the bi-gravity extension, where asymptotical flatness requires fine-tuning in the parameter space. Like the bi-gravity extension, we are unable to obtain asymptotically dS regular black holes in the simplest models considered, but it is possible to obtain asymptotically AdS black holes.

  11. Tunable Pickering Emulsions with Environmentally Responsive Hairy Silica Nanoparticles.

    PubMed

    Liu, Min; Chen, Xiaoli; Yang, Zongpeng; Xu, Zhou; Hong, Liangzhi; Ngai, To

    2016-11-30

    Surface modification of the nanoparticles using surface anchoring of amphiphilic polymers offers considerable scope for the design of a wide range of brush-coated hybrid nanoparticles with tunable surface wettability that may serve as new class of efficient Pickering emulsifiers. In the present study, we prepared mixed polymer brush-coated nanoparticles by grafting ABC miktoarm star terpolymers consisting of poly(ethylene glycol), polystyrene, and poly[(3-triisopropyloxysilyl)propyl methacrylate] (μ-PEG-b-PS-b-PIPSMA) on the surface of silica nanoparticles. The wettability of the as-prepared nanoparticles can be precisely tuned by a change of solvent or host-guest complexation. 1 H NMR result confirmed that such wettability change is due to the reorganization of the polymer chain at the grafted layer. We show that this behavior can be used for stabilization and switching between water-in-oil (W/O) and oil-in-water (O/W) emulsions. For hairy particles initially dispersed in oil, W/O emulsions were always obtained with collapsed PEG chains and mobile PS chains at the grafted layer. However, initially dispersing the hairy particles in water resulted in O/W emulsions with collapsed PS chains and mobile PEG chains. When a good solvent for both PS and PEG blocks such as toluene was used, W/O emulsions were always obtained no matter where the hairy particles were dispersed. The wettability of the mixed polymer brush-coated silica particles can also be tuned by host-guest complexation between PEG block and α-CD. More importantly, our result showed that surprisingly the resultant mixed brush-coated hairy nanoparticles can be employed for the one-step production of O/W/O multiple emulsions that are not attainable from conventional Pickering emulsifiers. The functionalized hairy silica nanoparticles at the oil-water interface can be further linked together utilizing poly(acrylic acid) as the reversible linker to form supramolecular colloidosomes, which show p

  12. Putrescine N-Methyltransferase in Cultured Roots of Hyoscyamus albus1

    PubMed Central

    Hibi, Naruhiro; Fujita, Toshihiro; Hatano, Mika; Hashimoto, Takashi; Yamada, Yasuyuki

    1992-01-01

    Biosynthesis of tropane alkaloids is thought to proceed by way of the diamine putrescine, followed by its methylation by putrescine N-methyltransferase (PMT; EC 2.1.1.53). High PMT activities were found in branch roots and/or cultured roots of several solanaceous plants. PMT was partially purified and characterized from cultured roots of Hyoscyamus albus that contain hyoscyamine as the main alkaloid. Initial velocity studies and product inhibition patterns of PMT are consistent with an ordered bi-bi mechanism, in which the Km values for putrescine and S-adenosyl-l-methionine are 277 and 203 μm, respectively, and the Ki value for S-adenosyl-l-homocysteine is 110 μm. PMT efficiently N-methylated amines that have at least two amino groups separated by three or four methylene groups. Monoamines were good competitive inhibitors of PMT, among which n-butylamine, cyclohexylamine, and exo-2-aminonorbornane were most inhibitory, with respective Ki values of 11.0, 9.1, and 10.0 μm. When n-butylamine was fed to root cultures of H. albus, the alkamine intermediates (tropinone, tropine, and pseudotropine) drastically decreased at 1 mm of the exogenous monoamine, and the hyoscyamine content decreased by 52% at 6 mm, whereas the contents of 6β-hydroxyhyoscyamine and scopolamine did not change. Free and conjugated forms of polyamines were also measured. The n-butylamine treatment caused a large increase in the putrescine content (especially in the conjugated pool), and the spermine content also increased slightly, whereas the spermidine content decreased slightly. The increase in the putrescine pool size (approximately 40 nmol/mg dry weight) was large enough to account for the decrease in the total alkaloid pool size. Similar results were also obtained in root cultures of Datura stramonium. These studies further support the role of PMT as the first committed enzyme specific to alkaloid biosynthesis. Images Figure 8 PMID:16653064

  13. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  14. Abrasion properties of self-suspended hairy titanium dioxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao-xia; Liu, Si; Yan, Chao; Wang, Xiao-jing; Wang, Lei; Yu, Ya-ming; Li, Shi-yun

    2017-11-01

    Considering the excellent solubility of pyrrolidone ring organic compounds, the synthesized N-(trimethoxysilyl) propyl- N-methyl-2-pyrrolidone chlorides was tethered onto titanium dioxide (TiO2) nanoparticles to improve dispersion of TiO2, and then polyethylene oxide (PEO) oligomer through ion exchange embraced the tethered TiO2 to obtain a novel self-suspended hairy TiO2 nanomaterials without any solvent. A variety of techniques were carried out to illustrate the structure and properties of the self-suspended hairy TiO2 nanomaterials. It was found that TiO2 nanoparticles embody monodispersity in the hybrid system though the "false reunion" phenomenon occurring due to nonpermanent weak physical cross-linking. Remarkably, self-suspended hairy TiO2 nanomaterials exhibit lower viscosity, facilitating maneuverable and outstanding antifriction and wear resistance properties, due to the synergistic lubricating effect between spontaneously forming lubricating film and nano-lubrication of TiO2 cores, overcoming the deficiency of both solid and liquid lubricants. This make them promising candidates for the micro-electromechanic/nano-electromechanic systems (MEMS/NEMS).

  15. Effect of medium composition and light on root and rhinacanthin formation in Rhinacanthus nasutus cultures.

    PubMed

    Panichayupakaranant, P; Meerungrueang, W

    2010-11-01

    Rhinacanthus nasutus (L.) Kurz (Acanthaceae) has long been used in Thai traditional medicine for treatment of tinea versicolor, ringworm, pruritic rash, and abscess. The active constituents are known as a group of naphthoquinone esters, rhinacanthins. This work focused on establishment of R. nasutus root cultures and determination of rhinacanthin production. Induction of R. nasutus root formation was accomplished on solid Gamborg's B5 (B5) medium, supplied with 0.1 mg/L indole-3-butyric acid (IBA) and 20 g/L sucrose. The effects of explants (whole leaf explants and four-side excised leaf explants), light and medium composition on root and rhinacanthin formation were investigated. The root formation from the whole leaf explants was 10 times higher than that from the four-side excised leaf explants. In addition, light possessed an inhibitory effect on the root and rhinacanthin formation of R. nasutus. Medium manipulation found that Murashige and Skoog (MS) medium supplied with 3 mg/L IBA and 30 g/L sucrose was the most suitable for induction of the root formation. Unfortunately, the obtained root cultures produced only rhinacanthin-C in very low amount, 0.026 mg/g dry weight (DW), when they were transferred into the same MS liquid medium. With semisolid medium (4 g/L agar) of the same MS composition, however, the root cultures appeared to produce higher content of rhinacanthin-C, -D and -N (3.45, 0.07 and 0.07 mg/g DW, respectively). Our finding suggests that culturing in semisolid medium is capable of improving of rhinacanthin production in R. nasutus root cultures.

  16. Comprehensive Analysis of Secondary Dental Root Canal Infections: A Combination of Culture and Culture-Independent Approaches Reveals New Insights

    PubMed Central

    Anderson, Annette Carola; Hellwig, Elmar; Vespermann, Robin; Wittmer, Annette; Schmid, Michael; Karygianni, Lamprini; Al-Ahmad, Ali

    2012-01-01

    Persistence of microorganisms or reinfections are the main reasons for failure of root canal therapy. Very few studies to date have included culture-independent methods to assess the microbiota, including non-cultivable microorganisms. The aim of this study was to combine culture methods with culture-independent cloning methods to analyze the microbial flora of root-filled teeth with periradicular lesions. Twenty-one samples from previously root-filled teeth were collected from patients with periradicular lesions. Microorganisms were cultivated, isolated and biochemically identified. In addition, ribosomal DNA of bacteria, fungi and archaea derived from the same samples was amplified and the PCR products were used to construct clone libraries. DNA of selected clones was sequenced and microbial species were identified, comparing the sequences with public databases. Microorganisms were found in 12 samples with culture-dependent and -independent methods combined. The number of bacterial species ranged from 1 to 12 in one sample. The majority of the 26 taxa belonged to the phylum Firmicutes (14 taxa), followed by Actinobacteria, Proteobacteria and Bacteroidetes. One sample was positive for fungi, and archaea could not be detected. The results obtained with both methods differed. The cloning technique detected several as-yet-uncultivated taxa. Using a combination of both methods 13 taxa were detected that had not been found in root-filled teeth so far. Enterococcus faecalis was only detected in two samples using culture methods. Combining the culture-dependent and –independent approaches revealed new candidate endodontic pathogens and a high diversity of the microbial flora in root-filled teeth with periradicular lesions. Both methods yielded differing results, emphasizing the benefit of combined methods for the detection of the actual microbial diversity in apical periodontitis. PMID:23152922

  17. Eliminating Hairy Cell Leukemia Minimal Residual Disease

    Cancer.gov

    In this trial, patients with hairy cell leukemia who have disease-related symptoms that require treatment will be randomly assigned to receive cladribine with either concurrent rituximab or rituximab at least 6 months after completing cladribine therapy.

  18. Gels from soft hairy nanoparticles in polymeric matrices

    NASA Astrophysics Data System (ADS)

    Vlassopoulos, Dimitris

    2013-03-01

    Hairy particles represent a huge class of soft colloids with tunable interactions and properties. Advances in synthetic chemistry have enabled obtaining well-characterized such systems for specific needs. In this talk we present two model hairy soft particles with diameters of the order of tens of nanometers, star polymers and polymerically grafted spherical particles. In particular, we discuss design strategies for dispersing them in polymeric matrices and eventually creating and breaking gels. Control parameters are the matrix molar mass, the grafting density (or functionality) and the size of the grafts (or arms). The linear viscoelastic properties and slow time evolution of the gels are examined in view of the existing knowledge from colloidal gels consisting of micron-sized particles, and compared. In the case of stars we start from a concentrated glassy suspension in molecular solvent and add homopolymer at increasing concentration, and as a result of the induced osmotic pressure the stars shrink and a depletion gel is formed. For the grafted colloidal particles, they are added at low concentration to a polymer matrix, and it has been shown that under certain conditions the anisotropy of interactions gives rise to network formation. We then focus on the nonlinear rheological response and in particular the effect of shear flow in inducing a solid to liquid transition. Our studies show that the yielding process is gradual and shares many common features with that of flocculated colloidal suspensions, irrespectively of the shape of the building block of the gel. Whereas shear can melt such a gel, it cannot break it into its constituent blocks and hence fully disperse the hairy nanoparticles. On the other hand, the hairy particles are intrinsically hybrid. We show how this important feature is reflected on the heating of the gels. In that case, the mismatch of thermal expansion coefficients of core and shell appears to play a role on the particle response as it

  19. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture.

    PubMed

    Song, Xiaolin; Wu, Hao; Yin, Zhenhao; Lian, Meilan; Yin, Chengri

    2017-05-23

    Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng . Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g -1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1). The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC 50 value was 0.94 mg mL -1 .

  20. Scalar hairy black holes and scalarons in the isolated horizons formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corichi, Alejandro; Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, A. Postal 61-3, Morelia, Michoacan, 58090; Nucamendi, Ulises

    The Isolated Horizons (IH) formalism, together with a simple phenomenological model for colored black holes has been used to predict nontrivial formulas that relate the ADM mass of the solitons and hairy Black Holes of Gravity-Matter system on the one hand, and several horizon properties of the black holes in the other. In this article, the IH formalism is tested numerically for spherically symmetric solutions to an Einstein-Higgs system where hairy black holes were recently found to exist. It is shown that the mass formulas still hold and that, by appropriately extending the current model, one can account for themore » behavior of the horizon properties of these new solutions. An empirical formula that approximates the ADM mass of hairy solutions is put forward, and some of its properties are analyzed.« less

  1. Hairy Cell Leukaemia in Oman

    PubMed Central

    Kurukulasuriya, Arundathi; Al-Rashdi, Asia; Al-Muslahi, Muhanna

    2008-01-01

    Hairy cell leukaemia (HCL) is a rare, clonal, chronic lymphoproliferative disorder commonly seen in males in the middle years of life. Pancytopaenia with moderate to massive splenomegaly is the most common clinical presentation. Diagnosis is made on detecting the lymphocytes with abundant cytoplasm which spread into hair-like processes on peripheral blood and bone marrow smears, thus giving the name, “hairy cell leukaemia”. The bone marrow aspirate is frequently a dry tap. The trephine biopsy has the characteristic features of a honey comb appearance and flow cytometry is typically CD103, CD25, FMC7, CD11c, gamma or kappa light chain positive with the classic B lymphocyte markers CD19, CD20, CD79a. Purine analogues followed by granulocyte-colony stimulating factor (G-CSF) to manage the febrile neutropenia is currently the treatment of choice. A 10 year disease free survival is recorded with these management strategies. Experimental use of anti CD20 and CD22 has also shown promising results in the treatment of this disease. We report four cases of HCL diagnosed in a span of two years at the Royal Hospital, Muscat, Oman. PMID:21748080

  2. External hyphae of Rhizophagus irregularis DAOM 197198 are less sensitive to low pH than roots in arbuscular mycorrhizae: evidence from axenic culture system.

    PubMed

    Wang, Ning; Feng, Zengwei; Zhou, Yang; Zhu, Honghui; Yao, Qing

    2017-10-01

    The growth of plant roots and arbuscular mycorrhizal fungi (AMF) can be inhibited by low pH; however, it is largely unknown which is more sensitive to low pH. This study aimed to compare the physiological and molecular responses of external hyphae (EH) and roots to low pH in terms of growth, development and functioning. We established AM symbiosis in a two-compartmented system (root compartment, RC; hyphal compartment, HC) using AMF and transformed hairy roots and exposed them to pH 6.5 and/or pH 4.5. The results showed that pH 4.5 significantly decreased root cell viability, while EH at pH 6.5 attenuated the effect. In either RC or HC, pH 4.5 reduced biomass, P content, colonization, ALP activity in roots, and ALP activity and polyphosphate accumulation in EH. GintPT expression in EH was inhibited by pH 4.5 in HC but not in RC. The expression of mycorrhiza-responsive LePTs was significantly reduced by the lower colonization due to decreased pH in either RC or HC, while the expression of non-mycorrhiza-responsive LePTs was not affected. Variation partitioning analysis indicated that EH was less sensitive to low pH than roots. The interactions between roots and EH under low pH stress merit further investigation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Treating Multiply Relapsed or Refractory Hairy Cell Leukemia

    Cancer.gov

    In this trial, patients with hairy cell leukemia who have not responded or relapsed after initial chemotherapy will be randomly assigned to receive rituximab combined with either pentostatin or bendamustine.

  4. Fluid and particle transport of a hairy structure

    NASA Astrophysics Data System (ADS)

    Lee, Hongki; Lahooti, Mohsen; Kim, Daegyoum; Jung, Seyeong

    2017-11-01

    Hairy appendages of animals are used to capture particles, sense surrounding flow, and generate propulsive force. Due to the small size of the hairy structures, their hydrodynamics have been studied mostly in very low Reynolds number. In this work, in a broad range of Reynolds number, O(1) - O(100), flow structure and inertial particle dynamics around an array of two-dimensional cylinders are investigated numerically by using an immersed boundary method. Given flow fields, Maxey-Riley equation is adopted to examine particle dynamics. Here, we discuss the effects of Reynolds number, density ratio of inertial particles and fluid, and distance between cylinders on particle behaviors around a moving structure. In addition, drift volume of inertial particles is correlated with the model parameters.

  5. Metabolic Profile and Root Development of Hypericum perforatum L. In vitro Roots under Stress Conditions Due to Chitosan Treatment and Culture Time.

    PubMed

    Brasili, Elisa; Miccheli, Alfredo; Marini, Federico; Praticò, Giulia; Sciubba, Fabio; Di Cocco, Maria E; Cechinel, Valdir Filho; Tocci, Noemi; Valletta, Alessio; Pasqua, Gabriella

    2016-01-01

    The responses of Hypericum perforatum root cultures to chitosan elicitation had been investigated through (1)H-NMR-based metabolomics associated with morpho-anatomical analyses. The root metabolome was influenced by two factors, i.e., time of culture (associated with biomass growth and related "overcrowding stress") and chitosan elicitation. ANOVA simultaneous component analysis (ASCA) modeling showed that these factors act independently. In response to the increase of biomass density over time, a decrease in the synthesis of isoleucine, valine, pyruvate, methylamine, etanolamine, trigonelline, glutamine and fatty acids, and an increase in the synthesis of phenolic compounds, such as xanthones, epicatechin, gallic, and shikimic acid were observed. Among the xanthones, brasilixanthone B has been identified for the first time in chitosan-elicited root cultures of H. perforatum. Chitosan treatment associated to a slowdown of root biomass growth caused an increase in DMAPP and a decrease in stigmasterol, shikimic acid, and tryptophan levels. The histological analysis of chitosan-treated roots revealed a marked swelling of the root apex, mainly due to the hypertrophy of the first two sub-epidermal cell layers. In addition, periclinal divisions in hypertrophic cortical cells, resulting in an increase of cortical layers, were frequently observed. Most of the metabolic variations as well as the morpho-anatomical alterations occurred within 72 h from the elicitation, suggesting an early response of H. perforatum roots to chitosan elicitation. The obtained results improve the knowledge of the root responses to biotic stress and provide useful information to optimize the biotechnological production of plant compounds of industrial interest.

  6. Metabolic Profile and Root Development of Hypericum perforatum L. In vitro Roots under Stress Conditions Due to Chitosan Treatment and Culture Time

    PubMed Central

    Brasili, Elisa; Miccheli, Alfredo; Marini, Federico; Praticò, Giulia; Sciubba, Fabio; Di Cocco, Maria E.; Cechinel, Valdir Filho; Tocci, Noemi; Valletta, Alessio; Pasqua, Gabriella

    2016-01-01

    The responses of Hypericum perforatum root cultures to chitosan elicitation had been investigated through 1H-NMR-based metabolomics associated with morpho-anatomical analyses. The root metabolome was influenced by two factors, i.e., time of culture (associated with biomass growth and related “overcrowding stress”) and chitosan elicitation. ANOVA simultaneous component analysis (ASCA) modeling showed that these factors act independently. In response to the increase of biomass density over time, a decrease in the synthesis of isoleucine, valine, pyruvate, methylamine, etanolamine, trigonelline, glutamine and fatty acids, and an increase in the synthesis of phenolic compounds, such as xanthones, epicatechin, gallic, and shikimic acid were observed. Among the xanthones, brasilixanthone B has been identified for the first time in chitosan-elicited root cultures of H. perforatum. Chitosan treatment associated to a slowdown of root biomass growth caused an increase in DMAPP and a decrease in stigmasterol, shikimic acid, and tryptophan levels. The histological analysis of chitosan-treated roots revealed a marked swelling of the root apex, mainly due to the hypertrophy of the first two sub-epidermal cell layers. In addition, periclinal divisions in hypertrophic cortical cells, resulting in an increase of cortical layers, were frequently observed. Most of the metabolic variations as well as the morpho-anatomical alterations occurred within 72 h from the elicitation, suggesting an early response of H. perforatum roots to chitosan elicitation. The obtained results improve the knowledge of the root responses to biotic stress and provide useful information to optimize the biotechnological production of plant compounds of industrial interest. PMID:27148330

  7. A case of hairy cell leukemia variant.

    PubMed

    Găman, Amelia Maria; Dobrea, Camelia Marioara; Găman, Mihnea Alexandru

    2015-01-01

    Hairy cell leukemia variant (HCLv) is a rare B-cell chronic lymphoproliferative disorder with features of the classic HCL but presenting some particularities, a poor response to conventional therapy of classic HCL and a more aggressive course of disease with shorter survival than classic HCL. We present a case of a 52-year-old man hospitalized in July 2012 in the Clinic of Hematology of Craiova, Romania, having splenomegaly, leukocytosis with lymphocytosis, anemia and thrombocytopenia, without monocytopenia, which exposed, in the peripheral blood and bone marrow cells, intermediate morphology between hairy cells and prolymphocytes and immunophenotype of mature B-cell phenotype CD19, CD20, CD22, CD11c, CD103, low positive for CD25 and negative for CD3, diagnosed with HCL variant, with no response to conventional chemotherapy and interferon-alpha, an aggressive course of disease and a survival of less than a year from diagnosis.

  8. Analysis of propagation of Bacopa monnieri (L.) from hairy roots, elicitation and Bacoside A contents of Ri transformed plants.

    PubMed

    Largia, Muthiah Joe Virgin; Satish, Lakkakula; Johnsi, Rajaiah; Shilpha, Jayabalan; Ramesh, Manikandan

    2016-08-01

    Agrobacterium rhizogenes mediated transformation has been experimented in leaf explants of the memory herb Bacopa monnieri in order to assess the regeneration potential of hairy roots (HR) followed by the elicitation of transformed plants for increased Bacoside A production. Out of the four strains tested, A4 and MTCC 532 derived HR exhibited regrowth in MS basal medium while MTCC 2364 derived HR showed regeneration in MS medium supplemented with suitable phyto hormones. R1000 derived HR possessed no regeneration potential. Comparable to A4, MTCC 532 derived HR displayed maximum regrowth frequency of about 85.71 ± 1.84 % with an increase in biomass to threefold. Therefore, five HR plant lines (MTCC 532 derived) were generated and maintained in MS basal liquid medium in which HR3 topped the others in producing a huge biomass of about 67.09 ± 0.66 g FW. PCR amplification and southern hybridization analysis of rol A gene (280 bp) has been performed in order to confirm the transformation process. Moreover, HR3 plant line has accumulated highest total phenolic content of about 165.68 ± 0.82 mg GAE/g DW and highest total flavonoid content of about 497.78 ± 0.57 mg QRE/g DW when compared to other lines and untransformed controls. In addition, HR3 plant extract showed 85.58 ± 0.14 % of DPPH (2, 2-diphenyl-1-picryl hydrazyl) inhibition displaying its reliable anti oxidant potential. Further on elicitation with 10 mg/L chitosan for 2 weeks, HR3 has produced 5.83 % of Bacoside A which is fivefold and threefold increased production when compared to untransformed and transformed unelicited controls respectively. This is the first report on eliciting HR plants for increased metabolite accumulation in B. monnieri.

  9. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots.

    PubMed

    Liu, Lin; Yang, DongFeng; Liang, TongYao; Zhang, HaiHua; He, ZhiGui; Liang, ZongSuo

    2016-09-01

    Phosphate starvation increased the production of phenolic acids by inducing the key enzyme genes in a positive feedback pathway in Saliva miltiorrhiza hairy roots. SPX may be involved in this process. Salvia miltiorrhiza is a wildly popular traditional Chinese medicine used for the treatment of coronary heart diseases and inflammation. Phosphate is an essential plant macronutrient that is often deficient, thereby limiting crop yield. In this study, we investigated the effects of phosphate concentration on the biomass and accumulation of phenolic acid in S. miltiorrhiza. Results show that 0.124 mM phosphate was favorable for plant growth. Moreover, 0.0124 mM phosphate was beneficial for the accumulation of phenolic acids, wherein the contents of danshensu, caffeic acid, rosmarinic acid, and salvianolic acid B were, respectively, 2.33-, 1.02-, 1.68-, and 2.17-fold higher than that of the control. By contrast, 12.4 mM phosphate inhibited the accumulation of phenolic acids. The key enzyme genes in the phenolic acid biosynthesis pathway were investigated to elucidate the mechanism of phosphate starvation-induced increase of phenolic acids. The results suggest that phosphate starvation induced the gene expression from the downstream pathway to the upstream pathway, i.e., a feedback phenomenon. In addition, phosphate starvation response gene SPX (SYG1, Pho81, and XPR1) was promoted by phosphate deficiency (0.0124 mM). We inferred that SPX responded to phosphate starvation, which then affected the expression of later responsive key enzyme genes in phenolic acid biosynthesis, resulting in the accumulation of phenolic acids. Our findings provide a resource-saving and environmental protection strategy to increase the yield of active substance in herbal preparations. The relationship between SPX and key enzyme genes and the role they play in phenolic acid biosynthesis during phosphate deficiency need further studies.

  10. Hairy strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahakian, Vatche

    Zero modes of the world-sheet spinors of a closed string can source higher order moments of the bulk supergravity fields. In this work, we analyze various configurations of closed strings focusing on the imprints of the quantized spinor vacuum expectation values onto the tails of bulk fields. We identify supersymmetric arrangements for which all multipole charges vanish; while for others, we find that one is left with Neveu-Schwarz-Neveu-Schwarz, and Ramond-Ramond dipole and quadrupole moments. Our analysis is exhaustive with respect to all the bosonic fields of the bulk and to all higher order moments. We comment on the relevance ofmore » these results to entropy computations of hairy black holes of a single charge or more, and to open/closed string duality.« less

  11. Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from Velvet bean (Mucuna pruriens) and Hairy vetch (Vicia villosa).

    PubMed

    Fujii, Yoshiharu

    2003-06-01

    We have studied on allelopathy of plants and developed methods to identify the effective substances in root exudates, leaf leacheate, and volatile chemicals emitted from plants. We found traditional cover plants that show allelopathic activity are useful for weed control. It could eliminate the use of synthetic chemicals for this purpose. Allelopathy is a natural power of plants to protect themselves by producing natural organic chemicals. Some endemic plants in Asia, already known by farmers in the region, as either cover crops used in intercropping, hedgerow, or agroforestry, were found to possess strong allelopathic abilities. Our group identified several allelochemicals from these plants. These allelopathic cover crops, mostly leguminous plants, provide protein rich food, and grow easily without artificial fertilizers, herbicides, insecticides and fungicides. In this regards, these allelopathic cover crops could save food shortage in rural area, and are useful for environmental conservation. Screenings of allelopathic plants by specific bioassays and field tests have been conducted. Hairy vetch (Vicia villosa) and Velvet bean (Mucuna pruriens) are two promising species for the practical application of allelopathy. An amino acid, L-DOPA, unusual in plants, plays an important role as allelochemical in Velvet bean (Mucuna pruriens). Hairy vetch is the most promising cover plant for the weed control in orchard, vegetable and rice production and even for landscape amendment in abandoned field in Japan. We have isolated "cyanamide", a well known nitrogen fertilizer, from Hairy vetch. This is the first finding of naturally produced cyanamide in the world.

  12. Vortex shedding noise of a cylinder with hairy flaps

    NASA Astrophysics Data System (ADS)

    Kamps, Laura; Geyer, Thomas F.; Sarradj, Ennes; Brücker, Christoph

    2017-02-01

    This study describes the modification of acoustic noise emitted from cylinders in a stationary subsonic flow for a cylinder equipped with flexible hairy flaps at the aft part as a passive way to manipulate the flow and acoustics. The study was motivated by the results from previous water tunnel measurements, which demonstrated that hairy flaps can modify the shedding cycle behind the cylinder and can reduce the wake deficit. In the present study, wind tunnel experiments were conducted on such a modified cylinder and the results were compared to the reference case of a plain cylinder. The acoustic spectrum was measured using two microphones while simultaneously recording the flap motion. To further examine the flow structures in the downstream vicinity of the cylinder, constant temperature anemometry measurements as well as flow visualizations were also performed. The results show that, above a certain Reynolds number, the hairy flaps lead to a jump in the vortex shedding frequency. This phenomenon is similarly observed in the water flow experiments as a jump in the non-dimensional Strouhal number that is related to the change of the shedding cycle. This jump appears to be coupled to a resonant excitation of the flaps. The specific Reynolds number at which the jump occurs is higher in the present case, which is attributed to the lower added mass in air as compared with the one in water. The flow visualizations confirmed that such action of the flaps lead to a more slender elongated shape of the time-averaged separation bubble. In addition, the hairy flaps induce a noticeable reduction of the tonal noise as well as broadband noise as long as the flaps do not touch each other.

  13. Nonchemical, cultural management strategies to suppress phytophthora root rot in northern highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    Phytophthora cinnamomi causes root rot of highbush blueberry and decreases plant growth, yield, and profitability for growers. Fungicides can suppress root rot, but cannot be used in certified organic production systems and fungicide resistance may develop. Alternative, non-chemical, cultural manag...

  14. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L.

    PubMed

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar

    2014-11-01

    Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l(-1)) and naphthalene acetic acid (NAA; 1.5 mg l(-1)). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5-2.0 mg l(-1)). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l(-1) NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l(-1) NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l(-1) NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.

  15. Hypophosphatemic rickets associated with epidermal nevus syndrome and giant hairy nevus.

    PubMed

    Chou, Yen-Yin; Chao, Sheau-Chiou; Shiue, Chiou-Nan; Tsai, Wen-Hui; Lin, Shio-Jean

    2005-01-01

    The association of hypophosphatemic rickets and epidermal nevus or giant hairy nevus is rare. We report two patients with hypophosphatemic rickets, one associated with epidermal nevus syndrome and the other with giant hairy nevus, and describe their clinical features and variable response to treatment. The abnormal nevus tissue may have contributed to the pathogenesis of hypophosphatemic rickets. We did not find a PHEX gene mutation in these two patients, and the mechanism for their rickets may be different from that in X-linked hypophosphatemic rickets.

  16. Free Radical Scavenging Activity and Comparative Metabolic Profiling of In Vitro Cultured and Field Grown Withania somnifera Roots

    PubMed Central

    Senthil, Kalaiselvi; Thirugnanasambantham, Pankajavalli; Oh, Taek Joo; Kim, So Hyun; Choi, Hyung Kyoon

    2015-01-01

    Free radical scavenging activity (FRSA), total phenolic content (TPC), and total flavonoid content (TFC) of in vitro cultured and field grown Withania somnifera (Ashwagandha) roots were investigated. Withanolides analysis and comprehensive metabolic profiling between 100% methanol extracts of in vitro and field grown root tissues was performed using high performance thin layer chromatography (HPTLC) and gas chromatography-mass spectrometry (GC-MS), respectively. Significantly higher levels of FRSA, TPC, and TFC were observed in in-vitro cultured roots compared with field grown samples. In addition, 30 day-cultured in vitro root samples (1MIR) exhibited a significantly higher FRSA (IC50 81.01 μg/mL), TPC (118.91 mg GAE/g), and TFC (32.68 mg CE/g) compared with those in 45 day-cultured samples (1.5MIR). Total of 29 metabolites were identified in in vitro cultured and field grown roots by GC-MS analysis. The metabolites included alcohols, organic acids, purine, pyrimidine, sugars, and putrescine. Vanillic acid was only observed in the in vitro cultured root samples, and higher level of the vanillic acid was observed in 1MIR when compared to 1.5MIR. Therefore, it is suggested that 1MIR might serve as an alternative to field grown roots for the development of medicinal and functional food products. PMID:25874568

  17. Large Scale Culture of Ginseng Adventitious Roots for Production of Ginsenosides

    NASA Astrophysics Data System (ADS)

    Paek, Kee-Yoeup; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo; Zhong, Jian-Jiang

    Ginseng (Panax ginseng C. A. Meyer) is one of the most famous oriental medicinal plants used as crude drugs in Asian countries, and now it is being used worldwide for preventive and therapeutic purposes. Among diverse constituents of ginseng, saponins (ginsenosides) have been found to be major components responsible for their biological and pharmacological actions. On the other hand, difficulties in the supply of pure ginsenosides in quantity prevent the development of ginseng for clinical medicines. Cultivation of ginseng in fields takes a long time, generally 5-7 years, and needs extensive effort regarding quality control since growth is susceptible to many environmental factors including soil, shade, climate, pathogens and pests. To solve the problems, cell and tissue cultures have been widely explored for more rapid and efficient production of ginseng biomass and ginsenosides. Recently, cell and adventitious root cultures of P. ginseng have been established in large scale bioreactors with a view to commercial application. Various physiological and engineering parameters affecting the biomass production and ginsenoside accumulation have been investigated. Advances in adventitious root cultures including factors for process scale-up are reviewed in this chapter. In addition, biosafety analyses of ginseng adventitious roots are also discussed for real application.

  18. Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata.

    PubMed

    Gherbi, Hassen; Nambiar-Veetil, Mathish; Zhong, Chonglu; Félix, Jessy; Autran, Daphné; Girardin, Raphaël; Vaissayre, Virginie; Auguy, Florence; Bogusz, Didier; Franche, Claudine

    2008-05-01

    In recent years, RNA interference has been exploited as a tool for investigating gene function in plants. We tested the potential of double-stranded RNA interference technology for silencing a transgene in the actinorhizal tree Allocasuarina verticillata. The approach was undertaken using stably transformed shoots expressing the beta-glucuronidase (GUS) gene under the control of the constitutive promoter 35S; the shoots were further transformed with the Agrobacterium rhizogenes A4RS containing hairpin RNA (hpRNA) directed toward the GUS gene, and driven by the 35S promoter. The silencing and control vectors contained the reporter gene of the green fluorescent protein (GFP), thus allowing a screening of GUS-silenced composite plantlets for autofluorescence. With this rapid procedure, histochemical data established that the reporter gene was strongly silenced in both fluorescent roots and actinorhizal nodules. Fluorometric data further established that the level of GUS silencing was usually greater than 90% in the hairy roots containing the hairpin GUS sequences. We found that the silencing process of the reporter gene did not spread to the aerial part of the composite A. verticillata plants. Real-time quantitative polymerase chain reaction showed that GUS mRNAs were substantially reduced in roots and, thereby, confirmed the knock-down of the GUS transgene in the GFP(+) hairy roots. The approach described here will provide a versatile tool for the rapid assessment of symbiotically related host genes in actinorhizal plants of the Casuarinaceae family.

  19. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    PubMed

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis.

