Sample records for haji-gak iron deposit

  1. An Analysis of the Published Mineral Resource Estimates of the Haji-Gak Iron Deposit, Afghanistan

    USGS Publications Warehouse

    Sutphin, D.M.; Renaud, K.M.; Drew, L.J.

    2011-01-01

    The Haji-Gak iron deposit of eastern Bamyan Province, eastern Afghanistan, was studied extensively and resource calculations were made in the 1960s by Afghan and Russian geologists. Recalculation of the resource estimates verifies the original estimates for categories A (in-place resources known in detail), B (in-place resources known in moderate detail), and C 1 (in-place resources estimated on sparse data), totaling 110. 8 Mt, or about 6% of the resources as being supportable for the methods used in the 1960s. C 2 (based on a loose exploration grid with little data) resources are based on one ore grade from one drill hole, and P 2 (prognosis) resources are based on field observations, field measurements, and an ore grade derived from averaging grades from three better sampled ore bodies. C 2 and P 2 resources are 1,659. 1 Mt or about 94% of the total resources in the deposit. The vast P 2 resources have not been drilled or sampled to confirm their extent or quality. The purpose of this article is to independently evaluate the resources of the Haji-Gak iron deposit by using the available geologic and mineral resource information including geologic maps and cross sections, sampling data, and the analog-estimating techniques of the 1960s to determine the size and tenor of the deposit. ?? 2011 International Association for Mathematical Geology (outside the USA).

  2. Geologic map of the Haji-Gak iron deposit, Bamyan Province, Afghanistan, modified from the 1965 original map compilation of M.S. Smirnov and I.K. Kusov

    USGS Publications Warehouse

    Renaud, Karine M.; Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geological-structural map of Hajigak iron-ore deposit, scale 1:10,000, which was compiled by M.S. Smirnov and I.K. Kusov in 1965. (Refer to the References Cited section in the Map PDF for complete citations of the original map and a related report.) USGS scientists, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original documents and also visited the field area in November 2009. This modified map illustrates the geological structure of the Haji-Gak iron deposit and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of these documents. Elevations on the cross sections are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  3. Geologic map of the western Haji-Gak iron deposit, Bamyan Province, Afghanistan, modified from the 1965 original map compilation of V.V. Reshetniak and I.K. Kusov

    USGS Publications Warehouse

    Renaud, Karine M.; Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2011-01-01

    This map is a modified version of Geologic-prospecting plan of western area of Hajigak iron-ore deposit, scale 1:2,000, which was compiled by V.V. Reshetniak and I.K. Kusov in 1965. (Refer to the References Cited section in the Map PDF for complete citations of the original map and related reports.) USGS scientists, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original documents and also visited the field area in November 2009. This modified map illustrates the geological structure of the western Haji-Gak iron deposit and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and includes modifications based on our examination of that document. We constructed the cross sections from data derived from the original map. Elevations on the cross sections are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  4. The Afghanistan National Railway: A Plan of Opportunity

    DTIC Science & Technology

    2014-01-01

    surface. Seven iron and copper mining “areas of interest” would produce the majority of the country’s export earn- ings: Haji Gak, Syadara, and Zarkashan...and 2040. Minerals from Haji Gak, acclaimed as one of the world’s largest iron reserves, account for most of the anticipated freight demand for a...proposed southern line. Haji Gak’s output is expected to be four times that of all the other mining areas combined. Afghanistan offers many

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Haji-Gak mineral district in Afghanistan: Chapter C in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Haji-Gak mineral district, which has iron ore deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  6. GAK, a regulator of clathrin-mediated membrane traffic, also controls centrosome integrity and chromosome congression.

    PubMed

    Shimizu, Hiroyuki; Nagamori, Ippei; Yabuta, Norikazu; Nojima, Hiroshi

    2009-09-01

    Cyclin G-associated kinase (GAK) is an association partner of clathrin heavy chain (CHC) and is essential for clathrin-mediated membrane trafficking. Here, we report two novel functions of GAK: maintenance of proper centrosome maturation and of mitotic chromosome congression. Indeed, GAK knockdown by siRNA caused cell-cycle arrest at metaphase, which indicates that GAK is required for proper mitotic progression. We found that this impaired mitotic progression was due to activation of the spindle-assembly checkpoint, which senses protruded, misaligned or abnormally condensed chromosomes in GAK-siRNA-treated cells. GAK knockdown also caused multi-aster formation, which was due to abnormal fragmentation of pericentriolar material, but not of the centrioles. Moreover, GAK and CHC cooperated in the same pathway and interacted in mitosis to regulate the formation of a functional spindle. Taken together, we conclude that GAK and clathrin function cooperatively not only in endocytosis, but also in mitotic progression.

  7. The clathrin-binding and J-domains of GAK support the uncoating and chaperoning of clathrin by Hsc70 in the brain

    PubMed Central

    Park, Bum-Chan; Yim, Yang-In; Zhao, Xiaohong; Olszewski, Maciej B.; Eisenberg, Evan; Greene, Lois E.

    2015-01-01

    ABSTRACT Cyclin-G-associated kinase (GAK), the ubiquitously expressed J-domain protein, is essential for the chaperoning and uncoating of clathrin that is mediated by Hsc70 (also known as HSPA8). Adjacent to the C-terminal J-domain that binds to Hsc70, GAK has a clathrin-binding domain that is linked to an N-terminal kinase domain through a PTEN-like domain. Knocking out GAK in fibroblasts caused inhibition of clathrin-dependent trafficking, which was rescued by expressing a 62-kDa fragment of GAK, comprising just the clathrin-binding and J-domains. Expressing this fragment as a transgene in mice rescued the lethality and the histological defects caused by knocking out GAK in the liver or in the brain. Furthermore, when both GAK and auxilin (also known as DNAJC6), the neuronal-specific homolog of GAK, were knocked out in the brain, mice expressing the 62-kDa GAK fragment were viable, lived a normal life-span and had no major behavior abnormalities. However, these mice were about half the size of wild-type mice. Therefore, the PTEN-like domains of GAK and auxilin are not essential for Hsc70-dependent chaperoning and uncoating of clathrin, but depending on the tissue, these domains appear to increase the efficiency of these co-chaperones. PMID:26345367

  8. Investigating AAK1-and GAK-Regulated Virus-Host Interactions Uncovers Broad-Spectrum Antivirals

    DTIC Science & Technology

    2017-02-16

    trans-Golgi network 100 (TGN) transport (9-12). Specifically, AAK1 and GAK phosphorylate the μ subunits of AP1 and 101 AP2, thereby enhancing their...Figure 2) (35). Isothiazolo[5,4-b]pyridines, 12g and 12i (Figure 2K), are potent (Kd = ~8 nM), 205 selective, ATP- competitive GAK inhibitors capable of...with combinations of the two 225 drugs revealed synergistic inhibition of DENV2 infection with a synergy volume of 36.7 μM2% 226 at the 95% confidence

  9. Disruption of zebrafish cyclin G-associated kinase (GAK) function impairs the expression of Notch-dependent genes during neurogenesis and causes defects in neuronal development

    PubMed Central

    2010-01-01

    Background The J-domain-containing protein auxilin, a critical regulator in clathrin-mediated transport, has been implicated in Drosophila Notch signaling. To ask if this role of auxilin is conserved and whether auxilin has additional roles in development, we have investigated the functions of auxilin orthologs in zebrafish. Results Like mammals, zebrafish has two distinct auxilin-like molecules, auxilin and cyclin G-associated kinase (GAK), differing in their domain structures and expression patterns. Both zebrafish auxilin and GAK can functionally substitute for the Drosophila auxilin, suggesting that they have overlapping molecular functions. Still, they are not completely redundant, as morpholino-mediated knockdown of the ubiquitously expressed GAK alone can increase the specification of neuronal cells, a known Notch-dependent process, and decrease the expression of Her4, a Notch target gene. Furthermore, inhibition of GAK function caused an elevated level of apoptosis in neural tissues, resulting in severe degeneration of neural structures. Conclusion In support of the notion that endocytosis plays important roles in Notch signaling, inhibition of zebrafish GAK function affects embryonic neuronal cell specification and Her4 expression. In addition, our analysis suggests that zebrafish GAK has at least two functions during the development of neural tissues: an early Notch-dependent role in neuronal patterning and a late role in maintaining the survival of neural cells. PMID:20082716

  10. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Charbel A.; Zheng Weili; Mark Haacke, E.

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, theremore » were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.« less

  11. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, A.C.; Zheng, W.; Haacke, E.M.

    To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximalmore » to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.« less

  12. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    NASA Astrophysics Data System (ADS)

    Habib, Charbel A.; Zheng, Weili; Mark Haacke, E.; Webb, Sam; Nichol, Helen

    2010-07-01

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.

  13. Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease.

    PubMed

    Raaij, Sanne van; Swelm, Rachel van; Bouman, Karlijn; Cliteur, Maaike; Heuvel, Marius van den; Pertijs, Jeanne; Patel, Dominic; Bass, Paul; Goor, Harry van; Unwin, Robert; Srai, Surjit Kaila; Swinkels, Dorine

    2018-06-19

    Iron is suggested to play a detrimental role in the progression of chronic kidney disease (CKD). The kidney recycles iron back into the circulation. However, the localization of proteins relevant for physiological tubular iron handling and their potential role in CKD remain unclear. We examined associations between iron deposition, expression of iron handling proteins and tubular injury in kidney biopsies from CKD patients and healthy controls using immunohistochemistry. Iron was deposited in proximal (PT) and distal tubules (DT) in 33% of CKD biopsies, predominantly in pathologies with glomerular dysfunction, but absent in controls. In healthy kidney, PT contained proteins required for iron recycling including putative iron importers ZIP8, ZIP14, DMT1, iron storage proteins L- and H-ferritin and iron exporter ferroportin, while DT only contained ZIP8, ZIP14, and DMT1. In CKD, iron deposition associated with increased intensity of iron importers (ZIP14, ZIP8), storage proteins (L-, H-ferritin), and/or decreased ferroportin abundance. This demonstrates that tubular iron accumulation may result from increased iron uptake and/or inadequate iron export. Iron deposition associated with oxidative injury as indicated by heme oxygenase-1 abundance. In conclusion, iron deposition is relatively common in CKD, and may result from altered molecular iron handling and may contribute to renal injury.

  14. Iron-tolerant Cyanobacteria as a Tool to Study Terrestrial and Extraterrestrial Iron Deposition

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Mummey, D.; Cooksey, K. E.; McKay, D. S.

    2005-01-01

    We are investigating biological mechanisms of terrestrial iron deposition as analogs for Martian hematite recently confirmed by. Possible terrestrial analogs include iron oxide hydrothermal deposits, rock varnish, iron-rich laterites, ferricrete soils, moki balls, and banded iron formations (BIFs). With the discovery of recent volcanic activity in the summit craters of five Martian volcanoes, renewed interest in the iron dynamics of terrestrial hydrothermal environments and associated microorganisms is warranted. In this study we describe a new genus and species of CB exhibiting elevated dissolved iron tolerance and the ability to precipitate hematite on the surface of their exopolymeric sheathes.

  15. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    NASA Technical Reports Server (NTRS)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  16. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    NASA Technical Reports Server (NTRS)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  17. An Investigation of Age-Related Iron Deposition Using Susceptibility Weighted Imaging

    PubMed Central

    Wang, Dan; Li, Wen-Bin; Wei, Xiao-Er; Li, Yue-Hua; Dai, Yong-Ming

    2012-01-01

    Aim To quantify age-dependent iron deposition changes in healthy subjects using Susceptibility Weighted Imaging (SWI). Materials and Methods In total, 143 healthy volunteers were enrolled. All underwent conventional MR and SWI sequences. Subjects were divided into eight groups according to age. Using phase images to quantify iron deposition in the head of the caudate nucleus and the lenticular nucleus, the angle radian value was calculated and compared between groups. ANOVA/Pearson correlation coefficient linear regression analysis and polynomial fitting were performed to analyze the relationship between iron deposition in the head of the caudate nucleus and lenticular nucleus with age. Results Iron deposition in the lenticular nucleus increased in individuals aged up to 40 years, but did not change in those aged over 40 years once a peak had been reached. In the head of the caudate nucleus, iron deposition peaked at 60 years (p<0.05). The correlation coefficients for iron deposition in the L-head of the caudate nucleus, R-head of the caudate nucleus, L-lenticular nucleus and R-lenticular nucleus with age were 0.67691, 0.48585, 0.5228 and 0.5228 (p<0.001, respectively). Linear regression analyses showed a significant correlation between iron deposition levels in with age groups. Conclusions Iron deposition in the lenticular nucleus was found to increase with age, reaching a plateau at 40 years. Iron deposition in the head of the caudate nucleus also increased with age, reaching a plateau at 60 years. PMID:23226360

  18. Iron deposition and inflammation in multiple sclerosis. Which one comes first?

    PubMed Central

    2011-01-01

    Whether iron deposition is an epiphenomenon of the multiple sclerosis (MS) disease process or may play a primary role in triggering inflammation and disease development remains unclear at this time, and should be studied at the early stages of disease pathogenesis. However, it is difficult to study the relationship between iron deposition and inflammation in early MS due to the delay between the onset of symptoms and diagnosis, and the poor availability of tissue specimens. In a recent article published in BMC Neuroscience, Williams et al. investigated the relationship between inflammation and iron deposition using an original animal model labeled as "cerebral experimental autoimmune encephalomyelitis", which develops CNS perivascular iron deposits. However, the relative contribution of iron deposition vs. inflammation in the pathogenesis and progression of MS remains unknown. Further studies should establish the association between inflammation, reduced blood flow, iron deposition, microglia activation and neurodegeneration. Creating a representative animal model that can study independently such relationship will be the key factor in this endeavor. PMID:21699686

  19. Appraisal of iron deposits in southern and western Turkey

    USGS Publications Warehouse

    Gair, Jacob Eugene; Capan, Ussal Z.

    1972-01-01

    Between May 20 and June 17, 1969, previously known iron deposits were examined widely at eight separate localities in western Turkey. The object of the examinations was to learn the, nature, geologic setting, and approximate size of each deposit, to review prior estimates of size, and possibly recommend additional exploratory work.. The full extent of each deposit is poorly known at the present time, so recommended additional work entails drilling, digging trenches or pits, geologic mapping or, combinations of these activities. On Qaldagi Mountain an area of about 1 sq km is capped by bredciated chert under which may be a continuous zone of mixed iron oxides and chert fragments. The thickness of the ferruginous zone is poorly known but is as much as 12 meters, in at least one place. The- ferruginous material and chert appear to have formed by the weathering of serpentine, bun this concept needs further testing. Drilling is recommended to determine the grade, thickness, and extent-of the ferruginous zone beneath the cherty cap. Inasmuch as mining by hand sorting is in progress, part of the deposit can be considered to be marginally in the category of iron reserves. The Keceborlu iron deposit consists of earthy to slightly compacted hematite and limonite mixed with small chert fragments. The surface area underlain by ferruginous rock is about 5,000 to 7,500 sq meters. The maximum known thickness of the deposit is about 7 meters. Iron appears to have been concentrated by weathering and oxidation of cherty limestone. The deposit is probably either a remnant of a once more extensive weathered cap, or a sink hole filling. The Keceborlu area warrants a low priority for further exploration, but one drill hole is recommended to test the thickness of the deposit. The iron deposits at Mellec are layered and vein-magnetite replacements of limestone. The six known deposits are discontinuous. No additional. work is recommended. ' The Gilindire Iron deposit consists of irregular

  20. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  1. Iron deposition in skin of patients with haemochromatosis

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Silva, J. N.; Alves, L. C.; Filipe, P.

    2003-09-01

    Haemochromatosis is the most common inherited liver disease in Caucasians and the most common autosomal recessive genetic disorder. It is characterized by inappropriately high iron absorption resulting in progressive iron overload in parenchymal organs such as liver, heart, pancreas, pituitary, joints, and skin. Upon early detection, haemochromatosis can be a manageable chronic disease but, if undetected, is potentially fatal. Skin biopsies were obtained from patients and from healthy donors. Images of the elemental distributions in skin were obtained using nuclear microscopy techniques (nuclear microprobe, NMP). Elemental profiles along skin, and intra-, and extra-cellular iron concentrations, were determined. Results for patients with haemochromatosis were cross-examined with morphologic features and with data obtained for healthy skin. Skin iron content is much increased in patients with haemochromatosis when compared with healthy subjects. Extensive iron deposits are observed at dermis, at the dermo-epidermal interface, at upper epidermis layers and at stratum corneum. Iron deposition was observed preferentially at cell boundaries or at the interstitial matrix.

  2. Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis

    PubMed Central

    2011-01-01

    Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS). A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE), which presents with CNS perivascular iron deposits. This model was used to investigate the relationship of iron deposition to inflammation. Methods In order to generate cEAE, mice were given an encephalitogen injection followed by a stereotactic intracerebral injection of TNF-α and IFN-γ. Control animals received encephalitogen followed by an intracerebral injection of saline, or no encephalitogen plus an intracerebral injection of saline or cytokines. Laser Doppler was used to measure cerebral blood flow. MRI and iron histochemistry were used to localize iron deposits. Additional histological procedures were used to localize inflammatory cell infiltrates, microgliosis and astrogliosis. Results Doppler analysis revealed that cEAE mice had a reduction in cerebral blood flow compared to controls. MRI revealed T2 hypointense areas in cEAE animals that spatially correlated with iron deposition around vessels and at some sites of inflammation as detected by iron histochemistry. Vessels with associated iron deposits were distributed across both hemispheres. Mice with cEAE had more iron-labeled vessels compared to controls, but these vessels were not commonly associated with inflammatory cell infiltrates. Some iron-laden vessels had associated microgliosis that was above the background microglial response, and iron deposits were observed within reactive microglia. Vessels with associated astrogliosis were more commonly observed without colocalization of iron deposits. Conclusion The findings indicate that iron deposition around vessels can occur independently of inflammation providing

  3. Nanostructure iron-silicon thin film deposition using plasma focus device

    NASA Astrophysics Data System (ADS)

    Kotb, M.; Saudy, A. H.; Hassaballa, S.; Eloker, M. M.

    2013-03-01

    The presented study in this paper reports the deposition of nano-structure iron-silicon thin film on a glass substrate using 3.3 KJ Mather-type plasma focus device. The iron-silicon powder was put on the top of hollow copper anode electrode. The deposition was done under different experimental conditions such as numbers of electric discharge shots and angular position of substrate. The film samples were exposed to energetic argon ions generated by plasma focus device at different distances from the top of the central electrode. The exposed samples were then analyzed for their structure and optical properties using X-ray diffraction (XRD) and UV-visible spectroscopy. The structure of iron-silicon thin films deposited using plasma focus device depends on the distance from the anode, the number of focus deposition shots and the angular position of the sample

  4. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    NASA Technical Reports Server (NTRS)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  5. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    USGS Publications Warehouse

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three

  6. Non cardiopatic and cardiopatic beta thalassemic patients: quantitative and qualitative cardiac iron deposition evaluation with MRI.

    PubMed

    Macarini, L; Marini, S; Pietrapertosa, A; Scardapane, A; Ettorre, G C

    2005-01-01

    Cardiomyopathy is one of the major complications of b thalassaemia major as a result of transfusional iron overload. The aim of our study is to evaluate with MR if there is any difference of iron deposition signal intensity (SI) or distribution between non-cardiopathic and cardiopathic thalassaemic patients in order to establish if there is a relationship between cardiopathy and iron deposition. We studied 20 patients affected by b thalassaemia major, of whom 10 cardiopathic and 10 non-cardiopathic, and 10 healthy volunteers as control group. Serum ferritin and left ventricular ejection fraction were calculated in thalassaemic patients. All patients were examined using a 1.5 MR unit with ECG-gated GE cine-MR T2*-weighted, SE T1-weighted and GE T2*-weighted sequences. In all cases, using an adequate ROI, the myocardial and skeletal muscle signal intensity (SI), the myocardial/skeletal muscle signal intensity ratio (SIR) and the SI average of the myocardium and skeletal muscle were calculated for every study group. The qualitative evaluation of iron deposition distribution was independently performed by three radiologists who analyzed the extension, the site and the morphology of iron deposition on the MR images and reported their observations on the basis of a four-level rating scale: 0 (absent), 1 (limited), 2 (partial), 3 (widespread deposition). The result of quantitative and qualitative evaluations were analysed with statistical tests. Cardiac iron deposition was found in 8/10 non-cardiopathic thalassaemic patients and in all cardiopathic thalassaemic patients. We noticed a significant SI difference (p>0.05) between the healthy volunteer control group and the thalassaemic patients with iron deposition, but no significant SI difference in iron deposition between non-cardiopathic and cardiopathic thalassaemic patients in the areas evaluated. The qualitative evaluation revealed a different distribution of iron deposition between the two thalassaemic groups, with

  7. Iron deposition in modern and archaeological teeth

    NASA Astrophysics Data System (ADS)

    Williams, A.-M. M.; Siegele, R.

    2014-09-01

    Iron surface concentrations and profile maps were measured on the enamel of archaeological and modern teeth to determine how iron is deposited in tooth enamel and if it was affected by the post-mortem environment. Teeth from Australian children who died in the second half of the 19th century were compared with contemporary teeth extracted for orthodontic purposes. Surface analysis of the teeth was performed using the 3 MV Van Der Graff Accelerator at The Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia. A small sample of teeth were then cut in the mid sagittal plane and analysed using ANSTO High Energy Heavy Ion Microprobe. Maps and linear profiles were produced showing the distribution of iron across the enamel. Results show that both the levels and distribution of iron in archaeological teeth is quite different to contemporary teeth, raising the suggestion that iron has been significantly altered by the post-mortem environment.

  8. Development of volume deposition on cast iron by additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.

    2016-11-10

    ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition techniquemore » to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.« less

  9. Perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis.

    PubMed

    Sands, Scott A; Williams, Rachel; Marshall, Sylvester; LeVine, Steven M

    2014-10-17

    Nitration of proteins, which is thought to be mediated by peroxynitrite, is a mechanism of tissue damage in multiple sclerosis (MS). However, protein nitration can also be catalyzed by iron, heme or heme-associated molecules independent of peroxynitrite. Since microhemorrhages and perivascular iron deposits are present in the CNS of MS patients, we sought to determine if iron is associated with protein nitration. A cerebral model of experimental autoimmune encephalomyelitis (cEAE) was utilized since this model has been shown to have perivascular iron deposits similar to those present in MS. Histochemical staining for iron was used together with immunohistochemistry for nitrotyrosine, eNOS, or iNOS on cerebral sections. Leakage of the blood-brain barrier (BBB) was studied by albumin immunohistochemistry. Iron deposits were colocalized with nitrotyrosine staining around vessels in cEAE mice while control animals revealed minimal staining. This finding supports the likelihood that nitrotyrosine formation was catalyzed by iron or iron containing molecules. Examples of iron deposits were also observed in association with eNOS and iNOS, which could be one source of substrates for this reaction. Extravasation of albumin was present in cEAE mice, but not in control animals. Extravasated albumin may act to limit tissue injury by binding iron and/or heme as well as being a target of nitration, but the protection is incomplete. In summary, iron-catalyzed nitration of proteins is a likely mechanism of tissue damage in MS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Considerations on Terrestrial Iron Depositing Analogs to Earliest Mars

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.

    2007-01-01

    Iron oxide and hydroxide minerals, including hematite, can mineralize and preservemicrofossils and physical biomarkers (Allen at al., 2004). Preserved remnants of phototrophic microorganisms are recognized as biosignatures of past life on Earth (Schopf, 2006). To date, two types of surface iron depositing environments have been studied as analogs to possible habitable environments on earliest Mars: the highly acidified Rio Tinto River (Iberian Belt, Spain) [Gomez Ortis et al., 2007], and the nearneutral iron depositing Chocolate Pots Hot Spring (Yellowstone National Park, US) [Parenteau at al., 2005]. While phototrophs in the Rio Tinto are only represented by eukaryotic algae (Amaral Zettler et all., 2002), Chocolate Pots is mainly populated with cyanobacteria (Pierson et all., 2000; Brown et all., 2007). Which of these environments is the closer analog to a potentially habitable early Mars? Paleobiological data, combined with recent "tree of life" interpretations, suggest that phototrophic eukaryotes evolved not earlier than 2.5 - 2.8 b.y. after Earth s accretion (4.6 b.y.), while cyanobacteria and /or their iron-tolerant predecessors evolved between 1 - 1.5 b.y. after accretion (Brown et al., 2007). Lindsay and Brasier (2002) postulated that microbial life on Mars surface could have lasted no more than 1-1.5 b.y. after Mars accretion (also 4.6 b.y.). Recent multispectral mapping of Mars suggests that near-neutral wet environments prevailed at approximately this time (Bibring, et al., 2006). Thus, near-neutral iron depositing hot springs such as Chocolate Pots Hot Spring seem to be the more likely habitable analogs for earliest Mars.

  11. Do Left- and Right-Handed People Have Similar Iron Deposition in the Basal Ganglia?

    PubMed

    Wang, Dan; Li, Yue-Hua; Wang, He

    2016-01-01

    This study aimed to investigate whether right-, left-, or mixed-handed people differ in terms of iron deposition using susceptibility weighted imaging in healthy subjects. A total of 87 people (right-handed, 51 subjects; left-handed, 19 subjects; mixed-handed, 17 subjects) aged 20 to 40 years participated. All underwent magnetic resonance examination, including conventional and susceptibility weighted imaging sequences. Phase images were used to quantify iron deposition in the head of the caudate nucleus and lenticular nucleus. The radian angle value was calculated and compared between the 3 (right-, left-, or mixed-handed) groups. There was no significant difference in the radian angle values between left-, right-, or mixed-handed people for either the right or left side of the caudate nucleus head. However, the amount of iron deposition in the left lenticular nucleus was significantly higher for right-handed than for the left-handed subjects (P < 0.001) and significantly higher for mixed-handed than for left-handed subjects (P = 0.006). In addition, the amount of iron deposition in the right lenticular nucleus was significantly lower for left-handed than for right-handed subjects (P < 0.001). The results revealed no significant differences in iron deposition in the head of the caudate nucleus. However, there was a significant difference in iron deposition in the lenticular nucleus between left- and right-handed subjects and between left- and mixed-handed subjects.

  12. Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: relation to Fe-oxide (Cu-U-Au-rare earth element) deposits and tectonic implications

    USGS Publications Warehouse

    Foose, M.P.; McLelland, J.M.

    1995-01-01

    Low-Ti iron-oxide deposits in exposed Grenville-age rocks of New York and New Jersey belong to a distinct class of iron-oxide (Cu-U-Au-rare earth element [REE]) deposits that includes similar iron deposits in southeastern Missouri and the Kiruna district of Sweden, the giant Olympic Dam U-Cu-Au-Ag deposit (Australia), and the Bayan Obo REE-Nb deposit (China). Most of the New York-New Jersey deposits exhibit features consistent with a hydrothermal origin and define a regionally significant metallogenic event that provides important clues to the evolution of this part of the Grenville orogen. In the Adirondacks, the tectonic setting of these deposits is consistent with postorogenic uplift and extensive crustal melting at 1070-1050 Ma that was accompanied by late tectonic to posttectonic deposition of iron. -Authors

  13. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging

    PubMed Central

    Haacke, E. Mark; Makki, Malek; Ge, Yulin; Maheshwari, Megha; Sehgal, Vivek; Hu, Jiani; Selvan, Madeswaran; Wu, Zhen; Latif, Zahid; Xuan, Yang; Khan, Omar; Garbern, James; Grossman, Robert I.

    2009-01-01

    Purpose To investigate whether the variable forms of putative iron deposition seen with susceptibility weighted imaging (SWI) will lead to a set of multiple sclerosis (MS) lesion characteristics different than that seen in conventional MR imaging. Materials and Methods Twenty-seven clinically definite MS patients underwent brain scans using magnetic resonance imaging including: pre- and post-contrast T1-weighted, T2-weighted, FLAIR, and SWI at 1.5T, 3T and 4T. MS lesions were identified separately in each imaging sequence. Lesions identified in SWI were re-evaluated for their iron content using the SWI filtered phase images. Results There were a variety of new lesion characteristics identified by SWI and these were classified into six types. A total of 75 lesions were seen only with conventional imaging, 143 only with SWI and 204 by both. From the iron quantification measurements, a moderate linear correlation between signal intensity and iron content (phase) was established. Conclusion The amount of iron deposition in the brain may serve as a surrogate biomarker for different MS lesion characteristics. SWI showed many lesions missed by conventional methods and six different lesion characteristics. SWI was particularly effective at recognizing the presence of iron in MS lesions and in the basal ganglia and pulvinar thalamus. PMID:19243035

  14. Geological reconnaissance of some Uruguayan iron and manganese deposits in 1962

    USGS Publications Warehouse

    Wallace, Roberts Manning

    1976-01-01

    Three mineralized areas lie in an area near the town of Minas de Corrales in the Departamento de Rivera; they are the Cerro Amelia, the Cerro de Papagayo, and the Cerro Iman. The Cerro Amelia is composed of small bands of iron-rich rock separated by an amphibolitic or mafic rock. Selective mining would be necessary to extract the 31,000 tons per meter of depth of iron-rich rock that ranges from 15 to 40 percent metallic iron. The Cerro de Papagayo district contains many small, rich deposits of ferruginous manganese ore. The ratio of Mn to Fe varies widely within each small deposit as well as from deposit to deposit. Some ferruginous manganese ore contains 50-55 percent manganese dioxide. Although there are many thousands of tons of ore in the district, small-scale mining operations are imperative. One deposit, the Cerro Avestuz manganese mine, was visited. The manganese ore body lies within contorted highly metamorphosed itabirite that contains both hard low grade and soft high grade ferruginous manganese ores estimated to average 40 percent Mn. About 38,000 tons of manganese ore is present in this deposit. The Cerro Iman is a large block of itabirite that contains about 40 percent Fe. The grade is variable and probably runs from less than 35 percent Fe to more than 50 percent Fe. No exploration has been done on this deposit. It is recommended that the Cerro de Iman area be geologically mapped in detail, and that a geological reconnaissance be made of the area that is between the Cuchilla de Corrales and the Cuchilla de Areycua/Cuchilla del Cerro Pelado area.

  15. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu.

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880's at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  16. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880`s at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  17. Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition.

    PubMed

    Tanskanen, A; Karppinen, M

    2018-06-12

    Iron terephthalate coordination network thin films can be fabricated using the state-of-the-art gas-phase atomic/molecular layer deposition (ALD/MLD) technique in a highly controlled manner. Iron is an Earth-abundant and nonhazardous transition metal, and with its rich variety of potential applications an interesting metal constituent for the inorganic-organic coordination network films. Our work underlines the role of the metal precursor used when aiming at in-situ ALD/MLD growth of crystalline inorganic-organic thin films. We obtain crystalline iron terephthalate films when FeCl 3 is employed as the iron source whereas depositions based on the bulkier Fe(acac) 3 precursor yield amorphous films. The chemical composition and structure of the films are investigated with GIXRD, XRR, FTIR and XPS.

  18. Modelling of Soluble Iron Formation, Transport and Deposition to the North Pacific Ocean, Role of Anthropogenic Pollutants.

    NASA Astrophysics Data System (ADS)

    Solmon, F.; Chuang, P.; Meskhidze, N.

    2006-12-01

    Soluble iron deposited via atmospheric processes represents an important nutrient for open ocean ecosystems, which might influence phytoplancton productivity and atmospheric carbon uptake. Atmospheric deposition of mineral dust is known to be the essential supply of iron to the ocean. However, most of the iron contained in mineral particles is unsoluble, whereas only the soluble fraction of the iron is thought to be effectively bio-available. There is still a great deal of uncertainties in the estimation of this fraction and the representation of iron solubilisation processes in the atmosphere. In this scope, we present a modeling study aiming at better representing such processes. In particular, we focus on the different roles of anthropogenic chemical compounds in the atmospheric iron cycle and deposition. These roles are of two orders : (i) the acidification of mineral particles by anthropogenic compounds influencing the solubilisation of the iron transported and (ii) the direct emission, transport and deposition of iron emitted by anthropogenic activities. For this study, we implement a set of specific mechanisms in the global chemistry transport model GEOS- CHEM. Our study focuses on the East Asia - North pacific outflow, a region where interactions between dust and pollution are particularly likely to occur and where the ocean ecosystem is known to be iron limited.

  19. Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Scooter D., E-mail: scooter.johnson@nrl.navy.mil; Glaser, Evan R.; Cheng, Shu-Fan

    Highlights: • We deposit yttrium iron garnet films at room temperature using aerosol deposition. • Films are 96% of theoretical density for yttrium iron garnet. • We report magnetic and structural properties post-deposition and post-annealing. • Low-temperature annealing decreases the FMR linewidth. • We discuss features of the FMR spectra at each anneal temperature. - Abstract: We have employed aerosol deposition to form polycrystalline yttrium iron garnet (YIG) films on sapphire at room temperature that are 90–96% dense. We characterize the structural and dynamic magnetic properties of the dense films using scanning electron microscopy, X-ray diffraction, and ferromagnetic resonance techniques.more » We find that the as-deposited films are pure single-phase YIG formed of compact polycrystallites ∼20 nm in size. The ferromagnetic resonance mode occurs at 2829 G with a linewidth of 308 G. We perform a series of successive anneals up to 1000 °C on a film to explore heat treatment on the ferromagnetic resonance linewidth. We find the narrowest linewidth of 98 G occurs after a 750 °C anneal.« less

  20. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues.

    PubMed

    Zukor, Hillel; Song, Wei; Liberman, Adrienne; Mui, Jeannie; Vali, Hojatollah; Fillebeen, Carine; Pantopoulos, Kostas; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Schipper, Hyman M

    2009-05-01

    Oxidative stress, deposition of non-transferrin iron, and mitochondrial insufficiency occur in the brains of patients with Alzheimer disease (AD) and Parkinson disease (PD). We previously demonstrated that heme oxygenase-1 (HO-1) is up-regulated in AD and PD brain and promotes the accumulation of non-transferrin iron in astroglial mitochondria. Herein, dynamic secondary ion mass spectrometry (SIMS) and other techniques were employed to ascertain (i) the impact of HO-1 over-expression on astroglial mitochondrial morphology in vitro, (ii) the topography of aberrant iron sequestration in astrocytes over-expressing HO-1, and (iii) the role of iron regulatory proteins (IRP) in HO-1-mediated iron deposition. Astroglial hHO-1 over-expression induced cytoplasmic vacuolation, mitochondrial membrane damage, and macroautophagy. HO-1 promoted trapping of redox-active iron and sulfur within many cytopathological profiles without impacting ferroportin, transferrin receptor, ferritin, and IRP2 protein levels or IRP1 activity. Thus, HO-1 activity promotes mitochondrial macroautophagy and sequestration of redox-active iron in astroglia independently of classical iron mobilization pathways. Glial HO-1 may be a rational therapeutic target in AD, PD, and other human CNS conditions characterized by the unregulated deposition of brain iron.

  1. ID ICPMS Lu-Hf Geochronology of Apatite from Iron-Oxide Apatite (IOA) Deposits, Northern Chilean Iron Belt.

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Vervoort, J. D.; Barra, F.; Palma, G.

    2017-12-01

    Determining the age of mineralization of ore deposits is important for understanding the mechanisms and timing of ore formation. In many cases, however, conventional dateable mineral phases (e.g., zircon, monazite) are lacking in the ore mineral assemblages. For example, Iron Oxide Apatite (IOA) and Iron Oxide Gold Copper Gold (IOCG) deposits have the remaining fundamental question as to whether they have formed by hydrothermal or magmatic processes, or some combination of the two. In these deposits, the mineralization of iron oxide is often accompanied by the growth of apatites, which typically have REE concentrations of tens to several thousand ppm and which makes them potentially amenable to dating by the Lu-Hf isochron method. These apatites, however, also have very low concentrations of Hf, which makes determination of precise Hf isotope compositions challenging. In this study, we attempted to date these deposits using the apatite Lu-Hf isochron method, using procedures modified from that of Münker et al., 2001 and Barfod et al., 2003 and report the first Lu-Hf ages for apatites from Carmen, Fresia, and Mariela IOA deposits in northern Chilean Iron Belt. The concentration of Hf in analyzed apatite is 0.001 ppm. To ensure at least 0.5ng of Hf is collected for MS analysis, 0.5g apatite was dissolved for each sample. A single stage of Ln-spec resin chromatographic columns was used to separate Hf from REEs as multi stages of separation columns would decrease the Hf yield considerably. Using these procedures, we determined a Lu-Hf apatite age for the Carmen deposit of 130.0±1.7 Ma, which is in accordance with a previously published U-Pb apatite age of 131.0±1.0 Ma (Gelcich et al., 2005). The apatites from Fresia and Mariela yield Lu-Hf ages of 132.8±5.3 Ma and 117.3±0.4 Ma respectively. The lower points on the isochrons are either a low Lu/Hf phase (actinolite, magnetite) or bulk earth ratios. These are some of the first Lu-Hf ages of directly dating apatite

  2. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    PubMed

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration.

    PubMed

    Andersen, Hjalte Holm; Johnsen, Kasper Bendix; Moos, Torben

    2014-05-01

    Neurodegenerative disorders are characterized by the presence of inflammation in areas with neuronal cell death and a regional increase in iron that exceeds what occurs during normal aging. The inflammatory process accompanying the neuronal degeneration involves glial cells of the central nervous system (CNS) and monocytes of the circulation that migrate into the CNS while transforming into phagocytic macrophages. This review outlines the possible mechanisms responsible for deposition of iron in neurodegenerative disorders with a main emphasis on how iron-containing monocytes may migrate into the CNS, transform into macrophages, and die out subsequently to their phagocytosis of damaged and dying neuronal cells. The dying macrophages may in turn release their iron, which enters the pool of labile iron to catalytically promote formation of free-radical-mediated stress and oxidative damage to adjacent cells, including neurons. Healthy neurons may also chronically acquire iron from the extracellular space as another principle mechanism for oxidative stress-mediated damage. Pharmacological handling of monocyte migration into the CNS combined with chelators that neutralize the effects of extracellular iron occurring due to the release from dying macrophages as well as intraneuronal chelation may denote good possibilities for reducing the deleterious consequences of iron deposition in the CNS.

  4. Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging.

    PubMed

    Wang, Dan; Li, Yan-Ying; Luo, Jian-Hua; Li, Yue-Hua

    2014-01-01

    This study aimed to investigate age-related iron deposition changes in healthy subjects and Alzheimer disease patients using susceptibility weighted imaging. The study recruited 182 people, including 143 healthy volunteers and 39 Alzheimer disease patients. All underwent conventional magnetic resonance imaging and susceptibility weighted imaging sequences. The groups were divided according to age. Phase images were used to investigate iron deposition in the bilateral head of the caudate nucleus, globus pallidus and putamen, and the angle radian value was calculated. We hypothesized that age-related iron deposition changes may be different between Alzheimer disease patients and controls of the same age, and that susceptibility weighted imaging would be a more sensitive method of iron deposition quantification. The results revealed that iron deposition in the globus pallidus increased with age, up to 40 years. In the head of the caudate nucleus, iron deposition peaked at 60 years. There was a general increasing trend with age in the putamen, up to 50-70 years old. There was significant difference between the control and Alzheimer disease groups in the bilateral globus pallidus in both the 60-70 and 70-80 year old group comparisons. In conclusion, iron deposition increased with age in the globus pallidus, the head of the caudate nucleus and putamen, reaching a plateau at different ages. Furthermore, comparisons between the control and Alzheimer disease group revealed that iron deposition changes were more easily detected in the globus pallidus. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Tuberculous spondylitis in Haji Adam Malik hospital, Medan

    NASA Astrophysics Data System (ADS)

    Dharmajaya, R.

    2018-03-01

    Ankylosing tuberculosis is an infection caused by Mycobacterium tuberculosis in one or more components of the vertebrae; it is Pott disease or tuberculous spondylitis. It might become a potential cause of morbidity, including neurological deficits and permanent deformity of the spine. Management of TB Spondylitis, in general, is chemotherapy with antituberculosis drugs (ATG), immobilization, and spine surgical interventions. A retrospective study was conducted to analyze the patients of TB Spondylitis who had undergone surgery at Haji Adam Malik hospital from June 2015 to June 2017. The most common location is thoracal (10%), lumbal (3%), and thoracolumbal junction (3%). Decompression laminectomy with fusion (18%) is the most suitable option for surgical management. The majority, pre- operation ASIA scale is D (8%), and post operation is E (8%). It means that surgical plays an important role in themanagement of tuberculous spondylitis.

  6. Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition.

    PubMed

    Smith, A J B; Beukes, N J; Gutzmer, J; Czaja, A D; Johnson, C M; Nhleko, N

    2017-11-01

    We document the discovery of the first granular iron formation (GIF) of Archaean age and present textural and geochemical results that suggest these formed through microbial iron oxidation. The GIF occurs in the Nconga Formation of the ca. 3.0-2.8 Ga Pongola Supergroup in South Africa and Swaziland. It is interbedded with oxide and silicate facies micritic iron formation (MIF). There is a strong textural control on iron mineralization in the GIF not observed in the associated MIF. The GIF is marked by oncoids with chert cores surrounded by magnetite and calcite rims. These rims show laminated domal textures, similar in appearance to microstromatolites. The GIF is enriched in silica and depleted in Fe relative to the interbedded MIF. Very low Al and trace element contents in the GIF indicate that chemically precipitated chert was reworked above wave base into granules in an environment devoid of siliciclastic input. Microbially mediated iron precipitation resulted in the formation of irregular, domal rims around the chert granules. During storm surges, oncoids were transported and deposited in deeper water environments. Textural features, along with positive δ 56 Fe values in magnetite, suggest that iron precipitation occurred through incomplete oxidation of hydrothermal Fe 2+ by iron-oxidizing bacteria. The initial Fe 3+ -oxyhydroxide precipitates were then post-depositionally transformed to magnetite. Comparison of the Fe isotope compositions of the oncoidal GIF with those reported for the interbedded deeper water iron formation (IF) illustrates that the Fe 2+ pathways and sources for these units were distinct. It is suggested that the deeper water IF was deposited from the evolved margin of a buoyant Fe 2+ aq -rich hydrothermal plume distal to its source. In contrast, oncolitic magnetite rims of chert granules were sourced from ambient Fe 2+ aq -depleted shallow ocean water beyond the plume. © 2017 John Wiley & Sons Ltd.

  7. Iron sulfide deposits at Wadi Wassat, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Roberts, R.J.; Rossman, D.L.; Bagdady, A.Y.; Conway, C.M.; Helaby, A.M.

    1981-01-01

    Massive and disseminated iron sulfide deposits in Wadi Wassat form lenticular, stratabound deposits in cherty Precambrian sedimentary rocks interlayered with Precambrian calcareous sedimentary rocks, pyroclastic rocks, and andesitic flow rocks. These rocks have been cut by a wide variety of plutonic and dike rocks including gabbro, diorite, granodiorite, diabase, rhyolite, and granite. The zone containing the sulfide lenses is nearly 16 km long and is cut off by granitic rocks at both the northern and southern ends. The lenses are as much as 200 m thick; one can be traced along strike for more than 4 km. The lenses consist mostly of iron sulfides. Pyrite is the principal sulfide mineral; near intrusive bodies the pyrite has been partially converted to pyrrhotite and locally mobilized into fractures. The sulfides have been oxidized to a depth of about 25 m. Preliminary calculations indicate that about 107,500,000 tons of sulfides, averaging 40 percent iron and 35 percent sulfur, are available to a depth of i00 m. Small amounts of nickel, cobalt, zinc, and copper are also present, but at metal prices prevailing in early 1981, these do not constitute significant resources.

  8. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  9. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    PubMed

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Hubicka, Z.; Cada, M.; Bogdanowicz, R.; Wulff, H.; Helm, C. A.; Hippler, R.

    2018-03-01

    Iron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5 Pa, 1.5 Pa, and 5.0 Pa). The HiPIMS system was operated at a repetition frequency f  =  100 Hz with a duty cycle of 1%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma was investigated by means of optical emission spectroscopy and energy-resolved mass spectrometry. Active oxygen species were detected and their kinetic energy was found to depend on the gas pressure. Deposited films were characterized by means of spectroscopic ellipsometry and grazing incidence x-ray diffraction. Optical properties and crystallinity of as-deposited films were found to depend on the deposition conditions. Deposition of hematite iron oxide films with the HiPIMS-ECWR discharge is attributed to the enhanced production of reactive oxygen species.

  11. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  12. Aetiology of extrahepatic epithelial iron deposits in siderosis in Bantu

    PubMed Central

    Buchanan, W. M.

    1969-01-01

    Twenty-seven specimens of human tissue, obtained by operation, were tested to evaluate the theory that iron uptake by tissues from serum is greater when transferrin is nearly completely saturated than when the degree of saturation is normal. Samples of each tissue were incubated in autologous serum so prepared that in one instance the transferrin was 50% saturated and in the second 90% saturated with iron containing 59Fe. In all samples the uptake of iron was greater from the transferrin which was 90% saturated. The uptake by tissues of epithelial origin was significantly greater than that by non-epithelial tissues. Considerable variation in uptake was noted between samples of the same tissue from different individuals. The role of iron stores in the tissue and folic acid deficiency are discussed. It is concluded that the degree of transferrin saturation is important in determining iron uptake by tissues, especially in those of epithelial origin, and that such uptake may be modified by tissue stores and folic acid deficiency. It is felt that these factors are probably responsible for the extrahepatic parenchymal deposits of iron sometimes found in Bantu subjects with siderosis. PMID:5784982

  13. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    USGS Publications Warehouse

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  14. Assessment of Iron Deposition in the Brain in Frontotemporal Dementia and Its Correlation with Behavioral Traits.

    PubMed

    Sheelakumari, R; Kesavadas, C; Varghese, T; Sreedharan, R M; Thomas, B; Verghese, J; Mathuranath, P S

    2017-10-01

    Brain iron deposition has been implicated as a major culprit in the pathophysiology of neurodegeneration. However, the quantitative assessment of iron in behavioral variant frontotemporal dementia and primary progressive aphasia brains has not been performed, to our knowledge. The aim of our study was to investigate the characteristic iron levels in the frontotemporal dementia subtypes using susceptibility-weighted imaging and report its association with behavioral profiles. This prospective study included 46 patients with frontotemporal dementia (34 with behavioral variant frontotemporal dementia and 12 with primary progressive aphasia) and 34 age-matched healthy controls. We performed behavioral and neuropsychological assessment in all the subjects. The quantitative iron load was determined on SWI in the superior frontal gyrus and temporal pole, precentral gyrus, basal ganglia, anterior cingulate, frontal white matter, head and body of the hippocampus, red nucleus, substantia nigra, insula, and dentate nucleus. A linear regression analysis was performed to correlate iron content and behavioral scores in patients. The iron content of the bilateral superior frontal and temporal gyri, anterior cingulate, putamen, right hemispheric precentral gyrus, insula, hippocampus, and red nucleus was higher in patients with behavioral variant frontotemporal dementia than in controls. Patients with primary progressive aphasia had increased iron levels in the left superior temporal gyrus. In addition, right superior frontal gyrus iron deposition discriminated behavioral variant frontotemporal dementia from primary progressive aphasia. A strong positive association was found between apathy and iron content in the superior frontal gyrus and disinhibition and iron content in the putamen. Quantitative assessment of iron deposition with SWI may serve as a new biomarker in the diagnostic work-up of frontotemporal dementia and help distinguish frontotemporal dementia subtypes. © 2017

  15. Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits, Australia

    NASA Astrophysics Data System (ADS)

    Duhig, Nathan C.; Davidson, Garry J.; Stolz, Joe

    1992-06-01

    The Cambrian-Ordovician Mount Windsor volcanic belt in northern Australia is host to stratiform lenses of massive ferruginous chert that are spatially associated with volcanogenic massive sulfide occurrences, in particular the Thalanga zinc-lead-copper-silver deposit. The rocks are composed principally of Fe2O3 and SiO2, with very low concentrations of alkalic elements, and lithogenous elements such as Al, Zr, and Ti; they are interpreted as nearly pure chemical sediments. Textural evidence is documented of the integral role of filamentous bacteria (and/or fungi) in depositing iron from hydrothermal fluids, and of the inorganic precipitation of silica-iron-oxyhydroxide gels that subsequently matured to subcrystalline and crystalline silica forms. At least three distinct iron-accumulating microbial forms are distinguished: networks of septate filaments, nonseptate filament networks, and extremely coarse branching filaments that do not reconnect. Values for δ34S in disseminated pyrite are up to 50‰ lighter than those of contemporaneous Cambrian seawater, suggesting postdepositional colonization of some ironstones by sulfur-reducing bacteria. The site not only preserves the textural interplay of biological and inorganic depositional processes in exhalites, but also extends the oldest known instance of microbial mediation in vent-proximal hydrothermal iron precipitation to at least 500 Ma.

  16. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The Argentine continental margin

    NASA Astrophysics Data System (ADS)

    Riedinger, Natascha; Brunner, Benjamin; Krastel, Sebastian; Arnold, Gail L.; Wehrmann, Laura M.; Formolo, Michael J.; Beck, Antje; Bates, Steven M.; Henkel, Susann; Kasten, Sabine; Lyons, Timothy W.

    2017-05-01

    The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates. Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur. Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters

  17. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    USGS Publications Warehouse

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but

  18. Iron mineralization at the Songhu deposit, Chinese Western Tianshan: a type locality with regional metallogenic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Long; Wang, Yi-Tian; Dong, Lian-Hui; Qin, Ke-Zhang; Evans, Noreen J.; Zhang, Bing; Ren, Yi

    2018-01-01

    Hosted by volcaniclastics of the Carboniferous Dahalajunshan Formation, the Songhu iron deposit is located in the central segment of the Awulale metallogenic belt, Chinese Western Tianshan. Mineralization and alteration are structurally controlled by orogen-parallel NWW-striking faults. Integrating with mineralogical and stable isotopic analyses based on paragenetic relationships, two types of iron mineralization have been identified. The deuteric mineralization (Type I) represented by brecciated, banded, and disseminated-vein ores juxtaposed with potassic-calcic alteration in the inner zone, which was formed from a magmatic fluid generated during the late stages of regional volcanism. In contrast, the volcanic-hydrothermal mineralization (Type II) is characterized by hydrothermal features occurring in massive and agglomerated ores with abundant sulfides, and was generated from the magmatic fluid with seawater contamination. Two volcaniclastic samples from the hanging and footwall of the main orebody yield zircon U-Pb ages of 327.8 ± 3.1 and 332.0 ± 2.0 Ma, respectively, which indicate Middle Carboniferous volcanism. Timing for iron mineralization can be broadly placed in the same epoch. By reviewing geological, mineralogical, and geochemical features of the primary iron deposits in the Awulale metallogenic belt, we propose that the two types of iron mineralization in the Songhu iron deposit are representative regionally. A summary of available geochronological data reveals Middle-Late Carboniferous polycyclic ore-related volcanism, and nearly contemporaneous iron mineralization along the belt. Furthermore, petro-geochemistry of volcanic-volcaniclastic host rocks indicates that partial melting of a metasomatized mantle wedge under a continental arc setting could have triggered the continuous volcanic activities and associated metallogenesis.

  19. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  20. The anthropogenic influence on Iron deposition over the oceans: a 3-D global modeling

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Baker, Alex; Kanakidou, Maria

    2014-05-01

    Iron (Fe) deposition over oceans is directly linked to the marine biological productivity and consequently to atmospheric CO2 concentrations. Experimental and modeling results support that both inorganic (sulphate, ammonium and nitrate) and organic (e.g. oxalate) ligands can increase the Fe mobilization. Mineral dust deposition is considered as the most important supply of bioavailable Fe in the oceans. Although, due to the low soil soluble iron fractions, atmospheric processes which are also related to anthropogenic emissions, can convert iron to more soluble forms in the atmosphere. Recent studies also support that anthropogenic emissions of Fe from combustion sources also significantly contribute to the dissolved Fe atmospheric pool. The evaluation of the impact of humans on atmospheric soluble or bioavailable Fe deposition remains challenging, since Fe mobilization due to changes in anthropogenic emissions is largely uncertain. In the present study, the global atmospheric Fe cycle is parameterized in the 3-D chemical transport global model TM4-ECPL and the model is used to calculate the Fe deposition over the oceans. The model considers explicitly organic, sulfur and nitrogen gas-phase chemistry, aqueous-phase organic chemistry, including oxalate and all major aerosol constituents. TM4-ECPL simulates the organic and inorganic ligand-promoted mineral Fe dissolution and also aqueous-phase photochemical reactions between different forms of Fe (III/II). Primary emissions of Fe associated with dust and soluble Fe from combustion processes as well as atmospheric processing of the emitted Fe is taken into account in the model Sensitivity simulations are performed to study the impact of anthropogenic emissions on Fe deposition. For this preindustrial, present and future emission scenarios are used in the model in order to examine the response of chemical composition of iron-containing aerosols to environmental changes. The release of soluble iron associated with

  1. Depositionally controlled recycling of iron and sulfur in marine sediments and its isotopic consequences

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Formolo, M.; Arnold, G. L.; Vossmeyer, A.; Henkel, S.; Sawicka, J.; Kasten, S.; Lyons, T. W.

    2011-12-01

    The continental margin off Uruguay and Argentina is characterized by highly dynamic depositional conditions. This variable depositional regime significantly impacts the biogeochemical cycles of iron and sulfur. Mass deposit related redeposition of reduced minerals can lead to the reoxidation of these phases and thus to an overprint of their geochemical primary signatures. Due to rapid burial these oxidized phases are still present in deeper subsurface sediments. To study the effects of sediment relocation on the sulfur and iron inventory we collected shallow and deep subsurface sediment samples via multicorer and gravity cores, respectively, in the western Argentine Basin during the RV Meteor Expedition M78/3 in May-July 2009. The samples were retrieved from shelf, slope and deep basin sites. The concentration and sulfur isotope composition of acid volatile sulfur (AVS), chromium reducible sulfur (CRS), elemental sulfur and total organic sulfur were determined. Furthermore, sequential iron extraction techniques were applied assess the distribution of iron oxide phases within the sediment. The investigated sediments are dominated by terrigenous inputs, with high amounts of reactive ferric iron minerals and only low concentrations of calcium carbonate. Total organic carbon concentrations show strong variation in the shallow subsurface sediments ranging between approximately 0.7 and 6.4 wt% for different sites. These concentrations do not correlate with water depths. Pore water accumulations of hydrogen sulfide are restricted to an interval at the sulfate-methane transition (SMT) zone a few meters below the sediment surface. In these deeper subsurface sediments pyrite is precipitated in this zone of hydrogen sulfide excess, whereas the accumulation of authigenic AVS and elemental sulfur (up to 2000 ppm) occurs at the upper and lower boundary of the sulfidic zone due the reaction of iron oxides with limited amounts of sulfide. Furthermore, our preliminary results

  2. Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence.

    PubMed

    Olszewski, Maciej B; Chandris, Panagiotis; Park, Bum-Chan; Eisenberg, Evan; Greene, Lois E

    2014-01-01

    The Hsc70 cochaperone, G cyclin-associated kinase (GAK), has been shown to be essential for the chaperoning of clathrin by Hsc70 in the cell. In this study, we used conditional GAK knockout mouse embryonic fibroblasts (MEFs) to determine the effect of completely inhibiting clathrin-dependent trafficking on the cell cycle. After GAK was knocked out, the cells developed the unusual phenotype of having multiple centrosomes, but at the same time failed to divide and ultimately became senescent. To explain this phenotype, we examined the signaling profile and found that mitogenic stimulation of the GAK KO cells and the control cells were similar except for increased phosphorylation of Akt. In addition, the disruption of intracellular trafficking caused by knocking out GAK destabilized the lysosomal membranes, resulting in DNA damage due to iron leakage. Knocking down clathrin heavy chain or inhibiting dynamin largely reproduced the GAK KO phenotype, but inhibiting only clathrin-mediated endocytosis by knocking down adaptor protein (AP2) caused growth arrest and centrosome overduplication, but no DNA damage or senescence. We conclude that disruption of clathrin-dependent trafficking induces senescence accompanied by centrosome overduplication because of a combination of DNA damage and changes in mitogenic signaling that uncouples centrosomal duplication from DNA replication. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Stratigraphy of Upper Cretaceous and Cenozoic deposits of the Bakchar iron ore deposit (southwestern Siberia): New data

    NASA Astrophysics Data System (ADS)

    Lebedeva, N. K.; Kuzmina, O. B.; Sobolev, E. S.; Khazina, I. V.

    2017-01-01

    The results of complex palynological and microfaunistic studies of Upper Cretaceous and Cenozoic deposits of the Bakchar iron ore deposit are presented. Geochronologically, the age of the deposits varies from Campanian to Quaternary. It was established that the Slavgorod, Gan'kino, and Jurki (?) formations contain four biostratons in the rank of beds with dinocysts and three biostratons in the rank of beds with spores and pollen. The Cenozoic continental deposits contain four biostratons in the rank of beds, containing spores and pollen. As a result of the study, a large stratigraphic gap in the Cretaceous-Paleogene boundary deposits, covering a significant part of the Maastrichtian, Paleocene, Ypresian, and Lutetian stages of the Eocene, was established. The remnants of a new morphotype of heteromorphic ammonites of genus Baculites were first described in deposits of the Slavgorod Formation (preliminarily, upper Campanian). The distribution features of the different palynomorph groups in the Upper Cretaceous-Cenozoic deposits in the area of study due to transgressive-regressive cycles and climate fluctuations were revealed.

  4. Geology and mineral deposits of the Hekimhan-Hasancelebi iron district, Turkey

    USGS Publications Warehouse

    Jacobson, Herbert S.; Kendiro'glu, Zeki; ,; Celil, Bogaz; ,; Onder, Osman; Gurel, Nafis

    1972-01-01

    An area of 210 sq km was investigated in the Hekimhan-Hasancelebi district. of central Turkey as part of the Maden Tetkik ve Arama Institusu(MTA)-U. S. Geological Survey(USGS) mineral exploration and training project to explore for iron deposits and to provide on-.the-job training for MTA geologists. The rocks of the area are Cretaceous and Tertiary sedimentary and volcanic rocks intruded by syenite and a serpentinized mafic and ultramafic complex and overlain unconformably by late .Tertiary basalt. The base of the section is a thick mafic volcanic-sedimentary sequence with diverse rocks that include conglomerate, sandstone, shale, tuff, limestone, and basalt. The upper part of the sequence is metasomatized near syenite contacts. The sequence is conformably overlain by trachyte and unconformably overlain by massive limestone. Overlying the limestone is a Tertiary sedimentary sequence which is dominantly conglomerate and sandstone with local limestone and volcanic rocks. This series is in turn overlain by olivine basalt. Mineral deposits are associated with the two types of intrusive rocks. Hematite-magnetite in the Karakuz mine area and in the Bahcedami-Hasancelebi area is related to the syenite, and siderite in the Deveci mine area is possibly related to the mafic-ultramafic rocks. Significant iron resources are found, only in the Karakuz and Deveci areas. In the Karakuz area disseminations, veins, and replacements consisting of hematite and magnetite are present. Most of the material is low grade. In the Deveci mine area a large deposit of siderite apparently is a replacement of carbonate beds adjacent to serpentinized igneous rock. The upper part of the siderite deposit is weathered and enriched to a mixture of iron and manganese oxides of direct shipping ore grade. Additional investigation of both the Karakuz and .Deveci mine areas is recommended including: 1. A detailed gravity and magnetic survey of part of the Karakuz area. 2. Diamond drilling at both the

  5. Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region

    USGS Publications Warehouse

    Johnson, Craig A.; Day, Warren C.; Rye, Robert O.

    2016-01-01

    Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition

  6. Kinetic Studies of Iron Deposition in Horse Spleen Ferritin Using H2O2 and O2 as Oxidants

    NASA Technical Reports Server (NTRS)

    Lowery, Thomas J., Jr.; Bunker, Jared; Zhang, Bo; Costen, Robert; Watt, Gerald D.

    2004-01-01

    The reaction of horse spleen ferritin (HoSF) with Fe(2+) at pH 6.5 and 7.5 using O2, H2O2 and 1:1 a mixture of both showed that the iron deposition reaction using H2O2 is approx. 20- to 50-fold faster than the reaction with O2 alone. When H2O2 was added during the iron deposition reaction initiated with O2 as oxidant, Fe(2+) was preferentially oxidized by H2O2, consistent with the above kinetic measurements. Both the O2 and H202 reactions were well defined from 15 to 40 C from which activation parameters were determined. The iron deposition reaction was also studied using O2 as oxidant in the presence and absence of catalase using both stopped-flow and pumped-flow measurements. The presence of catalase decreased the rate of iron deposition by approx. 1.5-fold, and gave slightly smaller absorbance changes than in its absence. From the rate constants for the O2 (0.044 per second) and H2O2 (0.67 per second) iron-deposition reactions at pH 7.5, simulations of steady-state H2O2 concentrations were computed to be 0.45 micromolar. This low value and reported Fe2(+)/O2 values of 2.0-2.5 are consistent with H2O2 rapidly reacting by an alternate but unidentified pathway involving a system component such as the protein shell or the mineral core as previously postulated.

  7. Patterns of liver iron accumulation in patients with sickle cell disease and thalassemia with iron overload.

    PubMed

    Hankins, Jane S; Smeltzer, Matthew P; McCarville, M Beth; Aygun, Banu; Hillenbrand, Claudia M; Ware, Russell E; Onciu, Mihaela

    2010-07-01

    The rate and pattern of iron deposition and accumulation are important determinants of liver damage in chronically transfused patients. To investigate iron distribution patterns at various tissue iron concentrations, effects of chelation on hepatic iron compartmentalization, and differences between patients with sickle cell disease (SCD) and thalassemia major (TM), we prospectively investigated hepatic histologic and biochemical findings in 44 patients with iron overload (35 SCD and 9 TM). The median hepatic iron content (HIC) in patients with TM and SCD was similar at 12.9 and 10.3 mg Fe/g dry weight, respectively (P = 0.73), but patients with SCD had significantly less hepatic fibrosis and inflammation (P < 0.05), less hepatic injury, and significantly less blood exposure. Patients with SCD had predominantly sinusoidal iron deposition, but hepatocyte iron deposition was observed even at low HIC. Chelated patients had more hepatocyte and portal tract iron than non-chelated ones, but similar sinusoidal iron deposition. These data suggest that iron deposition in patients with SCD generally follows the traditional pattern of transfusional iron overload; however, parenchymal hepatocyte deposition also occurs early and chelation removes iron preferentially from the reticuloendothelium. Pathophysiological and genetic differences affecting iron deposition and accumulation in SCD and TM warrants further investigation.

  8. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin.

    PubMed

    Polanams, Jup; Ray, Alisha D; Watt, Richard K

    2005-05-02

    Nanoparticles of iron phosphate, iron arsenate, iron molybdate, and iron vanadate were synthesized within the 8 nm interior of ferritin. The synthesis involved reacting Fe(II) with ferritin in a buffered solution at pH 7.4 in the presence of phosphate, arsenate, vanadate, or molybdate. O2 was used as the oxidant to deposit the Fe(III) mineral inside ferritin. The rate of iron incorporation into ferritin was stimulated when oxo-anions were present. The simultaneous deposition of both iron and the oxo-anion was confirmed by elemental analysis and energy-dispersive X-ray analysis. The ferritin samples containing iron and one of the oxo-anions possessed different UV/vis spectra depending on the anion used during mineral formation. TEM analysis showed mineral cores with approximately 8 nm mineral particles consistent with the formation of mineral phases inside ferritin.

  9. Comparative Analysis of the Microstructural Features of 28 wt.% Cr Cast Iron Fabricated by Pulsed Plasma Deposition and Conventional Casting

    NASA Astrophysics Data System (ADS)

    Chabak, Yu. G.; Efremenko, V. G.; Shimizu, K.; Lekatou, A.; Pastukhova, T. V.; Azarkhov, A. Yu.; Zurnadzhy, V. I.

