Sample records for half-metallic heusler alloys

  1. Anisotropy in layered half-metallic Heusler alloy superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam

    2016-01-28

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  2. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

    DOE PAGES

    Zhang, R. L.; Damewood, L.; Fong, C. Y.; ...

    2016-11-02

    For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constantmore » of 5.803Å, and has the maximum atomic-like magnetic moment of 5μ B. In conclusion, the challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.« less

  3. Half-metallic Co-based quaternary Heusler alloys for spintronics: Defect- and pressure-induced transitions and properties

    DOE PAGES

    Enamullah, .; Johnson, D. D.; Suresh, K. G.; ...

    2016-11-07

    Heusler compounds offer potential as spintronic devices due to their spin polarization and half-metallicity properties, where electron spin-majority (minority) manifold exhibits states (band gap) at the electronic chemical potential, yielding full spin polarization in a single manifold. Yet, Heuslers often exhibit intrinsic disorder that degrades its half-metallicity and spin polarization. Using density-functional theory, we analyze the electronic and magnetic properties of equiatomic Heusler (L2 1) CoMnCrAl and CoFeCrGe alloys for effects of hydrostatic pressure and intrinsic disorder (thermal antisites, binary swaps, and vacancies). Under pressure, CoMnCrAl undergoes a metallic transition, while half-metallicity in CoFeCrGe is retained for a limited range.more » Antisite disorder between Cr-Al pair in CoMnCrAl alloy is energetically the most favorable, and retains half-metallic character in Cr-excess regime. However, Co-deficient samples in both alloys undergo a transition from half-metallic to metallic, with a discontinuity in the saturation magnetization. For binary swaps, configurations that compete with the ground state are identified and show no loss of half-metallicity; however, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. For single binary swaps, there is a significant energy cost in CoMnCrAl but with no loss of half-metallicity. Although a few configurations in CoFeCrGe energetically compete with the ground state, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. Furthermore, this information should help in controlling these potential spintronic materials.« less

  4. Half-metallic Co-based quaternary Heusler alloys for spintronics: Defect- and pressure-induced transitions and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enamullah, .; Johnson, D. D.; Suresh, K. G.

    Heusler compounds offer potential as spintronic devices due to their spin polarization and half-metallicity properties, where electron spin-majority (minority) manifold exhibits states (band gap) at the electronic chemical potential, yielding full spin polarization in a single manifold. Yet, Heuslers often exhibit intrinsic disorder that degrades its half-metallicity and spin polarization. Using density-functional theory, we analyze the electronic and magnetic properties of equiatomic Heusler (L2 1) CoMnCrAl and CoFeCrGe alloys for effects of hydrostatic pressure and intrinsic disorder (thermal antisites, binary swaps, and vacancies). Under pressure, CoMnCrAl undergoes a metallic transition, while half-metallicity in CoFeCrGe is retained for a limited range.more » Antisite disorder between Cr-Al pair in CoMnCrAl alloy is energetically the most favorable, and retains half-metallic character in Cr-excess regime. However, Co-deficient samples in both alloys undergo a transition from half-metallic to metallic, with a discontinuity in the saturation magnetization. For binary swaps, configurations that compete with the ground state are identified and show no loss of half-metallicity; however, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. For single binary swaps, there is a significant energy cost in CoMnCrAl but with no loss of half-metallicity. Although a few configurations in CoFeCrGe energetically compete with the ground state, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. Furthermore, this information should help in controlling these potential spintronic materials.« less

  5. Search for effective spin injection heterostructures based on half-metal Heusler alloys/gallium arsenide semiconductors: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Sivakumar, Chockalingam

    Efficient electrical spin injection from half-metal (HM) electrodes into semiconducting (SC) channel material is a desirable aspect in spintronics, but a challenging one. Half-metals based on the Heusler alloy family are promising candidates as spin sources due to their compatibility with compound SCs, and very high Curie temperatures. Numerous efforts were made in the past two decades to grow atomically abrupt interfaces between HM_Heusler and SC heterostructures. However, diffusion of magnetic impurities into the semiconductor, defects and disorder near the interface, and formation of reacted phases were great challenges. A number of theoretical efforts were undertaken to understand the role of such material defects in destroying the half-metallicity and also to propose promising half-metal/SC heterostructures based on first principles. This dissertation summarizes the investigations undertaken to decode the complexity of, and to understand the various physical properties of, a number of real-world Heusler/SC heterostructure samples, based on the ab initio density functional theory (DFT) approach. In addition, it summarizes various results from the first principles-based search for promising half-metal/SC heterostructures. First, I present results from DFT-based predictive models of actual Co 2MnSi (CMS)/GaAs heterostructures grown in (001) texture. I investigate the physical, chemical, electronic, and magnetic properties to understand the complexity of these structures and to pinpoint the origin of interfacial effects, when present. Based on the investigations of such models, I discuss the utility of those actual samples in spintronic applications. Next, I summarise the results from an ab initio DFT-based survey of 6 half-Heusler half-metal/GaAs heterostructure models in (110) texture, since compound semiconductors such as GaAs have very long spin lifetime in (110) layering. I show 3 half-Heusler alloys (CoVAs, NiMnAs, and RhFeGe), that when interfaced with Ga

  6. Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. M., E-mail: smilehhm@163.com; Luo, S. J.; Yao, K. L.

    2014-01-28

    Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range ofmore » c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.« less

  7. Half-metallicity in new Heusler alloys NaTO2 (T=Sc, Ti, V, Cr, and Mn): A first-principles study

    NASA Astrophysics Data System (ADS)

    Rajabi, Kh; Ahmadian, F.

    2018-03-01

    On the basis of the full-potential linearized augmented plane wave (FPLAPW) method within density functional theory (DFT), electronic structure and magnetic properties of Heusler alloys NaTO2 (T = Sc, Ti, V, Cr, and Mn) were investigated. The negative values of formation energy showed that these compounds can be experimentally synthesized. Results showed that in all compounds, AlCu2Mn-type structure was the most favorable one. The NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys were HM ferromagnets except NaScO2 (in both structures which were nonmagnetic semiconductors) and NaVO2 (in AlCu2Mn-type structure which was a magnetic semiconductor). The origin of half-metallicity was also verified in HM alloys. NaCrO2 and NaVO2 alloys had higher half-metallic band gaps in comparison with Heusler alloys including and excluding transition metals. The total magnetic moments of HM NaTO2 (T = Ti, V, Cr, and Mn) alloys obeyed Slater-Pauling rule (Mtot = Ztot-12). Among NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys, NaCrO2 had the highest robustness of half-metallicity with variation of lattice constant in both structures.

  8. Half-Heusler Alloys as Promising Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Page, Alexander A.

    This thesis describes Ph.D. research on the half-Heusler class of thermoelectric materials. Half-Heusler alloys are a versatile class of materials that have been studied for use in photovoltaics, phase change memory, and thermoelectric power generation. With respect to thermoelectric power generation, new approaches were recently developed in order to improve the thermoelectric figure of merit, ZT, of half-Heusler alloys. Two of the strategies discussed in this work are adding excess Ni within MNiSn (M = Ti, Zr, or Hf) compounds to form full-Heusler nanostructures and using isoelectronic substitution of Ti, Zr, and Hf in MNiSn compounds to create microscale grain boundaries. This work uses computational simulations based on density functional theory, combined with the cluster expansion method, to predict the stable phases of pseudo-binary and pseudo-ternary composition systems. Statistical mechanics methods were used to calculate temperature-composition phase diagrams that relate the equilibrium phases. It is shown that full-Heusler nanostructures are predicted to remain stable even at high temperatures, and the microscale grain boundaries observed in (Ti,Zr,Hf)NiSn materials are found to be thermodynamically unstable at equilibrium. A new strategy of combining MNiSn materials with ZrNiPb has also recently emerged, and theoretical and experimental work show that a solid solution of the two materials is stable.