    PubMed

    Ho-Plágaro, Tania; Huertas, Raúl; Tamayo-Navarrete, María I; Ocampo, Juan A; García-Garrido, José M

    2018-01-01

    Solanum lycopersicum , an economically important crop grown worldwide, has been used as a model for the study of arbuscular mycorrhizal (AM) symbiosis in non-legume plants for several years and several cDNA array hybridization studies have revealed specific transcriptomic profiles of mycorrhizal tomato roots. However, a method to easily screen candidate genes which could play an important role during tomato mycorrhization is required. We have developed an optimized procedure for composite tomato plant obtaining achieved through Agrobacterium rhizogenes -mediated transformation. This protocol involves the unusual in vitro culture of composite plants between two filter papers placed on the culture media. In addition, we show that DsRed is an appropriate molecular marker for the precise selection of cotransformed tomato hairy roots . S. lycopersicum composite plant hairy roots appear to be colonized by the AM fungus Rhizophagus irregularis in a manner similar to that of normal roots, and a modified construct useful for localizing the expression of promoters putatively associated with mycorrhization was developed and tested. In this study, we present an easy, fast and low-cost procedure to study AM symbiosis in tomato roots.

  1. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    PubMed

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metabolic characterization of Hyoscyamus niger root-specific putrescine N-methyltransferase.

    PubMed

    Geng, Chen; Zhao, Tengfei; Yang, Chunxian; Zhang, Qiaozhuo; Bai, Feng; Zeng, Junlan; Zhang, Fangyuan; Liu, Xiaoqiang; Lan, Xiaozhong; Chen, Min; Liao, Zhihua

    2018-03-02

    N-methylputrescine is the precursor of nicotine and pharmaceutical tropane alkaloids such as hyoscyamine. Putrescine N-methyltransferase (PMT) catalyzes the N-methylation of putrescine to form N-methylputrescine. While the role of PMT in nicotine biosynthesis is clear, knowledge of PMT in the biosynthesis of tropane alkaloids (TAs) and the regulation of polyamines remains limited. We characterized a PMT gene from Hyoscyamus niger, designated HnPMT that was specifically expressed in roots, especially in the secondary roots and dramatically induced by methyl jasmonate (MeJA). The GUS gene was specifically expressed in Arabidopsis roots or in the vascular tissues, including pericycles and endodermis, of the H. niger hairy root cultures, when it was driven by the 5'-flanking promoter region of HnPMT. The recombinant HnPMT was purified for enzymatic assays. HnPMT converted putrescine to form N-methylputrescine, as confirmed by LC-MS. The kinetics analysis revealed that HnPMT had high affinity with putrescine but low catalytic activity, suggesting that it was a rate-limiting enzyme. When HnPMT was suppressed in the H. niger plants by using the VIGS approach, the contents of N-methylputrescine and hyoscyamine were markedly decreased, but the contents of putrescine, spermidine and a mixture of spermine and thermospermine were significantly increased; this suggested that HnPMT was involved in the biosynthesis of tropane alkaloids and played a competent role in regulating the biosynthesis of polyamines. Functional identification of HnPMT facilitated the understanding of TA biosynthesis and thus implied that the HnPMT-catalyzed step might be a target for metabolic engineering of the TA production in H. niger. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Why does anatabine, but not nicotine, accumulate in jasmonate-elicited cultured tobacco BY-2 cells?

    PubMed

    Shoji, Tsubasa; Hashimoto, Takashi

    2008-08-01

    Suspension-cultured cells of Nicotiana tabacum cv. Bright Yellow-2 (BY-2) grow rapidly in a highly homogenous population and still exhibit the general behavior of plant cells, and thus are often used as model systems in several areas of plant molecular and cellular biology, including secondary metabolism. While the parental tobacco variety synthesizes nicotine as a major alkaloid, the cultured tobacco cells mainly produce a related alkaloid anatabine, instead of nicotine, when elicited with jasmonates. We report here that cultured BY-2 cells scarcely express N-methylputrescine oxidase (MPO) genes even after jasmonate elicitation. MPO is the second enzyme in the biosynthetic pathway that supplies the pyrrolidine moiety of nicotine and nornicotine, but is predicted to be dispensable for the biosynthesis of anatabine, anabasine and anatalline, which do not contain the pyrrolidine moiety. When MPO was overexpressed in tobacco BY-2 cells, nicotine synthesis was dramatically enhanced while anatabine formation was effectively suppressed. As a complementary approach, we suppressed MPO expression by RNA interference in tobacco hairy roots that normally accumulate nicotine. In the MPO-suppressed roots, the contents of anatabine, anabasine and anatalline, as well as N-methylputrescine and putrescine, markedly increased to compensate for suppressed formation of nicotine and nornicotine. These results identify the transcriptional regulation of MPO as a critical rate-limiting step that restricts nicotine formation in cultured tobacco BY-2 cells.

  4. Black hairy tongue associated with olanzapine treatment: a case report.

    PubMed

    Tamam, Lut; Annagur, Bilge Burcak

    2006-10-01

    Olanzapine is an atypical antipsychotic drug approved for acute and long-term treatment of bipolar disorder. Although relatively safe as compared to other classical antipsychotic medications, there are a number of uncommon adverse effects of olanzapine such as oral cavity lesions. In addition to the relatively common side effect of dry mouth, several articles have reported an association between olanzapine treatment and the development of oral lesions such as apthous stomatitis, pharyngitis, glossitis and oral ulceration. Although there are several cases in which the tongue was affected in conjunction with stomatitis or pharyngitis, we could not find a case report indicating a direct relationship between olanzapine use and a tongue lesion. We present here the case of a patient with bipolar disorder, who developed recurrent black hairy tongue on two different occasions following the addition of olanzapine to lithium treatment. In the present case, xerostomia (dry mouth), which is an adverse reaction of both olanzapine and lithium, may have played a role in the development of black hairy tongue. All agents with a possible side effect of xerostomia may predispose patients to black hairy tongue, especially when they are administered in combination. To preclude the development of this complication with such drugs, extra time and effort should be given to improving oral hygiene.

  5. Influence of cultural practices on edaphic factors related to root disease in Pinus nursery seedlings

    Treesearch

    J Juzwik; K. M. Gust; R. R. Allmaras

    1999-01-01

    Conifer seedlings grown in bare-root nurseries are frequently damaged and destroyed by soil-borne pathogenic fungi that cause root rot. Relationships between nursery cultural practices, soils characteristics, and populations of potential pathogens in the soil were examined in three bare-root tree nurseries in the midwestern USA. Soil-borne populations of ...

  6. Modeling of plant in vitro cultures: overview and estimation of biotechnological processes.

    PubMed

    Maschke, Rüdiger W; Geipel, Katja; Bley, Thomas

    2015-01-01

    Plant cell and tissue cultivations are of growing interest for the production of structurally complex and expensive plant-derived products, especially in pharmaceutical production. Problems with up-scaling, low yields, and high-priced process conditions result in an increased demand for models to provide comprehension, simulation, and optimization of production processes. In the last 25 years, many models have evolved in plant biotechnology; the majority of them are specialized models for a few selected products or nutritional conditions. In this article we review, delineate, and discuss the concepts and characteristics of the most commonly used models. Therefore, the authors focus on models for plant suspension and submerged hairy root cultures. The article includes a short overview of modeling and mathematics and integrated parameters, as well as the application scope for each model. The review is meant to help researchers better understand and utilize the numerous models published for plant cultures, and to select the most suitable model for their purposes. © 2014 Wiley Periodicals, Inc.

  7. Potential of tissue culture for breeding root-knot nematode resistance into vegetables.

    PubMed

    Fassuliotis, G; Bhatt, D P

    1982-01-01

    Plant protoplast technology is being investigated as a means of transferring root-knot nematode resistance factors from Solanum sisymbriifolium into the susceptible S. melongena. Solanum sisymbriifolium plants regenerated from callus lost resistance to Meloidogyne javanica but retained resistance to M. incognita. Tomato plants cloned from leaf discs of the root-knot nematode resistant 'Patriot' were completely susceptible to M. incognita, while sections of stems and leaves rooted in sand in the absence of growth hormones retained resistance. Changes in resistance persisted for three generations. It is postulated that the exogenous hormonal constituents of the culture medium are modifying the expression of genetic resistance.

  8. Habitat Suitability Index Models: Hairy woodpecker

    USGS Publications Warehouse

    Sousa, Patrick J.

    1987-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the hairy woodpecker (Picoides villosus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  9. Hairy black holes and duality in an extended supergravity model

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Gallerati, Antonio; Trigiante, Mario

    2018-04-01

    We consider a D = 4, N=2 gauged supergravity with an electromagnetic Fayet-Iliopoulos term. We restrict to the uncharged, single dilaton consistent truncation and point out that the bulk Lagrangian is self-dual under electromagnetic duality. Within this truncation, we construct two families of exact hairy black hole solutions, which are asymptotically AdS 4. When a duality transformation is applied on these solutions, they are mapped to two other inequivalent families of hairy black hole solutions. The mixed boundary conditions of the scalar field correspond to adding a triple-trace operator to the dual field theory action. We also show that this truncation contains all the consistent single dilaton truncations of gauged N=8 supergravity with a possible ω-deformation.

  10. Neutropenia caused by hairy cell leukemia in a patient with myelofibrosis secondary to polycythemia vera: a case report.

    PubMed

    Habberstad, Andreas Hanssønn; Tran, Hoa Thi Tuyet; Randen, Ulla; Spetalen, Signe; Dybedal, Ingunn; Tjønnfjord, Geir E; Dahm, Anders Erik Astrup

    2018-04-24

    Polycythemia vera is a myeloproliferative disease that sometimes evolves to myelofibrosis, causing splenomegaly and neutropenia. In this case report, we describe a patient with polycythemia vera and unexplained neutropenia who later turned out to also have hairy cell leukemia. A middle-aged Caucasian man with polycythemia vera presented to our hospital with chronic mouth ulcers. Later he developed leukopenia and pancytopenia. Bone marrow biopsies showed fibrosis. Further morphological analyses of bone marrow and blood smears revealed probable transformation into acute myeloid leukemia. However, there were also cells indicating hairy cell leukemia. Morphological and immunohistochemical analyses later confirmed the presence of hairy cell leukemia in biopsies that had been present for 3 years. Treatment with cladribine temporarily reversed the patient's neutropenia. Hairy cell leukemia may mimic development to myelofibrosis in patients with polycythemia vera.

  11. 75 FR 54496 - Diseases Associated With Exposure to Certain Herbicide Agents (Hairy Cell Leukemia and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Certain Herbicide Agents (Hairy Cell Leukemia and Other Chronic B-Cell Leukemias, Parkinson's Disease and..., VA published in the Federal Register (75 FR 53202), an amendment to 38 CFR 3.309 to add hairy cell leukemia and other chronic B-cell leukemias, Parkinson's disease and ischemic heart disease to the list of...

  12. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development

    PubMed Central

    Ilina, Elena L.; Logachov, Anton A.; Laplaze, Laurent; Demchenko, Nikolay P.; Pawlowski, Katharina; Demchenko, Kirill N.

    2012-01-01

    Background and Aims In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. Methods The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. Key Results Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. Conclusions The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem

  13. Total growth and root-cluster production by legumes and proteas depends on rhizobacterial strain, host species and nitrogen level

    PubMed Central

    Lamont, Byron B.; Pérez-Fernández, María

    2016-01-01

    Background Root clusters are bunches of hairy rootlets produced by >1800 species in nine families. The possible involvement of micro-organisms in root-cluster formation has produced conflicting results over the last 40 years. In addition, any effect of rhizobacteria on overall plant growth of root-cluster-bearing species remains unknown. Aims To evaluate the effect of seven rhizobacteria on total plant size, and relative cluster production, by three species, and relate outcomes to their indole-3-acetic acid (IAA)-producing ability as part explanation of past disparate results. Methods We grew Leucadendron salicifolium (from South Africa), Viminaria juncea (Australia) and Lupinus albus (Europe) in gnotobiotic, hydroponic culture at two nitrogen (N) levels and inoculated them with seven bacterial strains and harvested the plants after 13 weeks. Key Results Following inoculation with all seven bacteria individually, plant growth sometimes greatly exceeded that of the aseptic controls, but, under other conditions, growth was less than the controls. Leucadendron and Lupinus failed to produce root clusters in the –N aseptic controls and Viminaria in the +N controls that was overcome by inoculating them with selected bacteria. Six bacteria were able to induce far more root clusters than those of the aseptic controls, while all bacteria sometimes suppressed cluster production in other treatments. All nine possible combinations of resource (plant size, indirect) and morphogenetic (relative cluster production, direct) effects were represented among the results, especially positive synergism (larger plants with a greater density of clusters). There was no clear relationship with IAA-producing ability of the seven bacteria, but low IAA strains of Pseudomonas putida and Bacillus magetarium were associated with greatest cluster production. Conclusions While root-cluster formation can sometimes be induced by introducing rhizobacteria to aseptic culture, the growth

  14. Drop Impact on Hairy Surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Hosoi, Anette

    2017-11-01

    Using a combination of experiments and theory, we investigate the effect of a millimeter-scale hairy texture on impact of liquid drops. By varying the speed of the drop at impact and the spacing of the hairs, we observe a variety of behaviors. For dense hairs and low impact velocity, the liquid drop sits on top of the hair, similar to a Cassie-Baxter state. For higher impact velocity, and intermediate to high density of hairs, the drops penetrate through the surface, but the hairs resist their spreading. For low hair density and high impact velocity, the drops impact and splash.

  15. High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum.

    PubMed

    Chen, Shih-Cheng; Liu, Hui-Wen; Lee, Kung-Ta; Yamakawa, Takashi

    2007-01-01

    The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 microM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42 degrees C heat treatment, and the expressed GUS specific activity was 7-26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.

  16. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    PubMed

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  17. Allodynia mediated by C-tactile afferents in human hairy skin.

    PubMed

    Nagi, Saad S; Rubin, Troy K; Chelvanayagam, David K; Macefield, Vaughan G; Mahns, David A

    2011-08-15

    We recently showed a contribution of low-threshold cutaneous mechanoreceptors to vibration-evoked changes in the perception of muscle pain. Neutral-touch stimulation (vibration) of the hairy skin during underlying muscle pain evoked an overall increase in pain intensity, i.e. allodynia. This effect appeared to be dependent upon cutaneous afferents, as allodynia was abolished by intradermal anaesthesia. However, it remains unclear whether allodynia results from activation of a single class of cutaneous afferents or the convergence of inputs from multiple classes. Intriguingly, no existing human study has examined the contribution of C-tactile (CT) afferents to allodynia. Detailed psychophysical observations were made in 29 healthy subjects (18 males and 11 females). Sustained muscle pain was induced by infusing hypertonic saline (HS: 5%) into tibialis anterior muscle (TA). Sinusoidal vibration (200 Hz–200 μm) was applied to the hairy skin overlying TA. Pain ratings were recorded using a visual analogue scale (VAS). In order to evaluate the role of myelinated and unmyelinated cutaneous afferents in the expression of vibration-evoked allodynia, compression block of the sciatic nerve, and low-dose intradermal anaesthesia (Xylocaine 0.25%) were used, respectively. In addition, the modulation of muscle pain by gentle brushing (1.0 and 3.0 cm s(−1))--known to excite CT fibres--was examined. Brushing stimuli were applied to the hairy skin with all fibres intact and following the blockade of myelinated afferents. During tonic muscle pain (VAS 4–6), vibration evoked a significant and reproducible increase in muscle pain (allodynia) that persisted following compression of myelinated afferents. During compression block, the sense of vibration was abolished, but the vibration-evoked allodynia persisted. In contrast, selective anaesthesia of unmyelinated cutaneous afferents abolished the allodynia, whereas the percept of vibration remained unaffected. Furthermore

  18. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    PubMed

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. Copyright © 2014. Published by Elsevier GmbH.

  19. Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures.

    PubMed

    Valletta, Alessio; De Angelis, Giulia; Badiali, Camilla; Brasili, Elisa; Miccheli, Alfredo; Di Cocco, Maria Enrica; Pasqua, Gabriella

    2016-05-01

    Acetic acid acts as a signal molecule, strongly enhancing xanthone biosynthesis in Hypericum perforatum root cultures. This activity is specific, as demonstrated by the comparison with other short-chain monocarboxylic acids. We have recently demonstrated that Hypericum perforatum root cultures constitutively produce xanthones at higher levels than the root of the plant and that they respond to chitosan (CHIT) elicitation with a noteworthy increase in xanthone production. In the present study, CHIT was administered to H. perforatum root cultures using three different elicitation protocols, and the increase in xanthone production was evaluated. The best results (550 % xanthone increase) were obtained by subjecting the roots to a single elicitation with 200 mg l(-1) CHIT and maintaining the elicitor in the culture medium for 7 days. To discriminate the effect of CHIT from that of the solvent, control experiments were performed by administering AcOH alone at the same concentration used for CHIT solubilization. Unexpectedly, AcOH caused an increase in xanthone production comparable to that observed in response to CHIT. Feeding experiments with (13)C-labeled AcOH demonstrated that this compound was not incorporated into the xanthone skeleton. Other short-chain monocarboxylic acids (i.e., propionic and butyric acid) have little or no effect on the production of xanthones. These results indicate that AcOH acts as a specific signal molecule, able to greatly enhance xanthone biosynthesis in H. perforatum root cultures.

  20. Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis.

    PubMed

    Sauvêtre, Andrés; May, Robert; Harpaintner, Rudolf; Poschenrieder, Charlotte; Schröder, Peter

    2018-01-15

    Carbamazepine (CBZ) is a pharmaceutical frequently categorized as a recalcitrant pollutant in the aquatic environment. Endophytic bacteria previously isolated from reed plants have shown the ability to promote growth of their host and to contribute to CBZ metabolism. In this work, a horseradish (Armoracia rusticana) hairy root (HR) culture has been used as a plant model to study the interactions between roots and endophytic bacteria in response to CBZ exposure. HRs could remove up to 5% of the initial CBZ concentration when they were grown in spiked Murashige and Skoog (MS) medium. Higher removal rates were observed when HRs were inoculated with the endophytic bacteria Rhizobium radiobacter (21%) and Diaphorobacter nitroreducens (10%). Transformation products resulting from CBZ degradation were identified using liquid chromatography-ultra high-resolution quadrupole time of flight mass spectrometry (LC-UHR-QTOF-MS). CBZ metabolism could be divided in four pathways. Metabolites involving GSH conjugation and 2,3-dihydroxylation, as well as acridine related compounds are described in plants for the first time. This study presents strong evidence that xenobiotic metabolism and degradation pathways in plants can be modulated by the interaction with their endophytic community. Hence it points to plausible applications for the elimination of recalcitrant compounds such as CBZ from wastewater in CWs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila

    PubMed Central

    Cui, Lijie; Ni, Xiaoling; Ji, Qian; Teng, Xiaojuan; Yang, Yanru; Wu, Chao; Zekria, David; Zhang, Dasheng; Kai, Guoyin

    2015-01-01

    Camptothecin (CPT) belongs to a group of monoterpenoidindole alkaloids (TIAs) and its derivatives such as irinothecan and topothecan have been widely used worldwide for the treatment of cancer, giving rise to rapidly increasing market demands. Genes from Catharanthus roseus encoding strictosidine synthase (STR) and geraniol 10-hydroxylase (G10H), were separately and simultaneously introduced into Ophiorrhiza pumila hairy roots. Overexpression of individual G10H (G lines) significantly improved CPT production with respect to non-transgenic hairy root cultures (NC line) and single STR overexpressing lines (S lines), indicating that G10H plays a more important role in stimulating CPT accumulation than STR in O. pumila. Furthermore, co-overexpression of G10H and STR genes (SG Lines) caused a 56% increase on the yields of CPT compared to NC line and single gene transgenic lines, showed that simultaneous introduction of G10H and STR can produce a synergistic effect on CPT biosynthesis in O. pumila. The MTT assay results indicated that CPT extracted from different lines showed similar anti-tumor activity, suggesting that transgenic O. pumila hairy root lines could be an alternative approach to obtain CPT. To our knowledge, this is the first report on the enhancement of CPT production in O. pumila employing a metabolic engineering strategy. PMID:25648209

  2. Envisaging the Regulation of Alkaloid Biosynthesis and Associated Growth Kinetics in Hairy Roots of Vinca minor Through the Function of Artificial Neural Network.

    PubMed

    Verma, Priyanka; Anjum, Shahin; Khan, Shamshad Ahmad; Roy, Sudeep; Odstrcilik, Jan; Mathur, Ajay Kumar

    2016-03-01

    Artificial neural network based modeling is a generic approach to understand and correlate different complex parameters of biological systems for improving the desired output. In addition, some new inferences can also be predicted in a shorter time with less cost and labor. As terpenoid indole alkaloid pathway in Vinca minor is very less investigated or elucidated, a strategy of elicitation with hydroxylase and acetyltransferase along with incorporation of various precursors from primary shikimate and secoiridoid pools via simultaneous employment of cyclooxygenase inhibitor was performed in the hairy roots of V. minor. This led to the increment in biomass accumulation, total alkaloid concentration, and vincamine production in selected treatments. The resultant experimental values were correlated with algorithm approaches of artificial neural network that assisted in finding the yield of vincamine, alkaloids, and growth kinetics using number of elicits. The inputs were the hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from shikimate and secoiridoid pools and the outputs were growth index (GI), alkaloids, and vincamine. The approach incorporates two MATLAB codes; GRNN and FFBPNN. Growth kinetic studies revealed that shikimate and tryptophan supplementation triggers biomass accumulation (GI = 440.2 to 540.5); while maximum alkaloid (3.7 % dry wt.) and vincamine production (0.017 ± 0.001 % dry wt.) was obtained on supplementation of secologanin along with tryptophan, naproxen, hydrogen peroxide, and acetic anhydride. The study shows that experimental and predicted values strongly correlate each other. The correlation coefficient for growth index (GI), alkaloids, and vincamine was found to be 0.9997, 0.9980, 0.9511 in GRNN and 0.9725, 0.9444, 0.9422 in FFBPNN, respectively. GRNN provided greater similarity between the target and predicted dataset in comparison to FFBPNN. The findings can provide future

  3. Noncoherent-intense-pulsed light for the treatment of relapsing hairy intradermal melanocytic nevus after shave excision.

    PubMed

    Moreno-Arias, G A; Ferrando, J

    2001-01-01

    Few reports about melanocytic lesions treatment by means of noncoherent-intense-pulsed light (NCIPL) have been published. Here we evaluate the clinical results of a relapsing hairy intradermal melanocytic nevus treated with a noncoherent-intense-pulsed light source. A facial repigmented hairy intradermal melanocytic nevus that relapsed after shave excision, received four treatment sessions of a noncoherent-intense-pulsed light source (EpiLight, ESC Medical Systems Ltd, Israel) with the following parameters: 755 nm, a fluence energy of 40-42.5 J/cm(2), triple mode, a pulse width of 3.8 ms, and a delay of 20 ms, at 4-week intervals. Complete pigment clearance and hair removal was obtained. We have neither observed repigmentation nor hair regrowth after a 6 month-follow-up. No side effects were documented. Noncoherent-intense-pulse light is an effective treatment for hairy-pigmented melanocytic nevus. Copyright 2001 Wiley-Liss, Inc.

  4. Effect of harvest timing and leaf hairiness on fiber quality

    USDA-ARS?s Scientific Manuscript database

    Recent concerns over leaf grades have generated questions of how both time of day cotton is harvested, as well as leaf hairiness levels of certain varieties, influence fiber quality. To address this, two smooth leaf varieties and two varieties with higher levels of leaf pubescence were harvested at...

  5. On a Class of Hairy Square Barriers and Gamow Vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Garcia, N.

    The second order Darboux-Gamow transformation is applied to deform square one dimensional barriers in non-relativistic quantum mechanics. The initial and the new 'hairy' potentials have the same transmission probabilities (for the appropriate parameters). In general, new Gamow vectors are constructed as Darboux deformations of the initial ones.

  6. Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture.

    PubMed

    Runguphan, Weerawat; Maresh, Justin J; O'Connor, Sarah E

    2009-08-18

    Natural products have long served as both a source and inspiration for pharmaceuticals. Modifying the structure of a natural product often improves the biological activity of the compound. Metabolic engineering strategies to ferment "unnatural" products have been enormously successful in microbial organisms. However, despite the importance of plant derived natural products, metabolic engineering strategies to yield unnatural products from complex, lengthy plant pathways have not been widely explored. Here, we show that RNA mediated suppression of tryptamine biosynthesis in Catharanthus roseus hairy root culture eliminates all production of monoterpene indole alkaloids, a class of natural products derived from two starting substrates, tryptamine and secologanin. To exploit this chemically silent background, we introduced an unnatural tryptamine analog to the production media and demonstrated that the silenced plant culture could produce a variety of novel products derived from this unnatural starting substrate. The novel alkaloids were not contaminated by the presence of the natural alkaloids normally present in C. roseus. Suppression of tryptamine biosynthesis therefore did not appear to adversely affect expression of downstream biosynthetic enzymes. Targeted suppression of substrate biosynthesis therefore appears to be a viable strategy for programming a plant alkaloid pathway to more effectively produce desirable unnatural products. Moreover, although tryptamine is widely found among plants, this silenced line demonstrates that tryptamine does not play an essential role in growth or development in C. roseus root culture. Silencing the biosynthesis of an early starting substrate enhances our ability to harness the rich diversity of plant based natural products.

  7. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants.

    PubMed

    Xu, Linyun; Zhu, Heping; Ozkan, H Erdal; Bagley, William E; Krause, Charles R

    2011-07-01

    Adjuvants can improve pesticide application efficiency and effectiveness. However, quantifications of the adjuvant-amended pesticide droplet actions on foliage, which could affect application efficiencies, are largely unknown. Droplet evaporation rates and spread on waxy or hairy leaves varied greatly with the adjuvant types tested. On waxy leaves, the wetted areas of droplets containing crop oil concentrate (COC) were significantly smaller than those containing modified seed oil (MSO), non-ionic surfactant (NIS) or oil surfactant blend (OSB), whereas the evaporation rates of COC-amended droplets were significantly higher. On hairy leaves, COC-amended droplets remained on top of the hairs without wetting the epidermis. When the relative concentration was 1.50, the wetted area of droplets with NIS was 9.2 times lower than that with MSO and 6.1 times lower than that with OSB. The wetted area increased as the adjuvant concentration increased. MSO- or OSB-amended droplets spread extensively on the hairy leaf surface until they were completely dried. These results demonstrated that the proper concentration of MSO, NIS or OSB in spray mixtures improved the homogeneity of spray coverage on both waxy and hairy leaf surfaces and could reduce pesticide use. This article is a US Government work and is in the public domain in the USA. Published 2011 by John Wiley & Sons, Ltd.

  8. In vitro induction of lipo-chitooligosaccharide production in Bradyrhizobium japonicum cultures by root extracts from non-leguminous plants.

    PubMed

    Lian, Bin; Souleimanov, Alfred; Zhou, Xiaomin; Smith, Donald L

    2002-01-01

    Bradyrhizobium japonicum can form a N2-fixing symbiosis with compatible leguminous plants. It can also act as a plant-growth promoting rhizobacterium (PGPR) for non-legume plants, possibly through production of lipo-chitooligosaccharides (LCOs), which should have the ability to induce disease resistance responses in plants. The objective of this work was to determine whether non-leguminous crop plants can induce LCO formation by B. japonicum cultures. Cultures treated with root extracts of soybean, corn, cotton or winter wheat were assayed for presence and level of LCO. Root extracts of soybean, corn and winter wheat all induced LCO production, with extracts of corn inducing the greatest amounts. Root washings of corn also induced LCO production, but less than the root extract. These results indicated that the stimulation of non-legume plant growth by B. japonicum could be through the production of LCOs, induced by materials excreted by the roots of non-legume plants.

  9. Regulation of plant immunity through modulation of phytoalexin synthesis

    USDA-ARS?s Scientific Manuscript database

    Soybean hairy roots transformed with the resveratrol synthase and resveratrol oxymethyl transferase genes driven by constitutive Arabidopsis actin and CsVMV promoters were characterized. Transformed hairy roots accumulated the stilbenic compounds resveratrol and pterostilbene, which are normally not...

  10. Hairy vetch seedbank persistence and implications for cover crop management

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth) is a fast growing, winter hardy annual legume that can produce shoot biomass levels upwards of 6500 kg ha-1. This cover crop is well suited for summer annual grain rotations, as it fixes considerable amounts of nitrogen, reduces erosion through rapid ground cover, an...

  11. Scalar solitons and the microscopic entropy of hairy black holes in three dimensions

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Martínez, Cristián; Troncoso, Ricardo

    2011-01-01

    General Relativity coupled to a self-interacting scalar field in three dimensions is shown to admit exact analytic soliton solutions, such that the metric and the scalar field are regular everywhere. Since the scalar field acquires slow fall-off at infinity, the soliton describes an asymptotically AdS spacetime in a relaxed sense as compared with the one of Brown and Henneaux. Nevertheless, the asymptotic symmetry group remains to be the conformal group, and the algebra of the canonical generators possesses the standard central extension. For this class of asymptotic behavior, the theory also admits hairy black holes which raises some puzzles concerning a holographic derivation of their entropy à la Strominger. Since the soliton is devoid of integration constants, it has a fixed (negative) mass, and it can be naturally regarded as the ground state of the "hairy sector", for which the scalar field is switched on. This assumption allows to exactly reproduce the semiclassical hairy black hole entropy from the asymptotic growth of the number of states by means of Cardy formula. Particularly useful is expressing the asymptotic growth of the number of states only in terms of the spectrum of the Virasoro operators without making any explicit reference to the central charges.

  12. Linking a Germplasm Collection of the Cover Crop Hairy Vetch (Vicia villosa Roth) to Traits Related to Improved Nitrogen Fixation

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch is used as a leguminous cover crop throughout the United States providing important ecosystem services in agro-ecosystems (Abdul-Baki et al., 2002; Mohler and Teasdale, 1993; Puget and Drinkwater, 2001; Seo et al., 2006; Stute and Posner, 1995). Many traits found in hairy vetch have pro...

  13. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites.

    PubMed

    Kaimoyo, Evans; Farag, Mohamed A; Sumner, Lloyd W; Wasmann, Catherine; Cuello, Joel L; VanEtten, Hans

    2008-01-01

    Many secondary metabolites that are normally undetectable or in low amounts in healthy plant tissue are synthesized in high amounts in response to microbial infection. Various abiotic and biotic agents have been shown to mimic microorganisms and act as elicitors of the synthesis of these plant compounds. In the present study, sub-lethal levels of electric current are shown to elicit the biosynthesis of secondary metabolites in transgenic and non-transgenic plant tissue. The production of the phytoalexin (+)-pisatin by pea was used as the main model system. Non-transgenic pea hairy roots treated with 30-100 mA of electric current produced 13 times higher amounts of (+)-pisatin than did the non-elicited controls. Electrically elicited transgenic pea hairy root cultures blocked at various enzymatic steps in the (+)-pisatin biosynthetic pathway also accumulated intermediates preceding the blocked enzymatic step. Secondary metabolites not usually produced by pea accumulated in some of the transgenic root cultures after electric elicitation due to the diversion of the intermediates into new pathways. The amount of pisatin in the medium bathing the roots of electro-elicited roots of hydroponically cultivated pea plants was 10 times higher 24 h after elicitation than in the medium surrounding the roots of non-elicited control plants, showing not only that the electric current elicited (+)-pisatin biosynthesis but also that the (+)-pisatin was released from the roots. Seedlings, intact roots or cell suspension cultures of fenugreek (Trigonella foenum-graecum), barrel medic, (Medicago truncatula), Arabidopsis thaliana, red clover (Trifolium pratense) and chickpea (Cicer arietinum) also produced increased levels of secondary metabolites in response to electro-elicitation. On the basis of our results, electric current would appear to be a general elicitor of plant secondary metabolites and to have potential for application in both basic and commercial research.

  14. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis.

    PubMed

    Granovsky, Yelena; Matre, Dagfinn; Sokolik, Alexander; Lorenz, Jürgen; Casey, Kenneth L

    2005-06-01

    The human palm has a lower heat detection threshold and a higher heat pain threshold than hairy skin. Neurophysiological studies of monkeys suggest that glabrous skin has fewer low threshold heat nociceptors (AMH type 2) than hairy skin. Accordingly, we used a temperature-controlled contact heat evoked potential (CHEP) stimulator to excite selectively heat receptors with C fibers or Adelta-innervated AMH type 2 receptors in humans. On the dorsal hand, 51 degrees C stimulation produced painful pinprick sensations and 41 degrees C stimuli evoked warmth. On the glabrous thenar, 41 degrees C stimulation produced mild warmth and 51 degrees C evoked strong but painless heat sensations. We used CHEP responses to estimate the conduction velocities (CV) of peripheral fibers mediating these sensations. On hairy skin, 41 degrees C stimuli evoked an ultra-late potential (mean, SD; N wave latency: 455 (118) ms) mediated by C fibers (CV by regression analysis: 1.28 m/s, N=15) whereas 51 degrees C stimuli evoked a late potential (N latency: 267 (33) ms) mediated by Adelta afferents (CV by within-subject analysis: 12.9 m/s, N=6). In contrast, thenar responses to 41 and 51 degrees C were mediated by C fibers (average N wave latencies 485 (100) and 433 (73) ms, respectively; CVs 0.95-1.35 m/s by regression analysis, N=15; average CV=1.7 (0.41) m/s calculated from distal glabrous and proximal hairy skin stimulation, N=6). The exploratory range of the human and monkey palm is enhanced by the abundance of low threshold, C-innervated heat receptors and the paucity of low threshold AMH type 2 heat nociceptors.

  15. Effect of Rhizobium and arbuscular mycorrhizal fungi inoculation on electrolyte leakage in Phaseolus vulgaris roots overexpressing RbohB.

    PubMed

    Arthikala, Manoj-Kumar; Nava, Noreide; Quinto, Carmen

    2015-01-01

    Respiratory oxidative burst homolog (RBOH)-mediated reactive oxygen species (ROS) regulate a wide range of biological functions in plants. They play a critical role in the symbiosis between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. For instance, overexpression of PvRbohB enhances nodule numbers, but reduces mycorrhizal colonization in Phaseolus vulgaris hairy roots and downregulation has the opposite effect. In the present study, we assessed the effect of both rhizobia and AM fungi on electrolyte leakage in transgenic P. vulgaris roots overexpressing (OE) PvRbohB. We demonstrate that elevated levels of electrolyte leakage in uninoculated PvRbohB-OE transgenic roots were alleviated by either Rhizobium or AM fungi symbiosis, with the latter interaction having the greater effect. These results suggest that symbiont colonization reduces ROS elevated electrolyte leakage in P. vulgaris root cells.