    2018-02-01

    The effect of pulsed plasma deposition (by an electrothermal axial plasma accelerator) followed by post-heat treatment on the structure and microhardness of a 28 wt.% Cr white cast iron is analyzed and discussed with respect to the microstructure of the conventionally cast monolithic counterpart. The cast iron (as deposited on a 14 wt.% Cr cast iron substrate) had a microhardness of 630-750 HV0.05; it had layered light contrast/dark contrast structure where dark contrast layers contain fine carbide network. Pulsed plasma deposition followed by heat treatment resulted in a substantial refinement of the microstructure: eutectic M7C3 coarse acicular plates in the conventional cast iron were replaced by fine M7C3, M3C2, M3C particles (Cr depleted in favor of Fe), while the initial carbide particle of 2-3 μm was reduced to 0.6 μm. Secondary dendrite arm spacing decreased from 15 to 1.3 μm, accordingly. The carbide volume fraction in the post-heat-treated coating remarkably increased with respect to the conventional counterpart resulting in a substantial increase in the coating hardness (1300-1750 HV0.05). The heat-treated coating displayed higher resistance to three-body abrasion than the as-deposited coating and similar resistance with that of the conventionally cast iron.

  10. Features structure of iron-bearing strata’s of the Bakchar deposit, Western Siberia

    NASA Astrophysics Data System (ADS)

    Asochakova, E. M.

    2017-12-01

    The ore-bearing strata’s of Bakchar deposit have complicated structural-textural heterogeneity and variable mineral composition. This deposit is one of the most promising areas of localization of sedimentary iron ore. The ore-bearing strata’s are composed mainly of sandstones (sometimes with ferruginous pebbles, less often conglomerates), siltstones and clays. The ironstones are classified according to their lithology and geochemistry into three types: goethite-hydrogoethitic oolitic, glauconite-chloritic and transitional (intermediate) type iron ores. The mineral composition includes many different minerals: terrigenous, authigenic and clayey. Ironstones are characterized by elevated concentrations of many rare and valuable metals present in them as trace elements, additionally alloying (Mn, V, Cr, Ti, Zr, Mo, etc.) and harmful impurities (S, As, Cu, Pb, Zn, P). There are prerequisites for the influence of numerous factors, such as prolonged transgression of the sea, swamping of paleo-river deltas, the appearance of a tectonic fracture zone associated with active bottom tectonics and unloading of catagenetic waters, regression and natural ore enrichment due to the re-washing of slightly-iron rocks. These factors are reflected in the structure of the ore-bearing strata in which rhythmic cycles of ore sedimentation with successive changes in them are distinguished by an association of different mineral composition.

  11. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe.

    PubMed

    Braun, Burga; Richert, Inga; Szewzyk, Ulrich

    2009-10-01

    Iron-depositing bacteria play an important role in technical water systems (water wells, distribution systems) due to their intense deposition of iron oxides and resulting clogging effects. Pedomicrobium is known as iron- and manganese-oxidizing and accumulating bacterium. The ability to detect and quantify members of this species in biofilm communities is therefore desirable. In this study the fluorescence in situ hybridization (FISH) method was used to detect Pedomicrobium in iron and manganese incrusted biofilms. Based on comparative sequence analysis, we designed and evaluated a specific oligonucleotide probe (Pedo 1250) complementary to the hypervariable region 8 of the 16S rRNA gene for Pedomicrobium. Probe specificities were tested against 3 different strains of Pedomicrobium and Sphingobium yanoikuyae as non-target organism. Using optimized conditions the probe hybridized with all tested strains of Pedomicrobium with an efficiency of 80%. The non-target organism showed no hybridization signals. The new FISH probe was applied successfully for the in situ detection of Pedomicrobium in different native, iron-depositing biofilms. The hybridization results of native bioflims using probe Pedo_1250 agreed with the results of the morphological structure of Pedomicrobium bioflims based on scanning electron microscopy.

  12. Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil.

    PubMed

    Lai, Yu-Cheng; Syu, Chien-Hui; Wang, Pin-Jie; Lee, Dar-Yuan; Fan, Chihhao; Juang, Kai-Wei

    2018-01-01

    Paddy rice (Oryza sativa L.) is a major staple crop in Asia. However, heavy metal accumulation in paddy soil poses a health risk for rice consumption. Although plant uptake of Pb is usually low, Pb concentrations in rice plants have been increasing with Pb contamination in paddy fields. It is known that iron oxide deposits in the rhizosphere influence the absorption of soil Pb by rice plants. In this study, 14 rice cultivars bred in Taiwan, including ten japonica cultivars (HL21, KH145, TC192, TK9, TK14, TK16, TN11, TNG71, TNG84, and TY3) and four indica cultivars (TCS10, TCS17, TCSW2, and TNGS22), were used in a field experiment. We investigated the genotypic variation in rice plant Pb in relation to iron oxides deposited in the rhizosphere, as seen in a suspiciously contaminated site in central Taiwan. The results showed that the cultivars TCSW2, TN11, TNG71, and TNG84 accumulated brown rice Pb exceeding the tolerable level of 0.2mgkg -1 . In contrast, the cultivars TNGS22, TK9, TK14, and TY3 accumulated much lower brown rice Pb (<0.1mgkg -1 ); therefore, they should be prioritized as safe cultivars for sites with potential contamination. Moreover, the iron oxides deposited on the rhizosphere soil show stronger affinity to soil-available Pb than those on the root surface to form iron plaque. The relative tendency of Pb sequestration toward rhizosphere soil was negatively correlated with the Pb concentrations in brown rice. The iron oxides deposited on the rhizosphere soil but not on the root surface to form iron plaque dominate Pb sequestration in the rhizosphere. Therefore, the enhancement of iron oxide deposits on the rhizosphere soil could serve as a barrier preventing soil Pb on the root surface and result in reduced Pb accumulation in brown rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.

    PubMed

    Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R

    2015-10-14

    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.

  14. Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine; Melkumyan, Arman; Wyman, Derek; Hatherly, Peter

    2015-04-01

    The mining of stratiform ore deposits requires a means of determining the location of stratigraphic boundaries. A variety of geophysical logs may provide the required data but, in the case of banded iron formation hosted iron ore deposits in the Hamersley Ranges of Western Australia, only one geophysical log type (natural gamma) is collected for this purpose. The information from these logs is currently processed by slow manual interpretation. In this paper we present an alternative method of automatically identifying recurring stratigraphic markers in natural gamma logs from multiple drill holes. Our approach is demonstrated using natural gamma geophysical logs that contain features corresponding to the presence of stratigraphically important marker shales. The host stratigraphic sequence is highly consistent throughout the Hamersley and the marker shales can therefore be used to identify the stratigraphic location of the banded iron formation (BIF) or BIF hosted ore. The marker shales are identified using Gaussian Processes (GP) trained by either manual or active learning methods and the results are compared to the existing geological interpretation. The manual method involves the user selecting the signatures for improving the library, whereas the active learning method uses the measure of uncertainty provided by the GP to select specific examples for the user to consider for addition. The results demonstrate that both GP methods can identify a feature, but the active learning approach has several benefits over the manual method. These benefits include greater accuracy in the identified signatures, faster library building, and an objective approach for selecting signatures that includes the full range of signatures across a deposit in the library. When using the active learning method, it was found that the current manual interpretation could be replaced in 78.4% of the holes with an accuracy of 95.7%.

  15. Pacific patterns of dust deposition, iron supply and export production

    NASA Astrophysics Data System (ADS)

    Winckler, G.; Anderson, R. F.; Park, J.; Schwartz, R.; Pahnke, K.; Struve, T.; Lamy, F.; Gersonde, R.

    2015-12-01

    The scarcity of iron limits marine export production and carbon uptake in about a quarter of the global ocean where the surface concentration of nitrate and phosphate is high, as biological utilization of these macronutrients is incomplete. Of these high nutrient low chlorophyll (HNLC) regions, the Southern Ocean is the region where variations in iron availability can have the largest effect on Earth's carbon cycle through its fertilizing effect on marine ecosystems, both in the modern and in the past. Recent work in the Subantarctic South Atlantic (Martínez-Garcia et al., 2009, 2014, Anderson et al., 2014) suggests that dust-driven iron fertilization lowered atmospheric CO2 by up to 40 ppm in the latter half of each glacial cycle of the late Pleistocene, with the increase in Subantarctic productivity consuming a greater fraction of the surface nutrients and thus driving more storage of carbon in the ocean interior. The other sectors of the Southern Ocean remain poorly constrained, including the Pacific Sector, that accounts for the largest surface area of the Subantarctic Southern Ocean. Here we report records of dust deposition, iron supply and export production from a set of cores from the Subantarctic Pacific (PS75, Lamy et al 2014) and initial results about the origin of dust transported to the Subantarctic Pacific Ocean from radiogenic isotopes and rare earth elements. We test how tightly dust and biological productivity are coupled over glacial/interglacial and millennial timescales in the Subantarctic Pacific and place the region in a context of global patterns of biological productivity, nutrient utilization and iron fertilization by dust, including comparisons to the other Pacific HNLC regions, the Subarctic North Pacific and equatorial Pacific.

  16. Cardiac iron deposition in idiopathic hemochromatosis: histologic and analytic assessment of 14 hearts from autopsy.

    PubMed

    Olson, L J; Edwards, W D; McCall, J T; Ilstrup, D M; Gersh, B J

    1987-12-01

    In each heart taken from autopsies of 14 men with idiopathic hemochromatosis, the conduction system, atria and 10 sites in the ventricles were histologically graded for stainable iron. Stainable iron was exclusively sarcoplasmic; none was observed in the interstitium. The histologic grade for the same anatomic site varied among hearts and among different anatomic sites in the same heart. Ten hearts had stainable iron in all ventricular sites; one of the three hearts from patients who had undergone therapeutic phlebotomy had no iron at any site. Seven hearts had iron in the atria but at a lesser grade than that found in the ventricles; six hearts had mild focal iron deposition in the atrioventricular conduction system. None of the 14 hearts had stainable iron in the sinus node. Elemental iron was quantitated by atomic absorption spectroscopy in ventricular specimens contiguous to those studied histologically and also in age-matched control hearts. Elemental iron content was markedly increased in hearts with idiopathic hemochromatosis compared with control hearts (p less than 0.01). The quantity of elemental iron varied greatly, similar to stainable iron, but was highest subepicardially. Among the hearts from the 11 patients without prior phlebotomy, three had no stainable iron in the right ventricular septal subendocardium, suggesting that sampling error may be a problem in the evaluation of hemochromatosis by endomyocardial biopsy. The sarcoplasmic location of the iron indicates that cardiac involvement in idiopathic hemochromatosis represents a storage disease and not an infiltrative process; this finding is consistent with the normal ventricular wall thicknesses observed.

  17. Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron-molybdenum alloy thin layer catalysts

    NASA Astrophysics Data System (ADS)

    Yahyazadeh, Arash; Khoshandam, Behnam

    In this study, we documented the catalytic chemical vapor deposition synthesis of carbon nanotubes (CNTs) using ferrocene and molybdenum hexacarbonyl as catalyst nanoparticle precursors and methane as a nontoxic and economical carbon source for the first time. Field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, wavelength dispersive X-ray spectrometry and transmission electron microscopy of the thin layer catalyst as a simple and cost effective catalyst preparation after methane decomposition reaction, along with Fourier transform infrared spectroscopy and Raman spectroscopy confirmed the growth of CNTs, from bimetallic nanoparticles, which are converted into iron-molybdenum alloy nanoparticles at 700 °C for pretreatment by hydrogen after chemical vapor deposition of thin layers. An investigation of the weight percentages of the chemical elements present in the CNTs synthesized from iron-molybdenum catalyst using quartz sheet substrate at 750 °C, confirmed a significant carbon yield of 75.4% which represents high catalyst activity. Additionally, multi-walled carbon nanotubes (∼16-55 nm in diameter and 1.2 μm in length) were observed in the iron-molybdenum alloy sample after methane decomposition reaction at 750 °C for 35 min. To show the role of iron and molybdenum coated on silicon substrate as two thin layer catalysts, samples were considered for CNTs growth (diameter ∼47-69 nm) at 800 °C and 830 °C, respectively. Moreover, the effect of hydrogen pretreatment was evaluated in terms of active metal coating properly. The best graphitic structure due to Raman spectroscopy outcomes (ID/IG ratio) was obtained for iron coated on a quartz sheet, which was estimated at 0.8505. Thermogravimetric analysis proved the thermal stability of the synthesized CNTs using iron thin-layer catalyst up to 350 °C.

  18. Decreased Serum Hepcidin Concentration Correlates with Brain Iron Deposition in Patients with HBV-Related Cirrhosis

    PubMed Central

    Liu, Jian-Ying; He, Yi-Feng; Dai, Zhi; Chen, Cai-Zhong; Cheng, Wei-Zhong; Zhou, Jian; Wang, Xin

    2013-01-01

    hepcidin may be a clinical biomarker for brain iron deposition in cirrhotic patients, which may have therapeutic potential. PMID:23776499

  19. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  20. Sedimentation of iron deposits in Nagahama Bay, Satsuma Iwo-jima Island:Precipitation behavior of colloidal particle

    NASA Astrophysics Data System (ADS)

    Harada, T.; Kiyokawa, S.; Ikehara, M.

    2016-12-01

    Satsuma Iwo-Jima Island, with volcanic activities, is located about 40km south of Kyushu Island, Japan. This island is one of the best places to observe a shallow water hydrothermal system. Nagahama Bay, in the south of Satsuma Iwo-Jima Island, is partly separated from open sea. The seawater appears dark reddish brown color due to colloidal iron hydroxide by the mixing of volcanic fluids (pH=5.5, 50-60 degree Celsius) and oceanic water (Ninomiya & kiyokawa, 2009; Kiyokawa et al., 2012; Ueshiba & kiyokawa, 2012). Very high deposition rate (33 cm per year) of iron-rich sediments was observed in the bay (Kiyokawa et al., 2012). However, precipitation behavior of colloidal iron hydroxide has not been clarified. In this study, I report the results of analysis of deposition experiments of the colloidal particles at the Nagahama bay. Since the size of the colloidal particles is 1nm 1μm, single particle cannot be precipitated. This arise from precipitation of the particles in the viscous fluid is according to the Stokes' law. Colloidal iron hydroxide has the property of having the electric charges on the surface. The charge on the colloids is affected by pH of its surrounding seawater and can become more positively or negatively charged due to the gain or loss, respectively, of protons (H+) in the seawater. This property affects the stability of the colloidal dispersion. FE-SEM observation shows that the suspended particles consist of colloidal iron hydroxide (about 0.2μm), on the other hand, the iron-rich sediments are composed of bigger one (>1 μm). This indicates the colloidal iron hydroxide is precipitated by flocculation. We examined the precipitation amount of colloidal iron hydroxide under the various pH environments. The precipitation amount of pH=7.8 seawater 10% higher than that of pH=7.2. This result is roughly follows the theoretical value.

  1. Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.

    PubMed

    Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M

    2006-08-01

    Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.

  2. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    USGS Publications Warehouse

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  3. Hydrogen peroxide formation during iron deposition in horse spleen ferritin using O2 as an oxidant.

    PubMed

    Lindsay, S; Brosnahan, D; Watt, G D

    2001-03-20

    The reaction of Fe2+ with O2 in the presence of horse spleen ferritin (HoSF) results in deposition of FeOH3 into the hollow interior of HoSF. This reaction was examined at low Fe2+/HoSF ratios (5-100) under saturating air at pH 6.5-8.0 to determine if H2O2 is a product of the iron deposition reaction. Three methods specific for H2O2 detection were used to assess H2O2 formation: (1) a fluorometric method with emission at 590 nm, (2) an optical absorbance method based on the reaction H2O2 + 3I- + 2H+ = I3- + 2H2O monitored at 340 nm for I3- formation, and (3) a differential pulsed electrochemical method that measures O2 and H2O2 concentrations simultaneously. Detection limits of 0.25, 2.5, and 5.0 microM H2O2 were determined for the three methods, respectively. Under constant air-saturation conditions (20% O2) and for a 5-100 Fe2+/HoSF ratio, Fe2+ was oxidized and the resulting Fe3+ was deposited within HoSF but no H2O2 was detected as predicted by the reaction 2Fe2+ + O2 + 6H2O = 2Fe(OH)3 + H2O2 + 4H+. Two other sets of conditions were also examined: one with excess but nonsaturating O2 and another with limiting O2. No H2O2 was detected in either case. The absence of H2O2 formation under these same conditions was confirmed by microcoulometric measurements. Taken together, the results show that under low iron loading conditions (5-100 Fe2+/HoSF ratio), H2O2 is not produced during iron deposition into HoSF using O2 as an oxidant. This conclusion is inconsistent with previous, carefully conducted stoichiometric and kinetic measurements [Xu, B., and Chasteen, N. D. (1991) J. Biol. Chem. 266, 19965], predicting that H2O2 is a quantitative product of the iron deposition reaction with O2 as an oxidant, even though it was not directly detected. Possible explanations for these conflicting results are considered.

  4. Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination.

    PubMed

    Bashir, Mustafa R; Merkle, Elmar M; Smith, Alastair D; Boll, Daniel T

    2012-02-01

    To assess whether in vivo dual-ratio Dixon discrimination can improve detection of diffuse liver disease, specifically steatosis, iron deposition and combined disease over traditional single-ratio in/opposed phase analysis. Seventy-one patients with biopsy-proven (17.7 ± 17.0 days) hepatic steatosis (n = 16), iron deposition (n = 11), combined deposition (n = 3) and neither disease (n = 41) underwent MR examinations. Dual-echo in/opposed-phase MR with Dixon water/fat reconstructions were acquired. Analysis consisted of: (a) single-ratio hepatic region-of-interest (ROI)-based assessment of in/opposed ratios; (b) dual-ratio hepatic ROI assessment of in/opposed and fat/water ratios; (c) computer-aided dual-ratio assessment evaluating all hepatic voxels. Disease-specific thresholds were determined; statistical analyses assessed disease-dependent voxel ratios, based on single-ratio (a) and dual-ratio (b and c) techniques. Single-ratio discrimination succeeded in identifying iron deposition (I/O(Ironthreshold)<0.88) and steatosis (I/O(Fatthreshold>1.15)) from normal parenchyma, sensitivity 70.0%; it failed to detect combined disease. Dual-ratio discrimination succeeded in identifying abnormal hepatic parenchyma (F/W(Normalthreshold)>0.05), sensitivity 96.7%; logarithmic functions for iron deposition (I/O(Irondiscriminator)Iron))/0.48)) and for steatosis (I/O(Fatdiscriminator)>e((F/W(Fat)-0.01)/0.48)) differentiated combined from isolated diseases, sensitivity 100.0%; computer-aided dual-ratio analysis was comparably sensitive but less specific, 90.2% vs. 97.6%. MR two-point-Dixon imaging using dual-ratio post-processing based on in/opposed and fat/water ratios improved in vivo detection of hepatic steatosis, iron deposition, and combined storage disease beyond traditional in/opposed analysis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Pathogenic implications of iron accumulation in multiple sclerosis

    PubMed Central

    Williams, Rachel; Buchheit, Cassandra L.; Berman, Nancy E. J.; LeVine, Steven M.

    2011-01-01

    Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the central nervous system of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, i.e., contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, while in white matter pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: 1) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; 2) excess intracellular iron deposits could promote mitochondria dysfunction; and 3) improperly managed iron could catalyze the production of damaging reactive oxygen species. The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease. PMID:22004421

  6. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    NASA Astrophysics Data System (ADS)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  7. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    NASA Astrophysics Data System (ADS)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (<60 °C), Fe-rich and H2S-depleted hydrothermal fluids yielded δ56Fe values near +0.1‰, indistinguishable from basalt values. Suspended particles in the vent fluids and FeOx deposits recovered nearby active vents yielded systematically positive δ56Fe values. The enrichment in heavy Fe isotopes between +1.05‰ and +1.43‰ relative to Fe(II) in vent fluids suggest partial oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of

  8. [NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia].

    PubMed

    Li, Ying-kui; Cao, Jian-jin; Wu, Zheng-quan; Dai, Dong-le; Lin, Zu-xu

    2015-01-01

    The author analyzed the 4202 drill-hole samples from Zhamuaobao iron-graphite deposit by using near infrared spectroscopy(NIR) and X-ray diffraction(XRD) measuring and testing techniques, and then compared and summarized the results of two kinds of testing technology. The results indicate that some difference of the mineral composition exists among different layers, the lithology from upper to deeper is the clay gravel layer of tertiary and quaternary, mudstone, mica quartz schist, quartz actinolite scarn, skarnization marble, iron ore deposits, graphite deposits and mica quartz schist. The petrogenesis in different depth also shows difference, which may indicate the geological characteristic to some extent. The samples had mainly undergone such processes as oxidization, carbonation, chloritization and skarn alteration. The research results can not only improve the geological feature of the mining area, but also have great importance in ore exploration, mining, mineral processing and so on. What's more, as XRD can provide preliminary information about the mineral composition, NIR can make further judgement on the existence of the minerals. The research integrated the advantages of both NIR and XRD measuring and testing techniques, put forward a method with two kinds of modern testing technology combined with each other, which may improve the accuracy of the mineral composition identification. In the meantime, the NIR will be more wildly used in geography on the basis of mineral spectroscopy.

  9. Iron-Tolerant Cyanobacteria: Ecophysiology and Fingerprinting

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Mummey, D.; Lindsey, J.; McKay, D. S.

    2006-01-01

    Although the iron-dependent physiology of marine and freshwater cyanobacterial strains has been the focus of extensive study, very few studies dedicated to the physiology and diversity of cyanobacteria inhabiting iron-depositing hot springs have been conducted. One of the few studies that have been conducted [B. Pierson, 1999] found that cyanobacterial members of iron depositing bacterial mat communities might increase the rate of iron oxidation in situ and that ferrous iron concentrations up to 1 mM significantly stimulated light dependent consumption of bicarbonate, suggesting a specific role for elevated iron in photosynthesis of cyanobacteria inhabiting iron-depositing hot springs. Our recent studies pertaining to the diversity and physiology of cyanobacteria populating iron-depositing hot springs in Great Yellowstone area (Western USA) indicated a number of different isolates exhibiting elevated tolerance to Fe(3+) (up to 1 mM). Moreover, stimulation of growth was observed with increased Fe(3+) (0.02-0.4 mM). Molecular fingerprinting of unialgal isolates revealed a new cyanobacterial genus and species Chroogloeocystis siderophila, an unicellular cyanobacterium with significant EPS sheath harboring colloidal Fe(3+) from iron enriched media. Our preliminary data suggest that some filamentous species of iron-tolerant cyanobacteria are capable of exocytosis of iron precipitated in cytoplasm. Prior to 2.4 Ga global oceans were likely significantly enriched in soluble iron [Lindsay et al, 2003], conditions which are not conducive to growth of most contemporary oxygenic cyanobacteria. Thus, iron-tolerant CB may have played important physiological and evolutionary roles in Earths history.

  10. DETERMINATION OF FERRITIN AND HEMOSIDERIN IRON IN PATIENTS WITH NORMAL IRON STORES AND IRON OVERLOAD BY SERUM FERRITIN KINETICS

    PubMed Central

    SAITO, HIROSHI; TOMITA, AKIHIRO; OHASHI, HARUHIKO; MAEDA, HIDEAKI; HAYASHI, HISAO; NAOE, TOMOKI

    2012-01-01

    ABSTRACT We attempted to clarify the storage iron metabolism from the change in the serum ferritin level. We assumed that the nonlinear decrease in serum ferritin was caused by serum ferritin increase in iron mobilization. Under this assumption, we determined both ferritin and hemosiderin iron levels by computer-assisted simulation of the row of decreasing assay-dots of serum ferritin in 11 patients with normal iron stores free of both iron deficiency and iron overload; chronic hepatitis C (CHC) and iron deficiency anemia after treatment, and 11 patients with iron overload; hereditary hemochromatosis (HH) and transfusion-dependent anemias (TD). We determined the iron removal rates of 20 and 17 mg/day by administering mean doses of deferasirox at 631 and 616 mg/day in 2 TD during the period of balance of iron addition and removal as indicated by the serum ferritin returned to the previous level. The ferritin-per-hemosiderin ratio was almost the same in both HH and CHC. This matched the localized hepatic hemosiderin deposition in CHC with normal iron stores. We detected the ferritin increased by utilizing the hemosiderin iron in iron removal and the ferritin reduced by transforming ferritin into hemosiderin in iron additions. The iron storing capacity of hemosiderin was limitless, while that of ferritin was suppressed when ferritin iron exceeded around 5 grams. We confirmed the pathway of iron from hemosiderin to ferritin in iron mobilization, and that from ferritin to hemosiderin in iron deposition. Thus, serum ferritin kinetics enabled us to be the first to clinically clarify storage iron metabolism. PMID:22515110

  11. Comparison of the mineralogy of the Boss-Bixby, Missouri copper-iron deposit, and the Olympic Dam copper-uranium-gold deposit, South Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandom, R.T.; Hagni, R.D.; Allen, C.R.

    1985-01-01

    An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also aremore » similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage.« less

  12. Atmospheric-Pressure Chemical Vapor Deposition of Iron Pyrite Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nicholas; Cheng, Ming; Perkins, Craig L.

    2012-10-23

    Iron pyrite (cubic FeS{sub 2}) is a promising candidate absorber material for earth-abundant thin-film solar cells. In this report, single-phase, large-grain, and uniform polycrystalline pyrite thin films are fabricated on glass and molybdenum-coated glass substrates by atmospheric-pressure chemical vapor deposition (AP-CVD) using the reaction of iron(III) acetylacetonate and tert-butyl disulfide in argon at 300 C, followed by sulfur annealing at 500--550 C to convert marcasite impurities to pyrite. The pyrite-marcasite phase composition depends strongly on the concentration of sodium in the growth substrate and the sulfur partial pressure during annealing. Phase and elemental composition of the films are characterized bymore » X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering spectrometry, and X-ray photoelectron spectroscopy. The in-plane electrical properties are surprisingly insensitive to phase and elemental impurities, with all films showing p-type, thermally activated transport with a small activation energy ({approx}30 meV), a room- temperature resistivity of {approx}1 {Omega} cm, and low mobility. These ubiquitous electrical properties may result from robust surface effects. These CVD pyrite thin films are well suited to fundamental electrical studies and the fabrication of pyrite photovoltaic device stacks.« less

  13. Mobility, Deposition and Remobilization of pre-Synthesis Stabilized Nano-scale Zero Valent Iron in Long Column Experiments

    NASA Astrophysics Data System (ADS)

    de Boer, C. V.; O'Carroll, D. M.; Sleep, B.

    2014-12-01

    Reactive zero-valent iron is currently being used for remediation of contaminated groundwater. Permeable reactive barriers are the current state-of-the-practice method for using zero-valent iron. Instead of an excavated trench filled with granular zero-valent iron, a relatively new and promising method is the injection of a nano-scale zero-valent iron colloid suspension (nZVI) into the subsurface using injection wells. One goal of nZVI injection can be to deposit zero valent iron in the aquifer and form a reactive permeable zone which is no longer bound to limited depths and plume treatment, but can also be used directly at the source. It is very important to have a good understanding of the transport behavior of nZVI during injection as well as the fate of nZVI after injection due to changes in the flow regime or water chemistry changes. So far transport was mainly tested using commercially available nZVI, however these studies suggest that further work is required as commercial nZVI was prone to aggregation, resulting in low physical stability of the suspension and very short travel distances in the subsurface. In the presented work, nZVI is stabilized during synthesis to significantly increase the physical suspension stability. To improve our understanding of nZVI transport, the feasibility for injection into various porous media materials and controlled deposition, a suite of column experiments are conducted. The column experiments are performed using a long 1.5m column and a novel nZVI measuring technique. The measuring technique was developed to non-destructively determine the concentration of nano-scale iron during the injection. It records the magnetic susceptibility, which makes it possible to get transient nZVI retention profiles along the column. These transient nZVI retention profiles of long columns provide unique insights in the transport behavior of nZVI which cannot be obtained using short columns or effluent breakthrough curves.

  14. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  15. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L.

    PubMed

    Kuki, Kacilda Naomi; Oliva, Marco Antônio; Pereira, Eduardo Gusmão; Costa, Alan Carlos; Cambraia, José

    2008-09-15

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.

  16. Raman Spectroscopic Characterisation of Australian Banded Iron Formation and Iron Ore

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Ramanaidou, E. R.

    2012-04-01

    In Australia and world-wide over the past 5-10 years, declining reserves of premium, high-grade (>64% Fe), low-P bearing iron ore, have seen iron ore producers increase their utilisation of lower Fe-grade, higher P/Al/Si ore. In Australia, the channel iron deposits (CID), bedded iron deposits (BID) and, more recently, BIF-derived magnetite iron deposits (MID) have seen increased usage driven mainly by the increased demand from Chinese steel mills (Ramanaidou and Wells, 2011). Efficient exploitation and processing of these lower-grade iron ores requires a detailed understanding of their iron oxide and gangue mineralogy and geochemistry. The common Fe-bearing minerals (e.g., hematite, magnetite, goethite and kenomagnetite) in these deposits, as well as gangue minerals such as quartz and carbonates, are all strongly Raman active (e.g., de Faria et al., 1997). Their distinct Raman spectra enable them to be easily detected and mapped in situ in either unprepared material or samples prepared as polished blocks. In this paper, using representative examples of Australian CID ore, martite-goethite bedded iron deposit (BID) ore and banded iron formation (BIF) examined as polished blocks, we present a range of Raman spectra of the key iron ore minerals, and discuss how Raman spectroscopy can be applied to characterising iron ore mineralogy. Raman imaging micrographs, obtained using a StreamLine Plus Raman imaging system, clearly identified the main Fe-oxide and gangue components in the CID, BID and BIF samples when compared to optical micrographs. Raman analysis enabled the unequivocal identification of diamond in the CID ore as a contaminant from the polishing paste used to prepare the sample, and confirmed the presence of hematite in the BID ore in the form of martite, which can be morphologically similar to magnetite and, thus, difficult to otherwise distinguish. Image analysis of Raman mineral maps could be used to quantify mineral abundance based on the number of 'pixels

  17. Bifunctional catalyst of graphite-encapsulated iron compound nanoparticle for magnetic carbon nanotubes growth by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Saraswati, Teguh Endah; Prasiwi, Oktaviana Dewi Indah; Masykur, Abu; Anwar, Miftahul

    2017-01-01

    The carbon nanotube has widely taken great attractive in carbon nanomaterial research and application. One of its preparation methods is catalytic chemical vapor deposition (CCVD) using catalyst i.e. iron, nickel, etc. Generally, except the catalyst, carbon source gasses as the precursor are still required. Here, we report the use of the bifunctional material of Fe3O4/C which has an incorporated core/shell structures of carbon-encapsulated iron compound nanoparticles. The bifunctional catalyst was prepared by submerged arc discharge that simply performed using carbon and carbon/iron oxide electrodes in ethanol 50%. The prepared material was then used as a catalyst in thermal chemical vapor deposition at 800°C flown with ethanol vapor as the primer carbon source in a low-pressure condition. This catalyst might play a dual role as a catalyst and secondary carbon source for growing carbon nanotubes at the time. The synthesized products were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The successful formation of carbon nanotubes was assigned by the shifted X-ray diffracted peak of carbon C(002), the iron oxides of Fe3O4 and γ-Fe2O3, and the other peaks which were highly considered to the other carbon allotropes with sp2 hybridization structures. The other assignment was studied by electron microscopy which successfully observed the presence of single-wall carbon nanotubes. In addition, the as-prepared carbon nanotubes have a magnetic property which was induced by the remaining of metal catalyst inside the CNT.

  18. Iron and Prochlorococcus

    DTIC Science & Technology

    2009-06-01

    greatly influenced by the sources of iron to the marine environment, which include riverine input, hydrothermal upwelling, and atmospheric...deposition (Jickells et al, 2005). While the amount of iron introduced to the oceans from riverine and hydrothermal sources is high, precipitation occurs...rapidly in both cases and removes iron from seawater, minimizing the impact of hydrothermal and riverine sources on the concentration of iron in the

  19. Chemistry of Selected Core Samples, Concentrate, Tailings, and Tailings Pond Waters: Pea Ridge Iron (-Lanthanide-Gold) Deposit, Washington County, Missouri

    USGS Publications Warehouse

    Grauch, Richard I.; Verplanck, Philip L.; Seeger, Cheryl M.; Budahn, James R.; Van Gosen, Bradley S.

    2010-01-01

    The Minerals at Risk and for Emerging Technologies Project of the U.S. Geological Survey (USGS) Mineral Resources Program is examining potential sources of lanthanide elements (rare earth elements) as part of its objective to provide up-to-date geologic information regarding mineral commodities likely to have increased demand in the near term. As part of the examination effort, a short visit was made to the Pea Ridge iron (-lanthanide-gold) deposit, Washington County, Missouri in October 2008. The deposit, currently owned by Wings Enterprises, Inc. of St. Louis, Missouri (Wings), contains concentrations of lanthanides that may be economic as a primary product or as a byproduct of iron ore production. This report tabulates the results of chemical analyses of the Pea Ridge samples and compares rare earth elements contents for world class lanthanide deposits with those of the Pea Ridge deposit. The data presented for the Pea Ridge deposit are preliminary and include some company data that have not been verified by the USGS or by the Missouri Department of Natural Resources, Division of Geology and Land Survey (DGLS), Geological Survey Program (MGS). The inclusion of company data is for comparative purposes only and does not imply an endorsement by either the USGS or MGS.

  20. Microbial Biosignatures in High Iron Thermal Springs

    NASA Astrophysics Data System (ADS)

    Parenteau, M. N.; Embaye, T.; Jahnke, L. L.; Cady, S. L.

    2003-12-01

    The emerging anoxic source waters at Chocolate Pots hot springs in Yellowstone National Park contain 2.6 to 11.2 mg/L Fe(II) and are 51-54° C and pH 5.5-6.0. These waters flow down the accumulating iron deposits and over three major phototrophic mat communities: Synechococcus/Chloroflexus at 51-54° C, Pseudanabaena at 51-54° C, and a narrow Oscillatoria at 36-45° C. We are assessing the contribution of the phototrophs to biosignature formation in this high iron system. These biosignatures can be used to assess the biological contribution to ancient iron deposits on Earth (e.g. Precambrian Banded Iron Formations) and, potentially, to those found on Mars. Most studies to date have focused on chemotrophic iron-oxidizing communities; however, recent research has demonstrated that phototrophs have a significant physiological impact on these iron thermal springs (Pierson et al. 1999, Pierson and Parenteau 2000, and Trouwborst et al., 2003). We completed a survey of the microfossils, biominerals, biofabrics, and lipid biomarkers in the phototrophic mats and stromatolitic iron deposits using scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectrometry (EDS), powder X-ray diffraction (XRD), and gas chromatography-mass spectroscopy (GC-MS). The Synechococcus/Chloroflexus mat was heavily encrusted with iron silicates while the narrow Oscillatoria mat was encrusted primarily with iron oxides. Encrustation of the cells increased with depth in the mats. Amorphous 2-line ferrihydrite is the primary precipitate in the spring and the only iron oxide mineral associated with the mats. Goethite, hematite, and siderite were detected in dry sediment samples on the face of the main iron deposit. Analysis of polar lipid fatty acid methyl esters (FAME) generated a suite of lipid biomarkers. The Synechococcus/Chloroflexus mat contained two mono-unsaturated isomers of n-C18:1 with smaller amounts of polyunsaturated n-C18:2, characteristic of cyanobacteria

  1. Corneal iron ring after conductive keratoplasty.

    PubMed

    Kymionis, George D; Naoumidi, Tatiana L; Aslanides, Ioannis M; Pallikaris, Ioannis G

    2003-08-01

    To report formation of corneal iron ring deposits after conductive keratoplasty. Observational case report. Case report. A 54-year-old woman underwent conductive keratoplasty for hyperopia. One year after conductive keratoplasty, iron ring pattern pigmentation was detected at the corneal epithelium of both eyes. This is the first report of the appearance of corneal iron ring deposits following conductive keratoplasty treatment in a patient. It is suggested that alterations in tear film stability, resulting from conductive keratoplasty-induced changes in corneal curvature, constitute the contributory factor for these deposits.

  2. Iron overload secondary to cirrhosis: a mimic of hereditary haemochromatosis?

    PubMed

    Abu Rajab, Murad; Guerin, Leana; Lee, Pauline; Brown, Kyle E

    2014-10-01

    Hepatic iron deposition unrelated to hereditary haemochromatosis is common in cirrhosis. The aim of this study was to determine whether hepatic haemosiderosis secondary to cirrhosis is associated with iron deposition in extrahepatic organs. Records of consecutive adult patients with cirrhosis who underwent autopsy were reviewed. Storage iron was assessed by histochemical staining of sections of liver, heart, pancreas and spleen. HFE genotyping was performed on subjects with significant liver, cardiac and/or pancreatic iron. The 104 individuals were predominantly male (63%), with a mean age of 55 years. About half (46%) had stainable hepatocyte iron, 2+ or less in most cases. In six subjects, there was heavy iron deposition (4+) in hepatocytes and biliary epithelium. All six of these cases had pancreatic iron and five also had cardiac iron. None of these subjects had an explanatory HFE genotype. In this series, heavy hepatocyte iron deposition secondary to cirrhosis was commonly associated with pancreatic and cardiac iron. Although this phenomenon appears to be relatively uncommon, the resulting pattern of iron deposition is similar to haemochromatosis. Patients with marked hepatic haemosiderosis secondary to cirrhosis may be at risk of developing extrahepatic complications of iron overload. © 2014 John Wiley & Sons Ltd.

  3. White Matter Tract Injury is Associated with Deep Gray Matter Iron Deposition in Multiple Sclerosis.

    PubMed

    Bergsland, Niels; Tavazzi, Eleonora; Laganà, Maria Marcella; Baglio, Francesca; Cecconi, Pietro; Viotti, Stefano; Zivadinov, Robert; Baselli, Giuseppe; Rovaris, Marco

    2017-01-01

    With respect to healthy controls (HCs), increased iron concentrations in the deep gray matter (GM) and decreased white matter (WM) integrity are common findings in multiple sclerosis (MS) patients. The association between these features of the disease remains poorly understood. We investigated the relationship between deep iron deposition in the deep GM and WM injury in associated fiber tracts in MS patients. Sixty-six MS patients (mean age 50.0 years, median Expanded Disability Status Scale 5.25, mean disease duration 19.1 years) and 29 HCs, group matched for age and sex were imaged on a 1.5T scanner. Susceptibility-weighted imaging and diffusion tensor imaging (DTI) were used for assessing high-pass filtered phase values in the deep GM and normal appearing WM (NAWM) integrity in associated fiber tracts, respectively. Correlation analyses investigated the associations between filtered phase values (suggestive of iron content) and WM damage. Areas indicative of increased iron levels were found in the left and right caudates as well as in the left thalamus. MS patients presented with decreased DTI-derived measures of tissue integrity in the associated WM tracts. Greater mean, axial and radial diffusivities were associated with increased iron levels in all three GM areas (r values .393 to .514 with corresponding P values .003 to <.0001). Global NAWM diffusivity measures were not related to mean filtered phase values within the deep GM. Increased iron concentration in the deep GM is associated with decreased tissue integrity of the connected WM in MS patients. Copyright © 2016 by the American Society of Neuroimaging.

  4. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (<5 μm) contain halite crystals indicating a saline environment during magnetite growth. The combination of these observations are consistent with a formation model for IOA deposits in northern Chile that involves crystallization of magnetite microlites from a silicate melt, nucleation of aqueous fluid bubbles on magnetite surfaces, and formation and ascent of buoyant fluid bubble-magnetite aggregates. Decompression of the fluid-magnetite aggregate

  5. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy

    NASA Astrophysics Data System (ADS)

    Slotznick, Sarah P.; Eiler, John M.; Fischer, Woodward W.

    2018-03-01

    As the most abundant transition metal in the Earth's crust, iron is a key player in the planetary redox budget. Observations of iron minerals in the sedimentary record have been used to describe atmospheric and aqueous redox environments over the evolution of our planet; the most common method applied is iron speciation, a geochemical sequential extraction method in which proportions of different iron minerals are compared to calibrations from modern sediments to determine water-column redox state. Less is known about how this proxy records information through post-depositional processes, including diagenesis and metamorphism. To get insight into this, we examined how the iron mineral groups/pools (silicates, oxides, sulfides, etc.) and paleoredox proxy interpretations can be affected by known metamorphic processes. Well-known metamorphic reactions occurring in sub-chlorite to kyanite rocks are able to move iron between different iron pools along a range of proxy vectors, potentially affecting paleoredox results. To quantify the effect strength of these reactions, we examined mineralogical and geochemical data from two classic localities where Silurian-Devonian shales, sandstones, and carbonates deposited in a marine sedimentary basin with oxygenated seawater (based on global and local biological constraints) have been regionally metamorphosed from lower-greenschist facies to granulite facies: Waits River and Gile Mountain Formations, Vermont, USA and the Waterville and Sangerville-Vassalboro Formations, Maine, USA. Plotting iron speciation ratios determined for samples from these localities revealed apparent paleoredox conditions of the depositional water column spanning the entire range from oxic to ferruginous (anoxic) to euxinic (anoxic and sulfidic). Pyrrhotite formation in samples highlighted problems within the proxy as iron pool assignment required assumptions about metamorphic reactions and pyrrhotite's identification depended on the extraction techniques

  6. Iron deposition quantification: Applications in the brain and liver.

    PubMed

    Yan, Fuhua; He, Naying; Lin, Huimin; Li, Ruokun

    2018-06-13

    Iron has long been implicated in many neurological and other organ diseases. It is known that over and above the normal increases in iron with age, in certain diseases there is an excessive iron accumulation in the brain and liver. MRI is a noninvasive means by which to image the various structures in the brain in three dimensions and quantify iron over the volume of the object of interest. The quantification of iron can provide information about the severity of iron-related diseases as well as quantify changes in iron for patient follow-up and treatment monitoring. This article provides an overview of current MRI-based methods for iron quantification, specifically for the brain and liver, including: signal intensity ratio, R 2 , R2*, R2', phase, susceptibility weighted imaging and quantitative susceptibility mapping (QSM). Although there are numerous approaches to measuring iron, R 2 and R2* are currently preferred methods in imaging the liver and QSM has become the preferred approach for imaging iron in the brain. 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  7. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    DOE PAGES

    Zhang, Yijun; Liu, Ming; Peng, Bin; ...

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe 2O 3 and superparamagnetic Fe 2O 3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe 2O 3 in a reducing atmosphere leads to the formation of the spinel Fe 3O 4 phase which displaysmore » a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less

  8. Iron overload diseases: the chemical speciation of non-heme iron deposits in iron loaded mammalian tissues

    NASA Astrophysics Data System (ADS)

    St. Pierre, T. G.; Chua-Anusorn, W.; Webb, J.; Macey, D. J.

    2000-07-01

    57Fe Mössbauer spectra of iron overloaded human spleen, rat spleen and rat liver tissue samples at 78 K were found to consist of a quadrupole doublet (major component) with magnetic sextet (minor component with fractional spectral area F s). The distributions of F s for spleen tissue from two different clinically identifiable groups (n = 7 and n = 12) of thalassemic patients were found to be significantly different. The value of F s for dietary-iron loaded rat liver was found to rise significantly with age/duration (up to 24 months) of iron loading.

  9. Inversion Recovery Ultrashort Echo Time Magnetic Resonance Imaging: A Method for Simultaneous Direct Detection of Myelin and High Signal Demonstration of Iron Deposition in the Brain – A Feasibility Study

    PubMed Central

    Sheth, Vipul R.; Fan, Shujuan; He, Qun; Ma, Yajun; Annesse, Jacopo; Switzer, Robert; Corey-Bloom, Jody; Bydder, Graeme M; Du, Jiang

    2017-01-01

    Multiple sclerosis (MS)causes demyelinating lesions in the white matter and increased iron deposition in the subcortical gray matter. Myelin protons have an extremely short T2* (less than 1 ms) and are not directly detected with conventional clinical magnetic resonance (MR) imaging sequences. Iron deposition also reduces T2*, leading to reduced signal on clinical sequences. In this study we tested the hypothesis that the inversion recovery ultrashort echo time (IR-UTE) pulse sequence can directly and simultaneously image myelin and iron deposition using a clinical 3T scanner. The technique was first validated on a synthetic myelinphantom (myelin powder in D2O) and a Feridex iron phantom. This was followed by studies of cadaveric MS specimens, healthy volunteers and MS patients. UTE imaging of the synthetic myelin phantom showed an excellent bi-component signal decay with two populations of protons, one with a T2* of 1.2 ms (residual water protons) and the other with a T2* of 290 μs (myelin protons). IR-UTE imaging shows sensitivity to a wide range of iron concentrations from 0.5 to ∼30 mM. The IR-UTE signal from white matter of the brain of healthy volunteers shows a rapid signal decay with a short T2* of ∼300 μs, consistent with the T2* values of myelin protons in the synthetic myelin phantom. IR-UTE imaging in MS brain specimens and patients showed multiple white matter lesions as well as areas of high signal in subcortical gray matter. This in specimens corresponded in position to Perl's diaminobenzide staining results, consistent with increased iron deposition. IR-UTE imaging simultaneously detects lesions with myelin loss in the white matter and iron deposition in the gray matter. PMID:28038965

  10. Iron in Chronic Brain Disorders: Imaging and Neurotherapeutic Implications

    PubMed Central

    Stankiewicz, James; Panter, Scott S; Neema, Mohit; Arora, Ashish; Batt, Courtney; Bakshi, Rohit

    2007-01-01

    Summary Iron is important for brain oxygen transport, electron transfer, neurotransmitter synthesis, and myelin production. Though iron deposition has been observed in the brain with normal aging, increased iron has also been shown in many chronic neurologic disorders including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In vitro studies have demonstrated that excessive iron can lead to free radical production, which can promote neurotoxicity. However, the link between observed iron deposition and pathologic processes underlying various diseases of the brain is not well understood. It is not known whether excessive in vivo iron directly contributes to tissue damage or is solely an epiphenomenon. In this article we focus on the imaging of brain iron and the underlying physiology and metabolism relating to iron deposition. We conclude with a discussion of the potential implications of iron-related toxicity to neurotherapeutic development. PMID:17599703

  11. Microbial diversity and iron oxidation at Okuoku-hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations.

    PubMed

    Ward, L M; Idei, A; Terajima, S; Kakegawa, T; Fischer, W W; McGlynn, S E

    2017-11-01

    Banded iron formations (BIFs) are rock deposits common in the Archean and Paleoproterozoic (and regionally Neoproterozoic) sedimentary successions. Multiple hypotheses for their deposition exist, principally invoking the precipitation of iron via the metabolic activities of oxygenic, photoferrotrophic, and/or aerobic iron-oxidizing bacteria. Some isolated environments support chemistry and mineralogy analogous to processes involved in BIF deposition, and their study can aid in untangling the factors that lead to iron precipitation. One such process analog system occurs at Okuoku-hachikurou (OHK) Onsen in Akita Prefecture, Japan. OHK is an iron- and CO 2 -rich, circumneutral hot spring that produces a range of precipitated mineral textures containing fine laminae of aragonite and iron oxides that resemble BIF fabrics. Here, we have performed 16S rRNA gene amplicon sequencing of microbial communities across the range of microenvironments in OHK to describe the microbial diversity present and to gain insight into the cycling of iron, oxygen, and carbon in this ecosystem. These analyses suggest that productivity at OHK is based on aerobic iron-oxidizing Gallionellaceae. In contrast to other BIF analog sites, Cyanobacteria, anoxygenic phototrophs, and iron-reducing micro-organisms are present at only low abundances. These observations support a hypothesis where low growth yields and the high stoichiometry of iron oxidized per carbon fixed by aerobic iron-oxidizing chemoautotrophs like Gallionellaceae result in accumulation of iron oxide phases without stoichiometric buildup of organic matter. This system supports little dissimilatory iron reduction, further setting OHK apart from other process analog sites where iron oxidation is primarily driven by phototrophic organisms. This positions OHK as a study area where the controls on primary productivity in iron-rich environments can be further elucidated. When compared with geological data, the metabolisms and mineralogy at

  12. A Potential Biomarker in Amyotrophic Lateral Sclerosis: Can Assessment of Brain Iron Deposition with SWI and Corticospinal Tract Degeneration with DTI Help?

    PubMed

    Sheelakumari, R; Madhusoodanan, M; Radhakrishnan, A; Ranjith, G; Thomas, B

    2016-02-01

    Iron-mediated oxidative stress plays a pivotal role in the pathogenesis of amyotrophic lateral sclerosis. This study aimed to assess iron deposition qualitatively and quantitatively by using SWI and microstructural changes in the corticospinal tract by using DTI in patients with amyotrophic lateral sclerosis. Seventeen patients with amyotrophic lateral sclerosis and 15 age- and sex-matched controls underwent brain MR imaging with SWI and DTI. SWI was analyzed for both signal-intensity scoring and quantitative estimation of iron deposition in the anterior and posterior banks of the motor and sensory cortices and deep gray nuclei. The diffusion measurements along the corticospinal tract at the level of pons and medulla were obtained by ROI analysis. Patients with amyotrophic lateral sclerosis showed reduced signal-intensity grades in the posterior bank of the motor cortex bilaterally. Quantitative analysis confirmed significantly higher iron content in the posterior bank of the motor cortex in patients with amyotrophic lateral sclerosis. In contrast, no significant differences were noted for the anterior bank of the motor cortex, anterior and posterior banks of the sensory cortex, and deep nuclei. Receiver operating characteristic comparison showed a cutoff of 35μg Fe/g of tissue with an area under the curve of 0.78 (P = .008) for the posterior bank of the motor cortex in discriminating patients with amyotrophic lateral sclerosis from controls. Fractional anisotropy was lower in the pyramidal tracts of patients with amyotrophic lateral sclerosis at the pons and medulla on either side, along with higher directionally averaged mean diffusivity values. The combination of SWI and DTI revealed an area under the curve of 0.784 for differentiating patients with amyotrophic lateral sclerosis from controls. Measurements of motor cortex iron deposition and diffusion tensor parameters of the corticospinal tract may be useful biomarkers for the diagnosis of clinically suspected

  13. Epoetin beta pegol alleviates oxidative stress and exacerbation of renal damage from iron deposition, thereby delaying CKD progression in progressive glomerulonephritis rats.

    PubMed

    Hirata, Michinori; Tashiro, Yoshihito; Aizawa, Ken; Kawasaki, Ryohei; Shimonaka, Yasushi; Endo, Koichi

    2015-12-01

    The increased deposition of iron in the kidneys that occurs with glomerulopathy hinders the functional and structural recovery of the tubules and promotes progression of chronic kidney disease (CKD). Here, we evaluated whether epoetin beta pegol (continuous erythropoietin receptor activator: CERA), which has a long half-life in blood and strongly suppresses hepcidin-25, exerts renoprotection in a rat model of chronic progressive glomerulonephritis (cGN). cGN rats showed elevated urinary total protein excretion (uTP) and plasma urea nitrogen (UN) from day 14 after the induction of kidney disease (day 0) and finally declined into end-stage kidney disease (ESKD), showing reduced creatinine clearance with glomerulosclerosis, tubular dilation, and tubulointerstitial fibrosis. A single dose of CERA given on day 1, but not on day 16, alleviated increasing uTP and UN, thereby delaying ESKD. In the initial disease phase, CERA significantly suppressed urinary 8-OHdG and liver-type fatty acid-binding protein (L-FABP), a tubular damage marker. CERA also inhibited elevated plasma hepcidin-25 levels and alleviated subsequent iron accumulation in kidneys in association with elevated urinary iron excretion and resulted in alleviation of growth of Ki67-positive tubular and glomerular cells. In addition, at day 28 when the exacerbation of uTP occurs, a significant correlation was observed between iron deposition in the kidney and urinary L-FABP. In our study, CERA mitigated increasing kidney damage, thereby delaying CKD progression in this glomerulonephritis rat model. Alleviation by CERA of the exacerbation of kidney damage could be attributable to mitigation of tubular damage that might occur with lowered iron deposition in tubules. © 2015 Chugai Pharmaceutical Co., Ltd. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Correlations in distribution and concentration of calcium, copper and iron with zinc in isolated extracellular deposits associated with age-related macular degeneration

    USGS Publications Warehouse

    Flinn, Jane M; Kakalec, Peter; Tappero, Ryan; Jones, Blair F.; Lengyel, Imre

    2014-01-01

    Zinc (Zn) is abundantly enriched in sub-retinal pigment epithelial (RPE) deposits, the hallmarks of age-related macular degeneration (AMD), and is thought to play a role in the formation of these deposits. However, it is not known whether Zn is the only metal relevant for sub-RPE deposit formation. Because of their involvement in the pathogenesis of AMD, we determined the concentration and distribution of calcium (Ca), iron (Fe) and copper (Cu) and compared these with Zn in isolated and sectioned macular (MSD), equatorial (PHD) and far peripheral (FPD) sub-RPE deposits from an 86 year old donor eye with post mortem diagnosis of early AMD. The sections were mounted on Zn free microscopy slides and analyzed by microprobe synchrotron X-ray fluorescence (μSXRF). Metal concentrations were determined using spiked sectioned sheep brain matrix standards, prepared the same way as the samples. The heterogeneity of metal distributions was examined using pixel by pixel comparison. The orders of metal concentrations were Ca ⋙ Zn > Fe in all three types of deposits but Cu levels were not distinguishable from background values. Zinc and Ca were consistently present in all deposits but reached highest concentration in MSD. Iron was present in some but not all deposits and was especially enriched in FPD. Correlation analysis indicated considerable variation in metal distribution within and between sub-RPE deposits. The results suggest that Zn and Ca are the most likely contributors to deposit formation especially in MSD, the characteristic risk factor for the development of AMD in the human eye.

  15. Study of noise level at Raja Haji Fisabilillah airport in Tanjung Pinang, Riau Islands

    NASA Astrophysics Data System (ADS)

    Nofriandi, H.; Wijayanti, A.; Fachrul, M. F.

    2018-01-01

    Raja Haji Fisabilillah International Airport is a central airport located in Kampung Mekarsari, Pinang Kencana District, Tanjung Pinang City, Riau Islands Province. The aims of this study are to determine noise level at the airport and to calculate noise index using WECPNL (Weighted Equivalent Continuous Perceived Noise Level) method. The method using recommendations from the International Civil Aviation Organization (ICAO), the measurement point is based on at a distance of 300 meters parallel to the runway, as well as 1000 meters, 2000 meters, 3000 meters and 4000 meters from the runway end. The results at point 3 was 75.30 dB(A). Based on the noise intensity result, Boeing aircraft 737-500 was considered as the highest in the airport surrounding area, which is 95.24 dB(A) and the lowest was at point 12 with a value of 37,24 dB(A). Mapping contour shows that 3 areas of noise and point 3 with 75,30 dB(A) were considered as second level area and were complied to the standard required.

  16. Iron accumulation in multiple sclerosis: an early pathogenic event.

    PubMed

    LeVine, Steven M; Bilgen, Mehmet; Lynch, Sharon G

    2013-03-01

    Iron has been shown to accumulate in deep gray matter structures in many forms of multiple sclerosis (MS), but detecting its presence early in the disease course (e.g., clinically isolated syndrome [CIS]) has been less clear. Here, we review a recent study where MRI scanning at 7 T together with susceptibility mapping was performed to assess iron deposition in CIS and control subjects. Susceptibility indicative of iron deposition was found to be increased in the globus pallidus, caudate, putamen and pulvinar of CIS patients compared with controls. The findings suggest that iron deposition is a pathological change that occurs early in the development of MS. Identifying the mechanisms of iron accumulation and determining whether iron promotes pathogenesis in MS are important areas of future research.

  17. Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: Empirical estimates for island sites in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Sholkovitz, Edward R.; Sedwick, Peter N.; Church, Thomas M.

    2009-07-01

    The results of several recent studies challenge the reigning paradigm that continental soil dust provides the only significant atmospheric source of dissolved iron to the surface ocean. This evidence includes correlations between the operational solubility of aerosol iron and atmospheric loadings of black carbon and aluminum-normalized vanadium and nickel, each of which are associated with emissions from the combustion of fossil fuel oil. These observations suggest that the relative solubility of aerosol iron, hence the eolian flux of soluble iron to the surface ocean, may be significantly impacted by anthropogenic oil combustion products. Using recent field data from the Bermuda region, we have developed an empirical method to estimate the solubility of aerosol iron using bulk aerosol concentrations of Fe, V and Al. We apply this method to a large body of published data from the AEROCE program for North Atlantic island sites on Tenerife, Barbados, Bermuda and Ireland, where the relative proportions of anthropogenic aerosols range from minor to major, respectively. Our aerosol iron solubility estimates suggest that anthropogenic emissions contribute approximately 70% and 85% of the annual dry deposition of soluble iron to the surface ocean near Bermuda and Ireland, respectively, implying that human activities have profoundly affected the iron budget of the North Atlantic region. The annual mean dry deposition of soluble iron at Barbados and Izana is dominated by soil dust. The anthropogenic contribution at these two sites ranges from 12% to 30% and is highly dependent on the soil dust solubility of Fe employed in the model. The low end (˜12%) estimate appears to be more representative of these high-dust sites.

  18. The cosmic native iron in Upper Jurassic to Miocene deep-sea deposits of the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Murdmaa, Ivar; Pechersky, Diamar; Nurgaliev, Danis; Gilmanova, Di; Sloistov, Sergey

    2014-05-01

    Thermomagnetic analysis of 335 rock samples from DSDP sites 386, 387 (Leg 43) and 391 A, C (Leg 44) drilled in the western North Atlantic revealed distribution patterns of native Fe particles in Upper Jurassic to Miocene deep-sea deposits. Native iron occurs in deep-sea rocks as individual particles from tens of nm to 100 µm in size. The native Fe is identified throughout the sections recovered. Its concentration ranges from nx10-6% to 5x10-3%, but zero values persist to occur in each lithostratigraphic unit studied. The bimodal distribution of the native iron concentration with a zero mode is typical for the cosmic dust in sedimentary rocks, because of its slow flux to the Earth surface, as compared to sedimentation fluxes. Ni admixture in native Fe also demonstrates bimodal distribution with the zero mode (pure Fe) and a mode 5 - 6% that corresponds to average Ni content in the cosmic dust and meteorites. Concentration of native Fe does not depend on rock types and geological age. Relatively high mean native Fe concentrations (less zero values) occur in Lower Cretaceous laminated limestones (sites 387, 391) interpreted as contourites and in Oligocene volcaniclastic turbidites of the Bermuda Rise foot (Site 386), whereas minimum values are measured in Miocene mass flow deposits (Site 391). We suggest that concentration of native Fe increases in deposits of pulsating sedimentation (turbidites, laminated contourites) due to numerous short hiatuses and slow sedimentation events in between instantaneous turbidite or contourite deposition pulses. Extreme values possibly indicate cosmic dust flux anomalies. The study was partially supported by RFBR, research project No. 14-05-00744a.

  19. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K.

    2011-04-01

    This work describes a new image processing technique for discriminating iron ores (magnetite quartzite deposits) and associated lithology in high-grade granulite region of Salem, Southern Peninsular India using visible, near-infrared and short wave infrared reflectance data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Image spectra show that the magnetite quartzite and associated lithology of garnetiferrous pyroxene granulite, hornblende biotite gneiss, amphibolite, dunite, and pegmatite have absorption features around spectral bands 1, 3, 5, and 7. ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in RGB are constructed by summing the bands representing the shoulders of absorption features as a numerator, and the band located nearest the absorption feature as a denominator to map iron ores and band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB for associated lithology. The results show that ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in a Red-Green-Blue (RGB) color combination identifies the iron ores much better than previously published ASTER band ratios analysis. A Principal Component Analysis (PCA) is applied to reduce redundant information in highly correlated bands. PCA (3, 2, and 1 for iron ores and 5, 4, 2 for granulite rock) in RGB enabled the discrimination between the iron ores and garnetiferrous pyroxene granulite rock. Thus, this image processing technique is very much suitable for discriminating the different types of rocks of granulite region. As outcome of the present work, the geology map of Salem region is provided based on the interpretation of ASTER image results and field verification work. It is recommended that the proposed methods have great potential for mapping of iron ores and associated lithology of granulite region with similar rock units of granulite regions of Southern Peninsular India. This work also demonstrates the ability of ASTER's to provide information on iron ores, which is valuable

  20. Geology of the Eymir iron mine, Edremit, Turkey

    USGS Publications Warehouse

    Jacobson, Herbert Samuel; Turet, Erdogan

    1972-01-01

    The Eymir mine near Edremit on Turkey's Aegean coast (long 27?30'E.,1at 39?36'N.) was investigated as part of the Maden Tetkik ve Arama Enstitutsu (MTA)-U. S. Geological Survey (USGS) mineral exploration and training project, for the purpose of increasing the known mineral reserves. Geologic mapping of the mine area indicates that hematite is restricted to argillized, silicified, and pyritized dacite and possibly andesite. Hematite is present as massive replacements, impregnations, disseminations, and fracture fillings. Most of the upper part of the iron deposit consists of a breccia composed mostly of silicifiled dacite fragments in a hematite matrix. The iron deposit was apparently formed in three steps: 1. Argillation, silicification, and pyritization of the andesitic lava and dacite units as a result of a regional intrusion. 2. Intrusion of the Dere Oren dacite stock, with associated faulting, fracturing, and breccia formation at the surface. 3. Deposition of hematite by oxidation of pyrite, and transfer of iron via fractures and faults by hydrothermal or meteoric fluids. The Eymir iron deposit is a blanketlike deposit on the crest of the Sivritepe-Eymir ridge. It is 1300 meters long, 80 to 450 meters wide, and has an average thickness of 18.6 meters. Drill holes in the deposit show the iron content to range from 32.0 to 57.6 percent, and to average 46.5 percent. Most of the gangue is silica, and an arsenic impurity averaging 0.39 percent is present. Most of the deposit cannot be utilized as iron ore because of low iron content, high silica content, and high arsenic content. Ore-dressing tests have shown that it is feasible to concentrate the low-grade material, producing a concentrate having increased iron content and reduced silica content. Tests have shown also that the arsenic content of the ore can be reduced substantially by sintering. Further tests and economic feasibility studies are necessary to determine whether an economic marketable iron ore can be

  1. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined bymore » molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport

  2. Brain iron concentrations in regions of interest and relation with serum iron levels in Parkinson disease.

    PubMed

    Costa-Mallen, Paola; Gatenby, Christopher; Friend, Sally; Maravilla, Kenneth R; Hu, Shu-Ching; Cain, Kevin C; Agarwal, Pinky; Anzai, Yoshimi

    2017-07-15

    Brain iron has been previously found elevated in the substantia nigra pars compacta (SNpc), but not in other brain regions, of Parkinson's disease (PD) patients. However, iron in circulation has been recently observed to be lower than normal in PD patients. The regional selectivity of iron deposition in brain as well as the relationship between SNpc brain iron and serum iron within PD patients has not been completely elucidated. In this pilot study we measured brain iron in six regions of interest (ROIs) as well as serum iron and serum ferritin, in 24 PD patients and 27 age- gender-matched controls. Brain iron was measured on magnetic resonance imaging (MRI) with a T2 prime (T2') method. Difference in brain iron deposition between PD cases and controls for the six ROIs were calculated. SNpc/white matter brain iron ratios and SNpc/serum iron ratios were calculated for each study participant, and differences between PD patients and controls were tested. PD patients overall had higher brain iron than controls in the SNpc. PD patients had significantly higher SNpc/white matter brain iron ratios than controls, and significantly higher brain SNpc iron/serum iron ratios than controls. These results indicate that PD patients' iron metabolism is disrupted toward a higher partitioning of iron to the brain SNpc at the expenses of iron in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    NASA Astrophysics Data System (ADS)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  4. Metal transports and enrichments in iron depositions hosted in basaltic rocks. II: Metal rich fluids and Fe origin

    NASA Astrophysics Data System (ADS)

    Zhang, Ronghua; Zhang, Xuetong; Hu, Shumin

    2015-12-01

    This study focuses on revealing the mechanism of metal transport, enrichment and Fe origin of iron deposition during water basalt interactions occurred in basaltic rocks. Observations of the iron deposits (anhydrite-magnetite-pyroxene type deposits) hosted in K-rich basaltic rocks in the Mesozoic volcanic area of the Middle-Lower Yangtze River valley, China, indicate that the mechanism of metal transport and enrichment for those deposits are significant objective to scientists, and the Fe origin problem is not well resolved. Here the metal transport, enrichment and iron origin have been investigated in high temperature experiments of water basaltic interactions. These deposits were accompanying a wide zone with metal alteration. The effects of hydrothermal alteration on major rock-forming element concentrations in basaltic rock were investigated by systematically comparing the chemical compositions of altered rocks with those of fresh rocks. In the deposits, these metals are distributed throughout altered rocks that exhibit vertical zoning from the deeper to the shallow. Then, combined with the investigations of the metal-alterations, we performed kinetic experiments of water-basaltic rock interactions using flow-through reactors in open systems at temperatures from 20 °C to 550 °C, 23-34 MPa. Release rates for the rock-forming elements from the rocks have been measured. Experiments provide the release rates for various elements at a large temperature range, and indicate that the dissolution rates (release rates) for various elements vary with temperature. Si, Al, and K have high release rates at temperatures from 300 °C to 500 °C; the maximum release rates (RMX) for Si are reached at temperatures from 300 °C to 400 °C. The RMXs for Ca, Mg, and Fe are at low temperatures from 20 °C to 300 °C. Results demonstrate that Fe is not released from 400 °C to 550 °C, and indicate that when deep circling fluids passed through basaltic rocks, Fe was not mobile, and

  5. Synthesis of iron oxides nanoparticles with very high saturation magnetization form TEA-Fe(III) complex via electrochemical deposition for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Elrouby, Mahmoud; Abdel-Mawgoud, A. M.; El-Rahman, Rehab Abd

    2017-11-01

    This work is devoted to the synthesis of magnetic iron oxides nanoparticles with very high saturation magnetization to be qualified for supercapacitor applications using, a simple electrodeposition technique. It is found that the electrochemical reduction process depends on concentration, temperature, deposition potential and the scan rate of potential. The nature of electrodeposition process has been characterized via voltammetric and chronoamperometric techniques. The morphology of the electrodeposits has been investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and phase content of these investigated electrodeposits have been examined and calculated. The obtained iron oxides show a high saturation magnetization (Ms) of about 229 emu g-1. The data exhibited a relation between Ms of electrodeposited iron oxide and specific capacitance. This relation exhibits that the highest Ms value of electrodeposited iron oxides gives also highest specific capacitance of about 725 Fg-1. Moreover, the electrodeposited iron oxides exhibit a very good stability. The new characteristics of the electro synthesized iron oxides at our optimized conditions, strongly qualify them as a valuable material for high-performance supercapacitor applications.