  9. Spin wave propagation detected over 100 μm in half-metallic Heusler alloy Co2MnSi

    NASA Astrophysics Data System (ADS)

    Stückler, Tobias; Liu, Chuanpu; Yu, Haiming; Heimbach, Florian; Chen, Jilei; Hu, Junfeng; Tu, Sa; Alam, Md. Shah; Zhang, Jianyu; Zhang, Youguang; Farrell, Ian L.; Emeny, Chrissy; Granville, Simon; Liao, Zhi-Min; Yu, Dapeng; Zhao, Weisheng

    2018-03-01

    The field of magnon spintronics offers a charge current free way of information transportation by using spin waves (SWs). Compared to forward volume spin waves for example, Damon-Eshbach (DE) SWs need a relatively weak external magnetic field which is suitable for small spintronic devices. In this work we study DE SWs in Co2MnSi, a half-metallic Heusler alloy with significant potential for magnonics. Thin films have been produced by pulsed laser deposition. Integrated coplanar waveguide (CPW) antennas with different distances between emitter and detection antenna have been prepared on a Co2MnSi film. We used a vector network analyzer to measure spin wave reflection and transmission. We observe spin wave propagation up to 100 μm, a new record for half-metallic Heusler thin films.

  10. Ferromagnetism in half-metallic quaternary FeVTiAl Heusler compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Tahir Mohiuddin; Bhat, Idris Hamid; Yousuf, Saleem

    The electronic structure and magnetic properties of FeVTiAl quaternary Heusler alloy have been investigated within the density functional theory framework. The material was found completely spin-polarized half-metallic Ferromagnet in the ground state with F-43m structure. The structural stability was further confirmed by calculating different elastic constants in the cubic phase. Present study predicts an energy band gap of 0.72 eV calculated in localized minority spin channel at an equilibrium lattice parameter of 6.0Å. The calculated total spin magnetic moment of 2 µ{sub B}/f.u. is in agreement with the Slater-Pauling rule for full Heusler alloys.

  11. Fourfold symmetric anisotropic magnetoresistance in half-metallic Co2MnSi Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Oogane, Mikihiko; McFadden, Anthony P.; Kota, Yohei; Brown-Heft, Tobias L.; Tsunoda, Masakiyo; Ando, Yasuo; Palmstrøm, Chris J.

    2018-06-01

    In this study, we systematically investigated the anisotropic magnetoresistance (AMR) effect in half-metallic Co2MnSi Heusler alloy films epitaxially grown by molecular beam epitaxy. The fourfold symmetric AMR was observed in the temperature range of 25–275 K. In addition, the films exhibited a marked change in twofold symmetric AMR below 100 K. This specific temperature dependence of the AMR effect in Co2MnSi films can be caused by the tetragonal crystal field because of the distortion of the lattice at low temperatures. The influence of tetragonal distortion on both the AMR effect and half-metallicity is also discussed by first-principles calculations.

  12. Stability of half-metallic behavior with lattice variation for Fe2-xCoxMnAl Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh

    2018-04-01

    The electronic structure and magnetic properties with variation of lattice constant for Fe2-xCoxMnAl Heusler alloys have been studied. Total magnetic moments predicted by the Slater Pauling rule is maintained over a wide range of lattice variation for the series. Half metallic ferromagnetic nature with 100% spin polarization is observed for a lattice range from 5.40-5.70 Å, 5.35-5.55 Å, 5.30-5.60 Å and 5.25-5.55 Å respectively for x = 0.5, 1.0 1.5, 2.0. Due to the stability of half metallic character for a wide range of lattice parameters, these alloys are promising, robust materials suitable for spintronics device applications.

  13. Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh

    2018-05-01

    The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.

  14. Perpendicular Magnetic Anisotropy in Heusler Alloy Films and Their Magnetoresistive Junctions

    PubMed Central

    Frost, William; Samiepour, Marjan

    2018-01-01

    For the sustainable development of spintronic devices, a half-metallic ferromagnetic film needs to be developed as a spin source with exhibiting 100% spin polarisation at its Fermi level at room temperature. One of the most promising candidates for such a film is a Heusler-alloy film, which has already been proven to achieve the half-metallicity in the bulk region of the film. The Heusler alloys have predominantly cubic crystalline structures with small magnetocrystalline anisotropy. In order to use these alloys in perpendicularly magnetised devices, which are advantageous over in-plane devices due to their scalability, lattice distortion is required by introducing atomic substitution and interfacial lattice mismatch. In this review, recent development in perpendicularly-magnetised Heusler-alloy films is overviewed and their magnetoresistive junctions are discussed. Especially, focus is given to binary Heusler alloys by replacing the second element in the ternary Heusler alloys with the third one, e.g., MnGa and MnGe, and to interfacially-induced anisotropy by attaching oxides and metals with different lattice constants to the Heusler alloys. These alloys can improve the performance of spintronic devices with higher recording capacity. PMID:29324709

  15. The half-metallicity of Co2FeGe full Heusler alloy in (001) thin film: First principles study

    NASA Astrophysics Data System (ADS)

    Hyun, Jung-Min; Kim, Miyoung

    2018-01-01

    The electronic and magnetic properties of the Co2FeGe full Heusler alloy in (001) thin film are investigated using the first-principles electronic structure calculations within the density functional theory. We employ various exchange correlation functionals including the local density approximation (LDA), the generalized gradient approximation (GGA), and the additional + U corrections for strong on-site Coulomb interaction of transition metal 3d states, aiming to examine the correlation effect on the electronic structures which determine the spin gap and thus the half-metallicity. Our results reveal that the Co2FeGe thin film is metallic in both LDA and GGA, while the + U correction opens up the spin gap for spin minority channel in GGA+ U but not in LDA+U in contrast to its bulk alloy which is predicted to be half-metallic in both LDA+ U and GGA+ U approaches with total spin magnetic moment of 6 μ B . It is found that the surface states developed around the Fermi level and the enhanced 3d e g - t 2 g band splitting for the spin minority channel due to the correlation effect play critical roles to determine the emergence of the half-metallicity.