  16. Lessons learned from non-medical industries: root cause analysis as culture change at a chemical plant

    PubMed Central

    Carroll, J; Rudolph, J; Hatakenaka, S

    2002-01-01

    

 Root cause analysis was introduced to a chemical plant as a way of enhancing performance and safety, exemplified by the investigation of an explosion. The cultural legacy of the root cause learning intervention was embodied in managers' increased openness to new ideas, individuals' questioning attitude and disciplined thinking, and a root cause analysis process that provided continual opportunities to learn and improve. Lessons for health care are discussed, taking account of differences between the chemical and healthcare industries. PMID:12486993

  17. Superradiant instability of near extremal and extremal four-dimensional charged hairy black holes in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    González, P. A.; Papantonopoulos, Eleftherios; Saavedra, Joel; Vásquez, Yerko

    2017-03-01

    We study the instability of near extremal and extremal four-dimensional anti-de Sitter charged hairy black holes to radial neutral massive and charged massless scalar field perturbations. We solve the scalar field equation by using the improved asymptotic iteration method and the time domain analysis, and we find the quasinormal frequencies. For the charged scalar perturbations, we find the superradiance condition by computing the reflection coefficient in the low-frequency limit, and we show that in the superradiance regime, which depends on the scalar hair charge, all modes of radial charged massless perturbations are unstable, indicating that the charged hairy black hole is superradiantly unstable. On the other hand, calculating the quasinormal frequencies of radial neutral scalar perturbations in this background, we find stability of the charged hairy black hole.

  18. Two Tropinone Reductases with Distinct Stereospecificities from Cultured Roots of Hyoscyamus niger1

    PubMed Central

    Hashimoto, Takashi; Nakajima, Keiji; Ongena, Godelieve; Yamada, Yasuyuki

    1992-01-01

    Tropinone is an alkamine intermediate at the branch point of biosynthetic pathways leading to various tropane alkaloids. Two stereospecifically distinct NADPH-dependent oxidoreductases, TR-I and TR-II, which, respectively, reduce tropinone to 3α-hydroxytropane (tropine) and 3β-hydroxytropane (ψ-tropine), were detected mainly in the root of tropane alkaloid-producing plants but not in nonproducing cultured root. Both reductases were purified to near homogeneity from cultured root of Hyoscyamus niger and characterized. The TR-I reaction was reversible, whereas the TR-II reaction was essentially irreversible, reduction of the ketone being highly favored over oxidation of the alcohol ψ-tropine. Marked differences were found between the two reductase in their affinities for tropinone substrate and in the effects of amino acid modification reagents. Some differences in substrate specificity were apparent. For example, N-propyl-4-piperidone was reduced by TR-II but not by TR-I. Conversely, 3-quinuclidinone and 8-thiabicyclo[3,2,1]octane-3-one were accepted as substrates by TR-I but hardly at all by TR-II. Both enzymes were shown to be class B oxidoreductases, which transfer the pro-S hydrogen of NAD(P)H to their substrates. Possible roles of these tropinone reductases in alkaloid biosynthesis are discussed. Images Figure 6 PMID:16653065

  19. Variant hairy cell leukemia following papillary urothelial neoplasm of bladder.

    PubMed

    Beyan, Cengiz; Kaptan, Kürsat

    2014-03-01

    A 65 years old man was admitted with multiple lymphadenopathy, weight loss, night sweats and fatigue for 2 months. He had been treated for bladder cancer 2 years ago. Leukocyte count was 37.9 x10(9)/l. Peripheral blood smear had 91% lymphocytes. Lymphocytes had large nuclei with prominent nucleoli, heterogeneous appearance, and large cytoplasm with hairy projections. Flow cytometric immunophenotyping revealed CD20, CD22, CD24, CD45 and HLA-DR positivity. Atypical lymphocytes were stained with tartrate resistant acid phosphatase. Increased metabolic activity was detected in multiple lymph nodes, bone marrow and extremely enlarged spleen with positron emission tomography-computed tomography. Excisional biopsy of the left axillary lymph node revealed infiltration with diffuse B-cell leukemia/lymphoma. Immunohistochemistry showed CD20 positive atypical cells with weak expression of CD11c. The patient was diagnosed as a case of variant hairy cell leukemia and cladribine was administered. A probable second primary malignancy should be kept in mind in cases with a defined malignancy in the presence of unusual symptoms.

  20. Panax ginseng Adventitious Root Suspension Culture: Protocol for Biomass Production and Analysis of Ginsenosides by High Pressure Liquid Chromatography.

    PubMed

    Murthy, Hosakatte Niranjana; Paek, Kee Yoeup

    2016-01-01

    Panax ginseng C.A. Meyer (Korean ginseng) is a popular herbal medicine. It has been used in Chinese and Oriental medicines since thousands of years. Ginseng products are generally used as a tonic and an adaptogen to resist the adverse influence of a wide range of physical, chemical and biological factors, and to restore homeostasis. Ginsenosides or ginseng saponins are the principal active ingredients of ginseng. Since ginseng cultivation process is very slow and needs specific environment for field cultivation, cell and tissue cultures are sought as alternatives for the production of ginseng biomass and bioactive compounds. In this chapter, we focus on methods of induction of adventitious roots from ginseng roots, establishment of adventitious root suspension cultures using bioreactors, procedures for processing of adventitious roots, and analysis of ginsenosides by high pressure liquid chromatography.

  1. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant.

    PubMed

    Luo, Feifei; Wang, Qian; Yin, Chunlin; Ge, Yinglu; Hu, Fenglin; Huang, Bo; Zhou, Hong; Bao, Guanhu; Wang, Bin; Lu, Ruili; Li, Zengzhi

    2015-09-01

    Beauveria bassiana is a kind of world-wide entomopathogenic fungus and can also colonize plant rhizosphere. Previous researches showed differential expression of genes when entomopathogenic fungi are cultured in insect or plant materials. However, so far there is no report on metabolic alterations of B. bassiana in the environments of insect or plant. The purpose of this paper is to address this problem. Herein, we first provide the metabolomic analysis of B. bassiana cultured in insect pupae extracts (derived from Euproctis pseudoconspersa and Bombyx mori, EPP and BMP), plant root exudates (derived from asparagus and carrot, ARE and CRE), distilled water and minimal media (MM), respectively. Principal components analysis (PCA) shows that mycelia cultured in pupae extracts and root exudates are evidently separated and individually separated from MM, which indicates that fungus accommodates to insect and plant environments by different metabolic regulation mechanisms. Subsequently, orthogonal projection on latent structure-discriminant analysis (OPLS-DA) identifies differential metabolites in fungus under three environments relative to MM. Hierarchical clustering analysis (HCA) is performed to cluster compounds based on biochemical relationships, showing that sphingolipids are increased in BMP but are decreased in EPP. This observation further implies that sphingolipid metabolism may be involved in the adaptation of fungus to different hosts. In the meantime, sphingolipids are significantly decreased in root exudates but they are not decreased in distilled water, suggesting that some components of the root exudates can suppress sphingolipid to down-regulate sphingolipid metabolism. Pathway analysis finds that fatty acid metabolism is maintained at high level but non-ribosomal peptides (NRP) synthesis is unaffected in mycelia cultured in pupae extracts. In contrast, fatty acid metabolism is not changed but NRP synthesis is high in mycelia cultured in root exudates

  2. Target and Non-target Site Mechanisms Developed by Glyphosate-Resistant Hairy beggarticks (Bidens pilosa L.) Populations from Mexico

    PubMed Central

    Alcántara-de la Cruz, Ricardo; Fernández-Moreno, Pablo T.; Ozuna, Carmen V.; Rojano-Delgado, Antonia M.; Cruz-Hipolito, Hugo E.; Domínguez-Valenzuela, José A.; Barro, Francisco; De Prado, Rafael

    2016-01-01

    In 2014 hairy beggarticks (Bidens pilosa L.) has been identified as being glyphosate-resistant in citrus orchards from Mexico. The target and non-target site mechanisms involved in the response to glyphosate of two resistant populations (R1 and R2) and one susceptible (S) were studied. Experiments of dose-response, shikimic acid accumulation, uptake-translocation, enzyme activity and 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) gene sequencing were carried out in each population. The R1 and R2 populations were 20.4 and 2.8-fold less glyphosate sensitive, respectively, than the S population. The resistant populations showed a lesser shikimic acid accumulation than the S population. In the latter one, 24.9% of 14C-glyphosate was translocated to the roots at 96 h after treatment; in the R1 and R2 populations only 12.9 and 15.5%, respectively, was translocated. Qualitative results confirmed the reduced 14C-glyphosate translocation in the resistant populations. The EPSPS enzyme activity of the S population was 128.4 and 8.5-fold higher than the R1 and R2 populations of glyphosate-treated plants, respectively. A single (Pro-106-Ser), and a double (Thr-102-Ile followed by Pro-106-Ser) mutations were identified in the EPSPS2 gene conferred high resistance in R1 population. Target-site mutations associated with a reduced translocation were responsible for the higher glyphosate resistance in the R1 population. The low-intermediate resistance of the R2 population was mediated by reduced translocation. This is the first glyphosate resistance case confirmed in hairy beggarticks in the world. PMID:27752259

  3. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    PubMed

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  4. Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Font, José A.; Herdeiro, Carlos; Radu, Eugen

    2017-08-01

    Recent numerical relativity simulations within the Einstein-Maxwell-(charged-)Klein-Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner-Nordström black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these unstable solitons leads, again, to the formation of a hairy BH. In some other cases, unstable solitons evolve into a (bald) Reissner-Nordström BH. These results establish that the system admits two distinct channels to form hairy BHs at the threshold of superradiance: growing hair from an unstable (bald) BH, or growing a horizon from an unstable (horizonless) soliton. Some parallelism with the case of asymptotically flat boson stars and Kerr BHs with scalar hair is drawn.

  5. Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production.

    PubMed

    Shasmita; Rai, Manoj K; Naik, Soumendra K

    2017-12-26

    Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as "Indian Ginseng", is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and

  6. Soft hairy warped black hole entropy

    NASA Astrophysics Data System (ADS)

    Grumiller, Daniel; Hacker, Philip; Merbis, Wout

    2018-02-01

    We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u (1) current algebras and recover the surprisingly simple entropy formula S = 2 π( J 0 + + J 0 - ), where J 0 ± are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.

  7. Addressing Challenges to Enhance the Bioactives of Withania somnifera through Organ, Tissue, and Cell Culture Based Approaches

    PubMed Central

    Singh, Pritika; Guleri, Rupam; Angurala, Amrita; Kaur, Kuldeep; Kaur, Kulwinder; Kaul, Sunil C.; Wadhwa, Renu

    2017-01-01

    Withania somnifera is a highly valued medicinal plant in traditional home medicine and is known for a wide range of bioactivities. Its commercial cultivation is adversely affected by poor seed viability and germination. Infestation by various pests and pathogens, survival under unfavourable environmental conditions, narrow genetic base, and meager information regarding biosynthesis of secondary metabolites are some of the other existing challenges in the crop. Biotechnological interventions through organ, tissue, and cell culture provide promising options for addressing some of these issues. In vitro propagation facilitates conservation and sustainable utilization of the existing germplasms and broadening the genetic base. It would also provide means for efficient and rapid mass propagation of elite chemotypes and generating uniform plant material round the year for experimentation and industrial applications. The potential of in vitro cell/organ cultures for the production of therapeutically valuable compounds and their large-scale production in bioreactors has received significant attention in recent years. In vitro culture system further provides distinct advantage for studying various cellular and molecular processes leading to secondary metabolite accumulation and their regulation. Engineering plants through genetic transformation and development of hairy root culture system are powerful strategies for modulation of secondary metabolites. The present review highlights the developments and sketches current scenario in this field. PMID:28299323

  8. Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity.

    PubMed

    Tocci, Noemi; Simonetti, Giovanna; D'Auria, Felicia Diodata; Panella, Simona; Palamara, Anna Teresa; Valletta, Alessio; Pasqua, Gabriella

    2011-08-01

    Hypericum perforatum is a well-known medicinal plant which contains a wide variety of metabolites, including xanthones, which have a wide range of biological properties, including antifungal activity. In the present study, we evaluated the capability of roots regenerated from calli of H. perforatum subsp. angustifolium to produce xanthones. Root biomass was positively correlated with the indole-3-butyric acid concentration, whereas a concentration of 1 mg l(-1) was the most suitable for the development of roots. High auxin concentrations also inhibited xanthone accumulation. Xanthones were produced in large amounts, with a very stable trend throughout the culture period. When the roots were treated with chitosan, the xanthone content dramatically increased, peaking after 7 days. Chitosan also induced a release of these metabolites into the culture. The maximum accumulation (14.26 ± 0.62 mg g(-1) dry weight [DW]) and release (2.64 ± 0.13 mg g(-1) DW) of xanthones were recorded 7 days after treatment. The most represented xanthones were isolated, purified, and spectroscopically characterized. Antifungal activity of the total root extracts was tested against a broad panel of human fungal pathogen strains (30 Candida species, 12 Cryptococcus neoformans, and 16 dermatophytes); this activity significantly increased when using chitosan. Extracts obtained after 7 days of chitosan treatment showed high antifungal activity (mean minimum inhibitory concentration of 83.4, 39.1, and 114 μg ml(-1) against Candida spp., C. neoformans, and dermatophytes, respectively). Our results suggest that root cultures can be considered as a potential tool for large-scale production of extracts with stable quantities of xanthones.

  9. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management

    PubMed Central

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3 --N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha-1 biomass, whereas mixtures averaged 4.1 Mg ha-1 and hairy vetch 2.3 Mg ha-1. Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha-1 N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3 --N (0 to 30 cm depth) averaged 62 kg ha-1 for rye, 97 kg ha-1 for the mixtures, and 119 kg ha-1 for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures. PMID:26080008

  10. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management.

    PubMed

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3(-)-N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha(-1) biomass, whereas mixtures averaged 4.1 Mg ha(-1) and hairy vetch 2.3 Mg ha(-1). Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha(-1) N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3(-)-N (0 to 30 cm depth) averaged 62 kg ha(-1) for rye, 97 kg ha(-1) for the mixtures, and 119 kg ha(-1) for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.

  11. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    PubMed Central

    2010-01-01

    Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p < 0.001). The model simulations of superficial temperature correlated with the measured skin surface temperature (r > 0.90, p < 0.001). Of the 16 subjects tested; eight subjects reported pricking pain in the hairy skin following a stimulus of 0.6 J/cm2 (5 W, 0.12 s, d1/e2 = 11.4 mm) only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin) was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation. PMID:21059226

  12. Searching for plant root traits to improve soil cohesion and resist soil erosion

    NASA Astrophysics Data System (ADS)

    De Baets, Sarah; Smyth, Kevin; Denbigh, Tom; Weldon, Laura; Higgins, Ben; Matyjaszkiewicz, Antoni; Meersmans, Jeroen; Chenchiah, Isaac; Liverpool, Tannie; Quine, Tim; Grierson, Claire

    2017-04-01

    Soil erosion poses a serious threat to future food and environmental security. Soil erosion protection measures are therefore of great importance for soil conservation and food security. Plant roots have proven to be very effective in stabilizing the soil and protecting the soil against erosion. However, no clear insights are yet obtained into the root traits that are responsible for root-soil cohesion. This is important in order to better select the best species for soil protection. Research using Arabidopsis mutants has made great progress towards explaining how root systems are generated by growth, branching, and responses to gravity, producing mutants that affect root traits. In this study, the performance of selected Arabidopsis mutants is analyzed in three root-soil cohesion assays. Measurements of detachment, uprooting force and soil detachment are here combined with the microscopic analysis of root properties, such as the presence, length and density of root hairs in this case. We found that Arabidopsis seedlings with root hairs (wild type, wer myb23, rsl4) were more difficult to detach from gel media than hairless (cpc try) or short haired (rsl4, rhd2) roots. Hairy roots (wild type, wer myb23) on mature, non-reproductive rosettes were more difficult to uproot from compost or clay soil than hairless roots (cpc try). At high root densities, erosion rates from soils with hairless roots (cpc try) were as much as 10 times those seen from soils occupied by roots with hairs (wer myb23, wild type). We find therefore root hairs play a significant role in root-soil cohesion and in minimizing erosion. This framework and associated suite of experimental assays demonstrates its ability to measure the effect of any root phenotype on the effectiveness of plant roots in binding substrates and reducing erosion.

  13. Factors influencing plant regeneration from seedling explants of Hairy nightshade (Solanum sarrachoides)

    USDA-ARS?s Scientific Manuscript database

    A good model plant to investigate plant – pathogen interactions would be easy to grow, have a short life cycle, be a natural host of many pathogens, and be easy to manipulate genetically. Hairy nightshade (Solanum sarrachoides) is a ubiquitous, fast growing weed that produces copious amounts of see...

  14. Enthalpic and Entropic Competition in Blends of Self-Suspended Hairy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhury, Snehashis; Agrawal, Akanksha; Archer, Lynden

    Self-suspended hairy nanoparticles, where polymer chains are grafted onto nanoparticles, have attracted significant recent attention. These materials have been reported to manifest several interesting phenomena like thermal jamming, slowing-down of polymer chain dynamics, as well as small-strain stress overshoots during start-up of steady shear. The entropic penalty on tethered polymers produced by the requirement that they fill the space between the nanoparticle cores explain most of these behaviors. Here, we show that the entropic attraction between tethered polymer chains can be manipulated in mixtures of hairy nanoparticles using different polymer chemistry to design materials with unusual characteristics. Specifically, the degree of interpenetration of polymer chains can be controlled by tuning their interaction parameter (χ) . For SiO2-PEG/SiO2-PMMA blends, oscillatory rheological measurements show that the plateau modulus and yielding energy are significantly increased, while an opposite effect is seen with SiO2-PEG/SiO2-PI blends. More subtle effects of this enthalpy-entropy competition are well captured in Dielectric Spectroscopy measurements and SAXS experiments that can be used to quantify the degree of stretch and interdigitation of polymer chains.

  15. Targeting Mutant BRAF with Vemurafenib in Relapsed or Refractory Hairy Cell Leukemia

    PubMed Central

    Tiacci, Enrico; Park, Jae H.; De Carolis, Luca; Chung, Stephen S.; Broccoli, Alessandro; Scott, Sasinya; Zaja, Francesco; Devlin, Sean; Pulsoni, Alessandro; Chung, Young Rock; Cimminiello, Michele; Kim, Eunhee; Rossi, Davide; Stone, Richard M.; Motta, Giovanna; Saven, Alan; Varettoni, Marzia; Altman, Jessica K.; Anastasia, Antonella; Grever, Michael R.; Ambrosetti, Achille; Rai, Kanti R.; Fraticelli, Vincenzo; Lacouture, Mario E.; Carella, Angelo Michele; Levine, Ross L.; Leoni, Pietro; Rambaldi, Alessandro; Falzetti, Franca; Ascani, Stefano; Capponi, Monia; Martelli, Maria Paola; Park, Christopher Y.; Pileri, Stefano Aldo; Rosen, Neal; Foà, Robin; Berger, Michael F.; Zinzani, Pier Luigi; Abdel-Wahab, Omar; Falini, Brunangelo; Tallman, Martin S.

    2016-01-01

    BACKGROUND BRAF-V600E is the genetic lesion underlying hairy cell leukemia. We assessed the safety and activity of the oral BRAF inhibitor vemurafenib in patients with hairy cell leukemia who relapsed after or were refractory to purine analogues. METHODS We conducted in Italy and USA two phase-2 single-arm multicenter studies of vemurafenib (960 mg twice daily) given for a median of 16 and 18 weeks, respectively. Primary endpoints were complete remission rate and overall response rate. Patient enrollment was completed (n=28) in the Italian trial in April 2013 and is still open (n=26/36) in the American trial. RESULTS Drug-related adverse events were usually of grade 1-2, and those most frequently requiring dose reductions were rash and arthralgia/arthritis; secondary cutaneous tumors (treated with simple excision) developed in 6/50 patients. Overall response rates were 96% (25/26 evaluable Italian patients) and 100% (24/24 evaluable American patients), obtained after a median of 8 weeks and 12 weeks, respectively. Complete response rates were 34.6% (9/26) and 41.7% (10/24), respectively. In the Italian trial, after a median follow-up of 23 months, the median relapse-free and treatment-free survivals were respectively 19 and 25 months in complete responders, and 6 and 18 months in partial responders. In the American trial, 1-year progression-free and overall survival were 73% and 91%, respectively. Frequent persistence of phospho-ERK+ bone marrow leukemic cells at the end of treatment suggests bypass MEK-ERK reactivation as a resistance mechanism. CONCLUSIONS A short oral course of vemurafenib proved safe and highly effective in relapsed/refractory hairy cell leukemia patients (Funded by AIRC, ERC, Roche/Genentech and others; EudractCT number: 2011-005487-13, ClinicalTrials.gov number NCT01711632). PMID:26352686

  16. Effect of cultural practices and fungicide treatments on the severity of Phytophthora root rot of blueberries grown in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot is an important disease of blueberries, especially those grown in areas with poor drainage. Reliable cultural and chemical management strategies are needed for control of this disease. Two studies were conducted to evaluate the effects of cultural practices and fungicide treat...

  17. Real-time detection of BRAF V600E mutation from archival hairy cell leukemia FFPE tissue by nanopore sequencing.

    PubMed

    Vacca, Davide; Cancila, Valeria; Gulino, Alessandro; Lo Bosco, Giosuè; Belmonte, Beatrice; Di Napoli, Arianna; Florena, Ada Maria; Tripodo, Claudio; Arancio, Walter

    2018-02-01

    The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols. In order to investigate the suitability of MinION sequencing on formalin-fixed paraffin-embedded samples, the presence and frequency of BRAF c.1799T > A mutation was investigated in two archival tissue specimens of Hairy cell leukemia and Hairy cell leukemia Variant. Despite the poor quality of the starting DNA, BRAF mutation was successfully detected in the Hairy cell leukemia sample with around 50% of the reads obtained within 2 h of the sequencing start. Notably, the mutational burden of the Hairy cell leukemia sample as derived from nanopore sequencing proved to be comparable to a sensitive method for the detection of point mutations, namely the Digital PCR, using a validated assay. Nanopore sequencing can be adopted for targeted sequencing of genetic lesions on critical DNA samples such as those extracted from archival routine formalin-fixed paraffin-embedded samples. This result let speculating about the possibility that the nanopore sequencing could be trustably adopted for the real-time targeted sequencing of genetic lesions. Our report opens the window for the adoption of nanopore sequencing in molecular pathology for research and diagnostics.

  18. Protein-functionalized hairy diamond nanoparticles.

    PubMed

    Dahoumane, Si Amar; Nguyen, Minh Ngoc; Thorel, Alain; Boudou, Jean-Paul; Chehimi, Mohamed M; Mangeney, Claire

    2009-09-01

    Diazonium salt chemistry and atom transfer radical polymerization (ATRP) were combined in view of preparing new bioactive hairy diamond nanoparticles containing, or potentially containing, nitrogen-vacancy (NV) fluorescent centers (fluorescent nanodiamonds, or fNDs). fNDs were modified by ATRP initiators using the electroless reduction of the diazonium salt BF(4)(-),(+)N(2)-C(6)H(4)-CH(CH(3))-Br. The strongly bound aryl groups -C(6)H(4)-CH(CH(3))-Br efficiently initiated the ATRP of tert-butyl methacrylate (tBMA) at the surface of the nanodiamonds, which resulted in obtaining ND-PtBMA hybrids. The grafted chain thickness, estimated from X-ray photoelectron spectroscopy (XPS), was found to increase linearly with respect to time before reaching a plateau value of ca. 2 nm. These nanoobjects were further hydrolyzed into ND-PMAA (where PMAA is the poly(methacrylic acid) graft) and further decorated by bovine serum albumin through the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling procedure.

  19. Effect of elicitation on growth, respiration, and nutrient uptake of root and cell suspension cultures of Hyoscyamus muticus.

    PubMed

    Carvalho, Edgard B; Curtis, Wayne R

    2002-01-01

    The elicitation of Hyoscyamus muticus root and cell suspension cultures by fungal elicitor from Rhizoctonia solani causes dramatic changes in respiration, nutrient yields, and growth. Cells and mature root tissues have similar specific oxygen uptake rates (SOUR) before and after the onset of the elicitation process. Cell suspension SOUR were 11 and 18 micromol O2/g FW x h for non-elicited control and elicited cultures, respectively. Mature root SOUR were 11 and 24 micromol O2/g FW x h for control and elicited tissue, respectively. Tissue growth is significantly reduced upon the addition of elicitor to these cultures. Inorganic yield remains fairly constant, whereas yield on sugar is reduced from 0.532 to 0.352 g dry biomass per g sugar for roots and 0.614 to 0.440 g dry biomass per g sugar for cells. This reduction in yield results from increased energy requirements for the defense response. Growth reduction is reflected in a reduction in root meristem (tip) SOUR, which decreased from 189 to 70 micromol O2/g FW x h upon elicitation. Therefore, despite the increase in total respiration, the maximum local oxygen fluxes are reduced as a result of the reduction in metabolic activity at the meristem. This distribution of oxygen uptake throughout the mature tissue could reduce mass transfer requirements during elicited production. However, this was not found to be the case for sesquiterpene elicitation, where production of lubimin and solavetivone were found to increase linearly up to oxygen partial pressures of 40% O2 in air. SOUR is shown to similarly increase in both bubble column and tubular reactors despite severe mass transfer limitations, suggesting the possibility of metabolically induced increases in tissue convective transport during elicitation.

  20. Bone marrow and splenic histology in hairy cell leukaemia.

    PubMed

    Wotherspoon, Andrew; Attygalle, Ayoma; Mendes, Larissa Sena Teixeira

    2015-12-01

    Hairy cell leukaemia is a rare chronic neoplastic B-cell lymphoproliferation that characteristically involves blood, bone marrow and spleen with liver, lymph node and skin less commonly involved. Histologically, the cells have a characteristic appearance with pale/clear cytoplasm and round or reniform nuclei. In the spleen, the infiltrate involves the red pulp and is frequently associated with areas of haemorrhage (blood lakes). The cells stain for B-cell related antigens as well as with antibodies against tartrate-resistant acid phosphatase, DBA44 (CD72), CD11c, CD25, CD103, CD123, cyclin D1 and annexin A1. Mutation of BRAF -V600E is present and antibody to the mutant protein can be used as a specific marker. Bone marrow biopsy is essential in the initial assessment of disease as the bone marrow may be inaspirable or unrepresentative of degree of marrow infiltration as a result of the tumour associated fibrosis preventing aspiration of the tumour cell component. Bone marrow biopsy is important in the assessment of therapy response but in this context staining for CD11c and Annexin A1 is not helpful as they are also markers of myeloid lineage and identification of low level infiltration may be obscured. In this context staining for CD20 may be used in conjunction with morphological assessment and staining of serial sections for cyclin D1 and DBA44 to identify subtle residual infiltration. Staining for CD79a and CD19 is not recommended as these antibodies will identify plasma cells and can lead to over-estimation of disease. Staining for CD20 should not be used in patients following with anti-CD20 based treatments. Down regulation of cyclin D1 and CD25 has been reported in patients following BRAF inhibitor therapy and assessment of these antigens should not be used in this context. Histologically, hairy cell leukaemia needs to be distinguished from other B-cell lymphoproliferations associated with splenomegaly including splenic marginal zone lymphoma, splenic

  1. Effectiveness of herbicides for control of hairy vetch (Vicia villosa) in winter wheat

    USDA-ARS?s Scientific Manuscript database

    We conducted a field experiment in 2009-10 at Pennsylvania and Maryland locations, and repeated it in 2010-11, to test the effectiveness of post-emergent herbicides applied at fall and spring timings on seeded hairy vetch in winter wheat. We tested 16 herbicide treatment combinations that included ...

  2. Air lateral root pruning affects longleaf pine seedling root system morphology

    Treesearch

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  3. Partial purification and properties of tropine dehydrogenase from root cultures of Datura stramonium.

    PubMed

    Koelen, K J; Gross, G G

    1982-04-01

    From sterile root cultures of Datura stramonium, an NADP(H)-specific tropine dehydrogenase has been isolated and characterized. The enzyme catalyzes the reversible and stereospecific oxidation of tropine and related tropane-3 alpha-ols to the corresponding ketone. Isomeric pseudotropine (tropane-3 beta-ol) is neither accepted as substrate nor produced in the reverse reaction. It is assumed that this dehydrogenase is involved in the biosynthesis of tropane alkaloids.

  4. Opposite extremes in ethylene/nitric oxide ratio induce cell death in suspension culture and root apices of tomato exposed to salt stress.

    PubMed

    Poór, P; Borbély, P; Kovács, Judit; Papp, Anita; Szepesi, Ágnes; Takács, Z; Tari, Irma

    2014-12-01

    The plant hormone ethylene or the gaseous signalling molecule nitric oxide (NO) may enhance salt stress tolerance by maintaining ion homeostasis, first of all K+/Na+ ratio of tissues. Ethylene and NO accumulation increased in the root apices and suspension culture cells of tomato at sublethal salt stress caused by 100 mM NaCl, however, the induction phase of programmed cell death (PCD) was different at lethal salt concentration. The production of ethylene by root apices and the accumulation of NO in the cells of suspension culture did not increase during the initiation of PCD after 250 mM NaCl treatment. Moreover, cells in suspension culture accumulated higher amount of reactive oxygen species which, along with NO deficiency contributed to cell death induction. The absence of ethylene in the apical root segments and the absence of NO accumulation in the cell suspension resulted in similar ion disequilibrium, namely K+/Na+ ratio of 1.41 ± 0.1 and 1.68 ± 0.3 in intact plant tissues and suspension culture cells, respectively that was not tolerated by tomato.

  5. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots

    USDA-ARS?s Scientific Manuscript database

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector ge...

  7. Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum vulgare L.) and Hairy Vetch (Vicia villosa) Using Hydroxyapatite.

    PubMed

    Katoh, Masahiko; Risky, Elsya; Sato, Takeshi

    2017-10-23

    This study conducted plant growth tests using a rhizobox system to quantitatively determine the distance of immobilization lead migrating from contaminated soil into uncontaminated rhizosphere soil, and to assess the lead phases accumulated in rhizosphere soil by sequential extraction. Without the hydroxyapatite, exchangeable lead fractions increased as the rhizosphere soil got closer to the contaminated soil. Exchangeable lead fractions were higher even in the rhizosphere soil that shares a boundary with the root surface than in the soil before being planted. Thus, plant growth of hairy vetch was lower in the soil without the hydroxyapatite than in the soil with the hydroxyapatite. The presence of hydroxyapatite may immobilize the majority of lead migrating from contaminated soil into the rhizosphere soil within 1 mm from the contaminated soil. The dominant lead fraction in the rhizosphere soil with the hydroxyapatite was residual. Thus, plant growth was not suppressed and the lead concentration of the plant shoot remained at the background level. These results indicate that the presence of hydroxyapatite in the rhizosphere soil at 5% wt may immobilize most of the lead migrating into the rhizosphere soil within 1 mm from the contaminated soil, resulting in the prevention of lead migration toward the root surface.

  8. Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum vulgare L.) and Hairy Vetch (Vicia villosa) Using Hydroxyapatite

    PubMed Central

    Risky, Elsya; Sato, Takeshi

    2017-01-01

    This study conducted plant growth tests using a rhizobox system to quantitatively determine the distance of immobilization lead migrating from contaminated soil into uncontaminated rhizosphere soil, and to assess the lead phases accumulated in rhizosphere soil by sequential extraction. Without the hydroxyapatite, exchangeable lead fractions increased as the rhizosphere soil got closer to the contaminated soil. Exchangeable lead fractions were higher even in the rhizosphere soil that shares a boundary with the root surface than in the soil before being planted. Thus, plant growth of hairy vetch was lower in the soil without the hydroxyapatite than in the soil with the hydroxyapatite. The presence of hydroxyapatite may immobilize the majority of lead migrating from contaminated soil into the rhizosphere soil within 1 mm from the contaminated soil. The dominant lead fraction in the rhizosphere soil with the hydroxyapatite was residual. Thus, plant growth was not suppressed and the lead concentration of the plant shoot remained at the background level. These results indicate that the presence of hydroxyapatite in the rhizosphere soil at 5% wt may immobilize most of the lead migrating into the rhizosphere soil within 1 mm from the contaminated soil, resulting in the prevention of lead migration toward the root surface. PMID:29065529

  9. Decreased levels of matrix metalloproteinase-2 in root-canal exudates during root canal treatment.

    PubMed

    Pattamapun, Kassara; Handagoon, Sira; Sastraruji, Thanapat; Gutmann, James L; Pavasant, Prasit; Krisanaprakornkit, Suttichai

    2017-10-01

    To determine the matrix metalloproteinase-2 (MMP-2) levels in root-canal exudates from teeth undergoing root-canal treatment. The root-canal exudates from six teeth with normal pulp and periradicular tissues that required intentional root canal treatment for prosthodontic reasons and from twelve teeth with pulp necrosis and asymptomatic apical periodontitis (AAP) were sampled with paper points for bacterial culture and aspirated for the detection of proMMP-2 and active MMP-2 by gelatin zymography and the quantification of MMP-2 levels by ELISA. By gelatin zymography, both proMMP-2 and active MMP-2 were detected in the first collection of root-canal exudates from teeth with pulp necrosis and AAP, but not from teeth with normal pulp, and their levels gradually decreased and disappeared at the last collection. Consistently, ELISA demonstrated a significant decrease in MMP-2 levels in the root-canal exudates of teeth with pulp necrosis and AAP following root canal procedures (p<0.05). Furthermore, the MMP-2 levels were significantly lower in the negative bacterial culture than those in the positive bacterial culture (p<0.001). The levels of MMP-2 in root-canal exudates from teeth with pulp necrosis and AAP were gradually reduced during root canal procedures. Future studies are required to determine if MMP-2 levels may be used as a biomolecule for the healing of apical lesions, similar to the clinical application of MMP-8 as a biomarker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Influence of Urea, Hydroxyurea, and Thiourea on Meloidogyne javanica and Infected Excised Tomato Roots in Culture

    PubMed Central

    Glazer, I.; Orion, D.