  6. Pituitary iron and volume predict hypogonadism in transfusional iron overload.

    PubMed

    Noetzli, Leila J; Panigrahy, Ashok; Mittelman, Steven D; Hyderi, Aleya; Dongelyan, Ani; Coates, Thomas D; Wood, John C

    2012-02-01

    Hypogonadism is the most common morbidity in patients with transfusion-dependent anemias such as thalassemia major. We used magnetic resonance imaging (MRI) to measure pituitary R2 (iron) and volume to determine at what age these patients develop pituitary iron overload and volume loss. We recruited 56 patients (47 with thalassemia major, five with chronically transfused thalassemia intermedia and four with Blackfan-Diamond syndrome) to have pituitary MRIs to measure pituitary R2 and volume. Hypogonadism was defined clinically based on the timing of secondary sexual characteristics or the need for sex hormone replacement therapy. Patients with transfusional iron overload begin to develop pituitary iron overload in the first decade of life; however, clinically significant volume loss was not observed until the second decade of life. Severe pituitary iron deposition (Z > 5) and volume loss (Z < -2.5) were independently predictive of hypogonadism. Pituitary R2 correlated significantly with serum ferritin as well as liver, pancreatic, and cardiac iron deposition by MRI. Log pancreas R2* was the best single predictor for pituitary iron, with an area under the receiving operator characteristic curve of 0.88, but log cardiac R2* and ferritin were retained on multivariate regression with a combined r(2) of 0.71. Pituitary iron overload and volume loss were independently predictive of hypogonadism. Many patients with moderate-to-severe pituitary iron overload retained normal gland volume and function, representing a potential therapeutic window. The subset of hypogonadal patients having preserved gland volumes may also explain improvements in pituitary function observed following intensive chelation therapy. Copyright © 2011 Wiley Periodicals, Inc.

  7. Trace Element Geochemistry of Magnetite and Accesory Phases from El Romeral Iron Oxide-Apatite Deposit, Northern Chile

    NASA Astrophysics Data System (ADS)

    Barra, F.; Rojas, P.; Reich, M.; Deditius, A.; Simon, A. C.

    2017-12-01

    Iron oxide-apatite (IOA) or "Kiruna-type" deposits are an important source of Fe, P, REE, among other essential elements for society. Three main hypotheses have been proposed to explain the genesis of these controversial deposits, which invoke liquid immiscibility, hydrothermal replacement or a magmatic-hydrothermal origin driven by flotation of magnetite-bubble pairs. Here we focus on the El Romeral, one of the largest IOA deposits located in the southernmost part of the Cretaceous Chilean Iron Belt. We combined SEM observations and EMPA analyses of magnetite, actinolite, pyrite, and apatite, with micro-Raman determinations of mineral inclusions within magnetite grains. Two textural types of magnetite were identified at El Romeral: (i) inclusion-rich magnetite (Mag I), and (ii) inclusion-poor magnetite (Mag II) that are commonly surrounding the inclusion-rich Mag I grains. Mag I is characterized by high V ( 2500-2800 ppm) and Ti (300-1000 ppm) contents with high-temperature mineral inclusions such as ilmenite, Ti-pargasite and clinochlore at depth, and quartz and phlogopite inclusions in shallower samples. These characteristics are consistent with a magmatic origin for Mag I. Inclusion-poor magnetite (Mag II) have high V (2400-2600 ppm) and lower Ti (70-200 ppm) contents than Mag I, which point to chemical changes of the mineralizing fluid(s). An increase in thermal gradient with depth is evidenced by the presence of high-temperature (low #Fe) actinolite, as well as F-rich apatite and pyrite with high Co:Ni (>1) in the deep zones. In contrast, lower Co:Ni ratios (<0.5) in pyrite and higher Cl contents in OH-rich apatite are detected in samples from shallower levels. This vertical chemical variation supports a magmatic-hydrothermal origin for the El Romeral deposit, and point to compositional changes driven by decompression of a magnetite-fluid suspension.

  8. Whole-Body Diffusion-weighted MR Imaging of Iron Deposits in Hodgkin, Follicular, and Diffuse Large B-Cell Lymphoma.

    PubMed

    Cottereau, Anne-Ségolène; Mulé, Sébastien; Lin, Chieh; Belhadj, Karim; Vignaud, Alexandre; Copie-Bergman, Christiane; Boyez, Alice; Zerbib, Pierre; Tacher, Vania; Scherman, Elodie; Haioun, Corinne; Luciani, Alain; Itti, Emmanuel; Rahmouni, Alain

    2018-02-01

    Purpose To analyze the frequency and distribution of low-signal-intensity regions (LSIRs) in lymphoma lesions and to compare these to fluorodeoxyglucose (FDG) uptake and biologic markers of inflammation. Materials and Methods The authors analyzed 61 untreated patients with a bulky lymphoma (at least one tumor mass ≥7 cm in diameter). When a LSIR within tumor lesions was detected on diffusion-weighted images obtained with a b value of 50 sec/mm 2 , a T2-weighted gradient-echo (GRE) sequence was performed and calcifications were searched for with computed tomography (CT). In two patients, Perls staining was performed on tissue samples from the LSIR. LSIRs were compared with biologic inflammatory parameters and baseline FDG positon emission tomography (PET)/CT parameters (maximum standardized uptake value [SUV max ], total metabolic tumor volume [TMTV]). Results LSIRs were detected in 22 patients and corresponded to signal void on GRE images; one LSIR was due to calcifications, and three LSIRS were due to a recent biopsy. In 18 patients, LSIRs appeared to be related to focal iron deposits; this was proven with Perls staining in two patients. The LSIRs presumed to be due to iron deposits were found mostly in patients with aggressive lymphoma (nine of 26 patients with Hodgkin lymphoma and eight of 20 patients with diffuse large B-cell lymphoma vs one of 15 patients with follicular lymphoma; P = .047) and with advanced stage disease (15 of 18 patients). LSIRS were observed in spleen (n = 14), liver (n = 3), and nodal (n = 8) lesions and corresponded to foci FDG uptake, with mean SUV max of 9.8, 6.7, and 16.2, respectively. These patients had significantly higher serum levels of C-reactive protein, α 1 -globulin, and α 2 -globulin and more frequently had microcytic anemia than those without such deposits (P = .0072, P = .003, P = .0068, and P < .0001, respectively). They also had a significantly higher TMTV (P = .0055) and higher levels of spleen involvement (P

  9. A 3D parameterization of iron atmospheric deposition to the global ocean

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, Stelios; Krol, Maarten C.; van Noije, Twan P. C.; Le Sager, Philippe

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe, associated with dusts and combustion processes. The impact of atmospheric acidity on mineral solubility is parameterized based on updated experimental and theoretical findings, and model results are evaluated against available observations. The link between the soluble Fe atmospheric deposition and anthropogenic sources is also investigated. Overall, the response of the chemical composition of nutrient containing aerosols to atmospheric composition changes is demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs: Modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  10. Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil

    NASA Astrophysics Data System (ADS)

    Nogueira, Pedro Vencovsky; Rocha, Marcelo Peres; Borges, Welitom Rodrigues; Silva, Adalene Moreira; Assis, Luciano Mozer de

    2016-10-01

    This work comprises the acquisition, processing and interpretation of 2D seismic shallow refraction (P-wave) and resistivity profiles located in the iron ore deposit of N4WS, Carajás Mineral Province (CMP), northern Brazil. The geophysical methods were used to identify the boundaries of the iron ore deposit. Another objective was to evaluate the potentiality of these geophysical methods in that geological context. In order to validate the results, the geophysical lines were located to match a geological borehole line. For the seismic refraction, we used 120 channels, spaced by 10 m, in a line of 1190 m, with seven shot points. The resistivity method used in the acquisition was the electrical resistivity imaging, with pole-pole array, in order to reach greater depths. The resistivity line had a length of 1430 m, with 10 m spacing between electrodes. The seismic results produced a model with two distinct layers. Based on the velocities values, the first layer was interpreted as altered rocks, and the second layer as more preserved rocks. It was not possible to discriminate different lithologies with the seismic method inside each layer. From the resistivity results, a zone of higher resistivity (> 3937 Ω·m) was interpreted as iron ore, and a region of intermediate resistivity (from 816 to 2330 Ω·m) as altered rocks. These two regions represent the first seismic layer. On the second seismic layer, an area with intermediated resistivity values (from 483 to 2330 Ω·m) was interpreted as mafic rocks, and the area with lower resistivity (< 483 Ω·m) as jaspilite. Our results were compared with geological boreholes and show reasonable correlation, suggesting that the geophysical anomalies correspond to the main variations in composition and physical properties of rocks.

  11. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA

    USGS Publications Warehouse

    Slack, J.F.; Grenne, Tor; Bekker, A.; Rouxel, O.J.; Lindberg, P.A.

    2007-01-01

    A current model for the evolution of Proterozoic deep seawater composition involves a change from anoxic sulfide-free to sulfidic conditions 1.8??Ga. In an earlier model the deep ocean became oxic at that time. Both models are based on the secular distribution of banded iron formation (BIF) in shallow marine sequences. We here present a new model based on rare earth elements, especially redox-sensitive Ce, in hydrothermal silica-iron oxide sediments from deeper-water, open-marine settings related to volcanogenic massive sulfide (VMS) deposits. In contrast to Archean, Paleozoic, and modern hydrothermal iron oxide sediments, 1.74 to 1.71??Ga hematitic chert (jasper) and iron formation in central Arizona, USA, show moderate positive to small negative Ce anomalies, suggesting that the redox state of the deep ocean then was at a transitional, suboxic state with low concentrations of dissolved O2 but no H2S. The presence of jasper and/or iron formation related to VMS deposits in other volcanosedimentary sequences ca. 1.79-1.69??Ga, 1.40??Ga, and 1.24??Ga also reflects oxygenated and not sulfidic deep ocean waters during these time periods. Suboxic conditions in the deep ocean are consistent with the lack of shallow-marine BIF ??? 1.8 to 0.8??Ga, and likely limited nutrient concentrations in seawater and, consequently, may have constrained biological evolution. ?? 2006 Elsevier B.V. All rights reserved.

  12. Phanerozoic Rifting Phases And Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  13. Synthesizing the Nanocrytalline Cobalt-Iron Coating Through The Electrodeposition Process With Different Time Deposition

    NASA Astrophysics Data System (ADS)

    Rozlin Nik Masdek, Nik; Sorfian Hafiz Mansor, Mohd; Salleh, Zuraidah; Hyie, Koay Mei

    2018-03-01

    In the engineering world, electrodeposition or electroplating has become the most popular method of surface coating in improving corrosion behavior and mechanical properties of material. Therefore in this study, CoFe nanoparticle protective coating has been synthesized on the mild steel washer using electrodeposition method. The electrodeposition was conducted in the acidic environment with the pH value range from 1 to 2 with the controlled temperature of 50°C. The influence of deposition time (30, 60, 90 minutes) towards characteristic and properties such as particle size, surface morphology, corrosion behavior, and microhardness were studied in this investigation. Several results can be obtained by doing this experiment and testing. First, the surface morphology of Cobalt Iron (CoFe) on the electrodeposited mild steel washer are obtained. In addition, the microhardness of the mild steel washer due to the different deposition time are determined. Next, the observation on the difference in the grain size of CoFe that has been electrodeposited on the mild steel plate is made. Last but not least, the corrosion behavior was investigated. CoFe nanoparticles deposited for 30 minutes produced the smallest particle size and the highest microhardness of 86.17 and 236.84 HV respectively. The CoFe nanoparticles also exhibit the slowest corrosion rate at 30 minutes as compared to others. The crystalline size also increases when the time deposition is increased. The sample with 30 minute depositon time indicate the smallest crystalline size which is 15nm. The decrement of deposition time plays an important role in synthesizing CoFe nanoparticles with good corrosion resistance and microhardness. CoFe nanoparticles obtained at 30 minutes shows high corrosion resistance compared to others. In a nutshell, it was observed that the decrement of deposition time improved mechanical and corrosion properties of CoFe nanoparticles.

  14. Active catalysts of sonoelectrochemically prepared iron metal nanoparticles for the electroreduction of chloroacetates

    NASA Astrophysics Data System (ADS)

    Sáez, V.; González-García, J.; Marken, F.

    2010-01-01

    A new methodology for the sonoelectro-deposition and stripping of highly reactive iron at boron-doped diamond electrodes has been studied. In aqueous 1 M NH4F iron metal readily and reversibly electro-deposits onto boron-doped diamond electrodes. The effects of deposition potential, FeF63- concentration, deposition time, and mass transport are investigated and also the influence of power ultrasound (24 kHz, 8 Wcm-2). Scanning electron microscopy images of iron nanoparticles grown to typically 20-30 nm diameters are obtained. It is shown that a strongly and permanently adhering film of iron at boron-doped diamond can be formed and transferred into other solution environments. The catalytic reactivity of iron deposits at boron-doped diamond is investigated for the reductive dehalogenation of chloroacetate. The kinetically limited multi-electron reduction of trichloroacetate is dependent on the FeF63- deposition conditions and the solution composition. It is demonstrated that a stepwise iron-catalysed dechlorination via dichloroacetate and monochloroacetate to acetate is feasible. This sonoelectrochemical methodology offers a novel, clean and very versatile electro-dehalogenation methodology. The role of fluoride in the surface electrochemistry of iron deserves further attention.

  15. Guidelines for quantifying iron overload.

    PubMed

    Wood, John C

    2014-12-05

    Both primary and secondary iron overload are increasingly prevalent in the United States because of immigration from the Far East, increasing transfusion therapy in sickle cell disease, and improved survivorship of hematologic malignancies. This chapter describes the use of historical data, serological measures, and MRI to estimate somatic iron burden. Before chelation therapy, transfusional volume is an accurate method for estimating liver iron burden, whereas transferrin saturation reflects the risk of extrahepatic iron deposition. In chronically transfused patients, trends in serum ferritin are helpful, inexpensive guides to relative changes in somatic iron stores. However, intersubject variability is quite high and ferritin values may change disparately from trends in total body iron load over periods of several years. Liver biopsy was once used to anchor trends in serum ferritin, but it is invasive and plagued by sampling variability. As a result, we recommend annual liver iron concentration measurements by MRI for all patients on chronic transfusion therapy. Furthermore, it is important to measure cardiac T2* by MRI every 6-24 months depending on the clinical risk of cardiac iron deposition. Recent validation data for pancreas and pituitary iron assessments are also presented, but further confirmatory data are suggested before these techniques can be recommended for routine clinical use. © 2014 by The American Society of Hematology. All rights reserved.

  16. Spatially resolved variations in reflectivity across iron oxide thin films

    NASA Astrophysics Data System (ADS)

    Kelley, Chris S.; Thompson, Sarah M.; Gilks, Daniel; Sizeland, James; Lari, Leonardo; Lazarov, Vlado K.; Matsuzaki, Kosuke; LeFrançois, Stéphane; Cinque, Gianfelice; Dumas, Paul

    2017-11-01

    The spin polarising properties of the iron oxide magnetite (Fe3O4) make it attractive for use in spintronic devices, but its sensitivity to compositional and structural variations make it challenging to prepare reliably. Infrared microspectroscopy and modelling are used to determine the spatial variation in the chemical composition of three thin films of iron oxide; one prepared by pulsed laser deposition (PLD), one by molecular beam epitaxy (MBE) deposition of iron whilst simultaneously flowing oxygen into the chamber and one by flowing oxygen only once deposition is complete. The technique is easily able to distinguish between films which contain metallic iron and different iron oxide phases as well as spatial variations in composition across the films. The film grown by post-oxidising iron is spatially uniform but not fully oxidised, the film grown by simultaneously oxidising iron showed spatial variation in oxide composition while the film grown by PLD was spatially uniform magnetite.

  17. Structural evolution of the Mount Wall region in the Hamersley province, Western Australia and its control on hydrothermal alteration and formation of high-grade iron deposits

    NASA Astrophysics Data System (ADS)

    Dalstra, Hilke J.

    2014-10-01

    The discovery of two relatively small but high-grade iron ore deposits near Mt Wall, an intensely faulted part of the southwestern Hamersley province provides unique insights into the structural control on ore formation in this region. The deposits have many geological features typical of the high grade microplaty hematite group which also contains the much larger Mt Tom Price, Paraburdoo and Mt Whaleback deposits. The deposits are structurally controlled along early normal faults and contain abundant microplaty hematite and martite, and are largely confined to the Dales Gorge member of the Brockman Iron Formation. In addition to the microplaty hematite-martite ore, there are martite-goethite ores and rare magnetite-goethite or magnetite-hematite ores. Below the modern weathering surface, hydrothermally altered zones in wallrock BIF from the Lower Dales Gorge member contain magnetite, hematite and carbonate/talc bearing mineral assemblages. A staged ore genesis model involving early extension and fluid circulation along normal faults, hypogene silica leaching and carbonate alteration, followed by deep meteoric oxidation with microplaty hematite formation and finally weathering can explain most features of the Mt Wall deposits. The role of deformation was to provide pathways for mineralising fluids and initiate the seed points for the mineralised systems. High grade iron in the Wellthandalthaluna deposit is situated between the NW to NNW trending Boolgeeda Creek fault and a synthetic joining splay, the Northern fault. Both are high angle normal faults and formed during early extension in this part of the province. Faults are characterised by localised small scale deformation and brecciation, deep carbonate alteration and oxidation. Recent weathering has penetrated deeply into the fault zones, converting the carbonate-rich assemblages into goethite. Mineralisation in the Arochar deposit is situated in the overlap or relay zone between two segments of the Mt Wall

  18. Joint inversion of surface and borehole magnetic data to prospect concealed orebodies: A case study from the Mengku iron deposit, northwestern China

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Xiangyun; Zhu, Rixiang

    2018-07-01

    The Mengku iron deposit is one of the largest magnetite deposits in Xinjiang Province, northwestern China. It is important to accurately delineate the positions and shapes of concealed orebodies for drillhole layout and resource quantity evaluations. Total-field surface and three-component borehole magnetic measurements were carried out in the deposit. We made a joint inversion of the surface and borehole magnetic data to investigate the characteristics of the orebodies. We recovered the distributions of the magnetization intensity using a preconditioned conjugate gradient algorithm. Synthetic examples show that the reconstructed models of the joint inversion yield a better consistency with the true models than those recovered using independent inversion. By using joint inversion, more accurate information is obtained on the position and shape of the orebodies in the Mengku iron deposit. The magnetization distribution of Line 135 reveals that the major magnetite orebodies occur at 200-400 m depth with a lenticular cross-section dipping north-east. The orebodies of Line 143 are modified and buried at 100-200 m depth with an elliptical cross-section caused by fault activities at north-northeast directions. This information is verified by well logs. The borehole component anomalies are combined with surface data to reconstruct the physical property model and improve the ability to distinguish vertical and horizontal directions, which provides an effective approach to prospect buried orebodies.

  19. The contribution of micrometeorites to the iron stocks of buried podzols, developed in Late-glacial aeolian sand deposits (Brabant, The Netherlands)

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; de Vet, Sebastiaan

    2015-04-01

    The surface geology of an extensive part of NW-Europe is dominated by coversands (Late-glacial chemical poor aeolian sand deposits). The geomorphology of coversand landscapes is dominated by ridges and planes. Podzolation is the dominant soil forming process in coversands under moderate humid climatic conditions. Umbric Podzols developed on the ridges under Quercetum-mixtum, Gleyic and Histic Podzols developed in the planes under Alnetum. Even in chemical poor coversands, iron will be released by hydrolysis from iron containing silicate minerals (such as feldspars). It is well known that the vertical iron distribution in Podzols is effected by translocation of active iron from eluvial to illuvial horizons and that iron is leaching to the aquifer. Iron stocks of Podzols, in contrasts, have not been widely studied for comparison purposes of individual soil horizons or between soils. We determined the stocks of active and immobile iron in the horizons of buried xeromorphic Podzols (soils that developed without any contact with groundwater). The results show that the total amount of iron exceeds the potential amount which can be released by hydrolysis from the parent material. Furthermore, to amount of iron that leached to the groundwater is unknown. It is evident that we must find an additional source to explain the total iron stocks in buried Podzols. It is known from analysis of ice cores that the earth atmosphere is subjected to a continuous influx of (iron rich) micrometeorites. The precipitation of micrometeorites (and other aerosols) on the earth surface is concentrated in humid climatic zones with (intensive) rain fall. We analyzed minerals, extracted from the ectorganic horizon of the Initial Podzols, developed in driftsand that stabilized around 1900 AD, overlying Palaeopodzols, buried around 1200 AD. Among blown in quartz grains, we could determine also micrometeorites, embedded in the organic skeleton of the fermentation horizon of the Initial Podzol

  20. Iron isotope fractionation during hydrothermal ore deposition and alteration

    NASA Astrophysics Data System (ADS)

    Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas

    2006-06-01

    Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between -2.3‰ and +1.3‰. Primary hematite ( δ56Fe: -0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe ( δ56Fe: -0.5‰) leached from the crystalline basement. Occasional input of CO 2-rich waters resulted in precipitation of isotopically light siderite ( δ56Fe: -1.4 to -0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed

  1. Bio-mimicked atomic-layer-deposited iron oxide-based memristor with synaptic potentiation and depression functions

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Gao, Fei; Lian, Xiaojuan; Ji, Xincun; Hu, Ertao; He, Lin; Tong, Yi; Guo, Yufeng

    2018-06-01

    In this study, an iron oxide (FeO x )-based memristor was investigated for the realization of artificial synapses. An FeO x resistive switching layer was prepared by self-limiting atomic layer deposition (ALD). The movement of oxygen vacancies enabled the device to have history-dependent synaptic functions, which was further demonstrated by device modeling and simulation. Analog synaptic potentiation/depression in conductance was emulated by applying consecutive voltage pulses in the simulation. Our results suggest that the ALD FeO x -based memristor can be used as the basic building block for neural networks, neuromorphic systems, and brain-inspired computers.

  2. Essential Role of Cyclin-G–associated Kinase (Auxilin-2) in Developing and Mature Mice

    PubMed Central

    Lee, Dong-won; Zhao, Xiaohong; Yim, Yang-In; Eisenberg, Evan

    2008-01-01

    Hsc70 with its cochaperone, either auxilin or GAK, not only uncoats clathrin-coated vesicles but also acts as a chaperone during clathrin-mediated endocytosis. However, because synaptojanin is also involved in uncoating, it is not clear whether GAK is an essential gene. To answer this question, GAK conditional knockout mice were generated and then mated to mice expressing Cre recombinase under the control of the nestin, albumin, or keratin-14 promoters, all of which turn on during embryonic development. Deletion of GAK from brain, liver, or skin dramatically altered the histology of these tissues, causing the mice to die shortly after birth. Furthermore, by expressing a tamoxifen-inducible promoter to express Cre recombinase we showed that deletion of GAK caused lethality in adult mice. Mouse embryonic fibroblasts in which the GAK was disrupted showed a lack of clathrin-coated pits and a complete block in clathrin-mediated endocytosis. We conclude that GAK deletion blocks development and causes lethality in adult animals by disrupting clathrin-mediated endocytosis. PMID:18434600

  3. Synthesis of boron nitride nanostructures from catalyst of iron compounds via thermal chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    da Silva, Wellington M.; Ribeiro, Hélio; Ferreira, Tiago H.; Ladeira, Luiz O.; Sousa, Edésia M. B.

    2017-05-01

    For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.

  4. Impact of Aeolian Dry Deposition of Reactive Iron Minerals on Sulfur Cycling in Sediments of the Gulf of Aqaba

    PubMed Central

    Blonder, Barak; Boyko, Valeria; Turchyn, Alexandra V.; Antler, Gilad; Sinichkin, Uriel; Knossow, Nadav; Klein, Rotem; Kamyshny, Alexey

    2017-01-01

    The Gulf of Aqaba is an oligotrophic marine system with oxygen-rich water column and organic carbon-poor sediments (≤0.6% at sites that are not influenced by anthropogenic impact). Aeolian dust deposition from the Arabian, Sinai, and Sahara Deserts is an important source of sediment, especially at the deep-water sites of the Gulf, which are less affected by sediment transport from the Arava Desert during seasonal flash floods. Microbial sulfate reduction in sediments is inferred from the presence of pyrite (although at relatively low concentrations), the presence of sulfide oxidation intermediates, and by the sulfur isotopic composition of sulfate and solid-phase sulfides. Saharan dust is characterized by high amounts of iron minerals such as hematite and goethite. We demonstrated, that the resulting high sedimentary content of reactive iron(III) (hydr)oxides, originating from this aeolian dry deposition of desert dust, leads to fast re-oxidation of hydrogen sulfide produced during microbial sulfate reduction and limits preservation of reduced sulfur in the form of pyrite. We conclude that at these sites the sedimentary sulfur cycle may be defined as cryptic. PMID:28676799

  5. Anthropogenic combustion iron as a complex climate forcer

    DOE PAGES

    Matsui, Hitoshi; Mahowald, Natalie M.; Moteki, Nobuhiro; ...

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30–90 °S) by 52%, withmore » a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m –2 globally and 0.22 W m –2 over East Asia. In conclusion, our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.« less

  6. Anthropogenic combustion iron as a complex climate forcer.

    PubMed

    Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

  7. Anthropogenic combustion iron as a complex climate forcer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Mahowald, Natalie M.; Moteki, Nobuhiro

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30–90 °S) by 52%, withmore » a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m –2 globally and 0.22 W m –2 over East Asia. In conclusion, our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.« less

  8. Neurodegenerative disease and iron storage in the brain.

    PubMed

    Thomas, Madhavi; Jankovic, Joseph

    2004-08-01

    Iron is very important for normal regulation of various metabolic pathways. Neurons store iron in the form of ferrous ion or neuromelanin. In specific disorders the axonal transport of iron is impaired, leading to iron deposition which in the presence of reactive oxygen species results in neurodegeneration. Recent developments in genetics, including the finding of mutations in the pantothenate kinase gene and ferritin light chain gene, have demonstrated a direct relationship between the presence of a mutation in the iron-regulatory pathways and iron deposition in the brain resulting in neurodegeneration. These two disorders now add to our understanding of the mechanism of disease due to dysfunction of iron-regulatory pathways. In addition to these disorders there may be several other mutations of iron-regulatory genes or related genes that are yet to be found. The animal models of disease have also added value to this area. In this review we provide a summary of recent developments in the field of movement disorders with abnormalities in iron transport, and the current evidence in neurodegenerative disorders such as Parkinson's disease.

  9. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa

    NASA Technical Reports Server (NTRS)

    Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  10. Erosion-corrosion entrainment of iron-containing compounds as a source of deposits in steam generators used at nuclear power plants equipped with VVER reactors

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2011-03-01

    The main stages and processes through which deposits are generated, migrate, and precipitate in the metal-secondary coolant system of power units at nuclear power plants are analyzed and determined. It is shown that substances produced by the mechanism of general erosion-corrosion are the main source of the ionic-colloid form of iron, which is the main component of deposits in a steam generator. Ways for controlling the formation of deposits in a nuclear power plant's steam generator are proposed together with methods for estimating their efficiency.

  11. Quantitative T2* magnetic resonance imaging for evaluation of iron deposition in the brain of β-thalassemia patients.

    PubMed

    Akhlaghpoor, S; Ghahari, A; Morteza, A; Khalilzadeh, O; Shakourirad, A; Alinaghizadeh, M R

    2012-09-01

    Iron overload is a common clinical problem in patients with β-thalassemia major. The purpose of this study was to assess the presence of excess iron in certain areas of the brain (thalamus, midbrain, adenohypophysis and basal ganglia) in patients with β-thalassemia major and evaluate the association with serum ferritin and liver iron content. A cross-sectional study on 53 patients with β-thalassemia major and 40 healthy controls was carried out. All patients and healthy controls underwent magnetic resonance imaging (MRI) examinations of the brain and liver. Multiecho fast gradient echo sequence was used and T2* values were calculated based on the Brompton protocol. Correlations between T2* values in the brain with T2* values in the liver as well as serum ferritin levels were investigated. There were no significant differences between patients and healthy controls with respect to age and sex. Patients had significantly lower T2* values in basal ganglia (striatum), thalamus and adenohypophysis compared to controls while there were no differences in the midbrain (red nucleus). There were no significant correlations between liver T2* values or serum ferritin with T2* values of basal ganglia (striatum), thalamus and adenohypophysis in patients or healthy controls. There were no significant correlations between T2* values of adenohypophysis and thalamus or basal ganglia (striatum) while these variables were significantly correlated in healthy controls. Serum ferritin and liver iron content may not be good indicators of brain iron deposition in patients with β thalassemia major. Nevertheless, the quantitative T2* MRI technique is useful for evaluation of brain iron overload in β thalassemia major patients.

  12. Magnetic Resonance Imaging Quantification of Liver Iron

    PubMed Central

    Sirlin, Claude B.; Reeder, Scott B.

    2011-01-01

    Iron overload is the histological hallmark of genetic hemochromatosis and transfusional hemosiderosis but also may occur in chronic hepatopathies. This article provides an overview of iron deposition and diseases where liver iron overload is clinically relevant. Next, this article reviews why quantitative non-invasive biomarkers of liver iron would be beneficial. Finally, we describe current state of the art methods for quantifying iron with MRI and review remaining challenges and unsolved problems, PMID:21094445

  13. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  14. The level of depression in lower back pain patient at outpatient of neurology Haji Adam Malik hospital Medan (RS HAM

    NASA Astrophysics Data System (ADS)

    Pardosi, M. C.; Loebis’, B.; Husada, M. S.

    2018-03-01

    The incidence of Lower Back Pain (LBP) in Indonesia is unclear. Various data in some developing countries stated that the LBP incidence is approximately 15% - 20% of the population. Because there is the unclear incidence of psychological symptoms such as depression on LBP, the researchers were interested in doing this research. A descriptive study was conducted to know the level of depression of patients with LBP in outpatient of neurology RS HAM Medan. Patients with LBP (n=78) in outpatient were examined BDI-II. The minimum depression was 47.44% (n=37), mild depression was 21.79% (n=17), moderate depression was 21.79% (n=17), severe depression was 8.98% (n=7). In conclusion, the level of depression in lower back pain patient at outpatient of neurology Haji Adam Malik Hospital Medan is higher at minimum depression.

  15. Can apricot kernels fatty acids delay the atrophied hepatocytes from progression to fibrosis in dimethylnitrosamine (DMN)-induced liver injury in rats?

    PubMed

    Abdel-Rahman, Manal K

    2011-07-07

    The present study was aimed to analyze the chemical composition of ground apricot kernel (GAK) and examine its effect on hepatic fibrosis in vivo induced by dimethylnitrosamine (DMN) in rats. Hepatic fibrosis was induced by intraperitoneal injections of 10 mg/kg DMN for 3 consecutive days each week over a period of 4 wk. The rats were randomly assigned to five groups of nine rats each: the negative control group (NC), the hepatic fibrosis group (PC), hepatic fibrosis supplemented with GAK (0.5 mg/kg/BW/rat), hepatic fibrosis supplemented with GAK (1 mg/kg/BW/rat) and hepatic fibrosis supplemented with GAK (1.5 mg/kg/BW/rat). Rats were killed, blood was collected and livers were excised for biochemical measurements and histological examination. Results indicate that the diet supplemented with GAK led to improving liver function, lipid peroxides, and liver CAT, SOD and GSH. These results were confirmed by liver histology. Hierarchically high levels f GAK (1.5 mg/kg/BW/rat) gave the best results compared to other tested levels. This study demonstrates that GAK administration specifically (1.5 mg/kg/BW/rat) can effectively improve liver fibrosis caused by DMN, and may be used as a therapeutic option and preventive measure against hepatic fibrosis. Furthermore, a human trial would be applied specially GAK is a part of Egyptian diet. The act of why high amounts of GAK was improved biochemical values compared to low or moderate levels tested in this study may be due to increase levels of oleic acid and other polyphenols in apricot kernels.

  16. Lateral Asymmetry and Spatial Difference of Iron Deposition in the Substantia Nigra of Patients with Parkinson Disease Measured with Quantitative Susceptibility Mapping.

    PubMed

    Azuma, M; Hirai, T; Yamada, K; Yamashita, S; Ando, Y; Tateishi, M; Iryo, Y; Yoneda, T; Kitajima, M; Wang, Y; Yamashita, Y

    2016-05-01

    Quantitative susceptibility mapping is useful for assessing iron deposition in the substantia nigra of patients with Parkinson disease. We aimed to determine whether quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference in iron deposits in the substantia nigra of patients with Parkinson disease. Our study population comprised 24 patients with Parkinson disease and 24 age- and sex-matched healthy controls. They underwent 3T MR imaging by using a 3D multiecho gradient-echo sequence. On reconstructed quantitative susceptibility mapping, we measured the susceptibility values in the anterior, middle, and posterior parts of the substantia nigra, the whole substantia nigra, and other deep gray matter structures in both hemibrains. To identify the more and less affected hemibrains in patients with Parkinson disease, we assessed the severity of movement symptoms for each hemibrain by using the Unified Parkinson's Disease Rating Scale. In the posterior substantia nigra of patients with Parkinson disease, the mean susceptibility value was significantly higher in the more than the less affected hemibrain substantia nigra (P < .05). This value was significantly higher in both the more and less affected hemibrains of patients with Parkinson disease than in controls (P < .05). Asymmetry of the mean susceptibility values was significantly greater for patients than controls (P < .05). Receiver operating characteristic analysis showed that quantitative susceptibility mapping of the posterior substantia nigra in the more affected hemibrain provided the highest power for discriminating patients with Parkinson disease from the controls. Quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference of iron deposition in the substantia nigra of patients with Parkinson disease. © 2016 by American Journal of Neuroradiology.

  17. Assessing the Roles of Iron, Macronutrients and Wet deposition in Controlling Phytoplankton Growth in Seasonally Oligotrophic Waters of the Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Sedwick, P.; Mulholland, M. R.; Najjar, R.; Bernhardt, P. W.; Price, L. M.; Sohst, B. M.; Sookhdeo, C.; Widner, B.

    2016-02-01

    The role of iron supply in regulating phytoplankton production in high-nutrient, low-chlorophyll ocean regions has been well established. Less clear, however, is the importance of iron for phytoplankton processes in other oceanic settings, such as coastal and oligotrophic waters, where differential changes in the supply and removal of dissolved iron (dFe) can result in limitation or co-limitation of growth due to iron deficiency. One such region of interest is the Mid-Atlantic Bight (MAB), where previous field experiments have provided some evidence of co-limitation of algal growth by nitrogen and iron. In summer 2014 we conducted field sampling and shipboard experiments to assess the role of iron and macronutrient availability in controlling primary production in seasonally oligotrophic waters over the MAB continental slope, with a focus on the the impacts of wet deposition. Our results indicate that nitrogen was the proximate limiting nutrient, with a secondary limitation imposed by availability of phosphorus; we found no evidence for a deficiency in dFe, which was present at concentrations in the range 0.3-0.9 nM. Phytoplankton growth was clearly stimulated by the addition of natural rainwater, suggesting that summer rain events stimulate primary production in the MAB by contributing new nitrogen (primarily as ammonium) and phosphorus, whilst maintaining iron-replete conditions.

  18. New targeted therapies and diagnostic methods for iron overload diseases.

    PubMed

    Kolnagou, Annita; Kontoghiorghe, Christina N; Kontoghiorghes, George John

    2018-01-01

    Millions of people worldwide suffer from iron overload toxicity diseases such as transfusional iron overload in thalassaemia and hereditary haemochromatosis. The accumulation and presence of toxic focal iron deposits causing tissue damage can also be identified in Friedreich's ataxia, Alzheimer's, Parkinson's, renal and other diseases. Different diagnostic criteria of toxicity and therapeutic interventions apply to each disease of excess or misplaced iron. Magnetic resonance imaging relaxation times T2 and T2* for monitoring iron deposits in organs and iron biomarkers such as serum ferritin and transferrin iron saturation have contributed in the elucidation of iron toxicity mechanisms and pathways, and also the evaluation of the efficacy and mode of action of chelating drugs in the treatment of diseases related to iron overload, toxicity and metabolism. Similarly, histopathological and electron microscopy diagnostic methods have revealed mechanisms of iron overload toxicity at cellular and sub-cellular levels. These new diagnostic criteria and chelator dose adjustments could apply in different or special patient categories e.g. thalassaemia patients with normal iron stores, where iron deficiency and over-chelation toxicity should be avoided.

  19. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory

    2015-01-01

    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  20. Isolation of iron bacteria from terrestrial and aquatic environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Bertram; Szewzyk, Ulrich

    2010-05-01

    Bacteria, which are capable of iron oxidation or at least iron deposition are widely distributed in environments where zones of dissolved ferrous iron and oxygen gradients are overlapping [1]. They take part in the biological cycling of iron and influence other cycles of elements for example carbon [2]. Manganese can be used for similar metabolic purposes as iron, because it can be biologically oxidized by chemolithotrophs or can be reduced by respirating bacteria as well [3, 4]. Bacterial activity is responsible for the accumulation of ferric iron compounds in their surroundings. The formation of bog ore is a well known example for a soil horizon, with an extreme enrichment of biogenic ferric iron [5]. We focused on the isolation of neutrophilic iron bacteria and bacteria capable of manganese oxidation. We used samples from Tierra del Fuego (Argentina) the National Park "Unteres Odertal" (Germany) and Berlin ground water wells. Microscopic examination of the samples revealed a considerable diversity of iron encrusted structures of bacterial origin. Most of these morphologic types are already well known. The taxonomic classification of many of these organisms is based on morphologic features and is not reliable compared to recent methods of molecular biology. That is mainly due to the fact, that most of these bacteria are hardly culturable or do not show their characteristic morphologic features under culture conditions. We established a collection of more than 300 iron depositing strains. Phylogenetic analyses showed that we have many yet uncultured strains in pure culture. We obtained many isolates which form distinct branches within long known iron bacteria groups like the Sphaerotilus-Leptothrix cluster. But some of the strains belong to groups, which have not yet been associated with iron oxidation activity. The strains deposit high amounts of oxidized iron and manganese compounds under laboratory conditions. However it is unclear if these precipitations are

  1. Compositional variation of glauconites in Upper Cretaceous-Paleogene sedimentary iron-ore deposits in South-eastern Western Siberia

    NASA Astrophysics Data System (ADS)

    Rudmin, Maxim; Banerjee, Santanu; Mazurov, Aleksey

    2017-06-01

    Glauconite occurs either as unaltered greenish or as altered brownish variety in Upper Cretaceous-Palaeocene sediments in the southeastern corner of Western Siberia. Studied section within the Bakchar iron-ore deposit includes Ipatovo, Slavgorod, Gan'kino and Lyulinvor formations, which are represented by sandstones, siltstones, claystones and oolitic ironstones of coastal-marine facies. The origin of unaltered glauconite is explained by the ;verdissement theory;. Transgressions during Lower Coniacian, Santonian and Campanian favored the formation of unaltered glauconites in dysoxic to anoxic conditions. Subaerial exposure of glauconite resulted in leaching of potassium, oxidation of iron and formation of iron hydroxides in Upper Coniacian, Maastrichtian and Palaeocene. Glauconite ultimately converts to leptochlorite and hydrogoethite by this alteration. Abundant microscopic gold inclusions, besides sulphides, sulphates, oxides and silicates characterize this glauconite. Mineral inclusions include precious, rare metals and non-ferrous metals. The concentration of gold in glauconite may be as high as 42.9 ppb. Abundant inclusions of various compositions in glauconites indicate enrichment of marine sediments in precious and non-precious metals. While major element composition of glauconites is affected by subaerial exposure, the broadly similar micro-inclusions in both altered and unaltered varieties are possibly related to the comparatively immobile nature of REE and trace elements.

  2. Can apricot kernels fatty acids delay the atrophied hepatocytes from progression to fibrosis in dimethylnitrosamine (DMN)-induced liver injury in rats?

    PubMed Central

    2011-01-01

    Background and aims The present study was aimed to analyze the chemical composition of ground apricot kernel (GAK) and examine its effect on hepatic fibrosis in vivo induced by dimethylnitrosamine (DMN) in rats. Methods and results Hepatic fibrosis was induced by intraperitoneal injections of 10 mg/kg DMN for 3 consecutive days each week over a period of 4 wk. The rats were randomly assigned to five groups of nine rats each: the negative control group (NC), the hepatic fibrosis group (PC), hepatic fibrosis supplemented with GAK (0.5 mg/kg/BW/rat), hepatic fibrosis supplemented with GAK (1 mg/kg/BW/rat) and hepatic fibrosis supplemented with GAK (1.5 mg/kg/BW/rat). Rats were killed, blood was collected and livers were excised for biochemical measurements and histological examination. Results indicate that the diet supplemented with GAK led to improving liver function, lipid peroxides, and liver CAT, SOD and GSH. These results were confirmed by liver histology. Hierarchically high levels f GAK (1.5 mg/kg/BW/rat) gave the best results compared to other tested levels. Conclusion This study demonstrates that GAK administration specifically (1.5 mg/kg/BW/rat) can effectively improve liver fibrosis caused by DMN, and may be used as a therapeutic option and preventive measure against hepatic fibrosis. Furthermore, a human trial would be applied specially GAK is a part of Egyptian diet. The act of why high amounts of GAK was improved biochemical values compared to low or moderate levels tested in this study may be due to increase levels of oleic acid and other polyphenols in apricot kernels PMID:21736706

  3. Antibiotic sensitivity pattern of bacteria from diabetic foot infections Haji Adam Malik central general hospital

    NASA Astrophysics Data System (ADS)

    Bulolo, B. A.; Pase, M. A.; Ginting, F.

    2018-03-01

    Increasing rate of Diabetic Foot Infections (DFIs) caused by multi-drug-resistance pathogens plays a huge role in the duration of hospitalization, morbidity, and mortality of diabetic patients. The aim of the study is to assess the antibiotic sensitivity pattern of bacteria in DFIs and causative microorganisms. Using cross-sectional retrospective study, data were collected from medical records of DFIs patients previously hospitalized atHaji Adam Malik Hospital, Medan from January to July 2017. 33 patients met the criteria and got enrolled in the study. The classification of DFIs was evaluated according to Wagner’s Classification. Evaluation of antibiotic sensitivity and identification of causative microorganisms were performed in standard microbiologic methods. The most common grade of DFIs was Grade-4 (48.5%), followed by Grade-3 (39.4%) and Grade-5 (9.1%). A total of 12 pathogens were identified. The most common infecting microorganism isolated on pus cultures was Klebsiella pneumonia (33.3%), followed by Escherichia coli (24.2%), Acinetobacter baumanni (12.1%), and Staphylococcus aureus (9.1%). Frequent susceptible antibiotics were Amikacin (88.8%), Imipenem (87%), Meropenem (84.6%), Erythromycin (75%), and Cefoperazone/Sulbactam (68.9%). DFIs are polymicrobial infections in this study K. pneumonia was the most common cause microorganism.

  4. Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, southeast Missouri, USA

    USGS Publications Warehouse

    Childress, Tristan; Simon, Adam C.; Day, Warren C.; Lundstrom, Craig C.; Bindeman, Ilya N.

    2016-01-01

    New O and Fe stable isotope ratios are reported for magnetite samples from high-grade massive magnetite of the Mesoproterozoic Pea Ridge and Pilot Knob magnetite-apatite ore deposits and these results are compared with data for other iron oxide-apatite deposits to shed light on the origin of the southeast Missouri deposits. The δ18O values of magnetite from Pea Ridge (n = 12) and Pilot Knob (n = 3) range from 1.0 to 7.0 and 3.3 to 6.7‰, respectively. The δ56Fe values of magnetite from Pea Ridge (n = 10) and Pilot Knob (n = 6) are 0.03 to 0.35 and 0.06 to 0.27‰, respectively. These δ18O and the δ56Fe values suggest that magnetite crystallized from a silicate melt (typical igneous δ56Fe ranges 0.06–0.49‰) and grew in equilibrium with a magmatic-hydrothermal aqueous fluid. We propose that the δ18O and δ56Fe data for the Pea Ridge and Pilot Knob magnetite-apatite deposits are consistent with the flotation model recently proposed by Knipping et al. (2015a), which invokes flotation of a magmatic magnetite-fluid suspension and offers a plausible explanation for the igneous (i.e., up to ~15.9 wt % TiO2 in magnetite) and hydrothermal features of the deposits.

  5. Reflection seismic characterization of the Grängesberg iron deposit and its mining-induced structures, central Sweden

    NASA Astrophysics Data System (ADS)

    Place, Joachim; Malehmir, Alireza; Högdahl, Karin; Juhlin, Christopher; Persson Nilsson, Katarina

    2014-05-01

    Reflection seismic investigation has been conducted on the Grängesberg apatite iron deposit where over 150 Mt of iron ore were produced until the mine closed in 1989. The mine infrastructure with shafts and tunnels extend down to ca. 650 m below the surface. Both natural and mine induced fracture and fault systems are today water-filled (some of them extending to the surface). The disputed ore genesis of the apatite-iron ores and its exploration potential due to large remaining quantities once again attracts both scientific and commercial interests. A good understanding of the geometry of mineral deposits and their hostrock structures at depth is essential for optimizing their exploration and exploitation. In addition, deep understanding of the fracture system is vital if mining activity is resumed as these may impact the terrain stability and seismicity, which may put at risk new populated and industrial areas. To address some of these challenging issues related to the past mining and also to obtain information about the depth continuation of the existing deposit, two E-W oriented reflection lines with a total length of 3.5 km were acquired in May 2013 by Uppsala University. A weight drop mounted on an hydraulic bobcat truck (traditionally used for concrete breaking in demolition sector) was used to generate seismic signal. In order to increase the signal-to-noise ratio, several impacts were generated at each shot point and stacked together. The seismic lines intersect at high angle the Grängesberg ore body and open pit, as well as several mining-induced faults. A combination of cabled and wireless receivers placed at every 10 m was used for the data recording. Use of wireless receivers was necessary as deploying cabled sensors was not possible due to city infrastructures, roads and houses. A careful analysis of the data suggested that several field-related issues such as (1) the crooked geometry of the lines (due to the available path and road network), (2

  6. Overload of iron in the skin of patients with varicose ulcers. Possible contributing role of iron accumulation in progression of the disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, Z.; Seidenbaum, M.; Loewenthal, E.

    1988-09-01

    The brown pigmentation of the skin associated with venous ulceration is caused by increased local iron deposition. Diagnostic x-ray spectrometry, a method based on x-ray fluorescence analysis, was used for the noninvasive determination of iron levels in the skin of patients with venous ulceration. The mean (+/- SEM) iron concentration in the skin around the venous ulcer was elevated, compared with control values of nonulcerated skin (250 +/- 54 vs 128 +/- 39 micrograms) and compared with normal skin from the forearm (250 +/- 54 vs 14 +/- 2.5 micrograms). These data suggest that dermal iron deposition may not bemore » an incidental by-product of increased venous pressure, but may actively perpetuate tissue damage in venous ulcerations.« less

  7. The deposition of corrosion products in Pb17Li

    NASA Astrophysics Data System (ADS)

    Barker, Marten G.; Capaldi, Michael J.

    1994-09-01

    A series of simple deposition tests has been carried out in Pb17Li contained in type 316 stainless steel tubes under a temperature gradient. Two basic types of deposit have been identified from all 316 steel systems. The first type which is dendritic in form is composed mainly of iron and chromium and deposits in the temperature region 673 to 823 K. Deposits at the lower temperature were chromium rich whilst those at the higher temperature were iron-rich. The second type found at temperatures below 623 K shows a temperature dependence being composed of nickel and manganese at 573 K and nickel, iron and chromium at 623 K. Pure nickel only deposits if the alloy is at near saturation in nickel at the highest temperature of the system (873 K). Aluminium mass transfers readily in Pb17Li and in solution causes the formation of aluminide layers on the steel surface in the high temperature zone.

  8. Oxalate deposition on asbestos bodies.

    PubMed

    Ghio, Andrew J; Roggli, Victor L; Richards, Judy H; Crissman, Kay M; Stonehuerner, Jacqueline D; Piantadosi, Claude A

    2003-08-01

    We report on a deposition of oxalate crystals on ferruginous bodies after occupational exposure to asbestos demonstrated in 3 patients. We investigated the mechanism and possible significance of this deposition by testing the hypothesis that oxalate generated through nonenzymatic oxidation of ascorbate by asbestos-associated iron accounts for the deposition of the crystal on a ferruginous body. Crocidolite asbestos (1000 microg/mL) was incubated with 500 micromol H(2)O(2) and 500 micromol ascorbate for 24 hours at 22 degrees C. The dependence of oxalate generation on iron-catalyzed oxidant production was tested with the both the metal chelator deferoxamine and the radical scavenger dimethylthiourea. Incubation of crocidolite, H(2)O(2), and ascorbate in vitro generated approximately 42 nmol of oxalate in 24 hours. Oxalate generation was diminished significantly by the inclusion of either deferoxamine or dimethylthiourea in the reaction mixture. Incubation of asbestos bodies and uncoated fibers isolated from human lung with 500 micromol H(2)O(2) and 500 micromol ascorbate for 24 hours at 22 degrees C resulted in the generation of numerous oxalate crystals. We conclude that iron-catalyzed production of oxalate from ascorbate can account for the deposition of this crystal on ferruginous bodies.

  9. The F'derik-Zouerate iron district: Mesoarchean and Paleoproterozoic iron formation of the Tiris Complex, Islamic Republic of Mauritania

    USGS Publications Warehouse

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Bradley, Dwight C.; Joud, Mohamed; Taleb Mohamed, Ahmed; Horton, John D.; Johnson, Craig A.; Bouabdellah, Mohammed; Slack, John F.

    2016-01-01

    High-grade hematitic iron ores (of HIF, containing 60-65 wt%Fe) have been mined in Mauritania since 1952 from Superior-type iron deposits of the F'derik-Zouerate district.  Depletion of the high-grade ores in recent years has resulted in new exploration projects focused on lower-grade magnetite ores occurring in Algoma-type banded iron formation (of BIF, containing ca. 35 wt% Fe).  Mauritania is the seventeenth largest iron producer in the world and currently has about 1.1 Gt of crude iron ore reserves. 

  10. A composite mouse model of aplastic anemia complicated with iron overload

    PubMed Central

    Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong

    2018-01-01

    Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits. PMID:29434729

  11. A composite mouse model of aplastic anemia complicated with iron overload.

    PubMed

    Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong

    2018-02-01

    Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.

  12. Reconstructing the Mineralogy and Bioavailability of Dust-Borne Iron Deposited to the Southern Ocean through the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Shoenfelt, E. M.; Winckler, G.; Lamy, F.; Bostick, B. C.

    2017-12-01

    The iron (Fe) in dust deposited to the Fe-limited Southern Ocean plays an important role in ocean biogeochemistry and global climate. For instance, increases in dust-borne Fe deposition in the subantarctic Southern Ocean have been linked to increases in productivity and part of the CO2 drawdown of the last glacial cycle [1]. Notably, bioavailable Fe impacts productivity rather than total Fe. While it has long been understood that Fe mineralogy impacts Fe bioavailability in general, our understanding of the mineralogy of Fe in dust in specific is limited to that in modern dust sources. Reduced mineral Fe in dust has been shown to be more bioavailable than oxidized mineral iron, as it is more readily dissolved [2], and it is more easily utilized directly by a model diatom [3]. Our previous work focusing on South American dust sources shows that glacial activity is associated with higher Fe(II) fractions in dust-borne minerals, due to the physical weathering of Fe(II)-rich silicates in bedrock [3]. Thus, we hypothesize that there were higher Fe(II) fractions in dust deposited during cold glacial periods where ice sheets were more widespread. Using synchrotron-based X-ray absorption spectroscopy, we have reconstructed the mineralogy of Fe deposited to Southern Ocean sediment cores from the subantarctic South Atlantic (TN057-6/ODP Site 1090) and South Pacific (PS7/56-1) through the last glacial cycle, creating the first paleorecord of Fe mineralogy and its associated bioavailability. During cold glacial periods there is a higher fraction of reduced Fe - in the form of Fe(II) silicates - deposited to the sediments compared to warm interglacial periods. Thus, Fe(II) content is directly correlated with dust input. The presence of Fe(II) silicates rather than products of diagenesis such as pyrite suggests that these Fe(II) minerals are physically weathered from bedrock and preserved rather than produced in the sediment. This result suggests that not only was there more dust

  13. Optic radiations are thinner and show signs of iron deposition in patients with long-standing remitting-relapsing multiple sclerosis: an enhanced T2*-weighted angiography imaging study.

    PubMed

    Zeng, Chun; Du, Silin; Han, Yongliang; Fu, Jialiang; Luo, Qi; Xiang, Yayun; Chen, Xiaoya; Luo, Tianyou; Li, Yongmei; Zheng, Yineng

    2018-04-30

    This study aimed to investigate iron deposition and thickness and signal changes in optic radiation (OR) by enhanced T 2 * -weighted angiography imaging (ESWAN) in patients with relapsing-remitting multiple sclerosis (RRMS) with unilateral and bilateral lesions or no lesions. Fifty-one RRMS patients (42 patients with a disease duration [DD] ≥ 2 years [group Mor], nine patients with a DD < 2 years [group Les]) and 51 healthy controls (group Con) underwent conventional magnetic resonance imaging (MRI) and ESWAN at 3.0 T. The mean phase value (MPV) of the OR was measured on the phase image, and thickness and signal changes of the OR were observed on the magnitude image. The average MPVs for the OR were 1,981.55 ± 7.75 in group Mor, 1,998.45 ± 2.01 in group Les, and 2,000.48 ± 5.53 in group Con. In group Mor, 28 patients with bilateral OR lesions showed bilateral OR thinning with a heterogeneous signal, and 14 patients with unilateral OR lesions showed ipsilateral OR thinning with a heterogeneous signal. In the remaining nine patients without OR lesions and in group Con, the bilateral OR had a normal appearance. In the patients, a negative correlation was found between DD and OR thickness and a positive correlation was found between MPV and OR thickness. We confirmed iron deposition in the OR in the RRMS patients, and the OR thickness was lower in the patients than in the controls. • Enhanced T 2 * -weighted magnetic resonance angiography (ESWAN) provides new insights into multiple sclerosis (MS). • Focal destruction of the optic radiation (OR) is detectable by ESWAN. • Iron deposition in OR can be measured on ESWAN phase image in MS patients. • OR thickness was lower in the patients than in the controls. • Iron deposition and thickness changes of the OR are associated with disease duration.

  14. Planktonic Marine Iron-Oxidizers Drive Iron(III) Mineralization Under Low Oxygen Conditions

    NASA Astrophysics Data System (ADS)

    Luther, G. W., III; Field, E.; Findlay, A.; MacDonald, D. J.; Chan, C. S. Y.; Kato, S.

    2016-02-01

    Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive banded iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypotheses was that cyanobacteria produced oxygen that oxidized iron(II) abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron(II)-oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron-oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to iron deposits, but there is currently little evidence for planktonic marine iron-oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron-oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic-anoxic transition zone (<3 µM O2, <0.2 µM H2S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Instead, cyanobacteria may be providing oxygen for microaerophilic iron(II) oxidation through a symbiotic relationship that promotes oxygen consumption rather than build-up. Our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron(II)-oxidizers were likely important drivers of iron(III) mineralization in ancient oceans.

  15. Diethylentriaminepenta acetic acid glucose conjugates as a cell permeable iron chelator.

    PubMed

    Mosayebnia, Mona; Shafiee-Ardestani, Mehdi; Pasalar, Parvin; Mashayekhi, Mojgan; Amanlou, Massoud

    2014-01-01

    To find out whether DTPA-DG complex can enhance clearance of intracellular free iron. Diethylenetriaminepentaacetic acid-D-deoxy-glucosamine (DTPA-DG) was synthesized and examined for its activity as a cell-permeable iron chelator in human hepatocellular carcinoma (HEPG2) cell line exposed to high concentration of iron sulfate and compared with deferoxamine (DFO), a prototype iron chelator. The effect of DTPA-DG on cell viability was monitored using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide MTT assay as well. There was a significant increase of iron level after iron overload induction in HEPG2 cell culture. DTPA-DG presented a remarkable capacity to iron burden reducing with estimated 50% inhibitory concentration value of 65.77 nM. In fact, glycosyl moiety was gained access of DTPA to intracellular iron deposits through glucose transporter systems. DTPA-DG, more potent than DFO to sequester deposits of free iron with no profound toxic effect. The results suggest the potential of DTPA-DG in chelating iron and permitting its excretion from primary organ storage.

  16. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  17. Parametric Investigation of the Kinetics of Growth of Carbon-Nanotube Arrays on Iron Nanoparticles in the Process of Chemical Vapor Deposition of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Shulitski, B. G.; Labunov, V. A.; Ermolaevaa, E. M.

    2015-03-01

    On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700oC is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the signifi cant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons.

  18. Corrosion, optical and magnetic properties of flexible iron nitride nano thin films deposited on polymer substrate

    NASA Astrophysics Data System (ADS)

    Khan, W. Q.; Wang, Qun; Jin, Xin; Yasin, G.

    2017-11-01

    Iron nitride thin films of different compositions and thicknesses were deposited on flexible polymer substrate in Ar/N2 atmosphere by reactive magnetron sputtering under varying nitrogen flow rates. The nano structured films were characterized by X-ray diffraction, UV-visible spectrophotometer, electrochemical impedance (EIS), atomic force (AFM) and transmission electron microscopies. The dependence of their functional properties on coating and growth conditions was studied in detail. It was found that the thin films show a uniform permeability in the frequency range of 200 MHz to 1 Ghz and can be used in this range without appreciable changes. Decrease of nitrogen flow rate resulted in the smoother surfaces which in turn increase transmittance quality and corrosion resistance. Functional properties are dependent of nature, relative concentration of the iron nitride phases and film thickness. Surface integrity is excellent for180 nm thick sample because the films appear to be very dense and free from open pores. By keeping sputtering power stable at 110 W, nitrogen flow rate of 10 sccm was ideal to develop the ferromagnetic γʹFe4N phase at room temperature.

  19. Characteristics of Iron-Palladium alloy thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chiu, Y.-J.; Shen, C.-Y.; Chang, H.-W.; Jian, S.-R.

    2018-06-01

    The microstructural features, magnetic, nanomechanical properties and wettability behaviors of Iron-Palladium (FePd) alloy thin films are investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), nanoindentation and water contact angle (CA) techniques, respectively. The FePd alloy thin films were deposited on glass substrates using a magnetron sputtering system. The post-annealing processes of FePd alloy thin films were carried out at 400 °C and 750 °C and resulted in a significant increase of both the average grain size and surface roughness. The XRD analysis showed that FePd alloy thin films exhibited a predominant (1 1 1) orientation. The magnetic field dependence of magnetization of all FePd thin films are measured at room temperature showed the ferromagnetic characteristics. The nanoindentation with continuous stiffness measurement (CSM) is used to measure the hardness and Young's modulus of present films. The contact angle (θCA) increased with increasing surface roughness. The maximum θCA of 75° was achieved for the FePd alloy thin film after annealing at 750 °C and a surface roughness of 4.2 nm.

  20. Carbon deposition in the Bosch process with ruthenium and ruthenium-iron alloy catalysts. M.S. Thesis. Final Report, Jan. 1981 - Jul. 1982

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.; Sophonpanich, C.

    1982-01-01

    The effectiveness of ruthenium and the alloys 50Ru50Fe and 33Ru67Fe as alternatives to iron, nickel, and cobalt catalysts in recovering oxygen from metabolic carbon dioxide was investigated. Carbon deposition boundaries over the unsupported alloys are reported. Experiments were also carried out over 50Ru50Fe and 97Ru3Fe3 catalysts supported on gamma-alumina to determine their performance in the synthesis of low molecular weight olefins. High production of ethylene and propylene would be beneficial for an improvement of an overall Bosch process, as a gas phase containing high olefin content would enhance carbon deposition in a Bosch reactor.

  1. Iron doped LiCoPO4 thin films for lithium-ion microbatteries obtained by ns pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Smaldone, A.; Brutti, S.; De Bonis, A.; Ciarfaglia, N.; Santagata, A.; Teghil, R.

    2018-07-01

    Well crystallized and homogeneous iron doped LiCoPO4 (LCfP) thin films have been grown by ns Pulsed Laser Ablation, at ambient temperature without any substrate heating or post-annealing treatments. The films have been deposited in vacuum and in the presence of buffer gases (O2, Ar) and it has been found that their crystallinity, structure and morphology depend on pressure conditions. The films have been studied by Scanning Electron Microscopy and X Ray Diffraction, while their first steps of growth have been characterized by Transmission Electron Microscopy. A study of the plasma produced by the laser ablation in the different pressure conditions has been carried out with the aim of elucidate the mechanisms involved in the films deposition. LCfP thin films have been also tested as microelectrodes in lithium cells in galvanostatic condition for analyzing the reversibility of the lithium-ion battery.

  2. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry

    NASA Astrophysics Data System (ADS)

    Mokhtari, Mir Ali Asghar; Zadeh, Ghader Hossein; Emami, Mohamad Hashem

    2013-06-01

    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE-NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle

  3. Alteration, oxygen isotope, and fluid inclusion study of the Meishan iron oxide-apatite deposit, SE China

    NASA Astrophysics Data System (ADS)

    Yu, Jinjie; Che, Linrui; Wang, Tiezhu

    2015-10-01

    The Meishan deposit (338 Mt at 39 % Fe) comprises massive ores in the main orebody and stockwork and disseminated ores along the main orebody. Four stages of mineralization and related alteration have been identified. The second stage of mineralization, which was the main stage of iron mineralization, formed stringer, disseminated iron ores, as well as the main Meishan orebody. The fourth stage formed small pyrite and/or gold orebodies above or alongside the main magnetite orebody. Stage 2 apatites have homogenization temperatures of 257-485 °C and salinities of 7.3-11 wt% NaCleq. Calculated δ18Ofluid values of magnetite and apatite from the disseminated ores vary between 7.7 and 14.9 ‰, which is similar to values observed in the massive ores (8.1-12.9 ‰). The high-18O fluids at Meishan have been interpreted as being of magmatic-hydrothermal origin. These fluids are indicative of the boiling of ore-forming fluids. Quartz, occurring as cavity fillings, gives homogenization temperatures from 202 to 344 °C, with most values lying between 250 and 330 °C. Corresponding salinities are ˜5 wt% NaCleq. Calculated δ18Ofluid values are +6.4 to +6.8 ‰. These values indicate that the lower-temperature (250-330 °C) quartz was deposited from a cooling magmatic-hydrothermal fluid. Stage 3 siderites contain fluid inclusions that homogenized between 190 and 310 °C, mainly between 210 and 290 °C. Corresponding salinities are 4-8 wt% NaCleq. Stage 4 quartz-carbonate veinlets contain fluid inclusions that homogenized at moderate to low temperatures (150-230 °C) and exhibit low salinities (2-10 wt% NaCl eq). δ18Ofluid values of the mineralizing fluids for the quartz and calcite can be calculated to vary from -0.7 to +5.6 ‰ and +6.3 to +10.2 ‰, respectively. While there is some overlap, the δ18O values of the fluids are generally lower than those observed in the massive and disseminated magnetite ores. δD values for the quartz and calcite vary between -154 and -123

  4. Nitrosative Stress and Apoptosis by Intravenous Ferumoxytol, Iron Isomaltoside 1000, Iron Dextran, Iron Sucrose, and Ferric Carboxymaltose in a Nonclinical Model.