  16. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer

    PubMed Central

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-01-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482

  17. First-principles study on the ferrimagnetic half-metallic Mn{sub 2}FeAs alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Santao; Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn; Chen, Bao

    2015-05-15

    Mn-based full-Heusler alloys are kinds of promising candidates for new half-metallic materials. Basing on first principles, the electronic structures and magnetic properties of the Mn{sub 2}FeAs full-Heusler alloy have been investigated in detail. The Hg{sub 2}CuTi-type Mn{sub 2}FeAs compound obeys the Slater-Pauling rule, while the anti-parallel alignment atomic magnetic moments of Mn locating at different sites indicate it a ferrimagnetic alloy. The calculated spin-down bands behave half-metallic character, exhibiting a direct gap of 0.46 eV with a 100% spin polarization at the Fermi level. More studies show the compound would maintain half-metallic nature in a large range of variational latticemore » constants. We expect that our calculated results may trigger Mn{sub 2}FeAs applying in the future spintronics field. - Graphical abstract: The d orbitals of Mn and Fe atoms split into multi-degenerated levels which create new bonding and nonbonding states. These exchange splitting shift the Fermi level to origin band gap.▪ - Highlights: • The electronic structure and magnetic properties of Mn{sub 2}FeAs full-Heusler alloy were studied. • A total magnetic moment of 3μ{sub B} was obtained for Mn{sub 2}FeAs alloy, following the SP rule M{sub t}=Z{sub t}−24. • The origin of ferrimagnetism and half-metallic character in Mn{sub 2}FeAs were discussed.« less

  18. Correlation between processing conditions, microstructure and charge transport in half-Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makongo, Julien P.A.; Zhou, Xiaoyuan; Misra, Dinesh K.

    2013-05-01

    Five bulk samples of n-type Zr₀.₂₅Hf₀.₇₅NiSn₀.₉₇₅Sb₀.₀₂₅ half-Heusler (HH) alloy were fabricated by reacting elemental powders via (1) high temperature solid state (SS) reaction and (2) mechanical alloying (MA), followed by densification using spark plasma sintering (SPS) and/or hot pressing (HP). A portion of the sample obtained by SS reaction was mechanically alloyed before consolidation by hot pressing (SS–MA–HP). X-ray powder diffraction and transmission electron microscopy studies revealed that all SS specimen (SS–SPS, SS–HP, SS–MA–HP) are single phase HH alloys, whereas the MA sample (MA–SPS) contains metallic nanoprecipitates. Electronic and thermal transport measurements showed that the embedded nanoprecipitates induce a drasticmore » increase in the carrier concentration (n), a large decrease in the Seebeck coefficient (S) and a marginal decrease in the lattice thermal conductivity (κ l) of the MA–SPS sample leading to lower ZT values when compared to the SS–HP samples. Constant values of S are observed for the SS series regardless of the processing method. However, a strong dependence of the carrier mobility (μ), electrical conductivity (σ) and κ l on the processing and consolidation method is observed. For instance, mechanical alloying introduces additional structural defects which enhance electron and phonon scattering leading to moderately low values of μ and large reduction in κ l. This results in a net 20% enhancement in the figure of merit (ZT=0.6 at 775 K). HH specimen of the same nominal composition with higher ZT is anticipated from a combination of SS reaction, MA and SPS (SS–MA–SPS). - Graphical abstract: In half-Heusler alloys, thermopower values are insensitive to processing method, whereas carrier mobility (μ), electrical conductivity (σ), and κ l strongly dependent on the microstructure which in turn is altered by the synthesis, processing and consolidation method. Highlights:

  19. First principles study on Fe based ferromagnetic quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Amudhavalli, A.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2017-11-01

    The study of stable half-metallic ferromagnetic materials is important from various fundamental and application points of view in condensed matter Physics. Structural phase stability, electronic structure, mechanical and magnetic properties of Fe-based quaternary Heusler alloys XX‧YZ (X = Co, Ni; X‧ = Fe; Y = Ti; Z = Si, Ge, As) for three different phases namely α, β and γ phases of LiMgPdSn crystal structure have been studied by density functional theory with generalized gradient approximation formulated by Perdew, Burke and Ernzerhof (GGA-PBE) and the Hubbard formalism (GGA-PBE + U). This work aims to identify the ferromagnetic and half-metallic properties of XX‧YZ (X = Co, Ni, X‧ = Fe; Y = Ti; Z = Si, Ge, As) quaternary Heusler alloys. The predicted phase stability shows that α-phase is found to be the lowest energy phase at ambient pressure. A pressure-induced structural phase transition is observed in CoFeTiSi, CoFeTiGe, CoFeTiAs, NiFeTiSi, NiFeTiGe and NiFeTiAs at the pressures of 151.6 GPa, 33.7 GPa, 76.4 GPa, 85.3 GPa, 87.7 GPa and 96.5 GPa respectively. The electronic structure reveals that these materials are half metals at normal pressure whereas metals at high pressure. The investigation of electronic structure and magnetic properties are performed to reveal the underlying mechanism of half metallicity. The spin polarized calculations concede that these quaternary Heusler compounds may exhibit the potential candidate in spintronics application. The magnetic moments for these quaternary Heusler alloys in all the three different phases (α, β and γ) are estimated.

  20. Structural and magnetic studies of half-metallic Heusler alloy Cr2CoSi nanoparticle synthesized by mechanical-alloying method

    NASA Astrophysics Data System (ADS)

    Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Ravichandran, K.

    2018-05-01

    Heusler Alloy based Cr2CoSi nanoparticles were synthesized by using ball milling. X-ray diffractions studies were used to characterize the crystal structure of Cr2CoSi nanoparticles and magnetic properties were studied using VSM. XRD data analysis confirms the Heusler alloy phase showing the L21 structure. Magnetic properties are measured for synthesized samples having coercivity Hc = 389 Oe, with high saturation magnetization value Ms = 8.64 emu/g and remenance value Mr = 2.93 emu/g. Synthesized Heusler alloy Cr2CoSi nanoparticles can be potential materials for use in Spin polarized based spin sensors, spin devices, magnetic sensors and transducer applications.

  1. Magnetism and structure of a half-metallic Heusler compound Co-Mn-Cr-Si

    NASA Astrophysics Data System (ADS)

    Huh, Yung; Joshi, Swarangi; Jain, Sanmati; Pathak, Ojas; Kharel, Parashu

    Half metallic ferromagnetic Heusler compounds have a potential in the development of spintronic devices for its high spin polarization at the Fermi level and lattice structure compatibility. Heusler compounds based on cobalt are considered a good candidate for room temperature half-metals due to their high Curie temperature. Co2CrSi is one of such predicted half-metal, but it is meta-stable and difficult to synthesize in the desired crystal structure. We have successfully synthesized a Heusler compound Co2Mn0.5Cr0.5Si by using arc melting and rapid quenching followed by thermal treatment under high vacuum to control any parasitic contamination. Crystal X-ray diffraction pattern shows the samples crystallize in a cubic Heusler structure with some degrees of structural disorder. Curie temperatures of the prepared samples are observed well beyond room temperature near 900 K. Magnetic anomalies present in as-prepared samples are cleared, and its magnetic properties are improved by thermal treatment. This research is supported by Academic and Scholarly Excellence Funds, and Research/Scholarship Support Fund, South Dakota State University.

  2. Half-metallic ferromagnetism in {Ti}2 {IrZ} (Z = B, Al, Ga, and In) Heusler alloys: A density functional study

    NASA Astrophysics Data System (ADS)

    Sadeghi, K. H.; Ahmadian, F.