    1984-01-01

    Urea (U), hydroxyurea (HU), and thiourea (TU), in various concentrations, were added to chemically defined plant tissue culture medium on which Meloidogyne javanica was reared on excised tomato roots. Concentrations as low as 3 ppm HU or 12 ppm TU inhibited nematode maturation by 70-90% 4 weeks after inoculation, and the coenocytes in the parasitized tissue were poorly developed. Gall weight was also inhibited by 50% in cultures treated with 3 and 6 ppm HU. However, exposing juveniles of M. javanica and Tylenchulus semipenetrans or juveniles and adults of Pratylenchus thornei to increasing concentrations of HU or TU, up to 100 ppm, was not lethal. These two urea derivatives still inhibited nematode maturation when the infected region of the root was not in direct contact with the chemicals. Therefore, we suggest that these urea derivatives inhibit nematode development by affecting the plant metabolism essential to coenocyte formation, an occurrence similar to the hypersensitive reaction in a naturally resistant plant. PMID:19295888

  11. Evaluation of Antioxidant and Antibacterial Potentials of Nigella sativa L. Suspension Cultures under Elicitation.

    PubMed

    Chaudhry, Hera; Fatima, Nida; Ahmad, Iffat Zareen

    2015-01-01

    Nigella sativa L. (family Ranunculaceae) is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ), thymohydroquinone (THQ), and thymol (THY)). Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root culture, and so on, are applied for substantial metabolite production. This study enumerates the antibacterial and antioxidant potentials of N. sativa epicotyl suspension cultures under biotic and abiotic elicitation along with concentration optimization of the elicitors for enhanced TQ and THY production. Cultures under different concentrations of pectin and manganese chloride (MnCl2) elicitation (i.e., 5 mg/L, 10 mg/L, and 15 mg/L) showed that the control, MnCl2 10 mg/L, and pectin 15 mg/L suspension extracts greatly inhibited the growth of E. coli, S. typhimurium, and S. aureus (MIC against E. coli, i.e., 2.35 ± 0.8, 2.4 ± 0.2, and 2.46 ± 0.5, resp.). Elicitation decreased SOD enzyme activity whereas CAT enzyme activity increased remarkably under MnCl2 elicitation. MnCl2 10 mg/L and pectin 15 mg/L elicitation enhanced the DPPH radical inhibition ability, but ferric scavenging activity was comparable to the control. TQ and THY were quantified by LC-MS/MS in the cultures with high bioactive properties revealing maximum content under MnCl2 10 mg/L elicitation. Therefore, MnCl2 elicitation can be undertaken on large scale for sustainable metabolite production.

  12. [In vitro interaction of human pancreatic cancer cells and rat dorsal root ganglia: a co-culture model].

    PubMed

    Liu, Zhi-sheng; Wang, Ye; Li, Qiang; Zhang, Sheng-lin; Shi, Yu-rong

    2012-04-01

    To establish an in vitro model of perineural invasion (PNI) with co-culture of human pancreatic cancer cells and rat root ganglion, to observe the neurite outgrowth and pancreatic cancer cell proliferation and migration, and to explore the molecular basis of perineural invasion (PNI) of pancreatic cancer. Human pancreatic cancer cell line (MIA PaCa-2) and rat dorsal root ganglion (DRG) were co-cultured in Matrigel matrix to generate the PNI model. The neurite outgrowth, pancreatic cancer cell colony formation, neurite-colony contact and retrograde migration were observed under an inverted microscope. The data were analyzed with the Image-Pro Plus 5.0 system. The proliferative index (PI) was measured by immunohistochemical staining with the Ki-67 antibody. In order to determine the absorbance (A) of the pancreatic cancer cells, MTT assay was used. The apoptotic index (AI) was evaluated by flow cytometry. Neurite outgrowth was stimulated in the presence of pancreatic cancer cells. After 72 hours of the co-culture, MIA PaCa colonies co-cultured with DRG exhibited a significantly larger colony area (242.83 ± 4.92) than that of the control (182.50 ± 5.39, P < 0.001). In the MIA PaCa-2/DRG co-culture system, the neurites exhibited a trend of growing towards the pancreatic cancer cell colony. However, the pancreatic cancer cells showed a trend of retrogradely migrating to the DRG along the neurite outgrowth, when MIA PaCa-2 colonies touched the DRG. The positive rate of Ki-67 nuclear antigen was significantly higher than in the co-culture group. The PI value was higher in the experimental group (12.80%) than that in the control group (6.81%, P < 0.01). The MTT assay showed that proliferation of the pancreatic cancer cells was more active than that in the control group. Flow cytometry analysis showed that the apoptosis rate of the pancreatic cancer cell was 2.46%, significantly lower than that of the control group (4.89%, P < 0.001). An in vitro co-culture model of rat

  13. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    PubMed

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  14. Genetic diversity of resident soil rhizobia isolated from nodules of distinct hairy vetch genotypes

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth) is widely grown as a legume cover crop throughout the U.S.A., with biological nitrogen fixation (BNF) through symbiosis with Rhizobium leguminosarum biovar viciae (Rlv) being one of the most sought after benefits of its cultivation. This study determined if HV culti...

  15. Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear σ-model system

    NASA Astrophysics Data System (ADS)

    Astorino, Marco; Canfora, Fabrizio; Giacomini, Alex; Ortaggio, Marcello

    2018-01-01

    An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear SU (2) field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A U (1) gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favoured with respect to the corresponding black hole with vanishing Pionic field.

  16. Radiosensitivity of different tissues from carrot root at different phases of growth in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degani, N.; Pickholtz, D.

    1980-09-01

    The present work compares the effect of ..gamma..-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G/sub 1/ phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G/sub 2/ phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lagmore » phase than those of the G/sub 1/ phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture.« less

  17. Implant-retained skull prosthesis to cover a large defect of the hairy skull resulting from treatment of a basal cell carcinoma: A clinical report.

    PubMed

    Hoekstra, Jitske; Vissink, Arjan; Raghoebar, Gerry M; Visser, Anita

    2017-05-01

    Skin carcinoma, particularly basal cell carcinoma, and its treatment can result in large defects of the hairy skull. A 53-year-old man is described who was surgically treated for a large basal cell carcinoma invading the skin and underlying tissue at the top of the hairy skull. Treatment consisted of resecting the tumor and external part of the skull bone. To protect the brain and to cover the defect of the hairy skull, an acrylic resin skull prosthesis with hair was designed to mask the defect. The skull prosthesis was retained on 8 extraoral implants placed at the margins of the defect in the skull bone. The patient was satisfied with the treatment outcome. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Targeting Mutant BRAF in Relapsed or Refractory Hairy-Cell Leukemia.

    PubMed

    Tiacci, Enrico; Park, Jae H; De Carolis, Luca; Chung, Stephen S; Broccoli, Alessandro; Scott, Sasinya; Zaja, Francesco; Devlin, Sean; Pulsoni, Alessandro; Chung, Young R; Cimminiello, Michele; Kim, Eunhee; Rossi, Davide; Stone, Richard M; Motta, Giovanna; Saven, Alan; Varettoni, Marzia; Altman, Jessica K; Anastasia, Antonella; Grever, Michael R; Ambrosetti, Achille; Rai, Kanti R; Fraticelli, Vincenzo; Lacouture, Mario E; Carella, Angelo M; Levine, Ross L; Leoni, Pietro; Rambaldi, Alessandro; Falzetti, Franca; Ascani, Stefano; Capponi, Monia; Martelli, Maria P; Park, Christopher Y; Pileri, Stefano A; Rosen, Neal; Foà, Robin; Berger, Michael F; Zinzani, Pier L; Abdel-Wahab, Omar; Falini, Brunangelo; Tallman, Martin S

    2015-10-29

    BRAF V600E is the genetic lesion underlying hairy-cell leukemia. We assessed the safety and activity of the oral BRAF inhibitor vemurafenib in patients with hairy-cell leukemia that had relapsed after treatment with a purine analogue or who had disease that was refractory to purine analogues. We conducted two phase 2, single-group, multicenter studies of vemurafenib (at a dose of 960 mg twice daily)--one in Italy and one in the United States. The therapy was administered for a median of 16 weeks in the Italian study and 18 weeks in the U.S. study. Primary end points were the complete response rate (in the Italian trial) and the overall response rate (in the U.S. trial). Enrollment was completed (28 patients) in the Italian trial in April 2013 and is still open (26 of 36 planned patients) in the U.S. trial. The overall response rates were 96% (25 of 26 patients who could be evaluated) after a median of 8 weeks in the Italian study and 100% (24 of 24) after a median of 12 weeks in the U.S. study. The rates of complete response were 35% (9 of 26 patients) and 42% (10 of 24) in the two trials, respectively. In the Italian trial, after a median follow-up of 23 months, the median relapse-free survival was 19 months among patients with a complete response and 6 months among those with a partial response; the median treatment-free survival was 25 months and 18 months, respectively. In the U.S. trial, at 1 year, the progression-free survival rate was 73% and the overall survival rate was 91%. Drug-related adverse events were usually of grade 1 or 2, and the events most frequently leading to dose reductions were rash and arthralgia or arthritis. Secondary cutaneous tumors (treated with simple excision) developed in 7 of 50 patients. The frequent persistence of phosphorylated ERK-positive leukemic cells in bone marrow at the end of treatment suggests bypass reactivation of MEK and ERK as a resistance mechanism. A short oral course of vemurafenib was highly effective in

  19. Spectral lights trigger biomass accumulation and production of antioxidant secondary metabolites in adventitious root cultures of Stevia rebaudiana (Bert.).

    PubMed

    Idrees, Muhammad; Sania, Bibi; Hafsa, Bibi; Kumari, Sana; Khan, Haji; Fazal, Hina; Ahmad, Ishfaq; Akbar, Fazal; Ahmad, Naveed; Ali, Sadeeq; Ahmad, Nisar

    2018-05-30

    Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0mg/l) and 6-benzyladenine (BA, 2.0mg/l), while 0.5mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495g/flask) as compared to control (1.63g/flask), while red light showed growth inhibition (1.025g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56mg GAE/g DW), total phenolic production (TPP; 101mg/flask) as compared to control (5.44mg GAE/g DW; 82.2mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33mg RE/g DW) and total flavonoid production (TFP; 65mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in

  20. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.

    PubMed

    Ramakrishnan, Divakar; Curtis, Wayne R

    2004-10-20

    Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.

  1. Hairy Lovelock black holes and Stueckelberg mechanism for Weyl symmetry

    NASA Astrophysics Data System (ADS)

    Chernicoff, Mariano; Giribet, Gaston; Oliva, Julio

    2016-10-01

    Lovelock theory of gravity -and, in particular, Einstein theory- admits black hole solutions that can be equipped with a hair by conformally coupling the theory to a real scalar field. This is a secondary hair, meaning that it does not endow the black hole with new quantum numbers. It rather consists of a non-trivial scalar field profile of fixed intensity which turns out to be regular everywhere outside and on the horizon and, provided the cosmological constant is negative, behaves at large distance in a way compatible with the Anti-de Sitter (AdS) asymptotic. In this paper, we review the main features of these hairy black hole solutions, such as their geometrical and thermodynamical properties. The conformal coupling to matter in dimension D > 4 in principle includes higher-curvature terms. These couplings are obtained from the Lovelock action through the Stueckelberg strategy. As a consequence, the resulting scalar-tensor theory exhibits a self-duality under field redefinition that resembles T-duality. Through this field redefinition, the matter content of the theory transforms into a Lovelock action for a dual geometry. Since the hairy black holes only exist for special relations between the dual Lovelock coupling constants, it is natural to compare those relations with the causality bounds coming from AdS/CFT. We observe that, while the lower causality bound is always obeyed, the upper causality bound is violated. The latter, however, is saturated in the large D limit.

  2. Antioxidant Properties of Berberis aetnensis C. Presl (Berberidaceae) Roots Extract and Protective Effects on Astroglial Cell Cultures

    PubMed Central

    Campisi, Agata; Bonfanti, Roberta; Raciti, Giuseppina; Amodeo, Andrea; Mastrojeni, Silvana; Ragusa, Salvatore; Iauk, Liliana

    2014-01-01

    Berberis aetnensis C. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress. PMID:25177720

  3. Antioxidant properties of Berberis aetnensis C. Presl (Berberidaceae) roots extract and protective effects on astroglial cell cultures.

    PubMed

    Campisi, Agata; Acquaviva, Rosaria; Bonfanti, Roberta; Raciti, Giuseppina; Amodeo, Andrea; Mastrojeni, Silvana; Ragusa, Salvatore; Iauk, Liliana

    2014-01-01

    Berberis aetnensis C. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress.

  4. Leukemic meningitis in a patient with hairy cell leukemia. A case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, D.W.; Scopelliti, J.A.; Boselli, B.D.

    1984-09-15

    Central nervous system involvement has not previously been described in patients with hairy cell leukemia (HCL). A patient is reported who presented with meningeal involvement as his initial symptom of HCL. Diagnosis was established by morphologic and cytochemical studies of his cerebrospinal fluid (CSF) and bone marrow. Treatment with whole-brain irradiation and intrathecal chemotherapy was successful in clearing leukemic cells from the CSF with resolution of symptoms.

  5. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway1[OPEN

    PubMed Central

    2016-01-01

    Prenylated stilbenoids synthesized in some legumes exhibit plant pathogen defense properties and pharmacological activities with potential benefits to human health. Despite their importance, the biosynthetic pathways of these compounds remain to be elucidated. Peanut (Arachis hypogaea) hairy root cultures produce a diverse array of prenylated stilbenoids upon treatment with elicitors. Using metabolic inhibitors of the plastidic and cytosolic isoprenoid biosynthetic pathways, we demonstrated that the prenyl moiety on the prenylated stilbenoids derives from a plastidic pathway. We further characterized, to our knowledge for the first time, a membrane-bound stilbenoid-specific prenyltransferase activity from the microsomal fraction of peanut hairy roots. This microsomal fraction-derived resveratrol 4-dimethylallyl transferase utilizes 3,3-dimethylallyl pyrophosphate as a prenyl donor and prenylates resveratrol to form arachidin-2. It also prenylates pinosylvin to chiricanine A and piceatannol to arachidin-5, a prenylated stilbenoid identified, to our knowledge, for the first time in this study. This prenyltransferase exhibits strict substrate specificity for stilbenoids and does not prenylate flavanone, flavone, or isoflavone backbones, even though it shares several common features with flavonoid-specific prenyltransferases. PMID:27356974

  6. Longleaf Pine Root System Development and Seedling Quality in Response to Copper Root Pruning and Cavity Size

    Treesearch

    Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood

    2011-01-01

    Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...

  7. In vitro cultured primary roots derived from stem segments of cassava (Manihot esculenta) can behave like storage organs.

    PubMed

    Medina, Ricardo D; Faloci, Mirta M; Gonzalez, Ana M; Mroginski, Luis A

    2007-03-01

    Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0.54 microM 1-naphthaleneacetic acid and 0.44 microM 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. The storage

  8. In vitro Cultured Primary Roots Derived from Stem Segments of Cassava (Manihot esculenta) Can Behave Like Storage Organs

    PubMed Central

    Medina, Ricardo D.; Faloci, Mirta M.; Gonzalez, Ana M.; Mroginski, Luis A.

    2007-01-01

    Background and Aims Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Methods Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Key Results Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0·54 μm 1-naphthaleneacetic acid and 0·44 μm 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly

  9. BRAF inhibition in hairy cell leukemia with low-dose vemurafenib.

    PubMed

    Dietrich, Sascha; Pircher, Andreas; Endris, Volker; Peyrade, Frédéric; Wendtner, Clemens-Martin; Follows, George A; Hüllein, Jennifer; Jethwa, Alexander; Ellert, Elena; Walther, Tatjana; Liu, Xiyang; Dyer, Martin J S; Elter, Thomas; Brummer, Tilman; Zeiser, Robert; Hermann, Michael; Herold, Michael; Weichert, Wilko; Dearden, Claire; Haferlach, Torsten; Seiffert, Martina; Hallek, Michael; von Kalle, Christof; Ho, Anthony D; Gaehler, Anita; Andrulis, Mindaugas; Steurer, Michael; Zenz, Thorsten

    2016-06-09

    The activating mutation of the BRAF serine/threonine protein kinase (BRAF V600E) is the key driver mutation in hairy cell leukemia (HCL), suggesting opportunities for therapeutic targeting. We analyzed the course of 21 HCL patients treated with vemurafenib outside of trials with individual dosing regimens (240-1920 mg/d; median treatment duration, 90 days). Vemurafenib treatment improved blood counts in all patients, with platelets, neutrophils, and hemoglobin recovering within 28, 43, and 55 days (median), respectively. Complete remission was achieved in 40% (6/15 of evaluable patients) and median event-free survival was 17 months. Response rate and kinetics of response were independent of vemurafenib dosing. Retreatment with vemurafenib led to similar response patterns (n = 6). Pharmacodynamic analysis of BRAF V600E downstream targets showed that vemurafenib (480 mg/d) completely abrogated extracellular signal-regulated kinase phosphorylation of hairy cells in vivo. Typical side effects also occurred at low dosing regimens. We observed the development of acute myeloid lymphoma (AML) subtype M6 in 1 patient, and the course suggested disease acceleration triggered by vemurafenib. The phosphatidylinositol 3-kinase hotspot mutation (E545K) was identified in the AML clone, providing a potential novel mechanism for paradoxical BRAF activation. These data provide proof of dependence of HCL on active BRAF signaling. We provide evidence that antitumor and side effects are observed with 480 mg vemurafenib, suggesting that dosing regimens in BRAF-driven cancers could warrant reassessment in trials with implications for cost of cancer care. © 2016 by The American Society of Hematology.

  10. Root coverage with cultured gingival dermal substitute composed of gingival fibroblasts and matrix: a case series.

    PubMed

    Murata, Masashi; Okuda, Kazuhiro; Momose, Manabu; Kubo, Kentarou; Kuroyanagi, Yoshimitsu; Wolff, Larry F

    2008-10-01

    Cultured gingival dermal substitute (CGDS), composed of gingival fibroblasts and matrix and fabricated using tissue-engineering techniques, has been used for root coverage procedures. Fourteen sites from four patients with > or = 2 mm of Miller Class I or II facial gingival tissue recession were treated. The autologous CGDS sheet, prepared prior to surgical treatment, was grafted over the teeth with gingival recession and then covered with a coronally positioned flap. Vertical and horizontal recession was measured at baseline (prior to the surgical procedure) and 13 to 40 weeks (average: 30.7 +/- 9.6 weeks) after surgery. The average vertical and horizontal root coverage after surgery was 79.1% +/- 25.7% and 75.2% +/- 31.4%, respectively. Moreover, there was a significant increase of keratinized and attached gingival tissue at the final clinical evaluation compared with preoperative measurements (P < .05). These results demonstrate CGDS as a promising grafting material for use with root coverage procedures in periodontal therapy.

  11. Airborne Sensor Potential for Habitat Evaluation Procedures (HEP).

    DTIC Science & Technology

    1986-02-01

    group is called a "guild" ( Root 1967)). Thus, the value of an area as habitat for one species in a guild is likely to be positively and closely...cribed in subparagraph b are considered to be unique and re- quire independent measurement (e.g., while the hairy woodpecker, Carolina chickadee... HAIRY FOX SQUIRREL WOODPECKER GRAY SQUIRREL PILEATED TREE BOLES HAIRY WOODPECKER WOODPECKER CAROLINA CHICKADEE WHITE-TAILED DEER IN-, SHRUB LAYER EASTERN

  12. Hairy black hole stability in AdS, quantum mechanics on the half-line and holography

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Oliva, Julio

    2015-10-01

    We consider the linear stability of 4-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged N=8 supergravity in four dimensions, m 2 = -2 l -2. It is shown that the Schrödinger operator on the half-line, governing the S 2, H 2 or {{R}}^2 invariant mode around the hairy black hole, allows for non-trivial self-adjoint extensions and each of them corresponds to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schrödinger operator resembling the estimate of Simon for Schrödinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.

  13. Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures.

    PubMed

    Bago, Alberto; Cano, Custodia; Toussaint, Jean-Patrick; Smith, Sally; Dickson, Sandy

    2006-09-01

    Monoxenic symbioses between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and two nontransformed tomato root organ cultures (ROCs) were established. Wild-type tomato ROC from cultivar "RioGrande 76R" was employed as a control for mycorrhizal colonization and compared with its mutant line (rmc), which exhibits a highly reduced mycorrhizal colonization (rmc) phenotype. Structural features of the two root lines were similar when grown either in soil or under in vitro conditions, indicating that neither monoxenic culturing nor the rmc mutation affected root development or behavior. Colonization by G. intraradices in monoxenic culture of the wild-type line was low (<10%) but supported extensive development of extraradical mycelium, branched absorbing structures, and spores. The reduced colonization of rmc under monoxenic conditions (0.6%) was similar to that observed previously in soil. Extraradical development of runner hyphae was low and proportional to internal colonization. Few spores were produced. These results might suggest that carbon transfer may be modified in the rmc mutant. Our results support the usefulness of monoxenically obtained mycorrhizas for investigation of AM colonization and intraradical symbiotic functioning.

  14. Downstream processing of hyperforin from Hypericum perforatum root cultures.

    PubMed

    Haas, Paul; Gaid, Mariam; Zarinwall, Ajmal; Beerhues, Ludger; Scholl, Stephan

    2018-05-01

    Hyperforin is a major metabolite of the medicinal plant Hypericum perforatum (St. John's Wort) and has recently been found in hormone induced root cultures. The objective of this study is to identify a downstream process for the production of a hyperforin-rich extract with maximum extraction efficiency and minimal decomposition. The maximum extraction time was found to be 60min. The comparison of two equipment concepts for the extraction and solvent evaporation was performed employing two different solvents. While the rotary mixer showed better results for the extraction efficiency than a stirred vessel, the latter set-up was able to handle larger volumes but did not meet all process requirements. For the evaporation the prompt evaporation of the extraction agent using nitrogen stripping led to minor decomposition. In a 5L stirred vessel, the highest specific extraction of hyperforin was 4.3mg hyperforin/g dry weight bio material. Parameters for the equipment design for extraction and solvent evaporation were determined based on the experimental data. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Biomass and nitrogen accumulation of hairy vetch-cereal rye cover crop mixtures as influenced by species proportions

    USDA-ARS?s Scientific Manuscript database

    The performance and suitability of a legume-grass cover crop mixture for specific functions may be influenced by the proportions of each species in the mixture. The objectives of this study were to: 1) evaluate aboveground biomass and species biomass proportions at different hairy vetch (Vicia villo...

  16. Thermodynamics of hairy black holes in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.

    2017-02-01

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.

  17. Involvement of LeMRP, an ATP-binding cassette transporter, in shikonin transport and biosynthesis in Lithospermum erythrorhizon.

    PubMed

    Zhu, Y; Chu, S-J; Luo, Y-L; Fu, J-Y; Tang, C-Y; Lu, G-H; Pang, Y-J; Wang, X-M; Yang, R-W; Qi, J-L; Yang, Y-H

    2018-03-01

    Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown. In this study, we isolated a cDNA encoding LeMRP, an ATP-binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real-time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes. Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real-time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up-regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down-regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots. Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  18. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    NASA Astrophysics Data System (ADS)

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-03-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.

  19. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    PubMed Central

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-01-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes. PMID:26943243

  20. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    PubMed

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  1. Congenital hairy polyp of the oropharynx presenting as an esophageal mass in a neonate, a case report and literature review.

    PubMed

    Richter, Amy; Mysore, Krupa; Schady, Deb; Chandy, Binoy

    2016-01-01

    To review the literature of congenital hairy polyps and describe the clinical presentation, operative management, and histologic findings of a congenital hairy polyp arising from the palatopharyngeus muscle in a neonate with recurrent choking episodes. Chart review of a 2-month-old male referred to a tertiary care pediatric hospital. We present a case of a 2-month-old male who presented to the emergency room with recurrent episodes of choking and vomiting. The patient was previously healthy with no prior medical or neonatal history. The parents noted a small fleshy mass in the patient's oropharynx that he would chew on and swallow after several minutes. However, on physical exam, there was no evidence of oropharyngeal mass. The patient did not have respiratory distress. Imaging revealed a 22×7×11mm oblong, fatty mass in the lower cervical and upper thoracic esophagus with a thin stalk extending proximally to the upper collapsed esophagus. Intraoperative recorded laryngoscopy revealed a pedunculated soft palate mass attached to the right superior palatopharyngeus muscle. Histopathology revealed ectodermal and mesodermal elements in a polypoid structure lined by keratinizing squamous epithelium with adnexal structures and central mature adipose tissue, consistent with congenital hairy polyp resembling an accessory tragus of the ear and branchial anomaly. At 6-week follow up, the patient was doing well and gaining weight appropriately with no further choking episodes. There was no evidence of velopharyngeal dysfunction on follow up exam. The surgical site was completely healed and there was no evidence of recurrence. Congenital hairy polyps of the naso- and oropharynx are rare but may present as airway or esophageal masses, causing respiratory distress or choking episodes in a pediatric patient. The pathologic findings of keratinizing squamous epithelium, adnexal structures, adipose and cartilage tissues resemble congenital accessory tragus and may be considered a

  2. Thermodynamical properties of hairy black holes in n spacetime dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadalini, Mario; Vanzo, Luciano; Zerbini, Sergio

    The issue concerning the existence of exact black hole solutions in the presence of a nonvanishing cosmological constant and scalar fields is reconsidered. With regard to this, in investigating no-hair theorem violations, exact solutions of gravity having as a source an interacting and conformally coupled scalar field are revisited in arbitrary dimensional nonasymptotically flat space-times. New and known hairy black hole solutions are discussed. The thermodynamical properties associated with these solutions are investigated and the invariance of the black hole entropy with respect to different conformal frames is proved. The issue of the positivity of the entropy is discussed andmore » resolved for the case of black holes immersed in de Sitter space.« less

  3. In Vitro Culture Conditions and OeARF and OeH3 Expressions Modulate Adventitious Root Formation from Oleaster (Olea europaea L. subsp. europaea var. sylvestris) Cuttings

    PubMed Central

    Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency. PMID:24587768

  4. In vitro culture conditions and OeARF and OeH3 expressions modulate adventitious root formation from oleaster (Olea europaea L. subsp. europaea var. sylvestris) cuttings.

    PubMed

    Chiappetta, Adriana; Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency.

  5. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis

    PubMed Central

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform. PMID:23248613

  6. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis.

    PubMed

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform.

  7. Green factory: plants as bioproduction platforms for recombinant proteins.

    PubMed

    Xu, Jianfeng; Dolan, Maureen C; Medrano, Giuliana; Cramer, Carole L; Weathers, Pamela J

    2012-01-01

    Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Rooting of conifer propagules

    Treesearch

    R.L. Mott

    1977-01-01

    An outline of the general problems involved with the propagation of elite conifer clones by rooted cuttings is drawn from published reports. New approaches for resolving these problems can come from studies of clone production through tissue culture methods. Probable extension of tissue culture techniques will permit the establishment of clones from adult, proven trees...

  9. Expression of animal anti-apoptotic gene Ced-9 enhances tolerance during Glycine max L.-Bradyrhizobium japonicum interaction under saline stress but reduces nodule formation.

    PubMed

    Robert, Germán; Muñoz, Nacira; Melchiorre, Mariana; Sánchez, Federico; Lascano, Ramiro

    2014-01-01

    The mechanisms by which the expression of animal cell death suppressors in economically important plants conferred enhanced stress tolerance are not fully understood. In the present work, the effect of expression of animal antiapoptotic gene Ced-9 in soybean hairy roots was evaluated under root hairs and hairy roots death-inducing stress conditions given by i) Bradyrhizobium japonicum inoculation in presence of 50 mM NaCl, and ii) severe salt stress (150 mM NaCl), for 30 min and 3 h, respectively. We have determined that root hairs death induced by inoculation in presence of 50 mM NaCl showed characteristics of ordered process, with increased ROS generation, MDA and ATP levels, whereas the cell death induced by 150 mM NaCl treatment showed non-ordered or necrotic-like characteristics. The expression of Ced-9 inhibited or at least delayed root hairs death under these treatments. Hairy roots expressing Ced-9 had better homeostasis maintenance, preventing potassium release; increasing the ATP levels and controlling the oxidative damage avoiding the increase of reactive oxygen species production. Even when our results demonstrate a positive effect of animal cell death suppressors in plant cell ionic and redox homeostasis under cell death-inducing conditions, its expression, contrary to expectations, drastically inhibited nodule formation even under control conditions.

  10. Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides

    PubMed Central

    2012-01-01

    Background Cowpea (Vigna unguiculata L.) is an important grain and forage legume grown throughout sub-Saharan Africa primarily by subsistence farmers on poor, drought prone soils. Genetic improvement of the crop is being actively pursued and numerous functional genomics studies are underway aimed at characterizing gene controlling key agronomic characteristics for disease and pest resistances. Unfortunately, similar to other legumes, efficient plant transformation technology is a rate-limiting step in analysis of gene function in cowpea. Results Here we describe an optimized protocol for the rapid generation of transformed hairy roots on ex vitro composite plants of cowpea using Agrobacterium rhizogenes. We further demonstrate the applicability of cowpea composite plants to study gene expression involved in the resistance response of the plant roots to attack by the root parasitic weed, Striga gesnerioides. The utility of the new system and critical parameters of the method are described and discussed herein. Conclusions Cowpea composite plants offer a rapid alternative to methods requiring stable transformation and whole plant regeneration for studying gene expression in resistance or susceptibility responses to parasitic weeds. Their use can likely be readily adapted to look at the effects of both ectopic gene overexpression as well as gene knockdown of root associated defense responses and to the study of a broader range of root associated physiological and aphysiological processes including root growth and differentiation as well as interactions with other root pests, parasites, and symbionts. PMID:22741546

  11. Reassessment of the hairy long-nosed armadillo "Dasypus" pilosus (Xenarthra, Dasypodidae) and revalidation of the genus Cryptophractus Fitzinger, 1856.

    PubMed

    Castro, Mariela C; Ciancio, Martín R; Pacheco, Víctor; Salas-Gismondi, Rodolfo M; Bostelmann, J Enrique; Carlini, Alfredo A

    2015-04-14

    The hairy long-nosed armadillo, currently referred as Dasypus (Cryptophractus) pilosus, is an enigmatic species endemic to montane cloud forests and subparamo of Peruvian Andes. Its strikingly different external features, which include the carapace concealed by abundant hair, the presence of more movable bands, and a slender skull, have raised questions regarding its taxonomic status as subgenus or as genus. This paper assesses this issue based on a cladistic study and provides a detailed comparative description of the species, including the first account on the distinctive ornamentation of its osteoderms. Based on several unique characters in the carapace, skull, mandible, and teeth, as well as on the external phylogenetic position relative to other Dasypus, we favor the assignment of the hairy long-nosed armadillo to other genus. As result, we revalidate the original generic epithet, so that the valid name of the species is Cryptophractus pilosus Fitzinger, 1856.

  12. Evaluation of Cisplatin Neurotoxicity in Cultured Rat Dorsal Root Ganglia via Cytosolic Calcium Accumulation

    PubMed Central

    Erol, Kevser; Yiğitaslan, Semra; Ünel, Çiğdem; Kaygısız, Bilgin; Yıldırım, Engin

    2016-01-01

    Background: Calcium homeostasis is considered to be important in antineoplastic as well as in neurotoxic adverse effects of cisplatin. Aims: This study aimed to investigate the role of Ca2+ in cisplatin neurotoxicity in cultured rat dorsal root ganglia (DRG) cells. Study Design: Cell culture study. Methods: DRG cells prepared from 1-day old Sprague-Dawley rats were used to determine the role of Ca2+ in the cisplatin (10–600 μM) neurotoxicity. The cells were incubated with cisplatin plus nimodipine (1–3 μM), dizocilpine (MK-801) (1–3 μM) or thapsigargin (100–300 nM). Toxicity of cisplatinon DRG cells was determined by the MTT assay. Results: The neurotoxicity of cisplatin was significant when used in high concentrations (100–600 μM). Nimodipine (1 μM) but not MK-801 or thapsigargin prevented the neurotoxic effects of 200 μM of cisplatin. Conclusion: Voltage-dependent calcium channels may play a role in cisplatin neurotoxicity. PMID:27403382

  13. The MYB182 Protein Down-Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Poplar by Repressing Both Structural and Regulatory Flavonoid Genes1[OPEN

    PubMed Central

    Yoshida, Kazuko; Ma, Dawei; Constabel, C. Peter

    2015-01-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. PMID:25624398

  14. Novel therapeutic options for relapsed hairy cell leukemia.

    PubMed

    Jain, Preetesh; Polliack, Aaron; Ravandi, Farhad

    2015-01-01

    The majority of patients with hairy cell leukemia (HCL) achieve a response to therapy with cladribine or pentostatin with or without rituximab. However, late relapses can occur. Treatment of relapsed HCL can be difficult due to a poor tolerance to chemotherapy, increased risk of infections and decreased responsiveness to chemotherapy. The identification of BRAFV600E mutations and the role of aberrant MEK kinase and Bruton's tyrosine kinase (BTK) pathways in the pathogenesis of HCL have helped to develop novel targeted therapies for these patients. Currently, the most promising therapeutic strategies for relapsed or refractory HCL include recombinant immunoconjugates targeting CD22 (e.g. moxetumomab pasudotox), BRAF inhibitors such as vemurafenib and B cell receptor signaling kinase inhibitors such as ibrutinib. Furthermore, the VH4-34 molecular variant of classic HCL has been identified to be less responsive to chemotherapy. Herein, we review the results of the ongoing clinical trials and potential future therapies for relapsed/refractory HCL.

  15. Genomic cloning and chromosomal localization of HRY, the human homolog to the Drosophila segmentation gene, hairy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feder, J.N.; Jan, L.Y.; Jan, Y.N.