    PubMed

    Toblli, J E; Cao, G; Giani, J F; Dominici, F P; Angerosa, M

    2015-07-01

    Iron is involved in the formation as well as in the scavenging of reactive oxygen and nitrogen species. Thus, iron can induce as well as inhibit both oxidative and nitrosative stress. It also has a key role in reactive oxygen and nitrogen species-mediated apoptosis. We assessed the differences in tyrosine nitration and caspase 3 expression in the liver, heart, and kidneys of rats treated weekly with intravenous ferumoxytol, iron isomaltoside 1000, iron dextran, iron sucrose and ferric carboxymaltose (40 mg iron/kg body weight) for 5 weeks. Nitrotyrosine was quantified in tissue homogenates by Western blotting and the distribution of nitrotyrosine and caspase 3 was assessed in tissue sections by immunohistochemistry. Ferric carboxymaltose and iron sucrose administration did not result in detectable levels of nitrotyrosine or significant levels of caspase 3 vs. control in any of the tissue studied. Nitrotyrosine and caspase 3 levels were significantly (p<0.01) increased in all assessed organs of animals treated with iron dextran and iron isomaltoside 1000, as well as in the liver and kidneys of ferumoxytol-treated animals compared to isotonic saline solution (control). Nitrotyrosine and caspase 3 levels were shown to correlate positively with the amount of Prussian blue-detectable iron(III) deposits in iron dextran- and iron isomaltoside 1000-treated rats but not in ferumoxytol-treated rats, suggesting that iron dextran, iron isomaltoside 1000 and ferumoxytol induce nitrosative (and oxidative) stress as well as apoptosis via different mechanism(s). © Georg Thieme Verlag KG Stuttgart · New York.

  5. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  6. Role of evaporitic sulfates in iron skarn mineralization: a fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton

    NASA Astrophysics Data System (ADS)

    Wen, Guang; Bi, Shi-Jian; Li, Jian-Wei

    2017-04-01

    The Xishimen iron skarn deposit in the Handan-Xingtai district, North China Craton, contains 256 Mt @ 43 % Fe (up to 65 %). The mineralization is dominated by massive magnetite ore along the contact zone between the early Cretaceous Xishimen diorite stock and middle Ordovician dolomite and dolomitic limestones with numerous intercalations of evaporitic beds. Minor lenticular magnetite-dominated bodies also occur in the carbonate rocks proximal to the diorite stock. Hydrothermal alteration is characterized by extensive albitization within the diorite stock and extreme development of magnesian skarn along the contact zone consisting of diopside, forsterite, serpentine, tremolite, phlogopite, and talc. Magmatic quartz and amphibole from the diorite and hydrothermal diopside from the skarns contain abundant primary or pseudosecondary fluid inclusions, most of which have multiple daughter minerals dominated by halite, sylvite, and opaque phases. Scanning electron microscopy (SEM) and laser Raman spectrometry confirm that pyrrhotite is the predominant opaque phase in most fluid inclusions, in both the magmatic and skarn minerals. These fluid inclusions have total homogenization temperatures of 416-620 °C and calculated salinities of 42.4-74.5 wt% NaCl equiv. The fluid inclusion data thus document a high-temperature, high-salinity, ferrous iron-rich, reducing fluid exsolved from a cooling magma likely represented by the Xishimen diorite stock. Pyrite from the iron ore has δ34S values ranging from 14.0 to 18.6 ‰, which are significantly higher than typical magmatic values (δ34S = 0 ± 5 ‰). The sulfur isotope data thus indicate an external source for the sulfur, most likely from the evaporitic beds in the Ordovician carbonate sequences that have δ34S values of 24 to 29 ‰. We suggest that sulfates from the evaporitic beds have played a critically important role by oxidizing ferrous iron in the magmatic-hydrothermal fluid, leading to precipitation of massive

  7. Structurally bound sulfide and sulfate in apatite from the Philips Mine iron oxide - apatite deposit, New York, USA: A tracer of redox changes

    NASA Astrophysics Data System (ADS)

    Sadove, G.; Konecke, B.; Fiege, A.; Simon, A. C.

    2017-12-01

    Multiple competing hypotheses attempt to explain the genesis of iron oxide-apatite (IOA) ore deposits. Many studies have investigated the chemistry of apatite because the abundances of F and Cl can distinguish magmatic vs. hydrothermal processes. Recent experiments demonstrate that apatite incorporates S6+, S4+, and S2-, and that total sulfur (∑S) as well as the S6+/∑S ratio in apatite vary systematically as a function of oxygen fugacity [1], providing information about sulfur budget and redox. Here, we present results from X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge, electron microprobe analyses, cathodoluminescence (CL) imaging, and element mapping of apatite from the Philip's Mine IOA deposit, southern Adirondack Mountains, USA. The Philip's Mine apatite contains inclusions of pyrite and pyrrhotite, where the latter includes iron oxide and Ni-rich domains. The apatite also contains inclusions of monazite, and exhibits complex CL zonation coincident with variations in the abundances of REE and S. The presence of monazite fingerprints fluid-mediated dissolution-reprecipitation of originally REE-enriched apatite [2]. The S XANES spectra reveal varying proportions of structurally bound S6+ and S2-, as the S6+/∑S ratio ranges from sulfide-only to sulfate-only. Notably, sulfide-dominated domains contain higher S contents than sulfate-dominated regions. These observations are consistent with co-crystallization of apatite and monosulfide solid solution (MSS) at reducing conditions, followed by decomposition of MSS to pyrrhotite, pyrite and intermediate solid solution (ISS, which is not preserved; [3]). Metasomatism of that assemblage by an oxidized fluid resulted in formation of monazite in apatite and iron oxide domains in pyrrhotite. We conclude that the deposit formed by a H2S-Fe-rich volatile phase, possibly evolved from a rather primitive magmatic source, which is consistent with the low Ti content of magnetite. The deposit was

  8. Iron-ore resources of the United States including Alaska and Puerto Rico, 1955

    USGS Publications Warehouse

    Carr, Martha S.; Dutton, Carl E.

    1959-01-01

    The importance of iron ore, the basic raw material of steel, as a fundamental mineral, resource is shown by the fact that about 100 million long tons of steel is used annually in the economy of the United States, as compared with a combined total of about 5 million long tons of copper, lead, zinc, and aluminum. Satisfying this annual demand for steel requires about 110 million tons of iron ore and 70 million tons of scrap iron and steel. The average annual consumption of iron ore in the United States from 1951 to 1955, inclusive, was about 110 million long tons, which is about twice the annual average from 1900 to 1930. Production of iron ore in the United States in this 5-year period averaged approximately 100 million long tons annually, divided by regions as follows (in percent): Lake Superior, 84.1; southeastern, 6.7; western, 6.7; northeastern, 1.4; and central and gulf, 1.1. Mining of iron ore began in the American Colonies about 1619, and for 225 years it was limited to eastern United States where fuel and markets were readily available. Production of iron ore from the Lake Superior region began in 1846; the region became the leading domestic source by 1890, and the Mesabi range in Minnesota has been the world's most productive area since 1896. Proximity of raw materials, water transportation, and markets has resulted in centralization of the country's iron and steel industry in the lower Great Lakes area. Increased imports of iron ore being delivered to eastern United States as well as demands for steel in nearby markets have given impetus to expansion in the steel-making capacity in this area. The four chief iron-ore minerals - hematite, liminite, magnetite, and siderite - are widely distributed but only locally form deposits of sufficient tonnage and grade to be commercially valuable at the present time. The iron content of these minerals, of which hematite is the most important, ranges from 48 percent in siderite to 72 percent in magnetite, but as these

  9. Combining Textural Techniques to Explore Effects of Diagenesis and Low-grade Metamorphism on Iron Mineralogy and Iron Speciation

    NASA Astrophysics Data System (ADS)

    Slotznick, S. P.; Webb, S.; Eiler, J. M.; Kirschvink, J. L.; Fischer, W. W.

    2016-12-01

    Iron chemistry and mineralogy in the sedimentary rocks provide a valuable tool for studying paleoenvironmental conditions due to the fact that iron atoms can take on either the +II or +III valence state under geological redox conditions. One method utilizing this redox chemistry is `iron speciation', a bulk chemical sequential extraction technique that maps proportions of iron species to redox conditions empirically calibrated from modern sediments. However, all Precambrian and many Phanerozoic rocks have experienced post-depositional processes; it is vital to explore their effects on iron mineralogy and speciation. We combined light and electron microscopy, magnetic microscopy, (synchrotron-based) microprobe x-ray spectroscopy, and rock magnetic measurements in order to deconvolve secondary overprints from primary phases and provide quantitative measurement of iron minerals. These techniques were applied to excellently-preserved shale and siltstone samples of the 1.4 Ga lower Belt Supergroup, Montana and Idaho, USA, spanning a metamorphic gradient from sub-biotite to garnet zone. Previously measured Silurian-Devonian shales, sandstones, and carbonates in Maine and Vermont, USA spanning from the chlorite to kyanite zone provided additional well-constrained, quantitative data for comparison and to extend our analysis. In all of the studied samples, pyrrhotite formation occurred at the sub-biotite or sub-chlorite zone. Pyrrhotite was interpreted to form from pyrite and/or other iron phases based on lithology; these reactions can affect the paleoredox proxy. Iron carbonates can also severely influence iron speciation results since they often form in anoxic pore fluids during diagenesis; textural analyses of the Belt Supergroup samples highlighted that iron-bearing carbonates were early diagenetic cements or later diagenetic overprints. The inclusion of iron from diagenetic minerals during iron speciation analyses will skew results by providing a view of pore

  10. The role of iron in cancer.

    PubMed

    Weinberg, E D

    1996-02-01

    Numerous laboratory and clinical investigations over the past few decades have observed that one of the dangers of iron is its ability to favour neoplastic cell growth. The metal is carcinogenic due to its catalytic effect on the formation of hydroxyl radicals, suppression of the activity of host defence cells and promotion of cancer cell multiplication. In both animals and humans, primary neoplasms develop at body sites of excessive iron deposits. The invaded host attempts to withhold iron from the cancer cells via sequestration of the metal in newly formed ferritin. The host also endeavours to withdraw the metal from cancer cells via macrophage synthesis of nitric oxide. Quantitative evaluation of body iron and of iron-withholding proteins has prognostic value in cancer patients. Procedures associated with lowering host iron intake and inducing host cell iron efflux can assist in prevention and management of neoplastic diseases. Pharmaceutical methods for depriving neoplastic cells of iron are being developed in experimental and clinical protocols.

  11. Application of LANDSAT satellite imagery for iron ore prospecting in the western desert of Egypt

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdel-Hady, M. A.; Elghawaby, M. A.; Khawasik, S. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The delineation of the geological units and geological structures through image interpretation, corroborated by field observations and structural analysis, led to the discovery of new iron ore deposits. A new locality for iron ore deposition, namely Gebel Qalamun, was discovered, as well as new occurrences within the already known iron ore region of Bahariya Oasis.

  12. Mineral resource assessment of the Iron River 1 degree x 2 degrees Quadrangle, Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, William F.

    1983-01-01

    The Iron River 1? x 2? quadrangle contains identified resources of copper and iron. Copper-rich shale beds in the north part of the quadrangle contain 12.2 billion pounds (5.5 billion kilograms) of copper in well-studied deposits including 9.2 billion pounds (4.2 billion kilograms) that are economically minable by 1980 standards. At least several billion pounds of copper probably exist in other parts of the same shale beds, but not enough data are available to measure the amount. A small amount, about 250 million pounds (113 million kilograms), of native copper is known to remain in one abandoned mine, and additional but unknown amounts remain in other abandoned mines. About 13.25 billion tons (12.02 billion metric tons) of banded iron-formation averaging roughly 30 percent iron are known within 500 feet (152.4 meters) of the surface in the Gogebic, Marquette, and Iron River-Crystal Falls districts. A small percentage of that might someday be minable as taconite, but none is now believed to be economic. Some higher grade iron concentrations exist in the same iron-formations. Such material was the basis of former mining of iron in the region, but a poor market for such ore and depletion of many deposits have led to the decline of iron mining in the quadrangle. Iron mines of the quadrangle were not being worked in 1980. Many parts of the quadrangle contain belts of favorable host rocks for mineral deposits. Although deposits are not known in these belts, undiscovered deposits of copper, zinc, lead, silver, uranium, phosphate, nickel, chromium, platinum, gold, and diamonds could exist.

  13. Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron mineralization, and its potential as a reference material for titanite U-Pb dating

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Li, Jian-Wei; McFarlane, Christopher R. M.

    2017-09-01

    Uranium-lead isotopes and trace elements of titanite from the Chengchao iron skarn deposit (Daye district, Eastern China), located along the contact zones between Triassic marine carbonates and an early Cretaceous intrusive complex consisting of granite and quartz diorite, were analyzed using laser ablation inductively coupled plasma mass spectrometry to provide temporal constraints on iron mineralization and to evaluate its potential as a reference material for titanite U-Pb geochronology. Titanite grains from mineralized endoskarn have simple growth zoning patterns, exhibit intergrowth with magnetite, diopside, K-feldspar, albite and actinolite, and typically contain abundant primary two-phase fluid inclusions. These paragenetic and textural features suggest that these titanite grains are of hydrothermal origin. Hydrothermal titanite is distinct from the magmatic variety from the ore-related granitic intrusion in that it contains unusually high concentrations of U (up to 2995 ppm), low levels of Th (12.5-453 ppm), and virtually no common Pb. The REE concentrations are much lower, as are the Th/U and Lu/Hf ratios. The hydrothermal titanite grains yield reproducible uncorrected U-Pb ages ranging from 129.7 ± 0.7 to 132.1 ± 2.7 Ma (2σ), with a weighted mean of 131.2 ± 0.2 Ma [mean standard weighted deviation (MSWD) = 1.7] that is interpreted as the timing of iron skarn mineralization. This age closely corresponds to the zircon U-Pb age of 130.9 ± 0.7 Ma (MSWD = 0.7) determined for the quartz diorite, and the U-Pb ages for zircon and titanite (130.1 ± 1.0 Ma and 131.3 ± 0.3 Ma) in the granite, confirming a close temporal and likely genetic relationship between granitic magmatism and iron mineralization. Different hydrothermal titanite grains have virtually identical uncorrected U-Pb ratios suggestive of negligible common Pb in the mineral. The homogeneous textures and U-Pb characteristics of Chengchao hydrothermal titanite suggest that the mineral might be a

  14. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  15. New developments and controversies in iron metabolism and iron chelation therapy

    PubMed Central

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-01-01

    Iron is essential for all organisms including microbial, cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients’ therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic

  16. Coal Ash Aerosol in East Asian Outflow as a Source for Oceanic Deposition of Iron and Other Metals

    NASA Astrophysics Data System (ADS)

    Anderson, J. R.; Hua, X.

    2008-12-01

    While ocean deposition of East Asian dust is given significant emphasis as a source of biologically-active trace elements, iron in particular, dust events are episodic and highly seasonal. There is, however, a constant source of aerosol that is chemically similar to dust (albeit amorphous in structure rather than crystalline) in the ash particles emitted from many hundreds of coal-fired power plants that are sited along the entire coastal region of China and Korea. The emission controls on these facilities vary widely and, in even cases of state-of-the-art emission controls, the secondary release of ash can be significant. There are of course even more small industrial and household sources of coal combustion emissions, in most cases with little or no emissions controls. Ash from a modern coal-fired power facility in Korea has been examined chemically and morphologically with electron microscopic techniques. As is characteristic of all such facilities, two principal types of ash are present: (1) flyash, silicate glass spheres that are emitted with the smoke and removed by electrostatic precipitators; and (2) bottom ash, "clinkers" and noncombustible material sticking to the furnace walls that are mixed with water and ground after cooling, then removed as a slurry to a dumping area. In addition, iron sulfide (pyrite) is a common constituent of coal and provides both a source of sulfur dioxide gas and also molten iron spherical particles in the ash. The iron spheres then are rapidly oxidized upon cooling. Bottom ash is a more complex material than flyash in that it contains more iron and other trace metals, plus it contains varying amounts of uncombusted carbon. The post-combustion handling of bottom ash can lead to significant emissions despite the fact that little or none goes out the stack. The iron oxide spheres can also be emitted by this secondary method. The concentrations of ash can be very high in close proximity to power plants (PM10 of several hundred

  17. Iron-Dependent Regulation of Hepcidin in Hjv−/− Mice: Evidence That Hemojuvelin Is Dispensable for Sensing Body Iron Levels

    PubMed Central

    Daba, Alina; Wagner, John; Sebastiani, Giada; Pantopoulos, Kostas

    2014-01-01

    Hemojuvelin (Hjv) is a bone morphogenetic protein (BMP) co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv−/− mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv−/− mice developed systemic iron overload under all regimens. Transferrin (Tf) was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin. PMID:24409331

  18. Effect of nickel monolayer deposition on the structural and electronic properties of the low miller indices of (bcc) iron: A DFT study

    NASA Astrophysics Data System (ADS)

    Kwawu, Caroline R.; Tia, Richard; Adei, Evans; Dzade, Nelson Y.; Catlow, C. Richard A.; de Leeuw, Nora H.

    2017-04-01

    Metal clusters of both iron (Fe) and nickel (Ni) have been found in nature as active electro-catalytic sites, for example in the enzyme carbon mono-oxide dehydrogenase found in autotrophic organisms. Thus, surface modification of iron with nickel could improve the surface work function to enhance catalytic applications. The effects of surface modifications of iron by nickel on the structural and electronic properties have been studied using spin-polarised density functional theory calculations within the generalised gradient approximation. The thermodynamically preferred sites for Ni adsorption on the Fe (100), (110) and (111) surfaces have been studied at varying monolayer coverages (including 0.25 ML and 1 ML). The work function of the bare Fe surfaces is found to be of the order (100) ∼ (111) < (110) i.e. 3.80 eV ∼ 3.84 eV < 4.76 eV, which is consistent with earlier studies. The adsorption energies show that monolayer Ni deposition is thermodynamically favoured on the (100) and (111) surfaces, but not on the (110) surface. Expansion of the first interlayer spacing (d12) of all three Fe surfaces is observed upon Ni deposition with the extent of expansion decreasing in the order (111) > (110) > (100), i.e. 6.78% > 5.76% > 1.99%. The extent of relaxation is magnified on the stepped (111) surface (by 1.09% to 30.88%), where the Ni coordination number is highest at 7 compared to 5 on the (100) facet and 4 on the (110) facet. The Ni deposition changes the work functions of the various surfaces due to charge reordering illustrated by charge density plots, where the work function is reduced only on the (110) surface by 0.04 eV, 0.16 eV and 0.17 eV at 1 ML, 0.5 ML and 0.25 ML respectively, with a concomitant increase in the surface dipole (polarity). This result implies enhanced electron activity and electrochemical reactivity on the most stable and therefore frequently occurring Ni-doped (110) facet compared to the clean (110) facet, which has implications for the

  19. Permissive tracts for iron oxide copper-gold deposits in Mauritania (phase V, deliverable 78 ): Chapter M1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Fernette, Gregory; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  20. Electrodeposition and magnetic characterization of iron and iron-silicon alloys from the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate.

    PubMed

    Giridhar, Pulletikurthi; Weidenfeller, Bernd; El Abedin, Sherif Zein; Endres, Frank

    2014-11-10

    The electrodeposition of soft magnetic iron and iron-silicon alloys for magnetic measurements is presented. The preparation of these materials in 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate, [Py1,4]TfO, at 100 °C with FeCl2 and FeCl2 +SiCl4 was studied by using cyclic voltammetry. Constant-potential electrolysis was carried out to deposit either Fe or FeSi, and deposits of approximately 10 μm thicknesses were obtained. By using scanning electron microscopy and X-ray diffraction, the microstructure and crystallinity of the deposits were investigated. Grain sizes in the nanometer regime (50-80 nm) were found and the presence of iron-silicon alloys was verified. Frequency-dependent magnetic polarizations, coercive forces, and power losses of some deposits were determined by using a digital hysteresis recorder. Corresponding to the small grain sizes, the coercive forces are around 950-1150 A m(-1) and the power losses were at 6000 J m(-3), which is much higher than in commercial Fe(3.2 wt %)Si electrical steel. Below a polarization of 1.8 T, the power losses are mainly caused by domain wall movements and, above 1.8 T, by rotation of magnetic moments as well as domain wall annihilation and recreation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparison of microbial pattern in early and late onset neonatal sepsis in referral center Haji Adam Malik hospital Medan Indonesia

    NASA Astrophysics Data System (ADS)

    Hasibuan, B. S.

    2018-03-01

    Neonatal sepsis contributes a significant rate of infants mortality and morbidity. The pathogens are diverse from region to another and change time to time even in the same place. To analyze the microbial pattern in early and late onset neonatal sepsis andthe pattern of antibiotic resistance of the causative microbes at one of referral center hospital in Indonesia, Haji Adam Malik Hospital, a cross-sectional descriptive study was conducted on neonates with sepsis diagnosis proven with positive blood culture within one year period (2015-2016). Among 626 neonates admitted to perinatology unit, the total of 154 neonates was proven to have neonatal sepsis with positive blood culture with the incidence rate 24.6%. Seventy-nine (51.3%) neonates were diagnosed with early onset sepsis while 75 (48,7%) neonates had late-onset sepsis. Klebsiella pneumonia was the most commonly isolated organism in both early and late onset sepsis, encompassing 19.5% of cases. Periodic surveillance of the causative agents of neonatal sepsis is needed to implement the rational, empirical choice of antibiotic prescription while waiting for blood culture result to come out.

  2. Attrition and carbon formation on iron catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, S.D.; Harrington, M.S.; Jackson, N.B.

    1994-08-01

    A serious engineering problem that needs to be addressed in the scale-up of slurry-phase, Fischer-Tropsch reactors is attrition of the precipitated iron catalyst. Attrition, which can break down the catalyst into particles too small to filter, results from both mechanical and chemical forces. This study examines the chemical causes of attrition in iron catalysts. A bench-scale, slurry-phase CSTR is used to simulate operating conditions that lead to attrition of the catalyst. The average particle size and size distribution of the catalyst samples are used to determine the effect of slurry temperature, reducing gas, gas flow rate and time upon attritionmore » of the catalyst. Carbon deposition, a possible contributing factor to attrition, has been examined using gravimetric analysis and TEM. Conditions affecting the rate of carbon deposition have been compared to those leading to attrition of the precipitated iron catalyst.« less

  3. Mineral deposits of Central America, with a section on manganese deposits of Panama

    USGS Publications Warehouse

    Roberts, Ralph Jackson; Irving, Earl Montgomery; Simons, F.S.

    1957-01-01

    The mineral deposits of Central America were studied between 1942 and 1945, in cooperation with the United States Department of State and the Foreign Economic Administration. Emphasis was originally placed on the study of strategic-mineral deposits, especially of antimony, chromite, manganese, quartz, and mica, but deposits of other minerals that offered promise of significant future production were also studied. A brief appraisal of the base-metal deposits was made, and deposits of iron ore in Honduras and of lead and zinc ores in Guatemala were mapped. In addition, studies were made of the regional geology of some areas, data were collected from many sources, and a new map of the geology of Central America was compiled.

  4. Iron microbial mats in modern and phanerozoic environments

    NASA Astrophysics Data System (ADS)

    Baele, Jean-Marc; Bouvain, Frédéric; De Jong, Jeroen; Matielli, Nadine; Papier, Séverine; Préat, Alain

    2008-08-01

    The recognition of iron microbial mats in terrestrial environments is of great relevance for the search for extraterrestrial life, especially on mars where significant iron minerals were identified in the subsurface. Most researches focused on very ancient microbial mats (e.g. BIFs) since they formed on Earth at a time where similar conditions are supposed to have prevailed on Mars too. However, environmental proxies are often difficult to use for these deposits on Earth which, in addition, may be heavily transformed due to diagenesis or even metamorphism. Here we present modern and phanerozoic iron microbial mats occurrences illustrating the wide variety of environments in which they form, including many marine settings, ponds, creeks, caves, volcanoes, etc. Contrarily to their Precambrian counterparts, Modern and Phanerozoic deposits are usually less affected by diagenesis and the environmental conditions likely to be better constrained. Therefore, their investigation may help for the search for morphological and geochemical biosignatures (e.g. iron isotopes) in ancient iron microbial occurrences on Earth but also on other Planets. In particular, many of the case studies presented here show that microstromatolithe-like morphologies may be valuable targets for screening potential biosignatures in various rock types.

  5. Evidence of synsedimentary microbial activity and iron deposition in ferruginous crusts of the Late Cenomanian Utrillas Formation (Iberian Basin, central Spain)

    NASA Astrophysics Data System (ADS)

    García-Hidalgo, José F.; Elorza, Javier; Gil-Gil, Javier; Herrero, José M.; Segura, Manuel

    2018-02-01

    Ferruginous sandstones and crusts are prominent sedimentary features throughout the continental (braided)-coastal siliciclastic (estuarine-tidal) wedges of the Late Cenomanian Utrillas Formation in the Iberian Basin. Crust types recognized are: Ferruginous sandy crusts (Fsc) with oxides-oxyhydroxides (hematite and goethite) concentrated on sandstone tops presenting a fibro-radial internal structure reminding organic structures that penetrate different mineral phases, suggesting the existence of bacterial activity in crust development; Ferruginous muddy crusts (Fmc) consisting of wavy, laminated, microbial mats, being composed mainly of hematite. On the other hand, a more dispersed and broader mineralization included as Ferruginous sandstones with iron oxides and oxyhydroxides (hematite and goethite) representing a limited cement phase on these sediments. The presence of microbial remains, ferruginous minerals, Microbially-induced sedimentary structures, microbial laminites and vertebrate tracks preserved due to the presence of biofilms suggest firstly a direct evidence of syn-depositional microbial activity in these sediments; and, secondly, that iron accumulation and ferruginous crusts development occurred immediately after deposition of the host, still soft sediments. Ferruginous crusts cap sedimentary cycles and they represent the gradual development of hard substrate conditions, and the development of a discontinuity surface at the top of the parasequence sets, related to very low sedimentary rates; the overlying sediments record subsequent flooding of underlying shallower environments; crusts are, consequently, interpreted as boundaries for these higher-order cycles in the Iberian Basin.

  6. The Nature of Iron Deposits Differs between Symptomatic and Asymptomatic Carotid Atherosclerotic Plaques

    PubMed Central

    Kopriva, David; Kisheev, Anastasye; Meena, Deiter; Pelle, Shaneen; Karnitsky, Max; Lavoie, Andrea; Buttigieg, Josef

    2015-01-01

    Iron within atherosclerotic plaque has been implicated as a catalyst of oxidative stress that causes progression of plaque, and plaque rupture. Iron is believed to accumulate within plaque by incorporation of erythrocytes following plaque rupture and hemorrhage. There is only indirect evidence to support this hypothesis. Plaque specimens were obtained from ten symptomatic and fifteen asymptomatic patients undergoing carotid endarterectomy at a single institution. Plaques were sectioned for study using synchrotron radiation induced X-ray fluorescence the study the distribution of zinc, calcium and iron. Histologic staining was carried out with Prussian Blue, and immunohistochemical staining was done to localize macrophages with CD68. Data were compared against patient clinical variables. Ten symptomatic (15 ± 10 days between index symptoms and surgery) and fifteen asymptomatic carotid plaques were studied. Zinc and calcium co-localized in mineralized areas of symptomatic and asymptomatic plaque. Iron was identified away from zinc and calcium in both symptomatic and asymptomatic plaques. Within the symptomatic plaques, iron was found within the thrombus associated with plaque rupture and hemorrhage. It did not stain with Prussian Blue, but was found in association with CD68 positive macrophages. In symptomatic plaques, the abundance of iron showed an association with the source patient’s LDL cholesterol (R2 = 0.39, Significance F = 0.05). Iron in asymptomatic plaque was present as hemosiderin/ferritin that stained positive with Prussian Blue, and was observed in association with CD68 positive macrophages. Iron in acutely symptomatic plaques is found within thrombus, in the presence of macrophages. The abundance of iron in symptomatic plaques is associated with the source patient’s LDL cholesterol. Within asymptomatic plaques, iron is found in association with macrophages, as hemosiderin/ferritin. PMID:26606178

  7. The nature of iron deposits differs between symptomatic and asymptomatic carotid atherosclerotic plaques

    DOE PAGES

    Kopriva, David; Kisheev, Anastasye; Meena, Deiter; ...

    2015-11-25

    Iron within atherosclerotic plaque has been implicated as a catalyst of oxidative stress that causes progression of plaque, and plaque rupture. Iron is believed to accumulate within plaque by incorporation of erythrocytes following plaque rupture and hemorrhage. There is only indirect evidence to support this hypothesis. Plaque specimens were obtained from ten symptomatic and fifteen asymptomatic patients undergoing carotid endarterectomy at a single institution. Plaques were sectioned for study using synchrotron radiation induced X-ray fluorescence the study the distribution of zinc, calcium and iron. Histologic staining was carried out with Prussian Blue, and immunohistochemical staining was done to localize macrophagesmore » with CD68. Data were compared against patient clinical variables. Ten symptomatic (15 ± 10 days between index symptoms and surgery) and fifteen asymptomatic carotid plaques were studied. Zinc and calcium co-localized in mineralized areas of symptomatic and asymptomatic plaque. Iron was identified away from zinc and calcium in both symptomatic and asymptomatic plaques. Within the symptomatic plaques, iron was found within the thrombus associated with plaque rupture and hemorrhage. It did not stain with Prussian Blue, but was found in association with CD68 positive macrophages. In symptomatic plaques, the abundance of iron showed an association with the source patient’s LDL cholesterol (R 2 = 0.39, Significance F = 0.05). Iron in asymptomatic plaque was present as hemosiderin/ferritin that stained positive with Prussian Blue, and was observed in association with CD68 positive macrophages. Iron in acutely symptomatic plaques is found within thrombus, in the presence of macrophages. Moreover, the abundance of iron in symptomatic plaques is associated with the source patient’s LDL cholesterol. Within asymptomatic plaques, iron is found in association with macrophages, as hemosiderin/ferritin.« less

  8. The nature of iron deposits differs between symptomatic and asymptomatic carotid atherosclerotic plaques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopriva, David; Kisheev, Anastasye; Meena, Deiter

    Iron within atherosclerotic plaque has been implicated as a catalyst of oxidative stress that causes progression of plaque, and plaque rupture. Iron is believed to accumulate within plaque by incorporation of erythrocytes following plaque rupture and hemorrhage. There is only indirect evidence to support this hypothesis. Plaque specimens were obtained from ten symptomatic and fifteen asymptomatic patients undergoing carotid endarterectomy at a single institution. Plaques were sectioned for study using synchrotron radiation induced X-ray fluorescence the study the distribution of zinc, calcium and iron. Histologic staining was carried out with Prussian Blue, and immunohistochemical staining was done to localize macrophagesmore » with CD68. Data were compared against patient clinical variables. Ten symptomatic (15 ± 10 days between index symptoms and surgery) and fifteen asymptomatic carotid plaques were studied. Zinc and calcium co-localized in mineralized areas of symptomatic and asymptomatic plaque. Iron was identified away from zinc and calcium in both symptomatic and asymptomatic plaques. Within the symptomatic plaques, iron was found within the thrombus associated with plaque rupture and hemorrhage. It did not stain with Prussian Blue, but was found in association with CD68 positive macrophages. In symptomatic plaques, the abundance of iron showed an association with the source patient’s LDL cholesterol (R 2 = 0.39, Significance F = 0.05). Iron in asymptomatic plaque was present as hemosiderin/ferritin that stained positive with Prussian Blue, and was observed in association with CD68 positive macrophages. Iron in acutely symptomatic plaques is found within thrombus, in the presence of macrophages. Moreover, the abundance of iron in symptomatic plaques is associated with the source patient’s LDL cholesterol. Within asymptomatic plaques, iron is found in association with macrophages, as hemosiderin/ferritin.« less

  9. Preliminary report on iron ore reserves at Bomi Hills, Liberia

    USGS Publications Warehouse

    Newhouse, Walter H.; Thayer, Thomas P.; Butler, Arthur P.

    1945-01-01

    At the request if the Liberian Government made through the Department of State of the United States Government, a party of geologists of the Geological Survey, United States Department of the Interior, was sent to Liberia to examine certain mineral deposits. The party, consisting of Walter H. Newhouse, Thomas P. Thayer, and Arthur P. Butler, Jr., left Washington, D.C., about December 1, 1943, and arrived in Monrovia, Liberia, December 12, 1943. They left Roberts Field, Liberia, May 5, 1944, and returned to Washington May 16, 1944. The geologists left Monrovia for field work in the interior on January 9, the delay of several weeks being due to difficulties in obtaining porters. Mr. Arthur Sherman, Mining Engineer for the Liberian Government, who accompanied the party into the interior, capably participated in the examination of the iron deposits and otherwise rendered invaluable assistance sue to his extensive knowledge of the native tribes and trails. President Tubman requested that the part first examined the iron deposits at Bomi Hills. At the close of the work there he requested that iron deposits in the Kpandemai Mountains be investigated. The party therefore left Bomi Hills on March 25 and arrived at Jordense Camp in the Kpandemai Mountain region on April 6. Four days were spent at this place examining the iron mineralization in the vicinity of Castle Rock, Sugar Loaf, and Mt. Wutivi of Kpandemai Mountains. On April 11 Kpandemai village reached. One day was spent on a long transverse into the Kpandemai Mountains to investigate the iron mineralization. The party left Kpandemai Village April 15 and arrived at Monrovia April 27. The iron mineralization in the portions of the Kpandemai Mountains investigated by the party is believed to be too low in grade and too small in amount to be of any present commercial interest and will not be considered further in this report.

  10. Effect of excess iron on oxidative stress and gluconeogenesis through hepcidin during mitochondrial dysfunction.

    PubMed

    Lee, Hyo Jung; Choi, Joo Sun; Lee, Hye Ja; Kim, Won-Ho; Park, Sang Ick; Song, Jihyun

    2015-12-01

    Excessive tissue iron levels are a risk factor for insulin resistance and type 2 diabetes, which are associated with alterations in iron metabolism. However, the mechanisms underlying this association are not well understood. This study used human liver SK-HEP-1 cells to examine how excess iron induces mitochondrial dysfunction and how hepcidin controls gluconeogenesis. Excess levels of reactive oxygen species (ROS) and accumulated iron due to iron overload induced mitochondrial dysfunction, leading to a decrease in cellular adenosine triphosphate content and cytochrome c oxidase III expression, with an associated increase in gluconeogenesis. Disturbances in mitochondrial function caused excess iron deposition and unbalanced expression of iron metabolism-related proteins such as hepcidin, ferritin H and ferroportin during the activation of p38 mitogen-activated protein kinase (MAPK) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are responsible for increased phosphoenolpyruvate carboxykinase expression. Desferoxamine and n-acetylcysteine ameliorated these deteriorations by inhibiting p38 MAPK and C/EBPα activity through iron chelation and ROS scavenging activity. Based on experiments using hepcidin shRNA and hepcidin overexpression, the activation of hepcidin affects ROS generation and iron deposition, which disturbs mitochondrial function and causes an imbalance in iron metabolism and increased gluconeogenesis. Repression of hepcidin activity can reverse these changes. Our results demonstrate that iron overload is associated with mitochondrial dysfunction and that together they can cause abnormal hepatic gluconeogenesis. Hepcidin expression may modulate this disorder by regulating ROS generation and iron deposition. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Hepatic iron overload in the portal tract predicts poor survival in hepatocellular carcinoma after curative resection.

    PubMed

    Chung, Jung Wha; Shin, Eun; Kim, Haeryoung; Han, Ho-Seong; Cho, Jai Young; Choi, Young Rok; Hong, Sukho; Jang, Eun Sun; Kim, Jin-Wook; Jeong, Sook-Hyang

    2018-05-01

    Hepatic iron overload is associated with liver injury and hepatocarcinogenesis; however, it has not been evaluated in patients with hepatocellular carcinoma (HCC) in Asia. The aim of this study was to clarify the degree and distribution of intrahepatic iron deposition, and their effects on the survival of HCC patients. Intrahepatic iron deposition was examined using non-tumorous liver tissues from 204 HCC patients after curative resection, and they were scored by 2 semi-quantitative methods: simplified Scheuer's and modified Deugnier's methods. For the Scheuer's method, iron deposition in hepatocytes and Kupffer cells was separately evaluated, while for the modified Deugnier's method, hepatocyte iron score (HIS), sinusoidal iron score (SIS) and portal iron score (PIS) were systematically evaluated, and the corrected total iron score (cTIS) was calculated by multiplying the sum (TIS) of the HIS, SIS, and PIS by the coefficient. The overall prevalence of hepatic iron was 40.7% with the simplified Scheuer's method and 45.1% with the modified Deugnier's method with a mean cTIS score of 2.46. During a median follow-up of 67 months, the cTIS was not associated with overall survival. However, a positive PIS was significantly associated with a lower 5-year overall survival rate (50.0%) compared with a negative PIS (73.7%, P = .006). In the multivariate analysis, a positive PIS was an independent factor for overall mortality (hazard ratio, 2.310; 95% confidence interval, 1.181-4.517). Intrahepatic iron deposition was common, and iron overload in the portal tract indicated poor survival in curatively resected HCC patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen.

    PubMed

    Sarin, P; Snoeyink, V L; Bebee, J; Jim, K K; Beckett, M A; Kriven, W M; Clement, J A

    2004-03-01

    Iron release from corroded iron pipes is the principal cause of "colored water" problems in drinking water distribution systems. The corrosion scales present in corroded iron pipes restrict the flow of water, and can also deteriorate the water quality. This research was focused on understanding the effect of dissolved oxygen (DO), a key water quality parameter, on iron release from the old corroded iron pipes. Corrosion scales from 70-year-old galvanized iron pipe were characterized as porous deposits of Fe(III) phases (goethite (alpha-FeOOH), magnetite (Fe(3)O(4)), and maghemite (alpha-Fe(2)O(3))) with a shell-like, dense layer near the top of the scales. High concentrations of readily soluble Fe(II) content was present inside the scales. Iron release from these corroded pipes was investigated for both flow and stagnant water conditions. Our studies confirmed that iron was released to bulk water primarily in the ferrous form. When DO was present in water, higher amounts of iron release was observed during stagnation in comparison to flowing water conditions. Additionally, it was found that increasing the DO concentration in water during stagnation reduced the amount of iron release. Our studies substantiate that increasing the concentration of oxidants in water and maintaining flowing conditions can reduce the amount of iron release from corroded iron pipes. Based on our studies, it is proposed that iron is released from corroded iron pipes by dissolution of corrosion scales, and that the microstructure and composition of corrosion scales are important parameters that can influence the amount of iron released from such systems.

  13. CD1 Mouse Retina Is Shielded From Iron Overload Caused by a High Iron Diet

    PubMed Central

    Bhoiwala, Devang L.; Song, Ying; Cwanger, Alyssa; Clark, Esther; Zhao, Liang-liang; Wang, Chenguang; Li, Yafeng; Song, Delu; Dunaief, Joshua L.

    2015-01-01

    Purpose High RPE iron levels have been associated with age-related macular degeneration. Mutation of the ferroxidase ceruloplasmin leads to RPE iron accumulation and degeneration in patients with aceruloplasminemia; mice lacking ceruloplasmin and its homolog hephaestin have a similar RPE degeneration. To determine whether a high iron diet (HID) could cause RPE iron accumulation, possibly contributing to RPE oxidative stress in AMD, we tested the effect of dietary iron on mouse RPE iron. Methods Male CD1 strain mice were fed either a standard iron diet (SID) or the same diet with extra iron added (HID) for either 3 months or 10 months. Mice were analyzed with immunofluorescence and Perls' histochemical iron stain to assess iron levels. Levels of ferritin, transferrin receptor, and oxidative stress gene mRNAs were measured by quantitative PCR (qPCR) in neural retina (NR) and isolated RPE. Morphology was assessed in plastic sections. Results Ferritin immunoreactivity demonstrated a modest increase in the RPE in 10-month HID mice. Analysis by qPCR showed changes in mRNA levels of iron-responsive genes, indicating moderately increased iron in the RPE of 10-month HID mice. However, even by age 18 months, there was no Perls' signal in the retina or RPE and no retinal degeneration. Conclusions These findings indicate that iron absorbed from the diet can modestly increase the level of iron deposition in the wild-type mouse RPE without causing RPE or retinal degeneration. This suggests regulation of retinal iron uptake at the blood-retinal barriers. PMID:26275132

  14. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin

  15. Regional prospecting for iron ores in Bahariya Oasis-El Faiyum area, Egypt, using LANDSAT-1 satellite images

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdel-Hady, M. A.; Elghawaby, M. A.; Khawasik, S. M. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. New discoveries of iron deposits were registered as a result of the LANDSAT imagery, and the conditions of the already known iron deposits and occurrences were regionally connected and verified.

  16. Iron overload and HFE gene mutations in Polish patients with liver cirrhosis.

    PubMed

    Sikorska, Katarzyna; Romanowski, Tomasz; Stalke, Piotr; Iżycka-Świeszewska, Ewa; Bielawski, Krzysztof Piotr

    2011-06-01

    Increased liver iron stores may contribute to the progression of liver injury and fibrosis, and are associated with a higher risk of hepatocellular carcinoma development. Pre-transplant symptoms of iron overload in patients with liver cirrhosis are associated with higher risk of infectious and malignant complications in liver transplant recipients. HFE gene mutations may be involved in the pathogenesis of liver iron overload and influence the progression of chronic liver diseases of different origins. This study was designed to determine the prevalence of iron overload in relation to HFE gene mutations among Polish patients with liver cirrhosis. Sixty-one patients with liver cirrhosis included in the study were compared with a control group of 42 consecutive patients subjected to liver biopsy because of chronic liver diseases. Liver function tests and serum iron markers were assessed in both groups. All patients were screened for HFE mutations (C282Y, H63D, S65C). Thirty-six of 61 patients from the study group and all controls had liver biopsy performed with semiquantitative assessment of iron deposits in hepatocytes. The biochemical markers of iron overload and iron deposits in the liver were detected with a higher frequency (70% and 47% respectively) in patients with liver cirrhosis. There were no differences in the prevalence of all HFE mutations in both groups. In patients with a diagnosis of hepatocellular carcinoma, no significant associations with iron disorders and HFE gene mutations were found. Iron disorders were detected in patients with liver cirrhosis frequently but without significant association with HFE gene mutations. Only the homozygous C282Y mutation seems to occur more frequently in the selected population of patients with liver cirrhosis. As elevated biochemical iron indices accompanied liver iron deposits more frequently in liver cirrhosis compared to controls with chronic liver disease, there is a need for more extensive studies searching for

  17. Formation and resulfidization of a South Texas roll-type uranium deposit

    USGS Publications Warehouse

    Goldhaber, Martin B.; Reynolds, Richard L.; Rye, Robert O.

    1979-01-01

    Core samples from a roll type uranium deposit in Live Oak County, south Texas have been studied and results are reported for Se, Mo, FeS2 and organic-carbon distribution, sulfide mineral petrology, and sulfur isotopic composition of iron-disulfide phases. In addition, sulfur isotopic compositions of dissolved sulfate and sulfide from the modern ground water within the ore bearing sand have been studied. The suite of elements in the ore sand and their geometric relationships throughout the deposit are those expected for typical roll-type deposits with well-developed oxidation-reduction interfaces. However, iron-disulfide minerals are abundant in the altered tongue, demonstrating that this interval has been sulfidized after mineralization (resulfidized or rereduced). Iron disulfide minerals in the rereduced interval differ mineralogically and isotopically from those throughout the remainder of the deposit. The resulfidized sand contains dominantly pyrite that is enriched in 34S, whereas the sand beyond the altered tongue contains abundant marcasite that is enriched in the light isotope, 32S. Textural relationships between pyrite and marcasite help to establish relative timing of iron disulfide formation. In reduced rock outside the altered tongue, three distinct generations of iron disulfide are present. The oldest of these generations consists largely of pyrite with lesser amounts of marcasite. A major episode of marcasite formation contemporaneous with ore genesis postdates the oldest pyrite generation but predates a younger pyrite generation. Resulfidization probably led to the final pyrite stage recognized beyond the altered tongue. Stable isotope data establish that the source of sulfur for the resulfidization was fault-leaked H2S probably derived from the Edwards Limestone of Cretaceous age which underlies the deposit. The deposit formed in at least two stages: (1) a pre-ore process of host rock sulfidization which produced disseminated pyrite as the dominant

  18. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin

    PubMed Central

    McCarthy, Ryan C; Park, Yun-Hee; Kosman, Daniel J

    2014-01-01

    A sequence within the E2 domain of soluble amyloid precursor protein (sAPP) stimulates iron efflux. This activity has been attributed to a ferroxidase activity suggested for this motif. We demonstrate that the stimulation of efflux supported by this peptide and by sAPPα is due to their stabilization of the ferrous iron exporter, ferroportin (Fpn), in the plasma membrane of human brain microvascular endothelial cells (hBMVEC). The peptide does not bind ferric iron explaining why it does not and thermodynamically cannot promote ferrous iron autoxidation. This peptide specifically pulls Fpn down from the plasma membrane of hBMVEC; based on these results, FTP, for ferroportin-targeting peptide, correctly identifies the function of this peptide. The data suggest that in stabilizing Fpn via the targeting due to the FTP sequence, sAPP will increase the flux of iron into the cerebral interstitium. This inference correlates with the observation of significant iron deposition in the amyloid plaques characteristic of Alzheimer’s disease. PMID:24867889

  19. Permissive tracts for algoma-, superior-, and oolitic-type iron deposits in Mauritania (phase V, deliverable 82): Chapter O1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Horton, John D.

    2012-01-01

    This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.

  20. Prooxidant Mechanisms in Iron Overload Cardiomyopathy

    PubMed Central

    Cheng, Ching-Feng; Lian, Wei-Shiung

    2013-01-01

    Iron overload cardiomyopathy (IOC), defined as the presence of systolic or diastolic cardiac dysfunction secondary to increased deposition of iron, is emerging as an important cause of heart failure due to the increased incidence of this disorder seen in thalassemic patients and in patients of primary hemochromatosis. At present, although palliative treatment by regular iron chelation was recommended; whereas IOC is still the major cause for mortality in patient with chronic heart failure induced by iron-overloading. Because iron is a prooxidant and the associated mechanism seen in iron-overload heart is still unclear; therefore, we intend to delineate the multiple signaling pathways involved in IOC. These pathways may include organelles such as calcium channels, mitochondria; paracrine effects from both macrophages and fibroblast, and novel mediators such as thromboxane A2 and adiponectin; with increased oxidative stress and inflammation found commonly in these signaling pathways. With further understanding on these complex and inter-related molecular mechanisms, we can propose potential therapeutic strategies to ameliorate the cardiac toxicity induced by iron-overloading. PMID:24350287

  1. Mesoarchean BIF and iron ores of the Badampahar greenstone belt, Iron Ore Group, East Indian Shield

    NASA Astrophysics Data System (ADS)

    Ghosh, Rupam; Baidya, Tapan Kumar

    2017-12-01

    Banded iron formations (BIFs) are chemically precipitated sedimentary rock characterized by alternating Fe-rich and Si-rich bands. The origin of BIF has remained controversial despite years of diligent research. Most models proposed for the BIF origin are based on the observations of well-preserved Neoarchean to Paleoproterozoic BIFs. The present paper is focused on the origin of Mesoarchean BIFs present in the Badampahar greenstone belt (3.3-3.1 Ga), East Indian Shield. Here, BIF is interlayered with metavolcanic rocks, quartzite, phyllite and chert representing a typical greenstone sequence. Geochemical and sedimentological evidence suggest deposition of BIF below the wave base as part of a back-arc basin with insignificant detrital input. Interaction of seawater and volcanogenic high temperature hydrothermal fluids, generated from back-arc spreading centre, supplied metals for BIF deposition. Distinctly negative Ce anomalies in some lower BIF horizons indicate Fe2+ oxidation in an oxygenated hydrosphere and derivation of free oxygen from microbial photosynthesis. Subsequent stages of deformation, metamorphism, hydrothermal and supergene processes after deposition led to the formation of the iron ore bodies at present.

  2. Atmospheric Processing and Iron Mobilization of Ilmenite: Iron-Containing Ternary Oxide in Mineral Dust Aerosol.

    PubMed

    Hettiarachchi, Eshani; Hurab, Omar; Rubasinghege, Gayan

    2018-02-08

    Over the last several decades, iron has been identified as a limiting nutrient in about half of the world's oceans. Its most significant source is identified as deposited iron-containing mineral dust that has been processed during atmospheric transportation. The current work focuses on chemical and photochemical processing of iron-containing mineral dust particles in the presence of nitric acid, and an organic pollutant dimethyl sulfide under atmospherically relevant conditions. More importantly, ilmenite (FeTiO 3 ) is evaluated as a proxy for the iron-containing mineral dust. The presence of titanium in its lattice structure provides higher complexity to mimic mineral dust, yet it is simple enough to study reaction pathways and mechanisms. Here, spectroscopic methods are combined with dissolution measurements to investigate atmospheric processing of iron in mineral dust, with specific focus on particle mineralogy, particle size, and their environmental conditions (i.e., pH and solar flux). Our results indicate that the presence of titanium elemental composition enhances iron dissolution from mineral dust, at least by 2-fold comparison with its nontitanium-containing counterparts. The extent of iron dissolution and speciation is further influenced by the above factors. Thus, our work highlights these important, yet unconsidered, factors in the atmospheric processing of iron-containing mineral dust aerosol.

  3. Wall-rock control of cortain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado

    USGS Publications Warehouse

    Adams, John W.; Stugard, Frederick

    1954-01-01

    Carbonate veins cutting pre-Cambrian metamorphic rocks in Golden Gate Canyon contain pitchblende and base-metal sulfides. The veins occupy extensive faults of Laramide age but normally contain pitchblende only where the cut hornblende gneiss. At the Union Pacific prospect, which was studied in detail, pitchblende, hermatite, and some ankerite formed in advance of sulfides, except possibly for minor pyrite. Base-metal sulfides and the bulk of ankerite-calcite vein-filling were deposited after the pitchblende. Chemical analyses show a high ferrous iron content in the hornblende gneiss in contrast to low ferrous iron in the adjacent biotite gneiss. It is hypothesized that ferrous iron released by alteration of hornblende was partly oxidized to hematite by the ore-bearing solutions and, contemporaneously, uranium was reduced and deposited as pitchblende. In other veins, biotite or iron sulfides may have been similarly effective in precipitating pitchblende. Apparently both the ferrous ion and the sulfide ion can serve as reducing agents and control pitchblende deposition. It is suggested that conditions particularly favorable for uranium deposition are present where uranium-bearing solutions had access to rocks rich in ferrous iron or pre-existing sulfides.

  4. Studying Prokaryotic Communities in Iron Depositing Hot Springs (IDHS): Implication for Early Mars Habitability

    NASA Technical Reports Server (NTRS)

    Sarkisova, S. A.; Tringe, S. G.; Thomas-Keprta, K. L.; Allen, C. c.; Garrison, D. H.; McKay, David S.; Brown, I. I.

    2010-01-01

    We speculate that both external and intracellular iron precipitate in iron-tolerant CB might be involved in oxidative stress suppression shown by [9]. Significant differences are apparent between a set of proteins involved in the maintenance of Fe homeostasis and oxidative stress protection in iron-tolerant and fresh-water and marine CB. Correspondingly, these properties may help to make iron-tolerant CB as dominant organisms in IDHS and probably on early Earth and Mars. Further comparative analyses of hot springs metagenomes and the genomes of iron-tolerant microbes versus fresh-water/marine ones may point out to different habitable zones on early Mars.

  5. Fast, shape-directed, landmark-based deep gray matter segmentation for quantification of iron deposition

    NASA Astrophysics Data System (ADS)

    Ekin, Ahmet; Jasinschi, Radu; van der Grond, Jeroen; van Buchem, Mark A.; van Muiswinkel, Arianne

    2006-03-01

    This paper introduces image processing methods to automatically detect the 3D volume-of-interest (VOI) and 2D region-of-interest (ROI) for deep gray matter organs (thalamus, globus pallidus, putamen, and caudate nucleus) of patients with suspected iron deposition from MR dual echo images. Prior to the VOI and ROI detection, cerebrospinal fluid (CSF) region is segmented by a clustering algorithm. For the segmentation, we automatically determine the cluster centers with the mean shift algorithm that can quickly identify the modes of a distribution. After the identification of the modes, we employ the K-Harmonic means clustering algorithm to segment the volumetric MR data into CSF and non-CSF. Having the CSF mask and observing that the frontal lobe of the lateral ventricle has more consistent shape accross age and pathological abnormalities, we propose a shape-directed landmark detection algorithm to detect the VOI in a speedy manner. The proposed landmark detection algorithm utilizes a novel shape model of the front lobe of the lateral ventricle for the slices where thalamus, globus pallidus, putamen, and caudate nucleus are expected to appear. After this step, for each slice in the VOI, we use horizontal and vertical projections of the CSF map to detect the approximate locations of the relevant organs to define the ROI. We demonstrate the robustness of the proposed VOI and ROI localization algorithms to pathologies, including severe amounts of iron accumulation as well as white matter lesions, and anatomical variations. The proposed algorithms achieved very high detection accuracy, 100% in the VOI detection , over a large set of a challenging MR dataset.

  6. Determinants of iron accumulation in the normal aging brain.

    PubMed

    Pirpamer, Lukas; Hofer, Edith; Gesierich, Benno; De Guio, François; Freudenberger, Paul; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Duchesnay, Edouard; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2016-07-01

    In a recent postmortem study, R2* relaxometry in gray matter (GM) of the brain has been validated as a noninvasive measure for iron content in brain tissue. Iron accumulation in the normal aging brain is a common finding and relates to brain maturation and degeneration. The goal of this study was to assess the determinants of iron accumulation during brain aging. The study cohort consisted of 314 healthy community-dwelling participants of the Austrian Stroke Prevention Study. Their age ranged from 38-82 years. Quantitative magnetic resonance imaging was performed on 3T and included R2* mapping, based on a 3D multi-echo gradient echo sequence. The median of R2* values was measured in all GM regions, which were segmented automatically using FreeSurfer. We investigated 25 possible determinants for cerebral iron deposition. These included demographics, brain volume, lifestyle factors, cerebrovascular risk factors, serum levels of iron, and single nucleotide polymorphisms related to iron regulating genes (rs1800562, rs3811647, rs1799945, and rs1049296). The body mass index (BMI) was significantly related to R2* in 15/32 analyzed brain regions with the strongest correlations found in the amygdala (p = 0.0091), medial temporal lobe (p = 0.0002), and hippocampus (p ≤ 0.0001). Further associations to R2* values were found in deep GM for age and smoking. No significant associations were found for gender, GM volume, serum levels of iron, or iron-associated genetic polymorphisms. In conclusion, besides age, the BMI and smoking are the only significant determinants of brain iron accumulation in normally aging subjects. Smoking relates to iron deposition in the basal ganglia, whereas higher BMI is associated with iron content in the neocortex following an Alzheimer-like distribution. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Banded iron-formations of late Proterozoic age in the central eastern desert, Egypt: geology and tectonic setting.

    USGS Publications Warehouse

    Sims, P.K.; James, H.L.

    1984-01-01

    Iron-formation occurs as stratigraphic units within a layered andesite-basalt sequence. The sequence is metamorphosed to greenschist facies, intruded by syntectonic granodiorite and post-tectonic granite, and complexly deformed and grossly fragmented; the rocks are allochthonous along thrust faults. The iron deposits are chemical precipitates, accumulated during lulls in volcanism, apparently in an intraoceanic island-arc environment. The deposits are of the Algoma type of iron-formation.-G.J.N.

  8. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    PubMed

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice.

  9. Sedimentary and tectonic history of the Holowilena Ironstone, a Neoproterozoic iron formation in South Australia

    NASA Astrophysics Data System (ADS)

    Lechte, Maxwell Alexander; Wallace, Malcolm William

    2015-11-01

    The Holowilena Ironstone is a Neoproterozoic iron formation in South Australia associated with glacial deposits of the Sturtian glaciation. Through a comprehensive field study coupled with optical and scanning electron microscopy, X-ray fluorescence, and X-ray diffraction, a detailed description of the stratigraphy, sedimentology, mineralogy, and structure of the Holowilena Ironstone was obtained. The Holowilena Ironstone comprises ferruginous shales, siltstones, diamictites, and is largely made up of hematite and jasper, early diagenetic replacement minerals of precursor iron oxyhydroxides, and silica. These chemical precipitates are variably influenced by turbidites and debris flows contributing clastic detritus to the depositional system. Structural and stratigraphic evidence suggests deposition within a synsedimentary half-graben. A model for the Holowilena Ironstone is proposed, in which dense oxic fluids expelled during sea ice formation in the Cryogenian pool in the depression of the half-graben, allowing for long-lived mixing with the ferruginous seawater and the deposition of iron oxides. This combination of glacial dynamics, tectonism, and ocean chemistry may explain the return of iron formations in the Neoproterozoic.

  10. A Mesoproterozoic iron formation

    NASA Astrophysics Data System (ADS)

    Canfield, Donald E.; Zhang, Shuichang; Wang, Huajian; Wang, Xiaomei; Zhao, Wenzhi; Su, Jin; Bjerrum, Christian J.; Haxen, Emma R.; Hammarlund, Emma U.

    2018-04-01

    We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.

  11. Fabrication, characterization and applications of iron selenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less

  12. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury.

    PubMed

    Patel, Bharatkumar N; Dunn, Robert J; Jeong, Suh Young; Zhu, Qinzhang; Julien, Jean-Pierre; David, Samuel

    2002-08-01

    Ceruloplasmin is a ferroxidase that oxidizes toxic ferrous iron to its nontoxic ferric form. We have previously reported that a glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed in the mammalian CNS. To better understand the role of ceruloplasmin in iron homeostasis in the CNS, we generated a ceruloplasmin gene-deficient (Cp(-/-)) mouse. Adult Cp(-/-) mice showed increased iron deposition in several regions of the CNS such as the cerebellum and brainstem. Increased lipid peroxidation was also seen in some CNS regions. Cerebellar cells from neonatal Cp(-/-) mice were also more susceptible to oxidative stress in vitro. Cp(-/-) mice showed deficits in motor coordination that were associated with a loss of brainstem dopaminergic neurons. These results indicate that ceruloplasmin plays an important role in maintaining iron homeostasis in the CNS and in protecting the CNS from iron-mediated free radical injury. Therefore, the antioxidant effects of ceruloplasmin could have important implications for various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease in which iron deposition is known to occur.

  13. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    NASA Astrophysics Data System (ADS)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  14. Genetic and Dietary Iron Overload Differentially Affect the Course of Salmonella Typhimurium Infection

    PubMed Central

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Tymoszuk, Piotr; Demetz, Egon; Moser, Patrizia; Haas, Hubertus; Fang, Ferric C.; Theurl, Igor; Weiss, Günter

    2017-01-01

    Genetic and dietary forms of iron overload have distinctive clinical and pathophysiological features. HFE-associated hereditary hemochromatosis is characterized by overwhelming intestinal iron absorption, parenchymal iron deposition, and macrophage iron depletion. In contrast, excessive dietary iron intake results in iron deposition in macrophages. However, the functional consequences of genetic and dietary iron overload for the control of microbes are incompletely understood. Using Hfe+/+ and Hfe−/− mice in combination with oral iron overload in a model of Salmonella enterica serovar Typhimurium infection, we found animals of either genotype to induce hepcidin antimicrobial peptide expression and hypoferremia following systemic infection in an Hfe-independent manner. As predicted, Hfe−/− mice, a model of hereditary hemochromatosis, displayed reduced spleen iron content, which translated into improved control of Salmonella replication. Salmonella adapted to the iron-poor microenvironment in the spleens of Hfe−/− mice by inducing the expression of its siderophore iron-uptake machinery. Dietary iron loading resulted in higher bacterial numbers in both WT and Hfe−/− mice, although Hfe deficiency still resulted in better pathogen control and improved survival. This suggests that Hfe deficiency may exert protective effects in addition to the control of iron availability for intracellular bacteria. Our data show that a dynamic adaptation of iron metabolism in both immune cells and microbes shapes the host-pathogen interaction in the setting of systemic Salmonella infection. Moreover, Hfe-associated iron overload and dietary iron excess result in different outcomes in infection, indicating that tissue and cellular iron distribution determines the susceptibility to infection with specific pathogens. PMID:28443246

  15. Effect of Gum Arabic karroo as a Water-Reducing Admixture in Concrete

    PubMed Central

    Mbugua, Rose; Salim, Ramadhan; Ndambuki, Julius

    2016-01-01

    Concrete is one of the most popular construction materials in the world. Chemical admixtures are ingredients added to concrete to enhance its properties. However, most chemical admixtures on the market today are expensive, thereby making them out of reach for small consumers of concrete. In Africa, use of chemical admixtures is rare despite the harsh weather conditions. In the current study, Gum from Acacia karroo (GAK) was used as a water-reducing admixture in concrete. A slump test, density and compressive strength were studied using different dosages of GAK while neat concrete was the control. Results showed that slump increased by 200% at a 2% dosage of GAK. This enabled reduction of water-to-binder (w/b) ratio from 0.61 to 0.48 for samples with a 3% dosage. Reduction in w/b resulted in increased compressive strength of 37.03% above the control after 180 days of curing for a 3% dosage. XRD studies also showed a decreased rate of hydration in the presence of GAK in concrete. It was concluded that GAK can be used in concrete as a water-reducing admixture, which is environmentally-friendly, thus producing sustainable and greener concrete. PMID:28787879

  16. Effect of Gum Arabic karroo as a Water-Reducing Admixture in Concrete.

    PubMed

    Mbugua, Rose; Salim, Ramadhan; Ndambuki, Julius

    2016-01-28

    Concrete is one of the most popular construction materials in the world. Chemical admixtures are ingredients added to concrete to enhance its properties. However, most chemical admixtures on the market today are expensive, thereby making them out of reach for small consumers of concrete. In Africa, use of chemical admixtures is rare despite the harsh weather conditions. In the current study, Gum from Acacia karroo (GAK) was used as a water-reducing admixture in concrete. A slump test, density and compressive strength were studied using different dosages of GAK while neat concrete was the control. Results showed that slump increased by 200% at a 2% dosage of GAK. This enabled reduction of water-to-binder (w/b) ratio from 0.61 to 0.48 for samples with a 3% dosage. Reduction in w/b resulted in increased compressive strength of 37.03% above the control after 180 days of curing for a 3% dosage. XRD studies also showed a decreased rate of hydration in the presence of GAK in concrete. It was concluded that GAK can be used in concrete as a water-reducing admixture, which is environmentally-friendly, thus producing sustainable and greener concrete.

  17. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment.

    PubMed

    Neves, Natália Rust; Oliva, Marco Antonio; da Cruz Centeno, Danilo; Costa, Alan Carlos; Ribas, Rogério Ferreira; Pereira, Eduardo Gusmão

    2009-06-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM(Fe)) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM(Fe) application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers.

  18. Air pollution particles and iron homeostasis

    EPA Science Inventory

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  19. Photon synthesis of iron oxide thin films for thermo-photo-chemical sensors

    NASA Astrophysics Data System (ADS)

    Mulenko, S. A.; Petrov, Yu. N.; Gorbachuk, N. T.