    2018-02-01

    The first-principle density functional theory (DFT) calculations were employed to investigate the electronic structures, magnetic properties and half-metallicity of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) Heusler alloys with {AlCu}2 {Mn}- and {CuHg}2 {Ti}-type structures within local density approximation and generalised gradient approximation for the exchange correlation potential. It was found that {CuHg}2 {Ti}-type structure in ferromagnetic state was energetically more favourable than {AlCu}2 {Mn}-type structure in all compounds except {Ti}2 {IrB} which was stable in {AlCu}2 {Mn}-type structure in non-magnetic state. {Ti}2 {IrZ} (Z = B, Al, Ga, and In) alloys in {CuHg}2 {Ti}-type structure were half-metallic ferromagnets at their equilibrium lattice constants. Half-metallic band gaps were respectively equal to 0.87, 0.79, 0.75, and 0.73 eV for {Ti}2 {IrB}, {Ti}2 {IrAl}, {Ti}2 {IrGa}, and {Ti}2 {IrIn}. The origin of half-metallicity was discussed for {Ti}2 {IrGa} using the energy band structure. The total magnetic moments of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) compounds in {CuHg}2 {Ti}-type structure were obtained as 2μ B per formula unit, which were in agreement with Slater-Pauling rule (M_{tot} =Z_{tot}-18). All the four compounds were half-metals in a wide range of lattice constants indicating that they may be suitable and promising materials for future spintronic applications.

  3. Two prospective Li-based half-Heusler alloys for spintronic applications based on structural stability and spin–orbit effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R. L.; Damewood, L.; Zeng, Y. J.

    To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI so the half-metallicity persists.more » As a result, based on the mechanical stability and the negligible SOI, we identified two half-metals, β-LiCrAs and β-LiMnSi, as promising half-Heusler alloys worth growing.« less

  4. Two prospective Li-based half-Heusler alloys for spintronic applications based on structural stability and spin–orbit effect

    DOE PAGES

    Zhang, R. L.; Damewood, L.; Zeng, Y. J.; ...

    2017-07-07

    To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI so the half-metallicity persists.more » As a result, based on the mechanical stability and the negligible SOI, we identified two half-metals, β-LiCrAs and β-LiMnSi, as promising half-Heusler alloys worth growing.« less

  5. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials

    PubMed Central

    Xie, Hanhui; Wang, Heng; Fu, Chenguang; Liu, Yintu; Snyder, G. Jeffrey; Zhao, Xinbing; Zhu, Tiejun

    2014-01-01

    The intrinsic structural disorder dramatically affects the thermal and electronic transport in semiconductors. Although normally considered an ordered compound, the half-Heusler ZrNiSn displays many transport characteristics of a disordered alloy. Similar to the (Zr,Hf)NiSn based solid solutions, the unsubstituted ZrNiSn compound also exhibits charge transport dominated by alloy scattering, as demonstrated in this work. The unexpected charge transport, even in ZrNiSn which is normally considered fully ordered, can be explained by the Ni partially filling interstitial sites in this half-Heusler system. The influence of the disordering and defects in crystal structure on the electron transport process has also been quantitatively analyzed in ZrNiSn1-xSbx with carrier concentration nH ranging from 5.0×1019 to 2.3×1021 cm−3 by changing Sb dopant content. The optimized carrier concentration nH ≈ 3–4×1020 cm−2 results in ZT ≈ 0.8 at 875K. This work suggests that MNiSn (M = Hf, Zr, Ti) and perhaps most other half-Heusler thermoelectric materials should be considered highly disordered especially when trying to understand the electronic and phonon structure and transport features. PMID:25363573

  6. The half-metallicity of LiMgPdSn-type quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In): A first-principle study

    NASA Astrophysics Data System (ADS)

    Gao, Y. C.; Gao, X.

    2015-05-01

    Based on the first-principles calculations, quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In) including its phase stability, band gap, the electronic structures and magnetic properties has been studied systematically. We have found that, in terms of the equilibrium lattice constants, FeMnScZ (Z=Al, Ga, In) are half-metallic ferrimagnets, which can sustain the high spin polarization under a very large amount of lattice distortions. The half-metallic band gap in FeMnScZ (Z=Al, Ga, In) alloys originates from the t1u-t2g splitting instead of the eu-t1u splitting. The total magnetic moments are 3μB per unit cell for FeMnScZ (Z=Al, Ga, In) alloys following the Slater-Pauling rule with the total number of valence electrons minus 18 rather than 24. According to the study, the conclusion can be drawn that all of these compounds which have a negative formation energy are possible to be synthesized experimentally.

  7. High thermoelectric figure of merit by resonant dopant in half-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Chen, Long; Liu, Yamei; He, Jian; Tritt, Terry M.; Poon, S. Joseph

    2017-06-01

    Half-Heusler alloys have been one of the benchmark high temperature thermoelectric materials owing to their thermal stability and promising figure of merit ZT. Simonson et al. early showed that small amounts of vanadium doped in Hf0.75Zr0.25NiSn enhanced the Seebeck coefficient and correlated the change with the increased density of states near the Fermi level. We herein report a systematic study on the role of vanadium (V), niobium (Nb), and tantalum (Ta) as prospective resonant dopants in enhancing the ZT of n-type half-Heusler alloys based on Hf0.6Zr0.4NiSn0.995Sb0.005. The V doping was found to increase the Seebeck coefficient in the temperature range 300-1000 K, consistent with a resonant doping scheme. In contrast, Nb and Ta act as normal n-type dopants, as evident by the systematic decrease in electrical resistivity and Seebeck coefficient. The combination of enhanced Seebeck coefficient due to the presence of V resonant states and the reduced thermal conductivity has led to a state-of-the-art ZT of 1.3 near 850 K in n-type (Hf0.6Zr0.4)0.99V0.01NiSn0.995Sb0.005 alloys.

  8. First-principles study of half-metallic properties in RbCaNZ (Z = O, S, and Se) quaternary Heusler compounds

    NASA Astrophysics Data System (ADS)

    Rezaei, S.; Ahmadian, F.

    2018-06-01

    On the basis of first principles calculations, the electronic structures and magnetic properties of quaternary Heusler alloys RbCaNZ (Z = O, S, and Se) were studied. The negative formation energies indicated that all these compounds were thermodynamically stable and thus may be experimentally synthesized at appropriate conditions in the future. The results showed that YI structure was the most favorable configuration among the three possible structures. All compounds were found to be half-metallic ferromagnets. The characteristic of energy bands and origin of half-metallicity were also verified. The total magnetic moments of RbCaNZ (Z = O, S, and Se) compounds were obtained 2μB per formula unit, which were in an agreement with Slater-Pauling rule (Mtot = 12 - Ztot). Half-metallicity was preserved at ranges of 5.06-8.36 Å, 5.96-8.81 Å, and 6.13-8.73 Å for RbCaNO, RbCaNS, and RbCaNSe compounds, respectively, which show that these quaternary Heusler compounds may be potential candidates in spintronic applications.

  9. The half-metallicity of LiMgPdSn-type quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In): A first-principle study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y. C., E-mail: gaoyc1963@126.com; Gao, X.

    2015-05-15

    Based on the first-principles calculations, quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In) including its phase stability, band gap, the electronic structures and magnetic properties has been studied systematically. We have found that, in terms of the equilibrium lattice constants, FeMnScZ (Z=Al, Ga, In) are half-metallic ferrimagnets, which can sustain the high spin polarization under a very large amount of lattice distortions. The half-metallic band gap in FeMnScZ (Z=Al, Ga, In) alloys originates from the t{sub 1u}-t{sub 2g} splitting instead of the e{sub u}-t{sub 1u} splitting. The total magnetic moments are 3μB per unit cell for FeMnScZ (Z=Al, Ga, In) alloysmore » following the Slater–Pauling rule with the total number of valence electrons minus 18 rather than 24. According to the study, the conclusion can be drawn that all of these compounds which have a negative formation energy are possible to be synthesized experimentally.« less

  10. The electronic and magnetic properties of quaternary Heusler alloy CoFeMnGe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seema, K.