    The Drosophila hairy gene encodes a basic helix- loop-helix protein that functions in at least two steps during Drosophila development: (1) during embryogenesis, when it partakes in the establishment of segments, and (2) during the larval stage, when it functions negatively in determining the pattern of sensory bristles on the adult fly. In the rat, a structurally homologous gene (RHL) behaves as an immediate-early gene in its response to growth factors and can, like that in Drosophila, suppress neuronal differentiation events. Here, the authors report the genomic cloning of the human hairy gene homolog (HRY). The coding region of themore » gene is contained within four exons. The predicted amino acid sequence reveals only four amino acid differences between the human and rat genes. Analysis of the DNA sequence 5[prime] to the coding region reveals a putatitve untranslated exon. To increase the value of the HRY gene as a genetic marker and to assess its potential involvement in genetic disorders, they sublocalized the locus to chromosome 3q28-q29 by fluorescence in situ hybridization. 34 refs., 4 figs., 1 tab.« less

  16. Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants.

    PubMed

    Zdravković-Korać, S; Muhovski, Y; Druart, P; Calić, D; Radojević, L

    2004-04-01

    Hairy roots were induced from androgenic embryos of horse chestnut (Aesculus hippocastanum L.) by infection with Agrobacterium rhizogenes strain A4GUS. Single roots were selected according to their morphology in the absence of antibiotic or herbicide resistance markers. Seventy-one putative transformed hairy root lines from independent transformation events were established. Regeneration was induced in MS liquid medium supplemented with 30 microM 6-benzylaminopurine (BA), and the regenerants were multiplied on MS solid medium containing 10 microM BA. Following elongation on MS medium supplemented with 1 microM BA and 500 mg/l polyvinylpyrrolidone, the shoots were subjected to a root-inducing treatment. Stable integration of TL-DNA within the horse chestnut genome was confirmed by Southern hybridization. The copy number of transgenes was estimated to be from two to four.

  17. Hairy vetch biomass across the eastern United States: Effects of latitude, seeding rate and date, and termination timing

    USDA-ARS?s Scientific Manuscript database

    Hairy vetch (Vicia villosa Roth) is a winter annual legume cover crop that is often grown because it can provide a substantial amount of N to the following cash crop. Nitrogen accumulation is dependent on biomass production, which in turn is affected by climate, seeding rate and date, and timing of ...

  18. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants.

    PubMed

    Zafar, Hira; Ali, Attarad; Zia, Muhammad

    2017-01-01

    Interests associated with nanoparticles (NPs) are budding due to their toxicity to living species. The lethal effect of NPs depends on their nature, size, shape, and concentration. Present investigation reports that CuO NPs badly affected Brassica nigra seed germination and seedling growth parameters. However, variation in antioxidative activities and nonenzymatic oxidants is observed in plantlets. Culturing the leaf and stem explants on MS medium in presence of low concentration of CuO NPs (1-20 mg l -1 ) produces white thin roots with thick root hairs. These roots also show an increase in DPPH radical scavenging activity (up to 80 % at 10 mg l -1 ), total antioxidant, and reducing power potential (maximum in presence of 10 mg l -1 CuO NPs in the media). Nonenzymatic antioxidative molecules, phenolics and flavonoids, are observed elevated but NPs concentration dependent. We can conclude that CuO NPs can induce rooting from plant explants cultured on appropriate medium. These roots can be explored for the production of active chemical constituents.

  19. Insect resistance to sugar beet pests mediated by a Beta vulgaris proteinase inhibitor transgene

    USDA-ARS?s Scientific Manuscript database

    We transformed sugar beet (Beta vulgaris) hairy roots and Nicotiana benthamiana plants with a Beta vulgaris root gene (BvSTI) that codes for a serine proteinase inhibitor. BvSTI is a root gene cloned from the F1016 breeding line that has moderate levels of resistance to the sugar beet root maggot ...

  20. Biotechnological production of pharmaceuticals and biopharmaceuticals in plant cell and organ cultures.

    PubMed

    Hidalgo, Diego; Sanchez, Raul; Lalaleo, Liliana; Bonfill, Mercedes; Corchete, Purificacion; Palazon, Javier

    2018-03-09

    Plant biofactories are biotechnological platforms based on plant cell and organ cultures used for the production of pharmaceuticals and biopharmaceuticals, although to date only a few of these systems have successfully been implemented at an industrial level. Metabolic engineering is possibly the most straightforward strategy to boost pharmaceutical production in plant biofactories, but social opposition to the use of GMOs means empirical approaches are still being used. Plant secondary metabolism involves thousands of different enzymes, some of which catalyze specific reactions, giving one product from a particular substrate, whereas others can yield multiple products from the same substrate. This trait opens plant cell biofactories to new applications, in which the natural metabolic machinery of plants can be harnessed for the bioconversion of phytochemicals or even the production of new bioactive compounds. Synthetic biological pipelines involving the bioconversion of natural substrates into products with a high market value may be established by the heterologous expression of target metabolic genes in model plants. To summarize the state of the art of plant biofactories and their applications for the pipeline production of cosme-, pharma- and biopharmaceuticals. In order to demonstrate the great potential of plant biofactories for multiple applications in the biotechnological production of pharmaceuticals and biopharmaceuticals, this review broadly covers the following: plant biofactories based on cell and hairy root cultures; secondary metabolite production; biotransformation reactions; metabolic engineering tools applied in plant biofactories; and biopharmaceutical production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Nemesia Root Hair Response to Paper Pulp Substrate for Micropropagation

    PubMed Central

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp. PMID:22312323

  2. Nemesia root hair response to paper pulp substrate for micropropagation.

    PubMed

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp.

  3. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system.

    PubMed

    Srivastava, Shivani; Conlan, Xavier A; Cahill, David M; Adholeya, Alok

    2016-11-01

    Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.

  4. Proliferation and glucosinolates accumulation of broccoli adventitious roots in liquid medium

    NASA Astrophysics Data System (ADS)

    Nhut, Nguyen Minh; Tien, Le Thi Thuy

    2017-09-01

    Cotyledons from 7-day-old in vitro broccoli seedling were used as explant source in adventitious root induction on MS medium supplemented with 30 g/l sucrose, 1.6 mg/l IBA and 7 g/l agar. Adventitious roots from cotyledons were transferred to liquid medium containing the same components as rooting medium for two weeks, then subcultured to MS medium with diferent sugar, macrominerals and casein hydrolysate concentrations. The best adventitious root growth was observed in half-strength MS medium supplemented with 40 g/l sucrose, 600 mg/l casein hydrolysate and 1.6 mg/l IBA (growth index of 4.00 in about 14 culture days with inoculum density of 1.0 g fresh weight / 30 ml of culture medium). The culturing process can be stopped on the 28th day for root biomass and on the 35th day for glucosinolates.

  5. CD20dim-positive T-cell large granular lymphocytic leukemia in a patient with concurrent hairy cell leukemia and plasma cell myeloma

    PubMed Central

    Xu, Xiangdong; Broome, Elizabeth H; Rashidi, Hooman H; South, Sarah T; Dell'Aquila, Marie L; Wang, Huan-You

    2010-01-01

    We report a CD20dim- positive T-cell large granular lymphocytic (T-LGL) leukemia in a patient with concurrent hairy cell leukemia and plasma cell myeloma. This patient was first diagnosed with T-LGL leukemia with dim CD20 expression, which by itself was a rare entity. He received no treatment for T-LGL leukemia. The patient later developed a hairy cell leukemia, which went into complete clinical remission after one cycle of 2-CdA. Five years later, he was diagnosed with a third malignancy, plasma cell myeloma. Complex cytogenetic aberrancies were present at the time when plasma cell myeloma was diagnosed. This is the first report, to the best of our knowledge, in the English literature with the aforementioned three distinct hematopoietic malignancies in one patient. PMID:21151394

  6. The formation of 3 alpha- and 3 beta-acetoxytropanes by Datura stramonium transformed root cultures involves two acetyl-CoA-dependent acyltransferases.

    PubMed

    Robins, R J; Bachmann, P; Robinson, T; Rhodes, M J; Yamada, Y

    1991-11-04

    Tropine (tropan-3 alpha-ol) is an intermediate in the formation of hyoscyamine. An acyltransferase activity that can acetylate tropine using acetylcoenzyme A as cosubstrate has been found in transformed root cultures of Datura stramonium. A further acyltransferase activity that acetylates pseudotropine (tropan-3 beta-ol) with acetyl-coenzyme A is also present. These two activities can be partially resolved by anion-exchange chromatography, some fractions containing only the pseudotropine-utilizing activity. The basic properties of these two enzymes are reported and their roles in forming the observed alkaloid spectrum of D. stramonium roots discussed.

  7. High level expression of chorismate pyruvate-lyase (UbiC) and HMG-CoA reductase in hairy root cultures of Lithospermum erythrorhizon.

    PubMed

    Köhle, Annegret; Sommer, Susanne; Yazaki, Kazufumi; Ferrer, Albert; Boronat, Albert; Li, Shu-Ming; Heide, Lutz

    2002-08-01

    Shikonin, a red naphthoquinone pigment, is produced by cell cultures of Lithospermum erythrorhizon (Boraginaceae). It is biosynthetically derived from two key precursors, 4-hydroxybenzoate (4HB) and geranyldiphosphate (GPP). The bacterial ubiC gene, encoding chorismate pyruvate-lyase (CPL) which converts chorismate to 4-hydroxybenzoate, was expressed in L. erythrorhizon under the control of the strong (ocs)(3)mas-promoter. This introduced an efficient biosynthetic pathway to 4HB, i.e. a one-step reaction from chorismate, in addition to the endogeneous multi-step phenylpropanoid pathway. Feeding experiments with [1,7-(13)C(2)]shikimic acid showed that in the most active transgenic line, 73% of 4HB was synthesized via the genetically introduced pathway. However, there was no correlation between CPL activity and 4HB glucoside or shikonin accumulation in the transgenic lines. HMG-CoA reductase (HMGR) is involved in the biosynthesis of GPP in L. erythrorhizon. Two forms of HMGR1 of Arabidopsis thaliana were expressed in Lithospermum under control of the (ocs)(3)mas promoter. Only moderate increases in enzyme activity were obtained with the complete enzyme, but high activity was achieved using the soluble cytosolic domain of HMGR1. Shikonin accumulation remained unchanged even upon high expression of soluble HMGR.

  8. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.

  9. Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the PHYTOENE SYNTHASE Gene Family

    PubMed Central

    Stauder, Ron; Welsch, Ralf; Camagna, Maurizio; Kohlen, Wouter; Balcke, Gerd U.; Tissier, Alain; Walter, Michael H.

    2018-01-01

    Strigolactones (SLs) are apocarotenoid phytohormones synthesized from carotenoid precursors. They are produced most abundantly in roots for exudation into the rhizosphere to cope with mineral nutrient starvation through support of root symbionts. Abscisic acid (ABA) is another apocarotenoid phytohormone synthesized in roots, which is involved in responses to abiotic stress. Typically low carotenoid levels in roots raise the issue of precursor supply for the biosynthesis of these two apocarotenoids in this organ. Increased ABA levels upon abiotic stress in Poaceae roots are known to be supported by a particular isoform of phytoene synthase (PSY), catalyzing the rate-limiting step in carotenogenesis. Here we report on novel PSY3 isogenes from Medicago truncatula (MtPSY3) and Solanum lycopersicum (SlPSY3) strongly expressed exclusively upon root interaction with symbiotic arbuscular mycorrhizal (AM) fungi and moderately in response to phosphate starvation. They belong to a widespread clade of conserved PSYs restricted to dicots (dPSY3) distinct from the Poaceae-PSY3s involved in ABA formation. An ancient origin of dPSY3s and a potential co-evolution with the AM symbiosis is discussed in the context of PSY evolution. Knockdown of MtPSY3 in hairy roots of M. truncatula strongly reduced SL and AM-induced C13 α-ionol/C14 mycorradicin apocarotenoids. Inhibition of the reaction subsequent to phytoene synthesis revealed strongly elevated levels of phytoene indicating induced flux through the carotenoid pathway in roots upon mycorrhization. dPSY3 isogenes are coregulated with upstream isogenes and downstream carotenoid cleavage steps toward SLs (D27, CCD7, CCD8) suggesting a combined carotenoid/apocarotenoid pathway, which provides “just in time”-delivery of precursors for apocarotenoid formation. PMID:29545815

  10. [Effects of ridge-cultivation and plastic film mulching on root distribution and yield of spring maize in hilly area of central Sichuan basin, China.

    PubMed

    Zha, Li; Xie, Meng Lin; Zhu, Min; Dou, Pan; Cheng, Qiu Bo; Wang, Xing Long; Yuan, Ji Chao; Kong, Fan Lei

    2016-03-01

    A field experiment was conducted to study the effects of planting pattern (ridge culture, flatten culture, furrow culture) and film mulching on the distribution of spring maize root system and their influence on the yield of spring maize in the hilly area of central Sichuan basin. The results showed that ridge and film mulching had great influence on root morphology and root distribution of maize. The root length, root surface area and root volume of film mulching was 42.3%, 50.0%, 57.4% higher than those of no film mulching at jointing stage. The film mulching significantly increased the dry mass of root in vertical and horizontal distribution, and increased the root allocation ratio in deeper soil layer (20-40 cm) and the allocation ratio of wide row (0-20 cm) in horizontal direction. The effects of planting pattern on root growth and root distribution differed by film mulching. With film mulching, the ridge culture significantly increased the root dry mass in each soil layer and enlarged the distribution percentage of wide row (20-40 cm) in horizontal direction, as well as the dry mass of root in horizontal distribution and the root allocation ratio of wide row. The root mass under film mulching was in the order of ridge culture>flatten culture>furrow culture. Without film mulching, the furrow culture significantly increased root dry mass of narrow row (0-40 cm), and the root mass under no film mulching was in the order of furrow culture > ridge culture >flatten culture. As for the spike characteristics and maize yield, the filming mulching mea-sures reduced the corn bald length while increased the spike length, grain number, 1000-grain mass and yield. The yield under film mulching was in the order of ridge culture>flatten culture> furrow culture, while it was furrow culture > flatten culture > ridge culture under no film mulching. The reason for yield increase under ridge culture with film mulching was that it increased root weight especially in deep soil, and

  11. Cost-benefit analysis of interferon alfa-2b in treatment of hairy cell leukemia.

    PubMed

    Ozer, H; Golomb, H M; Zimmerman, H; Spiegel, R J

    1989-04-19

    The clinical benefits as well as the cost benefits of use of recombinant interferon (IFN) alfa-2b instead of conventional chemotherapy (primarily chlorambucil) for progressive hairy cell leukemia were assessed retrospectively on the basis of 12 months of clinical data from 128 patients treated with IFN alfa-2b. Data from 71 matched historical control patients who had received conventional treatment were used for survival analysis. Hematologic response (reversal of cytopenias) was achieved by 18% of the control patients versus 73% of the IFN-treated patients. This response was associated with virtual elimination of the need for transfusions and splenectomy as well as dramatic decreases in the frequency of fatal infections (22.5% vs. 1.6%) and the 12-month mortality rate (28% vs. 3.1%). Direct costs per patient per year for medical care (transfusions, antibiotic treatment, splenectomy, and chemotherapy) of those receiving IFN alfa-2b were 2.8-fold lower than costs for medical care of control patients ($5,027 vs. $14,046). Indirect costs, which reflect the present value of future earnings lost due to premature death, were 13.3-fold lower for IFN-treated patients than for control patients ($4,771 vs. $63,507). Our analysis demonstrates that IFN alfa-2b offers substantial clinical and cost advantages to patients with hairy cell leukemia and that the introduction of this therapy using novel biotechnology furthers the health care community's commitment to cost containment.

  12. Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia.

    PubMed

    Grever, Michael R; Abdel-Wahab, Omar; Andritsos, Leslie A; Banerji, Versha; Barrientos, Jacqueline; Blachly, James S; Call, Timothy G; Catovsky, Daniel; Dearden, Claire; Demeter, Judit; Else, Monica; Forconi, Francesco; Gozzetti, Alessandro; Ho, Anthony D; Johnston, James B; Jones, Jeffrey; Juliusson, Gunnar; Kraut, Eric; Kreitman, Robert J; Larratt, Loree; Lauria, Francesco; Lozanski, Gerard; Montserrat, Emili; Parikh, Sameer A; Park, Jae H; Polliack, Aaron; Quest, Graeme R; Rai, Kanti R; Ravandi, Farhad; Robak, Tadeusz; Saven, Alan; Seymour, John F; Tadmor, Tamar; Tallman, Martin S; Tam, Constantine; Tiacci, Enrico; Troussard, Xavier; Zent, Clive S; Zenz, Thorsten; Zinzani, Pier Luigi; Falini, Brunangelo

    2017-02-02

    Hairy cell leukemia is an uncommon hematologic malignancy characterized by pancytopenia and marked susceptibility to infection. Tremendous progress in the management of patients with this disease has resulted in high response rates and improved survival, yet relapse and an appropriate approach to re-treatment present continuing areas for research. The disease and its effective treatment are associated with immunosuppression. Because more patients are being treated with alternative programs, comparison of results will require general agreement on definitions of response, relapse, and methods of determining minimal residual disease. The development of internationally accepted, reproducible criteria is of paramount importance in evaluating and comparing clinical trials to provide optimal care. Despite the success achieved in managing these patients, continued participation in available clinical trials in the first-line and particularly in the relapse setting is highly recommended. The Hairy Cell Leukemia Foundation convened an international conference to provide common definitions and structure to guide current management. There is substantial opportunity for continued research in this disease. In addition to the importance of optimizing the prevention and management of the serious risk of infection, organized evaluations of minimal residual disease and treatment at relapse offer ample opportunities for clinical research. Finally, a scholarly evaluation of quality of life in the increasing number of survivors of this now manageable chronic illness merits further study. The development of consensus guidelines for this disease offers a framework for continued enhancement of the outcome for patients.

  13. Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia

    PubMed Central

    Abdel-Wahab, Omar; Andritsos, Leslie A.; Banerji, Versha; Barrientos, Jacqueline; Blachly, James S.; Call, Timothy G.; Catovsky, Daniel; Dearden, Claire; Demeter, Judit; Else, Monica; Forconi, Francesco; Gozzetti, Alessandro; Ho, Anthony D.; Johnston, James B.; Jones, Jeffrey; Juliusson, Gunnar; Kraut, Eric; Kreitman, Robert J.; Larratt, Loree; Lauria, Francesco; Lozanski, Gerard; Montserrat, Emili; Parikh, Sameer A.; Park, Jae H.; Polliack, Aaron; Quest, Graeme R.; Rai, Kanti R.; Ravandi, Farhad; Robak, Tadeusz; Saven, Alan; Seymour, John F.; Tadmor, Tamar; Tallman, Martin S.; Tam, Constantine; Tiacci, Enrico; Troussard, Xavier; Zent, Clive S.; Zenz, Thorsten; Zinzani, Pier Luigi; Falini, Brunangelo

    2017-01-01

    Hairy cell leukemia is an uncommon hematologic malignancy characterized by pancytopenia and marked susceptibility to infection. Tremendous progress in the management of patients with this disease has resulted in high response rates and improved survival, yet relapse and an appropriate approach to re-treatment present continuing areas for research. The disease and its effective treatment are associated with immunosuppression. Because more patients are being treated with alternative programs, comparison of results will require general agreement on definitions of response, relapse, and methods of determining minimal residual disease. The development of internationally accepted, reproducible criteria is of paramount importance in evaluating and comparing clinical trials to provide optimal care. Despite the success achieved in managing these patients, continued participation in available clinical trials in the first-line and particularly in the relapse setting is highly recommended. The Hairy Cell Leukemia Foundation convened an international conference to provide common definitions and structure to guide current management. There is substantial opportunity for continued research in this disease. In addition to the importance of optimizing the prevention and management of the serious risk of infection, organized evaluations of minimal residual disease and treatment at relapse offer ample opportunities for clinical research. Finally, a scholarly evaluation of quality of life in the increasing number of survivors of this now manageable chronic illness merits further study. The development of consensus guidelines for this disease offers a framework for continued enhancement of the outcome for patients. PMID:27903528

  14. Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2018-05-01

    In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.

  15. Isolation of Novel Bacteria Including Rarely Cultivated Phyla, Acidobacteria and Verrucomicrobia, from the Roots of Emergent Plants by Simple Culturing Method

    PubMed Central

    Tanaka, Yasuhiro; Matsuzawa, Hiroaki; Tamaki, Hideyuki; Tagawa, Masahiro; Toyama, Tadashi; Kamagata, Yoichi; Mori, Kazuhiro

    2017-01-01

    A number of novel bacteria including members of rarely cultivated phyla, Acidobacteria and Verrucomicrobia, were successfully isolated from the roots of two emergent plants, Iris pseudacorus and Scirpus juncoides, by a simple culturing method. A total of 47.1% (66 strains) for I. pseudacorus and 42.1% (59 strains) for S. juncoides of all isolates (140 strains from each sample) were phylogenetically novel. Furthermore, Acidobacteria and Verrucomicrobia occupied 10.7% (15 strains) and 2.9% (4 strains) of I. pseudacorus isolates, and 2.1% (3 strains) and 3.6% (5 strains) of S. juncoides isolates, respectively, indicating that plant roots are attractive sources for isolating rarely cultivated microbes. PMID:28740039

  16. Victorian spectacle: Julia Pastrana, the bearded and hairy female.

    PubMed

    Browne, Janet; Messenger, Sharon

    2003-12-01

    Julia Pastrana toured Europe in the late 1850s advertising herself as the 'Bearded and hairy Lady' or 'Nonedescript'. She suffered from a rare inherited disorder, not understood until the late 20th century, which manifested itself in facial distortion and considerable facial hair in the male pattern. Doctors, as well as sensation seekers, were very keen to examine her. Her story is unusual, not least because she was mummified after death by her husband-manager and continued to tour as a mounted exhibit for a number of decades. Indirectly, she participated in the evolutionary debate in Britain. In 1857, when she arrived in Britain from America, she was popularly known as the baboon-woman. When Darwin's Origin of Species was published, and evolutionary controversy about ape-ancestry was hot in the air, she was more often likened to the gorilla or orang-utan - as a possible specimen of a missing link.

  17. Pull Out Negativity by Its Roots.

    ERIC Educational Resources Information Center

    DuFour, Rick; Burnette, Becky

    2002-01-01

    Principals are well-positioned to cultivate their schools' cultures. They must remain vigilant in rooting out the beginnings of negative culture, including such teacher attitudes and behaviors as not feeling responsible for student learning, preferring to work alone, wanting to protect their territory, and focusing on activity rather than results.…

  18. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yihuang; Wang, Zewei; He, Yanjie; Yoon, Young Jun; Jung, Jaehan; Zhang, Guangzhao; Lin, Zhiqun

    2018-02-01

    The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.

  19. Postnatal development of autonomic and sensory innervation of thoracic hairy skin in the rat. A histochemical, immunocytochemical, and radioenzymatic study.

    PubMed

    Schotzinger, R J; Landis, S C

    1990-05-01

    Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in

  20. Persistent Legionnaire's disease in an adult with hairy cell leukemia successfully treated with prolonged levofloxacin therapy.

    PubMed

    Cunha, Burke A; Munoz-Gomez, Sigridh; Gran, Arthur; Raza, Muhammad; Irshad, Nadia

    2015-01-01

    Legionnaire's disease (LD) manifests most commonly as an atypical community acquired pneumonia (CAP) with systemic extrapulmonary manifestations. Disorders associated with impaired cell mediated immunity (CMI) are particularly predisposed to LD. Hairy cell leukemia (HCL) is a rare B-cell lymphoproliferative leukemia associated with decreased CMI. LD has only rarely been reported in HCL. We present a most interesting case of persistent LD in a elderly male with HCL who required prolonged antibiotic therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    PubMed

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids

    PubMed Central

    Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.

    2016-01-01

    Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735

  3. Overexpression of OsEXPA8, a Root-Specific Gene, Improves Rice Growth and Root System Architecture by Facilitating Cell Extension

    PubMed Central

    Ma, Nana; Wang, Ying; Qiu, Shichun; Kang, Zhenhui; Che, Shugang; Wang, Guixue; Huang, Junli

    2013-01-01

    Expansins are unique plant cell wall proteins that are involved in cell wall modifications underlying many plant developmental processes. In this work, we investigated the possible biological role of the root-specific α-expansin gene OsEXPA8 in rice growth and development by generating transgenic plants. Overexpression of OsEXPA8 in rice plants yielded pleiotropic phenotypes of improved root system architecture (longer primary roots, more lateral roots and root hairs), increased plant height, enhanced leaf number and enlarged leaf size. Further study indicated that the average cell length in both leaf and root vascular bundles was enhanced, and the cell growth in suspension cultures was increased, which revealed the cellular basis for OsEXPA8-mediated rice plant growth acceleration. Expansins are thought to be a key factor required for cell enlargement and wall loosening. Atomic force microscopy (AFM) technology revealed that average wall stiffness values for 35S::OsEXPA8 transgenic suspension-cultured cells decreased over six-fold compared to wild-type counterparts during different growth phases. Moreover, a prominent change in the wall polymer composition of suspension cells was observed, and Fourier-transform infrared (FTIR) spectra revealed a relative increase in the ratios of the polysaccharide/lignin content in cell wall compositions of OsEXPA8 overexpressors. These results support a role for expansins in cell expansion and plant growth. PMID:24124527

  4. Cultural Roots of Spanish Femininity.

    ERIC Educational Resources Information Center

    Martin, Luis

    1978-01-01

    Women's roles and their impact on the Hispanos' historical past are examined. Three powerful cultural forces which through the centuries have shaped and conditioned women's lives in Iberian societies are considered: "donjuanismo,""marianismo," and the strong Iberian tradition of courtly, romantic love. (NQ)

  5. Proliferation and ajmalicine biosynthesis of Catharanthus roseus (L). G. Don adventitious roots in self-built temporary immersion system

    NASA Astrophysics Data System (ADS)

    Phuc, Vo Thanh; Trung, Nguyen Minh; Thien, Huynh Tri; Tien, Le Thi Thuy

    2017-09-01

    Periwinkle (Catharanthus roseus (L.) G. Don) is a medicinal plant containing about 130 types of alkaloids that have important pharmacological effects. Ajmalicine in periwinkle root is an antihypertensive drug used in treatment of high blood pressure. Adventitious roots obtained from periwinkle leaves of in vitro shoots grew well in quarter-strength MS medium supplemented with 0.3 mg/l IBA and 20 g/l sucrose. Dark condition was more suitable for root growth than light. However, callus formation also took place in addition to the growth of adventitious roots. Temporary immersion system was applied in the culture of adventitious roots in order to reduce the callus growth rate formed in shake flask cultures. The highest growth index of roots was achieved using the system with 5-min immersion every 45 min (1.676 ± 0.041). The roots cultured in this system grew well without callus formation. Ajmalicine content was highest in the roots cultured with 5-min immersion every 180 min (950 μg/g dry weight).

  6. In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur.

    PubMed

    Simonetti, Giovanna; Tocci, Noemi; Valletta, Alessio; Brasili, Elisa; D'Auria, Felicia Diodata; Idoux, Alicia; Pasqua, Gabriella

    2016-01-01

    Xanthone-rich extracts from Hypericum perforatum root cultures grown in a Mist Bioreactor as antifungal agents against Malassezia furfur. Extracts of Hypericum perforatum roots grown in a bioreactor showed activity against planktonic cells and biofilm of Malassezia furfur. Dried biomass, obtained from roots grown under controlled conditions in a ROOTec mist bioreactor, has been extracted with solvents of increasing polarity (i.e. chloroform, ethyl acetate and methanol). The methanolic fraction was the richest in xanthones (2.86 ± 0.43 mg g(-1) DW) as revealed by HPLC. The minimal inhibitory concentration of the methanol extract against M. furfur planktonic cells was 16 μg mL(-1). The inhibition percentage of biofilm formation, at a concentration of 16 μg mL(-1), ranged from 14% to 39%. The results show that H. perforatum root extracts could be used as new antifungal agents in the treatment of Malassezia infections.

  7. Pressure wave injuries to rat dorsal root ganglion cells in culture caused by high-energy missiles.

    PubMed

    Suneson, A; Hansson, H A; Lycke, E; Seeman, T

    1989-01-01

    A high-energy missile impact in an extremity of an animal creates a shock wave which is rapidly dispersed as a burst of oscillating pressure waves that traverses the entire body causing local, regional, and distant injuries. The present study was performed on dorsal root ganglion (DRG) cells, cultured for 3 weeks, to elucidate the cellular mechanism for damage of nerve cells, using a simplified test system. A model system was developed allowing exposure of DRG cultures to a burst of high-frequency oscillating pressure waves, comparable to those recorded in animals after high-energy missile extremity impact. The pressure waves were induced by impact of a high-energy missile in a rubber tube filled with water, in which nerve cell cultures were kept in a closed rubber glove filled with tissue culture medium. The pressure waves had a duration of 0.5-1.5 ms and a frequency spectrum ranging from 0-250 kHz. Within minutes the neurites showed changes in their microtubules. In addition, varicosities, enriched with tubulin immunoreactive material, became irregularly studded along the nerve cell processes. Scattered DRG cells were initially permeable to the marker complex Evans-blue albumin (EBA), used as an indicator of the ability of the plasma membranes to exclude proteins. After 6 hr, however, almost every DRG neuron was intensely stained by EBA. Concomitantly, there was swelling of the nerve cell cytoplasm and organelles, and, to a variable extent, neurofilament tangles were observed.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates

    PubMed Central

    Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter

    2014-01-01

    Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces. PMID:24990289

  9. Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates.

    PubMed

    Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter

    2014-09-06

    Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces.

  10. An immunophenotypic and molecular diagnosis of composite hairy cell leukaemia and chronic lymphocytic leukaemia.

    PubMed

    Liptrot, Stuart; O' Brien, David; Langabeer, Stephen E; Quinn, Fiona; Mackarel, A Jill; Elder, Patrick; Vandenberghe, Elisabeth; Hayden, Patrick J

    2013-12-01

    Hairy cell leukaemia (HCL) and chronic lymphocytic leukaemia (CLL) are distinct clinicopathological B cell chronic lymphoproliferative disorders (B-CLPD). Both diseases have characteristic immunophenotypic and molecular features. The co-existence of two B-CLPD is perhaps more common than previously thought but a composite HCL and CLL has been rarely documented. A case is reported in which the morphology, integrated with an extensive immunophenotyping panel, and incorporation of the recently described HCL-associated BRAF V600E mutation, enabled the prompt diagnosis of composite HCL and CLL thus allowing appropriate treatment selection. This case serves to highlight the benefit of a multidisciplinary approach to the diagnosis of bi-clonal B-CLPD.

  11. Spontaneous voltage and current fluctuations in tissue cultured mouse dorsal root ganglion cells.

    PubMed

    Mathers, D A; Barker, J L

    1984-02-13

    Fetal mouse dorsal root ganglion (DRG) neurons were maintained in primary dissociated cell culture for periods of 7 days to 3 months. Intracellular recordings from these cells revealed the presence of spontaneous subthreshold potentials in 101/177 neurons studied. When measured at the resting membrane potential, these spontaneous voltage events took two forms: (a) high frequency potential fluctuations several millivolts in peak-to-peak amplitude and (b) small, discrete hyperpolarizations. Neurons exhibiting either type of event were designated as 'active' DRG cells. No spontaneous potentials were seen in DRG cells hyperpolarized to membrane voltages more negative than -64 +/- 11.5 mV (n = 5 cells). Under voltage-clamp conditions, the subthreshold potentials of active DRG cells were replaced by fluctuations in outward current. The power spectral density, S(f) of these current fluctuations was approximated by an equation of the form S(f) = (S(o)/[1 + (f/fc) alpha] where 2 less than or equal to a less than or equal to 3 and the half-power frequency fc = 11.3 +/- 3.1 Hz at 23 degrees C (n = 17 cells). The spontaneous voltage fluctuations of active DRG cells were abolished in Ca2+-free saline, and of the divalent metal cations Sr2+, Mg2+, Ba2+, Co2+ and Mn2+, only Sr2+ could substitute for Ca2+ in the maintenance of this activity. Tetraethylammonium ions (1-10 mM) reversibly blocked the spontaneous potentials, while caffeine (10 mM) increased the frequency of these events. The spontaneous voltage fluctuations were not dependent on the presence of spinal cord neurons in the culture plate, and they were also observed in cultured DRG cells derived from adult mice.

  12. Sealing ability of root-end filling materials.

    PubMed

    Amezcua, Octávio; Gonzalez, Álvaro Cruz; Borges, Álvaro Henrique; Bandeca, Matheus Coelho; Estrela, Cyntia Rodrigues de Araújo; Estrela, Carlos

    2015-03-01

    The aim of this research was to compare the apical sealing ability of different root-end filling materials (SuperEBA(®), ProRoot MTA(®), thermoplasticized gutta-percha + AH-Plus(®), thermoplasticized RealSeal(®)), by means of microbial indicators. Thus, 50 human single-rooted teeth were employed, which were shaped until size 5 0, retro - prepared with ultrasonic tips and assigned to 4 groups, retro-filled with each material or controls. A platform was employed, which was split in two halves: upper chamber-where the microbial suspension containing the biological indicators was introduced (E. faecalis + S. aureus + P. aeruginosa + B. subtilis + C. albicans); and a lower chamber containing the culture medium brain, heart influsion, where 3 mm of the apical region of teeth were kept immersed. Lectures were made daily for 60 days, using the turbidity of the culture medium as indicative of microbial contamination. Statistical analyses were carried out at 5% level of significance. The results showed microbial leakage at least in some specimens in all of the groups. RealSeal(®) has more microbial leakage, statistically significant, compared to ProRoot(®) MTA and SuperEBA(®). No significant differences were observed when compared ProRoot(®) MTA and SuperEBA(®). The gutta-percha + AH Plus results showed no statistically significant differences when compared with the other groups. All the tested materials showed microbial leakage. Root-end fillings with Super-EBA or MTA had the lowest bacterial filtration and RealSeal shows highest bacterial filtration.

  13. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration

    NASA Astrophysics Data System (ADS)

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.

  14. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    PubMed

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  15. Spectroscopy detection of green and red fluorescent proteins in genetically modified plants using a fiber optics system

    NASA Astrophysics Data System (ADS)

    Liew, Oi Wah; Asundi, Anand K.; Chen, Jun-Wei; Chew, Yiwen; Yu, Shangjuan; Yeo, Gare H.