    2012-09-01

    Ultraviolet photons of KrF-laser (248 nm) and of photodiode (360 nm) were used for the synthesis of iron oxide thin films with variable thickness, stoichiometry and electrical properties. The reactive pulsed laser deposition (RPLD) method was based on KrF-laser and photon-induced chemical vapor deposition (PCVD) was based on a photodiode. Deposited films demonstrated semiconductor properties with variable band gap (Eg). The film thickness (50-140 nm) and Eg depended on the laser pulse number, oxygen and iron carbonyl vapor pressure in the deposition chamber, and exposure time to the substrate surface with ultraviolet (UV) radiation. Sensing characteristics strongly depended on electrical and structural properties of such thin films. Iron oxide films were deposited on <1 0 0> Si substrate and had large thermo electromotive force (e.m.f.) coefficient (S) and high photosensitivity (F). The largest value of the S coefficient obtained by RPLD was about 1.65 mV/K in the range 270-290 K and by PCVD was about 1.5 mV/K in the range 280-322 K. The largest value F obtained by RPLD and PCVD was about 44 Vc/W and 40 Vc/W, accordingly, for white light at power density (I ≅ 0.006 W/cm2). It was shown that the S coefficient and F strongly depended on Eg. Moreover, these films were tested as chemical sensors: the largest sensitivity of NO molecules was at the level of 3 × 1012 cm-3. Our results showed that RPLD and PCVD were used to synthesize semiconductor iron oxide thin films with different sensing properties. So iron oxide thin films synthesized by UV photons are up-to-date materials for multi-parameter sensors: thermo-photo-chemical sensors operating at moderate temperature.

  20. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  1. Myelodysplastic Syndromes and Iron Chelation Therapy

    PubMed Central

    Angelucci, Emanuele; Urru, Silvana Anna Maria; Pilo, Federica; Piperno, Alberto

    2017-01-01

    Over recent decades we have been fortunate to witness the advent of new technologies and of an expanded knowledge and application of chelation therapies to the benefit of patients with iron overload. However, extrapolation of learnings from thalassemia to the myelodysplastic syndromes (MDS) has resulted in a fragmented and uncoordinated clinical evidence base. We’re therefore forced to change our understanding of MDS, looking with other eyes to observational studies that inform us about the relationship between iron and tissue damage in these subjects. The available evidence suggests that iron accumulation is prognostically significant in MDS, but levels of accumulation historically associated with organ damage (based on data generated in the thalassemias) are infrequent. Emerging experimental data have provided some insight into this paradox, as our understanding of iron-induced tissue damage has evolved from a process of progressive bulking of organs through high-volumes iron deposition, to one of ‘toxic’ damage inflicted through multiple cellular pathways. Damage from iron may, therefore, occur prior to reaching reference thresholds, and similarly, chelation may be of benefit before overt iron overload is seen. In this review, we revisit the scientific and clinical evidence for iron overload in MDS to better characterize the iron overload phenotype in these patients, which differs from the classical transfusional and non-transfusional iron overload syndrome. We hope this will provide a conceptual framework to better understand the complex associations between anemia, iron and clinical outcomes, to accelerate progress in this area. PMID:28293409

  2. Structure and properties of composite iron-based coatings obtained by the electromechanical technique

    NASA Astrophysics Data System (ADS)

    Dubinskii, N. A.

    2007-09-01

    The influence of the electrolyte temperature and current density on the content of inclusions of powder particles in composite coatings obtained by the electrochemical technique has been investigated. It has been found that the wear resistance of iron coatings with inclusions of powder particles of aluminum, kaolin, and calcium silicate increases from 5 to 10 times compared to coating without inclusions of disperse particles, and the friction coefficient therewith decreases from 0.097 to 0.026. It has been shown that the mechanical properties of iron obtained by the method of electrochemical deposition depend on their fine structure. The regimes of deposition of iron-based coatings have been optimized.

  3. Ocean iron-fertilisation by volcanic ash

    NASA Astrophysics Data System (ADS)

    Langmann, B.; Zaksek, K.; Hort, M. K.; Duggen, S.

    2009-12-01

    Marine primary productivity (MPP) can be limited by the availability of macro-nutrients like nitrate and phosphate. In so-called ‘High-Nutrient-Low-Chlorophyll’ (HNLC) areas, macro-nutrient concentrations are high, but iron is the key biologically limiting micro-nutrient for primary production. Three major sources for iron supply into the ocean have been considered so far: upwelling of deep ocean water, advection from the continental margins and atmospheric deposition with aeolian dust deposition commonly assumed to dominate external iron supply to the open ocean. Iron supply to HNLC regions can affect climate relevant ocean-atmosphere exchanges of chemical trace species, e.g. organic carbon aerosols, DMS and CO2. Marine aerosols can act as efficient cloud condensation nuclei and significantly influence cloud properties and thus the Earth’s radiative budget via the indirect aerosol effects whereas a drawdown of atmospheric CO2 due to ocean fertilisation can have important implications for the global CO2 budget. Recent laboratory experiments suggest that material from volcanic eruptions such as ash may also affect the MPP through rapid iron-release on contact with seawater. Direct evidence, however, that volcanic activity can cause natural iron-fertilisation and MPP increase has been lacking so far. Here first evidence for a large-scale phytoplankton bloom in the NE Pacific resulting from volcanic ash fall after the eruption of Kasatochi volcano in August 2008 is presented. Atmospheric and oceanic conditions were favourable to generate this phytoplankton bloom. We present satellite observations to show the connection between volcanic ash fall and oceanic MPP. In addition, three-dimensional atmosphere/chemistry-aerosol model results are presented showing the atmospheric distribution of volcanic ash and its fall-out after the eruption of Kasatochi volcano. The amount of ash and that of iron attached to it is sufficient to explain measured seawater CO2 decrease

  4. Maps showing mineral resource assessment for copper and molybdenum in porphyry and stockwork deposits and for tungsten, iron, gold, copper, and silver in skarn deposits, Dillion 1 degree by 2 degrees Quadrangle, Idaho and Montana

    USGS Publications Warehouse

    Pearson, R.C.; Trautwein, C.M.; Moll, S.H.; Berger, B.R.; Hanna, W.F.; Loen, J.S.; Rowan, L.C.; Ruppel, E.T.; Segal, D.B.

    1992-01-01

    This report is one of several in the series that assess the mineral resources of the Dillon quadrangle. For the purpose of the assessment, mineral deposits· in the quadrangle that are either known or suspected from a knowledge of the geologic setting have been grou~d into 30 deposit types on the basis of mineralogy, commodity, or structural or depositional setting. The emphasis in these assessment reports is on metallic minerals, but some important nonmetallic minerals will also be assessed. Fossil fuels are beyond the scope of this investigation; phosphate and uranium have been investigated previously (Swanson, 1970; Wodzicki andKrason, 1981); and certain nonmetallic. minerals, including bulk commodities such as sand and gravel, are in large supply and thus not considered. The ·mineral resource assessment discussed in this report considers two deposit types: (1) porphyry or stockwork deposits of copper. and molybdenum (referred to generally in this report as porphyry deposits) and (2) skarn deposits of tungsten, iron, gold, copper, and silver. Combining copper and molybenum porphyry deposits into a single deposit type is believed necessary for this purpose· mainly because the two metals are found together in most .deposits in the quadrangle, a geochemical signature unique to each has not been determined, and the significant petrologic characteristics of many associated plutons are not well known, especially characterist~cs of subsurface plutons whose presence is .inferred from geophysical data. In assessing mineral resources,· we have adopted a general philosophy similar to that of Harrison and others (19S6). We attempt to identify those parts of the quadrangle that are favorable for the occurrence of mineral resources. We do not attempt to locate specific exploration targets nor to determine the quantity of reserves or resources present.

  5. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone

    NASA Astrophysics Data System (ADS)

    Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin

    2013-10-01

    The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.

  6. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    PubMed

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  7. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    USGS Publications Warehouse

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  8. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part II - Iron-sulfur coupling

    NASA Astrophysics Data System (ADS)

    Taillefert, Martial; Beckler, Jordon S.; Cathalot, Cécile; Michalopoulos, Panagiotis; Corvaisier, Rudolph; Kiriazis, Nicole; Caprais, Jean-Claude; Pastor, Lucie; Rabouille, Christophe

    2017-08-01

    Deep-sea fans are well known depot centers for organic carbon that should promote sulfate reduction. At the same time, the high rates of deposition of unconsolidated metal oxides from terrigenous origin may also promote metal-reducing microbial activity. To investigate the eventual coupling between the iron and sulfur cycles in these environments, shallow sediment cores (< 50 cm) across various channels and levees in the Congo River deep-sea fan ( 5000 m) were profiled using a combination of geochemical methods. Interestingly, metal reduction dominated suboxic carbon remineralization processes in most of these sediments, while dissolved sulfide was absent. In some 'hotspot' patches, however, sulfate reduction produced large sulfide concentrations which supported chemosynthetic-based benthic megafauna. These environments were characterized by sharp geochemical boundaries compared to the iron-rich background environment, suggesting that FeS precipitation efficiently titrated iron and sulfide from the pore waters. A companion study demonstrated that methanogenesis was active in the deep sediment layers of these patchy ecosystems, suggesting that sulfate reduction was promoted by alternative anaerobic processes. These highly reduced habitats could be fueled by discrete, excess inputs of highly labile natural organic matter from Congo River turbidites or by exhumation of buried sulfide during channel flank erosion and slumping. Sulfidic conditions may be maintained by the mineralization of decomposition products from local benthic macrofauna or bacterial symbionts or by the production of more crystalline Fe(III) oxide phases that are less thermodynamically favorable than sulfate reduction in these bioturbated sediments. Overall, the iron and sulfur biogeochemical cycling in this environment is unique and much more similar to a coastal ecosystem than a deep-sea environment.

  9. Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Solmon, F.; Chuang, P. Y.; Meskhidze, N.; Chen, Y.

    2009-01-01

    Atmospheric processing of mineral aerosol by anthropogenic pollutants may be an important process by which insoluble iron can be transformed into soluble forms and become available to oceanic biota. Observations of the soluble iron fraction in atmospheric aerosol exhibit large variability, which is poorly represented in models. In this study, we implemented a dust iron dissolution scheme in a global chemistry transport model (GEOS-Chem). The model is applied over the North Pacific Ocean during April 2001, a period when concentrations of dust and pollution within the east Asia outflow were high. Simulated fields of many key chemical constituents compare reasonably well with available observations, although some discrepancies are identified and discussed. In our simulations, the production of soluble iron varies temporally and regionally depending on pollution-to-dust ratio, primarily due to strong buffering by calcite. Overall, we show that the chemical processing mechanism produces significant amounts of dissolved iron reaching and being deposited in remote regions of the Pacific basin, with some seasonal variability. Simulated enhancements in particulate soluble iron fraction range from 0.5% to 6%, which is consistent with the observations. According to our simulations, ˜30% to 70% of particulate soluble iron over the North Pacific Ocean basin can be attributed to atmospheric processing. On the basis of April 2001 monthly simulations, sensitivity tests suggest that doubling SO2 emissions can induce a significant increase (13% on average, up to 40% during specific events) in dissolved iron production and deposition to the remote Pacific. We roughly estimate that half of the primary productivity induced by iron deposition in a north Pacific high-nutrient low-chlorophyll region is due to soluble iron derived from anthropogenic chemical processing of Asian aerosol.

  10. Sedimentary and atmospheric sources of iron around South Georgia, Southern Ocean: a modelling perspective

    NASA Astrophysics Data System (ADS)

    Borrione, I.; Aumont, O.; Nielsdóttir, M. C.; Schlitzer, R.

    2013-07-01

    In high-nutrient low-chlorophyll waters of the western Atlantic sector of the Southern Ocean, an intense phytoplankton bloom is observed annually north of South Georgia, most likely due to an enhanced supply of the limiting micronutrient iron. Shallow sediments and atmospheric dust deposition are believed to be the main iron sources. However, their relative importance is still unclear and in the South Georgia region have yet not been ascertained because iron measurements are very few. In this study, we use austral summer dissolved iron (dFe) data around South Georgia (January and February 2008) with a coupled regional hydrodynamic and biogeochemical model to investigate natural iron fertilization around the island. The biogeochemical component of the model includes an iron cycle, where sediments and dust deposition are the sources of iron to the ocean. The model captures the characteristic flow patterns around South Georgia, hence simulating a large phytoplankton bloom to the north, i.e., downstream, of the island. Modelled dFe concentrations agree well with observations (mean difference and root mean square errors of ~0.02 nM and ~0.81 nM) and form a large plume to the north of the island that extends eastwards for more than 800 km. In agreement with observations, highest dFe concentrations are located along the coast and decrease with distance from the island. Sensitivity tests indicate that most of the iron measured in the main bloom area originates from the coast and the very shallow shelf-sediments (depths < 20 m) while dust deposition plays a minor role, with almost no effects on surface chlorophyll a concentrations. Iron sources such as run-off not represented explicitly in the model, but that likely contribute to the iron plumes observed around South Georgia, are also discussed together with the potential effects their temporal variability may have on the system.

  11. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  12. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    PubMed

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Comparison of lipid profile between degrees of severity of hepatic cirrhosis in Haji Adam Malik general hospital Medan

    NASA Astrophysics Data System (ADS)

    Siregar, G. A.; Tampubolon, S. E.

    2018-03-01

    Lipid metabolism disorders usually occurred in chronic liver disease. A cross- sectional study was conducted in liver cirrhosis (LC) patients who came to Central Hospital Haji Adam Malik, Medan on July-December 2016 to evaluatethe comparison of total cholesterol, LDL, HDL, triglyceride in Child-Pugh class. Inclusions criteria were apatient diagnosed with LC from anamnesis, physic diagnostic, laboratory, and imaging. The patientswere being evaluated with Child-Pugh (CP). P-value was calculated by using univariate and bivariate analysis of variance test (ANOVA). There were 80 subjects which included 45 men (56.3%) and 35 women (43.8%). Mean age was 51.36±12.6 years. There were 40% with HBsAg(+) and 12.5% with Anti-HCV (+). There was 60% patient with CP-C, 21.3% CP-B, and 18.8% CP-A. There were significant differences between LDL and HDL level among LC patient grade in CP-A, B, and C (p<0.05). HDL and LDL level significantly lower in CP-C compared with CP-A. There were significantly differences between LDL and HDL level among LC patient grade in CP-A, B, and C (p<0.05). HDL and LDL level significantly lower in CP-C compared with CP-A. There weren’t any statistically difference between total cholesterol and triglyceride level in LC patients with CP- A, B, and C.

  14. Transplantation in patients with iron overload: is there a place for magnetic resonance imaging? : Transplantation in iron overload.

    PubMed

    Mavrogeni, Sophie; Kolovou, Genovefa; Bigalke, Boris; Rigopoulos, Angelos; Noutsias, Michel; Adamopoulos, Stamatis

    2018-03-01

    In iron overload diseases (thalassemia, sickle cell, and myelodysplastic syndrome), iron is deposited in all internal organs, leading to functional abnormalities. Hematopoietic stem cell transplantation (HSCT) is the only treatment offering a potential cure in these diseases. Our aim was to describe the experience in the field and the role of magnetic resonance imaging in the evaluation of iron overload before and after HSCT. Magnetic resonance imaging (MRI), using T2*, is the most commonly used tool to diagnose myocardial-liver iron overload and guide tailored treatment. Currently, HSCT offers complete cure in thalassemia major, after overcoming the immunologic barrier, and should be considered for all patients who have a suitable donor. The overall thalassemia-free survival of low-risk, HLA-matched sibling stem cell transplantation patients is 85-90%, with a 95% overall survival. The problems of rejection and engraftment are improving with the use of adequate immunosuppression. However, a detailed iron assessment of both heart and liver is necessary for pre- and post-transplant evaluation. In iron overload diseases, heart and liver iron evaluation is indispensable not only for the patients' survival, but also for evaluation before and after HSCT.

  15. The variability of expiration peak flow of workers employed in the washing installation (laundry) of Haji Adam Malik general hospital Medan

    NASA Astrophysics Data System (ADS)

    Saragih, W.; Tarigan, A. P.; Nainggolan, N.; Eyanoer, P. C.

    2018-03-01

    Laundress in hospitals is very susceptible to respiratory disorders, especially occupational asthma. To investigate the occurrence of an obstruction, the daily Expiration Peak Flow (EPF) examination was carried to compare the EPF, before and after work. It is a descriptive study conducted in November 2016. The samplewas 24 workers in Haji Adam Malik General Hospital Medan Laundry Installation, without any exclusion criteria, where all workers have been working for more than one year. Sampling was by distributing daily questionnaires and EPF examination for 14 days. From the results of EPF examinations that have been conducted, there were nine persons were indicated to experience a decreased in lung function. Based on the most sex category, men were 5 people (55.6%), age ≥ 40 years were 2 people (22.2%), working duration ≥10 years were 3 people (33.3%), with the smoking habit were 5 people (55.6%), total dust ≥0.2 micron were 6 people (66.7), total exposure of bacterium ≥500 were 3 people (33.3%), poor APD usage was 3 people (33.3%). In conclusion, there was a decrease in lung function by ≥ 3.1% found in 9 workers.

  16. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

    USGS Publications Warehouse

    Slack, John F.

    2012-01-01

    Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As

  17. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onbasli, M. C., E-mail: onbasli@mit.edu; Kim, D. H.; Ross, C. A.

    2014-10-01

    Yttrium iron garnet (YIG, Y {sub 3}Fe{sub 5}O{sub 12}) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd{sub 3}Ga{sub 5}O{sub 12}) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm{sup −3}), in-plane easy axis, and damping parameters as low as 2.2 × 10{sup −4}. These high quality YIG thin films are useful in the investigation ofmore » the origins of novel magnetic phenomena and magnetization dynamics.« less

  18. A rare case of iron-pill induced gastritis in a female teenager: A case report and a review of the literature.

    PubMed

    Meliţ, Lorena Elena; Mărginean, Cristina Oana; Mocanu, Simona; Mărginean, Maria Oana

    2017-07-01

    The treatment of iron-deficiency anemia with oral iron supplements can present side-effects on the GI tract mucosa including necrosis, ulceration, or ischemia. The particular endoscopic findings and the histopathological exam will establish the diagnosis of erosive gastritis with iron deposits in the gastric mucosa. We present the case of a 14-year-old female admitted in our clinic for upper digestive hemorrhage, nausea, melena, and abdominal pain. Her personal history revealed iron deficiency anemia receiving oral iron supplements for approximately 2 weeks. The laboratory tests at the moment of admission pointed out anemia, increased level of serum iron, increased liver transaminases, a decreased level of ferritin, but with normal levels of both total iron-binding capacity and transferrin. The eso-gastro-duodenoscopy revealed multiple brown deposits on the surface of the gastric mucosa and multiple hemorrhagic lesions, under the aspect of erosions all over the gastric mucosa, but more severe in the antral part, and the histopathological exam confirmed the presence of iron deposits at this level. Iron-pill induced gastritis is a rare, under-diagnosed entity that can be present even at pediatric ages with potential severe clinical impact.

  19. Persistent Microvascular Obstruction After Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse RemodelingCLINICAL PERSPECTIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kali, Avinash; Cokic, Ivan; Tang, Richard

    Emerging evidence now supports the notion that persistent microvascular obstruction (PMO) may be more predictive of major adverse cardiovascular events than MI size itself. But, how PMO, a phenomenon limited to the acute/sub-acute period of MI, imparts adverse remodeling throughout the post MI period, particularly after its resolution, is incompletely understood. We hypothesized that PMOs resolve into chronic iron crystals within MI territories and actively impart a proinflammatory burden and adverse remodeling of infarction and LV in the chronic phase of MI. Canine models reperfused (n=20) and non-reperfused (n=20) with and without PMO were studied with serial cardiac MRI tomore » characterize the spatiotemporal relationships between PMO, iron deposition, and infarct and LV remodeling indices between acute (day 7, post MI) and chronic (week 8, post MI). Histopathology and immunohistochemistry were used to validate the iron deposition, microscopically map and quantify the relationship between iron-rich chronic MI regions against pro-inflammatory macrophages, proinflammatory cytokines and matrix metalloproteinase. Atomic resolution transmission electron microscopy (TEM) was used to determine the crystallinity of iron and assess the physical effects of iron on lysosomes within macrophages, and energy-dispersive X-ray spectroscopy (EDS) to identify the chemical composition of the iron composite. Results showed that PMOs lead to iron deposition within chronic MI and that the extent of chronic iron deposition is strongly related to PMO Volume (r>0.6, p<0.001). TEM and EDS analysis showed that iron within chronic MI is found within macrophages as aggregates of nanocrystals of ~2.5 nm diameter in ferric state. Correlative histological studies showed that iron content, proinflammatory burden and collagen degrading enzyme were highly correlated (r >0.7, p<0.001). Iron within chronic MI was significantly associated with infarct resorption (r>0.5, p<0.001) and adverse

  20. Radioactive rare-earth deposit at Scrub Oaks mine, Morris County, New Jersey

    USGS Publications Warehouse

    Klemic, Harry; Heyl, A.V.; Taylor, Audrey R.; Stone, Jerome

    1959-01-01

    A deposit of rare-earth minerals in the Scrub Oaks iron mine, Morris County, N. J., was mapped and sampled in 1955. The rare-earth minerals are mainly in coarse-grained magnetite ore and in pegmatite adjacent to it. Discrete bodies of rare-earth-bearing magnetite ore apparently follow the plunge of the main magnetite ore body at the north end of the mine. Radioactivity of the ore containing rare earths is about 0.2 to 0.6 mllliroentgens per hour. The principal minerals of the deposit are quartz, magnetite, hematite, albiteoligoclase, perthite and antiperthite. Xenotime and doverite aggregates and bastnaesite with intermixed leucoxene are the most abundant rare-earth minerals, and zircon, sphene, chevkinite, apatite, and monazite are of minor abundance in the ore. The rare-earth elements are partly differentiated into cerium-rich bastnaesite, chevkinite, and monazite, and yttrium-rich xenotime and doverite. Apatite, zircon, and sphene contain both cerium and yttrium group earths. Eleven samples of radioactive ore and rock average 0.009 percent uranium, 0.062 percent thorium, 1.51 percent combined rare-earth oxides including yttrium oxide and 24.8 percent iron. Scatter diagrams of sample data show a direct correlation between equivalent uranium, uranium, thorium, and combined rare^ earth oxides. Both cerium- and yttrium-group earths are abundant in the rare-earth minerals. Radioactive magnetite ore containing rare-earth minerals probably formed as a variant of the magnetite mineralization that produced the main iron ore of the Scrub Oaks deposit. The rare-earth minerals and the iron ore were deposited contemporaneously. Zircon crystals, probably deposited at the same time, have been determined by the Larsen method to be about 550 to 600 million years old (late Precambrian age). Uranium, thorium, and rare-earth elements are potential byproducts of iron in the coarse-grained magnetite ore.

  1. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F.T.; Bau, M.; Kang, J.-K.; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. Iron and manganese deposits occur in five forms: nodules, crusts, cements, mounds and sediment-hosted stratabound layers. Seafloor oxides show a wide range of compositions from nearly pure iron to nearly pure manganese end members. Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (up to 52% Mn) for hydrothermal stratabound manganese oxides from active volcanic arcs. Hydrogenetic Fe-Mn crusts that occur on most seamounts in the ocean basins have a mean Fe/Mn ratio of 0.7 for open-ocean seamount crusts and 1.2 for continental margin seamount crusts. Fe-Mn nodules of potential economic interest from the Clarion-Clipperton Zone have a mean Fe/Mn ratio of 0.3, whereas the mean ratio for nodules from elsewhere in the Pacific is about 0.7. Crusts are enriched in Co, Ni and Pt and nodules in Cu and Ni, and both have significant concentrations of Pb, Zn, Ba, Mo, V and other elements. In contrast, hydrothermal deposits commonly contain only minor trace metal contents, although there are many exceptions, for example, with Ni contents up to 0.66%, Cr to 1.2%, and Zn to 1.4%. Chondrite-normalized REE patterns generally show a positive Ce anomaly and abundant ΣREEs for hydrogenetic and mixed hydrogenetic-diagenetic deposits, whereas the Ce anomaly is negative for hydrothermal deposits and ΣREE contents are low. However, the Ce anomaly in crusts may vary from strongly positive in East Pacific crusts to slightly negative in West Pacific crusts, which may reflect

  2. IRON-BINDING AND STORAGE PROTEINS IN SPUTUM

    EPA Science Inventory

    Induced sputum (IS) and bronchoalveolar lavage (BAL) sample different lung compartments, with IS obtaining secretions from the surfaces of the bronchial airways and BAL sampling secretions from the alveolar airspaces. Deposition of iron-containing particulate matter occurs prefer...

  3. Associations between iron concentration and productivity in montane streams of the Black Hills, South Dakota

    USGS Publications Warehouse

    Hayer, Cari Ann; Holcomb, Benjamin M.; Chipps, Steven R.

    2013-01-01

    Iron is an important micronutrient found in aquatic systems that can influence nutrient availability (e.g., phosphorus) and primary productivity. In streams, high iron concentrations often are associated with low pH as a result of acid mine drainage, which is known to affect fish and invertebrate communities. Streams in the Black Hills of South Dakota are generally circumneutral in pH, yet select streams exhibit high iron concentrations associated with natural iron deposits. In this study, we examined relationships among iron concentration, priphyton biomass, macroinvertebrate abundance, and fish assemblages in four Black Hills streams. The stream with the highest iron concentration (~5 mg Fe/L) had reduced periphyton biomass, invertebrate abundance, and fish biomass compared to the three streams with lower iron levels (0.1 to 0.6 mg Fe/L). Reduced stream productivity was attributed to indirect effects of ferric iron Fe+++), owing to iron-hydroxide precipitation that influenced habitat quality (i.e., substrate and turbidity) and food availability (periphyton and invertebrates) for higher trophic levels (e.g., fish). Additionally, reduced primary and secondary production was associated with reduced standing stocks of salmonid fishes. Our findings suggested that naturally occurring iron deposits may constrain macroinvertebrate and fish production.

  4. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver

    PubMed Central

    Aigner, Elmar; Weiss, Günter; Datz, Christian

    2015-01-01

    Elevated iron stores as indicated by hyperferritinemia with normal or mildly elevated transferrin saturation and mostly mild hepatic iron deposition are a characteristic finding in subjects with non-alcoholic fatty liver disease (NAFLD). Excess iron is observed in approximately one third of NAFLD patients and is commonly referred to as the “dysmetabolic iron overload syndrome”. Clinical evidence suggests that elevated body iron stores aggravate the clinical course of NAFLD with regard to liver-related and extrahepatic disease complications which relates to the fact that excess iron catalyses the formation of toxic hydroxyl-radicals subsequently resulting in cellular damage. Iron removal improves insulin sensitivity, delays the onset of type 2 diabetes mellitus, improves pathologic liver function tests and likewise ameliorates NAFLD histology. Several mechanisms contribute to pathologic iron accumulation in NAFLD. These include impaired iron export from hepatocytes and mesenchymal Kupffer cells as a consequence of imbalances in the concentrations of iron regulatory factors, such as hepcidin, cytokines, copper or other dietary factors. This review summarizes the knowledge about iron homeostasis in NAFLD and the rationale for its therapeutic implications. PMID:25729473

  5. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. Copyright © 2012. Published by Elsevier B.V.

  6. AMD-like retinopathy associated with intravenous iron

    PubMed Central

    Song, Delu; Kanu, Levi N.; Li, Yafeng; Kelly, Kristen L.; Bhuyan, Rupak K.; Aleman, Tomas; Morgan, Jessica I. W.; Dunaief, Joshua L.

    2016-01-01

    Iron accumulation in the retina is associated with the development of age-related macular degeneration (AMD). IV iron is a common method to treat iron deficiency anemia in adults, and its retinal manifestations have not hitherto been identified. To assess whether IV iron formulations can be retina-toxic, we generated a mouse model for iron-induced retinal damage. Male C57BL/6J mice were randomized into groups receiving IV iron-sucrose (+Fe) or 30% sucrose (−Fe). Iron levels in neurosensory retina (NSR), retinal pigment epithelium (RPE), and choroid were assessed using immunofluorescence, quantitative PCR, and the Perls’ iron stain. Iron levels were most increased in the RPE and choroid while levels in the NSR did not differ significantly in +Fe mice compared to controls. Eyes from +Fe mice shared histological features with AMD, including Bruch’s membrane (BrM) thickening with complement C3 deposition, as well as RPE hypertrophy and vacuolization. This focal degeneration correlated with areas with high choroidal iron levels. Ultrastructural analysis provided further detail of the RPE/photoreceptor outer segment vacuolization and Bruch’s membrane thickening. Findings were correlated with a clinical case of a 43-year-old patient who developed numerous retinal drusen, the hallmark of AMD, within 11 months of IV iron therapy. Our results suggest that IV iron therapy may have the potential to induce or exacerbate a form of retinal degeneration. This retinal degeneration shares features with AMD, indicating the need for further study of AMD risk in patients receiving IV iron treatment. PMID:27565570

  7. Air pollution particles and iron homeostasis | Science ...

    EPA Pesticide Factsheets

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  8. Gene co-expression networks shed light into diseases of brain iron accumulation

    PubMed Central

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M.; Botía, Juan A.; Collingwood, Joanna F.; Hardy, John; Milward, Elizabeth A.; Ryten, Mina; Houlden, Henry

    2016-01-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700

  9. Magnetite deposits near Klukwan and Haines, southeastern Alaska

    USGS Publications Warehouse

    Robertson, Eugene C.

    1956-01-01

    Low-grade iron ore is found in magnetite-bearing pyroxenite bodies near Klukwan and Haines in Southeastern Alaska. An alluvial fan at Haines also contains magnetite-bearing rock of possible economic significance. The Haines-Klukwan area is underlain by rocks of Mesozoic Including epidote diorite, quartz diorite, and alaskite of the Coast Range batholith, metabasalt (recrystallized lava flows and pyroclastic rocks), and, in the southern part, interbedded slate and limestone. Layering and foliation, where perceptible, generally strike northwest and dip steeply northeast. The iron deposits are found at or near the contact between the metabasalt and epidote diorite; they appear to represent highly-altered lava flows that were metamorphosed during the emplacement of the batholith. Several billion tens of rock containing about 13 percent magnetic iron are included in the pyroxenite body at Klukwan. Sampling and dip-needle data suggest the presence there of two or three tabular aches in which the rock has an average magnetic iron content of 20 percent or more. Pyroxenite bodies outcropping in three areas near Haines apparently are lower in grade than the Klukwan deposit; lack of exposures prevented thorough sampling but reconnaissance traverses with a dip needle failed to reveal important zones of high-grade iron ore. An alluvial fan adjoining the pyroxenite body at Klukwan contains several hundred million tons of broken rock having a magneticiron content of about 10 percent.

  10. Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study.

    PubMed

    Xu, Xiaojun; Wang, Qidong; Zhang, Minming

    2008-03-01

    It is well known that iron accumulates in the brains of patients with various neurodegenerative diseases. To better understand disease-related iron changes, it is necessary to know the physiological distribution and accumulation of iron in the human brain. Studies have shown that brain iron levels increase with aging. However, the effects of gender and hemispheric laterality on iron accumulation and distribution are not well established. In this study, we estimated the brain iron levels in vivo in 78 healthy adults ranging in age 22 to 78 years using magnetic susceptibility-weighted phase imaging. The effects of age, gender, and hemispheric location on brain iron levels were evaluated within the framework of a general linear model. We found that the left hemisphere had higher iron levels than the right in the putamen, globus pallidus, substantia nigra, thalamus, and frontal white matter. We argue that the hemispheric asymmetry of iron content may underlie that of the dopaminergic system and may be related to motor lateralization in humans. In addition, significant age-related iron accumulation occurred in the putamen, red nucleus, and frontal white matter, but no gender-related differences in iron levels were detected. The results of this study extend our knowledge of the physiological distribution and accumulation of iron in the human brain.

  11. Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage

    PubMed Central

    Kohl, Courtney; Grettenberger, Christen; Larson, Lance N.; Burgos, William D.

    2014-01-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, “Ferrovum” spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH >3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH <3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH <3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters. PMID:25501473

  12. The nanophase iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Gehring, A. U.

    1992-01-01

    Iron-enriched smectites have been suggested as important mineral compounds of the Martian soil. They were shown to comply with the chemical analysis of the Martian soil, to simulate many of the findings of the Viking Labeled Release Experiments on Mars, to have spectral reflectance in the VIS-NIR strongly resembling the bright regions on Mars. The analogy with Mars soil is based, in a number of aspects, on the nature and behavior of the iron oxides and oxyhydroxides deposited on the surface of the clay particles. A summary of the properties of these iron phases and some recent findings are presented. Their potential relevance to Mars surface processes is discussed.

  13. Lower serum hepcidin and greater parenchymal iron in nonalcoholic fatty liver disease patients with C282Y HFE mutations

    PubMed Central

    Nelson, James E.; Brunt, Elizabeth M.; Kowdley, Kris V.

    2012-01-01

    Hepcidin regulation is linked to both iron and inflammatory signals and may influence iron loading in nonalcoholic steatohepatitis (NASH). The aim of this study was to examine the relationships among HFE genotype, serum hepcidin level, hepatic iron deposition and histology in nonalcoholic fatty liver disease (NAFLD). SNP genotyping for C282Y (rs1800562) and H63D (rs1799945) HFE mutations was performed in 786 adult subjects in the NASH Clinical Research Network (CRN). Clinical, histologic, and laboratory data were compared using nonparametric statistics and multivariate logistic regression. NAFLD patients with C282Y, but not H63D mutations, had lower median serum hepcidin levels (57 vs 65 ng/ml, p=0.01) and higher mean hepatocellular (HC) iron grades (0.59 vs 0.28, p<0.001), compared to wild type (WT) subjects. Subjects with hepatic iron deposition had higher serum hepcidin levels than subjects without iron for all HFE genotypes (p<0.0001). Hepcidin levels were highest among patients with mixed HC/reticuloendothelial system cell (RES) iron deposition. H63D mutations were associated with higher steatosis grades and NAFLD activity scores (OR≥1.4, CI >1.0≤2.5, p≤0.041), compared to WT, but not with either HC or RES iron. NAFLD patients with C282Y mutations had less ballooning or NASH (OR ≤0.62, 95% CI >0.39<0.94, p≤0.024) compared to WT subjects. Conclusions Presence of C282Y mutations in patients with NAFLD is associated with greater HC iron deposition and decreased serum hepcidin levels and there is a positive relationship between hepatic iron stores and serum hepcidin level across all HFE genotypes. These data suggest that body iron stores are the major determinant of hepcidin regulation in NAFLD regardless of HFE genotype. A potential role for H63D mutations in NAFLD pathogenesis is possible through iron-independent mechanisms. PMID:22611049

  14. Lower serum hepcidin and greater parenchymal iron in nonalcoholic fatty liver disease patients with C282Y HFE mutations.

    PubMed

    Nelson, James E; Brunt, Elizabeth M; Kowdley, Kris V

    2012-11-01

    Hepcidin regulation is linked to both iron and inflammatory signals and may influence iron loading in nonalcoholic steatohepatitis (NASH). The aim of this study was to examine the relationships among HFE genotype, serum hepcidin level, hepatic iron deposition, and histology in nonalcoholic fatty liver disease (NAFLD). Single-nucleotide polymorphism genotyping for C282Y (rs1800562) and H63D (rs1799945) HFE mutations was performed in 786 adult subjects in the NASH Clinical Research Network (CRN). Clinical, histologic, and laboratory data were compared using nonparametric statistics and multivariate logistic regression. NAFLD patients with C282Y, but not H63D mutations, had lower median serum hepcidin levels (57 versus 65 ng/mL; P = 0.01) and higher mean hepatocellular (HC) iron grades (0.59 versus 0.28; P < 0.001), compared to wild-type (WT) subjects. Subjects with hepatic iron deposition had higher serum hepcidin levels than subjects without iron for all HFE genotypes (P < 0.0001). Hepcidin levels were highest among patients with mixed HC/reticuloendothelial system cell (RES) iron deposition. H63D mutations were associated with higher steatosis grades and NAFLD activity scores (odds ratio [OR], ≥1.4; 95% confidence interval [CI]: >1.0, ≤2.5; P ≤ 0.041), compared to WT, but not with either HC or RES iron. NAFLD patients with C282Y mutations had less ballooning or NASH (OR, ≤0.62; 95% CI: >0.39, <0.94; P ≤ 0.024), compared to WT subjects. The presence of C282Y mutations in patients with NAFLD is associated with greater HC iron deposition and decreased serum hepcidin levels, and there is a positive relationship between hepatic iron stores and serum hepcidin level across all HFE genotypes. These data suggest that body iron stores are the major determinant of hepcidin regulation in NAFLD, regardless of HFE genotype. A potential role for H63D mutations in NAFLD pathogenesis is possible through iron-independent mechanisms. Copyright © 2012 American Association

  15. Structural and magnetic properties of nanocomposite iron-containing SiCxNy films

    NASA Astrophysics Data System (ADS)

    Pushkarev, R. V.; Fainer, N. I.; Maurya, K. K.

    2017-02-01

    New ferromagnetic films with composition SiCxNyFez were synthesized using chemical vapor deposition technique. Films were deposited using ferrocene, 1,1,1,3,3,3-hexamethyldisilazane (HMDS) and hydrogen gaseous mixture. Chemical and phase composition of the films were studied by FTIR, Raman spectroscopy and X-ray diffraction with grazing incidence (GI-XRD). FTIR spectra analysis confirmed the existence of Si-C and Si-N bonds. Graphite inclusions and amorphous carbon were determined by Raman spectra analysis. The surface of the SiCxNyFez films studied by SEM is covered by nanocrystallites of iron oxide Fe3O4 phase. The main purpose of GI-XRD analysis is to describe the layered structure of the films in detail. It was shown by GI-XRD study, that phase composition of the SiCxNyFez films varies from iron oxide Fe3O4 to iron silicide Fe3Si and silicon carbide SiC with the deposition temperature growing. It was established, that SiCxNyFez films are perspective for application in the spintronic field.

  16. Estimating Tissue Iron Burden: Current Status and Future Prospects

    PubMed Central

    Wood, John C.

    2015-01-01

    SUMMARY Iron overload is becoming an increasing problem as haemoglobinopathy patients gain greater access to good medical care and as therapies for myelodysplastic syndromes improve. Therapeutic options for iron chelation therapy have increased and many patients now receive combination therapies. However, optimal utilization of iron chelation therapy requires knowledge not only of the total body iron burden but the relative iron distribution among the different organs. The physiological basis for extrahepatic iron deposition is presented in order to help identify patients at highest risk for cardiac and endocrine complications. This manuscript reviews the current state of the art for monitoring global iron overload status as well as its compartmentalization. Plasma markers, computerized tomography, liver biopsy, magnetic susceptibility devices and magnetic resonance imaging (MRI) techniques are all discussed but MRI has come to dominate clinical practice. The potential impact of recent pancreatic and pituitary MRI studies on clinical practice are discussed as well as other works-in-progress. Clinical protocols are derived from experience in haemoglobinopathies but may provide useful guiding principles for other iron overload disorders, such as myelodysplastic syndromes. PMID:25765344

  17. Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome.

    PubMed Central

    Nielsen, J E; Jensen, L N; Krabbe, K

    1995-01-01

    Hereditary haemochromatosis is characterised by excessive parenchymal iron deposition, particularly in the liver. Usually hereditary haemochromatosis is not associated with neurological symptoms and iron deposition in the brain has not previously been described as a pathological phenomenon. A patient is reported with hereditary haemochromatosis and a syndrome of dementia, dysarthria, a slowly progressive gait disturbance, imbalance, muscle weakness, rigidity, bradykinesia, tremor, ataxia, and dyssynergia. The findings on MRI of a large signal decrease in the basal ganglia, consistent with excessive iron accumulation, indicate a causal relation to the symptoms. Although the neurological symptoms did not improve in our patient, hereditary haemochromatosis should be considered in the differential diagnosis of parkinsonian syndromes, because complications of iron induced organ injury may be prevented by phlebotomy. Images PMID:7673967

  18. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron

    PubMed Central

    Wisnieff, Cynthia; Ramanan, Sriram; Olesik, John; Gauthier, Susan; Wang, Yi; Pitt, David

    2014-01-01

    Purpose Within multiple sclerosis (MS) lesions iron is present in chronically activated microglia. Thus, iron detection with MRI might provide a biomarker for chronic inflammation within lesions. Here, we examine contributions of iron and myelin to magnetic susceptibility of lesions on quantitative susceptibility mapping (QSM). Methods Fixed MS brain tissue was assessed with MRI including gradient echo data, which was processed to generate field (phase), R2* and QSM. Five lesions were sectioned and evaluated by immunohistochemistry for presence of myelin, iron and microglia/macrophages. Two of the lesions had an elemental analysis for iron concentration mapping, and their phospholipid content was estimated from the difference in the iron and QSM data. Results Three of the five lesions had substantial iron deposition that was associated with microglia and positive susceptibility values. For the two lesions with elemental analysis, the QSM derived phospholipid content maps were consistent with myelin labeled histology. Conclusion Positive susceptibility values with respect to water indicate the presence of iron in MS lesions, though both demyelination and iron deposition contribute to QSM. PMID:25137340

  19. Flotation of Magnetite Crystals upon Decompression - A Formation Model for Kiruna-type Iron Oxide-Apatite Deposits

    NASA Astrophysics Data System (ADS)

    Knipping, J. L.; Simon, A. C.; Fiege, A.; Webster, J. D.; Reich, M.; Barra, F.; Holtz, F.; Oeser-Rabe, M.

    2017-12-01

    Trace-element characteristics of magnetite from Kiruna-type iron oxide-apatite deposits indicate a magmatic origin. A possible scenario currently considered for the magmatic formation, apart from melt immiscibility, is related to degassing of volatile-rich magmas. Decompression, e.g., induced by magma ascent, results in volatile exsolution and the formation of a magmatic volatile phase. Volatile bubbles are expected to nucleate preferentially on the surface of oxides like magnetite which is due to a relatively low surface tension of oxide-bubble interfaces [1]. The "bulk" density of these magnetite-bubble pairs is typically lower than the surrounding magma and thus, they are expected to migrate upwards. Considering that magnetite is often the liquidus phase in fluid-saturated, oxidized andesitic arc magmas, this process may lead to the formation of a rising magnetite-bubble suspension [2]. To test this hypothesis, complementary geochemical analyses and high pressure experimental studies are in progress. The core to rim Fe isotopic signature of magnetite grains from the Los Colorados deposit in the Chilean Iron Belt was determined by Laser Ablation-MC-ICP-MS. The δ56Fe data reveal a systematic zonation from isotopically heavy Fe (δ56Fe: 0.25 ±0.07 ‰) in the core of magnetite grains to relatively light Fe (δ56Fe: 0.15 ±0.05 ‰) toward grain rims. This variation indicates crystallization of the magnetite cores at early magmatic stages from a silicate melt and subsequent growth of magnetite rims at late magmatic - hydrothermal stages from a free volatile phase. These signatures agree with the core to rim trace-element signatures of the same magnetite grains. The presence of Cl in the exsolved volatile phase and the formation of FeCl2 complexes is expected to enhance the transport of Fe in fluids and the formation of magmatic-hydrothermal magnetite [3]. First experiments (975 °C, 350 to 100 MPa, 0.025 MPa/s) show certain magnetite accumulation only 15 minutes

  20. Continuing Treatment with Salvia miltiorrhiza Injection Attenuates Myocardial Fibrosis in Chronic Iron-Overloaded Mice

    PubMed Central

    Zhang, Ying; Wang, Hao; Cui, Lijing; Zhang, Yuanyuan; Liu, Yang; Chu, Xi; Liu, Zhenyi; Zhang, Jianping; Chu, Li

    2015-01-01

    Iron overload cardiomyopathy results from iron accumulation in the myocardium that is closely linked to iron-mediated myocardial fibrosis. Salvia miltiorrhiza (SM, also known as Danshen), a traditional Chinese medicinal herb, has been widely used for hundreds of years to treat cardiovascular diseases. Here, we investigated the effect and potential mechanism of SM on myocardial fibrosis induced by chronic iron overload (CIO) in mice. Kunming male mice (8 weeks old) were randomized to six groups of 10 animals each: control (CONT), CIO, low-dose SM (L-SM), high-dose SM (H-SM), verapamil (VRP) and deferoxamine (DFO) groups. Normal saline was injected in the CONT group. Mice in the other five groups were treated with iron dextran at 50 mg/kg per day intraperitoneally for 7 weeks, and those in the latter four groups also received corresponding daily treatments, including 3 g/kg or 6 g/kg of SM, 100 mg/kg of VRP, or 100 mg/kg of DFO. The iron deposition was estimated histologically using Prussian blue staining. Myocardial fibrosis was determined by Masson’s trichrome staining and hydroxyproline (Hyp) quantitative assay. Superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and protein expression levels of type I collagen (COL I), type I collagen (COL III), transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase-9 (MMP-9) were analyzed to investigate the mechanisms underlying the effects of SM against iron-overloaded fibrosis. Treatment of chronic iron-overloaded mice with SM dose-dependently reduced iron deposition levels, fibrotic area percentage, Hyp content, expression levels of COL I and COL III, as well as upregulated the expression of TGF- β1 and MMP-9 proteins in the heart. Moreover, SM treatment decreased MDA content and increased SOD activity. In conclusion, SM exerted activities against cardiac fibrosis induced by CIO, which may be attributed to its inhibition of iron deposition, as well as collagen metabolism and oxidative stress

  1. The economic potential of El-Gedida glauconite deposits, El-Bahariya Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Habaak, Galal; Askalany, Mohamed; Faraghaly, Mohamed; Abdel-Hakeem, Mahmoud

    2016-08-01

    The mining work at El-Gedida iron mine, El-Bahariya Oasis, in the Western Desert of Egypt extracts commercial iron ore deposits without attention paid to the large glauconite deposits overlying these iron ore deposits. For this reason, the present paper aims at evaluating and attracting the attention to these glauconite deposits as alternative potassium fertilizers. The study was achieved by investigating mineralogical, physical and chemical properties of the green deposits. Mineralogical and physical properties involved the determination of glauconite pellets content in different grain size fractions relative to impurities and the analysis of the percentage of clay matrix and grain size distribution. Different pre-treatment strategies and methods including comminution, sieving, magnetic separation, and X-ray diffraction were used for investigating those mineralogical and physical properties. On the other hand, chemical analyses included potassium content, heavy metal concentrations, and pH and salinity measurements. The major elements and trace elements were measured using ICP-OES and the pH was measured using a pH conductometer. Moreover, this study investigated the nature of grain boundaries and the effect of sieving on glauconite beneficiation. Results of this study suggest that El-Gedida glauconite deposits are mineralogically, physically and chemically suitable for exploitation and can be beneficiated for use as an alternative potassium fertilizer.

  2. Aromatic chemicals by iron-catalyzed hydrotreatment of lignin pyrolysis vapor.

    PubMed

    Olcese, Roberto Nicolas; Lardier, George; Bettahar, Mohammed; Ghanbaja, Jaafar; Fontana, Sébastien; Carré, Vincent; Aubriet, Frédéric; Petitjean, Dominique; Dufour, Anthony

    2013-08-01

    Lignin is a potential renewable material for the production of bio-sourced aromatic chemicals. We present the first hydrotreatment of lignin pyrolysis vapors, before any condensation, using inexpensive and sustainable iron-silica (Fe/SiO2 ) and iron-activated carbon (Fe/AC) catalysts. Lignin pyrolysis was conducted in a tubular reactor and vapors were injected in a fixed bed of catalysts (673 K, 1 bar) with stacks to investigate the profile of coke deposit. More than 170 GC-analyzable compounds were identified by GCxGC (heart cutting)/flame ionization detector mass spectrometry. Lignin oligomers were analyzed by very high resolution mass spectrometry, called the "petroleomic" method. They are trapped by the catalytic fixed bed and, in particular, by the AC. The catalysts showed a good selectivity for the hydrodeoxygenation of real lignin vapors to benzene, toluene, xylenes, phenol, cresols, and alkyl phenols. The spent catalysts were characterized by temperature-programmed oxidation, transmission electron microscopy (TEM), and N2 sorption. Micropores in the Fe/AC catalyst are completely plugged by coke deposits, whereas the mesoporous structure of Fe/SiO2 is unaffected. TEM images reveal two different types of coke deposit: 1) catalytic coke deposited in the vicinity of iron particles and 2) thermal coke (carbonaceous particles ≈1 μm in diameter) formed from the gas-phase growth of lignin oligomers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Infrared analysis of vapor phase deposited tricresylphosphate (TCP)

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Hanyaloglu, Bengi; Graham, Earl E.

    1994-01-01

    Infrared transmission was employed to study the formation of a lubricating film deposited on two different substrates at 700 C. The deposit was formed from tricresylphosphate vapors and collected onto a NaCl substrate and on an iron coated NaCl substrate. Analysis of the infrared data suggests that a metal phosphate is formed initially, followed by the formation of organophosphorus polymeric compounds.

  4. Age constraints on the hydrothermal history of the Prominent Hill iron oxide copper-gold deposit, South Australia

    NASA Astrophysics Data System (ADS)

    Bowden, Bryan; Fraser, Geoff; Davidson, Garry J.; Meffre, Sebastien; Skirrow, Roger; Bull, Stuart; Thompson, Jay

    2017-08-01

    The Mesoproterozoic Prominent Hill iron-oxide copper-gold deposit lies on the fault-bound southern edge of the Mt Woods Domain, Gawler Craton, South Australia. Chalcocite-bornite-chalcopyrite ores occur in a hematitic breccia complex that has similarities to the Olympic Dam deposit, but were emplaced in a shallow water clastic-carbonate package overlying a thick andesite-dacite pile. The sequence has been overturned against the major, steep, east-west, Hangingwall Fault, beyond which lies the clastic to potentially evaporitic Blue Duck Metasediments. Immediately north of the deposit, these metasediments have been intruded by dacite porphyry and granitoid and metasomatised to form magnetite-calc-silicate skarn ± pyrite-chalcopyrite. The hematitic breccia complex is strongly sericitised and silicified, has a large sericite ± chlorite halo, and was intruded by dykes during and after sericitisation. This paper evaluates the age of sericite formation in the mineralised breccias and provides constraints on the timing of granitoid intrusion and skarn formation in the terrain adjoining the mineralisation. The breccia complex contains fragments of granitoid and porphyry that are found here to be part of the Gawler Range Volcanics/Hiltaba Suite magmatic event at 1600-1570 Ma. This indicates that some breccia formation post-dated granitoid intrusion. Monazite and apatite in Fe-P-REE-albite metasomatised granitoid, paragenetically linked with magnetite skarn formation north of the Hangingwall Fault, grew soon after granitoid intrusion, although the apatite experienced U-Pb-LREE loss during later fluid-mineral interaction; this accounts for its calculated age of 1544 ± 39 Ma. To the south of the fault, within the breccia, 40Ar-39Ar ages yield a minimum age of sericitisation (+Cu+Fe+REE) of dykes and volcanics of ˜1575 Ma, firmly placing Prominent Hill ore formation as part of the Gawler Range Volcanics/Hiltaba Suite magmatic event within the Olympic Cu-Au province of the

  5. Biologically recycled continental iron is a major component in banded iron formations

    PubMed Central

    Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.

    2015-01-01

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ56Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ56Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 100–103 y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 105–106 y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean. PMID:26109570

  6. Biologically recycled continental iron is a major component in banded iron formations.

    PubMed

    Li, Weiqiang; Beard, Brian L; Johnson, Clark M

    2015-07-07

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ(56)Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ(56)Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 10(0)-10(3) y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 10(5)-10(6) y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean.

  7. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux.

    PubMed

    Chen, Min; Zheng, Jiashuo; Liu, Guohao; Xu, En; Wang, Junzhuo; Fuqua, Brie K; Vulpe, Chris D; Anderson, Gregory J; Chen, Huijun

    2018-05-31

    Little is known about the iron efflux from the pancreas, but it is likely that multicopper ferroxidases (MCFs) are involved in this process. We thus used hephaestin (Heph) and ceruloplasmin (Cp) single-knockout mice and Heph/Cp double-knockout mice to investigate the roles of MCFs in pancreatic iron homeostasis. We found that both HEPH and CP were expressed in the mouse pancreas, and that ablation of either MCF had limited effect on the pancreatic iron levels. However, ablation of both MCFs together led to extensive pancreatic iron deposition and severe oxidative damage. Perls' Prussian blue staining revealed that this iron deposition was predominantly in the exocrine pancreas, while the islets were spared. Consistent with these results, plasma lipase and trypsin were elevated in Heph/Cp knockout mice, indicating damage to the exocrine pancreas, while insulin secretion was not affected. These data indicate that HEPH and CP play mutually compensatory roles in facilitating iron efflux from the exocrine pancreas, and show that MCFs are able to protect the pancreas against iron-induced oxidative damage. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Clay deposits of the Tierra Colorado district, southern Orange County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    The clay of this district is being mined for fire brick by the Vitrofrax Corporation. Much of the clay contains 35 percent or more of alumina and between 1 and 2 percent of iron oxide. Production is largely from an underground mine as the best clay deposit known in the district occurs on the side of a steep hill with more than 100 feet of sandstone overlying most of it. The good clay deposits occur at the base of an Eocene sandstone formation, and overlie mottled clays with a high iron content that are residual deposits formed on an old weathered surface. Mapping indicates that the clay deposits are very lenticular, though all occur at the same stratigraphic position, and they grade laterally into sandy clay and quartz sand. Topographic relief and the dip of the strata preclude finding large areas where the clay strata have relatively little overburden.

  9. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  10. Gene co-expression networks shed light into diseases of brain iron accumulation.

    PubMed

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Exploring Iron Silicate Precursors of Ancient Iron Formations through Rock Record, Laboratory and Field Analogue Investigations

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Rasmussen, B.; Muhling, J.; Benzerara, K.; Jezequel, D.; Cosmidis, J.; Templeton, A. S.

    2016-12-01

    In direct contrast to today's oceans, iron-rich chemical precipitates dominate the deep marine sedimentary record > 2.3 billion years ago. The deposition of these minerals resulted in massive iron formations and indicate that the ocean was previously ferruginous and largely anoxic. To precipitate and concentrate iron in the sediments, many hypotheses have centered on the oxidation of soluble Fe(II) to solid Fe(III)-oxyhydroxides; these ideas have stimulated extensive research using iron-oxidizing bacteria to produce Fe(III)-oxides and trace metal sorption experiments on Fe(III)-oxides, leading to inferences of trace metal availability and implications for enzymatic and microbial evolution as well as pO2 levels and seawater chemistry. However, recent discoveries of disseminated iron-silicate nanoparticles in early-silicifying chert indicate that iron-silicates may have instead been the primary precipitates from these Archean ferruginous oceans (Rasmussen et al, 2015). Considering the significant paradigm shift this discovery implies for interpretations of Archean elemental cycling, redox state and potential microbial metabolisms, we investigated these iron-silicate inclusions and their implications for ancient seawater chemistry in a multi-faceted approach using spectroscopic- and diffraction-based techniques. The crystal structure, Fe oxidation state and Fe coordination environment of iron-silicate nanoparticles have been interrogated using microscale X-ray absorption spectroscopy, TEM and nanoscale scanning transmission X-ray microscopy. To further explore the chemical and potential biological controls on iron-silicate formation, we have also performed laboratory experiments to mimic Archean seawater and precipitate iron-bearing silicate minerals under abiotic conditions and in the presence of iron-oxidizing bacteria. In a complementary study, sediments from a natural Archean analogue system were sampled to determine if iron-silicate minerals form in Mexican

  12. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Archean deep-water depositional system: interbedded and banded iron formation and clastic turbidites in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Zentner, Danielle; Lowe, Donald

    2013-04-01

    The 3.23 billion year old sediments in the Barberton greenstone belt, South Africa include some of the world's oldest known deep-water deposits. Unique to this locality are turbidites interbedded with banded iron formation (BIF) and banded ferruginous chert (BFC). This unusual association may provide clues for reconstructing Archean deep-water depositional settings. For our study we examined freshly drilled core in addition to measuring ~500 m of outcrop exposures along road cuts. The stacking pattern follows an overall BIF to BFC to amalgamated turbidite succession, although isolated turbidites do occur throughout the sequence. The turbidites are predominately massive, and capped with thin, normally graded tops that include mud rip-ups, chert plates, and ripples. The lack of internal stratification and the amalgamated character suggests emplacement by surging high-density turbidity currents. Large scours and channels are absent and bedding is tabular: the flows were collapsing with little turbulence reaching the bed. In contrast, field evidence indicates the BIF and BFC most likely precipitated directly out of the water column. Preliminary interpretations indicate the deposits may be related to a pro-deltaic setting. (1) Deltaic systems can generate long-lived, high volume turbidity currents. (2) The contacts between the BIF, BFC, and turbidite successions are gradual and inter-fingered, possibly representing lateral facies relationships similar to modern pro-delta environments. (3) Putative fan delta facies, including amalgamated sandstone and conglomerate, exist stratigraphically updip of the basinal sediments.

  14. Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis

    PubMed Central

    2008-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. X-ray diffraction, visible, and ultraviolet Raman Spectroscopy, energy-filtered transmission electron microscopy , electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to study the carbon bonding nature of the films and to analyze the carbon clustering around the seed nanoparticles leading to diamond synthesis. The results indicate that iron oxide nanoparticles lose the O atoms, becoming thus active C traps that induce the formation of a dense region of trigonally and tetrahedrally bonded carbon around them with the ensuing precipitation of diamond-type bonds that develop into microcrystalline diamond films under chemical vapor deposition conditions. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  15. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice.

    PubMed

    Li, Qian; Wan, Jieru; Lan, Xi; Han, Xiaoning; Wang, Zhongyu; Wang, Jian

    2017-09-01

    Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.

  16. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii

    PubMed Central

    Edwards, Katrina J; Glazer, B T; Rouxel, O J; Bach, W; Emerson, D; Davis, R E; Toner, B M; Chan, C S; Tebo, B M; Staudigel, H; Moyer, C L

    2011-01-01

    A novel hydrothermal field has been discovered at the base of Lōihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep', while only 0.2 °C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as ‘umbers' (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures. PMID:21544100

  17. Concepts and goals in the management of transfusional iron overload.

    PubMed

    Porter, John B

    2007-12-01

    In this review, current concepts and goals of iron chelation therapy for thalassemias, sickle cell disease, and myelodysplastic syndromes are discussed. The primary goal of iron chelation therapy is to prevent the accumulation of iron reaching harmful levels by matching iron intake from blood transfusion, with iron excreted by iron chelation. Over 30 years of experience with deferoxamine has shown iron chelation to be an effective therapeutic modality. However, chelation efficiency is limited because most of the body's iron stores are not directly chelatable, and only a small fraction of body iron is chelatable at any moment. Once iron has been deposited in organs other than the liver, for example the heart, removal by chelation is slow and inefficient. Chelation efficiency can be improved by designing regimes where chelators are available 24 hr a day to bind labile iron pools in cells and plasma. Deferoxamine has a short plasma half-life and the parenteral infusions required to achieve steady plasma levels are demanding, with consequent variable adherence to therapy. Once-daily oral administration of deferasirox achieves continuous chelation with trough concentrations sufficient to decrease plasma labile iron species progressively, and achieves an efficiency of chelation not obtainable with deferiprone or deferoxamine monotherapy. 2007 Wiley-Liss, Inc

  18. Fabrication and characterization of iron oxide dextran composite layers

    NASA Astrophysics Data System (ADS)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  19. Supply of Soluble Iron from Combustion and Dust Sources to the Ocean

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2012-12-01

    Bioavailable iron (Fe) from atmospheric particle is an essential nutrient for phytoplankton. Global models have been used to deduce atmospheric iron supply to the ocean, but uncertainty in the deposition flux remains large, which can influence the air-sea fluxes of carbon dioxide and thus radiative forcing significantly. Here, a global chemical transport model is used to investigate the effect of aerosol emissions from ship plumes on iron solubility in particles from the combustion and dust sources. The emission data sets for combustion-generated aerosols such as those from biomass and fossil fuel burnings are taken from the emission inventory. The iron from combustion sources such as biomass and fossil fuels burning is readily released into solutions in aerosols assuming constant iron solubility (i.e., the mass fraction of dissolved to total iron). In contrast, the emissions of dust are calculated on-line, based on the surface wind speed and soil wetness from the GMAO assimilated meteorological fields. Further, the iron solubility dynamically changes from that in the originally emitted dust aerosols (which is 0.45%) due to reactions with acidic species. The model results reveal that the oil combustion from shipping mainly contributes to high iron solubility at low mass concentration observed over the high latitude North Atlantic Ocean. The model results suggest that the combustion source from ships contributes to a significant deposition of soluble iron to the high latitude oceans in the Northern Hemisphere. Due to continuing growth in global shipping and no regulations regarding particles emissions, the input of bioavailable iron from ship plumes is likely to increase in a future warmer climate when oceanic primary production may be more dependent on the nutrient input from atmospheric aerosols.

  20. Cardiac Iron Determines Cardiac T2*, T2, and T1 in the Gerbil Model of Iron Cardiomyopathy

    PubMed Central

    Wood, John C.; Otto-Duessel, Maya; Aguilar, Michelle; Nick, Hanspeter; Nelson, Marvin D.; Coates, Thomas D.; Pollack, Harvey; Moats, Rex

    2010-01-01

    Background Transfusional therapy for thalassemia major and sickle cell disease can lead to iron deposition and damage to the heart, liver, and endocrine organs. Iron causes the MRI parameters T1, T2, and T2* to shorten in these organs, which creates a potential mechanism for iron quantification. However, because of the danger and variability of cardiac biopsy, tissue validation of cardiac iron estimates by MRI has not been performed. In this study, we demonstrate that iron produces similar T1, T2, and T2* changes in the heart and liver using a gerbil iron-overload model. Methods and Results Twelve gerbils underwent iron dextran loading (200 mg · kg−1 · wk−1) from 2 to 14 weeks; 5 age-matched controls were studied as well. Animals had in vivo assessment of cardiac T2* and hepatic T2 and T2* and postmortem assessment of cardiac and hepatic T1 and T2. Relaxation measurements were performed in a clinical 1.5-T magnet and a 60-MHz nuclear magnetic resonance relaxometer. Cardiac and liver iron concentrations rose linearly with administered dose. Cardiac 1/T2*, 1/T2, and 1/T1 rose linearly with cardiac iron concentration. Liver 1/T2*, 1/T2, and 1/T1 also rose linearly, proportional to hepatic iron concentration. Liver and heart calibrations were similar on a dry-weight basis. Conclusions MRI measurements of cardiac T2 and T2* can be used to quantify cardiac iron. The similarity of liver and cardiac iron calibration curves in the gerbil suggests that extrapolation of human liver calibration curves to heart may be a rational approximation in humans. PMID:16027257

  1. Risk factor for preterm labor in Haji Adam Malik General Hospital, Pirngadi General hospital and satellite hospitals in Medan from January 2014 to December 2016

    NASA Astrophysics Data System (ADS)

    Sukatendel, K.; Hasibuan, C. L.; Pasaribu, H. P.; Sihite, H.; Ardyansah, E.; Situmorang, M. F.

    2018-03-01

    In 2010, Indonesia was ranked fifth in the world for the number of premature birth. Prematurity is a multifactorial problem. Preterm Labor (PTL) can occur spontaneously without a clear cause. Preventing PTL, its associated risk factors must be recognized first. To analyze risk factors associated with the incidence of PTL. It is a cross sectional study using secondary data obtained from medical records in Haji Adam Malik general hospital, Pirngadi general hospital and satellite hospitals in Medan from January 2014 to December 2016. Data were analyzed using chi-square method and logistic regression test. 148 cases for each group of preterm labor and obtained term laborin this study. Using the logistic regression test, three factors with astrong association to the incidence of identifiedpreterm labor. Antenatal Care frequency (OR 2,326; CI 95%), leucorrhea (OR 6,291; 95%), and premature rupture of membrane (OR 9,755; CI 95%). In conclusion, antenatal care frequency, leucorrhea, and history of premature rupture of themembrane may increase the incidence of Preterm Labor (PTL).