    2016-05-23

    We present study of quaternary Heusler alloy CoFeMnGe using density functional theory. The compound is half-metallic with half-metallic gap of 0.13 eV. The total magnetic moment of this compound is 3.96 μ{sub B} which is in close agreement with Slater-Pauling rule. The effect of lattice compression and expansion shows the robustness of half-metallicity. A large value of half-metallic gap and 100% spin-polarization makes this material interesting for spin dependent applications.

  11. Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl

    NASA Astrophysics Data System (ADS)

    Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.

    2018-04-01

    In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.

  12. Computational investigation of half-Heusler compounds for spintronics applications

    NASA Astrophysics Data System (ADS)

    Ma, Jianhua; Hegde, Vinay I.; Munira, Kamaram; Xie, Yunkun; Keshavarz, Sahar; Mildebrath, David T.; Wolverton, C.; Ghosh, Avik W.; Butler, W. H.

    2017-01-01

    We present first-principles density functional calculations of the electronic structure, magnetism, and structural stability of 378 XYZ half-Heusler compounds (with X = Cr, Mn, Fe, Co, Ni, Ru, Rh; Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Ga, In, Si, Ge, Sn, P, As, Sb). We find that a "Slater-Pauling gap" in the density of states (i.e., a gap or pseudogap after nine states in the three atom primitive cell) in at least one spin channel is a common feature in half-Heusler compounds. We find that the presence of such a gap at the Fermi energy in one or both spin channels contributes significantly to the stability of a half-Heusler compound. We calculate the formation energy of each compound and systematically investigate its stability against all other phases in the open quantum materials database (OQMD). We represent the thermodynamic phase stability of each compound as its distance from the convex hull of stable phases in the respective chemical space and show that the hull distance of a compound is a good measure of the likelihood of its experimental synthesis. We find low formation energies and mostly correspondingly low hull distances for compounds with X = Co, Rh, or Ni, Y = Ti or V, and Z = P, As, Sb, or Si. We identify 26 18-electron semiconductors, 45 half-metals, and 34 near half-metals with negative formation energy that follow the Slater-Pauling rule of three electrons per atom. Our calculations predict several new, as-yet unknown, thermodynamically stable phases, which merit further experimental exploration—RuVAs, CoVGe, FeVAs in the half-Heusler structure, and NiScAs, RuVP, RhTiP in the orthorhombic MgSrSi-type structure. Further, two interesting zero-moment half-metals, CrMnAs and MnCrAs, are calculated to have negative formation energy. In addition, our calculations predict a number of hitherto unreported semiconducting (e.g., CoVSn and RhVGe), half-metallic (e.g., RhVSb), and near half-metallic (e.g., CoFeSb and CoVP) half-Heusler compounds to lie close to

  13. Electronic Structure Properties and a Bonding Model of Thermoelectric Half-Heusler and Boride Phases

    NASA Astrophysics Data System (ADS)

    Simonson, Jack William

    Half-Heusler alloys MNiSn and MCoSb (M = Ti, Zr, Hf) and layered boride intermetallics with structure types YCrB4 and Er 3CrB7 were designed, synthesized, and characterized. The thermoelectric properties of these two classes of alloys were measured from room temperature to 1100 K with the intent of indirectly studying their electronic structure properties and gauging not only their suitability but that of related alloys for high temperature thermoelectric power generation. In the case of the half-Heusler alloys, transition metals were substituted to both the M and Ni/Co sites to study the resultant modifications of the d-orbital-rich portion of the electronic structure near the Fermi energy. This modification and subsequent pinning of the Fermi energy within the gap is discussed herein in terms of first principles electronic structure calculations from the literature. In the half-Heusler alloys, it was found that substitution of transition metals invariably led to a decrease in the thermopower, while the resistivity typically maintained its semiconducting trend. On the other hand, Sn doping in MCoSb type alloys -- a dopant that has been known for some time to be efficient -- was shown to result in high ZT at temperatures in excess of 1000 K. Moreover, the band gaps of the transition metal-doped alloys measured in this work offer insight into the discrepancy between the predicted and measured band gaps in the undoped parent compositions. In the case of the layered boride alloys, on the other hand, few electronic calculations have been published, thus prompting the generalization of a well-known electron counting rule -- which is typically used to study molecular organometallics, boranes, and metallocenes -- to predict the trends in the densities of states of crystalline solids that possess the requisite deltahedral bonding geometry. In accordance with these generalized electronic counting rules, alloys of the form RMB4 (R = Y, Gd, Ho; M = Cr, Mo, W) were measured to

  14. Structural phase transition, electronic structure and optical properties of half Heusler alloys LiBeZ (Z = As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amudhavalli, A.; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com

    2016-05-23

    Ab initio calculations are performed to investigate the structural stability, electronic structure, mechanical properties and optical properties of half Heusler alloys (LiBeAs and LiBeSb) for three different phases of zinc blende crystal structure. Among the considered phases, α- phase is found to be the most stable phase for these alloys at normal pressure. A pressure induced structural phase transition from α-phase to β- phase is observed for LiBeAs. The electronic structure reveals that these alloys are semiconductors. The optical properties confirm that these alloys are semiconductor in nature.

  15. Transport properties of epitaxial films for superconductor NbN and half-metallic Heusler alloy Co2MnSi under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Shigeta, Iduru; Kubota, Takahide; Sakuraba, Yuya; Kimura, Shojiro; Awaji, Satoshi; Takanashi, Koki; Hiroi, Masahiko

    2018-05-01

    Transport properties were investigated for epitaxial films of superconductor NbN and half-metallic Heusler alloy Co2MnSi under high magnetic fields up to 17 T. The superconducting transition temperature Tc of NbN/Co2MnSi/Au trilayer films was determined to be 16.1 K in the absence of magnetic field. Temperature dependence of the resistivity ρ (T) was measured in both magnetic fields parallel and perpendicular to the surface of NbN/Co2MnSi/Au trilayer films. The activation energy U0 (H) for vortex motion of the trilayer films in both magnetic fields was well fitted above 5 T by the similar model with the exponents in the field dependence of the pinning force density. From the resistivity ρ (T) measurements under high magnetic fields, the upper critical field Hc2 (0) at 0 K was also deduced to be μ0 Hc2 ∥ (0) = 23.2 T for the parallel magnetic filed and μ0 Hc2 ⊥ (0) = 15.8 T for the perpendicular magnetic field, respectively. The experimental results under magnetic fields revealed the superconductivity of the NbN layer was affected by the interplay between the superconducting NbN layer and the half-metallic Co2MnSi layer.

  16. Structural and magnetic characterization of Fe2CrSi Heusler alloy nanoparticles as spin injectors and spin based sensors

    NASA Astrophysics Data System (ADS)

    Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.

    2018-05-01

    Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.