    2001-05-01

    In this paper, fiber optic spectroscopy is developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in vivo. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fiber optic spectroscopy. Fluorescence at the appropriate emission wavelengths could be detected up to 64X dilution for EGFP and 40X dilution for DsRED. To determine the capability of spectroscopy detection in vivo, transgenic potato hairy roots expressing EGFP and DsRED were regenerated. This was achieved by cloning the EGFP and DsRED genes into the plant binary vector, pTMV35S, to create the recombinant vectors pGLOWGreen and pGLOWRed. These latter binary vectors were introduced into Agrobacterium rhizogenes strain A4T. Infection of potato cells with transformed agrobacteria was used to insert the fluorescent protein genes into the potato genome. Genetically modified potato cells were then regenerated into hairy roots. A panel of transformed hairy roots expressing varying levels of fluorescent proteins was selected by fluorescence microscopy. We are now assessing the capability of spectroscopic detection system for in vivo quantification of green and red fluorescence levels in transformed roots.

  16. Growth, gas exchange, and root respiration of Quercus rubra seedlings exposed to low root zone temperatures in solution culture

    Treesearch

    Kent G. Apostol; Douglass F. Jacobs; Barrett C. Wilson; K. Francis Salifu; R. Kasten Dumroese

    2007-01-01

    Spring planting is standard operational practice in the Central Hardwood Region, though little is known about potential impacts of low root temperature (RT) common during spring on establishment success of temperate deciduous forest tree species. The effects of low RTon growth, gas exchange, and root respiration following winter dormancy were studied in 1-year-old...

  17. The inflow of Cs-137 in soil with root litter and root exudates of Scots pine

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Olga; Popova, Evgenia

    2017-04-01

    In the model experiment on evaluation of Cs-137 inflow in the soil with litter of roots and woody plants root exudates on the example of soil and water cultures of Scots pine (Pinus sylvestris L.) was shown, that through 45 days after the deposit Cs-137 solution on pine needles (specific activity of solution was 3.718*106 Bk) of the radionuclide in all components of model systems has increased significantly: needles, small branches and trunk by Cs-137 surface contamination during the experiment; roots as a result of the internal distribution of the radionuclide in the plant; soil and soil solution due to the of receipt Cs-137 in the composition of root exudates and root litter. Over 99% of the total reserve of Cs-137 accumulated in the components of the soil and water systems, accounted for bodies subjected to external pollution (needles and small branches) and <0.5% - on the soil / soil solution, haven't been subjected to surface contamination. At the same contamination of soil and soil solution by Cs-137 in the model experiment more than a> 99.9% was due to root exudates

  18. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS.

    PubMed

    Farag, Mohamed A; Huhman, David V; Lei, Zhentian; Sumner, Lloyd W

    2007-02-01

    An integrated approach utilizing HPLC-UV-ESI-MS and GC-MS was used for the large-scale and systematic identification of polyphenols in Medicago truncatula root and cell culture. Under optimized conditions, we were able to simultaneously quantify and identify 35 polyphenols including 26 isoflavones, 3 flavones, 2 flavanones, 2 aurones and a chalcone. All identifications were based upon UV spectra, mass spectral characteristics of protonated molecules, tandem mass spectral data, mass measurements obtained using a quadrupole time-of-flight mass spectrometer (QtofMS), and confirmed through the co-characterization of authentic compounds. In specific instances where the stereochemistry of sugar conjugates was uncertain, subsequent enzymatic hydrolysis of the conjugate followed by GC-MS was used to assign the sugar stereochemical configuration. Comparative metabolic profiling of Medicago truncatula root and cell cultures was then performed and revealed significant differences in the isoflavonoid composition of these two tissues.

  19. Development of a Multi-Species Biotic Ligand Model Predicting the Toxicity of Trivalent Chromium to Barley Root Elongation in Solution Culture

    PubMed Central

    Song, Ningning; Zhong, Xu; Li, Bo; Li, Jumei; Wei, Dongpu; Ma, Yibing

    2014-01-01

    Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca2+ and Mg2+ but not with K+ and Na+. The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H+ competition with Cr3+ bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH2+ in solution culture. Stability constants were obtained for the binding of Cr3+, CrOH2+, Ca2+, Mg2+ and H+ with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics. PMID:25119269

  20. Development of a multi-species biotic ligand model predicting the toxicity of trivalent chromium to barley root elongation in solution culture.

    PubMed

    Song, Ningning; Zhong, Xu; Li, Bo; Li, Jumei; Wei, Dongpu; Ma, Yibing

    2014-01-01

    Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca(2+) and Mg(2+) but not with K(+) and Na(+). The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H(+) competition with Cr(3+) bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH(2+) in solution culture. Stability constants were obtained for the binding of Cr(3+), CrOH(2+), Ca(2+), Mg(2+) and H(+) with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics.

  1. CO(2)-induced total phenolics in suspension cultures of Panax ginseng C. A. Mayer roots: role of antioxidants and enzymes.

    PubMed

    Ali, Mohammad Babar; Hahn, Eun Joo; Paek, Kee-Yoeup

    2005-05-01

    The effects of different concentrations of CO(2) (1%, 2.5% and 5%) on the antioxidant capacity, total phenols, flavonoids, protein content and phenol biosynthetic enzymes in roots of Panax ginseng were studied in bioreactor (working volume 4 l) after 15, 30 and 45 days. CO(2) induced accumulation of total phenolics in a concentration and duration dependent manner. Total phenols, flavonoids and 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity increased 60%, 30% and 20% at 2.5% CO(2) after 45 days compared to control in P. ginseng roots which indicated that phenolics compounds played an important role in protecting the plants from CO(2). Hypothesizing that increasing the phenolic compounds in roots of P. ginseng may increase its nutritional functionality; we investigated whether pentose phosphate pathway (PPP), shikimate/phenylpropanoid pathway enzymes have a role in phenolics mobilization in P. ginseng roots. Fresh weight (FW), dry weight (DW) and growth ratio was increased at 1% and 2.5% CO(2) only after 45 days, however, unaffected after 15 and 30 days. Results also indicated that high CO(2) progressively stimulated the activities of glucose 6 phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49), shikimate dehydrogenase (SKDH, E.C. 1.1.1.25), phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5), cinnamyl alcohol dehydrogenase (CAD, E.C. 1.1.1.195), caffeic acid (CA) peroxidase and chlorogenic acid (CGA) peroxidase after 15, 30 and 45 days. Increased CO(2) levels resulted in increases in accumulation of total protein (45%), non-protein thiol (NP-SH) (30%) and cysteine contents (52%) after 45 days compared to control and increased activities of beta-glucosidase (GS, E.C. 3.2.1.21) and polyphenol oxidase (PPO, E.C. 1.10.3.2) in P. ginseng roots indicated that they played an important role in protecting the plants from CO(2). These results strongly suggest that high concentration of CO(2) delivered to ginseng root suspension cultures induced the accumulation of total phenolics

  2. Difference of acute dissociation and 1-day culture on the electrophysiological properties of rat dorsal root ganglion neurons.

    PubMed

    Song, Yuanlong; Zhang, Miaomiao; Tao, Xiaoqing; Xu, Zifen; Zheng, Yunjie; Zhu, Minjie; Zhang, Liangpin; Qiao, Jinhan; Gao, Linlin

    2018-01-19

    The dissociated dorsal root ganglion (DRG) neurons with or without culture were widely used for investigation of their electrophysiological properties. The culture procedures, however, may alter the properties of these neurons and the effects are not clear. In the present study, we recorded the action potentials (AP) and the voltage-gated Na + , K + , and Ca 2+ currents with patch clamp technique and measured the mRNA of Nav1.6-1.9 and Cav2.1-2.2 with real-time PCR technique from acutely dissociated and 1-day (1-d) cultured DRG neurons. The effects of the nerve growth factor (NGF) on the expression of Nav1.6-1.9 and Cav2.1-2.2 were evaluated. The neurons were classified as small (DRG-S), medium (DRG-M), and large (DRG-L), according to their size frequency distribution pattern. We found 1-d culture increased the AP size but reduced the excitability, and reduced the voltage-gated Na + and Ca 2+ currents and their corresponding mRNA expression in all types of neurons. The lack of NGF in the culture medium may contribute to the reduced Na + and Ca 2+ current, as the application of NGF recovered some of the reduced transcripts (Nav1.9, Cav2.1, and Cav2.2). 1-d culture showed neuron-type specific effects on some of the AP properties: it increased the maximum AP depolarizing rate (MDR) and hyperpolarized the resting membrane potential (RP) in DRG-M and DRG-L neurons, but slowed the maximum AP repolarizing rate (MRR) in DRG-S neurons. In conclusion, the 1-d cultured neurons had different properties with those of the acutely dissociated neurons, and lack of NGF may contribute to some of these differences.

  3. Exploring of bioactive compounds in essential oil acquired from the stem and root derivatives of Hypericum triquetrifolium callus cultures.

    PubMed

    Tahir, Nawroz Abdul-Razzak; Azeez, Hoshyar Abdullah; Muhammad, Kadhm Abdullah; Faqe, Shewa Anwer; Omer, Dlshad Ali

    2017-12-25

    The chemical profile of the essential oil of callus and cell suspension cultures derivatives from stem and root of Hypericum triquetrifolium were explored by ITEX/GC-MS. The major constituents for stem derivatives were undecane (78.44%) and 2,4,6-trimethyl-octane (9.74%) for fresh calli, 2,4-dimethyl-benzaldehyde (46.94%), 2,3-dimethyl-undecane (28.39%), 2,4-dimethyl-1-hexene (10.17%), 1,2-oxolinalool (3.64%) and limonene (3.55%) for dry calli and undecane (61.24%), octane, 2,4,6-trimethyl- (16.73%), nonane, 3-methyl-(3.74%), 2,5-diphenyl-benzoquinone (3.70%) and limonene (3.60%) for cell suspension. However, for root derivatives, the dominated components were: undecane (49.94%), eucalyptol (12.07%), limonene (9.98%), toluene (9.03%) and 3-methyl-nonane (4.29%) for fresh calli, 2,4-dimethyl-benzaldehyde (29.80%), 1,1-dimethylethyl-cyclohexane (14.99%), 3-methyl-pentanal (14.99%), undecane (10.04%), beta-terpinyl acetate (8.60%), 1,2-oxolinalool (6.27%) and 2-pentyl-furan (4.09%) for dry calli, undecane (52.38%), 2,4,6-trimethyl-octane (13.81%), 3-methyl-nonane (5.73%), toluene (4.82%) and limonene (4.57%) for cell suspension derivative in root. The attained outcomes indicated that the alkane, aldehyde and monoterpene fractions dominated the chemical composition of essential oils.

  4. Response to alkaline stress by root canal bacteria in biofilms.

    PubMed

    Chávez de Paz, L E; Bergenholtz, G; Dahlén, G; Svensäter, G

    2007-05-01

    To determine whether bacteria isolated from infected root canals survive alkaline shifts better in biofilms than in planktonic cultures. Clinical isolates of Enterococcus faecalis, Lactobacillus paracasei, Olsenella uli, Streptococcus anginosus, S. gordonii, S. oralis and Fusobacterium nucleatum in biofilm and planktonic cultures were stressed at pH 10.5 for 4 h, and cell viability determined using the fluorescent staining LIVE/DEAD BacLight bacterial viability kit. In addition, proteins released into extracellular culture fluids were identified by Western blotting. Enterococcus faecalis, L. paracasei, O. uli and S. gordonii survived in high numbers in both planktonic cultures and in biofilms after alkaline challenge. S. anginosus, S. oralis and F. nucleatum showed increased viability in biofilms compared with planktonic cultures. Alkaline exposure caused all planktonic cultures to aggregate into clusters and resulted in a greater extrusion of cellular proteins compared with cells in biofilms. Increased levels of DnaK, HPr and fructose-1,6-bisphosphate aldolase were observed in culture fluids, especially amongst streptococci. In general, bacteria isolated from infected roots canals resisted alkaline stress better in biofilms than in planktonic cultures, however, planktonic cells appeared to use aggregation and the extracellular transport of specific proteins as survival mechanisms.

  5. [Allelopathy of garlic root exudates on different receiver vegetables].

    PubMed

    Zhou, Yan-li; Cheng, Zhi-hui; Meng, Huan-wen

    2007-01-01

    By the method of tissue culture under sterilized condition, this paper studied the allelopathy of garlic root exudates on lettuce, hot pepper, radish, cucumber, Chinese cabbage, and tomato. The results showed that garlic root exudates had no evident effects on the germination rate, germination index, shoot height, and protective enzyme system of test crops, but significantly increased the root length, aboveground fresh mass, and root fresh mass of lettuce, with the RIs being +0.163, +0.106, +0.318, respectively. The exudates also increased the root length of Chinese cabbage, with a RI of +0.120. For other test crops, no significant difference was observed between the treatments and the control. Garlic root exudates significantly increased the chlorophyll content and root activity of the receiver vegetables. The strongest promotion effects were found on chlorophyll content in radish, with RI being +0.282, and on root activity of cucumber, with RI being +0.184. The exudates promoted the nutrient absorption of all the receiver vegetables.

  6. Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12.

    PubMed

    Hussain, Anwar; Hamayun, Muhammad; Shah, Syed Tariq

    2013-11-01

    Nostoc, a nitrogen-fixing cyanobacterium, has great potential to make symbiotic associations with a wide range of plants and benefit its hosts with nitrogen in the form of nitrates. It may also use phytohormones as a tool to promote plant growth. Phytohormones [cytokinin (Ck) and IAA] were determined in the culture of an endophytic Nostoc isolated from rice roots. The strain was able to accumulate as well as release phytohormones to the culture media. Optimum growth conditions for the production of zeatin and IAA were a temperature of 25 °C and a pH of 8.0. Time-dependent increase in the accumulation and release of phytohormones was recorded. To evaluate the impact of cytokinins, an ipt knockout mutant in the background of Nostoc was generated by homologous recombination method. A sharp decline (up to 80 %) in the zeatin content was observed in the culture of mutant strain Nostoc AHM-12. Association of the mutant and wild type strain with rice and wheat roots was studied under axenic conditions. The efficacy of Nostoc to colonize plant root was significantly reduced (P < 0.05) as a result of ipt inactivation as evident by low chlorophyll a concentration in the roots. In contrast to the mutant strain, wild type strain showed good association with the roots and enhanced several growth parameters, such as fresh weight, dry weight, shoot length, and root length of the crop plants. The study clearly demonstrated that Ck is a tool of endophytic Nostoc to colonize plant root and promote its growth.

  7. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  8. Simplified and representative bacterial community of maize roots

    PubMed Central

    Niu, Ben; Paulson, Joseph Nathaniel; Zheng, Xiaoqi; Kolter, Roberto

    2017-01-01

    Plant-associated microbes are important for the growth and health of their hosts. As a result of numerous prior studies, we know that host genotypes and abiotic factors influence the composition of plant microbiomes. However, the high complexity of these communities challenges detailed studies to define experimentally the mechanisms underlying the dynamics of community assembly and the beneficial effects of such microbiomes on plant hosts. In this work, from the distinctive microbiota assembled by maize roots, through host-mediated selection, we obtained a greatly simplified synthetic bacterial community consisting of seven strains (Enterobacter cloacae, Stenotrophomonas maltophilia, Ochrobactrum pituitosum, Herbaspirillum frisingense, Pseudomonas putida, Curtobacterium pusillum, and Chryseobacterium indologenes) representing three of the four most dominant phyla found in maize roots. By using a selective culture-dependent method to track the abundance of each strain, we investigated the role that each plays in community assembly on roots of axenic maize seedlings. Only the removal of E. cloacae led to the complete loss of the community, and C. pusillum took over. This result suggests that E. cloacae plays the role of keystone species in this model ecosystem. In planta and in vitro, this model community inhibited the phytopathogenic fungus Fusarium verticillioides, indicating a clear benefit to the host. Thus, combined with the selective culture-dependent quantification method, our synthetic seven-species community representing the root microbiome has the potential to serve as a useful system to explore how bacterial interspecies interactions affect root microbiome assembly and to dissect the beneficial effects of the root microbiota on hosts under laboratory conditions in the future. PMID:28275097

  9. Simplified and representative bacterial community of maize roots.

    PubMed

    Niu, Ben; Paulson, Joseph Nathaniel; Zheng, Xiaoqi; Kolter, Roberto

    2017-03-21

    Plant-associated microbes are important for the growth and health of their hosts. As a result of numerous prior studies, we know that host genotypes and abiotic factors influence the composition of plant microbiomes. However, the high complexity of these communities challenges detailed studies to define experimentally the mechanisms underlying the dynamics of community assembly and the beneficial effects of such microbiomes on plant hosts. In this work, from the distinctive microbiota assembled by maize roots, through host-mediated selection, we obtained a greatly simplified synthetic bacterial community consisting of seven strains ( Enterobacter cloacae , Stenotrophomonas maltophilia, Ochrobactrum pituitosum, Herbaspirillum frisingense, Pseudomonas putida, Curtobacterium pusillum , and Chryseobacterium indologenes ) representing three of the four most dominant phyla found in maize roots. By using a selective culture-dependent method to track the abundance of each strain, we investigated the role that each plays in community assembly on roots of axenic maize seedlings. Only the removal of E. cloacae led to the complete loss of the community, and C. pusillum took over. This result suggests that E. cloacae plays the role of keystone species in this model ecosystem. In planta and in vitro, this model community inhibited the phytopathogenic fungus Fusarium verticillioides , indicating a clear benefit to the host. Thus, combined with the selective culture-dependent quantification method, our synthetic seven-species community representing the root microbiome has the potential to serve as a useful system to explore how bacterial interspecies interactions affect root microbiome assembly and to dissect the beneficial effects of the root microbiota on hosts under laboratory conditions in the future.

  10. Shoot position affects root initiation and growth of dormant unrooted cuttings of Populus

    Treesearch

    R.S., Jr. Zalesny; R.B. Hall; E.O. Bauer; D.E. Riemenschneider

    2003-01-01

    Rooting of dormant unrooted cuttings is crucial to the commercial deployment of intensively cultured poplar (Populus spp.) plantations because it is the first biological prerequisite to stand establishment. Rooting can be genetically controlled and subject to selection. Thus, our objective was to test for differences in rooting ability among cuttings...

  11. Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradices1[w

    PubMed Central

    Isayenkov, Stanislav; Mrosk, Cornelia; Stenzel, Irene; Strack, Dieter; Hause, Bettina

    2005-01-01

    During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35S∷uidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis. PMID:16244141

  12. Soybean NADP-Malic Enzyme Functions in Malate and Citrate Metabolism and Contributes to Their Efflux under Al Stress.

    PubMed

    Zhou, Ying; Yang, Zhenming; Xu, Yuezi; Sun, Haoran; Sun, Zhitao; Lin, Bao; Sun, Wenjing; You, Jiangfeng

    2017-01-01

    Malate accumulation has been suggested to balance Al-induced citrate synthesis and efflux in soybean roots. To test this hypothesis, characteristics of Al-induced accumulation and efflux of citrate and malate were compared between two soybean genotypes combining a functional analysis of GmME1 putatively encode a cytosolic NADP-malic enzyme. Similar amounts of citrate were released, and root elongation was equally inhibited before 8 h of Al treatment of Jiyu 70 and Jiyu 62 cultivars. Jiyu 70 began to secrete more citrate and exhibited higher Al resistance than did Jiyu 62 at 12 h. A sustained increase in internal malate and citrate concentrations was observed in Jiyu 70 at 24 h of Al treatment. However, Jiyu 62 decreased its malate concentration at 12 h and its citrate concentration at 24 h of Al treatment. GmME1 localized to the cytoplast and clustered closely with cytosolic malic enzymes AtME2 and SgME1 and was constitutively expressed in the roots. Al treatment induced higher NADP-malic enzyme activities and GmME1 expression levels in Jiyu 70 than in Jiyu 62 within 24 h. Compared with wild-type hairy roots, over-expressing GmME1 in hairy roots ( GmME1 -OE) produced higher expression levels of GmME1 but did not change the expression patterns of either of the putative citrate transporter genes GmAACT1 and GmFRDL or the malate transporter gene GmALMT1 , with or without Al treatment. GmME1 -OE showed a higher internal concentration and external efflux of both citrate and malate at 4 h of Al stress. Lighter hematoxylin staining and lower Al contents in root apices of GmME1 -OE hairy roots indicated greater Al resistance. Comprehensive experimental results suggest that sustaining Al-induced citrate efflux depends on the malate pool in soybean root apices. GmME1 encodes a cytosolic malic enzyme that contributes to increased internal malate and citrate concentrations and their external efflux to confer higher Al resistance.

  13. Characterization of Shikonin Derivative Secretion in Lithospermum erythrorhizon Hairy Roots as a Model of Lipid-Soluble Metabolite Secretion from Plants

    PubMed Central

    Tatsumi, Kanade; Yano, Mariko; Kaminade, Kenta; Sugiyama, Akifumi; Sato, Mayuko; Toyooka, Kiminori; Aoyama, Takashi; Sato, Fumihiko; Yazaki, Kazufumi

    2016-01-01

    Shikonin derivatives are specialized lipophilic metabolites, secreted in abundant amounts from the root epidermal cells of Lithospermum erythrorhizon. Because they have anti-microbial activities, these compounds, which are derivatives of red naphthoquinone, are thought to serve as a chemical barrier for plant roots. The mechanism by which they are secreted from cells is, however, largely unknown. The shikonin production system in L. erythrorhizon is an excellent model for studying the mechanism by which lipophilic compounds are secreted from plant cells, because of the abundant amounts of these compounds produced by L. erythrorhizon, the 0 to 100% inducibility of their production, the light-specific inhibition of production, and the visibility of these products as red pigments. To date, many factors regulating shikonin biosynthesis have been identified, but no mechanism that regulates shikonin secretion without inhibiting biosynthesis has been detected. This study showed that inhibitors of membrane traffic strongly inhibit shikonin secretion without inhibiting shikonin production, suggesting that the secretion of shikonin derivatives into the apoplast utilizes pathways common to the ADP-ribosylation factor/guanine nucleotide exchange factor (ARF/GEF) system and actin filament polymerization, at least in part. These findings provide clues about the machinery involved in secreting lipid-soluble metabolites from cells. PMID:27507975

  14. Characterization of Shikonin Derivative Secretion in Lithospermum erythrorhizon Hairy Roots as a Model of Lipid-Soluble Metabolite Secretion from Plants.

    PubMed

    Tatsumi, Kanade; Yano, Mariko; Kaminade, Kenta; Sugiyama, Akifumi; Sato, Mayuko; Toyooka, Kiminori; Aoyama, Takashi; Sato, Fumihiko; Yazaki, Kazufumi

    2016-01-01

    Shikonin derivatives are specialized lipophilic metabolites, secreted in abundant amounts from the root epidermal cells of Lithospermum erythrorhizon. Because they have anti-microbial activities, these compounds, which are derivatives of red naphthoquinone, are thought to serve as a chemical barrier for plant roots. The mechanism by which they are secreted from cells is, however, largely unknown. The shikonin production system in L. erythrorhizon is an excellent model for studying the mechanism by which lipophilic compounds are secreted from plant cells, because of the abundant amounts of these compounds produced by L. erythrorhizon, the 0 to 100% inducibility of their production, the light-specific inhibition of production, and the visibility of these products as red pigments. To date, many factors regulating shikonin biosynthesis have been identified, but no mechanism that regulates shikonin secretion without inhibiting biosynthesis has been detected. This study showed that inhibitors of membrane traffic strongly inhibit shikonin secretion without inhibiting shikonin production, suggesting that the secretion of shikonin derivatives into the apoplast utilizes pathways common to the ADP-ribosylation factor/guanine nucleotide exchange factor (ARF/GEF) system and actin filament polymerization, at least in part. These findings provide clues about the machinery involved in secreting lipid-soluble metabolites from cells.

  15. Impact of 2,4-Diacetylphloroglucinol-Producing Biocontrol Strain Pseudomonas fluorescens F113 on Intraspecific Diversity of Resident Culturable Fluorescent Pseudomonads Associated with the Roots of Field-Grown Sugar Beet Seedlings

    PubMed Central

    Moënne-Loccoz, Yvan; Tichy, Hans-Volker; O'Donnell, Anne; Simon, Reinhard; O'Gara, Fergal

    2001-01-01

    The impact of the 2,4-diacetylphloroglucinol-producing biocontrol agent Pseudomonas fluorescens F113Rif on the diversity of the resident community of culturable fluorescent pseudomonads associated with the roots of field-grown sugar beet seedlings was evaluated. At 19 days after sowing, the seed inoculant F113Rif had replaced some of the resident culturable fluorescent pseudomonads at the rhizoplane but had no effect on the number of these bacteria in the rhizosphere. A total of 498 isolates of resident fluorescent pseudomonads were obtained and characterized by molecular means at the level of broad phylogenetic groups (by amplified ribosomal DNA restriction analysis) and at the strain level (with random amplified polymorphic DNA markers) as well as phenotypically (55 physiological tests). The introduced pseudomonad induced a major shift in the composition of the resident culturable fluorescent Pseudomonas community, as the percentage of rhizoplane isolates capable of growing on three carbon substrates (erythritol, adonitol, and l-tryptophan) not assimilated by the inoculant was increased from less than 10% to more than 40%. However, the pseudomonads selected did not display enhanced resistance to 2,4-diacetylphloroglucinol. The shift in the resident populations, which was spatially limited to the surface of the root (i.e., the rhizoplane), took place without affecting the relative proportions of phylogenetic groups or the high level of strain diversity of the resident culturable fluorescent Pseudomonas community. These results suggest that the root-associated Pseudomonas community of sugar beet seedlings is resilient to the perturbation that may be caused by a taxonomically related inoculant. PMID:11472913

  16. Characterization of CcSTOP1; a C2H2-type transcription factor regulates Al tolerance gene in pigeonpea.

    PubMed

    Daspute, Abhijit Arun; Kobayashi, Yuriko; Panda, Sanjib Kumar; Fakrudin, Bashasab; Kobayashi, Yasufumi; Tokizawa, Mutsutomo; Iuchi, Satoshi; Choudhary, Arbind Kumar; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki

    2018-01-01

    Al-responsive citrate-transporting CcMATE1 function and its regulation by CcSTOP1 were analyzed using NtSTOP1 -KD tobacco- and pigeonpea hairy roots, respectively, CcSTOP1 binding sequence of CcMATE1 showed similarity with AtALMT1 promoter. The molecular mechanisms of Aluminum (Al) tolerance in pigeonpea (Cajanus cajan) were characterized to provide information for molecular breeding. Al-inducible citrate excretion was associated with the expression of MULTIDRUGS AND TOXIC COMPOUNDS EXCLUSION (CcMATE1), which encodes a citrate transporter. Ectopic expression of CcMATE1-conferred Al tolerance to hairy roots of transgenic tobacco with the STOP1 regulation system knocked down. This gain-of-function approach clearly showed CcMATE1 was involved in Al detoxification. The expression of CcMATE1 and another Al-tolerance gene, ALUMINUM SENSITIVE 3 (CcALS3), was regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (CcSTOP1) according to loss-of-function analysis of pigeonpea hairy roots in which CcSTOP1 was suppressed. An in vitro binding assay showed that the Al-responsive CcMATE1 promoter contained the GGNVS consensus bound by CcSTOP1. Mutation of GGNVS inactivated the Al-inducible expression of CcMATE1 in pigeonpea hairy roots. This indicated that CcSTOP1 binding to the promoter is critical for CcMATE1 expression. The STOP1 binding sites of both the CcMATE1 and AtALMT1 promoters contained GGNVS and a flanking 3' sequence. The GGNVS region was identical in both CcMATE1 and AtALMT1. By contrast, the 3' flanking sequence with binding affinity to STOP1 did not show similarity. Putative STOP1 binding sites with similar structures were also found in Al-inducible MATE and ALMT1 promoters in other plant species. The characterized Al-responsive CcSTOP1 and CcMATE1 genes will help in pigeonpea breeding in acid soil tolerance.

  17. Suspected pyrrolizidine alkaloid hepatotoxicosis in wild southern hairy-nosed wombats (Lasiorhinus latifrons).

    PubMed

    Woolford, Lucy; Fletcher, Mary T; Boardman, Wayne S J

    2014-07-30

    Southern hairy-nosed wombats (Lasiorhinus latifrons) inhabiting degraded habitat in South Australia were recently identified with extensive hair loss and dermatitis and were in thin to emaciated body condition. Pathological and clinicopathological investigations on affected juvenile wombats identified a toxic hepatopathy suggestive of plants containing pyrrolizidine alkaloids, accompanied by photosensitive dermatitis. Hepatic disease was suspected in additional wombats on the basis of serum biochemical analysis. Preliminary toxicological analysis performed on scats and gastrointestinal contents from wombats found in this degraded habitat identified a number of toxic pyrrolizidine alkaloids consistent with ingestion of Heliotropeum europaeum. Although unpalatable, ingestion may occur by young animals due to decreased availability of preferred forages in degraded habitats and the emergence of weeds around the time of weaning of naive animals. Habitat degradation leading to malnutrition and ingestion of toxic weed species is a significant welfare issue in this species.

  18. Characterization of in vitro transcriptional responses of dorsal root ganglia cultured in the presence and absence of blastema cells from regenerating salamander limbs

    PubMed Central

    Athippozhy, Antony; Lehrberg, Jeffrey; Monaghan, James R.; Gardiner, David M.

    2014-01-01

    Abstract During salamander limb regeneration, nerves provide signals that induce the formation of a mass of proliferative cells called the blastema. To better understand these signals, we developed a blastema−dorsal root ganglia (DRG) co‐culture model system to test the hypothesis that nerves differentially express genes in response to cues provided by the blastema. DRG with proximal and distal nerve trunks were isolated from axolotls (Ambystoma mexicanum), cultured for 5 days, and subjected to microarray analysis. Relative to freshly isolated DRG, 1541 Affymetrix probe sets were identified as differentially expressed and many of the predicted genes are known to function in injury and neurodevelopmental responses observed for mammalian DRG. We then cultured 5‐day DRG explants for an additional 5 days with or without co‐cultured blastema cells. On day 10, we identified 27 genes whose expression in cultured DRG was significantly affected by the presence or absence of blastema cells. Overall, our study established a DRG−blastema in vitro culture system and identified candidate genes for future investigations of axon regrowth, nerve−blastema signaling, and neural regulation of limb regeneration. PMID:25750744

  19. Effects of light on protein patterns in gravitropically stimulated root caps of corn

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Gildow, V.

    1984-01-01

    In certain cultivars of corn (Zea mays var. Merit), light stimulates gravitropic bending of the root by influencing events in the root cap. In this paper, we report on changes in root cap proteins which occur as a result of the light treatment and single out specific proteins as potentially having a role in mediating the gravitropic response. For this work, we have used root caps maintained aseptically in culture media supplemented with auxin. If auxin is deleted from the culture medium, the protein profiles observed following illumination differ from that seen in caps provided light while in auxin-supplemented media. We also report that several of the proteins for which synthesis is stimulated by light appear to turn over rapidly, usually within 0.5 hour of formation.

  20. Stimulating effects of two plant growth-promoting bacteria, Enterobacter ludwigii Ez-185-17 and Raoultella terrigena Ez-555-6, on flax culture

    NASA Astrophysics Data System (ADS)

    Sarron, Elodie; Clément, Nathalie; Pawlicki-Jullian, Nathalie; Gaillard, Isabelle; Boitel-Conti, Michèle

    2018-04-01

    Two bacteria, Enterobacter ludwigii Ez-185-17 and Raoultella terrigena Ez-555-6, isolated from root nodules of Medicago lupulina from the Chernobyl exclusion zone, were identified in a previous study and shown not to disturb plant growth. The main goal of this work is to elucidate the relationships between these bacteria and flax, in particular whether they display activities such as plant growth promoting bacteria (PGPB) properties or modulation hairy root development. In order to better understand their role in plants, some known PGPB properties were determined in comparison with several control bacteria. The influence of these bacteria on Linum usitatissimum growth under hydroponic conditions was also investigated. Our study shows that both bacteria belong to PGPB since they were able to increase considerably the root surface area of flax, especially Raoultella terrigena Ez-555-6. Significant IAA production and phosphate solubilization of Enterobacter ludwigii Ez-185-17 were highlighted, which enabled these biochemical PGPB properties to be correlated with their effects on flax growth. However, Raoultella terrigena Ez-555-6 did not express high biochemical activities, suggesting that other PGPB abilities should be studied in order to establish the link with flax growth improvement.