  2. Ineffective Erythropoiesis: Anemia and Iron Overload.

    PubMed

    Gupta, Ritama; Musallam, Khaled M; Taher, Ali T; Rivella, Stefano

    2018-04-01

    Stress erythropoiesis (SE) is characterized by an imbalance in erythroid proliferation and differentiation under increased demands of erythrocyte generation and tissue oxygenation. β-thalassemia represents a chronic state of SE, called ineffective erythropoiesis (IE), exhibiting an expansion of erythroid-progenitor pool and deposition of alpha chains on erythrocyte membranes, causing cell death and anemia. Concurrently, there is a decrease in hepcidin expression and a subsequent state of iron overload. There are substantial investigative efforts to target increased iron absorption under IE. There are also avenues for targeting cell contact and signaling within erythroblastic islands under SE, for therapeutic benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Beta-thalassemia major and female fertility: the role of iron and iron-induced oxidative stress.

    PubMed

    Roussou, Paraskevi; Tsagarakis, Nikolaos J; Kountouras, Dimitrios; Livadas, Sarantis; Diamanti-Kandarakis, Evanthia

    2013-01-01

    Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM) worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH) and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS) in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS) exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM women's infertility.

  4. Electrochemical Synthesis of Binary Carbides of Tungsten and Iron (Nickel, Cobalt) in Halide-Oxide Melts at 823 K

    NASA Astrophysics Data System (ADS)

    Kushkhov, Hasbi; Adamokova, Marina; Kvashin, Vitalij; Kardanov, Anzor; Gramoteeva, Svetlana

    2007-12-01

    Iron, cobalt and nickel powders are used as binding components for the production of articles of tungsten carbide by the hot pressing method. This fact and the unique properties of binary carbides of tungsten-iron triad metals encouraged the search for new ways of their synthesis. In the present work, the attempt to synthezise binary tungsten-nickel (cobalt, iron) carbides in molten KCl-NaCl-CsCl at 823 K was made. As a result of voltammetry research, it was established that in eutectic KCl-NaCl-CsCl melts the deposition potentials ofWand Ni (Co, Fe) differ by 150 - 350 mV from each other, which makes their co-deposition difficult. It is possible to shift the deposition potentials of tungsten and metals of the iron triad metals towards each other by changing the acid-base properties of the melt. The products of electrolysis in these molten system were identified by X-ray analysis. They are mixtures of tungsten and nickel (cobalt, iron) carbides: Ni2W4C, W6C2.54; Co3W3C, Co6W6C, W2C, Co3C; FeW3C.

  5. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome.

    PubMed

    Ariza, Jeanelle; Rogers, Hailee; Hartvigsen, Anna; Snell, Melissa; Dill, Michael; Judd, Derek; Hagerman, Paul; Martínez-Cerdeño, Verónica

    2017-04-01

    Fragile X-associated tremor/ataxia syndrome is an adult-onset disorder associated with premutation alleles of the FMR1 gene. This disorder is characterized by progressive action tremor, gait ataxia, and cognitive decline. Fragile X-associated tremor/ataxia syndrome pathology includes dystrophic white matter and intranuclear inclusions in neurons and astrocytes. We previously demonstrated that the transport of iron into the brain is altered in fragile X-associated tremor/ataxia syndrome; therefore, we also expect an alteration of iron metabolism in brain areas related to motor control. Iron is essential for cell metabolism, but uncomplexed iron leads to oxidative stress and contributes to the development of neurodegenerative diseases. We investigated a potential iron modification in the putamen - a structure that participates in motor learning and performance - in fragile X-associated tremor/ataxia syndrome. We used samples of putamen obtained from 9 fragile X-associated tremor/ataxia syndrome and 9 control cases to study iron localization using Perl's method, and iron-binding proteins using immunostaining. We found increased iron deposition in neuronal and glial cells in the putamen in fragile X-associated tremor/ataxia syndrome. We also found a generalized decrease in the amount of the iron-binding proteins transferrin and ceruloplasmin, and decreased number of neurons and glial cells that contained ceruloplasmin. However, we found increased levels of iron, transferrin, and ceruloplasmin in microglial cells, indicating an attempt by the immune system to remove the excess iron. Overall, found a deficit in proteins that eliminate extra iron from the cells with a concomitant increase in the deposit of cellular iron in the putamen in Fragile X-associated tremor/ataxia syndrome. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  6. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the New Jersey highlands

    USGS Publications Warehouse

    Johnson, C.A.; Skinner, B.J.

    2003-01-01

    The New Jersey Highlands terrace, which is an exposure of the Middle Proterozoic Grenville orogenic belt located in northeastern United States, contains stratiform zinc oxide-silicate deposits at Franklin and Sterling Hill and numerous massive magnetite deposits. The origins of the zinc and magnetite deposits have rarely been considered together, but a genetic link is suggested by the occurrence of the Furnace magnetite bed and small magnetite lenses immediately beneath the Franklin zinc deposit. The Furnace bed was metamorphosed and deformed along with its enclosing rocks during the Grenvillian orogeny, obscuring the original mineralogy and obliterating the original rock fabrics. The present mineralogy is manganiferous magnetite plus calcite. Trace hydrous silicates, some coexisting with fluorite, have fluorine contents that are among the highest ever observed in natural assemblages. Furnace bed calcite has ??13C values of -5 ?? 1 per mil relative to Peedee belemnite (PDB) and ??18O values of 11 to 20 per mil relative to Vienna-standard mean ocean water (VSMOW). The isotopic compositions do not vary as expected for an original siderite layer that decarbonated during metamorphism, but they are consistent with nearly isochemical metamorphism of an iron oxide + calcite protolith that is chemically and minerlogically similar to iron-rich sediments found near the Red Sea brine pools and isotopically similar to Superior-type banded iron formations. Other magniferous magnite + calcite bodies occur at approximately the same stratigraphic position as far 50 km from the zinc deposits. A model is presented in which the iron and zinc deposits formed along the western edge of a Middle Proterozoic marine basin. Zinc was transported by sulfate-stable brines and was precipitated under sulfate-stable conditions as zincian carbonates and Fe-Mn-Zn oxides and silicates. Whether the zincian assemblages settled from the water column or formed by replacement reactions in shallowly

  7. The sources of trace element pollution of dry depositions nearby a drinking water source.

    PubMed

    Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo

    2017-02-01

    Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.

  8. Cobalt—Styles of deposits and the search for primary deposits

    USGS Publications Warehouse

    Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.

    2017-11-30

    Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and

  9. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R.; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    An unusual feature of VMS deposits is the common association of stratiform "exhalative" deposits precipitated from hydrothermal fluids emanating into bottom waters. These deposits may extend well beyond the margins of massive sulfide and are typically composed of silica, iron, and manganese oxides, carbonates, sulfates, sulfides, and tourmaline.

  10. Novel Thermotolerant Siderophilic Filamentous Cyanobacterium that Produces Intracellular Iron-Rich Phases

    NASA Technical Reports Server (NTRS)

    Broun, Igor I.; Bryant, Donald A.; Casamatta, Dale; Thomas-Keprta, Kathie L.; Sarkisova, Svetlana A.; Shen, Gaozhang; Graham, Joel E.; Boyd, Eric S.; Peters, John W.; Garrison, Daniel H.; hide

    2010-01-01

    Cyanobacteria are the main producers of organic compounds in iron-depositing hot springs despite photosynthetically generated-oxygen and the abundance of reduced iron (Fe2+) that likely leads to enormous oxidative stress within cyanobacterial cells. Therefore, the study of cyanobacterial diversity, phylogeny, and biogeochemical activity in iron-depositing hot springs will not only provide insights into the contribution of CB to iron redox cycling in these environments, but it could also provide insights into CB evolution. This study characterizes the phylogeny, morphology, and physiology of isolate JSC-1, a novel filamentous CB isolated from an iron-depositing hot spring. While isolate JSC-1 is morphologically similar to the CB genus Leptolyngbya, 16S rDNA sequence data indicated that it shares 95 percent sequence similarity to the type strain L. boryanum. Strain JSC-1 fixes N2 and exhibited an unusually high ratio between photosystem (PS) I and PS II and was capable of complementary chromatic adaptation. Further, it synthesized only chlorophyll a and a unique set of carotenoids. Strain JSC-1 not only required high levels of Fe for growth (greater than or equal to 40 microM), but it also accumulated large amounts of extracellular ferrihydrite and generated intracellular ferric phosphates. Strain JSC-1 was found to secrete 2-oxoglutaric acid and possesses one ortholog and one paralog of bacterioferritin. Surprisingly, the latter has 70.13 % identity with a bacterioferritin in marine-proteobacterium HTCC 2080 and has joint node with bacterioferritins found in enterobacteria. Collectively, these observations provide insights into the physiological strategies that might have allowed CB to develop and proliferate in Fe-rich environments. Based on its genotypic and phenotypic characterization of strain, JSC-1 represents a new operational taxonomical unit (OTU) JSC-1.

  11. Coal fly ash as a source of iron in atmospheric dust.

    PubMed

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H

    2012-02-21

    Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.

  12. Quantification of Liver Iron with MRI: State of the Art and Remaining Challenges

    PubMed Central

    Hernando, Diego; Levin, Yakir S; Sirlin, Claude B; Reeder, Scott B

    2015-01-01

    Liver iron overload is the histological hallmark of hereditary hemochromatosis and transfusional hemosiderosis, and can also occur in chronic hepatopathies. Iron overload can result in liver damage, with the eventual development of cirrhosis, liver failure and hepatocellular carcinoma. Assessment of liver iron levels is necessary for detection and quantitative staging of iron overload, and monitoring of iron-reducing treatments. This article discusses the need for non-invasive assessment of liver iron, and reviews qualitative and quantitative methods with a particular emphasis on MRI. Specific MRI methods for liver iron quantification include signal intensity ratio as well as R2 and R2* relaxometry techniques. Methods that are in clinical use, as well as their limitations, are described. Remaining challenges, unsolved problems, and emerging techniques to provide improved characterization of liver iron deposition are discussed. PMID:24585403

  13. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1981-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.

  14. Low-fluorine Stockwork Molybdenite Deposits

    USGS Publications Warehouse

    Ludington, Steve; Hammarstrom, Jane; Piatak, Nadine M.

    2009-01-01

    Low-fluorine stockwork molybdenite deposits are closely related to porphyry copper deposits, being similar in their tectonic setting (continental volcanic arc) and the petrology (calc-alkaline) of associated igneous rock types. They are mainly restricted to the Cordillera of western Canada and the northwest United States, and their distribution elsewhere in the world may be limited. The deposits consist of stockwork bodies of molybdenite-bearing quartz veinlets that are present in and around the upper parts of intermediate to felsic intrusions. The deposits are relatively low grade (0.05 to 0.2 percent Mo), but relatively large, commonly >50 million tons. The source plutons for these deposits range from granodiorite to granite in composition; the deposits primarily form in continental margin subduction-related magmatic arcs, often concurrent with formation of nearby porphyry copper deposits. Oxidation of pyrite in unmined deposits or in tailings and waste rock during weathering can lead to development of acid-rock drainage and limonite-rich gossans. Waters associated with low-fluorine stockwork molybdenite deposits tend to be nearly neutral in pH; variable in concentrations of molybdenum (10,000 ug/L); below regulatory guidelines for copper, iron, lead, zinc, and mercury; and locally may exceed guidelines for arsenic, cadmium, and selenium.

  15. Recycled iron fuels new production in the eastern equatorial Pacific Ocean.

    PubMed

    Rafter, Patrick A; Sigman, Daniel M; Mackey, Katherine R M

    2017-10-24

    Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.

  16. Joint M3 and Diviner Analysis of the Mineralogy, Glass Composition, and Country Rock Content of Pyroclastic Deposits in Oppenheimer Crater

    NASA Technical Reports Server (NTRS)

    Bennett, Kristen A.; Horgan, Briony H. N.; Greenhagen, Benjamin T.; Allen, Carlton C.; Paige, David A.; Bell, James F., III

    2013-01-01

    Here we present our analysis of the near- and mid-infrared spectral properties of pyroclastic deposits within the floor fractured Oppenheimer Crater that are hypothesized to be Vulcanian in origin. These are the first results of our global study of lunar pyroclastic deposits aimed at constraining the range of eruption processes on the Moon. In the near-infrared, we have employed a new method of spectral analysis developed in Horgan et al. (2013) of the 1 ?m iron absorption band in Chandrayaan-1 Moon Mineralogy Mapper (M3) spectra. By analyzing both the position and shape of the 1 ?m band we can detect and map the distribution of minerals, glasses, and mixtures of these phases in pyroclastic deposits. We are also using mid-infrared spectra from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment to develop 200 m/pixel Christiansen Feature (CF) maps, which correlate with silica abundance. One of the benefits of using CF maps for analysis of pyroclastic deposits is that they can be used to detect silicic country rock that may have been emplaced by Vulcanian-style eruptions, and are sensitive to iron abundance in glasses, neither of which is possible in the near-infrared. M3 analysis reveals that the primary spectral endmembers are low-calcium pyroxene and iron-bearing glass, with only minor high-calcium pyroxene, and no detectable olivine. The large deposit in the south shows higher and more extensive glass concentrations than the surrounding deposits. We interpret the M3 spectra of the pyroclastic deposits as indicating a mixture of low-calcium pyroxene country rock and juvenile glass, and no significant olivine. Analysis of Diviner CF maps of the Oppenheimer crater floor indicates an average CF value of 8.16, consistent with a mixture of primarily plagioclase and some pyroxene. The average CF values of the pyroclastic deposits range from 8.31 in the SW to 8.24 in the SE. Since CF values within the deposits are as high as 8.49, the lower average CF

  17. The nanosphere iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  18. Iron chelation and multiple sclerosis

    PubMed Central

    Weigel, Kelsey J.; Lynch, Sharon G.; LeVine, Steven M.

    2014-01-01

    Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen. PMID:24397846

  19. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    NASA Astrophysics Data System (ADS)

    Dijkstra, Nikki; Hagens, Mathilde; Egger, Matthias; Slomp, Caroline P.

    2018-02-01

    Phosphorus (P) concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II)-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish-marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS) and synchrotron-based X-ray absorption spectroscopy (XAS), we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish-marine sediments (at 11.5 to 12 m sediment depth). In this depth interval, phosphate that diffuses down from the organic-rich, brackish-marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II) phosphate. Results from a reactive transport model suggest that the peak in iron(II) phosphate originally occurred at the lake-marine transition (9 to 10 m) and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake-marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II) phosphates such as vivianite has the potential to strongly

  20. Adiponectin-Mediated Heme Oxygenase-1 Induction Protects Against Iron-Induced Liver Injury via a PPARα-Dependent Mechanism

    PubMed Central

    Lin, Heng; Yu, Chun-Hsien; Jen, Chih-Yu; Cheng, Ching-Feng; Chou, Ying; Chang, Chih-Cheng; Juan, Shu-Hui

    2010-01-01

    Protective effects of adiponectin (APN; an adipocytokine) were shown against various oxidative challenges; however, its therapeutic implications and the mechanisms underlying hepatic iron overload remain unclear. Herein, we show that the deleterious effects of iron dextran on liver function and iron deposition were significantly reversed by adiponectin gene therapy, which was accompanied by AMP-activated protein kinase (AMPK) phosphorylation and heme oxygenase (HO)-1 induction. Furthermore, AMPK-mediated peroxisome proliferator-activated receptor-α (PPARα) activation by APN was ascribable to HO-1 induction. Additionally, we revealed direct transcriptional regulation of HO-1 by the binding of PPARα to a PPAR-responsive element (PPRE) by various experimental assessments. Interestingly, overexpression of HO-1 in hepatocytes mimicked the protective effect of APN in attenuating iron-mediated injury, whereas it was abolished by SnPP and small interfering HO-1. Furthermore, bilirubin, the end-product of the HO-1 reaction, but not CO, protected hepatocytes from iron dextran-mediated caspase activation. Herein, we demonstrate a novel functional PPRE in the promoter regions of HO-1, and APN-mediated HO-1 induction elicited an antiapoptotic effect and a decrease in iron deposition in hepatocytes subjected to iron challenge. PMID:20709802

  1. Diagnosis and treatment of cardiac iron overload in transfusion-dependent thalassemia patients.

    PubMed

    Siri-Angkul, Natthaphat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-05-18

    Thalassemia is among the most common genetic diseases. Patients with severe forms of the disease are transfusion-dependent, leading to iron overload. A condition which can eventually develop in the iron-loaded heart is iron overload cardiomyopathy, a debilitating disease that accounts for the majority of deaths in thalassemia patients. Areas covered: This review article provides a comprehensive summary of the diagnosis and treatment of cardiac iron overload in transfusion-dependent thalassemia patients, with discussion covering current weak points and potential improvements of the relevant diagnostic and therapeutic strategies. Expert commentary: Current limitations of various diagnostic techniques for iron overload cardiomyopathy include suboptimal accuracy, untimely detection, or inadequate accessibility, and novel modalities are required to overcome these shortcomings. Treatment should address key pathophysiologic mechanisms of iron overload cardiomyopathy, which include cardiac iron mishandling and iron-induced oxidative injury. Apart from the promotion of iron removal by chelators, prevention of cardiac iron deposition and attenuation of oxidative damage should also be rigorously investigated on a cell-to-bedside basis.

  2. Preventing iron(ii) precipitation in aqueous systems using polyacrylic acid: some molecular insights.

    PubMed

    Artola, Pierre-Arnaud; Rousseau, Bernard; Clavaguéra, Carine; Roy, Marion; You, Dominique; Plancque, Gabriel

    2018-06-22

    We present molecular dynamics simulations of aqueous iron(ii) systems in the presence of polyacrylic acid (PAA) under the extreme conditions that take place in the secondary coolant circuit of a nuclear power plant. The aim of this work is to understand how the oligomer can prevent iron(ii) deposits, and to provide molecular interpretation. We show how, to this end, not only the complexant ability is necessary, but also the chain length compared to iron(ii) concentration. When the chain is long enough, a hyper-complexation phenomenon occurs that can explain the specific capacity of the polymer to prevent iron(ii) precipitation.

  3. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    USGS Publications Warehouse

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  4. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    USGS Publications Warehouse

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  5. Iron deposition as acidic groundwater encounters carbonates in the alluvium of Pinal Creek, Arizona, U.S.A.

    USGS Publications Warehouse

    Lind, Carol J.; Oscarson, R.L.

    1997-01-01

    In a column experiment, acidic groundwater from Pinal Creek Arizona, a Cu mining area, was eluted through a composited alluvial sample obtained from a core that had been removed from a well downgradient of the acidic groundwater. The minerals present in typical grains and flakes in the alluvium before and after the elution were determined by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive multichannel analyses (EDX). The concentrations of Fe, Ti, Mn, Si, Al, Na, Ca, K, Mg and S in these grains and flakes and in their microcrystalline surface coatings were measured by EDX. In addition to magnetite, hematite, and Fe-Ti oxides, Fe was most concentrated in micas (especially biotite-like flakes) and in the microcrystalline coatings. The measured elements in these microcrystalline coatings were primarily K, Fe, Al, and Si. The microcrystalline coatings on the mica flakes also contained Mg. The approximate 1:3 Mg:Si atomic ratios (ARs) of the biotite-like flakes both before and after the elution would suggest that the Fe deposited during the elution had not substituted for Mg in these flakes. As a result of the elution, assuming no loss of Si, the averaged recorded Fe:Si AR of the microcrystalline coatings increased from (0,46 to 0.58):3.00. Iron deposition on the typical grains and flakes may relate to the presence of Fe in the particle on which it is deposited or to the presence of Fe in the microcrystalline surface coatings before elution. The data here are not sufficient for a statistical evaluation, but elution caused the following trends: (1) The Fe:Si A R increased in the (K,Fe,Al,Si)-microcrystalline surface coatings; (2) For the mica flakes, there was more than a 2-fold increase in the Fe:Si AR for the microcrystalline surface coatings of the Fe-rich biotite-like flakes but no measurable increase of the Fe:Si AR for the microcrystalline surface coatings of the muscovite-like flakes that contained 3-5 times less Fe; (3) Also for the

  6. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia

    NASA Astrophysics Data System (ADS)

    Heinson, Graham S.; Direen, Nicholas G.; Gill, Rob M.

    2006-07-01

    The iron oxide copper-gold Olympic Dam deposit, situated along the margin of the Proterozoic Gawler craton, South Australia, is the world's largest uranium deposit and sixth-largest copper deposit; it also contains significant reserves of gold, silver, and rare earth elements. Gaining a better understanding of the mechanisms for genesis of the economic liberalization is fundamental for defining exploration models in similar crustal settings. To delineate crustal structures that may constrain mineral system fluid pathways, coincident deep crustal seismic and magnetotelluric (MT) transects were obtained along a 220 km section that crosses Olympic Dam and the major crustal boundaries. In this paper we present results from 58 long-period (10 104 s) MT sites, with site spacing of 5 10 km. A two-dimensional inversion of MT data from 33 sites to a depth of 100 km shows four notable features: (1) sedimentary cover sequences with low resistivity (<20 Ω·m) thicken to 10 km toward the northern cover sequences of the Adelaide Rift Complex; (2) a northeast-dipping crustal boundary separates a highly resistive (>1000 Ω·m) Archean crustal core from a more conductive crust and mantle to the north (typically <500 Ω·m); (3) to the north of Olympic Dam, the upper-middle crust to ˜20 km is quite resistive (˜1000 Ω·m), but the lower crust is much more conductive (<100 Ω·m); and (4) beneath Olympic Dam, we image a low-resistivity region (<100 Ω·m) throughout the crust, coincident with a seismically transparent region. We argue that the cause of the low-resistivity and low-reflectivity region beneath Olympic Dam may be due to the upward movement of CO2-bearing volatiles near the time of deposit formation that precipitated conductive graphite liberalization along grain boundaries, simultaneously annihilating acoustic impedance boundaries. The source of the volatiles may be from the mantle degassing or retrograde metamorphism of the lower crust associated with Proterozoic

  7. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  8. Enhanced Column Filtration for Arsenic Removal from Water: Polymer-Templated Iron Oxide Nanoparticles Immobilized on Sand via Layer-by-Layer Deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Calvin Chia-Hung

    Arsenic is ubiquitous in water sources around the world and is highly toxic. While precipitation and membrane filtration techniques are successfully implemented in developed cities, they are unsuitable for rural and low-resource settings lacking centralized facilities. This thesis presents the use of ultra-small iron oxide (Fe2O3) nanoparticles functionalized on sand granules for use as a house-hold scale adsorption filter. Water-stable alpha-Fe2O3 (hematite) nanoparticles (<10 nm) were synthesized via a collapsed-polymer approach using poly(acrylic acid) and Fe3+ ions. The nanoparticles exhibited high arsenic adsorption, with 147 +/- 2 mg As(III) per g Fe2O3 and 91 +/- 10 mg As(V) per g Fe2O3. The platform was also used to synthesize iron-based composites, including magnetite (Fe 3O4) and Fe-Cu oxide nanoparticles. For use as a column filter, Fe2O3-PAA nanoparticles were functionalized on sand granules using a layer-by-layer deposition method, with the nanoparticles embedded in the negative layer. The removal of As(III) by the Fe2O 3-PAA functionalized column was described by reversible 1st order kinetics where the forward and reverse rate constants were 0.31 hr -1 and 0.097 hr-1, respectively. Implemented as a passive water filter with 30 x 30 x 50 cm3 dimensions, the filter has an expected lifetime in the order of many years. By controlling the flow rate of the column depending on contamination levels, the filter effectively removes arsenic down to the safety limit of 0.01 mg/L. In a parallel project, the layer-by-layer deposition of Poly(diallydimethyl ammonium chloride) (PDDA) and poly(sodium 5-styrenesulfonate) (PSS) was exploited for a highly practical synthesis of discrete gradient surfaces. By independently controlling the concentration of NaCl in PDDA and PSS deposition solutions, a 2-dimensional matrix of surfaces was created in 96-well microtiter plates. Distinct non-monotonic dye adsorption patterns on the gradient surfaces was observed. Practical

  9. Decoupling of Neoarchean sulfur sources recorded in Algoma-type banded iron formation

    NASA Astrophysics Data System (ADS)

    Diekrup, David; Hannington, Mark D.; Strauss, Harald; Ginley, Stephen J.

    2018-05-01

    Neoarchean Algoma-type banded iron formations (BIFs) are widely viewed as direct chemical precipitates from proximal volcanic-hydrothermal vents. However, a systematic multiple sulfur isotope study of oxide-facies BIF from a type locality in the ca. 2.74 Ga Temagami greenstone belt reveals mainly bacterial turnover of atmospheric elemental sulfur in the host basin rather than deposition of hydrothermally cycled seawater sulfate or sulfur from direct volcanic input. Trace amounts of chromium reducible sulfur that were extracted for quadruple sulfur isotope (32S-33S-34S-36S) analysis record the previously known mass-independent fractionation of volcanic SO2 in the Archean atmosphere (S-MIF) and biological sulfur cycling but only minor contributions from juvenile sulfur, despite the proximity of volcanic sources. We show that the dominant bacterial metabolisms were iron reduction and sulfur disproportionation, and not sulfate reduction, consistent with limited availability of organic matter and the abundant ferric iron deposited as Fe(OH)3. That sulfur contained in the BIF was not a direct volcanic-hydrothermal input, as expected, changes the view of an important archive of the Neoarchean sulfur cycle in which the available sulfur pools were strongly decoupled and only species produced photochemically under anoxic atmospheric conditions were deposited in the BIF-forming environment.

  10. Iron, phytoplankton growth, and the carbon cycle.

    PubMed

    Street, Joseph H; Paytan, Adina

    2005-01-01

    Iron is an essential nutrient for all living organisms. Iron is required for the synthesis of chlorophyll and of several photosynthetic electron transport proteins and for the reduction of CO2, SO4(2-), and NO3(-) during the photosynthetic production of organic compounds. Iron concentrations in vast areas of the ocean are very low (<1 nM) due to the low solubility of iron in oxic seawater. Low iron concentrations have been shown to limit primary production rates, biomass accumulation, and ecosystem structure in a variety of open-ocean environments, including the equatorial Pacific, the subarctic Pacific and the Southern Ocean and even in some coastal areas. Oceanic primary production, the transfer of carbon dioxide into organic carbon by photosynthetic plankton (phytoplankton), is one process by which atmospheric CO2 can be transferred to the deep ocean and sequestered for long periods of time. Accordingly, iron limitation of primary producers likely plays a major role in the global carbon cycle. It has been suggested that variations in oceanic primary productivity, spurred by changes in the deposition of iron in atmospheric dust, control atmospheric CO2 concentrations, and hence global climate, over glacial-interglacial timescales. A contemporary application of this "iron hypothesis" promotes the large-scale iron fertilization of ocean regions as a means of enhancing the ability of the ocean to store anthropogenic CO2 and mitigate 21st century climate change. Recent in situ iron enrichment experiments in the HNLC regions, however, cast doubt on the efficacy and advisability of iron fertilization schemes. The experiments have confirmed the role of iron in regulating primary productivity, but resulted in only small carbon export fluxes to the depths necessary for long-term sequestration. Above all, these experiments and other studies of iron biogeochemistry over the last two decades have begun to illustrate the great complexity of the ocean system. Attempts to

  11. Petrogenesis, detrital zircon SHRIMP U-Pb geochronology, and tectonic implications of the Upper Paleoproterozoic Seosan iron formation, western Gyeonggi Massif, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Chang Seong; Jang, Yirang; Samuel, Vinod O.; Kwon, Sanghoon; Park, Jung-Woo; Yi, Keewook; Choi, Seon-Gyu

    2018-05-01

    This study involves investigations on the Upper Paleoproterozoic iron formation (viz., Seosan iron formation) from the Seosan Group, Gyeonggi Massif of the southwestern Korean Peninsula. It occurs as thin banded layers within meta-arkosic sandstone, formed by alternating processes of chemical (hydrothermal) and detrital depositions under a shallow marine environment. It mainly consists of alternating layers of iron oxides, mostly hematite, and quartz. Minor amounts of magnetite surrounded by muscovite, clinopyroxene and amphibole indicate hydrothermal alteration since its formation. Meta-arkosic sandstone is composed of recrystallized or porphyroclastic quartz and microcline, with small amounts of hematite and pyrite clusters. The Seosan iron formation has high contents of total Fe2O3 and SiO2 with positive Eu anomalies similar to those of other Precambrian banded iron formations, and its formation is clearly related to hydrothermal alteration since its deposition. Detrital zircon SHRIMP U-Pb geochronology data from a meta-arkosic sandstone (SN-1) and an iron formation (SN-2) show mainly two age groups of ca. 2.5 Ga and ca. 1.9-1.75 Ga. This together with intrusion age of the granite gneiss (ca. 1.70-1.65 Ga) clearly indicate that the iron formations were deposited during the Upper Paleoproterozoic. The dominant Paleoproterozoic detrital zircon bimodal age peaks preserved in the Seosan iron formation compare well with those from the South China Craton sedimentary basins, reflecting global tectonic events related to the Columbia supercontinent in East Asia.

  12. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California.

    PubMed

    Williams, Amy J; Sumner, Dawn Y; Alpers, Charles N; Karunatillake, Suniti; Hofmann, Beda A

    2015-08-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  13. Preserved filamentous microbial biosignatures in the Brick Flat gossan, Iron Mountain, California

    USGS Publications Warehouse

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Karunatillake, Suniti; Hofmann, Beda A

    2015-01-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  14. Iron disulfide minerals and the genesis of roll-type uranium deposits.

    USGS Publications Warehouse

    Reynolds, R.L.; Goldhaber, M.B.

    1983-01-01

    Studies of the distribution of and textural relationships among pyrite and marcasite in host rocks for a number of roll-type sedimentary U deposits have enabled identification of several generations of FeS2 minerals. A critical factor influencing mineral formation is the complex relationship of pH and the S species that are precursors of FeS2 minerals. The presence or absence of intrinsic organic matter for bacterial sulphate reduction also plays a key role. In deposits lacking such organic matter, the pre-ore is often euhedral pyrite and the ore-stage is marcasite. In contrast, in deposits containing organic matter the pre-ore is pyrite occurring as framboids or as replacements of plant material, and the ore-stage is also pyrite. These contrasting FeS2 assemblages and their respective modes of origin are consistent with previously proposed biogenic and nonbiogenic theories of the genesis of roll-type U deposits. -J.E.S.

  15. Maps showing mineral resource assessment for skarn deposits of gold, silver, copper, tungsten, and iron in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, J.E.; Wallace, C.A.; Lee, G.K.; Antweiler, J.C.; Lidke, D.J.; Rowan, L.C.; Hanna, W.F.; Trautwein, C.M.; Dwyer, John L.; Moll, S.H.

    1992-01-01

    The purpose of this report is to assess the potential for undiscovered skarn deposits of gold, silver, copper, tungsten, and iron in the Butte 1 °X2° quadrangle. Other deposit types have been assessed and reports for each of the following have been prepared: Vein and replacement deposits of gold, silver, copper, lead, zinc, ·manganese, and tungsten; porphyry-stockwork deposits of copper, molybdenum, and tungsten; stockwork-disseminated deposits of gold and silver; placer deposits of gold; and miscellaneous deposit types including strata-bound deposits of copper and silver in rocks of the Middle Proterozoic Belt Supergroup, phosphate deposits in the Permian Phosporia Formation, and deposits of barite and fluorite. The Butte quadrangle, in west-central Montana, is one of the most mineralized and productive mining regions in the U.S. Its mining districts, including the world famous Butte or Summit Valley district, have produced a variety of metallic and nonmetallic mineral commodities valued at more than $6.4 billion (at the time of production). Because of its importance as a mineral producing region, the Butte quadrangle was selected for study by the U.S. Geological Survey under the Conterminous United States Mineral Assessment Program (CUSMAP). Under this program, new data on geology, geochemistry, geophysics, geochronology, mineral resources, and remote sensing were collected and synthesized. The field and laboratory studies were supported, in part, by funding from the Geologic Framework and Synthesis Program and the Wilderness Program. The methods used in resource assessment include a compilation of all data into data sets, the development of an occurrence model for skarn deposits in the quadrangle, and the analysis of data using techniques provided by a Geographic Information System (GIS). This map is one of a number of reports and maps on the Butte 1 °X2° quadrangle. Other publications resulting from this study include U.S. Geological Survey (USGS

  16. The Gogebic Iron Range - A Sample of the Northern Margin of the Penokean Fold and Thrust Belt

    USGS Publications Warehouse

    Cannon, William F.; LaBerge, Gene L.; Klasner, John S.; Schulz, Klaus J.

    2008-01-01

    The Gogebic iron range is an elongate belt of Paleoproterozoic strata extending from the west shore of Lake Gogebic in the upper peninsula of Michigan for about 125 km westward into northern Wisconsin. It is one of six major informally named iron ranges in the Lake Superior region and produced about 325 million tons of direct-shipping ore between 1887 and 1967. A significant resource of concentrating-grade ore remains in the western and eastern parts of the range. The iron range forms a broad, gently southward-opening arc where the central part of the range exposes rocks that were deposited somewhat north of the eastern and western parts. A fundamental boundary marking both the tectonic setting of deposition and the later deformation within the Penokean orogen lies fortuitously in an east-west direction along the range so that the central part of the range preserves sediments deposited north of that boundary, whereas the eastern and western parts of the range were deposited south of the boundary. Thus, the central part of the range provides a record of sedimentation and very mild deformation in a part of the Penokean orogen farthest from the interior of the orogen to the south. The eastern and western parts of the range, in contrast, exhibit a depositional and deformational style typical of parts closer to the interior of the orogen. A second fortuitous feature of the iron range is that the entire area was tilted from 40° to 90° northward by Mesoproterozoic deformation so that the map view offers an oblique cross section of the Paleoproterozoic sedimentary sequence and structures. Together, these features make the Gogebic iron range a unique area in which to observe (1) the lateral transition from deposition on a stable platform to deposition in a tectonically and volcanically active region, and (2) the transition from essentially undeformed Paleoproterozoic strata to their folded and faulted equivalents.Paleoproterozoic strata in the Gogebic iron range are part

  17. Bog iron formation in the Nassawango Creek watershed, Maryland, USA

    USGS Publications Warehouse

    Bricker, O.P.; Newell, Wayne L.; Simon, N.S.; ,

    2004-01-01

    The Nassawango bog ores in the modern environment for surficial geochemical processes were studied. The formation of Nassawango bog ores was suggested to be due to inorganic oxidation when groundwater rich in ferrous iron emerges into the oxic, surficial environment. It was suggested that the process, providing a phosphorus sink, may be an unrecognized benefit for mitigating nutrient loading from agricultural lands. It is found that without the effect of iron fixing bacteria, bog deposites could not form at significant rates.

  18. Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake.

    PubMed

    Fiorito, Veronica; Geninatti Crich, Simonetta; Silengo, Lorenzo; Aime, Silvio; Altruda, Fiorella; Tolosano, Emanuela

    2013-01-01

    The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.

  19. Preliminary study of injury from heating systemically delivered, nontargeted dextran–superparamagnetic iron oxide nanoparticles in mice

    PubMed Central

    Kut, Carmen; Zhang, Yonggang; Hedayati, Mohammad; Zhou, Haoming; Cornejo, Christine; Bordelon, David; Mihalic, Jana; Wabler, Michele; Burghardt, Elizabeth; Gruettner, Cordula; Geyh, Alison; Brayton, Cory; Deweese, Theodore L; Ivkov, Robert

    2013-01-01

    Aim To assess the potential for injury to normal tissues in mice due to heating systemically delivered magnetic nanoparticles in an alternating magnetic field (AMF). Materials & methods Twenty three male nude mice received intravenous injections of dextran–superparamagnetic iron oxide nanoparticles on days 1–3. On day 6, they were exposed to AMF. On day 7, blood, liver and spleen were harvested and analyzed. Results Iron deposits were detected in the liver and spleen. Mice that had received a high-particle dose and a high AMF experienced increased mortality, elevated liver enzymes and significant liver and spleen necrosis. Mice treated with low-dose superparamagnetic iron oxide nanoparticles and a low AMF survived, but had elevated enzyme levels and local necrosis in the spleen. Conclusion Magnetic nanoparticles producing only modest heat output can cause damage, and even death, when sequestered in sufficient concentrations. Dextran–superparamagnetic iron oxide nanoparticles are deposited in the liver and spleen, making these the sites of potential toxicity. PMID:22830502

  20. Genetic relationship of high-Mg dioritic pluton to iron mineralization: A case study from the Jinling skarn-type iron deposit in the North China Craton

    NASA Astrophysics Data System (ADS)

    Jin, Ziliang; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Han, Liu

    2015-12-01

    The Jinling complex is spatially and temporally associated with the Jinling skarn-type iron deposit. The complex is composed of biotite diorite, hornblende diorite, monzonite and quartz diorite. U-Pb dating of zircons from the biotite diorite and monzonite using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields ages of 126 ± 1.9 Ma and 128 ± 1.4 Ma, respectively. The unaltered rocks in the complex are characterized by variable contents of SiO2 (54.6-65.3 wt.%), MgO (2.7-9.2 wt.%), total FeO (3.5-8.8 wt.%), Na2O + K2O (5.2-8.9 wt.%), high Mg# values (73-88), Cr (103-452 ppm) and Ni (49-212 ppm) contents. The altered monzonite has lower MgO (2.1-3.7 wt.%), total FeO (1.2-2.6 wt.%) and higher Na2O + K2O (8.5-9.9 wt.%) contents. The initial (87Sr/86Sr)t ranges from 0.70450 to 0.70555 and εNd(t) shows a range of -3.0 to -8.0. The geochemical characteristics suggest that the primary magma witnessed the interaction between the partial melts of relatively oxidized delaminated ancient crust and mantle peridotite. Fractional crystallization and crustal contamination during the magmatic ascent and emplacement are also indicated. The Jinling skarn-type Fe deposit is of hydrothermal origin and the Fe enrichment can be ascribed to multiple factors. The delaminated ancient crustal source contributed to the high oxygen fugacity of the primary magma. Two-stage Fe-enrichment process involving fractional crystallization of the primary magma giving rise to high Cl and Fe contents in the magmatic hydrothermal fluid and later Fe-leaching process, accounts for the high-grade ore bodies.

  1. Reduction experiment of iron scale by adding waste plastics.

    PubMed

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2009-01-01

    The special features of waste plastics in China are huge in total amount, various in type and dispersive in deposition. Therefore, it is necessary to try some new ways that are fit to Chinese situation for disposing waste plastics as metallurgical raw materials more effectively and flexibly. Owing to its high ferrous content and less impurity, the iron scale became ideal raw material to produce pure iron powder. One of the methods to produce pure iron powder is Hoganas Method, by which, after one or multistage of reduction steps, the iron scale can be reduced pure iron powder. However, combining utilization of waste plastics and iron powder production, a series of reduction experiments were arranged and investigated, which is hoped to take use of both thermal and chemical energy contained in waste plastics as well as to improve the reducing condition of iron scale, and hence to develop a new metallurgical way of disposing waste plastics. The results show that under these experimental conditions, the thermal-decomposition of water plastics can conduce to an increase of porosity in the reduction systems. Moreover, better thermodynamics and kinetics conditions for the reduction of scale can be reached. As a result, the reduction rate is increased.

  2. Dual preventive benefits of iron elimination by desferal in asbestos-induced mesothelial carcinogenesis.

    PubMed

    Jiang, Li; Chew, Shan-Hwu; Nakamura, Kosuke; Ohara, Yuuki; Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Asbestos-induced mesothelial carcinogenesis is currently a profound social issue due to its extremely long incubation period and high mortality rate. Therefore, procedures to prevent malignant mesothelioma in people already exposed to asbestos are important. In previous experiments, we established an asbestos-induced rat peritoneal mesothelioma model, which revealed that local iron overload is a major cause of pathogenesis and that the induced genetic alterations are similar to human counterparts. Furthermore, we showed that oral administration of deferasirox modified the histology from sarcomatoid to the more favorable epithelioid subtype. Here, we used i.p. administration of desferal to evaluate its effects on asbestos-induced peritoneal inflammation and iron deposition, as well as oxidative stress. Nitrilotriacetate was used to promote an iron-catalyzed Fenton reaction as a positive control. Desferal significantly decreased peritoneal fibrosis, iron deposition, and nuclear 8-hydroxy-2'-deoxyguanosine levels in mesothelial cells, whereas nitrilotriacetate significantly increased all of them. Desferal was more effective in rat peritoneal mesothelial cells to counteract asbestos-induced cytotoxicity than in murine macrophages (RAW264.7). Furthermore, rat sarcomatoid mesothelioma cells were more dependent on iron for proliferation than rat peritoneal mesothelial cells. Because inflammogenicity of a fiber is proportionally associated with subsequent mesothelial carcinogenesis, iron elimination from the mesothelial environment can confer dual merits for preventing asbestos-induced mesothelial carcinogenesis by suppressing inflammation and mesothelial proliferation simultaneously. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. The Acute Effect of Humic Acid on Iron Accumulation in Rats.

    PubMed

    Cagin, Yasir Furkan; Sahin, N; Polat, A; Erdogan, M A; Atayan, Y; Eyol, E; Bilgic, Y; Seckin, Y; Colak, C

    2016-05-01

    Free iron leads to the formation of pro-oxidant reactive oxygen species (ROS). Humic acids (HAs) enhance permeability of cellular wall and act as a chelator through electron transferring. This study was designed to test chelator effect of HA on iron as well as its anti-oxidant effect against the iron-induced hepatotoxicity and cardiotoxicity. The rats used were randomly divided into four groups (n = 8/group): group I (the control group); group II (the HA group), humic acid (562 mg/kg) was given over 10 days by oral gavage; group III (the iron group), iron III hydroxide polymaltose (250 mg/kg) was given over 10 days by intraperitoneal route; and group IV (the HA plus iron group), received the iron (similar to group II) plus humic acid (similar to those in groups II and III) group. Blood and two tissue samples both from liver and heart were obtained for biochemical and histopathological evaluations. Iron deposition, the iron-induced hepatotoxicity, and cardiotoxicity were demonstrated by histopathological and biochemical manner. However, no significant differences were observed in the serum biochemical values and the histopathological results among the iron and the HA plus iron groups in the liver tissue but not in the heart tissue. The protective effects of humic acid against iron-induced cardiotoxicity were shown but not against hepatotoxicity in our study.

  4. F-T process using an iron on mixed zirconia-titania supported catalyst

    DOEpatents

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1987-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  5. Ironstone deposits hosted in Eocene carbonates from Bahariya (Egypt)-New perspective on cherty ironstone occurrences

    NASA Astrophysics Data System (ADS)

    Afify, A. M.; Sanz-Montero, M. E.; Calvo, J. P.

    2015-11-01

    This paper gives new insight into the genesis of cherty ironstone deposits. The research was centered on well-exposed, unique cherty ironstone mineralization associated with Eocene carbonates from the northern part of the Bahariya Depression (Egypt). The economically important ironstones occur in the Naqb Formation (Early Eocene), which is mainly formed of shallow marine carbonate deposits. Periods of lowstand sea-level caused extensive early dissolution (karstification) of the depositional carbonates and dolomitization associated with mixing zones of fresh and marine pore-water. In faulted areas, the Eocene carbonate deposits were transformed into cherty ironstone with preservation of the precursor carbonate sedimentary features, i.e. skeletal and non-skeletal grain types, thickness, bedding, lateral and vertical sequential arrangement, and karst profiles. The ore deposits are composed of iron oxyhydroxides, mainly hematite and goethite, chert in the form of micro- to macro-quartz and chalcedony, various manganese minerals, barite, and a number of subordinate sulfate and clay minerals. Detailed petrographic analysis shows that quartz and iron oxides were coetaneous and selectively replaced carbonates, the coarse dolomite crystals having been preferentially transformed into quartz whereas the micro-crystalline carbonates were replaced by the iron oxyhydroxides. A number of petrographic, sedimentological and structural features including the presence of hydrothermal-mediated minerals (e.g., jacobsite), the geochemistry of the ore minerals as well as the structure-controlled location of the mineralization suggest a hydrothermal source for the ore-bearing fluids circulating through major faults and reflect their proximity to centers of magmatism. The proposed formation model can contribute to better understanding of the genetic mechanisms of formation of banded iron formations (BIFs) that were abundant during the Precambrian.

  6. The role of iron in the skin and cutaneous wound healing

    PubMed Central

    Wright, Josephine A.; Richards, Toby; Srai, Surjit K. S.

    2014-01-01

    In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS) generated in the skin by ultraviolet (UVA) 320–400 nm portion of the UVA spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anemia on wound healing using a variety of experimental methodology to establish anemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialization. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localized iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary hemochromatosis. Iron plays a key role in chronic ulceration and conditions such as rheumatoid arthritis (RA) and Lupus Erythematosus are associated with both anemia of chronic disease and dysregulation of local cutaneous iron hemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation. PMID:25071575

  7. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.

    2017-01-01

    complete. Oxidation by O2 in acidic conditions would be slower. Iron photo-oxidation is thus likely responsible for the formation of jarosite-hematite deposits on Mars, provided that shallow standing water bodies could persist for extended periods of time. The oxygen isotopic composition of lepidocrocite precipitated from the photo-oxidation experiment was measured and it is related to the composition of water by mass-dependent fractionation. The precipitate-fluid 18O/16O isotope fractionation of ∼ + 6 ‰ is consistent with previous determinations of oxygen equilibrium fraction factors between iron oxyhydroxides and water.

  8. Response of acid mobilization of iron-containing mineral dust to improvement of air quality projected in the future

    NASA Astrophysics Data System (ADS)

    Ito, A.; Xu, L.

    2014-04-01

    Acidification of dust aerosols may increase aerosol iron (Fe) solubility, which is linked to mineral properties. Combustion aerosols can also elevate aerosol iron solubility when aerosol loading is low. Here, we use an atmospheric chemical transport model to investigate the deposition of filterable iron and its response to changes in anthropogenic emissions of both combustion aerosols and precursor gases. By introducing three classes of iron-containing minerals into the detailed aerosol chemistry model, we provide a theoretical examination of the effects of different dissolution behaviors on the acid mobilization of iron. Comparisons of modeled Fe dissolution curves with the measured dissolution rates for African, east Asian, and Australian dust samples show overall good agreement under acidic conditions. The improved treatment of Fe in mineral dust and its dissolution scheme results in reasonable predictive capability for iron solubility over the oceans in the Northern Hemisphere. Our model results suggest that the improvement of air quality projected in the future will lead to a decrease of the filterable iron deposition from iron-containing mineral dust to the eastern North Pacific due to less acidification in Asian dust, which is mainly associated with the reduction of nitrogen oxides (NOx) emissions. These results could have important implications for iron fertilization of phytoplankton growth, and highlight the necessity of improving the process-based quantitative understanding of the response of the chemical modification in iron-containing minerals to environmental changes.

  9. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium.

    PubMed

    Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L

    2015-05-08

    Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium*

    PubMed Central

    Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W.; Song, Wenchao; Dunaief, Joshua L.

    2015-01-01

    Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. PMID:25802332

  11. Effect of dietary cadmium on iron metabolism in growing rats.

    PubMed

    Crowe, A; Morgan, E H

    1997-07-01

    Little is known regarding the interactions between iron and cadmium during postnatal development. This study examined the effect of altered levels of dietary iron and cadmium loading on the distribution of cadmium and iron in developing rats ages 15, 21, and 63 days. The uptake of iron, transferrin, and cadmium into various organs was also examined using 59Fe, [125I]transferrin, and 109Cd. Dietary cadmium loading reduced packed cell volume and plasma iron and nonheme iron levels in the liver and kidneys, evidence of the inducement of an iron deficient state. Dietary iron loading was able to reverse these effects, suggesting that they were the result of impaired intestinal absorption of iron. Cadmium loading resulted in cadmium concentrations in the liver and kidneys up to 20 microg/g in rats age 63 days, while cadmium levels in the brain reached only 0.16 microg/g, indicating that the blood-brain barrier restricts the entry of cadmium into the brain. Iron loading had little effect on cadmium levels in the organs and cadmium feeding did not lower tissue iron levels in iron loaded animals. These results suggest that cadmium inhibits iron absorption only at low to normal levels of dietary iron and that at high levels of intake iron and cadmium are largely absorbed by other, noncompetitive mechanisms. It was shown that 109Cd is removed from the plasma extremely quickly irrespective of iron status and deposits mainly in the liver. One of the most striking effects of cadmium loading on iron metabolism was increased uptake of [125I]transferrin by the heart, possibly by disrupting the process of receptor-mediated endocytosis and recycling of transferrin by heart muscle.

  12. Arsenic Accumulation and Release Studies Using a Cast Iron Pipe Section from a Drinking Water Distribution System

    EPA Science Inventory

    The tendency of iron solid surfaces to adsorb arsenic and other ions is well known and has become the basis for several drinking water treatment approaches that remove these contaminants. It is reasonable to assume that iron-based solids, such as corrosion deposits present in dri...

  13. Gamma-glutamyltranspeptidase to platelet ratio and albumin to gamma-glutamyltranspeptidase between degrees of the Barcelona clinic liver cancer on hepatocellular carcinoma patients in Haji Adam Malik general hospital Medan during 2015-2016

    NASA Astrophysics Data System (ADS)

    Siregar, G. A.; Siregar, R. H.

    2018-03-01

    Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and occurs predominantly in apatient with underlying chronic liver disease and cirrhosis. HCC presented at an advancedstage with right-upper-quadrant pain, weight loss, and signs of decompensated liver disease; it is now increasingly recognized atmuch measurements of the biomarker. Some of them are Gamma-glutamyltranspeptidase to platelet ratio (GPR) and Albumin to Gamma- glutamyltranspeptidase (AGR). This study aimed to know the difference between GPR and AGR between degrees of the Barcelona Clinic Liver cancer (BCLC) on HCC patients. A retrospective study was carried out in 166 outpatient and inpatient HCC in Haji Adam Malik General Hospital from January 2015–December2016.Kruskal-Wallis test showed that there is no significant differentiation of GPR between degrees of BCLC (p=0.23), but there is a considerable differentiation of AGR between degrees of BCLC (p=0.032).

  14. Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process

    PubMed Central

    Cárdenas, Walter HZ; Mamani, Javier B; Sibov, Tatiana T; Caous, Cristofer A; Amaro, Edson; Gamarra, Lionel F

    2012-01-01

    Background Nanoparticles in suspension are often utilized for intracellular labeling and evaluation of toxicity in experiments conducted in vitro. The purpose of this study was to undertake a computational modeling analysis of the deposition kinetics of a magnetite nanoparticle agglomerate in cell culture medium. Methods Finite difference methods and the Crank–Nicolson algorithm were used to solve the equation of mass transport in order to analyze concentration profiles and dose deposition. Theoretical data were confirmed by experimental magnetic resonance imaging. Results Different behavior in the dose fraction deposited was found for magnetic nanoparticles up to 50 nm in diameter when compared with magnetic nanoparticles of a larger diameter. Small changes in the dispersion factor cause variations of up to 22% in the dose deposited. The experimental data confirmed the theoretical results. Conclusion These findings are important in planning for nanomaterial absorption, because they provide valuable information for efficient intracellular labeling and control toxicity. This model enables determination of the in vitro transport behavior of specific magnetic nanoparticles, which is also relevant to other models that use cellular components and particle absorption processes. PMID:22745539

  15. Draft Genome Sequence of Ideonella sp. Strain A 288, Isolated from an Iron-Precipitating Biofilm

    PubMed Central

    Künzel, Sven; Szewzyk, Ulrich

    2017-01-01

    ABSTRACT Here, we report the draft genome sequence of the betaproteobacterium Ideonella sp. strain A_228. This isolate, obtained from a bog iron ore-containing floodplain area in Germany, provides valuable information about the genetic diversity of neutrophilic iron-depositing bacteria. The Illumina NextSeq technique was used to sequence the draft genome sequence of the strain. PMID:28818902

  16. A lower trophic ecosystem model including iron effects in the Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Okunishi, Takeshi; Kishi, Michio J.; Ono, Yukiko; Yamashita, Toshihiko

    2007-09-01

    We applied a three-dimensional ecosystem-physical coupled model including iron the effect to the Okhotsk Sea. In order to clarify the sources of iron, four dissolved iron compartments, based on the sources of supply, were added to Kawamiya et al.'s [1995, An ecological-physical coupled model applied to Station Papa. Journal of Oceanography, 51, 635-664] model (KKYS) to create our ecosystem model (KKYS-Fe). We hypothesized that four processes supply iron to sea water: atmospheric loadings from Northeastern Asia, input from the Amur River, dissolution from sediments and regeneration by zooplankton and bacteria. We simulated one year, from 1 January 2001 to 31 December 2001, using both KKYS-Fe and KKYS. KKYS could not reproduce the surface nitrate distribution after the spring bloom, whereas KKYS-Fe agreed well with observations in the northwestern Pacific because it includes iron limitation of phytoplankton growth. During the spring bloom, the main source of iron at the sea surface is from the atmosphere. The contribution of riverine iron to the total iron utilized for primary production is small in the Okhotsk Sea. Atmospheric deposition, the iron flux from sediment and regeneration of iron in the water column play important roles in maintaining high primary production in the Okhotsk Sea.

  17. Pituitary iron and volume imaging in healthy controls.

    PubMed

    Noetzli, L J; Panigrahy, A; Hyderi, A; Dongelyan, A; Coates, T D; Wood, J C

    2012-02-01

    Patients with transfusional iron overload develop iron deposits in the pituitary gland, which are associated with volume loss and HH. The purpose of this study was to characterize R2 and volumetric data in a healthy population for diagnostic use in patients with transfusional iron overload. One hundred healthy controls without iron overload between the ages of 2 and 48 were recruited to have MR imaging of the brain to assess their pituitary R2 and volume. Pituitary R2 was assessed with a 8-echo spin-echo sequence, and pituitary volumes, by a 3D spoiled gradient-echo sequence with 1-mm(3) resolution. A 2-component continuous piecewise linear approximation was used for creating volumetric and R2 nomograms. Equations were generated from regression relationships for convenient z-score calculation. Pituitary R2 rose weakly with age (r(2) = 0.19, P < .0001). Anterior and total pituitary volumes increased steadily up to 18 years of age, after which volume slightly decreased. Females had larger pituitary glands, most likely representing their larger lactotroph population. From these data, a clinician can calculate the z scores for R2 and pituitary volume in patients with iron overload. Normal ranges are well-differentiated from values previously associated with endocrine disease in transfusional siderosis; this finding suggests that preclinical iron overload can be recognized and appropriately treated.

  18. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation.

    PubMed

    Lepot, Kevin; Addad, Ahmed; Knoll, Andrew H; Wang, Jian; Troadec, David; Béché, Armand; Javaux, Emmanuelle J

    2017-03-23

    Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500-600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown. Here we show that specific microfossil populations of the 1.88 Ga Gunflint Iron Formation contain Fe-silicate and Fe-carbonate nanocrystal concentrations in cell interiors. Fe minerals are absent in/on all organically preserved cell walls. These features are consistent with in vivo intracellular Fe biomineralization, with subsequent in situ recrystallization, but contrast with known patterns of post-mortem Fe mineralization. The Gunflint populations that display relatively large cells (thick-walled spheres, filament-forming rods) and intra-microfossil Fe minerals are consistent with oxygenic photosynthesizers but not with other Fe-mineralizing microorganisms studied so far. Fe biomineralization may have protected oxygenic photosynthesizers against Fe 2+ toxicity during the Palaeoproterozoic.

  19. Significance of tourmaline-rich rocks in the north range group of the cuyuna iron range, East-Central Minnesota

    USGS Publications Warehouse

    Cleland, J.M.; Morey, G.B.; McSwiggen, P.L.

    1996-01-01

    Concentrations of tourmaline in Early Proterozoic metasedirnentary rocks of the Cuyuna iron range, east-central Minnesota, provide a basis for redefinition of the evolutionary history of the area. Manganiferous iron ore forms beds within the Early Proterozoic Trommald Formation, between thick-bedded granular iron-formation having shallow-water depositional attributes and thin-bedded, nongranular iron-formation having deeper water attributes. These manganese-rich units were previously assumed to be sedimentary in origin. However, a revaluation of drill core and mine samples from the Cuyuna North range has identified strata-bound tourmaline and tourmalinite, which has led to a rethinking of genetic models for the geology of the North range. We interpret the tourmaline-rich rocks of the area to be a product of submarine-hydrothermal solutions flowing along and beneath the sedirnent-seawater interface. This model for the depositional environment of the tourmaline is supported by previously reported mineral assemblages within the Trommald Formation that comprise aegirine; barium feldspar; manganese silicates, carbonates, and oxides; and Sr-rich barite veins. In many places, tourmaline-rich metasedimentary rocks and tourmalinites are associated locally with strata-bound sulfide deposits. At those localities, the tourmaline-rich strata are thought to be lateral equivalents of exhalative sulfide zones or genetically related subsea-floor replacements. On the basis of the occurrence of the tourmaline-rich rocks and tourmalinites, and on the associated minerals, we suggest that there is a previously unrecognized potential for sediment-hosted sulfide deposits in the Cuyuna North range.

  20. Unique phenomenon of the accumulation of terrestrial metal iron particles in lacustrine deposits: Zhombolok volcanic region, East Sayan

    NASA Astrophysics Data System (ADS)

    Pechersky, D. M.; Kazanskii, A. Yu.; Markov, G. P.; Tselmovich, V. A.; Shchetnikov, A. A.

    2018-01-01

    The native iron particles that were previously detected by thermomagnetic and microprobe analyses in the sediments of different age in many regions of the world are of extraterrestrial origin. The similarity in the compositions, grain shapes, and sizes observed in the extraterrestrial and terrestrial particles of native iron testifies to the common production conditions of iron particles during the formation of planets. In this paper, the single finding of terrestrial iron in the lacustrine sediments of the Zhombolok volcanic region, East Sayan, is discussed. The uniqueness of the results indicates that the spatial distribution of the particles of native iron is limited to a fairly narrow area around their source—volcanic eruption or/and the fall of a large meteorite.

  1. Modern Dust Deposition and Dissolved Iron Residence Times in the Eastern Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Vivancos, S. M.; Anderson, R. F.; Pavia, F. J.; Fleisher, M. Q.; Lu, Y.; Zhang, P.; Cheng, H.; Edwards, R. L.

    2016-02-01

    We use dissolved 230Th and 232Th data along the U.S. GEOTRACES Equatorial Pacific Zonal Transect (EPZT) from Peru to Tahiti to quantify dust input to the region. Dust in the global oceans is a mineral ballast that helps carry organic matter to depth, a reactive particle surface that scavenges trace metals such as Th and Pa from the water column, and through its dissolution dust provides essential micronutrients, such as iron, that stimulate productivity. When integrating Th inventories from the sea surface to 500 meters water depth (Hayes et al., Earth Planet. Sci. Lett., 383 (2013) 16-25), we find that dust fluxes along the EPZT are an order of magnitude lower (0.18-1.61 g/m2/yr) than along the U.S. GEOTRACES Atlantic Transect (Mauritania to Bermuda; 3.22 to 10.56 g/m2/yr). Dust fluxes decrease with distance away from the dust source (i.e., the continents). Using an Fe/Th ratio of 2660 g/g for dust and assuming a Fe/Th solubility ratio of 1.0 (Hayes et al., Geochim. Cosmochim. Acta, 169 (2015) 1-16), we calculate a dissolved iron flux of 12.06 to 109.88 µmol/m2/yr to the EPZT region. Utilizing dissolved iron data along the EPZT (Resing et al., Nature, 523 (2015) 200-203), we calculate a dissolved iron residence time integrated from the sea surface to 500 meters water depth of 4 to 11 years.

  2. Quantification of Hepcidin-related Iron Accumulation in the Rat Liver.

    PubMed

    Böser, Preethne; Mordashova, Yulia; Maasland, Mark; Trommer, Isabel; Lorenz, Helga; Hafner, Mathias; Seemann, Dietmar; Mueller, Bernhard K; Popp, Andreas

    2016-02-01

    Hepcidin was originally detected as a liver peptide with antimicrobial activity and it functions as a central regulator in the systemic iron metabolism. Consequently suppression of hepcidin leads to iron accumulation in the liver. AbbVie developed a monoclonal antibody ([mAb]; repulsive guidance molecule [RGMa/c] mAb) that downregulates hepcidin expression by influencing the RGMc/bone morphogenetic protein (BMP)/neogenin receptor complex and causes iron deposition in the liver. In a dose range finding study with RGMa/c mAb, rats were treated with different dose levels for a total of 4 weekly doses. The results of this morphometric analysis in the liver showed that iron accumulation is not homogenous between liver lobes and the left lateral lobe was the most responsive lobe in the rat. Quantitative hepcidin messenger RNA analysis showed that the left lateral lobe was the most responsive lobe showing hepcidin downregulation with increasing antibody dose. In addition, the morphometric analysis had higher sensitivity than the chemical iron extraction and quantification using a colorimetric assay. In conclusion, the Prussian blue stain in combination with semi-quantitative and quantitative morphometric analysis is the most reliable method to demonstrate iron accumulation in the liver compared to direct measurement of iron in unfixed tissue using a colorimetric assay. © The Author(s) 2016.

  3. Solution deposited and modified iron oxide for enhanced solar water splitting

    NASA Astrophysics Data System (ADS)

    Abel, Anthony J.

    Growing worldwide energy demand coupled with an increasing awareness of anthropogenic climate change has driven research into carbon-neutral and solar-derived energy sources. One attractive strategy is the storage of solar energy in the bonds of H2 formed by photoelectrochemical (PEC) water splitting. Hematite, an iron oxide, has been widely investigated as a candidate material for PEC water splitting due to its stability, non-toxicity, earth abundance and consequent low cost, and a theoretical 15% solar-to-hydrogen conversion efficiency. However, poor electrical properties and slow rates of the water oxidation reaction have limited its potential as an economical water splitting catalyst. Additionally, the most efficient hematite-based devices are fabricated via expensive, vacuum-phase techniques, limiting scalability to broad integration into the energy supply. In this thesis, I develop a new, solution-based deposition method for high quality, planar hematite thin films using successive ionic layer adsorption and reaction (SILAR). The constant geometry and tight control over layer thickness possible with SILAR makes these films ideal model systems to understand the two key steps of PEC water oxidation: charge separation and interfacial hole transfer. In Chapter 3, I report on facile annealing treatments to dope hematite with Ti and Sn, and I show that these impurity atoms at the hematite/electrolyte interface increase hole transfer efficiency from nearly 0 to above 60%. However, charge separation remains below 15% with these dopants incorporated via solid state diffusion, mainly due to low hole mobility. To overcome this associated small transport length, extremely thin hematite coatings were deposited on Sb:SnO2 monolayer inverse opal scaffolds. With this modified substrate, photocurrent increased proportionately to the surface area of the scaffold. While Chapter 3 discusses incorporation of dopants via solid state diffusion, Chapter 4 examines methods to

  4. Iron Concentration in Deep Gray Matter Structures is Associated with Worse Visual Memory Performance in Healthy Young Adults

    PubMed Central

    Darnai, Gergely; Nagy, Szilvia Anett; Horváth, Réka; Ács, Péter; Perlaki, Gábor; Orsi, Gergely; Kovács, Norbert; Altbäcker, Anna; Plózer, Enikő; Tényi, Dalma; Weintraut, Rita; Schwarcz, Attila; John, Flóra; Varga, Eszter; Bereczkei, Tamás; Clemens, Zsófia; Komoly, Sámuel; Janszky, József

    2017-01-01

    Abnormally high deposition of iron can contribute to neurodegenerative disorders with cognitive impairment. Since previous studies investigating cognition-brain iron accumulation relationships focused on elderly people, our aim was to explore the association between iron concentration in subcortical nuclei and two types of memory performances in a healthy young population. Gender difference was found only in the globus pallidus. Our results showed that iron load characterized by R2* value on the MRI in the caudate and putamen was related to visual memory, while verbal memory was unrelated to iron concentration. PMID:28671115

  5. Iron in spleen and liver: Some cases of normal tissues and tissues from patients with hematological malignancies

    NASA Astrophysics Data System (ADS)

    Alenkina, Irina V.; Oshtrakh, Michael I.; Felner, Israel; Vinogradov, Alexander V.; Konstantinova, Tatiana S.; Semionkin, Vladimir A.