  17. Tuning the thermoelectric properties of YNiBi half-Heusler alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Sonu; Kumar, Pradeep

    2018-04-01

    A detail comparison between the results obtained for the electronic and transport properties of YNiBi half-Heusler alloy by local density approximation (LDA) and generalized gradient approximation (GGA) functionals with and without spin–orbit coupling (SOC) is presented. In the presence of SOC both functionals provide ∼30% smaller band gap. The transport coefficients computed without SOC confirm that YNiBi is a promising p-type thermoelectric material. However, with SOC at higher temperature, Seebeck coefficient was found to be negative because of the bipolar effects. Without SOC the computed power factor (PF) is found to be closer to the experimental value, while in the presence of SOC we have obtained comparatively smaller PF. No importance of SOC has been observed in the calculations of transport properties of the compound. The appropriate Ti doping in place of Y is predicted to significantly enhance the thermoelectric properties of YNiBi compound.

  18. High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainsla, Lakhan; Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047; Suresh, K. G., E-mail: suresh@phy.iitb.ac.in

    2014-11-28

    We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for themore » half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.« less

  19. First principles investigations of Fe2CrSi Heusler alloys by substitution of Co at Fe site

    NASA Astrophysics Data System (ADS)

    Jain, Rakesh; Lakshmi, N.; Jain, Vivek Kumar; Chandra, Aarti R.

    2018-04-01

    Electronic structure and magnetic properties of Fe2-xCoxCrSi Heusler alloys have been investigated by varying Co concentration from x = 0 to 2. On increasing Co concentration, lattice constant and magnetic moment of Fe2-xCoxCrSi alloys increase. These alloys show true half metallic Ferromagnetic behavior with 100% spin polarization. Band gap of the alloys also increase from 0.54 eV to 0.85 eV on increasing Co concentration making these alloys promising materials for spintronics based device applications.

  20. High performance p-type half-Heusler thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Yu, Junjie; Xia, Kaiyang; Zhao, Xinbing; Zhu, Tiejun

    2018-03-01

    Half-Heusler compounds, which possess robust mechanical strength, good high temperature thermal stability and multifaceted physical properties, have been verified as a class of promising thermoelectric materials. During the last two decades, great progress has been made in half-Heusler thermoelectrics. In this review, we summarize some representative work of p-type half-Heusler materials, the thermoelectric performance of which has been remarkably enhanced in recent years. We introduce the features of the crystal and electronic structures of half-Heusler compounds, and successful strategies for optimizing electrical and thermal transport in the p-type RFeSb (R  =  V, Nb, Ta) and MCoSb (M  =  Ti, Zr, Hf) based systems, including band engineering, the formation of solid solutions and hierarchical phonon scattering. The outlook for future research directions of half-Heusler thermoelectrics is also presented.

  1. First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Aly, Samy H.; Shabara, Reham M.

    2014-06-01

    We present an ab-initio study of the elastic and magnetic properties of Cr-based full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full-potential nonorthogonal local-orbital minimum basis (FPLO) code in the Generalized Gradient Approximation (GGA) scheme. Only the two alloys Co2CrSi and Fe2CrSi are half-metallic with energy gaps of 0.88 and 0.55 eV in the spin-down channel respectively. We have predicted the metallicity state for Fe2CrSb, Ni2CrIn, Cu2CrIn, and Cu2CrSi alloys. Fe2CrSb shows a strong pressure dependent, e.g. exhibits metallicity at zero pressure and turns into a half-metal at P≥10 GPa. The total and partial magnetic moments of these alloys were studied under higher pressure, e.g. in Co2CrIn, the total magnetic moment is almost unchanged under higher pressure up to 500 GPa.

  2. Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainsla, Lakhan, E-mail: lakhanbainsla@gmail.com, E-mail: suresh@phy.iitb.ac.in; Suresh, K. G., E-mail: lakhanbainsla@gmail.com, E-mail: suresh@phy.iitb.ac.in

    2016-09-15

    Half-metallic ferromagnetic (HMF) materials show high spin polarization and are therefore interesting to researchers due to their possible applications in spintronic devices. In these materials, while one spin sub band has a finite density of states at the Fermi level, the other sub band has a gap. Because of their high Curie temperature (T{sub C}) and tunable electronic structure, HMF Heusler alloys have a special importance among the HMF materials. Full Heusler alloys with the stoichiometric composition X{sub 2}YZ (where X and Y are the transition metals and Z is a sp element) have the cubic L2{sub 1} structure withmore » four interpenetrating fcc sublattices. When each of these four fcc sublattices is occupied by different atoms (XX′YZ), a quaternary Heusler structure with different structural symmetries (space group F-43m, #216) is obtained. Recently, these equiatomic quaternary Heusler alloys (EQHAs) with 1:1:1:1 stoichiometry have attracted a lot of attention due to their superior magnetic and transport properties. A special class of HMF materials identified recently is known as spin gapless semiconductors (SGS). The difference in this case, compared with HMFs, is that the density of states for one spin band is just zero at the Fermi level, while the other has a gap as in the case of HMFs. Some of the reported SGS materials belong to EQHAs family. This review is dedicated to almost all reported materials belonging to EQHAs family. The electronic structure and hence the physical properties of Heusler alloys strongly depend on the degree of structural order and distribution of the atoms in the crystal lattice. A variety of experimental techniques has been used to probe the structural parameters and degree of order in these alloys. Their magnetic properties have been investigated using the conventional methods, while the spin polarization has been probed by point contact Andreev reflection technique. The experimentally obtained values of saturation

  3. Lanthanide Contraction as a Design Factor for High-Performance Half-Heusler Thermoelectric Materials.

    PubMed

    Liu, Yintu; Fu, Chenguang; Xia, Kaiyang; Yu, Junjie; Zhao, Xinbing; Pan, Hongge; Felser, Claudia; Zhu, Tiejun

    2018-06-25

    Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half-Heusler alloys, n-type (Zr,Hf)NiSn and p-type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n-type (Zr,Hf)CoSb-based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb-based half-Heusler compounds due to the matched n-type and p-type thermoelectric performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds

    PubMed Central

    Xie, Wenjie; Weidenkaff, Anke; Tang, Xinfeng; Zhang, Qingjie; Poon, Joseph; Tritt, Terry M.

    2012-01-01

    Half-Heusler (HH) alloys have attracted considerable interest as promising thermoelectric (TE) materials in the temperature range around 700 K and above, which is close to the temperature range of most industrial waste heat sources. The past few years have seen nanostructuing play an important role in significantly enhancing the TE performance of several HH alloys. In this article, we briefly review the recent progress and advances in these HH nanocomposites. We begin by presenting the structure of HH alloys and the different strategies that have been utilized for improving the TE properties of HH alloys. Next, we review the details of HH nanocomposites as obtained by different techniques. Finally, the review closes by highlighting several promising strategies for further research directions in these very promising TE materials. PMID:28348315

  5. A new n-type half-Heusler thermoelectric material NbCoSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lihong; Department of Physics and TcSUH, University of Houston, Houston, TX 77204; He, Ran

    2015-10-15

    Highlights: • Half-Heusler alloy NbCoSb with 19 valence electron count was studied as TE material. • It is surprising that NbCoSb is n-type. • A maximum ZT of ∼0.4 is achieved at 700 °C without optimization. • It opens up a new route to develop new half-Heusler thermoelectric materials. • It is very interesting that a traditionally thought of VEC of 18 is not required. - Abstract: We surprisingly made a new n-type thermoelectric compound NbCoSb with half-Heusler (HH) structure having valence electron count of 19, different from the traditional 18, which opens up a new route to develop newmore » half-Heusler thermoelectric materials not following the traditional valence electron count of 18. The samples are made by arc melting followed by ball milling and hot pressing. The effect of hot pressing temperature on the thermoelectric properties of NbCoSb samples has been studied. A maximum thermoelectric figure-of-merit (ZT) of ∼0.4 is achieved at 700 °C in NbCoSb sample that is hot pressed at 1000 °C. This work add a new member to HH compounds for thermoelectric applications, although the peak ZT of ∼0.4 is still lower than that of the traditional HHs. Moreover, it is very interesting to see that a traditionally thought of valence electron counts of 18 is not required.« less

  6. Atomistic study of the electronic contact resistivity between the half-Heusler alloys (HfCoSb, HfZrCoSb, HfZrNiSn) and the metal Ag

    NASA Astrophysics Data System (ADS)

    He, Yuping; Léonard, François; Spataru, Catalin D.