  1. The Role of Culture in Conflict Resolution

    DTIC Science & Technology

    2008-03-01

    Grasping the Nettle ; Analyzing Cases of Intractable, Chester A. Crocker, Fen Osler Hampson, and Pamela Aall eds., United States Institute of Peace...considerations in his model.44 Many enduring conflicts are rooted in culturally engrained prejudices and biases against “the other.” Bercovitch makes...Fisher argues that conflicting beliefs, morals and methods of communication, all rooted in culture, influence negotiations in various ways.57 Some

  2. Axonal outgrowth, neuropeptides expression and receptors tyrosine kinase phosphorylation in 3D organotypic cultures of adult dorsal root ganglia

    PubMed Central

    Alves, Cecília J.; Leitão, Luís; Sousa, Daniela M.; Alencastre, Inês S.; Conceição, Francisco; Lamghari, Meriem

    2017-01-01

    Limited knowledge from mechanistic studies on adult sensory neuronal activity was generated, to some extent, in recapitulated adult in vivo 3D microenvironment. To fill this gap there is a real need to better characterize the adult dorsal root ganglia (aDRG) organotypic cultures to make these in vitro systems exploitable for different approaches, ranging from basic neurobiology to regenerative therapies, to address the sensory nervous system in adult stage. We conducted a direct head-to-head comparison of aDRG and embryonic DRG (eDRG) organotypic culture focusing on axonal growth, neuropeptides expression and receptors tyrosine kinase (RTK) activation associated with neuronal survival, proliferation and differentiation. To identify alterations related to culture conditions, these parameters were also addressed in retrieved aDRG and eDRG and compared with organotypic cultures. Under similar neurotrophic stimulation, aDRG organotypic cultures displayed lower axonal outgrowth rate supported by reduced expression of growth associated protein-43 and high levels of RhoA and glycogen synthase kinase 3 beta mRNA transcripts. In addition, differential alteration in sensory neuropeptides expression, namely calcitonin gene-related peptide and substance P, was detected and was mainly pronounced at gene expression levels. Among 39 different RTK, five receptors from three RTK families were emphasized: tropomyosin receptor kinase A (TrkA), epidermal growth factor receptors (EGFR, ErbB2 and ErbB3) and platelet-derived growth factor receptor (PDGFR). Of note, except for EGFR, the phosphorylation of these receptors was dependent on DRG developmental stage and/or culture condition. In addition, EGFR and PDGFR displayed alterations in their cellular expression pattern in cultured DRG. Overall we provided valuable information particularly important when addressing in vitro the molecular mechanisms associated with development, maturation and regeneration of the sensory nervous system

  3. Fagopyrum esculentum Alters Its Root Exudation after Amaranthus retroflexus Recognition and Suppresses Weed Growth

    PubMed Central

    Gfeller, Aurélie; Glauser, Gaétan; Etter, Clément; Signarbieux, Constant; Wirth, Judith

    2018-01-01

    Weed control by crops through growth suppressive root exudates is a promising alternative to herbicides. Buckwheat (Fagopyrum esculentum) is known for its weed suppression and redroot pigweed (Amaranthus retroflexus) control is probably partly due to allelopathic root exudates. This work studies whether other weeds are also suppressed by buckwheat and if the presence of weeds is necessary to induce growth repression. Buckwheat and different weeds were co-cultivated in soil, separating roots by a mesh allowing to study effects due to diffusion. Buckwheat suppressed growth of pigweed, goosefoot and barnyard grass by 53, 42, and 77% respectively without physical root interactions, probably through allelopathic compounds. Root exudates were obtained from sand cultures of buckwheat (BK), pigweed (P), and a buckwheat/pigweed mixed culture (BK-P). BK-P root exudates inhibited pigweed root growth by 49%. Characterization of root exudates by UHPLC-HRMS and principal component analysis revealed that BK and BK-P had a different metabolic profile suggesting that buckwheat changes its root exudation in the presence of pigweed indicating heterospecific recognition. Among the 15 different markers, which were more abundant in BK-P, tryptophan was identified and four others were tentatively identified. Our findings might contribute to the selection of crops with weed suppressive effects. PMID:29445385

  4. Fagopyrum esculentum Alters Its Root Exudation after Amaranthus retroflexus Recognition and Suppresses Weed Growth.

    PubMed

    Gfeller, Aurélie; Glauser, Gaétan; Etter, Clément; Signarbieux, Constant; Wirth, Judith

    2018-01-01

    Weed control by crops through growth suppressive root exudates is a promising alternative to herbicides. Buckwheat ( Fagopyrum esculentum ) is known for its weed suppression and redroot pigweed ( Amaranthus retroflexus ) control is probably partly due to allelopathic root exudates. This work studies whether other weeds are also suppressed by buckwheat and if the presence of weeds is necessary to induce growth repression. Buckwheat and different weeds were co-cultivated in soil, separating roots by a mesh allowing to study effects due to diffusion. Buckwheat suppressed growth of pigweed, goosefoot and barnyard grass by 53, 42, and 77% respectively without physical root interactions, probably through allelopathic compounds. Root exudates were obtained from sand cultures of buckwheat (BK), pigweed (P), and a buckwheat/pigweed mixed culture (BK-P). BK-P root exudates inhibited pigweed root growth by 49%. Characterization of root exudates by UHPLC-HRMS and principal component analysis revealed that BK and BK-P had a different metabolic profile suggesting that buckwheat changes its root exudation in the presence of pigweed indicating heterospecific recognition. Among the 15 different markers, which were more abundant in BK-P, tryptophan was identified and four others were tentatively identified. Our findings might contribute to the selection of crops with weed suppressive effects.

  5. Baseline survey of root-associated microbes of Taxus chinensis (Pilger) Rehd.

    PubMed

    Zhang, Qian; Liu, Hongwei; Sun, Guiling; Wilson, Iain W; Wu, Jianqiang; Hoffman, Angela; Cheng, Junwen; Qiu, Deyou

    2015-01-01

    Taxol (paclitaxel) a diterpenoid is one of the most effective anticancer drugs identified. Biosynthesis of taxol was considered restricted to the Taxus genera until Stierle et al. discovered that an endophytic fungus isolated from Taxus brevifolia could independently synthesize taxol. Little is known about the mechanism of taxol biosynthesis in microbes, but it has been speculated that its biosynthesis may differ from plants. The microbiome from the roots of Taxus chinensis have been extensively investigated with culture-dependent methods to identify taxol synthesizing microbes, but not using culture independent methods.,Using bar-coded high-throughput sequencing in combination with a metagenomics approach, we surveyed the microbial diversity and gene composition of the root-associated microbiomefrom Taxus chinensis (Pilger) Rehd. High-throughput amplicon sequencing revealed 187 fungal OTUs which is higher than any previously reported fungal number identified with the culture-dependent method, suggesting that T. chinensis roots harbor novel and diverse fungi. Some operational taxonomic units (OTU) identified were identical to reported microbe strains possessing the ability to synthesis taxol and several genes previously associated with taxol biosynthesis were identified through metagenomics analysis.

  6. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  7. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method.

    PubMed

    Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn

    2013-01-01

    High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This

  8. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    PubMed Central

    Wu, Qian; Pagès, Loïc; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490

  9. Nitrate uptake and nitrite release by tomato roots in response to anoxia.

    PubMed

    Morard, Philippe; Silvestre, Jérôme; Lacoste, Ludovic; Caumes, Edith; Lamaze, Thierry

    2004-07-01

    Excised root systems of tomato plants (early fruiting stage, 2nd flush) were subjected to a gradual transition from normoxia to anoxia by seating the hydroponic root medium while aeration was stopped. Oxygen level in the medium and respiration rate decreased and reached very low values after 12 h of treatment, indicating that the tissues were anoxic thereafter. Nitrate loss from the nutrient solution was strongly stimulated by anoxia (after 26 h) concomitantly with a release of nitrite starting only after 16 h of treatment. This effect was not observed in the absence of roots or in the presence of tungstate, but occurred with whole plants or with sterile in vitro cultured root tissues. These results indicate that biochemical processes in the root involve nitrate reductase. NR activity assayed in tomato roots increased during anoxia. This phenomenon appeared in intact plants and in root tissues of detopped plants. The stimulating effect of oxygen deprivation on nitrate uptake was specific; anoxia simultaneously entailed a release of orthophosphate, sulfate, and potassium by the roots. Anoxia enhanced nitrate reduction by root tissues, and nitrite ions were released into xylem sap and into medium culture. In terms of the overall balance, the amount of nitrite recovered represented only half of the amount of nitrate utilized. Nitrite reduction into nitric oxide and perhaps into nitrogen gas could account for this discrepancy. These results appear to be the first report of an increase in nitrate uptake by plant roots under anoxia of tomato at the early fruiting stage, and the rates of nitrite release in nutrient medium by the asphyxiated roots are the fastest yet reported.

  10. Isolating a functionally relevant guild of fungi from the root microbiome of Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonito, Gregory; Hameed, Khalid; Ventura, Rafael

    Plant roots interact with a bewilderingly complex community of microbes, including root-associated fungi that are essential for maintaining plant health. To improve understanding of the diversity of fungi in the rhizobiome of Populus deltoides, Populus trichocarpa and co-occurring plant hosts Quercus alba and Pinus taeda, we conducted field and greenhouse studies and sampled, isolated, and characterized the diversity of culturable root-associated fungi on these hosts. Using both general and selective isolation media we obtained more than 1800 fungal isolates from individual surface sterilized root tips. Sequences from the ITS and/or D1– D2 regions of the LSU rDNA were obtained frommore » 1042 of the >1800 pure culture isolates and were compared to accessions in the NCBI nucleotide database and analyzed through phylogenetics for preliminary taxonomic identification. Sequences from these isolates were also compared to 454 sequence datasets obtained directly from the Populus rhizosphere and endosphere. Although most of the ectomycorrhizal taxa known to associate with Populus evaded isolation, many of the abundant sequence types from rhizosphere and endosphere 454 datasets were isolated, including novel species belonging to the Atractiellales. Isolation and identification of key endorrhizal fungi will enable more targeted study of plant-fungal interactions. Genome sequencing is currently underway for a subset of our culture library with the aim of understanding the mechanisms involved in host-endophyte establishment and function. As a result, this diverse culture library of fungal root associates will be a valuable resource for metagenomic research, experimentation and further studies on plant-fungal interactions.« less

  11. Isolating a functionally relevant guild of fungi from the root microbiome of Populus

    DOE PAGES

    Bonito, Gregory; Hameed, Khalid; Ventura, Rafael; ...

    2016-05-27

    Plant roots interact with a bewilderingly complex community of microbes, including root-associated fungi that are essential for maintaining plant health. To improve understanding of the diversity of fungi in the rhizobiome of Populus deltoides, Populus trichocarpa and co-occurring plant hosts Quercus alba and Pinus taeda, we conducted field and greenhouse studies and sampled, isolated, and characterized the diversity of culturable root-associated fungi on these hosts. Using both general and selective isolation media we obtained more than 1800 fungal isolates from individual surface sterilized root tips. Sequences from the ITS and/or D1– D2 regions of the LSU rDNA were obtained frommore » 1042 of the >1800 pure culture isolates and were compared to accessions in the NCBI nucleotide database and analyzed through phylogenetics for preliminary taxonomic identification. Sequences from these isolates were also compared to 454 sequence datasets obtained directly from the Populus rhizosphere and endosphere. Although most of the ectomycorrhizal taxa known to associate with Populus evaded isolation, many of the abundant sequence types from rhizosphere and endosphere 454 datasets were isolated, including novel species belonging to the Atractiellales. Isolation and identification of key endorrhizal fungi will enable more targeted study of plant-fungal interactions. Genome sequencing is currently underway for a subset of our culture library with the aim of understanding the mechanisms involved in host-endophyte establishment and function. As a result, this diverse culture library of fungal root associates will be a valuable resource for metagenomic research, experimentation and further studies on plant-fungal interactions.« less

  12. Association of proteomics changes with Al-sensitive root zones in switchgrass

    USDA-ARS?s Scientific Manuscript database

    In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 uM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cmlong root ti...

  13. Ecology of root colonizing Massilia (Oxalobacteraceae).

    PubMed

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  14. Ecology of Root Colonizing Massilia (Oxalobacteraceae)

    PubMed Central

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Background Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. Methodology/Principal Findings The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. Conclusions In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche. PMID:22808103

  15. Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata.

    PubMed

    Liu, Wanhong; Chen, Rong; Chen, Min; Zhang, Haoxing; Peng, Meifang; Yang, Chunxian; Ming, Xingjia; Lan, Xiaozhong; Liao, Zhihua

    2012-07-01

    Tryptophan decarboxylase (TDC) converts tryptophan into tryptamine that is the indole moiety of ajmalicine. The full-length cDNA of Rauvolfia verticillata (RvTDC) was 1,772 bps that contained a 1,500-bp ORF encoding a 499-amino-acid polypeptide. Recombinant 55.5 kDa RvTDC converted tryptophan into tryptamine. The K (m) of RvTDC for tryptophan was 2.89 mM, higher than those reported in other TIAs-producing plants. It demonstrated that RvTDC had lower affinity to tryptophan than other plant TDCs. The K (m) of RvTDC was also much higher than that of strictosidine synthase and strictosidine glucosidase in Rauvolfia. This suggested that TDC might be the committed-step enzyme involved in ajmalicine biosynthesis in R. verticillata. The expression of RvTDC was slightly upregulated by MeJA; the five MEP pathway genes and SGD showed no positive response to MeJA; and STR was sharply downregulated by MeJA. MeJA-treated hairy roots produced higher level of ajmalicine (0.270 mg g(-1) DW) than the EtOH control (0.183 mg g(-1) DW). Highest RvTDC expression level was detected in hairy root, about respectively 11, 19, 65, and 109-fold higher than in bark, young leaf, old leaf, and root. Highest ajmalicine content was also found in hairy root (0.249 mg g(-1) DW) followed by in bark (0.161 mg g(-1) DW) and young leaf (0.130 mg g(-1) DW), and least in root (0.014 mg g(-1) DW). Generally, the expression level of RvTDC was positively consistent with the accumulation of ajmalicine. Therefore, it could be deduced that TDC might be the key enzyme involved in ajmalicine biosynthesis in Rauvolfia.

  16. Regeneration of Cuphea tolucana Peyr. in in vitro culture.

    PubMed

    Przybecki, Z; Olejniczak, J; Adamska, E

    2001-01-01

    In order to regenerate Cuphea tolucana from hypocotyl, cotyledon and root explants, a solid culture and 8 hormone combinations were used. Only the root explants did not react to any of the media. On most of the media, the other explants formed shoots, roots or callus, or their reaction was more complex. The regeneration probably occurred via direct organogenesis. The regenerants displayed a wide variety of morphological characteristics. However, their offspring did not show any differences from plants, which had not undergone culture.

  17. Influence of root exudates on attachment of Pasteuria penetrans to Meloidogyne arenaria

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that root exudates would influence the spore attachment of Pasteuria penetrans to root-knot nematodes (Meloidogyne arenaria). An experiment was carried out using a factorial arrangement of two single spore (SS) lines cultured from P. penetrans and three single egg mass(SEM)lines cult...

  18. [Allelopathy of grape root aqueous extracts].

    PubMed

    Li, Kun; Guo, Xiu-wu; Guo, Yin-shan; Li, Cheng-xiang; Xie, Hong-gang; Hu, Xi-xi; Zhang, Li-heng; Sun, Ying-ni

    2010-07-01

    Taking the tissue-cultured seedlings of grape cultivar Red Globe as test objects, this paper examined the effects of their root aqueous extracts on seedling's growth, with the allelochemicals identified by LC-MS. The results showed that 0.02 g x ml(-1) (air-dried root mass in aqueous extracts volume; the same below), 0.1 g x ml(-1), and 0.2 g x ml(-1) of the aqueous extracts inhibited the growth of the seedlings significantly, and the inhibition effect increased with increasing concentration of the extracts. The identified allelochemicals of the extracts included p-hydroxybenzoic acid, salicylic acid, phenylpropionic acid, and coumaric acid. Pot experiment showed that different concentration (0.1, 1, and 10 mmol x L(-1)) salicylic acid and phenylpropionic acid inhibited the seedling' s growth remarkably. With the increasing concentration of the two acids, the plant height, stem diameter, shoot- and root fresh mass, leaf net photosynthetic rate and starch content, and root activity of the seedlings decreased, while the leaf soluble sugar and MDA contents increased. No obvious change pattern was observed in leaf protein content.

  19. Addition of phosphorus to subsoil promotes root development of yellow birch

    Treesearch

    Merrill C. Hoyle

    1965-01-01

    Pot-culture studies have indicated that roots of yellow birch (Betula alleghaniensis Britton) develop more prolifically in humus than in sandy mineral soil (Hoyle 1965; Winget et al. 1963; Redmond 1954; and Tubbs 1963). This situation has also been observed during root-excavation studies (Redmond 1957; Spaulding and MacAloney 1931). Results of these...

  20. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  1. Agrobacterium rhizogenes - based transformation of soybean roots to form composite plants

    USDA-ARS?s Scientific Manuscript database

    Composite plants are a powerful tool to rapidly analyze the effects of gene overexpression, gene silencing, and examine test promoter expression in transgenic roots. No sterile tissue culture is needed. This avoids loss of valuable material due to contamination of sterile cultures. This method uses ...

  2. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation.

    PubMed

    Rentz, Jeremy A; Alvarez, Pedro J J; Schnoor, Jerald L

    2005-08-01

    Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of (14)C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% (14)CO(2) when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02.

  3. Long-Term Container Effects on Root System Architecture of Longleaf Pine

    Treesearch

    Shi-Jean S. Sung; James D. Haywood; Stanley J. Zarnoch; Mary Anne Sword Sayer

    2009-01-01

    Longleaf pine (Pinus palustris Mill.) seedlings cultured in three container cavity volumes and two cavity types (regular or copper oxychloride coating for root pruning) were excavated three years after planting in 2007 in Louisiana, U.S.A. Copper root pruning did not affect seedling growth. Seedlings from small cavities (60 ml) were smaller than those from medium (93...

  4. Crop root behavior coordinates phosphorus status and neighbors: from field studies to three-dimensional in situ reconstruction of root system architecture.

    PubMed

    Fang, Suqin; Gao, Xiang; Deng, Yan; Chen, Xinping; Liao, Hong

    2011-03-01

    Root is a primary organ to respond to environmental stimuli and percept signals from neighboring plants. In this study, root responses in maize (Zea mays)/soybean (Glycine max) intercropping systems recognized soil phosphorus (P) status and neighboring plants in the field. Compared to self culture, the maize variety GZ1 intercropping with soybean HX3 grew much better on low P, but not in another maize variety, NE1. This genotypic response decreased with increasing distance between plants, suggesting that root interactions were important. We further conducted a detailed and quantitative study of root behavior in situ using a gel system to reconstruct the three-dimensional root architecture. The results showed that plant roots could integrate information on P status and root behavior of neighboring plants. When intercropped with its kin, maize or soybean roots grew close to each other. However, when maize GZ1 was grown with soybean HX3, the roots on each plant tended to avoid each other and became shallower on stratified P supply, but not found with maize NE1. Furthermore, root behavior in gel was highly correlated to shoot biomass and P content for field-grown plants grown in close proximity. This study provides new insights into the dynamics and complexity of root behavior and kin recognition among crop species in response to nutrient status and neighboring plants. These findings also indicate that root behavior not only depends on neighbor recognition but also on a coordinated response to soil P status, which could be the underlying cause for the different growth responses in the field.

  5. Understanding to Hierarchical Microstructures of Crab (Chinese hairy) Shell as a Natural Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuanqiang, Zhou; Xiangxiang, Gong; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou

    This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure andmore » function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution.« less

  6. Hairy cell leukaemia complicated by anti-MAG paraproteinemic demyelinating neuropathy: resolution of neurological syndrome after cladribrine treatment.

    PubMed

    Rossi, Davide; Franceschetti, Silvia; Cerri, Michaela; Conconi, Annarita; Lunghi, Monia; Capello, Daniela; Cantello, Roberto; Gaidano, Gianluca

    2007-06-01

    Hairy cell leukaemia (HCL) occasionally displays a monoclonal gammopathy, yet the association of HCL with paraproteinemic demyelinating neuropathy (PDN) has not been reported. We describe a HCL case complicated by PDN and high titers of monoclonal IgM against myelin associated glycoprotein (MAG). Heavy and light chains of the patient's anti-MAG monoclonal protein were consistent with those expressed by HCL cells. After treatment with cladribrine, remission of HCL strictly paralleled disappearance of the IgM monoclonal protein and of the serum anti-MAG activity, and led to PDN clinical and electrophysiological improvement. Purine analogs may represent a choice in IgM PDN associated with lymphoproliferative disorders.

  7. Bamboozled: A Visual Culture Text for Looking at Cultural Practices of Racism

    ERIC Educational Resources Information Center

    Parks, Nancy S.

    2004-01-01

    Over the past decade art educators have engaged in a dialogue about a reconceptualization of art education theory and practice. This reconceptualization has roots in cultural studies, anthropology, and critical theory. One focus has been on the notion of art as visual culture. This article is organized into four sections. The first section looks…

  8. 4α-phorbol 12,13-didecanoate activates cultured mouse dorsal root ganglia neurons independently of TRPV4

    PubMed Central

    Alexander, R; Kerby, A; Aubdool, AA; Power, AR; Grover, S; Gentry, C; Grant, AD

    2013-01-01

    Background and Purpose The Ca2+-permeable cation channel TRPV4 is activated by mechanical disturbance of the cell membrane and is implicated in mechanical hyperalgesia. Nerve growth factor (NGF) is increased during inflammation and causes mechanical hyperalgesia. 4α-phorbol 12,13-didecanoate (4αPDD) has been described as a selective TRPV4 agonist. We investigated NGF-induced hyperalgesia in TRPV4 wild-type (+/+) and knockout (–/–) mice, and the increases in [Ca2+]i produced by 4αPDD in cultured mouse dorsal root ganglia neurons following exposure to NGF. Experimental Approach Withdrawal thresholds to heat, von Frey hairs and pressure were measured in mice before and after systemic administration of NGF. Changes in intracellular Ca2+ concentration were measured by ratiometric imaging with Fura-2 in cultured DRG and trigeminal ganglia (TG) neurons during perfusion of TRPV4 agonists. Key Results Administration of NGF caused a significant sensitization to heat and von Frey stimuli in TRPV4 +/+ and –/– mice, but only TRPV4 +/+ mice showed sensitization to noxious pressure. 4αPDD stimulated a dose-dependent increase in [Ca2+]i in neurons from +/+ and –/– mice, with the proportion of responding neurons and magnitude of increase unaffected by the genotype. In contrast, the selective TRPV4 agonist GSK1016790A failed to stimulate an increase in intracellular Ca2+ in cultured neurons. Responses to 4αPDD were unaffected by pretreatment with NGF. Conclusions and Implications TRPV4 contributes to mechanosensation in vivo, but there is little evidence for functional TRPV4 in cultured DRG and TG neurons. We conclude that 4αPDD activates these neurons independently of TRPV4, so it is not appropriate to refer to 4αPDD as a selective TRPV4 agonist. PMID:22928864

  9. Baseline Survey of Root-Associated Microbes of Taxus chinensis (Pilger) Rehd

    PubMed Central

    Sun, Guiling; Wilson, Iain W.; Wu, Jianqiang; Hoffman, Angela; Cheng, Junwen; Qiu, Deyou

    2015-01-01

    Taxol (paclitaxel) a diterpenoid is one of the most effective anticancer drugs identified. Biosynthesis of taxol was considered restricted to the Taxus genera until Stierle et al. discovered that an endophytic fungus isolated from Taxus brevifolia could independently synthesize taxol. Little is known about the mechanism of taxol biosynthesis in microbes, but it has been speculated that its biosynthesis may differ from plants. The microbiome from the roots of Taxus chinensis have been extensively investigated with culture-dependent methods to identify taxol synthesizing microbes, but not using culture independent methods.,Using bar-coded high-throughput sequencing in combination with a metagenomics approach, we surveyed the microbial diversity and gene composition of the root-associated microbiomefrom Taxus chinensis (Pilger) Rehd. High-throughput amplicon sequencing revealed 187 fungal OTUs which is higher than any previously reported fungal number identified with the culture-dependent method, suggesting that T. chinensis roots harbor novel and diverse fungi. Some operational taxonomic units (OTU) identified were identical to reported microbe strains possessing the ability to synthesis taxol and several genes previously associated with taxol biosynthesis were identified through metagenomics analysis. PMID:25821956

  10. Influence of Explant Position on Growth of Talinum paniculatum Gaertn. Adventitious Root in Solid Medium and Enhance Production Biomass in Balloon Type Bubble Bioreactor

    NASA Astrophysics Data System (ADS)

    Solim, M. H.; Kristanti, A. N.; Manuhara, Y. S. W.

    2017-03-01

    Talinum paniculatum Gaertn. is one of traditional medicinal plant in Indonesia as an aphrodisiac. This plant has various compounds which is accumulated in roots. In vitro culture of this plant can enhance production of adventitious roots. The aim of this research was to know the influence of explants position on growth of T. paniculatum Gaertn. adventitious root in MS solid medium and enhance the production of biomass in balloon type bubble bioreactor. Explants from leaf were cultured at abaxial and adaxial positions in solid MS medium supplemented with IBA 2 mgL-1. Adventitious roots were cultured in bioreactor with various treatments (without IBA, supplemented with IBA 2 mgL-1 and supplemented with IBA 2 mgL-1 + buffer NaHCO3). Result showed that the main growth of abaxial root was higher than adaxial, however, the total of adaxial root branch was higher than abaxial. The highest biomass production of adventitious root cultured was achieved by MS medium supplemented with IBA 2 mgL-1 + buffer NaHCO3. This treatment has produced fresh biomass two fold of initial inoculum.

  11. Sterilization of root canal spaces using an Nd:YAG laser, in vitro

    NASA Astrophysics Data System (ADS)

    Goodis, Harold E.; White, Joel M.; Yee, Barbara; Marshall, Sally J.; Marshall, Grayson W.

    1995-05-01

    A smear layer is created during the cleaning and shaping of root canal systems. The Nd:YAG laser has been shown to be effective in removing that smear layer and any tissue remnants from prepared root canal systems suggesting that it may aid in root canal sterilization without detrimental thermal effects to adjacent tissues. The root canal system of 72 single-rooted teeth was conventionally prepared and sterilized using gamma radiation. The teeth were divided into three groups of 24 each, 8 of which were inoculated only with sterile broth and remained as negative controls. Sixteen teeth of each group were inoculated with one of three organisms of 106 to 1010 CFU/(mu) l: B subtilis (BS), E. coli (EC) and S. marcescens (SM) (10 (mu) l). Eight in each group were not treated further and served as positive controls. Sixteen test teeth were treated with the laser three times using each exposure parameter: 1 W, 10 Hz pulses per second (pps); 2 W, 20 Hz; and 3 W, 30 Hz inserted to the radiographic apex. Laser exposures were completed while withdrawing the fiber from the root canal system. At completion of laser exposure, all teeth were cultured, using sterile paper points and plated on brain heat infusion agar. Three cultures were taken for each tooth, the plates incubated for 72 hours, and read for the presence of growth of colony-forming units. The laser was able to reduce the number of organisms placed in root canal systems, and suggests that the laser may be used in root canal therapy for bacterial reduction and cleaning of the root canal space.

  12. Using Cultural Identity to Improve Learning

    ERIC Educational Resources Information Center

    Klos, Maureen L.

    2006-01-01

    Many South-African learners, bringing their particular cultural identity to the higher education environment, find it challenging to achieve the academic literacy required for successful mastery of their studies. Though they want to realize academic success, a cultural chasm may exist between their cultural roots and their academic identity. This…

  13. Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture.

    PubMed

    Hung, L L; Sylvia, D M

    1988-02-01

    Bahia grass (Paspalum notatum) and industrial sweet potato (Ipomoea batatas) colonized by Glomus deserticola, G. etunicatum, and G. intraradices were grown in aeroponic cultures. After 12 to 14 weeks, all roots were colonized by the inoculated vesicular-arbuscular mycorrhizal fungi. Abundant vesicles and arbuscules formed in the roots, and profuse sporulation was detected intra-and extraradically. Within each fungal species, industrial sweet potato contained significantly more roots and spores per plant than bahia grass did, although the percent root colonization was similar for both hosts. Mean percent root colonization and sporulation per centimeter of colonized root generally increased with time, although with some treatments colonization declined by week 14. Spore production ranged from 4 spores per cm of colonized root for G. etunicatum to 51 spores per cm for G. intraradices. Infectivity trials with root inocula resulted in a mean of 38, 45, and 28% of bahia grass roots colonized by G. deserticola, G. etunicatum, and G. intraradices, respectively. The germination rate of G. etunicatum spores produced in soil was significantly higher than that produced in aeroponic cultures (64% versus 46%) after a 2-week incubation at 28 degrees C. However, infectivity studies comparing G. etunicatum spores from soil and aeroponic culture indicated no biological differences between the spore sources. Aeroponically produced G. deserticola and G. etunicatum inocula retained their infectivity after cold storage (4 degrees C) in either sterile water or moist vermiculite for at least 4 and 9 months, respectively.

  14. Root-Uptake of C-14 Acetic Acid by Various Plants and C-14 Dynamics Surrounding the Experimental Tessera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogiyama, S.; Takeda, H.; Uchida, S.

    Carbon-14 (C-14, t{sub 1/2} = 5.73x10{sup 3} yrs) from radioactive waste is one of the most important radioactive nuclides for environmental assessment in the context of geological disposal, and understanding the transfer of radioactive elements to plants is essential for public health safety. In order to obtain fundamental knowledge, culture experiments using marigold (Tagetes patula L.), tall fescue (Festuca arundinacea S.), paddy rice (Oryza sativa L.), radish (Raphanus sativus L.), and carrot (Daucus carota L.) plants were conducted to examine root-uptake and dynamics of C-14 in the laboratory. The C-14 radioactivity in each plant part (e.g. shoot, root, edible part,more » etc.), medium (e.g. culture solution, sand, etc.), and air was determined. The distribution of C-14 in the plants was visualized using autoradiography. For a comparison, autoradiography was also done using Na-22. Results of the present study indicated that C-14 labeled CO{sub 2} gas was released from the culture solution to the atmosphere. Clear autoradiography images were observed in plants for the shoots and lower roots which were soaked in the culture solution. The upper roots which were not soaked in the culture solution were not clearly imaged. In the radiotracer experiment using Na-22, a clear image was observed for the whole carrot seedling, even including the upper root, on the autoradiography. However, the amounts of C-14 acetic acid absorbed by all the plants through their roots were considered to be very small. Inorganic carbon transformed from C-14 acetic acid would be taken up by plants through the roots, and some fraction of C-14 would be assimilated into the shoots by photosynthesis. (authors)« less

  15. Effect of lanthanum on rooting of in vitro regenerated shoots of Saussurea involucrata Kar. et Kir.

    PubMed

    Guo, Bin; Xu, Ling-Ling; Guan, Zhen-Jun; Wei, Ya-Hui

    2012-06-01

    In present study, the effect of lanthanum (La) on the rooting of regenerated shoots of Saussurea involucrata Kar. et Kir was analyzed. Rooting occurred from regenerated shoots inoculated on a medium supplemented with La, the plant rooting hormone indole-3-acetic acid (IAA), or both La and IAA together. The highest rooting efficiency (96%), root number/shoot (8.5), and root length (63 mm) were recorded in shoots cultured on medium containing 2.5 μM IAA combined with 100 μM La(3+). In order to elucidate the mechanism of rooting enhancement by La, we examined dynamic changes in antioxidant enzyme activities in plant tissue over time in culture. We found that the activities of peroxidase (POX) and superoxide dismutase (SOD) were significantly higher in plant tissue cultured in IAA plus La than in La or IAA alone. At the same time, the highest H(2)O(2) content was detected in plant tissue in the presence of 2.5 μM IAA plus 100 μM La(3+). In light of these data and previous results, we speculate that La enhanced IAA-induced rooting by acting as a mild abiotic stress to stimulate POX and SOD activities in plant cells. Then, IAA reacted with oxygen and POX to form the ternary complex enzyme-IAA-O(2) that dissociated into IAA radicals and O(2)(-). Subsequently, IAA-induced O(2)(-) readily converted to hydroxyl radical (HO·) via SOD-catalyzed dismutation. Finally, cell wall loosening and cell elongation occurred as a consequence of HO-dependent scission of wall components, leading to root growth. The treatment of IAA combined with La resulted in the highest plantlet survival (80%) compared to single treatments with IAA or La alone. These data suggest that rare earth elements enhance root morphogenesis and the growth of S. involucrata.

  16. Culture change, leadership and the grass-roots workforce.

    PubMed

    Edwards, Mark; Penlington, Clare; Kalidasan, Varadarajan; Kelly, Tony

    2014-08-01

    The NHS is arguably entering its most challenging era. It is being asked to do more for less and, in parallel, a cultural shift in response to its described weaknesses has been prescribed. The definition of culture, the form this change should take and the mechanism to achieve it are not well understood. The complexity of modern healthcare requires that we evolve our approach to the workforce and enhance our understanding of the styles of leadership that are required in order to bring about this cultural change. Identification of leaders within the workforce and dissemination of a purposeful and strategic quality improvement agenda, in part defined by the general workforce, are important components in establishing the change that the organisation currently requires. We are implementing this approach locally by identifying and developing grassroots networks linked to a portfolio of safety and quality projects. © 2014 Royal College of Physicians.

  17. Free radical scavenging activity and secondary metabolites from in vitro cultures of Sanicula graveolens.

    PubMed

    Cheel, José; Schmeda-Hirschmann, Guillermo; Jordan, Miguel; Theoduloz, Cristina; Rodríguez, Jaime A; Gerth, André; Wilken, Dirk

    2007-01-01

    An in vitro propagation system was developed to obtain shoot and root cultures from the Andean spice Sanicula graveolens (Apiaceae). Propagation of shoots, roots and plantlets was achieved by the temporary immersion system. The free radical scavenging effect of the methanol/water (7:3 v/v) extracts was determined by the discoloration of the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH). Total phenolic, flavonoid, chlorogenic acid (CA) and quercetin 3-O-glucoside content in the samples was assessed by spectrophotometry and DAD-HPLC analysis, respectively. On a dry weight basis, the crude extracts showed total phenolic values ranging from 3.57 to 6.93%, with highest content for the root culture sample. Total flavonoid content ranged from 1.23 to 2.23% and was lower for the root culture. Chlorogenic acid and neochlorogenic acid were identified by TLC in all samples. Highest free radical scavenging effect was observed for the root culture which also presented the highest CA content. Two of the shoot culture samples, with similar IC50 values in the DPPH discoloration assay, also presented close quercetin-3-O-glucoside content.

  18. Hydroponic Culture

    ERIC Educational Resources Information Center

    Steucek, G. L.; Yurkiewicz, W. J.

    1973-01-01

    Describes a hydroponic culture technique suitable for student exercises in biology. This technique of growing plants in nutrient solutions enhances plant growth, and is an excellent way to obtain intact plants with root systems free of soil or other particulate matter. (JR)

  19. In vivo antimicrobial efficacy of 6% Morinda citrifolia, Azadirachta indica, and 3% sodium hypochlorite as root canal irrigants.

    PubMed

    Podar, Rajesh; Kulkarni, Gaurav P; Dadu, Shifali S; Singh, Shraddha; Singh, Shishir H

    2015-01-01

    To evaluate and compare the antimicrobial efficacy of 6% Morinda citrifolia, Azadirachta indica, and 3% sodium hypochlorite (NaOCl) as root canal irrigants. Thirty nonvital maxillary anteriors were randomly assigned to one of the three groups corresponding to the irrigant to be tested; 6% Morinda citrifolia juice (MCJ) (n = 10), A. indica (n = 10) and 3% NaOCl (n = 10). After the root canal access opening a root canal culture sample was taken with two paper points and cultured under aerobic and anaerobic conditions. Cleaning and shaping were completed with irrigation by 10 mL of respective irrigants and 5 mL of final rinse. The patients were recalled after 3 days and canals were rinsed again with 5 mL of the test irrigants. This was followed by obtaining a posttreatment root canal culture sample and culturing and analyzed by counting the colony forming units (CFUs). Six percentage MCJ, A. indica, and 3% NaOCl showed a significant reduction (P < 0.05) in the mean CFU counts for aerobic and anaerobic bacteria between baseline and 3 days. There was no difference in the antimicrobial efficacy of 6% M. citrifolia, A. indica, and 3% NaOCl as root canal irrigants.