    2016-10-01

    Iron deposits in spleen and liver tissues obtained from several healthy people and patients with mantle cell lymphoma, acute myeloid leukemia and primary myelofibrosis were studied using Mössbauer spectroscopy and magnetization measurements. The results obtained demonstrated differences in the iron content in tissues as well as some variations in the ferrihydrite-like iron core structure in the iron storage proteins in these tissues. The presence of tiny amount of magnetite and paramagnetic component in spleen and liver tissue was also detected in different quantities in the studied tissues.

  6. The Importance of Kinetics and Redox in the Biogeochemical Cycling of Iron in the Surface Ocean

    PubMed Central

    Croot, Peter L.; Heller, Maija I.

    2012-01-01

    It is now well established that Iron (Fe) is a limiting element in many regions of the open ocean. Our current understanding of the key processes which control iron distribution in the open ocean have been largely based on thermodynamic measurements performed under the assumption of equilibrium conditions. Using this equilibrium approach, researchers have been able to detect and quantify organic complexing ligands in seawater and examine their role in increasing the overall solubility of iron. Our current knowledge about iron bioavailability to phytoplankton and bacteria is also based heavily on carefully controlled laboratory studies where it is assumed the chemical species are in equilibrium in line with the free ion association model and/or its successor the biotic ligand model. Similarly most field work on iron biogeochemistry generally consists of a single profile which is in essence a “snap-shot” in time of the system under investigation. However it is well known that the surface ocean is an extremely dynamic environment and it is unlikely if thermodynamic equilibrium between all the iron species present is ever truly achieved. In sunlit waters this is mostly due to the daily passage of the sun across the sky leading to photoredox processes which alter Fe speciation by cycling between redox states and between inorganic and organic species. Episodic deposition events, dry and wet, are also important perturbations to iron cycling as they bring in new iron to the system and alter the equilibrium between iron species and phases. Here we utilize new field data collected in the open ocean on the complexation kinetics of iron in the surface ocean to identify the important role of weak iron binding ligands (i.e., those that cannot maintain iron in solution indefinitely at seawater pH: αFeL < αFe′) in allowing transient increases in iron solubility in response to iron deposition events. Experiments with the thermal O2- source SOTS-1 also indicate the short

  7. Iron Homeostasis and Nutritional Iron Deficiency123

    PubMed Central

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe2+ and O2 (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  8. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California

    PubMed Central

    Sumner, Dawn Y.; Alpers, Charles N.; Karunatillake, Suniti; Hofmann, Beda A.

    2015-01-01

    Abstract A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses

  9. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    NASA Astrophysics Data System (ADS)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  10. Dependence of anti-Stokes/Stokes intensity ratios on substrate optical properties for Brillouin light scattering from ultrathin iron films

    NASA Astrophysics Data System (ADS)

    Cochran, J. F.; From, M.; Heinrich, B.

    1998-06-01

    Brillouin light scattering experiments have been used to investigate the intensity of 5145 Å laser light backscattered from spin waves in 20 monolayer thick Fe(001) films. The experiments have shown that the ratio of frequency upshifted light intensity to frequency downshifted light intensity depends upon the material of the substrate used to support the iron films. For a fixed magnetic field and for a fixed angle of incidence of the laser light this intensity ratio is much larger for an iron film deposited on a sulphur passivated GaAs(001) substrate than for an iron film deposited on a Ag(001) substrate. The data have been compared with a calculation that takes into account multiple scattering of the optical waves in the iron film and in a protective gold overlayer. The observations are in qualitative agreement with the theory, except for angles of incidence greater than 60°.

  11. Zooplankton Gut Passage Mobilizes Lithogenic Iron for Ocean Productivity.

    PubMed

    Schmidt, Katrin; Schlosser, Christian; Atkinson, Angus; Fielding, Sophie; Venables, Hugh J; Waluda, Claire M; Achterberg, Eric P

    2016-10-10

    Iron is an essential nutrient for phytoplankton, but low concentrations limit primary production and associated atmospheric carbon drawdown in large parts of the world's oceans [1, 2]. Lithogenic particles deriving from aeolian dust deposition, glacial runoff, or river discharges can form an important source if the attached iron becomes dissolved and therefore bioavailable [3-5]. Acidic digestion by zooplankton is a potential mechanism for iron mobilization [6], but evidence is lacking. Here we show that Antarctic krill sampled near glacial outlets at the island of South Georgia (Southern Ocean) ingest large amounts of lithogenic particles and contain 3-fold higher iron concentrations in their muscle than specimens from offshore, which confirms mineral dissolution in their guts. About 90% of the lithogenic and biogenic iron ingested by krill is passed into their fecal pellets, which contain ∼5-fold higher proportions of labile (reactive) iron than intact diatoms. The mobilized iron can be released in dissolved form directly from krill or via multiple pathways involving microbes, other zooplankton, and krill predators. This can deliver substantial amounts of bioavailable iron and contribute to the fertilization of coastal waters and the ocean beyond. In line with our findings, phytoplankton blooms downstream of South Georgia are more intensive and longer lasting during years with high krill abundance on-shelf. Thus, krill crop phytoplankton but boost new production via their nutrient supply. Understanding and quantifying iron mobilization by zooplankton is essential to predict ocean productivity in a warming climate where lithogenic iron inputs from deserts, glaciers, and rivers are increasing [7-10]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Geochemical and mineralogical studies of a South Texas roll-front uranium deposit

    USGS Publications Warehouse

    Goldhaber, Martin B.; Reynolds, Richard L.

    1977-01-01

    Core samples from a roll-front uranium deposit in south Texas have been analyzed for iron sulfide content and mineralogy, organic carbon content and the abundance of carbonate, iron, manganese and titanium. Sulfide occurs almost exclusively as the iron disulfides pyrite and marcasite, in concentrations as high as 2 percent of the coarse (>62 ?m) fraction. Marcasite is particularly abundant relative to pyrite in the vicinity of the roll front. Because marcasite precipitation requires acidic pH's and the most likely mechanism for generating a low pH is oxidation of preore sulfide, it is argued that marcasite formation is, at least in part, related to roll-front development. Organic carbon analyses from various representative parts of the deposit are uniformly low (<0.1 percent C). This is taken to imply that sulfate reducing bacteria were not involved in either initial sulfidation of the host rock or during later sulfidization that was related to the ore-forming episode. carbonate minerals, such as calcite, are quite abundant, but appear to have formed after the ore. The overall abundance of iron apparently is not systematically related to position with respect to the roll front, whereas manganese probably is concentrated near the redox interface. Titanium like iron does not show a systematic relationship to position about the roll. However, titanium is systematically more abundant in the fine fraction (462 ?m) relative to the coarse fraction with distance downdip. This reflects a progressively more intense alteration of precursor iron titanium oxide minerals to fine-grained TiO2.

  13. Biomineralogy and Morphology of the Marine Iron-oxidizing Bacterium Mariprofundus ferrooxydans

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Emerson, D.; Edwards, K. J.

    2006-12-01

    Mariprofundus ferrooxydans strain PV-1 is a lithoautotrophic iron-oxidizing proteobacterium isolated from the Loihi Seamount in Hawaii. As cells grow, they form filaments upon which iron minerals are deposited. Based on similarities in morphology, these structures appear to accumulate and form the bulk of iron mats at Loihi. Furthermore, Mariprofundus has been observed in a number of other seafloor mat samples (e.g. by microscopy and 16S rRNA gene sequencing of East Pacific Rise samples, C. M. Santelli unpublished data), suggesting that the occurrence of Mariprofundus is widespread. To learn about the effect of Mariprofundus on iron cycling, we are studying the processes by which it oxidizes iron and influences iron mineral formation. We are conducting studies on the spatial relationships between the cells, stalks, and minerals using scanning and transmission electron microscopy (SEM and TEM). Identification and imaging of stalk-bound, nanometer-sized iron oxyhydroxide minerals is being performed by high-resolution transmission electron microscopy (HRTEM). We have developed sample preparation methods to preserve in vivo spatial relationships, involving direct colonization of sample holders in cultures and in the environment. Method development has been performed on stalk-forming, iron-oxidizing Gallionella ferruginea cultures and terrestrial iron mats. Gallionella is morphologically and physiologically very similar to Mariprofundus, although 16S rRNA gene phylogeny shows that they are not closely related. Comparison of the terrestrial and marine iron-oxidizing bacteria (FeOB) gives us insight into adaptations that are particular to marine iron-oxidizers and those that are common to all FeOB. Light and fluorescence microscopy of Mariprofundus cultures has shown that a single bean-shaped cell lies at the end of each filament. SEM and TEM results have revealed that the filament is ribbon-like, sometimes twisted as with the classic Gallionella stalk, but sometimes not

  14. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  15. The relationship between increased levels of Anti-dsDNA with clinical manifestation in patients with SLE in Haji Adam Malik General Hospital Medan

    NASA Astrophysics Data System (ADS)

    Marpaung, B.; Patrick, J.

    2018-03-01

    Systemic Lupus Erythematosus (SLE) is an autoimmune rheumatic disease characterized by widespread inflammation and affects any organism the body. Many autoimmune diseases result in autoantibody production, but Anti-dsDNA antibodies are highly specific to SLE. Previous study found that Anti-dsDNA antibodies are associated with severe clinical manifestations of lupus. The aim of this study was to examine the relationship between anti-dsDNA level with clinical features and laboratory findings in SLE patients. This cross-sectional study was conducted in Hospital Haji Adam Malik Medan in May-October 2016.We examine anti-dsDNA, clinical features and kidney laboratory profile in all patient. Data were statistically analyzed.81 SLE patients with median level of anti-dsDNA 294 (6.1-1317). There was no significant relationship between increased level of Anti-dsDNA with clinical manifestations (p>0.05). There were significant relationships between increased level of Anti-dsDNA with renal impairment (p=0.049), urea level (p=0.016), urine protein (p=0.042) and hematology disorder (p=0.005). Arthritis is the most frequent clinical manifestation (96.3%) followed by malar rash (77.8%). Elevated anti-dsDNA level was not related with clinical manifestations but there was significant relationship with hematology disorder, urea, creatinine, and proteinuria in SLE patents.

  16. Hemochromatosis caused by excessive vitamin iron intake.

    PubMed Central

    Hennigar, G. R.; Greene, W. B.; Walker, E. M.; de Saussure, C.

    1979-01-01

    Rare cases of hemochromatosis have been reported in patients who underwent prolonged oral iron therapy for hemolytic anemia or prolonged self-treatment with iron pills. A proportionately large segment of the South African Bantu tribe, who ingest large quantities of an alcoholic beverage brewed in iron pots, are found to have the disease. Reports of health fadists developing hemochromatosis due to excessive dietary iron intake, however, are extremely rare. This report presents clinical considerations and pathologic findings in a compulsive health fadist who consumed large numbers of vitamins containing iron. Clinical findings included the development and progression of cirrhosis of the liver, bronzing of the skin, and diabetes mellitus, all consistent with a diagnosis of hemochromatosis. Light microscopy of liver biopsies taken late in the course of the disease revealed a massive buildup of iron in the hepatocytes, less in the Kupffer cells, and sparse deposition in the epithelial cells of the bile duct. Minimal periportal fibrosis was noted. Electron microscopy showed numerous pleomorphic siderosomes with varying degrees of crystallization and ferritin attached at uniform intervals to the membranes of residual bodies. Abundant free ferritin was observed in most cells. The aggregated and membrane-associated ferritin was verified by non-dispersive x-ray analysis. An additional finding, noted only by electron microscopy, was the presence of many fat-storing cells of Ito, which are thought to be involved in the onset of fibrosis. Images Figure 11 Figure 12 Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 8 Figure 9 Figure 10 PMID:474711

  17. Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method

    NASA Astrophysics Data System (ADS)

    Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.

    2018-06-01

    Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.

  18. Immunohistochemical findings in the pancreatic islets of a patient with transfusional iron overload and diabetes: case report.

    PubMed

    Kishimoto, Miyako; Endo, Hisako; Hagiwara, Shotaro; Miwa, Akiyoshi; Noda, Mitsuhiko

    2010-08-01

    Excessive iron storage sometimes causes diabetes in patients with hemochromatosis, a disease caused by iron overloading. We performed an immunohistochemical analysis to study an autopsy case of aplastic anemia and diabetic hemochromatosis caused by frequent blood transfusions, and extensive hemosiderin deposition was observed in the liver and pancreas. The pancreatic islets of the patient and a control subject were stained to detect glucagon, insulin, and proinsulin. Significantly lower levels of immunoreactivity with both insulin antibodies and proinsulin antibodies, but not with glucagon antibodies, was observed in the islet cells in the patient's tissue than in the islet cells of the control. Hemosiderin deposition in the islets is known to be exclusively distributed in the β-cells, thus, selective iron-induced damage to the β-cells may have affected insulin synthesis and secretion and led to glucose intolerance in the patient.

  19. Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean

    NASA Astrophysics Data System (ADS)

    Albani, S.; Mahowald, N. M.; Murphy, L. N.; Raiswell, R.; Moore, J. K.; Anderson, R. F.; McGee, D.; Bradtmiller, L. I.; Delmonte, B.; Hesse, P. P.; Mayewski, P. A.

    2016-04-01

    Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. In this study we use observationally constrained model reconstructions of the global dust cycle since the Last Glacial Maximum, combined with different simplified assumptions of atmospheric and sea ice processing of dust-borne iron, to provide estimates of soluble iron deposition to the oceans. For different climate conditions, we discuss uncertainties in model-based estimates of atmospheric processing and dust deposition to key oceanic regions, highlighting the large degree of uncertainty of this important variable for ocean biogeochemistry and the global carbon cycle. We also show the role of sea ice acting as a time buffer and processing agent, which results in a delayed and pulse-like soluble iron release into the ocean during the melting season, with monthly peaks up to ~17 Gg/month released into the Southern Oceans during the Last Glacial Maximum (LGM).

  20. Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same

    DOEpatents

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  1. Skin cancer patients profile at faculty of medicine university of North Sumatera pathology anatomy laboratory and Haji Adam Malik general hospital in the year of 2012-2015

    NASA Astrophysics Data System (ADS)

    Sembiring, E. K.; Delyuzar; Soekimin

    2018-03-01

    The most common types of skin cancer found worldwide are basal cell carcinoma, squamous cell carcinoma, and malignant melanoma. In America, about 800,000 people suffer from skin cancer every year and 75% are basal cell carcinoma. According to WHO, around 160,000 people suffer from malignant melanoma every year and 48,000 deaths were reported every year. In Jakarta, in 2000-2009, dr. CiptoMangunkusumo Hospital (RSCM) reported 261 cases of basal cell carcinoma, followed by 69 cases of squamous cell carcinoma and 22 cases of malignant melanoma.This study was descriptive study with retrospective design and consecutive sampling method. Data consisted of age, gender, tumor location, occupation and histopathology subtype which were taken from skin cancer patients’ medical record at Faculty of Medicine University of North Sumatera Pathology Anatomy Laboratory and Haji Adam Malik General Hospital Medan in 2012-2015. Data were analyzed using SPSS program and classified based on WHO. From 92 study subjects, squamous cell carcinoma is the most common form of skin cancer which is 59 cases (64.13%), found in 48 women (52.2%), and often found between 45-47 years old (30.4%).

  2. Iron biomineralization of brain tissue and neurodegenerative disorders

    NASA Astrophysics Data System (ADS)

    Mikhaylova (Mikhailova), Albina

    The brain is an organ with a high concentration of iron in specific areas, particularly in the globus pallidus, the substantia nigra, and the red nucleus. In certain pathological states, such as iron overload disease and neurodegenerative disorders, a disturbed iron metabolism can lead to increased accumulation of iron not only in these areas, but also in the brain regions that are typically low in iron content. Recent studies of the physical and magnetic properties of metalloproteins, and in particular the discovery of biogenic magnetite in human brain tissue, have raised new questions about the role of biogenic iron formations in living organisms. Further investigations revealed the presence of magnetite-like crystalline structures in human ferritin, and indicated that released ferritin iron might act as promoter of oxidative damage to tissue, therefore contributing to pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. The purpose of this work was to examine the elemental composition and structure of iron deposits in normal brain tissue as well as tissue affected by neurodegenerative disorders. Employing the methods of X-ray microfocus fluorescence mapping, X-ray Absorption Near Edge Structure (XANES), X-ray Absorption Fine Structure spectroscopy (XAFS), and light and electron microscopic examinations allows one to obtain qualitative as well as quantitative data with respect to the cellular distribution and chemical state of iron at levels not detected previously. The described tissue preparation technique allows not only satisfactory XAS iron elemental imaging in situ but also multimodal examination with light and electron microscopes of the same samples. The developed protocol has assured consistent and reproducible results on relatively large sections of flat-embedded tissue. The resulting tissue samples were adequate for XAS examination as well as sufficiently well-preserved for future microscopy studies

  3. Liver steatosis correlates with iron overload but not with HFE gene mutations in chronic hepatitis C.

    PubMed

    Sikorska, Katarzyna; Stalke, Piotr; Romanowski, Tomasz; Rzepko, Robert; Bielawski, Krzysztof Piotr

    2013-08-01

    Liver steatosis and iron overload, which are frequently observed in chronic hepatitis C (CHC), may contribute to the progression of liver injury. This study aimed to evaluate the correlation between liver steatosis and iron overload in Polish patients with CHC compared to non-alcoholic fatty liver disease (NAFLD) and HFE-hereditary hemochromatosis (HH) patients. A total of 191 CHC patients were compared with 67 NAFLD and 21 HH patients. Liver function tests, serum markers of iron metabolism, cholesterol and triglycerides were assayed. The inflammatory activity, fibrosis, iron deposits and steatosis stages were assessed in liver specimens. HFE gene polymorphisms were investigated by PCR-RFLP. Liver steatosis was associated with obesity and diabetes mellitus. This disease was confirmed in 76/174 (44%) CHC patients, most of whom were infected with genotype 1. The average grade of steatosis was higher in NAFLD patients. CHC patients had significantly higher iron concentrations and transferrin saturations than NAFLD patients. Compared with CHC patients, HH patients had higher values of serum iron parameters and more intensive hepatocyte iron deposits without differences in the prevalence and intensity of liver steatosis. In the CHC group, lipids accumulation in hepatocytes was significantly associated with the presence of serum markers of iron overload. No correlation between the HFE gene polymorphism and liver steatosis in CHC patients was found. Liver steatosis was diagnosed in nearly half of CHC patients, most of whom were infected with genotype 1. The intensity of steatosis was lower in CHC patients than that in NAFLD patients because of a less frequent diagnosis of metabolic syndrome. Only in CHC patients were biochemical markers of iron accumulation positively correlated with liver steatosis; these findings were independent of HFE gene mutations.

  4. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  5. Iron fertilisation of the ocean through major volcanic eruptions. A case study of the Kasatochi eruption 2008

    NASA Astrophysics Data System (ADS)

    Lindenthal, A.; Langmann, B.; Hort, M.; Hoshyaripour, G.; Paetsch, J.; Lorkowski, I.

    2012-04-01

    Until recently it was more or less common sense that once volcanic ash enters the ocean it simply deposits into the sediments without any further impact on ocean biochemistry. This view has been notably revised after the eruption of Kasatochi volcano in 2008. During the eruption significant amounts of ash were deposited into oceanic NE Pacific. The NE Pacific is known as a high-nutrient-low-chlorophyll (HNLC) region where algae growth is limited by the bio-available, i.e. soluble iron. These bio-available iron salts residing on the volcanic ash are most likely formed by gas-ash/aerosol interactions inside the volcanic plume. The physico-chemical mechanisms behind the processes contributing to bio-available iron production in volcanic plumes, however, are still poorly constrained. As the eruption occurred in early August, the atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom as was observed by satellite instruments and in-situ measurements. Here we investigate this event with the marine biogeochemical model ECOHAM, which is a regional scale three-dimensional ocean biogeochemistry model, coupled to the hydrodynamic model HAMSON. It has been successfully applied mainly over the NW European continental shelf area where iron limitation does not play a role. For applications of this model to the eruption of Kasatochi volcano, an iron cycle model has been implemented, which considers the influence of iron addition to the euphotic zone on diatoms, flagellates, and carbon dioxide concentrations. This model-approach assumes that all dissolved iron in the first meters of seawater is bio-available for phytoplankton uptake. It describes the limitation of phytoplankton growth rates by iron in addition to the limitation by the macro-nutrients nitrogen, phosphate and silicate as well as by light. The surface ocean iron input associated with the eruption of Kasatochi volcano has been determined by an atmospheric-aerosol model to be on the

  6. No iron fertilization in the equatorial Pacific Ocean during the last ice age

    NASA Astrophysics Data System (ADS)

    Costa, K. M.; McManus, J. F.; Anderson, R. F.; Ren, H.; Sigman, D. M.; Winckler, G.; Fleisher, M. Q.; Marcantonio, F.; Ravelo, A. C.

    2016-01-01

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP)—but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  7. No iron fertilization in the equatorial Pacific Ocean during the last ice age.

    PubMed

    Costa, K M; McManus, J F; Anderson, R F; Ren, H; Sigman, D M; Winckler, G; Fleisher, M Q; Marcantonio, F; Ravelo, A C

    2016-01-28

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age--the Last Glacial Period (LGP)--but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the (232)Th proxy), phytoplankton productivity (using opal, (231)Pa/(230)Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ(15)N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  8. Ground-water flow and contributing areas to public-supply wells in Kingsford and Iron Mountain, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.; Westjohn, David B.

    2000-01-01

    The cities of Kingsford and Iron Mountain are in the southwestern part of Dickinson County in the Upper Peninsula of Michigan. Residents and businesses in these cites rely primarily on ground water from aquifers in glacial deposits. Glacial deposits generally consist of an upper terrace sand-and-gravel unit and a lower outwash sand-and-gravel unit, separated by lacustrine silt and clay and eolian silt layers. These units are not regionally continuous, and are absent in some areas. Glacial deposits overlie Precambrian bedrock units that are generally impermeable. Precambrian bedrock consists of metasedimentary (Michigamme Slate, Vulcan Iron Formation, and Randville Dolomite) and metavolcanic (Badwater Greenstone and Quinnesec Formation) rocks. Where glacial deposits are too thin to compose an aquifer usable for public or residential water supply, Precambrian bedrock is relied upon for water supply. Typically a few hundred feet of bedrock must be open to a wellbore to provide adequate water for domestic users. Ground-water flow in the glacial deposits is primarily toward the Menominee River and follows the direction of the regional topographic slope and the bedrock surface. To protect the quality of ground water, Kingsford and Iron Mountain are developing Wellhead Protection Plans to delineate areas that contribute water to public-supply wells. Because of the complexity of hydrogeology in this area and historical land-use practices, a steady-state ground-water-flow model was prepared to represent the ground-water-flow system and to delineate contributing areas to public-supply wells. Results of steady-state simulations indicate close agreement between simulated and observed water levels and between water flowing into and out of the model area. The 10-year contributing areas for Kingsford's public-supply wells encompass about 0.11 square miles and consist of elongated areas to the east of the well fields. The 10-year contributing areas for Iron Mountain's public

  9. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation

    PubMed Central

    Lepot, Kevin; Addad, Ahmed; Knoll, Andrew H.; Wang, Jian; Troadec, David; Béché, Armand; Javaux, Emmanuelle J.

    2017-01-01

    Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500–600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown. Here we show that specific microfossil populations of the 1.88 Ga Gunflint Iron Formation contain Fe-silicate and Fe-carbonate nanocrystal concentrations in cell interiors. Fe minerals are absent in/on all organically preserved cell walls. These features are consistent with in vivo intracellular Fe biomineralization, with subsequent in situ recrystallization, but contrast with known patterns of post-mortem Fe mineralization. The Gunflint populations that display relatively large cells (thick-walled spheres, filament-forming rods) and intra-microfossil Fe minerals are consistent with oxygenic photosynthesizers but not with other Fe-mineralizing microorganisms studied so far. Fe biomineralization may have protected oxygenic photosynthesizers against Fe2+ toxicity during the Palaeoproterozoic. PMID:28332570

  10. Iron-sulfur-carbon relationships in organic-carbon-rich sequences I: Cretaceous Western Interior seaway

    USGS Publications Warehouse

    Dean, W.E.; Arthur, M.A.

    1989-01-01

    Cretaceous marine strata deposited in shallow to intermediate depths in the Western Interior seaway of North America show considerable variation in organic-carbon enrichment and degree of pyrite formation. The extreme range of paleoceanographic and depositional conditions that occurred in this seaway provide a unique opportunity to examine the effects of iron-, carbon-, and sulfur-limitation on pyrite formation in one region over about 30 my. Ternary diagrams of the system Fe-S-OC, together with some measure of the reactivity of organic matter (pyrolysis hydrogen index), provide a rapid means of recognizing iron-, carbon-, and sulfur-limitation on pyrite formation in a series of samples from a single lithologic unit. Iron limitation is indicated by a concentration of data along a line of constant S/Fe ratio on a Fe-S-OC ternary diagram. Carbon limitation is indicated by a concentration of data along a line of constant S/OC ratio. Sulfur-limitation is suggested by the lack of a systematic Fe-S-OC relationship and residual organic matter that is high in abundance and reactivity. -from Authors

  11. Oxidation Inhibits Iron-Induced Blood Coagulation

    PubMed Central

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood. PMID:23170793

  12. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects.

    PubMed

    Bekerman, Elena; Neveu, Gregory; Shulla, Ana; Brannan, Jennifer; Pu, Szu-Yuan; Wang, Stanley; Xiao, Fei; Barouch-Bentov, Rina; Bakken, Russell R; Mateo, Roberto; Govero, Jennifer; Nagamine, Claude M; Diamond, Michael S; De Jonghe, Steven; Herdewijn, Piet; Dye, John M; Randall, Glenn; Einav, Shirit

    2017-04-03

    Global health is threatened by emerging viral infections, which largely lack effective vaccines or therapies. Targeting host pathways that are exploited by multiple viruses could offer broad-spectrum solutions. We previously reported that AAK1 and GAK, kinase regulators of the host adaptor proteins AP1 and AP2, are essential for hepatitis C virus (HCV) infection, but the underlying mechanism and relevance to other viruses or in vivo infections remained unknown. Here, we have discovered that AP1 and AP2 cotraffic with HCV particles in live cells. Moreover, we found that multiple viruses, including dengue and Ebola, exploit AAK1 and GAK during entry and infectious virus production. In cultured cells, treatment with sunitinib and erlotinib, approved anticancer drugs that inhibit AAK1 or GAK activity, or with more selective compounds inhibited intracellular trafficking of HCV and multiple unrelated RNA viruses with a high barrier to resistance. In murine models of dengue and Ebola infection, sunitinib/erlotinib combination protected against morbidity and mortality. We validated sunitinib- and erlotinib-mediated inhibition of AAK1 and GAK activity as an important mechanism of antiviral action. Additionally, we revealed potential roles for additional kinase targets. These findings advance our understanding of virus-host interactions and establish a proof of principle for a repurposed, host-targeted approach to combat emerging viruses.

  13. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects

    PubMed Central

    Bekerman, Elena; Shulla, Ana; Brannan, Jennifer; Wang, Stanley; Barouch-Bentov, Rina; Bakken, Russell R.; Mateo, Roberto; Govero, Jennifer; Nagamine, Claude M.; Diamond, Michael S.; De Jonghe, Steven; Herdewijn, Piet; Dye, John M.; Randall, Glenn

    2017-01-01

    Global health is threatened by emerging viral infections, which largely lack effective vaccines or therapies. Targeting host pathways that are exploited by multiple viruses could offer broad-spectrum solutions. We previously reported that AAK1 and GAK, kinase regulators of the host adaptor proteins AP1 and AP2, are essential for hepatitis C virus (HCV) infection, but the underlying mechanism and relevance to other viruses or in vivo infections remained unknown. Here, we have discovered that AP1 and AP2 cotraffic with HCV particles in live cells. Moreover, we found that multiple viruses, including dengue and Ebola, exploit AAK1 and GAK during entry and infectious virus production. In cultured cells, treatment with sunitinib and erlotinib, approved anticancer drugs that inhibit AAK1 or GAK activity, or with more selective compounds inhibited intracellular trafficking of HCV and multiple unrelated RNA viruses with a high barrier to resistance. In murine models of dengue and Ebola infection, sunitinib/erlotinib combination protected against morbidity and mortality. We validated sunitinib- and erlotinib-mediated inhibition of AAK1 and GAK activity as an important mechanism of antiviral action. Additionally, we revealed potential roles for additional kinase targets. These findings advance our understanding of virus-host interactions and establish a proof of principle for a repurposed, host-targeted approach to combat emerging viruses. PMID:28240606

  14. Iron-corroding methanogen isolated from a crude-oil storage tank.

    PubMed

    Uchiyama, Taku; Ito, Kimio; Mori, Koji; Tsurumaru, Hirohito; Harayama, Shigeaki

    2010-03-01

    Microbiologically influenced corrosion of steel in anaerobic environments has been attributed to hydrogenotrophic microorganisms. A sludge sample collected from the bottom plate of a crude-oil storage tank was used to inoculate a medium containing iron (Fe(0)) granules, which was then incubated anaerobically at 37 degrees C under an N(2)-CO(2) atmosphere to enrich for microorganisms capable of using iron as the sole source of electrons. A methanogen, designated strain KA1, was isolated from the enrichment culture. An analysis of its 16S rRNA gene sequence revealed that strain KA1 is a Methanococcus maripaludis strain. Strain KA1 produced methane and oxidized iron much faster than did the type strain of M. maripaludis, strain JJ(T), which produced methane at a rate expected from the abiotic H(2) production rate from iron. Scanning electron micrographs of iron coupons that had been immersed in either a KA1 culture, a JJ(T) culture, or an aseptic medium showed that only coupons from the KA1 culture had corroded substantially, and these were covered with crystalline deposits that consisted mainly of FeCO(3).

  15. Enhanced Dissolution of Platinum Group Metals Using Electroless Iron Deposition Pretreatment

    NASA Astrophysics Data System (ADS)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2017-12-01

    In order to develop a new method for efficiently recovering platinum group metals (PGMs) from catalyst scraps, the authors investigated an efficient dissolution process where the material was pretreated by electroless Fe deposition. When Rh-loaded alumina powder was kept in aqua regia at 313 K (40 °C) for 30 to 60 minutes, the Rh hardly dissolved. Meanwhile, after electroless Fe plating using a bath containing sodium borohydride and potassium sodium tartrate as the reducing and complexing agents, respectively, approximately 60 pct of Rh was extracted by aqua regia at 313 K (40 °C) after 30 minutes. Furthermore, when heat treatment was performed at 1200 K (927 °C) for 60 minutes in vacuum after electroless plating, the extraction of Rh approached 100 pct for the same leaching conditions. The authors also confirmed that the Fe deposition pretreatment enhanced the dissolution of Pt and Pd. These results indicate that an effective and environmentally friendly process for the separation and extraction of PGMs from catalyst scraps can be developed utilizing this Fe deposition pretreatment.

  16. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations.

    PubMed

    Healy, Sinead; McMahon, Jill M; FitzGerald, Una

    2017-11-01

    Although aberrant metabolism and deposition of iron has been associated with aging and neurodegeneration, the contribution of iron to neuropathology is unclear. Well-designed model systems that are suited to studying the putative pathological effect of iron are likely to be essential if such unresolved details are to be clarified. In this review, we have evaluated the utility and effectiveness of the reductionist in vitro platform to study the molecular mechanisms putatively underlying iron perturbations of neurodegenerative disease. The expression and function of iron metabolism proteins in glia and neurons and the extent to which this iron regulatory system is replicated in in vitro models has been comprehensively described, followed by an appraisal of the inherent suitability of different in vitro and ex vivo models that have been, or might be, used for iron loading. Next, we have identified and critiqued the relevant experimental parameters that have been used in in vitro iron loading experiments, including the choice of iron reagent, relevant iron loading concentrations and supplementation with serum or ascorbate, and propose optimal iron loading conditions. Finally, we have provided a synthesis of the differential iron accumulation and toxicity in glia and neurons from reported iron loading paradigms. In summary, this review has amalgamated the findings and paradigms of the published reports modelling iron loading in monocultures, discussed the limitations and discrepancies of such work to critically propose a robust, relevant and reliable model of iron loading to be used for future investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism.

    PubMed

    Lu, Qing; Harris, Valerie A; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M

    2015-12-01

    We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Application of a Depositional Facies Model to an Acid Mine Drainage Site▿ †

    PubMed Central

    Brown, Juliana F.; Jones, Daniel S.; Mills, Daniel B.; Macalady, Jennifer L.; Burgos, William D.

    2011-01-01

    Lower Red Eyes is an acid mine drainage site in Pennsylvania where low-pH Fe(II) oxidation has created a large, terraced iron mound downstream of an anoxic, acidic, metal-rich spring. Aqueous chemistry, mineral precipitates, microbial communities, and laboratory-based Fe(II) oxidation rates for this site were analyzed in the context of a depositional facies model. Depositional facies were defined as pools, terraces, or microterracettes based on cm-scale sediment morphology, irrespective of the distance downstream from the spring. The sediments were composed entirely of Fe precipitates and cemented organic matter. The Fe precipitates were identified as schwertmannite at all locations, regardless of facies. Microbial composition was studied with fluorescence in situ hybridization (FISH) and transitioned from a microaerophilic, Euglena-dominated community at the spring, to a Betaproteobacteria (primarily Ferrovum spp.)-dominated community at the upstream end of the iron mound, to a Gammaproteobacteria (primarily Acidithiobacillus)-dominated community at the downstream end of the iron mound. Microbial community structure was more strongly correlated with pH and geochemical conditions than depositional facies. Intact pieces of terrace and pool sediments from upstream and downstream locations were used in flowthrough laboratory reactors to measure the rate and extent of low-pH Fe(II) oxidation. No change in Fe(II) concentration was observed with 60Co-irradiated sediments or with no-sediment controls, indicating that abiotic Fe(II) oxidation was negligible. Upstream sediments attained lower effluent Fe(II) concentrations compared to downstream sediments, regardless of depositional facies. PMID:21097582

  19. Iron

    MedlinePlus

    ... too little iron, you may develop iron deficiency anemia. Causes of low iron levels include blood loss, poor diet, or an inability to absorb enough iron from foods. People at higher risk of having too little iron are young children and women who are pregnant or have periods. ...

  20. Quantitative histochemistry for macrophage biodistribution on mice liver and spleen after the administration of a pharmacological-relevant dose of polyacrylic acid-coated iron oxide nanoparticles.

    PubMed

    Rodrigues, Daniela; Freitas, Marisa; Marisa Costa, Vera; Arturo Lopez-Quintela, Manuel; Rivas, José; Freitas, Paulo; Carvalho, Félix; Fernandes, Eduarda; Silva, Paula

    2017-03-01

    Understanding in vivo biodistribution of iron oxide nanoparticles (IONs), and the involvement of the phagocyte system in this process, is crucial for the assessment of their potential health risk. In the present study, the histochemical expression of iron in liver and spleen sections of CD-1 mice (aged 8 weeks) was quantified, 24 h after intravenous administration of polyacrylic acid-coated IONs (PAA-coated IONs) (8, 20, 50 mg/kg). Organ sections were stained with Perls' Prussian blue for iron detection, followed by the quantification of iron deposition with ImageJ software. Our study revealed the existence of a linear dose-dependent increase of iron deposition in macrophages of both organs. Exposed animals showed hepatic iron deposition in all zones, although most marked in periportal region. In the spleen, no iron was detected in the white splenic pulp of both control and treated animals. When compared with control mice, a positive correlation between histochemical detection of iron and PAA-coated ION doses was observed in splenic red pulp of animals. The results confirmed our assumption that liver and spleen are involved in the clearance pathways of PAA-coated IONs from the blood. Excess iron was cytotoxic at the highest dose of PAA-coated IONs tested, but no significant morphologic alterations were observed for the lower doses. Clusters of early necrotic hepatocytes were observed in the hepatic periportal region of mice injected with the higher dose (50 mg/kg) of PAA-coated IONs. Further studies are necessary to determine if liver and spleen macrophages will degrade these IONs, or eventually exocytose both the degraded and intact ones.

  1. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  2. Glacial geology of the Mountain Iron-Virginia-Eveleth area Mesabi Iron Range, Minnesota: Sub-chapter in Geological Survey research 1964, Chapter C

    USGS Publications Warehouse

    Cotter, R.D.; Rogers, J.E.

    1964-01-01

    The surficial clayey till in the vicinity of Mountain Iron, Virginia, and Eveleth is of post-Cary age. In the southern part of the area studied, this till is overlain by deposits of glacial Lake Upham, and throughout the area it is underlain successively by stratified drift and bouldery till, both of Cary age, and by remnants of older tills.

  3. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar.

    PubMed

    Li, Dalin; Koike, Mitsuru; Wang, Lei; Nakagawa, Yoshinao; Xu, Ya; Tomishige, Keiichi

    2014-02-01

    Nickel-iron/magnesium/aluminum bimetallic catalysts were prepared by the calcination and reduction of nickel-magnesium-iron-aluminum hydrotalcite-like compounds. Characterization suggests that, at iron/nickel≤0.5, both nickel and iron species are homogeneously distributed in the hydrotalcite precursor and incorporated into the Mg(Ni, Fe, Al)O periclase after calcination, giving rise to uniform nickel-iron alloy nanoparticles after reduction. Ni-Fe/Mg/Al (Fe/Ni=0.25) exhibits the best catalytic performance for the steam reforming of tar derived from the pyrolysis of biomass. It is suggested that the uniform nickel-iron alloy nanoparticles and the synergy between nickel and iron are responsible for the high catalytic performance. Moreover, the Ni-Fe/Mg/Al catalyst exhibits much better regenerability toward oxidation-reduction treatment for the removal of deposited coke than that of conventional Ni-Fe/α-Al2 O3 . This property can be attributed to the better regeneration of Ni-Fe alloy nanoparticles through the formation and reduction of Mg(Ni, Fe, Al)O. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The nanophase iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  5. Links between Iron Fertilization and Biological Pump Efficiency in the Bering Sea Over the Last 3.5 Myrs

    NASA Astrophysics Data System (ADS)

    Bartoli, G. L.; Studer, A. S.; Martinez Garcia, A.; Haug, G. H.

    2011-12-01

    The Bering Sea is one of the major sink of atmospheric CO2 today, due to the efficiency of its biological pump, despite a limitation by iron. Here we present records of iron fertilization by aeolian dust deposition (n-alkane concentration) and phytoplankton nutrient consumption (diatom-bound δ15N record) over the last 3.5 Myrs in the southwestern Bering Sea at Site U1341 drilled during IODP Expedition 323. During the Pliocene Epoch, when sea surface temperatures were 3-4°C warmer than today and sea-ice cover was reduced, the biological pump efficiency during glacial and interglacial stages was minimal, similar to Quaternary interglacials. Low iron deposition and weaker surface water stratification resulting in higher nutrient inputs contributed to reduce the biological pump efficiency until 1.5 Ma. After the intensification of glacial conditions in the Bering Sea and the increase in sea-ice cover and iron inputs, the biological pump efficiency progressively increased, reaching values similar to Quaternary glacials after the mid-Pleistocene transition.

  6. Iron fertilisation by Asian dust influences North Pacific sardine regime shifts

    NASA Astrophysics Data System (ADS)

    Qiu, Yongsong

    2015-05-01

    Forcing factors and mechanisms underlying multidecadal variability in the production of the world's major fish stocks are one of the great mysteries of the oceans. The Japanese and California sardine are species that exhibit the regime shifts. It is shown in the present work that during two periods of frequent Asian dust events over the last 100 years, sardines on opposite sides of the Pacific Ocean only flourished under a dust-active regime. The earlier such regime that peaked in the 1930s was strong, and it brought synchronous changes in the two species that were linked to the frequency of Asian dust events. However, there is an apparent mismatch in the rise and fall of abundance between the two species in the current dust-active regime. The massive increase in Japanese sardine stock in the 1970s was related to high levels of ocean precipitation and strong winter mixing, whereas the stock collapse since 1988 has been attributed to diminished winter mixing. High levels of ocean precipitation in the western North Pacific effectively cause wet deposition of Asian dust and enhance Japanese sardine stock, whereas it reduces dust flux that can be transported to the eastern North Pacific, delaying the increase of California sardine stock. Analysis further indicates that productivity of Japanese sardine stock is jointly controlled by wet deposition of Asian dust and winter mixing, which supplies macronutrients from depth. California sardine productivity is inversely related to precipitation in the western North Pacific and is positively affected by precipitation off western North America. This indicates that Asian dust influx dominates productivity of the species because of iron-limited ocean productivity in the California sardine ranges. The analysis suggests that dust regime shifts influence shifts in sardine productivity regimes and that iron input from Asian dust during trans-Pacific transport is directly responsible. It appears that in addition to enhancing

  7. Reduction of iron-bearing lunar minerals for the production of oxygen

    NASA Technical Reports Server (NTRS)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  8. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    NASA Astrophysics Data System (ADS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-04-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  9. Magnetic separation of algae genetically modified for increased intracellular iron uptake.

    PubMed

    Buck, Amy; Moore, Lee R; Lane, Christopher D; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J; Zborowski, Maciej

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides ( A. p. ) strains. The A. p. cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1,000 T/m) dubbed "magnetic deposition microscopy", or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest.

  10. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    PubMed Central

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. p.) strains. The A. p. cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP-AA). They were grown in Sueoka's modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1,000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. PMID:29353957

  11. Iron excretion in iron dextran-overloaded mice

    PubMed Central

    Musumeci, Marco; Maccari, Sonia; Massimi, Alessia; Stati, Tonino; Sestili, Paola; Corritore, Elisa; Pastorelli, Augusto; Stacchini, Paolo; Marano, Giuseppe; Catalano, Liviana

    2014-01-01

    Background Iron homeostasis in humans is tightly regulated by mechanisms aimed to conserve iron for reutilisation, with a negligible role played by excretory mechanisms. In a previous study we found that mice have an astonishing ability to tolerate very high doses of parenterally administered iron dextran. Whether this ability is linked to the existence of an excretory pathway remains to be ascertained. Materials and methods Iron overload was generated by intraperitoneal injections of iron dextran (1 g/kg) administered once a week for 8 weeks in two different mouse strains (C57bl/6 and B6D2F1). Urinary and faecal iron excretion was assessed by inductively coupling plasma-mass spectrometry, whereas cardiac and liver architecture was evaluated by echocardiography and histological methods. For both strains, 24-hour faeces and urine samples were collected and iron concentration was determined on days 0, 1 and 2 after iron administration. Results In iron-overloaded C57bl/6 mice, the faecal iron concentration increased by 218% and 157% on days 1 and 2, respectively (p<0.01). The iron excreted represented a loss of 14% of total iron administered. Similar but smaller changes was also found in B6D2F1 mice. Conversely, we found no significant changes in the concentration of iron in the urine in either of the strains of mice. In both strains, histological examination showed accumulation of iron in the liver and heart which tended to decrease over time. Conclusions This study indicates that mice have a mechanism for removal of excess body iron and provides insights into the possible mechanisms of excretion. PMID:24960657

  12. Non-transferrin bound iron: a key role in iron overload and iron toxicity.

    PubMed

    Brissot, Pierre; Ropert, Martine; Le Lan, Caroline; Loréal, Olivier

    2012-03-01

    Besides transferrin iron, which represents the normal form of circulating iron, non-transferrin bound iron (NTBI) has been identified in the plasma of patients with various pathological conditions in which transferrin saturation is significantly elevated. To show that: i) NTBI is present not only during chronic iron overload disorders (hemochromatosis, transfusional iron overload) but also in miscellaneous diseases which are not primarily iron overloaded conditions; ii) this iron species represents a potentially toxic iron form due to its high propensity to induce reactive oxygen species and is responsible for cellular damage not only at the plasma membrane level but also towards different intracellular organelles; iii) the NTBI concept may be expanded to include intracytosolic iron forms which are not linked to ferritin, the major storage protein which exerts, at the cellular level, the same type of protective effect towards the intracellular environment as transferrin in the plasma. Plasma NTBI and especially labile plasma iron determinations represent a new important biological tool since elimination of this toxic iron species is a major therapeutic goal. The NTBI approach represents an important mechanistic concept for explaining cellular iron excess and toxicity and provides new important biochemical diagnostic tools. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Functional Iron Oxide-Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Trang, Vu Thi; Tam, Le Thi; Van Quy, Nguyen; Huy, Tran Quang; Thuy, Nguyen Thanh; Tri, Doan Quang; Cuong, Nguyen Duy; Tuan, Pham Anh; Van Tuan, Hoang; Le, Anh-Tuan; Phan, Vu Ngoc

    2017-06-01

    Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains ( Salmonella enteritidis and Klebsiella pneumoniae).

  14. Iron Is a Sensitive Biomarker for Inflammation in Multiple Sclerosis Lesions

    PubMed Central

    Mehta, Veela; Pei, Wei; Yang, Grant; Li, Suyang; Swamy, Eashwar; Boster, Aaron; Schmalbrock, Petra; Pitt, David

    2013-01-01

    MRI phase imaging in multiple sclerosis (MS) patients and in autopsy tissue have demonstrated the presence of iron depositions in white matter lesions. The accumulation of iron in some but not all lesions suggests a specific, potentially disease-relevant process, however; its pathophysiological significance remains unknown. Here, we explore the role of lesional iron in multiple sclerosis using multiple approaches: immunohistochemical examination of autoptic MS tissue, an in vitro model of iron-uptake in human cultured macrophages and ultra-highfield phase imaging of highly active and of secondary progressive MS patients. Using Perls' stain and immunohistochemistry, iron was detected in MS tissue sections predominantly in non-phagocytosing macrophages/microglia at the edge of established, demyelinated lesions. Moreover, iron-containing macrophages but not myelin-laden macrophages expressed markers of proinflammatory (M1) polarization. Similarly, in human macrophage cultures, iron was preferentially taken up by non-phagocytosing, M1-polarized macrophages and induced M1 (super) polarization. Iron uptake was minimal in myelin-laden macrophages and active myelin phagocytosis led to depletion of intracellular iron. Finally, we demonstrated in MS patients using GRE phase imaging with ultra-highfield MRI that phase hypointense lesions were significantly more prevalent in patients with active relapsing than with secondary progressive MS. Taken together, our data provide a basis to interpret iron-sensitive GRE phase imaging in MS patients: iron is present in non-phagocytosing, M1-polarized microglia/macrophages at the rim of chronic active white matter demyelinating lesions. Phase imaging may therefore visualize specific, chronic proinflammatory activity in established MS lesions and thus provide important clinical information on disease status and treatment efficacy in MS patients. PMID:23516409

  15. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean

    NASA Astrophysics Data System (ADS)

    Han, Yongxiang; Zhao, Tianliang; Song, Lianchun; Fang, Xiaomin; Yin, Yan; Deng, Zuqin; Wang, Suping; Fan, Shuxian

    2011-08-01

    Iron-addition experiments have revealed that iron supply exerts controls on biogeochemical cycles in the ocean and ultimately influences the Earth's climate system. The iron hypothesis in its broad outlines has been proved to be correct. However, the hypothesis needs to be verified with an observable biological response to specific dust deposition events. Plankton growth following the Asian dust storm over Ocean Station PAPA (50°N, 145°W) in the North Pacific Ocean in April 2001 was the first supportive evidence of natural aeolian iron inputs to ocean; The data were obtained through the SeaWiFS satellite and robot carbon explorers by Bishop et al. Using the NARCM modeling results in this study, the calculated total dust deposition flux was 35 mg m -2 per day in PAPA region from the dust storm of 11-13 April, 2001 into 0.0615 mg m -2 d -1 (about 1100 nM) soluble iron in the surface layer at Station PAPA. It was enough for about 1100 nM to enhance the efficiency of the marine biological pump and trigger the rapid increase of POC and chlorophyll. The iron fertilization hypothesis therefore is plausible. However, even if this specific dust event can support the iron fertilization hypothesis, long-term observation data are lacking in marine export production and continental dust. In this paper, we also conducted a simple correlation analysis between the diatoms and foraminifera at about 3000 m and 4000 m at two subarctic Pacific stations and the dust aerosol production from China's mainland. The correlation coefficient between marine export production and dust storm frequency in the core area of the dust storms was significantly high, suggesting that aerosols generated by Asian dust storm are the source of iron for organic matter fixation in the North Pacific Ocean. These results suggest that there could be an interlocking chain for the change of atmospheric dust aerosol-soluble iron-marine export production.

  16. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    PubMed

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  17. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson's disease.

    PubMed

    He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua

    2017-04-01

    Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron-rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor-dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic rigidity (AR) dominant] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0-T MR system. Inter-group susceptibility differences in the bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast with the AR-dominant group, the TD group was found to have increased susceptibility in the bilateral DN when compared with healthy controls. In addition, susceptibility was positively correlated with tremor score in drug-naive PD patients. These findings indicate that iron load within the DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR-dominant phenotypes of PD can be differentiated on the basis of the susceptibility of the DN, at least at the group level. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  19. Changes in size of nano phase iron inclusions with temperature: Experimental simulation of space weathering effects at high temperature

    NASA Astrophysics Data System (ADS)

    Rout, S. S.; Moroz, L. V.; Stockhoff, T.; Baither, D.; Bischoff, A.; Hiesinger, H.

    2011-10-01

    The mean size of nano phase iron inclusions (npFe0), produced during the space weathering of iron-rich regolith of airless solar system bodies, significantly affects visible and near-infrared (VNIR) spectra. To experimentally simulate the change in the size of npFe0 inclusions with increasing temperature, we produced sputter film deposits on a silicon dioxide substrate by sputtering a pressed pellet prepared from fine olivine powder using 600V Ar+ ions. This silicon dioxide substrate covered with the deposit was later heated to 450°C for 24 hours in an oven under argon atmosphere. Initial TEM analysis of the unheated silicon dioxide substrate showed the presence of a ~ 50 nm-thick layer of an amorphous deposit with nano clusters that has not yet been identified.

  20. High-temperature investigation on morphology, phase and size of iron/iron-oxide core–shell nanoclusters for radiation nanodetector

    NASA Astrophysics Data System (ADS)

    Khanal, Lokendra Raj; Williams, Thomas; Qiang, You

    2018-06-01

    Iron/iron-oxide (Fe–Fe3O4) core–shell nanoclusters (NCs) synthesized by a cluster deposition technique were subjected to a study of their high temperature structural and morphological behavior. Annealing effects have been investigated up to 800 °C in vacuum, oxygen and argon environments. The ~18 nm average size of the as-prepared NCs increases slowly in temperatures up to 500 °C in all three environments. The size increases abruptly in the argon environment but slowly in vacuum and oxygen when annealed at 800 °C. The x-ray diffraction (XRD) studies have shown that the iron core remains in the core–shell NCs only when they were annealed in the vacuum. A dramatic change in the surface morphology, an island like structure and/or a network like pattern, was observed at the elevated temperature. The as-prepared and annealed samples were analyzed using XRD, scanning electron microscopy and imageJ software for a close inspection of the temperature aroused properties. This work presents the temperature induced size growth mechanism, oxidation kinetics and phase transformation of the NCs accompanied by cluster aggregation, particle coalescence, and diffusion.

  1. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    USGS Publications Warehouse

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by

  2. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-β accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload.

    PubMed

    Sripetchwandee, Jirapas; Wongjaikam, Suwakon; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-09-22

    Iron-overload can cause cognitive impairment due to blood-brain barrier (BBB) breakdown and brain mitochondrial dysfunction. Although deferiprone (DFP) has been shown to exert neuroprotection, the head-to-head comparison among iron chelators used clinically on brain iron-overload has not been investigated. Moreover, since antioxidant has been shown to be beneficial in iron-overload condition, its combined effect with iron chelator has not been tested. Therefore, the hypothesis is that all chelators provide neuroprotection under iron-overload condition, and that a combination of an iron chelator with an antioxidant has greater efficacy than monotherapy. Male Wistar rats (n=42) were assigned to receive a normal diet (ND) or a high-iron diet (HFe) for 4months. At the 2nd month, HFe-fed rats were treated with a vehicle, deferoxamine (DFO), DFP, deferasirox (DFX), n-acetyl cysteine (NAC) or a combination of DFP with NAC, while ND-fed rats received vehicle. At the end of the experiment, rats were decapitated and brains were removed to determine brain iron level and deposition, brain mitochondrial function, BBB protein expression, brain mitochondrial dynamic, brain apoptosis, tau-hyperphosphorylation, amyloid-β (Aβ) accumulation and dendritic spine density. The results showed that iron-overload induced BBB breakdown, brain iron accumulation, brain mitochondrial dysfunction, impaired brain mitochondrial dynamics, tau-hyperphosphorylation, Aβ accumulation and dendritic spine reduction. All treatments, except DFX, attenuated these impairments. Moreover, combined therapy provided a greater efficacy than monotherapy. These findings suggested that iron-overload induced brain iron toxicity and a combination of an iron chelator with an antioxidant provided a greatest efficacy for neuroprotection than monotherapy. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Mineralized iron oxidizing bacteria from hydrothermal vents: targeting biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Leveille, R. J.

    2010-12-01

    Putative hydrothermal systems have been identified on Mars based on orbital imagery and rover-based analyses. Based on Earth analogs, hydrothermal systems on Mars would be highly attractive for their potential for preserving organic and inorganic biosignatures. For example, iron oxidizing bacteria are ubiquitous in marine and terrestrial hydrothermal systems, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Microfossils of iron oxidizing bacteria have been found in ancient Si-Fe deposits and iron oxidation may be an ancient and widespread metabolic pathway. In order to investigate mineralized iron oxidizing bacteria as a biosignature, we have examined samples collected from extinct hydrothermal vents along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic iron oxidizing bacteria, isolated from active Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and O2 concentration (5%) in a controlled bioreactor system. Samples and experimental products were examined with a combination of variable-pressure and field-emission scanning electron microscopy (SEM), in some cases by preparing samples with a focused ion beam (FIB) milling system. Light-toned seafloor samples display abundant filamentous forms resembling, in both size and shape (1-5 microns in diameter and up to several microns in length), the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Some samples consist entirely of low-density masses of silica (>90% Si) encrusted filamentous forms. The presence of unmineralized filamentous matter rich in C and Fe suggests that these are the remains of iron oxidizing bacteria. Mineralized filaments sectioned by FIB show variable internal material within semi-hollow, tubular-like features. Silica encrustations also show pseudo-concentric growth bands. In the bioreactor runs, abundant microbial growth and

  4. Disruption of the Hepcidin/Ferroportin Regulatory System Causes Pulmonary Iron Overload and Restrictive Lung Disease.

    PubMed

    Neves, Joana; Leitz, Dominik; Kraut, Simone; Brandenberger, Christina; Agrawal, Raman; Weissmann, Norbert; Mühlfeld, Christian; Mall, Marcus A; Altamura, Sandro; Muckenthaler, Martina U

    2017-06-01

    Emerging evidence suggests that pulmonary iron accumulation is implicated in a spectrum of chronic lung diseases. However, the mechanism(s) involved in pulmonary iron deposition and its role in the in vivo pathogenesis of lung diseases remains unknown. Here we show that a point mutation in the murine ferroportin gene, which causes hereditary hemochromatosis type 4 (Slc40a1 C326S ), increases iron levels in alveolar macrophages, epithelial cells lining the conducting airways and lung parenchyma, and in vascular smooth muscle cells. Pulmonary iron overload is associated with oxidative stress, restrictive lung disease with decreased total lung capacity and reduced blood oxygen saturation in homozygous Slc40a1 C326S/C326S mice compared to wild-type controls. These findings implicate iron in lung pathology, which is so far not considered a classical iron-related disorder. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.

    PubMed

    Machemer, Steven D

    2004-01-15

    Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.

  6. Remote Analysis of Lunar Pyroclastic Glass Deposits by LRO Diviner

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Greenhagen, Benjamin T.; Donaldson Hanna, Kerri; Paige, David A.

    2011-01-01

    Telescope observations and orbital images of the Moon reveal at least 75 deposits, often tens to hundreds of km across, that mantle mare or highland surfaces. These deposits are interpreted as the products of pyroclastic eruptions and designated herein as lunar pyroclastic deposits (LPD). They are understood to be composed primarily of sub-millimeter beads of basaltic composition, ranging from glassy to partially-crystallized. Delano documented 25 distinct pyroclastic bead compositions in lunar soil samples, though the source deposits for most of these beads have not been identified. The pyroclastic deposits are important for many reasons. Petrology experiments and modeling have demonstrated that the pyroclastic glasses are the deepest-sourced and most primitive basalts on the Moon. Recent analyses have documented the presence of water in these glasses, demonstrating that the lunar interior is considerably more volatile-rich than previously understood. Experiments have shown that the iron-rich pyroclastic glasses release the highest percentage of oxygen of any Apollo soils, making these deposits promising lunar resources.

  7. Volcanic ash as an oceanic iron source and sink

    NASA Astrophysics Data System (ADS)

    Rogan, Nicholas; Achterberg, Eric P.; Le Moigne, Frédéric A. C.; Marsay, Chris M.; Tagliabue, Alessandro; Williams, Richard G.

    2016-03-01

    Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajökull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajökull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.

  8. Application of ASTER and Landsat 8 imagery data and mathematical evaluation method in detecting iron minerals contamination in the Chadormalu iron mine area, central Iran

    NASA Astrophysics Data System (ADS)

    Moghtaderi, Arsia; Moore, Farid; Ranjbar, Hojjatollah

    2017-01-01

    Satellite images are widely used to map geological and environmental features at different map scales. The ability of visible to near-infrared (VNIR) scanner systems to map gossans, rich in iron and associated with weathered sulfide occurrences, as well as to characterize regoliths, is perhaps one of the most important current applications of this technology. Initial results of this study show that advanced space-borne thermal emission and reflection (ASTER), VNIR, and short-wave infrared radiometer scanner systems can be used successfully to map iron ores. By applying internal average relative reflectance, false color composite, minimum noise fraction transform, and mathematical evaluation method (MEM) techniques, iron contaminations were successfully detected in the Chadormalu iron mine area of central Iran. An attempt was also made to discriminate between the geogenic and anthropogenic iron contaminations in the vicinity of the Chadormalu iron deposit. This research compares ASTER and Landsat 8 data images and the MEM with the band ratio method in a full scope view scale and demonstrates ASTER image data capability in detecting iron contaminations in the Chadormalu area. This indicates that ASTER bands 3, 2, and 1 have a higher spatial (15 m) resolution compared with sensors used in previous works. In addition, the capability of the MEM in detecting Fe-contaminants, unlike the color judgments of the band ratio method, can discriminate between iron pollution in an alluvial plain and the Fe-contents of the host and country rocks in the study area. This study proved that Landsat 8 data illustrate exaggeration both in the MEM and band ratio final results (outputs) and cannot display iron contamination in detail.

  9. Acquired hemochromatosis with pronounced pigment deposition of the upper eyelids.

    PubMed

    Chacon, Anna H; Morrison, Brian; Hu, Shasa

    2013-10-01

    primary (hereditary) or secondary (acquired). The acquired type most commonly occurs after massive intake of iron supplements or blood transfusions and is also known as transfusional iron overload. In the past, hemochromatosis was usually recognized at an advanced stage by the classic triad of hyperpigmentation, diabetes mellitus ("bronze diabetes"), and hepatic cirrhosis. Cutaneous hyperpigmentation is present in 70 percent of patients due to two different mechanisms: (1) hemosiderin deposition resulting in diffuse, slate-gray darkening and (2) increased production of melanin in the epidermis. A 47-year-old woman who receives regular transfusions due to low iron and chronic, unresolving anemia and who subsequently developed pronounced hyperpigmentation of the upper eyelids is described. The presentation, diagnosis, pathogenesis, and treatment options of hyperpigmentation due to secondary hemochromatosis are discussed.

  10. Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model: Correlation with Brain Iron in Normal Aging

    PubMed Central

    Poynton, Clare; Jenkinson, Mark; Adalsteinsson, Elfar; Sullivan, Edith V.; Pfefferbaum, Adolf; Wells, William

    2015-01-01

    There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or ‘QSIP’. The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase (FDRI), and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in-vivo FDRI: statistically significant Spearman correlations ranging from Rho = 0.905 to Rho = 1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. PMID:25248179

  11. V. THE IRON CONTENT OF BLOOD FREE TISSUES AND VISCERA

    PubMed Central

    Bogniard, Robert P.; Whipple, George H.

    1932-01-01

    When hemoglobin is set free in the circulation the kidney plays an important part in the conservation of iron. When the renal threshold is not exceeded by the hemoglobin in the blood there is little or no excess iron deposited in the kidney but when superthreshold doses of blood hemoglobin are given the epithelium of the convoluted tubules accumulates much iron and the iron analyses may show 5 times normal values. The normal dog (140 to 150 per cent hemoglobin) has a large reserve store of iron in the liver, spleen and marrow. Diets may modify this storage of iron in these tissues. To bring conclusive proof relating to the individual diet factors, the reserve store of iron should be depleted by an anemia period of 2 to 3 months. Complete removal of red cells from tissue capillaries is essential for accurate iron assays of fresh tissue. The method described accomplishes this without causing gross tissue edema. The lowest iron content is observed in the pancreas, stomach, jejunum, colon and urinary bladder. These figures average from 1 to 2 mg. iron per 100 gm. fresh tissue. This shows that smooth muscle and mucous membranes contain little iron. Striated muscle (heart, psoas) shows a relatively low iron content but uniform values close to 4 mg. per 100 gm. tissue. Lungs show a considerable fluctuation with low iron values in anemia (3.7 mg.) and higher values in health (6 to 7 mg.). The spleen shows maximal fluctuations and the highest reserve storage of iron per 100 gm. fresh tissue. The spleen iron analyses show low values in anemia (7 to 15 mg.) and wide differences in controls (25 to 50 mg.). With hemoglobin injections the iron storage is conspicuous and iron analyses may run as high as l50 to 175 mg. iron per 100 gm. fresh tissue. Bone marrow of the rib runs in parallel with the spleen as regards iron storage following hemoglobin injections and depletion following anemia periods. The liver because of its weight always contains the main bulk of the iron stored in

  12. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    NASA Technical Reports Server (NTRS)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  13. Hepatic iron overload is associated with hepatocyte apoptosis during Clonorchis sinensis infection.

    PubMed

    Han, Su; Tang, Qiaoran; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli

    2017-08-01

    Hepatic iron overload has been implicated in many liver diseases; however, whether it is involved in clonorchiasis remains unknown. The purpose of this study is to investigate whether Clonorchis sinensis (C. sinensis) infection causes hepatic iron overload, analyze the relationship between the iron overload and associated cell apoptosis, so as to determine the role of excess iron plays in C. sinensis-induced liver injury. The Perls' Prussian staining and atomic absorption spectrometry methods were used to investigate the iron overload in hepatic sections of wistar rats and patients infected with C. sinensis. The hepatic apoptosis was detected by transferase uridyl nick end labeling (TUNEL) methods. Spearman analysis was used for determining the correlation of the histological hepatic iron index and the apoptotic index. Blue iron particles were deposited mainly in the hepatocytes, Kupffer cells and endothelial cells, around the liver portal and central vein area of both patients and rats. The total iron score was found to be higher in the infected groups than the respective control from 8 weeks. The hepatic iron concentration was also significantly higher in treatment groups than in control rats from 8 weeks. The hepatocyte apoptosis was found to be significantly higher in the portal area of the liver tissue and around the central vein. However, spearman's rank correlation coefficient revealed that there was a mildly negative correlation between the iron index and hepatocyte apoptosis. This present study confirmed that hepatic iron overload was found during C. sinensis infection. This suggests that iron overload may be associated with hepatocyte apoptosis and involved in liver injury during C. sinensis infection. Further studies are needed to investigate the molecular mechanism involved here.

  14. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters

    NASA Astrophysics Data System (ADS)

    Takeda, Shigenobu

    1998-06-01

    The major nutrients (nitrate, phosphate and silicate) needed for phytoplankton growth are abundant in the surface waters of the subarctic Pacific, equatorial Pacific and Southern oceans, but this growth is limited by the availability of iron. Under iron-deficient conditions, phytoplankton exhibit reduced uptake of nitrate and lower cellular levels of carbon, nitrogen and phosphorus. Here I describe seawater and culture experiments which show that iron limitation can also affect the ratio of consumed silicate to nitrate and phosphate. In iron-limited waters from all three of the aforementioned environments, addition of iron to phytoplankton assemblages in incubation bottles halved the silicate:nitrate and silicate:phosphate consumption ratios, in spite of the preferential growth of diatoms (silica-shelled phytoplankton). The nutrient consumption ratios of the phytoplankton assemblage from the Southern Ocean were similar to those of an iron-deficient laboratory culture of Antarctic diatoms, which exhibit increased cellular silicon or decreased cellular nitrogen and phosphorus in response to iron limitation. Iron limitation therefore increases the export of biogenic silicon, relative to nitrogen and phosphorus, from the surface to deeper waters. These findings suggest how the sedimentary records of carbon and silicon deposition in the glacial Southern Ocean can be consistent with the idea that changes in productivity, and thus in drawdown of atmospheric CO2, during the last glaciation were stimulated by changes in iron inputs from atmospheric dust.