    2018-06-01

    Half-Heusler (HH) alloys have shown promising thermoelectric properties in the medium- and high-temperature range. To harness these material properties for thermoelectric applications, it is important to realize electrical contacts with low electrical contact resistivity. However, little is known about the detailed structural and electronic properties of such contacts and the expected values of contact resistivity. Here, we employ atomistic ab initio calculations to study electrical contacts in a subclass of HH alloys consisting of the compounds HfCoSb, HfZrCoSb, and HfZrNiSn. By using Ag as a prototypical metal, we show that the termination of the HH material critically determines the presence or absence of strong deformations at the interface. Our study includes contacts to doped materials, and the results indicate that the p -type materials generally form ohmic contacts while the n -type materials have a small Schottky barrier. We calculate the temperature dependence of the contact resistivity in the low- to medium-temperature range and provide quantitative values that set lower limits for these systems.

  7. Engineering half-Heusler thermoelectric materials using Zintl chemistry

    NASA Astrophysics Data System (ADS)

    Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy; Aydemir, Umut; Gibbs, Zachary M.; Felser, Claudia; Snyder, G. Jeffrey

    2016-06-01

    Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

  8. Understanding the transport properties of YNiBi half- Heusler alloy: An Ab-initio study

    NASA Astrophysics Data System (ADS)

    Sharma, Sonu; Kumar, Pradeep

    2017-05-01

    In the present work, we have studied the electronic and transport properties of YNiBi half-Heusler alloy by combining the first principles methods with the Boltzmann transport theory. The electronic band structure and total density of states plot suggest the presence of semiconducting ground state in the compound. The value of indirect band gap is found to be ˜0.21 eV. The origin of the band gap is associated primarily with the interaction between the Ni 3d and the Y 4d states. The room temperature value of Seebeck coefficient is ˜230 µVK-1. A moderate power factor of about 12×1014 μ Wcm-1 K-2 s-1 is obtained at 980 k.

  9. Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M=Ti,V,Cr)

    NASA Astrophysics Data System (ADS)

    Chen, Xing-Qiu; Podloucky, R.; Rogl, P.

    2006-12-01

    By means of density functional calculations, the magnetic and electronic properties and phase stabilities of the Heusler compounds Co2MSi (with M =Ti,V,Cr,Mn,Fe,Co,Ni) were investigated. Based on the calculated results, we predict the ferromagnetic phases of the compounds Co2TiSi, Co2VSi, and Co2CrSi to be half metals. Of particular interest is Co2CrSi because of its high density of majority-spin states at Fermi energy in combination with a reasonably high estimated Curie temperature of 747K. The compounds Co2TiSi and Co2VSi are thermodynamically stable, whereas Co2CrSi is of a metastable phase which might be stabilized by suitable experimental techniques.

  10. Investigation of half-metallic ferromagnetism in Heusler compounds Co2VZ (Z = Ga, Ge, As, Se)

    NASA Astrophysics Data System (ADS)

    Han, Jiajia; Wang, Zhengwei; Xu, Weiwei; Wang, Cuiping; Liu, Xingjun

    2017-11-01

    The electronic structures and magnetic properties of 3d transition metal-based full Heusler compounds Co2VZ (Z = Ga, Ge, As, Se) are investigated using the projector augmented wave (PAW) pseudopotential method. By considering the strong localization of Co 3d-states and V 3d-states at the Fermi level, these Co2VZ (Z = Ga, Ge, As, Se) compounds were treated in the framework of the generalized gradient approximation (GGA)+U method, and the results from the conventional GGA method are presented for comparison. The results that were obtained from the density of states with the GGA+U and GGA methods show that the Co2VGa compound is a half-metallic ferromagnet. For the Co2VGe and Co2VAs compounds, the GGA+U method predicts that these two compounds are half-metallic ferromagnetic by shifting the Fermi level to a lower value with respect to the gap in the minority states, when compared to the conventional GGA method. The energy gaps are determined to be 0.283 eV and 0.425 eV, respectively. However, these results show that the density of states of the Co2VSe compound has a metallic character, although the 3d states were corrected when using the GGA+U method. We found that the characteristic of half-metallic ferromagnetism is attributed to the interaction between the V 3d-states other than Co 3d-states. The calculated total magnetic moments are 2.046 μB, 3.054 μB and 4.012 μB respectively for the Co2VZ (Z = Ga, Ge, As) compounds with the GGA+U method. The relationship between total spin magnetic moment per formula unit and total number of valence electrons of these Heusler compounds is in agreement with the Slater-Pauling rule.

  11. Effects of Ga substitution on the structural and magnetic properties of half metallic Fe2MnSi Heusler compound

    NASA Astrophysics Data System (ADS)

    Pedro, S. S.; Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Caldeira, L.; Coelho, A. A.; Carvalho, A. Magnus G.; Rocco, D. L.; Reis, M. S.

    2015-01-01

    The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe2MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.

  12. Effect of Spark Plasma Sintering on the Structure and Properties of Ti1−xZrxNiSn Half-Heusler Alloys

    PubMed Central

    Downie, Ruth A.; Popuri, Srinivas R.; Ning, Huanpo; Reece, Mike J.; Bos, Jan-Willem G.

    2014-01-01

    XNiSn (X = Ti, Zr and Hf) half-Heusler alloys have promising thermoelectric properties and are attracting enormous interest for use in waste heat recovery. In particular, multiphase behaviour has been linked to reduced lattice thermal conductivities, which enables improved energy conversion efficiencies. This manuscript describes the impact of spark plasma sintering (SPS) on the phase distributions and thermoelectric properties of Ti0.5Zr0.5NiSn based half-Heuslers. Rietveld analysis reveals small changes in composition, while measurement of the Seebeck coefficient and electrical resistivities reveals that all SPS treated samples are electron doped compared to the as-prepared samples. The lattice thermal conductivities fall between 4 W·m−1·K−1 at 350 K and 3 W·m−1·K−1 at 740 K. A maximum ZT = 0.7 at 740 K is observed in a sample with nominal Ti0.5Zr0.5NiSn composition. PMID:28788234

  13. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.

    PubMed

    Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun

    2015-09-02

    Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron-phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm(-2) at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability.