  20. Immunoconjugates in the management of hairy cell leukemia

    PubMed Central

    Kreitman, Robert J.; Pastan, Ira

    2015-01-01

    Hairy cell leukemia (HCL) is an indolent B-cell malignancy effectively treated but not often cured by purine analog therapy; after multiple courses of purine analogs, patients can become purine analog resistant and in need of alternative therapies. Complete remission to single-agent purine analog is often accompanied by minimal residual disease (MRD), residual HCL cells detectable by immunologic methods, considered a risk factor for eventual relapse. Several different non-chemotherapy approaches are being used to target relapsed and refractory HCL, including inhibitors of BRAF, but so far only monoclonal antibody (MAb)-based approaches have been reported to eliminate MRD in a high percentage of patients. One of the MAb-based options for HCL currently under clinical investigation involves recombinant immunotoxins, containing a fragment of a MAb and a bacterial toxin. The bacterial toxin, a highly potent fragment from Pseudomonas exotoxin, catalytically ADP-ribosylates elongation factor 2 (EF2), resulting in protein synthesis inhibition and apoptotic cell death. Recombinant immunotoxins tested in HCL patients include LMB-2, targeting CD25, and BL22, targeting CD22. An affinity matured version of BL22, termed moxetumomab pasudotox (formerly HA22 or CAT-8015) achieved high CR rates in phase I, and is currently undergoing multicenter Phase 3 testing. Phase I testing was without dose-limiting toxicity, although 2 patients had grade 2 hemolytic uremic syndrome (HUS) with transient grade 1 abnormalities in platelets and creatinine. Preclinical work is underway to identify residues on moxetumomab pasudotox leading to immunogenicity. Moxetumomab pasudotox is undergoing pivotal testing for relapsed and refractory HCL. PMID:26614902

  1. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.

    2015-12-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  2. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    PubMed

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  3. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles

    PubMed Central

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries. PMID:26634644

  4. [Controlling effect of antagonist bioorganic fertilizer on tomato root-knot nematode].

    PubMed

    Zhu, Zhen; Chen, Fang; Xiao, Tong-jian; Wang, Xiao-hui; Ran, Wei; Yang, Xing-ming; Shen, Qi-rong

    2011-04-01

    Indoor in vitro culture experiment and greenhouse pot experiment were conducted to evaluate the capabilities of three bacterial strains XZ-173 (Bacillus amyloliquefaciens), SL-25 (B. gibsonii), and KS-62 (Paenibacillus polymyxa) that can hydrolyze collagen protein in controlling tomato root-knot nematode. In the in vitro culture experiment, suspensions of XZ-173, SL-25, and KS-62 induced a mortality rate of 75.9%, 66.7%, and 50.0% to the second-stage junior nematode within 24 h, and decreased the egg hatching rate to 17.8%, 28.9% and 37.6% after 7-day incubation, respectively, in contrast to the 17.4% mortality rate and 53.6% egg hatching rate in the control (sterilized water). In the greenhouse pot experiment, the bioorganic fertilizer mixed with equal parts of fermented XZ-173, SL-25, and KS-62 gained the best result, with the root-knot nematode population in rhizosphere soil decreased by 84.0% as compared with the control. The bioorganic fertilizer also decreased the numbers of galls and eggs on tomato roots significantly, and increased the underground and aboveground biomass of tomato. Therefore, antagonist bioorganic fertilizer has promising potential in controlling root-knot nematode.

  5. SCAPs Regulate Differentiation of DFSCs During Tooth Root Development in Swine

    PubMed Central

    Wu, Xiaoshan; Hu, Lei; Li, Yan; Li, Yang; Wang, Fu; Ma, Ping; Wang, Jinsong; Zhang, Chunmei; Jiang, Canhua; Wang, Songlin

    2018-01-01

    The tooth root transmits and balances occlusal forces through the periodontium to the alveolar bone. The periodontium, including the gingiva, the periodontal ligament, the cementum and the partial alveolar bone, derives from the dental follicle (DF), except for the gingiva. In the early developmental stages, the DF surrounds the tooth germ as a sphere and functions to promote tooth eruption. However, the morphological dynamics and factors regulating the differentiation of the DF during root elongation remain largely unknown. Miniature pigs are regarded as a useful experimental animal for modeling in craniofacial research because they are similar to humans with respect to dentition and mandible anatomy. In the present study, we used the third deciduous incisor of miniature pig as the model to investigate the factors influencing DF differentiation during root development. We found that the DF was shaped like a crescent and was located between the root apical and the alveolar bone. The expression levels of WNT5a, β-Catenin, and COL-I gradually increased from the center of the DF (beneath the apical foramen) to the lateral coronal corner, where the DF differentiates into the periodontium. To determine the potential regulatory role of the apical papilla on DF cell differentiation, we co-cultured dental follicle stem cells (DFSCs) with stem cells of the apical papilla (SCAPs). The osteogenesis and fibrogenesis abilities of DFSCs were inhibited when being co-cultured with SCAPs, suggesting that the fate of the DF can be regulated by signals from the apical papilla. The apical papilla may sustain the undifferentiated status of DFSCs before root development finishes. These data yield insight into the interaction between the root apex and surrounding DF tissues in root and periodontium development and shed light on the future study of root regeneration in large mammals. PMID:29511365

  6. Cytotoxicity evaluation of a copaiba oil-based root canal sealer compared to three commonly used sealers in endodontics

    PubMed Central

    Garrido, Angela Delfina Bittencourt; de Cara, Sueli Patricia Harumi Miyagi; Marques, Marcia Martins; Sponchiado, Emílio Carlos; Garcia, Lucas da Fonseca Roberti; de Sousa-Neto, Manoel Damião

    2015-01-01

    Background: The constant development of new root canal sealers has allowed the solution of a large number of clinical cases in endodontics, however, cytotoxicity of such sealers must be tested before their validation as filling materials. The aim of this study was to evaluate the cytotoxic effect of a new Copaiba oil-based root canal sealer (Biosealer [BS]) on osteoblast-like Osteo-1 cells. Materials and Methods: The experimental groups were formed according to the culture medium conditioned with the tested sealers, as follows: Control group (CG) (culture medium without conditioning); Sealer 26 (S26) - culture medium + S26; Endofill (EF) - culture medium + EF; AH Plus (AHP) - culture medium + AHP; and BS - culture medium + BS (Copaiba oil-based sealer). The conditioned culture medium was placed in contact with 2 × 104 cells cultivated on 60 mm diameter Petri dishes for 24 h. Then, hemocytometer count was performed to evaluate cellular viability, using Trypan Blue assay. The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for cellular viability were statistically analyzed (1-way ANOVA, Tukey's test - P < 0.05), with a significance level of 5%. Results: S26, EF and AHP presented decreased cellular viability considerably, with statistical significance compared with CG (P < 0.05). BS maintained cellular viability similar to CG (P > 0.05). Conclusion: The Copaiba oil-based root canal sealer presented promising results in terms of cytotoxicity which indicated its usefulness as a root canal sealer. PMID:25878676

  7. Differential Responses of Vanilla Accessions to Root Rot and Colonization by Fusarium oxysporum f. sp. radicis-vanillae

    PubMed Central

    Koyyappurath, Sayuj; Conéjéro, Geneviève; Dijoux, Jean Bernard; Lapeyre-Montès, Fabienne; Jade, Katia; Chiroleu, Frédéric; Gatineau, Frédéric; Verdeil, Jean Luc; Besse, Pascale; Grisoni, Michel

    2015-01-01

    Root and stem rot (RSR) disease caused by Fusarium oxysporum f. sp. radicis-vanillae (Forv) is the most damaging disease of vanilla (Vanilla planifolia and V. × tahitensis, Orchidaceae). Breeding programs aimed at developing resistant vanilla varieties are hampered by the scarcity of sources of resistance to RSR and insufficient knowledge about the histopathology of Forv. In this work we have (i) identified new genetic resources resistant to RSR including V. planifolia inbreds and vanilla relatives, (ii) thoroughly described the colonization pattern of Forv into selected vanilla accessions, confirming its necrotic non-vascular behavior in roots, and (iii) evidenced the key role played by hypodermis, and particularly lignin deposition onto hypodermal cell walls, for resistance to Forv in two highly resistant vanilla accessions. Two hundred and fifty-four vanilla accessions were evaluated in the field under natural conditions of infection and in controlled conditions using in vitro plants root-dip inoculated by the highly pathogenic isolate Fo072. For the 26 accessions evaluated in both conditions, a high correlation was observed between field evaluation and in vitro assay. The root infection process and plant response of one susceptible and two resistant accessions challenged with Fo072 were studied using wide field and multiphoton microscopy. In susceptible V. planifolia, hyphae penetrated directly into the rhizodermis in the hairy root region then invaded the cortex through the passage cells where it induced plasmolysis, but never reached the vascular region. In the case of the resistant accessions, the penetration was stopped at the hypodermal layer. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to Forv. The thickness of lignin constitutively deposited onto outer cell walls of hypodermis was highly correlated with the level of resistance for 21 accessions

  8. Differential Responses of Vanilla Accessions to Root Rot and Colonization by Fusarium oxysporum f. sp. radicis-vanillae.

    PubMed

    Koyyappurath, Sayuj; Conéjéro, Geneviève; Dijoux, Jean Bernard; Lapeyre-Montès, Fabienne; Jade, Katia; Chiroleu, Frédéric; Gatineau, Frédéric; Verdeil, Jean Luc; Besse, Pascale; Grisoni, Michel

    2015-01-01

    Root and stem rot (RSR) disease caused by Fusarium oxysporum f. sp. radicis-vanillae (Forv) is the most damaging disease of vanilla (Vanilla planifolia and V. × tahitensis, Orchidaceae). Breeding programs aimed at developing resistant vanilla varieties are hampered by the scarcity of sources of resistance to RSR and insufficient knowledge about the histopathology of Forv. In this work we have (i) identified new genetic resources resistant to RSR including V. planifolia inbreds and vanilla relatives, (ii) thoroughly described the colonization pattern of Forv into selected vanilla accessions, confirming its necrotic non-vascular behavior in roots, and (iii) evidenced the key role played by hypodermis, and particularly lignin deposition onto hypodermal cell walls, for resistance to Forv in two highly resistant vanilla accessions. Two hundred and fifty-four vanilla accessions were evaluated in the field under natural conditions of infection and in controlled conditions using in vitro plants root-dip inoculated by the highly pathogenic isolate Fo072. For the 26 accessions evaluated in both conditions, a high correlation was observed between field evaluation and in vitro assay. The root infection process and plant response of one susceptible and two resistant accessions challenged with Fo072 were studied using wide field and multiphoton microscopy. In susceptible V. planifolia, hyphae penetrated directly into the rhizodermis in the hairy root region then invaded the cortex through the passage cells where it induced plasmolysis, but never reached the vascular region. In the case of the resistant accessions, the penetration was stopped at the hypodermal layer. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to Forv. The thickness of lignin constitutively deposited onto outer cell walls of hypodermis was highly correlated with the level of resistance for 21 accessions

  9. Genome duplication improves rice root resistance to salt stress

    PubMed Central

    2014-01-01

    Background Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. Results Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na+ content, H+ (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na+ in tetraploid rice roots significantly decreased while root tip H+ efflux in tetraploid rice significantly increased. Conclusions Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na+ entrance into the roots. PMID:25184027

  10. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.

    PubMed

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza

    2017-02-01

    Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems

    PubMed Central

    Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza

    2017-01-01

    Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270

  12. High-throughput sequencing of black pepper root transcriptome.

    PubMed

    Gordo, Sheila M C; Pinheiro, Daniel G; Moreira, Edith C O; Rodrigues, Simone M; Poltronieri, Marli C; de Lemos, Oriel F; da Silva, Israel Tojal; Ramos, Rommel T J; Silva, Artur; Schneider, Horacio; Silva, Wilson A; Sampaio, Iracilda; Darnet, Sylvain

    2012-09-17

    Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

  13. Nursery Cultural Practices and Morphological Arrtibutes of Longleaf Pine Bare-Root Stock as Indicators of Early Field Performance

    Treesearch

    Glyndon E. Hatchell; H. David Muse

    1990-01-01

    Longleaf pine seedlings performed satisfactorily after planting on deep sands in South Carolina in dry years when: (1) They were vertically root-pruned in the nursery. (2) They had 14 or more first-order lateral roots and nonfibrous root systems. (3) They had six or more first-order lateral roots and highly fibrous root systems.

  14. Cell dynamics in cervical loop epithelium during transition from crown to root: implications for Hertwig's epithelial root sheath formation.

    PubMed

    Sakano, M; Otsu, K; Fujiwara, N; Fukumoto, S; Yamada, A; Harada, H

    2013-04-01

    Some clinical cases of hypoplastic tooth root are congenital. Because the formation of Hertwig's epithelial root sheath (HERS) is an important event for root development and growth, we have considered that understanding the HERS developmental mechanism contributes to elucidate the causal factors of the disease. To find integrant factors and phenomenon for HERS development and growth, we studied the proliferation and mobility of the cervical loop (CL). We observed the cell movement of CL by the DiI labeling and organ culture system. To examine cell proliferation, we carried out immunostaining of CL and HERS using anti-Ki67 antibody. Cell motility in CL was observed by tooth germ slice organ culture using green fluorescent protein mouse. We also examined the expression of paxillin associated with cell movement. Imaging using DiI labeling showed that, at the apex of CL, the epithelium elongated in tandem with the growth of outer enamel epithelium (OEE). Cell proliferation assay using Ki67 immunostaining showed that OEE divided more actively than inner enamel epithelium (IEE) at the onset of HERS formation. Live imaging suggested that mobility of the OEE and cells in the apex of CL were more active than in IEE. The expression of paxillin was observed strongly in OEE and the apex of CL. The more active growth and movement of OEE cells contributed to HERS formation after reduction of the growth of IEE. The expression pattern of paxillin was involved in the active movement of OEE and HERS. The results will contribute to understand the HERS formation mechanism and elucidate the cause of anomaly root. © 2012 John Wiley & Sons A/S.

  15. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media andmore » rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.« less

  16. Survey of Root and Shoot Cultural Practices for Hardwood Seedlings

    Treesearch

    Harry L. Vanderveer

    2005-01-01

    A telephone survey of selected forest seedling nursery managers was conducted in early 2004. About 2 dozen managers were contacted and asked to respond during a brief (15 to 30 minute) conversation about the current practices they employ to manage root and shoot growth of hardwood seedlings. The participants involved were evenly split between public agencies (...

  17. A root cause analysis project in a medication safety course.

    PubMed

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  18. Real-Time Culture Change Improves Lean Success: Sequenced Culture Change Gets Failing Grades.

    PubMed

    Kusy, Mitchell; Diamond, Marty; Vrchota, Scott

    2015-01-01

    Success with the Lean management system is rooted in a culture of stakeholder engagement and commitment. Unfortunately, many leaders view Lean as an "add-on" tool instead of one that requires a new way of thinking and approaching culture. This article addresses the "why, how, and what" to promote a Lean culture that works. We present a five-phased approach grounded in evidence-based practices of real-time culture change. We further help healthcare leaders understand the differences between traditional "sequenced" approaches to culture change and "real-time" methods--and why these real-time practices are more sustainable and ultimately more successful than traditional culture change methods.

  19. Microbial Community Analysis in the Roots of Aquatic Plants and Isolation of Novel Microbes Including an Organism of the Candidate Phylum OP10

    PubMed Central

    Tanaka, Yasuhiro; Tamaki, Hideyuki; Matsuzawa, Hiroaki; Nigaya, Masahiro; Mori, Kazuhiro; Kamagata, Yoichi

    2012-01-01

    A number of molecular ecological studies have revealed complex and unique microbial communities in various terrestrial plant roots; however, little is known about the microbial communities of aquatic plant roots in spite of their potential use for water quality improvement in aquatic environments (e.g. floating treatment wetland system). Here, we report the microbial communities inhabiting the roots of emerged plants, reed (Phragmites australis) and Japanese loosestrife (Lythrum anceps), collected from a floating treatment wetland in a pond by both culture-independent and culture-dependent approaches. Culture-independent analysis based on 16S rRNA gene sequences revealed that the microbial compositions between the two aquatic plant roots were clearly different (e.g. the predominant microbe was Betaproteobacteria for reed and Alphaproteobacteria for Japanese loosestrife). In comparisons of microbial communities between the plant roots and pond water taken from near the plants, the microbial diversity in the plant roots (e.g. 4.40–4.26 Shannon-Weiner index) were higher than that of pond water (e.g. 3.15 Shannon-Weiner index). Furthermore, the plant roots harbored 2.5–3.5 times more phylogenetically novel clone phylotypes than pond water. The culture-dependent approach also revealed differences in the microbial composition and diversity among the two plant roots and pond water. More importantly, compared to pond water, we succeeded in isolating approximately two times more novel isolate phylotypes, including a bacterium of candidate phylum OP10 (recently named Armatimonadetes) from the plant roots. These findings suggest that aquatic plants roots are significant sources for a variety of novel organisms. PMID:22791047

  20. Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and nonmycotrophic plant root systems.

    PubMed

    Schreiner, R P; Koide, R T

    1993-08-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.

  1. First report of ‘Candidatus Liberibacter solanacearum’ associated with the psyllid Bactericera trigonica Hodkinson on carrots in Northern Africa

    USDA-ARS?s Scientific Manuscript database

    Carrot plants (Daucus carota L.) exhibiting symptoms of yellowing, purpling, and curling of leaves, proliferation of shoots, formation of hairy secondary roots, and plant decline were observed in March 2014 and February 2015 in commercial fields in the Gharb region of Morocco. The symptoms resembled...

  2. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    USDA-ARS?s Scientific Manuscript database

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  3. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots1[OPEN

    PubMed Central

    Durand, Mickaël; Porcheron, Benoît; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2016-01-01

    Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. 14CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots. PMID:26802041

  4. Exudation of fluorescent beta-carbolines from Oxalis tuberosa L roots.

    PubMed

    Bais, Harsh Pal; Park, Sang-Wook; Stermitz, Frank R; Halligan, Kathleen M; Vivanco, Jorge M

    2002-11-01

    Root fluorescence is a phenomenon in which roots of seedlings fluoresce when irradiated with ultraviolet (UV) light. Soybean (Glycine max) and rye grass (Elymus glaucus) are the only plant species that have been reported to exhibit this occurrence in germinating seedling roots. The trait has been useful as a marker in genetic, tissue culture and diversity studies, and has facilitated selection of plants for breeding purposes. However, the biological significance of this occurrence in plants and other organisms is unknown. Here we report that the Andean tuber crop species Oxalis tuberosa, known as oca in the highlands of South America, secretes a fluorescent compound as part of its root exudates. The main fluorescent compounds were characterized as harmine (7-methoxy-1-methyl-beta-carboline) and harmaline (3, 4-dihydroharmine). We also detected endogenous root fluorescence in other plant species, including Arabidopsis thaliana and Phytolacca americana, a possible indication that this phenomenon is widespread within the plant kingdom.

  5. Domestication and Crop Physiology: Roots of Green-Revolution Wheat

    PubMed Central

    Waines, J. Giles; Ehdaie, Bahman

    2007-01-01

    Background and Aims Most plant scientists, in contrast to animal scientists, study only half the organism, namely above-ground stems, leaves, flowers and fruits, and neglect below-ground roots. Yet all acknowledge roots are important for anchorage, water and nutrient uptake, and presumably components of yield. This paper investigates the relationship between domestication, and the root systems of landraces, and the parents of early, mid- and late green-revolution bread wheat cultivars. It compares the root system of bread wheat and ‘Veery’-type wheat containing the 1RS translocation from rye. Methods Wheat germplasm was grown in large pots in sand culture in replicated experiments. This allowed roots to be washed free to study root characters. Key Results The three bread wheat parents of early green-revolution wheats have root biomass less than two-thirds the mean of some landrace wheats. Crossing early green-revolution wheat to an F2 of ‘Norin 10’ and ‘Brevor’, further reduced root biomass in mid-generation semi-dwarf and dwarf wheats. Later-generation semi-dwarf wheats show genetic variation for root biomass, but some exhibit further reduction in root size. This is so for some California and UK wheats. The wheat–rye translocation in ‘Kavkaz’ for the short arm of chromosome 1 (1RS) increased root biomass and branching in cultivars that contained it. Conclusions Root size of modern cultivars is small compared with that of landraces. Their root system may be too small for optimum uptake of water and nutrients and maximum grain yield. Optimum root size for grain yield has not been investigated in wheat or most crop plants. Use of 1RS and similar alien translocations may increase root biomass and grain yield significantly in irrigated and rain-fed conditions. Root characters may be integrated into components of yield analysis in wheat. Plant breeders may need to select directly for root characters. PMID:17940075

  6. Stimulation of Vesicular-Arbuscular Mycorrhizal Fungi by Mycotrophic and Nonmycotrophic Plant Root Systems

    PubMed Central

    Schreiner, R. Paul; Koide, Roger T.

    1993-01-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum. Images PMID:16349030

  7. Phylogeography of screaming hairy armadillo Chaetophractus vellerosus: Successive disjunctions and extinctions due to cyclical climatic changes in southern South America.

    PubMed

    Poljak, Sebastián; Ferreiro, Alejandro M; Chiappero, Marina B; Sánchez, Julieta; Gabrielli, Magalí; Lizarralde, Marta S

    2018-01-01

    Little is known about phylogeography of armadillo species native to southern South America. In this study we describe the phylogeography of the screaming hairy armadillo Chaetophractus vellerosus, discuss previous hypothesis about the origin of its disjunct distribution and propose an alternative one, based on novel information on genetic variability. Variation of partial sequences of mitochondrial DNA Control Region (CR) from 73 individuals from 23 localities were analyzed to carry out a phylogeographic analysis using neutrality tests, mismatch distribution, median-joining (MJ) network and paleontological records. We found 17 polymorphic sites resulting in 15 haplotypes. Two new geographic records that expand known distribution of the species are presented; one of them links the distributions of recently synonimized species C. nationi and C. vellerosus. Screaming hairy armadillo phylogeographic pattern can be addressed as category V of Avise: common widespread linages plus closely related lineages confined to one or a few nearby locales each. The older linages are distributed in the north-central area of the species distribution range in Argentina (i.e. ancestral area of distribution). C. vellerosus seems to be a low vagility species that expanded, and probably is expanding, its distribution range while presents signs of genetic structuring in central areas. To explain the disjunct distribution, a hypothesis of extinction of the species in intermediate areas due to quaternary climatic shift to more humid conditions was proposed. We offer an alternative explanation: long distance colonization, based on null genetic variability, paleontological record and evidence of alternance of cold/arid and temperate/humid climatic periods during the last million years in southern South America.

  8. Root architecture impacts on root decomposition rates in switchgrass

    NASA Astrophysics Data System (ADS)

    de Graaff, M.; Schadt, C.; Garten, C. T.; Jastrow, J. D.; Phillips, J.; Wullschleger, S. D.

    2010-12-01

    Roots strongly contribute to soil organic carbon accrual, but the rate of soil carbon input via root litter decomposition is still uncertain. Root systems are built up of roots with a variety of different diameter size classes, ranging from very fine to very coarse roots. Since fine roots have low C:N ratios and coarse roots have high C:N ratios, root systems are heterogeneous in quality, spanning a range of different C:N ratios. Litter decomposition rates are generally well predicted by litter C:N ratios, thus decomposition of roots may be controlled by the relative abundance of fine versus coarse roots. With this study we asked how root architecture (i.e. the relative abundance of fine versus coarse roots) affects the decomposition of roots systems in the biofuels crop switchgrass (Panicum virgatum L.). To understand how root architecture affects root decomposition rates, we collected roots from eight switchgrass cultivars (Alamo, Kanlow, Carthage, Cave-in-Rock, Forestburg, Southlow, Sunburst, Blackwell), grown at FermiLab (IL), by taking 4.8-cm diameter soil cores from on top of the crown and directly next to the crown of individual plants. Roots were carefully excised from the cores by washing and analyzed for root diameter size class distribution using WinRhizo. Subsequently, root systems of each of the plants (4 replicates per cultivar) were separated in 'fine' (0-0.5 mm), 'medium' (0.5-1 mm) and 'coarse' roots (1-2.5 mm), dried, cut into 0.5 cm (medium and coarse roots) and 2 mm pieces (fine roots), and incubated for 90 days. For each of the cultivars we established five root-treatments: 20g of soil was amended with 0.2g of (1) fine roots, (2) medium roots, (3) coarse roots, (4) a 1:1:1 mixture of fine, medium and coarse roots, and (5) a mixture combining fine, medium and coarse roots in realistic proportions. We measured CO2 respiration at days 1, 3, 7, 15, 30, 60 and 90 during the experiment. The 13C signature of the soil was -26‰, and the 13C signature

  9. Dialog to Understanding across Cultures.

    ERIC Educational Resources Information Center

    Gonzalez-Mena, Janet

    1999-01-01

    Suggests that cultural differences may be at the root of some conflicts between parents and child care directors or staff. Maintains that the way to identify cultural conflicts is to start ongoing dialog between parents and staff. Notes that staff need to identify their own attitudes and biases and be open to parents' perspectives without…

  10. Cultural Frame Switching and Emotion among Mexican Americans

    ERIC Educational Resources Information Center

    Kreitler, Crystal Mata; Dyson, Kara S.

    2016-01-01

    Recent evidence indicates that bicultural individuals shift between interpretive frames rooted in different cultures in response to cues encountered in a given situation. The explanation for these shifts has been labeled "cultural frame switching." The current research sought to investigate the effect of priming culture among Mexican…

  11. Recommendations of the SFH (French Society of Haematology) for the diagnosis, treatment and follow-up of hairy cell leukaemia.

    PubMed

    Cornet, Edouard; Delmer, Alain; Feugier, Pierre; Garnache-Ottou, Francine; Ghez, David; Leblond, Véronique; Levy, Vincent; Maloisel, Frédéric; Re, Daniel; Zini, Jean-Marc; Troussard, Xavier

    2014-12-01

    Hairy cell leukaemia (HCL) is a rare haematological malignancy, with approximately 175 new incident cases in France. Diagnosis is based on a careful examination of the blood smear and immunophenotyping of the tumour cells, with a panel of four markers being used specifically to screen for hairy cells (CD11c, CD25, CD103 and CD123). In 2011, the V600E mutation of the BRAF gene in exon 15 was identified in HCL; being present in HCL, it is absent in the variant form of HCL (HCL-v) and in splenic red pulp lymphoma (SRPL), two entities related to HCL. The management of patients with HCL has changed in recent years. A poorer response to purine nucleoside analogues (PNAs) is observed in patients with more marked leukocytosis, bulky splenomegaly, an unmutated immunoglobulin variable heavy chain (IgVH) gene profile, use of VH4-34 or with TP53 mutations. We present the recommendations of a group of 11 experts belonging to a number of French hospitals. This group met in November 2013 to examine the criteria for managing patients with HCL. The ideas and proposals of the group are based on a critical analysis of the recommendations already published in the literature and on an analysis of the practices of clinical haematology departments with experience in managing these patients. The first-line treatment uses purine analogues: cladribine or pentostatin. The role of BRAF inhibitors, whether or not combined with MEK inhibitors, is discussed. The panel of French experts proposed recommendations to manage patients with HCL, which can be used in a daily practice.

  12. Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi.

    PubMed

    Sylvia, D M; Jarstfer, A G

    1992-01-01

    For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.

  13. High-throughput sequencing of black pepper root transcriptome

    PubMed Central

    2012-01-01

    Background Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms. PMID:22984782

  14. Utility of Ground-Penetrating Radar as a Root Biomass Survey Tool in Forest Systems

    Treesearch

    John R. Butnor; J.A. Doolittle; Kurt H. Johnsen; L. Samuelson; T. Stokes; L. Kress

    2003-01-01

    Traditional methods of measuring tree root biomass are labor intensive and destructive in nature. We studied the utility of ground-penetrating radar (GPR) to measure tree root biomass in situ within a replicated, intensive culture forestry experiment planted with loblolly pine (Pinus taeda L.). The study site was located in Decatur County, Georgia,...

  15. Current Therapy and New Directions in the Treatment of Hairy Cell Leukemia: A Review.

    PubMed

    Sarvaria, Aditya; Topp, Zheng; Saven, Alan

    2016-01-01

    Hairy cell leukemia (HCL) is a chronic B-cell leukemia noted for an indolent course that ultimately results in cytopenias and massive splenomegaly. Whereas treatment with the nucleoside purine analogues cladribine and pentostatin results in lengthy remissions in nearly all patients with HCL, most patients will experience relapse while a small percentage of patients' disease fails to respond to therapy in the first place. Retreatment with a purine nucleoside analogue often leads to an effective but limited response. For decades, few other viable therapeutic options were available to these patients who required retreatment. Recently, new insights into the mechanism of disease of HCL have led to research in new potential treatment agents, either alone or with a purine nucleoside analogue. Clinical trials with rituximab, bendamustine, and conjugate immunotoxins will reveal what role these therapies will have in HCL treatment. A better understanding of the BRAF/MEK/ERK pathway and the B-cell signaling pathway has allowed further exploration into the novel drugs vemurafenib, dabrafenib, trametinib, and ibrutinib.

  16. Live biospeckle laser imaging of root tissues.

    PubMed

    Braga, Roberto A; Dupuy, L; Pasqual, M; Cardoso, R R

    2009-06-01

    Live imaging is now a central component for the study of plant developmental processes. Currently, most techniques are extremely constraining: they rely on the marking of specific cellular structures which generally apply to model species because they require genetic transformations. The biospeckle laser (BSL) system was evaluated as an instrument to measure biological activity in plant tissues. The system allows collecting biospeckle patterns from roots which are grown in gels. Laser illumination has been optimized to obtain the images without undesirable specular reflections from the glass tube. Data on two different plant species were obtained and the ability of three different methods to analyze the biospeckle patterns are presented. The results showed that the biospeckle could provide quantitative indicators of the molecular activity from roots which are grown in gel substrate in tissue culture. We also presented a particular experimental configuration and the optimal approach to analyze the images. This may serve as a basis to further works on live BSL in order to study root development.

  17. Micropropagation and genetic transformation of Tylophora indica (Burm. f.) Merr.: a review.

    PubMed

    Teixeira da Silva, Jaime A; Jha, Sumita

    2016-11-01

    This review provides an in-depth and comprehensive overview of the in vitro culture of Tylophora species, which have medicinal properties. Tylophora indica (Burm. f.) Merr. is a climbing perennial vine with medicinal properties. The tissue culture and genetic transformation of T. indica, which has been extensively studied, is reviewed. Micropropagation using nodal explants has been reported in 25 % of all publications. Leaf explants from field-grown plants has been the explant of choice of independent research groups, which reported direct and callus-mediated organogenesis as well as callus-mediated somatic embryogenesis. Protoplast-mediated regeneration and callus-mediated shoot organogenesis has also been reported from stem explants, and to a lesser degree from root explants of micropropagated plants in vitro. Recent studies that used HPLC confirmed the potential of micropropagated plants to synthesize the major T. indica alkaloid tylophorine prior to and after transfer to field conditions. The genetic integrity of callus-regenerated plants was confirmed by RAPD in a few reports. Tissue culture is an essential base for genetic transformation studies. Hairy roots and transgenic T. indica plants have been shown to accumulate tylophorine suggesting that in vitro biology and transgenic methods are viable ways of clonally producing valuable germplasm and mass producing compounds of commercial value. Further studies that investigate the factors affecting the biosynthesis of Tylophora alkaloids and other secondary metabolites need to be conducted using non-transformed as well as transformed cell and organ cultures.

  18. Occurrence and molecular detection of Spiroplasma citri in carrots and Circulifer tenellus in Mexico

    USDA-ARS?s Scientific Manuscript database

    In the fall of 2014, carrot plants in Zacatecas, Mexico, were found with yellow, brown (chlorotic), and/or purple-colored leaves, small and/or rolled leaves, and hairy, deformed, and/or small roots. Molecular diagnostics of these symptomatic plants failed to detect phytoplasmas in these samples, bu...

  19. First report of 'Candidatus Liberibacter solanacearum' on carrot in Africa

    USDA-ARS?s Scientific Manuscript database

    In March of 2014, carrot plants (Daucus carota L. var. Mascot) exhibiting symptoms of yellowing, purpling, and curling of leaves, proliferation of shoots, formation of hairy secondary roots, general stunting and plant decline were observed in commercial fields in the Gharb region of Morocco. The sym...

  20. Phytoremediation of pharmaceuticals--preliminary study.

    PubMed

    Kotyza, Jan; Soudek, Petr; Kafka, Zdenĕk; Vanĕk, Toás

    2010-03-01

    Phytoremediation of selected pharmaceuticals (diclofenac, ibuprofen, and acetaminophen) using Armoracia rusticana and Linum usitatissimum cell cultures and by hydroponically cultivated Lupinus albus, Hordeum vulgaris, and Phragmites australis plants in laboratory conditions is described. During in vitro experiments, the best results for acetaminophen were achieved using Armoracia rusticana hairy root cultures, where 100% of the starting amount was removed from the media during eight days. Total removal of ibuprofen and diclofenac was achieved using a Linum usitatissimum suspension culture after one and six days, respectively. In the hydroponic arrangement, the best results were achieved for Lupinus, where acetaminophen was totally removed from media during two or four days in concentrations of 0.1 or 0.2 mM, respectively. The best effectiveness of ibuprofen removal (50% of starting amount) was found in case of Phragmites. Effectiveness of all tested plants for diclofenac removal was low. The best removal was achieved using Phragmites in the case of 0.2 mM concentration-67% of the starting amount and Hordeum for 0.1 mM starting concentration, 56%.