  15. Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies.

    PubMed

    Schröder, Nadja; Figueiredo, Luciana Silva; de Lima, Maria Noêmia Martins

    2013-01-01

    Over the last decades, studies from our laboratory and other groups using animal models have shown that iron overload, resulting in iron accumulation in the brain, produces significant cognitive deficits. Iron accumulation in the hippocampus and the basal ganglia has been related to impairments in spatial memory, aversive memory, and recognition memory in rodents. These results are corroborated by studies showing that the administration of iron chelators attenuates cognitive deficits in a variety of animal models of cognitive dysfunction, including aging and Alzheimer's disease models. Remarkably, recent human studies using magnetic resonance image techniques have also shown a consistent correlation between cognitive dysfunction and iron deposition, mostly in the hippocampus, cortical areas, and basal ganglia. These findings may have relevant implications in the light of the knowledge that iron accumulates in brain regions of patients suffering from neurodegenerative diseases. A better understanding of the functional consequences of iron dysregulation in aging and neurological diseases may help to identify novel targets for treating memory problems that afflict a growing aging population.

  16. Iron-Corroding Methanogen Isolated from a Crude-Oil Storage Tank ▿

    PubMed Central

    Uchiyama, Taku; Ito, Kimio; Mori, Koji; Tsurumaru, Hirohito; Harayama, Shigeaki

    2010-01-01

    Microbiologically influenced corrosion of steel in anaerobic environments has been attributed to hydrogenotrophic microorganisms. A sludge sample collected from the bottom plate of a crude-oil storage tank was used to inoculate a medium containing iron (Fe0) granules, which was then incubated anaerobically at 37°C under an N2-CO2 atmosphere to enrich for microorganisms capable of using iron as the sole source of electrons. A methanogen, designated strain KA1, was isolated from the enrichment culture. An analysis of its 16S rRNA gene sequence revealed that strain KA1 is a Methanococcus maripaludis strain. Strain KA1 produced methane and oxidized iron much faster than did the type strain of M. maripaludis, strain JJT, which produced methane at a rate expected from the abiotic H2 production rate from iron. Scanning electron micrographs of iron coupons that had been immersed in either a KA1 culture, a JJT culture, or an aseptic medium showed that only coupons from the KA1 culture had corroded substantially, and these were covered with crystalline deposits that consisted mainly of FeCO3. PMID:20118376

  17. Deposition Of Cubic BN On Diamond Interlayers

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P.; Shing, Yuh-Han

    1994-01-01

    Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.

  18. Atmospheric hydrogen peroxide and Eoarchean iron formations.

    PubMed

    Pecoits, E; Smith, M L; Catling, D C; Philippot, P; Kappler, A; Konhauser, K O

    2015-01-01

    It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF. © 2014 John Wiley & Sons Ltd.

  19. Remanence, self-demagnetization and their ramifications for magnetic modelling of iron oxide copper-gold deposits: An example from Candelaria, Chile

    NASA Astrophysics Data System (ADS)

    Austin, James; Geuna, Silvana; Clark, David; Hillan, Dean

    2014-10-01

    Magnetic modelling can be a powerful tool for understanding the architecture of numerous types of mineralized systems; e.g., iron ore, IOCG and porphyry deposits. In such modelling, the induced component is generally assumed to be dominant, whereas remanent magnetization is often neglected and, furthermore, the effects of self-demagnetization are commonly ignored. We present rock property measurements (magnetic susceptibility and remanent magnetization) from the Candelaria IOCG deposit in northern Chile. The results demonstrate that remanence is relatively weak (< 20% of induced) and that the causative lithologies have very high magnetic susceptibilities (3-4 SI), which makes them highly prone to self-demagnetization. The rock property results were used to constrain a simplified forward model in which the causative bodies are modelled as a series of sub-horizontal highly magnetic sheets, corresponding to “mantos”. These “mantos” occur north and south of Candelaria, sub-perpendicular to a splay off the Atacama Fault Zone. We demonstrate that Candelaria's unusual magnetic anomaly is due to a combination of its highly magnetic sub-horizontal architecture, and self-demagnetization effects. A further simplified model was used to calculate two synthetic anomalies, one ignoring and the other incorporating the self-demagnetization effect. These synthetic anomalies demonstrate that the magnetic anomaly amplitude is suppressed by up to approximately 50% at Candelaria due to self-demagnetization, and that the induced magnetization is also slightly rotated from the regional inducing field towards the plane of the “mantos”. The dominant paleomagnetic component recorded by the Candelaria deposit and host rocks is a normal polarity remanence of moderate to high stability which is interpreted to have been acquired during the mid-Cretaceous alteration and mineralisation event(s) that generated the magnetic minerals (predominantly magnetite). However, the presence of a

  20. Characterization and release profile of (Mn, Al)-bearing deposits in drinking water distribution systems.

    PubMed

    Li, Guiwei; Ding, Yuanxun; Xu, Hongfu; Jin, Junwei; Shi, Baoyou

    2018-04-01

    Inorganic contaminants accumulation in drinking water distribution systems (DWDS) is a great threat to water quality and safety. This work assessed the main risk factors for different water pipes and discovered the release profile of accumulated materials in a full scale distribution system frequently suffered from water discoloration problem. Physicochemical characterization of pipe deposits were performed using X-ray fluorescence, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The metal release profile was obtained through continuous monitoring of a full-scale DWDS area. The results showed that aluminum and manganese were the main metals of deposits in nonmetallic pipes, while iron was dominant in iron-based pipe corrosion scales. Manganese primarily existed as MnO 2 without well crystalline form. The relative abundance of Mn and Fe in deposits changed with their distance from the water treatment plant. Compared with iron in corrosion scales, Mn and Al were more labile to be released back into bulk water during unidirectional flushing process. A main finding of this work is the co-release behavior of Mn and Al in particulate form and significant correlation exists between these two metals. Dual control of manganese and aluminum in treated water is proposed to be essential to cope with discoloration and trace metal contamination in DWDS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Yellow Canary uranium deposits, Daggett County, Utah

    USGS Publications Warehouse

    Wilmarth, Verl Richard

    1953-01-01

    The Yellow Canary uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. Two claims have been developed by means of an adit, three opencuts, and several hundred feet of bulldozer trenches. No uranium ore has been produced from this deposit. The deposit is in the pre-Cambrian Red Creek quartzite. This formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by dioritic dikes. A thick unit of highly fractured white quartzite near the top of the formation contains tyuyamunite as coatings on fracture surfaces. The tyuyamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The uranium and vanadium minerals are probably alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.

  2. Quartz-pebble-conglomerate gold deposits: Chapter P in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Taylor, Ryan D.; Anderson, Eric D.

    2018-05-17

    Quartz-pebble-conglomerate gold deposits represent the largest repository of gold on Earth, largely due to the deposits of the Witwatersrand Basin, which account for nearly 40 percent of the total gold produced throughout Earth’s history. This deposit type has had a controversial history in regards to genetic models. However, most researchers conclude that they are paleoplacer deposits that have been modified by metamorphism and hydrothermal fluid flow subsequent to initial sedimentation.The deposits are found exclusively within fault-bounded depositional basins. The periphery of these basins commonly consists of granite-greenstone terranes, classic hosts for lode gold that source the detrital material infilling the basin. The gold reefs are typically located along unconformities or, less commonly, at the top of sedimentary beds. Large quartz pebbles and heavy-mineral concentrates are found associated with the gold. Deposits that formed prior to the Great Oxidation Event (circa 2.4 giga-annum [Ga]) contain pyrite, whereas younger deposits contain iron oxides. Uranium minerals and hydrocarbons are also notable features of some deposits.Much of the gold in these types of deposits forms crystalline features that are the product of local remobilization. However, some gold grains preserve textures that are undoubtedly of detrital origin. Other heavy minerals, such as pyrite, contain growth banding that is truncated along broken margins, which indicates that they were transported into place as opposed to forming by in situ growth in a hydrothermal setting.The ore tailings associated with these deposits commonly contain uranium-rich minerals and sulfides. Oxidation of the sulfides releases sulfuric acid and mobilizes various metals into the environment. The neutralizing potential of the tailings is minimal, since carbonate minerals are rare. The continuity of the tabular ore bodies, such as those of the Witwatersrand Basin, has allowed these mines to be the deepest in

  3. Intravenous iron-dextran: studies on unsaturated iron-binding capacity

    PubMed Central

    Cox, J. S. G.; Moss, G. F.; Bremner, I.; Reason, Janet

    1968-01-01

    A method is described for measuring the plasma unsaturated iron-binding capacity in the presence of very high concentrations of iron as iron-dextran. The procedure utilizes 59Fe to label the apotransferrin with subsequent separation of ionic iron from transferrin-bound iron on an ion exchange or Sephadex G.25 column. The unsaturated iron-binding capacity has been measured in rabbits and dogs after intravenous injection of iron-dextran and in human subjects after total dose infusion of iron-dextran. No evidence of saturation of the unsaturated iron-binding capacity was found even when the plasma iron values were greater than 40,000 μg Fe/100 ml. PMID:5697365

  4. Preparation and morphology, magnetic properties of yttrium iron garnet nanodot arrays on Gd3Ga5O12 substrate

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwang; Zheng, Hui; Han, Mangui

    2017-07-01

    In this work, yttrium iron garnet nanodot array has been deposited on Gd3Ga5O12 substrate by pulsed laser deposition through an ultrathin alumina mask. The morphology and magnetic properties of YIG nanodot array have been investigated. Scanning electron microscopy displays the prepared nanodot array has a sharp distribution in diameter centered at 330 nm with standard deviation of 20 nm. X-ray diffraction θ-2θ and pole figure analysis show the yttrium iron garnet nanodot array has oriented growth. Moreover, typical hysteresis loops and ferromagnetic resonance spectra display larger coercivity and multi-resonance peaks which are ascribed to this unique structure.

  5. The iron source in phreatomagmatic pipes in the Tunguska Basin (eastern Siberia): insights into hydrothermal-metasomatic leaching processes from Fe isotopes, microstructures, and mass balances.

    NASA Astrophysics Data System (ADS)

    John, Timm; Svensen, Henrik; Weyer, Stefan; Polozov, Alexander; Planke, Sverre

    2010-05-01

    The Siberian iron-bearing phreatomagmatic pipes represent world class Fe-ore deposit, and 5-6 are currently mined in eastern Siberia. The pipes formed within the vast Tunguska Basin, cutting thick accumulations of carbonates (dolostones) and evaporites (anhydrite, halite, dolostone). These sediments were intruded by the sub-volcanic part of the Siberian Traps at 252 Ma, and sills and dykes are abundant throughout the basin. The pipes formed during sediment-magma interactions in the deep parts of the basin, and the degassing is believed to have triggered the end-Permian environmental crisis. A major problem with understanding the pipe formation is related to the source of iron. Available hypotheses state that the iron was leached from a Fe-enriched magmatic melt that incorporated dolostones. It is currently unclear how the magmatic, hydrothermal, and sedimentary processes interacted to form the deposits, as there are no actual constraints to pin down the iron source. We hypothesize two end-member scenarios to account for the magnetite enrichment and deposition, which is testable by analyzing Fe-isotopes of magnetite: 1) Iron sourced from dolerite magma through leaching and metasomatism by chloride brines. 2) Leaching of iron from sedimentary rocks (shale, dolostone) during magma-sediment interactions. We focus on understanding the Fe-isotopic architecture of the pipes in order constrain the source of the Fe and the mechanism that caused this significant Fe redistribution. We further evaluate possible fractionation during fast metasomatic ore-forming process that took place soon after pipe formation.

  6. Accumulation of iron by primary rat hepatocytes in long-term culture: changes in nuclear shape mediated by non-transferrin-bound forms of iron.

    PubMed Central

    Cable, E. E.; Connor, J. R.; Isom, H. C.

    1998-01-01

    We have previously shown that hepatocytes in long-term dimethylsulfoxide (DMSO) culture, fed a chemically defined medium, are highly differentiated and an excellent in vitro model of adult liver. Hepatocytes in long-term DMSO culture can be iron loaded by exposure to non-transferrin-bound iron (NTBI) in the form of ferrous sulfate (FeSO4), ferric nitrilotriacetate, or trimethylhexanoyl (TMH)-ferrocene. Holotransferrin, at equivalent times and concentrations, was unable to load hepatocytes. Of the iron compounds tested, TMH-ferrocene most accurately simulated the morphological features of iron-loaded hepatocytes in vivo. When exposed to 25 micromol/L TMH-ferrocene, hepatocytes loaded increasing amounts of iron for 2 months before the cells died. When exposed to lower concentrations of TMH-ferrocene (as low as 2.5 micromol/L), hepatocytes continuously loaded iron and remained viable for more than 2 months. The cellular deposition of iron was different in hepatocytes exposed to TMH-ferrocene compared with those exposed to FeSO4; exposure to TMH-ferrocene resulted in the presence of more ferritin cores within lysosomes than were seen with FeSO4. When the concentration of TMH-ferrocene was increased, a greater number of ferritin cores were observed within the lysosome, and total cellular ferritin, as assessed by Western blot, increased. The formation of hemosiderin was also observed. Furthermore, nuclear shape was distorted in iron-loaded hepatocytes. The extent of deviation from circularity in the nucleus correlated with increasing concentrations of TMH-ferrocene and was greater in hepatocytes exposed to FeSO4 than an equivalent concentration of TMH-ferrocene. The deviation from circularity was smallest in hepatocytes that contained well formed ferritin cores and increased in hepatocytes that contained greater amounts of hemosiderin. Furthermore, in hepatocytes treated with FeSO4, a large amount of cell-associated iron was detected but without a significant increase in

  7. Fractional solubility of aerosol iron: Synthesis of a global-scale data set

    NASA Astrophysics Data System (ADS)

    Sholkovitz, Edward R.; Sedwick, Peter N.; Church, Thomas M.; Baker, Alexander R.; Powell, Claire F.

    2012-07-01

    Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to biological availability is the proportion of aerosol iron that enters the oceanic dissolved iron pool - the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and estimated %FeS values for ∼1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including a new data set from the Atlantic Ocean. Despite the wide variety of methods that have been used to define 'soluble' aerosol iron, our global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data defining an hyperbolic trend. The hyperbolic trends that we observe for both global- and regional-scale data are adequately described by a simple two-component mixing model, whereby the fractional solubility of iron in the bulk aerosol reflects the conservative mixing of 'lithogenic' mineral dust (high FeT and low %FeS) and non-lithogenic 'combustion' aerosols (low FeT and high %FeS). An increasing body of empirical and model-based evidence points to anthropogenic fuel combustion as the major source of these non-lithogenic 'combustion' aerosols, implying that human emissions are a major determinant of the fractional solubility of iron in marine aerosols. The robust global-scale relationship between %FeS and FeT provides a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.

  8. Ferritin accumulation under iron scarcity in Drosophila iron cells.

    PubMed

    Mehta, A; Deshpande, A; Bettedi, L; Missirlis, F

    2009-10-01

    Ferritins are highly stable, multi-subunit protein complexes with iron-binding capacities that reach 4500 iron atoms per ferritin molecule. The strict dependence of cellular physiology on an adequate supply of iron cofactors has likely been a key driving force in the evolution of ferritins as iron storage molecules. The insect intestine has long been known to contain cells that are responsive to dietary iron levels and a specialized group of "iron cells" that always accumulate iron-loaded ferritin, even when no supplementary iron is added to the diet. Here, we further characterize ferritin localization in Drosophila melanogaster larvae raised under iron-enriched and iron-depleted conditions. High dietary iron intake results in ferritin accumulation in the anterior midgut, but also in garland (wreath) cells and in pericardial cells, which together filter the circulating hemolymph. Ferritin is also abundant in the brain, where levels remain unaltered following dietary iron chelation, a treatment that depletes ferritin from the aforementioned tissues. We attribute the stability of ferritin levels in the brain to the function of the blood-brain barrier that may shield this organ from systemic iron fluctuations. Most intriguingly, our dietary manipulations demonstrably iron-depleted the iron cells without a concomitant reduction in their production of ferritin. Therefore, insect iron cells may constitute an exception from the evolutionary norm with respect to iron-dependent ferritin regulation. It will be of interest to decipher both the physiological purpose served and the mechanism employed to untie ferritin regulation from cellular iron levels in this cell type.

  9. Microbial diversity in nonsulfur, sulfur and iron geothermal steam vents.

    PubMed

    Benson, Courtney A; Bizzoco, Richard W; Lipson, David A; Kelley, Scott T

    2011-04-01

    Fumaroles, commonly called steam vents, are ubiquitous features of geothermal habitats. Recent studies have discovered microorganisms in condensed fumarole steam, but fumarole deposits have proven refractory to DNA isolation. In this study, we report the development of novel DNA isolation approaches for fumarole deposit microbial community analysis. Deposit samples were collected from steam vents and caves in Hawaii Volcanoes National Park, Yellowstone National Park and Lassen Volcanic National Park. Samples were analyzed by X-ray microanalysis and classified as nonsulfur, sulfur or iron-dominated steam deposits. We experienced considerable difficulty in obtaining high-yield, high-quality DNA for cloning: only half of all the samples ultimately yielded sequences. Analysis of archaeal 16S rRNA gene sequences showed that sulfur steam deposits were dominated by Sulfolobus and Acidianus, while nonsulfur deposits contained mainly unknown Crenarchaeota. Several of these novel Crenarchaeota lineages were related to chemoautotrophic ammonia oxidizers, indicating that fumaroles represent a putative habitat for ammonia-oxidizing Archaea. We also generated archaeal and bacterial enrichment cultures from the majority of the deposits and isolated members of the Sulfolobales. Our results provide the first evidence of Archaea in geothermal steam deposits and show that fumaroles harbor diverse and novel microbial lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. The Correlation Between Atmospheric Dust Deposition to the Surface Ocean and SeaWiFS Ocean Color: A Global Satellite-Based Analysis

    NASA Technical Reports Server (NTRS)

    Erickson, D. J., III; Hernandez, J.; Ginoux, P.; Gregg, W.; Kawa, R.; Behrenfeld, M.; Esaias, W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Since the atmospheric deposition of iron has been linked to primary productivity in various oceanic regions, we have conducted an objective study of the correlation of dust deposition and satellite remotely sensed surface ocean chlorophyll concentrations. We present a global analysis of the correlation between atmospheric dust deposition derived from a satellite-based 3-D atmospheric transport model and SeaWiFs estimates of ocean color. We use the monthly mean dust deposition fields of Ginoux et al. which are based on a global model of dust generation and transport. This model is driven by atmospheric circulation from the Data Assimilation Office (DAO) for the period 1995-1998. This global dust model is constrained by several satellite estimates of standard circulation characteristics. We then perform an analysis of the correlation between the dust deposition and the 1998 SeaWIFS ocean color data for each 2.0 deg x 2.5 deg lat/long grid point, for each month of the year. The results are surprisingly robust. The region between 40 S and 60 S has correlation coefficients from 0.6 to 0.95, statistically significant at the 0.05 level. There are swaths of high correlation at the edges of some major ocean current systems. We interpret these correlations as reflecting areas that have shear related turbulence bringing nitrogen and phosphorus from depth into the surface ocean, and the atmospheric supply of iron provides the limiting nutrient and the correlation between iron deposition and surface ocean chlorophyll is high. There is a region in the western North Pacific with high correlation, reflecting the input of Asian dust to that region. The southern hemisphere has an average correlation coefficient of 0.72 compared that in the northern hemisphere of 0.42 consistent with present conceptual models of where atmospheric iron deposition may play a role in surface ocean biogeochemical cycles. The spatial structure of the correlation fields will be discussed within the context

  11. Treatment of highly polluted groundwater by novel iron removal process.

    PubMed

    Sim, S J; Kang, C D; Lee, J W; Kim, W S

    2001-01-01

    The removal of ferrous iron (Fe(II)) in groundwater has been generally achieved by simple aeration, or the addition of an oxidizing agent. Aeration has been shown to be very efficient in insolubilization ferrous iron at a pH level greater than 6.5. In this study, pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron in groundwater in a limestone packed column. A sedimentation unit coupled with a membrane filtration was also developed to precipitate and filtrate the oxidized ferric compound simultaneously. Several bench-scale studies, including the effects of the limestone granule sizes, amounts and hydraulic retention time on iron removal in the limestone packed column were investigated. It was found that 550 g/L of the 7-8 mesh size limestone granules, and 20 min of hydraulic retention time in the limestone packed column, were necessary for the sufficient oxidation of 40 mg/L of iron(II) in groundwater. Long-term operation was successfully achieved in contaminated waters by removing the iron deposits on the surface of the limestone granule by continuous aeration from the bottom of the column. Periodic reverse flow helped to remove caking and fouling of membrane surface caused by the continuous filtration. Recycling of the treated water from the membrane right after reverse flow operation made possible an admissible limit of iron concentration of the treated water for drinking. The pilot-scale process was constructed and has been tested in the rural area of Korea.

  12. An evolving magmatic-hydrothermal system in the formation of the Mesozoic Meishan magnetite-apatite deposit in the Ningwu volcanic basin, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Hao; Jiang, Man-Rong; Zhang, Xiao-Jun; Xia, Yan; Algeo, Thomas J.; Li, Huan

    2018-06-01

    The Meishan iron deposit contains 338 Mt of iron-ore reserves at 39% Fe and represents the largest magnetite-apatite deposit in the Ningwu Basin of eastern China. Controversy has long existed about whether this deposit had a hydrothermal or iron-oxide melt origin. Iron mineralization is genetically related to plutons that are composed of gabbro-diorite, which were emplaced at 130 ± 1 Ma. These rocks have SiO2 contents of 51.72-54.60 wt%, Na2O contents of 3.47-4.04 wt%, K2O contents of 2.02-2.69 wt%, and K2O/Na2O ratios of 0.51-0.73. These rocks are enriched in LILEs and LREEs and depleted in Nb, Ta, and Ti, which indicates that the magma originated through partial melting of an enriched lithospheric mantle source in a subduction environment. A pattern of decreasing initial Sr isotopic ratios and increasing εNd(t) values with time in Early Cretaceous magmatic rocks of the Ningwu Basin may indicate incorporation of increasing proportions of asthenospheric mantle material into the source magma, which is consistent with the processes of lithospheric thinning and asthenospheric upwelling in eastern China related to Mesozoic subduction of the Paleo-Pacific Plate. Two stages of magnetite are found in the gabbro-diorite: (1) early-crystallized magnetite as euhedral-subhedral crystals in larger clinopyroxene crystals, and (2) later-crystallized magnetite and accompanying ilmenite grains in the voids between plagioclase and clinopyroxene crystals. The formation of magnetite before clinopyroxene, combined with the results of Fe-Ti oxide geothermometry and analysis of magnetite V content, indicates that the oxygen fugacity of the source magma was greater than ΔFMQ +2.2 at an early stage (>640 °C) but decreased to ΔFMQ -2.66 as abundant magnetite crystallized at a later stage (∼489 °C). The early crystallization of magnetite at a high oxygen fugacity does not support a Fenner evolution trend for the primitive magma and diminishes the likelihood of liquid immiscibility

  13. Acquired Hemochromatosis with Pronounced Pigment Deposition of the Upper Eyelids

    PubMed Central

    Morrison, Brian; Hu, Shasa

    2013-01-01

    Hemochromatosis may be classified into two groups: primary (hereditary) or secondary (acquired). The acquired type most commonly occurs after massive intake of iron supplements or blood transfusions and is also known as transfusional iron overload. In the past, hemochromatosis was usually recognized at an advanced stage by the classic triad of hyperpigmentation, diabetes mellitus (“bronze diabetes”), and hepatic cirrhosis. Cutaneous hyperpigmentation is present in 70 percent of patients due to two different mechanisms: (1) hemosiderin deposition resulting in diffuse, slate-gray darkening and (2) increased production of melanin in the epidermis. A 47-year-old woman who receives regular transfusions due to low iron and chronic, unresolving anemia and who subsequently developed pronounced hyperpigmentation of the upper eyelids is described. The presentation, diagnosis, pathogenesis, and treatment options of hyperpigmentation due to secondary hemochromatosis are discussed. PMID:24155994

  14. Estimation of Scale Deposition in the Water Walls of an Operating Indian Coal Fired Boiler: Predictive Modeling Approach Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-04-01

    Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.

  15. Efficacy of Deferasirox as an Oral Iron Chelator in Paediatric Thalassaemia Patients.

    PubMed

    Jaiswal, Shikha; Hishikar, Rajesh; Khandwal, Onkar; Agarwal, Manju; Joshi, Usha; Halwai, Ajay; Maheshwari, Basant; Sheohare, Raka

    2017-02-01

    Thalassaemia Major patients require frequent blood transfusion leading to iron overload. Excessive iron gets deposited in vital organs and leads to dysfunction of the heart, liver, anterior pituitary, pancreas, and joints. Our body has limited mechanism to excrete iron, so patients with iron overload and its complications need safe and effective iron chelation therapy. To assess the efficacy of Deferasirox (DFX) as an iron chelator, with specific reference to reduction in serum ferritin level. This is a prospective; observational study done in 45 multitransfused Thalassaemia Major Children receiving DFX therapy at registered Thalassaemia society Raipur Chhattisgarh. DFX was given in an initial dose of 20 mg/kg/day and according to response increased to a maximum of 40 mg/kg/day. Serum ferritin level was estimated at time of registration and at every three monthly intervals (four times during study period). The primary end point of the study was change in serum ferritin level after 12 months of DFX therapy. The mean serum ferritin before DFX therapy of all cases was 3727.02 ng/mL. After 12 months of mean dose of 38 mg/kg/day of DFX, the mean decline in serum ferritin was 1207.11 ng/mL (drop by 32.38%, p-value <0.001). DFX monotherapy has a good safety profile and effectively chelates total body iron in Thalassaemia major patients.

  16. A 3D parameterization of nutrients atmospheric deposition to the global ocean

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, S.; Nenes, A.; Baker, A. R.; Mihalopoulos, N.; Kanakidou, M.

    2016-12-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (such as iron and phosphorus) to the global ocean, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. The global atmospheric iron (Fe) and phosphorus (P) cycles are here parameterized in a global 3-D chemical transport model. Both primary emissions of total and soluble Fe and P associated with dust and combustion processes are taken into account. The impact of atmospheric acidity on nutrient solubility is parameterised based on experimental findings and model results are evaluated by comparison with available observations. The effect of air-quality changes on soluble nutrient deposition is studied by performing sensitivity simulations using preindustrial, present and future emission scenarios. The link between the soluble Fe and P atmospheric deposition and anthropogenic sources is also investigated. Overall, the response of the chemical composition of nutrient-containing aerosols to environmental changes is demonstrated and quantified.

  17. Iron in neurodegenerative disorders: being in the wrong place at the wrong time?

    PubMed

    Apostolakis, Sotirios; Kypraiou, Anna-Maria

    2017-11-27

    Brain iron deposits have been reported consistently in imaging and histologic examinations of patients with neurodegenerative disorders. While the origins of this finding have not been clarified yet, it is speculated that impaired iron homeostasis or deficient transport mechanisms result in the accumulation of this highly toxic metal ultimately leading to formation of reactive oxygen species and cell death. On the other hand, there are also those who support that iron is just an incidental finding, a by product of neuronal loss. A literature review has been performed in order to present the key findings in support of the iron hypothesis of neurodegeneration, as well as to identify conditions causing or resulting from iron overload and compare and contrast their features with the most prominent neurodegenerative disorders. There is an abundance of experimental and observational findings in support of the hypothesis in question; however, as neurodegeneration is a rare incident of commonly encountered iron-associated disorders of the nervous system, and this metal is found in non-neurodegenerative disorders as well, it is possible that iron is the result or even an incidental finding in neurodegeneration. Understanding the underlying processes of iron metabolism in the brain and particularly its release during cell damage is expected to provide a deeper understanding of the origins of neurodegeneration in the years to come.

  18. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson’s disease

    PubMed Central

    He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua

    2016-01-01

    Parkinson disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic-rigid dominant (AR)] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0 T MR system. Inter-group susceptibility differences in bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast to the AR group, the TD group was found to have increased susceptibility in the bilateral DN, when compared to healthy controls. In addition, susceptibility was positively correlated with tremor score in drug naive PD patients. These findings indicate that iron load within DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR phenotypes of PD can be differentiated on the basis of the susceptibility of the DN at least on the group level. PMID:27192177

  19. Black reefs: iron-induced phase shifts on coral reefs

    PubMed Central

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-01-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km2). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions. PMID:21881615

  20. Black reefs: iron-induced phase shifts on coral reefs.

    PubMed

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-03-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to <10% on black reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km(2)). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions.

  1. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    NASA Astrophysics Data System (ADS)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  2. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores.

    PubMed

    Aznar, Aude; Chen, Nicolas W G; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-04-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H₂O₂ staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity.

  3. Iatrogenic Iron Overload in Dialysis Patients at the Beginning of the 21st Century.

    PubMed

    Rostoker, Guy; Vaziri, Nosratola D; Fishbane, Steven

    2016-05-01

    Iron overload used to be considered rare in hemodialysis patients but its clinical frequency is now increasingly realized. The liver is the main site of iron storage and the liver iron concentration (LIC) is closely correlated with total iron stores in patients with secondary hemosideroses and genetic hemochromatosis. Magnetic resonance imaging is now the gold standard method for LIC estimation and monitoring in non-renal patients. Studies of LIC in hemodialysis patients by quantitative magnetic resonance imaging and magnetic susceptometry have demonstrated a strong relation between the risk of iron overload and the use of intravenous (IV) iron products prescribed at doses determined by the iron biomarker cutoffs contained in current anemia management guidelines. These findings have challenged the validity of both iron biomarker cutoffs and current clinical guidelines, especially with respect to recommended IV iron doses. Three long-term observational studies have recently suggested that excessive IV iron doses may be associated with an increased risk of cardiovascular events and death in hemodialysis patients. We postulate that iatrogenic iron overload in the era of erythropoiesis-stimulating agents may silently increase complications in dialysis patients without creating frank clinical signs and symptoms. High hepcidin-25 levels were recently linked to fatal and nonfatal cardiovascular events in dialysis patients. It is therefore tempting to postulate that the main pathophysiological pathway leading to these events may involve the pleiotropic master hormone hepcidin (synergized by fibroblast growth factor 23), which regulates iron metabolism. Oxidative stress as a result of IV iron infusions and iron overload, by releasing labile non-transferrin-bound iron, might represent a 'second hit' on the vascular bed. Finally, iron deposition in the myocardium of patients with severe iron overload might also play a role in the pathogenesis of sudden death in some patients.

  4. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    PubMed

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A key role for green rust in the Precambrian oceans and the genesis of iron formations

    NASA Astrophysics Data System (ADS)

    Halevy, I.; Alesker, M.; Schuster, E. M.; Popovitz-Biro, R.; Feldman, Y.

    2017-01-01

    Iron formations deposited in marine settings during the Precambrian represent large sinks of iron and silica, and have been used to reconstruct environmental conditions at the time of their formation. However, the observed mineralogy in iron formations, which consists of iron oxides, silicates, carbonates and sulfides, is generally thought to have arisen from diagenesis of one or more mineral precursors. Ferric iron hydroxides and ferrous carbonates and silicates have been identified as prime candidates. Here we investigate the potential role of green rust, a ferrous-ferric hydroxy salt, in the genesis of iron formations. Our laboratory experiments show that green rust readily forms in early seawater-analogue solutions, as predicted by thermodynamic calculations, and that it ages into minerals observed in iron formations. Dynamic models of the iron cycle further indicate that green rust would have precipitated near the iron redoxcline, and it is expected that when the green rust sank it transformed into stable phases within the water column and sediments. We suggest, therefore, that the precipitation and transformation of green rust was a key process in the iron cycle, and that the interaction of green rust with various elements should be included in any consideration of Precambrian biogeochemical cycles.

  6. Algoma-, Superior-, and oolitic-type iron deposits of the Islamic Republic of Mauritania (phase V, deliverable 83): Chapter O in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Joud, M. Y.; Taleb, M. A.; Horton, John D.

    2015-01-01

    Phanerozoic oolitic ironstones are hosted in the upper Silurian and lower Devonian rocks of the Gara Bouya Ali Group and the Zemmour Group in the Tindouf Basin in northern Mauritania and in the end Ordovician Tichit Group, the Silurian Oued Chig Group, and the lower Devonian Tenemouj Group in the Taoudeni Basin near Tidjikja. These rock groups define 11 permissive tracts for Algoma-, Superior-, and oolitic-type iron deposits in Mauritania.

  7. Iron deficiency and iron deficiency anaemia in women.

    PubMed

    Percy, Laura; Mansour, Diana; Fraser, Ian

    2017-04-01

    Iron deficiency (ID) is the most common micronutrient deficiency worldwide with >20% of women experiencing it during their reproductive lives. Hepcidin, a peptide hormone mostly produced by the liver, controls the absorption and regulation of iron. Understanding iron metabolism is pivotal in the successful management of ID and iron deficiency anaemia (IDA) using oral preparations, parenteral iron or blood transfusion. Oral preparations vary in their iron content and can result in gastrointestinal side effects. Parenteral iron is indicated when there are compliance/tolerance issues with oral iron, comorbidities which may affect absorption or ongoing iron losses that exceed absorptive capacity. It may also be the preferred option when rapid iron repletion is required to prevent physiological decompensation or given preoperatively for non-deferrable surgery. As gynaecologists, we focus on managing women's heavy menstrual bleeding (HMB) and assume that primary care clinicians are treating the associated ID/IDA. We now need to take the lead in diagnosing, managing and initiating treatment for ID/IDA and treating HMB simultaneously. This dual management will significantly improve their quality of life. In this chapter we will summarise the importance of iron in cellular functioning, describe how to diagnose ID/IDA and help clinicians choose between the available treatment options. Copyright © 2016. Published by Elsevier Ltd.

  8. JPRS Report, East Asia, Southeast Asia

    DTIC Science & Technology

    1988-06-20

    tension and disunity among Malays. Haji Annuar Musa, a member of the Peringat State Legislative Assembly, said, "I regret that some of the veteran...acting as an advisory "panel" for the present leaders and at the same time impair Malay unity. Haji Annuar said veteran leaders should find

  9. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and... avoided. Cast iron and malleable iron components shall not be used at temperatures above 450 °F. Cast iron...

  10. Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2004-03-01

    Study of modern microbial mats produced by iron precipitating microbes. Aging and compaction experiments to evaluate fossilization potential and likelihood to recognize these deposits in the rock record.

  11. Iron and Sulfur Species and Sulfur Isotopic Compositions of Authigenic Pyrite in Gas Hydrate-Bearing Sediments from Hydrate Ridge, Cascadia Margin (ODP Leg 204): A Proposal of Conceptual Models to Indicate the Non-Steady State Depositional and Diagenetic Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Jiang, S. Y.; Su, X.

    2017-12-01

    Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.

  12. Higher iron bioavailability of a human-like collagen iron complex.

    PubMed

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  13. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  14. Mineralogy and crystal chemistry of iron in the Timan bauxite and products of their technological processing

    NASA Astrophysics Data System (ADS)

    Kotova, O.; Silaev, V.; Lutoev, V.; Vakhrushev, A.

    2016-04-01

    Mineralogical and geochemical features of two series of samples of typical bauxites from two deposits of Middle Timan mining area (Vezhayu-Vorykva and Svetlinskoe) were studied. The phase composition of ferrous bauxites generally is boehmite, hematite, ultradisperse low-ordered goethite and berthierine. In a boehmite and kaolinite structural impurity of iron to 10%, and in the iron oxidehydroxides aluminum impurity is revealed. On iron content bauxites are subdivided into three mineral types for which quantitative data on valence states of ions of iron and proportions of their distribution last on nonequivalent structural positions in hematite, goethite and berthierine are obtained. Noble metals (Ag, Au, Ir, Rh, Pd) concentrating in bauxites are revealed for the first time. Obtained data can lead to decrease of power consumption during aluminum production and high quality ceramics, to provide production of valuable iron oxide, and also to minimize the ecological harm from accumulation of bauxite wastes.

  15. Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate

    NASA Astrophysics Data System (ADS)

    Bonabi, Salar Fatoureh; Ashrafizadeh, Fakhreddin; Sanati, Alireza; Nahvi, Saied Mehran

    2018-02-01

    In this research, four coatings including pure zinc, pure aluminum, a double-layered coating of zinc and aluminum, and a coating produced by simultaneous deposition of zinc and aluminum were deposited on a cast iron substrate using electric arc-spraying technique. The coatings were characterized by XRD, SEM and EDS map and spot analyses. Adhesion strength of the coatings was evaluated by three-point bending tests, where double-layered coating indicated the lowest bending angle among the specimens, with detection of cracks at the coating-substrate interface. Coatings produced by simultaneous deposition of zinc and aluminum possessed a relatively uniform distribution of both metals. In order to evaluate the corrosion behavior of the coatings, cyclic polarization and salt spray tests were conducted. Accordingly, pure aluminum coating showed susceptibility to pitting corrosion and other coatings underwent uniform corrosion. For double-layered coating, SEM micrographs revealed zinc corrosion products as flaky particles in the pores formed by pitting on the surface, an indication of penetration of corrosion products from the lower layer (zinc) to the top layer (aluminum). All coatings experienced higher negative corrosion potentials than the iron substrate, indicative of their sacrificial behavior.

  16. Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran

    NASA Astrophysics Data System (ADS)

    Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran

    2018-03-01

    This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).

  17. Descriptive and grade-tonnage models of volcanogenic manganese deposits in oceanic environments; a modification

    USGS Publications Warehouse

    Mosier, Dan L.; Page, Norman J

    1988-01-01

    Four types of volcanogenic manganese deposits, distinguished on the basis of geologic, geochemical, and geophysical characteristics, appear to result from a combination of volcanic and hydrothermal processes related to hot-spring activity in oceanic environments. We compare these four desposit types, here called the Franciscan, Cuban, Olympic Peninsula, and Cyprus, with respect to host rocks, associated rocks, minerals, deposit shape, dimensions, volume, tonnage, grade, and mineral-deposit density (number of deposits per unit area). Franciscan-type deposits occur in obducted oceanic ridge and backarc marginal-basin environments, are associated with chert, shale, and graywacke aroun the margins of mafic volcanic centers, and have a median tonnage of 450 t and median grades of 36 weight percent Mn and less than 5.1 weight percent Fe. Cuban-type deposits occur in island-arc environments, are associated with tuff and limestone around domal structures or intrusions inferred to be volcanic centers, and have a median tonnage of 6,400 t and median grades of 39 weight percent Mn and less than 4.4 weight percent Fe. Olympic Peninsula-type deposits occur in obducted oceanic midplate settings, are associated with argillaceous limestone, argillite, and graywacke around mafic volcanic centers (seamounts or islands), and have a median tonnage of 340 t and median grades of 35 weight percent Mn and less than 6.5 weight percent Fe. Cyprus-type deposits occur in the same tectonic environments as Franciscan type but are associated with basalt, marl, chalk, silt, and chert off the ridge-axis position and have a median tonnage of 41,000 t and median grades of 33 weight percent Fe and 8 weight percent Mn. All these deposits are thin ellipsoids, concordant to the host rocks, but Cyprus-and Cuban-type deposits are larger than Franciscan- and Olympic Peninsula-type deposits. Except for Cyprus-type deposits, which are manganiferous iron (umber) deposits composed of hydrated iron and

  18. Deposition of reactively ion beam sputtered silicon nitride coatings

    NASA Technical Reports Server (NTRS)

    Grill, A.

    1982-01-01

    An ion beam source was used to deposit silicon nitride films by reactively sputtering a silicon target with beams of Ar + N2 mixtures. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 2 millionth torr. The ion beam current was 50 mA at 500 V. The composition of the deposited films was investigated by auger electron spectroscopy and the rate of deposition was determined by interferometry. A relatively low rate of deposition of about 2 nm. one-tenth min. was found. AES spectra of films obtained with nitrogen fractions higher than 0.50 were consistent with a silicon to nitrogen ratio corresponding to Si3N4. However the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.

  19. Evidence that stainable bone marrow iron following parenteral iron therapy does not correlate with serum iron studies and may not represent readily available storage iron.

    PubMed

    Thomason, Ronald W; Almiski, Muhamad S

    2009-04-01

    We recently reported that parenteral iron therapy is associated with a characteristic pattern of iron staining on bone marrow aspirate smears. We now present clinical information from 6 patients who received parenteral iron and, at one or more points in follow-up, were found to have low or borderline low serum ferritin levels and/or serum iron levels, even though marrow aspirate smears revealed abundant stainable iron in the pattern characteristic of prior parenteral iron therapy. We conclude that stainable iron seen in this pattern does not correlate with serum iron studies and may not represent functionally available storage iron. This pattern of iron staining should not be used as evidence to withhold further iron therapy in patients who otherwise continue to have features of iron deficiency anemia.

  20. Geochemical and mineralogical composition of bog iron ore as a resource for prehistoric iron production - A case study of the Widawa catchment area in Eastern Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Thelemann, Michael; Bebermeier, Wiebke; Hoelzmann, Philipp

    2016-04-01

    Spreading from the Near East in the declining Bronze Age from the 2nd millennium BCE onwards, the technique of iron smelting reached Eastern Silesia, Poland, in approximately the 2nd century BCE (pre-Roman Iron Age). At this time the region of the Widawa catchment area was inhabited by the Przeworsk culture. While the older moraine landscape of the study area lacks ores from geological rock formations, bog iron ores were relatively widespread and, due to their comparatively easy accessibility, were commonly exploited for early iron production. In this poster the mineralogical and elemental composition of local bog iron ore deposits and iron slag finds, as a by-product of the smelting process, are investigated. The crystalline mineralogical composition of local bog iron ores is dominated by quartz (SiO2) and goethite (α FeO(OH)), in contrast to slag samples in which fayalite (Fe2SiO4), wüstite (FeO) and quartz, with traces of goethite, represent the main minerals. Ores and slags are both characterized by notable hematite (Fe2O3), magnetite (Fe3O4) and maghemite (γ-Fe2O3) contents. Analyzed bog iron ore samples show iron contents of up to 64.9 mass% Fe2O3 (45.4 mass% Fe), whereas the iron contents of bloomery slags vary between 48.7 and 72.0 mass% FeO (37.9 and 56.0 mass% Fe). A principal component analysis of the element contents, which were quantified by portable energy-dispersive X-ray fluorescence spectrometry (p-ED-XRF), indicates local variations in the elemental composition. Our results show that bog iron ores are relatively widely distributed with spatially varying iron contents along the Widawa floodplain but present-day formation conditions (e.g. different ground-water levels) are negatively affected by modern land-use practices, such as agriculture and melioration measures.

  1. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans.

    PubMed

    Li, Yi-Liang

    2012-12-01

    Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life.

  2. Rapid sedimentation of iron oxyhydroxides in an active hydrothermal shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan

    NASA Astrophysics Data System (ADS)

    Kiyokawa, Shoichi; Ueshiba, Takuya

    2015-04-01

    Hydrothermal activity is common in the fishing port of Nagahama Bay, a small semi-enclosed bay located on the southwest coast of Satsuma Iwo-Jima Island (38 km south of Kyushu Island, Japan). The bay contains red-brown iron oxyhydroxides and thick deposits of sediment. In this work, the high concentration and sedimentation rates of oxyhydroxide in this bay were studied and the sedimentary history was reconstructed. Since dredging work in 1998, a thickness of 1.0-1.5 m of iron oxyhydroxide-rich sediments has accumulated on the floor of the bay. To estimate the volume of iron oxyhydroxide sediments and the amount discharged from hydrothermal vents, sediment traps were operated for several years and 13 sedimentary core samples were collected to reconstruct the 10-year sedimentary history of Nagahama Bay. To confirm the timing of sedimentary events, the core data were compared with meteorological records obtained on the island, and the ages of characteristic key beds were thus identified. The sedimentation rate of iron oxyhydroxide mud was calculated, after correcting for sediment input from other sources. The sediments in the 13 cores from Nagahama Bay consist mainly of iron oxyhydroxide mud, three thick tephra beds, and a topmost thick sandy mud bed. Heavy rainfall events in 2000, 2001, 2002, and 2004-2005 coincide with tephra beds, which were reworked from Iwo-Dake ash deposits to form tephra-rich sediment. Strong typhoon events with gigantic waves transported outer-ocean-floor sediments and supplied quartz, cristobalite, tridymite, and albite sands to Nagahama Bay. These materials were redeposited together with bay sediments as the sandy mud bed. Based on the results from the sediment traps and cores, it is estimated that the iron oxyhydroxide mud accumulated in the bay at the relatively rapid rate of 33.3 cm/year (from traps) and 2.8-4.9 cm/year (from cores). The pore water contents within the sediment trap and core sediments are 73%-82% and 47%-67%, respectively

  3. Lateritic, supergene rare earth element (REE) deposits

    USGS Publications Warehouse

    Cocker, Mark D.

    2014-01-01

    Intensive lateritic weathering of bedrock under tropical or sub-tropical climatic conditions can form a variety of secondary, supergene-type deposits. These secondary deposits may range in composition from aluminous bauxites to iron and niobium, and include rare earth elements (REE). Over 250 lateritic deposits of REE are currently known and many have been important sources of REE. In southeastern China, lateritic REE deposits, known as ion-adsorption type deposits, have been the world’s largest source of heavy REE (HREE). The lateritized upper parts of carbonatite intrusions are being investigated for REE in South America, Africa, Asia and Australia, with the Mt. Weld deposit in Australia being brought into production in late 2012. Lateritic REE deposits may be derived from a wide range of primary host rocks, but all have similar laterite and enrichment profiles, and are probably formed under similar climatic conditions. The weathering profile commonly consists of a depleted zone, an enriched zone, and a partially weathered zone which overlie the protolith. Lateritic weathering may commonly extend to depths of 30 to 60 m. REE are mobilized from the breakdown of primary REE-bearing minerals and redeposited in the enriched zone deeper in the weathering horizon as secondary minerals, as colloids, or adsorbed on other secondary minerals. Enrichment of REE may range from 3 to 10 times that of the source lithology; in some instances, enrichment may range up to 100 times.

  4. Iron Overload and Apoptosis of HL-1 Cardiomyocytes: Effects of Calcium Channel Blockade

    PubMed Central

    Chen, Mei-pian; Cabantchik, Z. Ioav; Chan, Shing; Chan, Godfrey Chi-fung; Cheung, Yiu-fai

    2014-01-01

    Background Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis. Methods Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC. Results Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis. Conclusion Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other

  5. Dietary iron intake, iron status, and gestational diabetes.

    PubMed

    Zhang, Cuilin; Rawal, Shristi

    2017-12-01

    Pregnant women are particularly vulnerable to iron deficiency and related adverse pregnancy outcomes and, as such, are routinely recommended for iron supplementation. Emerging evidence from both animal and population-based studies, however, has raised potential concerns because significant associations have been observed between greater iron stores and disturbances in glucose metabolism, including increased risk of type 2 diabetes among nonpregnant individuals. Yet, the evidence is uncertain regarding the role of iron in the development of gestational diabetes mellitus (GDM), a common pregnancy complication which has short-term and long-term adverse health ramifications for both women and their children. In this review, we critically and systematically evaluate available data examining the risk of GDM associated with dietary iron, iron supplementation, and iron status as measured by blood concentrations of several indicators. We also discuss major methodologic concerns regarding the available epidemiologic studies on iron and GDM. © 2017 American Society for Nutrition.

  6. The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean

    PubMed Central

    Emerson, David

    2016-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity. PMID:26779157

  7. Mapping hydrothermal alteration using aircraft VNIR scanners at the Rosemont porphyry copper deposit. [Visible-Near Infrared

    NASA Technical Reports Server (NTRS)

    Sadowski, R. M.; Abrams, M. J.

    1983-01-01

    Two Visible-Near Infrared (VNIR) scanners, the NS-001 and the M2S, were flown over the Rosemont porphyry copper deposit as part of the NASA/JPL/GEOSAT test site program. This program was established to determine the feasibility and limitations of mapping hydrothermal alteration with multispectral scanners. Data from the NS-001 at 0.83 and 2.2 microns were used to identify Fe(3+) and OH enriched outcrops. These areas were then correlated with three alteration assemblages. The first correlation, hematite-epidote, was the most obvious and appeared as a strong ferric iron signature associated with hematite stained Cretaceous arkoses and andesites. The second correlation, qtz-sericite, showed a combined ferric-hydroxyl signature for a phyllicly altered quartz monzonite. The third correlation, skarn, was identified only after a review of calc-silicate mineral VNIR spectra. Altered limestones that outcrop west of the deposit have a similar ferric iron-hydroxyl signature as the quartz-sericite altered quartz monzonite. This skarn signature has been interpreted to indicate the presence of andradite, hydro-grossularite and idocrase. Data from the second scanner, M2S, was used to search for variation in ferric iron mineral type. Resulting imagery data indicated that hematite was the dominant ferric iron mineral present in the Rosemont area.

  8. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  9. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1986-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  10. Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Fru, Ernest Chi; Kilias, Stephanos; Ivarsson, Magnus; Rattray, Jayne E.; Gkika, Katerina; McDonald, Iain; He, Qian; Broman, Curt

    2018-05-01

    An early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Field-wide stratigraphic and biogeochemical reconstructions show two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggests the presence of a photoferrotrophic-like microfossil-rich IF (MFIF), accumulated on a basement consisting of andesites in a ˜ 150 m wide basin in the SW margin of the basin. A banded nonfossiliferous IF (NFIF) sits on top of the Mn-rich sandstones at the transition to the renowned Mn-rich formation, capping the NFIF unit. Geochemical data relate the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II) in conditions predominated by anoxia, similar to the MFIF. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ13Corg signature of ˜ -25‰. A similar δ13Corg signature in the MFIF could not be directly coupled to hematite by mineralogy. The NFIF, which postdates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO2 ṡ nH2O) while crystalline quartz (SiO2) predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity, and abiotic Si precipitation are proposed to have collectively formed the unmetamorphosed BIF-type deposits in a shallow submarine volcanic center. Despite the differences in Precambrian ocean-atmosphere chemistry and the present geologic time, these formation mechanisms coincide with those believed to have formed Algoma-type BIFs proximal to active seafloor volcanic centers.

  11. The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain.

    PubMed

    Preston, L J; Shuster, J; Fernández-Remolar, D; Banerjee, N R; Osinski, G R; Southam, G

    2011-05-01

    One of the keys to understanding and identifying life on other planets is to study the preservation of organic compounds and their precursor micro-organisms on Earth. Rio Tinto in southwestern Spain is a well documented site of microbial preservation within iron sulphates and iron oxides over a period of 2.1 Ma. This study has investigated the preservation of filamentous iron oxidising bacteria and organics through optical microscopy, scanning electron microscopy (SEM) and Fourier transform infra-red (FTIR) spectroscopy, from laboratory cultures of natural samples to contemporary natural materials to million-year old river terraces. Up to 40% elemental carbon and >7% nitrogen has been identified within microbial filaments and cell clusters in all samples through SEM EDS analyses. FTIR spectroscopy identified C-H(x) absorption bands between 2960 and 2800 cm(-1), Amide I and II absorption bands at 1656 and 1535 cm(-1), respectively and functional group vibrations from within nucleic acids at 917, 1016 and 1124 cm(-1). Absorption bands tracing the diagenetic transformation of jarosite to goethite to hematite through the samples are also identified. This combination of mineralogy, microbial morphology and biomolecular evidence allows us to further understand how organic fossils are created and preserved in iron-rich environments, and ultimately will aid in the search for the earliest life on Earth and potential organics on Mars. © 2011 Blackwell Publishing Ltd.

  12. Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation.

    PubMed

    Adeleke, Rasheed; Cloete, T E; Khasa, D P

    2012-03-01

    With one of the largest iron ore deposits in the world, South Africa is recognised to be among the top ten biggest exporters of iron ore. Increasing demand and consumption of this mineral triggered search for processing technologies, which can be utilised to "purify" the low-grade iron ore minerals that contain high levels of unwanted potassium (K) and phosphorus (P). This study investigated a potential biological method that can be further developed for the full biobeneficiation of low-grade iron ore minerals. Twenty-three bacterial strains that belong to Proteobacteria, Firmicutes, Bacteroidetes and Actinobateria were isolated from the iron ore minerals and identified with sequence homology and phylogenetic methods. The abilities of these isolates to lower the pH of the growth medium and solubilisation of tricalcium phosphate were used to screen them as potential mineral solubilisers. Eight isolates were successfully screened with this method and utilised in shake flask experiments using iron ore minerals as sources of K and P. The shake flask experiments revealed that all eight isolates have potentials to produce organic acids that aided the solubilisation of the iron ore minerals. In addition, all eight isolates produced high concentrations of gluconic acid followed by relatively lower concentrations of acetic, citric and propanoic acid. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses also indicated extracellular polymeric substances could play a role in mineral solubilisation.

  13. Effects of calcium on hepatocyte iron uptake from transferrin, iron-pyrophosphate and iron-ascorbate.

    PubMed

    Nilsen, T

    1991-10-16

    Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.

  14. Response to parenteral iron therapy distinguish unexplained refractory iron deficiency anemia from iron-refractory iron deficiency anemia.

    PubMed

    Akin, M; Sarbay, H; Guler, S; Balci, Y I; Polat, A

    2016-04-01

    We evaluated that response to parenteral iron therapy could be helpful in distinguishing the types of iron deficiency anemia. This study analyzed responses to IV iron sucrose therapy of 15 children with unexplained refractory iron deficiency anemia (URIDA). We compared the results at diagnosis, 6 weeks and 6 months after the therapy. Results were compared with responses of 11 patients' results with iron-refractory iron deficiency anemia (IRIDA) from our previous study. Six weeks after the start of treatment, ferritin, MCV, MCH and Hb values were in normal range in 10 patients. The increase in Hb, MCH, MCV, and ferritin values ranged 2.6-3.5 g/dL, 1.7-4.2 pg, 2-9 fL, and 13-25 ng/mL, respectively. In five patients, Hb, MCH, and MCV mean (range) values [11.2 g/dL (11-12.2), 24.5 pg (24-25.6), and 67 fL (65-70)] were nearly normal but ferritin mean (range) values [9.8 ng/mL (8-11)] were below normal. Six weeks after the start of treatment, Hb, MCH, MCV and ferritin values of patients with IRIDA were increased. The increase in Hb, MCH, MCV, and ferritin values ranged 0.8-2.7 g/dL, 1.7-4.2 pg, 2-9 fL, and 13-25 ng/mL, respectively. IRIDA is only partially responsive to parenteral iron supplementation. In conclusion, this study demonstrated that the response to intravenous iron therapy for the URIDA cases improved blood parameters more effectively than hereditary IRIDA. Response to parenteral iron therapy would be helpful to distinguish unexplained refractory IDA from hereditary IRIDA for clinicians who do not have access to hepcidin or TMPRS6 mutation analysis. © 2016 John Wiley & Sons Ltd.

  15. Efficacy of Deferasirox as an Oral Iron Chelator in Paediatric Thalassaemia Patients

    PubMed Central

    Hishikar, Rajesh; Khandwal, Onkar; Agarwal, Manju; Joshi, Usha; Halwai, Ajay; Maheshwari, Basant; Sheohare, Raka

    2017-01-01

    Introduction Thalassaemia Major patients require frequent blood transfusion leading to iron overload. Excessive iron gets deposited in vital organs and leads to dysfunction of the heart, liver, anterior pituitary, pancreas, and joints. Our body has limited mechanism to excrete iron, so patients with iron overload and its complications need safe and effective iron chelation therapy. Aim To assess the efficacy of Deferasirox (DFX) as an iron chelator, with specific reference to reduction in serum ferritin level. Materials and Methods This is a prospective; observational study done in 45 multitransfused Thalassaemia Major Children receiving DFX therapy at registered Thalassaemia society Raipur Chhattisgarh. DFX was given in an initial dose of 20 mg/kg/day and according to response increased to a maximum of 40 mg/kg/day. Serum ferritin level was estimated at time of registration and at every three monthly intervals (four times during study period). The primary end point of the study was change in serum ferritin level after 12 months of DFX therapy. Results The mean serum ferritin before DFX therapy of all cases was 3727.02 ng/mL. After 12 months of mean dose of 38 mg/kg/day of DFX, the mean decline in serum ferritin was 1207.11 ng/mL (drop by 32.38%, p-value <0.001). Conclusion DFX monotherapy has a good safety profile and effectively chelates total body iron in Thalassaemia major patients. PMID:28384880

  16. Electrospray methodologies for characterization and deposition of nanoparticles

    NASA Astrophysics Data System (ADS)

    Modesto Lopez, Luis Balam

    Electrospray is an aerosolization method that generates highly charged droplets from solutions or suspensions and, after a series of solvent evaporation -- droplet fission cycles, it results in particles carrying multiple charges. Highly charged particles are used in a variety of applications, including particle characterization, thin film deposition, nanopatterning, and inhalation studies among several others. In this work, a soft X-ray photoionization was coupled with an electrospray to obtain monodisperse, singly charged nanoparticles for applications in online size characterization with electrical mobility analysis. Photoionization with the soft X-ray charger enhanced the diffusion neutralization rate of the highly charged bacteriophages, proteins, and solid particles. The effect of nanoparticle surface charge and nanoparticle agglomeration in liquids on the electrospray process was studied experimentally and a modified expression to calculate the effective electrical conductivity of nanosuspensions was proposed. The effective electrical conductivity of TiO2 nanoparticle suspensions is strongly dependent on the electrical double layer and the agglomeration dynamics of the particles; and such dependence is more remarkable in liquids with low ionic strength. TiO2 nanoparticle agglomerates with nearly monodisperse sizes in the nanometer and submicrometer ranges were generated, by electrospraying suspensions with tuned effective electrical conductivity, and used to deposit photocatalytic films for water-splitting. Nanostructured films of iron oxide with uniform distribution of particles over the entire deposition area were formed with an electrospray system. The micro-Raman spectra of the iron oxide films showed that transverse and longitudinal optical modes are highly sensitive to the crystallize size of the electrospray-deposited films. The fabrication of films of natural light-harvesting complexes, with the aim of designing biohybrid photovoltaic devices, was

  17. Utilizing pulsed laser deposition lateral inhomogeneity as a tool in combinatorial material science.

    PubMed

    Keller, David A; Ginsburg, Adam; Barad, Hannah-Noa; Shimanovich, Klimentiy; Bouhadana, Yaniv; Rosh-Hodesh, Eli; Takeuchi, Ichiro; Aviv, Hagit; Tischler, Yaakov R; Anderson, Assaf Y; Zaban, Arie

    2015-04-13

    Pulsed laser deposition (PLD) is widely used in combinatorial material science, as it enables rapid fabrication of different composite materials. Nevertheless, this method was usually limited to small substrates, since PLD deposition on large substrate areas results in severe lateral inhomogeneity. A few technical solutions for this problem have been suggested, including the use of different designs of masks, which were meant to prevent inhomogeneity in the thickness, density, and oxidation state of a layer, while only the composition is allowed to be changed. In this study, a possible way to take advantage of the large scale deposition inhomogeneity is demonstrated, choosing an iron oxide PLD-deposited library with continuous compositional spread (CCS) as a model system. An Fe₂O₃-Nb₂O₅ library was fabricated using PLD, without any mask between the targets and the substrate. The library was measured using high-throughput scanners for electrical, structural, and optical properties. A decrease in electrical resistivity that is several orders of magnitude lower than pure α-Fe₂O₃ was achieved at ∼20% Nb-O (measured at 47 and 267 °C) but only at points that are distanced from the center of the PLD plasma plume. Using hierarchical clustering analysis, we show that the PLD inhomogeneity can be used as an additional degree of freedom, helping, in this case, to achieve iron oxide with much lower resistivity.

  18. Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems.

    PubMed

    Peng, Ching-Yu; Korshin, Gregory V; Valentine, Richard L; Hill, Andrew S; Friedman, Melinda J; Reiber, Steve H

    2010-08-01

    Corrosion scales and deposits formed within drinking water distribution systems (DWDSs) have the potential to retain inorganic contaminants. The objective of this study was to characterize the elemental and structural composition of extracted pipe solids and hydraulically-mobile deposits originating from representative DWDSs. Goethite (alpha-FeOOH), magnetite (Fe(3)O(4)) and siderite (FeCO(3)) were the primary crystalline phases identified in most of the selected samples. Among the major constituent elements of the deposits, iron was most prevalent followed, in the order of decreasing prevalence, by sulfur, organic carbon, calcium, inorganic carbon, phosphorus, manganese, magnesium, aluminum and zinc. The cumulative occurrence profiles of iron, sulfur, calcium and phosphorus for pipe specimens and flushed solids were similar. Comparison of relative occurrences of these elements indicates that hydraulic disturbances may have relatively less impact on the release of manganese, aluminum and zinc, but more impact on the release of organic carbon, inorganic carbon, and magnesium. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Can land use intensification in the Mallee, Australia increase the supply of soluble iron to the Southern Ocean?

    PubMed Central

    Bhattachan, Abinash; D'Odorico, Paolo

    2014-01-01

    The supply of soluble iron through atmospheric dust deposition limits the productivity of the Southern Ocean. In comparison to the Northern Hemisphere, the Southern Hemisphere exhibits low levels of dust activity. However, given their proximity to the Southern Ocean, dust emissions from continental sources in the Southern Hemisphere could have disproportionate impact on ocean productivity. Australia is the largest source of dust in the Southern Hemisphere and aeolian transport of dust has major ecological, economic and health implications. In the Mallee, agriculture is a major driver of dust emissions and dust storms that affect Southeastern Australia. In this study, we assess the dust generating potential of the sediment from the Mallee, analyze the sediment for soluble iron content and determine the likely depositional region of the emitted dust. Our results suggest that the Mallee sediments have comparable dust generating potential to other currently active dust sources in the Southern Hemisphere and the dust-sized fraction is rich in soluble iron. Forward trajectory analyses show that this dust will impact the Tasman Sea and the Australian section of the Southern Ocean. This iron-rich dust could stimulate ocean productivity in future as more areas are reactivated as a result of land-use and droughts. PMID:25109703

  20. Long-term trends in dissolved iron and DOC concentration linked to nitrate depletion in riparian soils

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Selle, Benny; Fleckenstein, Jan H.; Oosterwoud, Marieke R.; Tittel, Jörg

    2016-04-01

    The instream concentrations of dissolved organic carbon (DOC) are rising in many catchments of the northern hemisphere. Elevated concentrations of DOC, mainly in the form of colored humic components, increase efforts and costs of drinking water purification. In this study, we evaluated a long-term dataset of 110 catchments draining into German drinking water reservoirs in order to assess sources of DOC and drivers of a potential long-term change. The average DOC concentrations across the wide range of different catchments were found to be well explained by the catchment's topographic wetness index. Higher wetness indices were connected to higher average DOC concentrations, which implies that catchments with shallow topography and pronounced riparian wetlands mobilize more DOC. Overall, 37% of the investigated catchments showed a significant long-term increase in DOC concentrations, while 22% exhibited significant negative trends. Moreover, we found that increasing trends in DOC were positively correlated to trends in dissolved iron concentrations at pH≤6 due to remobilization of DOC previously sorbed to iron minerals. Both, increasing trends in DOC and dissolve iron were found to be connected to decreasing trends and low concentrations of nitrate (below ~6 mg/L). This was especially observed in forested catchments where atmospheric N-depositions were the major source for nitrate availability. In these catchments, we also found long-term increases of phosphate concentrations. Therefore, we argue that dissolved iron, DOC and phosphate were jointly released under iron-reducing conditions when nitrate as a competing electron acceptor was too low in concentrations to prevent the microbial iron reduction. In contrast, we could not explain the observed increasing trends in DOC, iron and phosphate concentrations by the long-term trends of pH, sulfate or precipitation. Altogether this study gives strong evidence that both, source and long-term increases in DOC are