  14. Tuning the magnetocaloric response in half-Heusler/Heusler MnNi1 +xSb solid solutions

    NASA Astrophysics Data System (ADS)

    Levin, Emily E.; Bocarsly, Joshua D.; Wyckoff, Kira E.; Pollock, Tresa M.; Seshadri, Ram

    2017-12-01

    Materials with a large magnetocaloric response are associated with a temperature change upon the application of a magnetic field and are of interest for applications in magnetic refrigeration and thermomagnetic power generation. The usual metric of this response is the gravimetric isothermal entropy change Δ SM . The use of a simple proxy for the Δ SM that is based on density functional theory (DFT) calculations of the magnetic electronic structure suggests that half-Heusler MnNiSb should be a better magnetocaloric than the corresponding Heusler compound MnNi2Sb . Guided by this observation, we present a study of MnNi1 +xSb (x =0 , 0.25, 0.5, 0.75, and 1.0) to evaluate relevant structural and magnetic properties. DFT stability calculations suggest that the addition of Ni takes place at a symmetrically distinct Ni site in the half-Heusler structure and support the observation using synchrotron x-ray diffraction of a homogeneous solid solution between the half-Heusler and Heusler end members. There is a maximum in the saturation magnetization at x =0.5 and the Curie temperature systematically decreases with increasing x . Δ SM for a maximum magnetic field change of Δ H =5 T monotonically decreases in magnitude from -2.93 J kg-1K-1 in the half-Heusler to -1.35 J kg-1K-1 in the Heusler compound. The concurrent broadening of the magnetic transition results in a maximum in the refrigerant capacity at x =0.75 . The Curie temperature of this system is highly tunable between 350 K and 750 K, making it ideal for low grade waste heat recovery via thermomagnetic power generation. The increase in Δ SM with decreasing x may be extendable to other MnNi2Z Heusler systems that are currently under investigation for use in magnetocaloric refrigeration applications.

  15. GW study of the half-metallic Heusler compounds Co2MnSi and Co2FeSi

    NASA Astrophysics Data System (ADS)

    Meinert, Markus; Friedrich, Christoph; Reiss, Günter; Blügel, Stefan

    2012-12-01

    Quasiparticle spectra of potentially half-metallic Co2MnSi and Co2FeSi Heusler compounds have been calculated within the one-shot GW approximation in an all-electron framework without adjustable parameters. For Co2FeSi the many-body corrections are crucial: a pseudogap opens and good agreement of the magnetic moment with experiment is obtained. Otherwise, however, the changes with respect to the density-functional-theory starting point are moderate. For both cases we find that photoemission and x-ray absorption spectra are well described by the calculations. By comparison with the GW density of states, we conclude that the Kohn-Sham eigenvalue spectrum provides a reasonable approximation for the quasiparticle spectrum of the Heusler compounds considered in this work.

  16. The structural, electronic, magnetic and optical properties of the half-metallic binary alloys ZCl3 (Z=Be, Mg, Ca, Sr): A first-principles study

    NASA Astrophysics Data System (ADS)

    Song, Jun-Tao; Zhang, Jian-Min

    2018-06-01

    The investigations of the electronic and magnetic properties show the binary Heusler alloys ZCl3 (Z = Be, Mg, Ca, Sr) are half-metallic (HM) ferromagnets with an integer magnetic moment (Mt) of 1 μB /f.u.. The alloy BeCl3 is thermodynamic meta-stable, while other alloys are thermodynamic stable according to their cohesive energies and formation energies. Moreover, wide HM regions for alloys ZCl3 (Z = Be, Mg, Ca, Sr) show their HM characters are robust when the lattices are expanded or compressed under uniform and tetragonal strains. Finally, some optical properties are analyzed in detail, such as the dielectric function, the absorption coefficient, the refractive index and the extinction coefficient.

  17. Synthesis and thermoelectric properties of tantalum-doped ZrNiSn half-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Zuo, Min; Wang, Zhenqing; Teng, Xinying; Geng, Haoran

    2014-04-01

    The Ta-doped ZrNiSn half-Heusler alloys, Zr1-xTaxNiSn, were synthesized by arc melting and hot-press sintering. Microstructure of Zr1-xTaxNiSn compounds were analyzed and the thermoelectric (TE) properties of Zr1-xTaxNiSn compounds were measured from room temperature to 823 K. The electrical conductivity increased with increasing Ta content. The Seebeck coefficient of Zr1-xTaxNiSn compounds was sharply decreased with increasing Ta content. The Hall mobility was proportional to T-1.5 above 673 K, indicating that the acoustic phonon scattering was predominant in the temperature range. The thermal conductivity was effectively depressed by introducing Ta substitution. The figure of merit of ZrNiSn compounds was improved due to the decreased thermal conductivity and increased electrical conductivity. The maximum ZT value of 0.60 was achieved for Zr0.97Ta0.03NiSn sample at 823 K.

  18. Structural, electronic, magnetic, and transport properties of the equiatomic quaternary Heusler alloy CoRhMnGe: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Rani, Deepika; Enamullah, Suresh, K. G.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Varma, Manoj Raama; Alam, Aftab

    2017-11-01

    In this work, we present structural, electronic, magnetic, mechanical, and transport properties of equiatomic quaternary Heusler alloy, CoRhMnGe, using theoretical and experimental techniques. A detailed structural analysis is performed using x-ray diffraction and extended x-ray absorption fine structure spectroscopy. The alloy is found to crystallize in Y -type structure having space group F 4 ¯3 m (no. 216). The ab initio simulation predicts half-metallic ferromagnetic characteristics leading to large spin polarization. The calculated magnetization is found to be in fair agreement with experiment as well as those predicted by the Slater-Pauling rule, which is a prerequisite for half-metallicity. The magnetic transition temperature (TC) is found to be ˜760 K. Measured electrical resistivity in the temperature range 2-400 K also gives an indication of half-metallic behavior. Effect of hydrostatic pressure on electronic structure, magnetic, and mechanical properties are investigated in detail. The alloy is found to preserve half-metallic characteristics up to 30.27 GPa, beyond which it transits to metallic phase. No magnetic phase transition is found to occur in the whole range of pressure. The system also satisfies the Born-Huang criteria for mechanical stability up to a limited range of pressure. All these properties make the CoRhMnGe alloy promising for spintronics devices.

  19. Effects of strain on the half-metallicity and spin gapless feature of Ti2YSi (Y = Fe, Co) alloys

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoguang; Li, Jincheng; Jin, Yingjiu

    2018-05-01

    Half-metals and spin gapless semiconductors (SGSs), which exhibit 100% spin polarization at the Fermi level, are considered important candidates for spintronics. Using first-principles calculations, we have investigated the effects of uniform strain and tetragonal distortion on the half-metallicity and spin gapless feature of inverse Heusler Ti2YSi (Y = Fe and Co) alloys. Results show that for uniform strains, the half-metallicity occurs in the ranges of lattice parameters from 5.938 Å to 6.535 Å for Ti2FeSi and from 5.924 Å to 6.840 Å for Ti2CoSi. Tetragonal distortions over the ranges of ‑2.0% to +2.5% and ‑2.6% to +4.1% could destroy the half-metallicity for Ti2FeSi and Ti2CoSi, respectively. On the other hand, Ti2CoSi is an SGS at lattice constants of 5.968-6.023 Å. An interesting finding is that Ti2CoSi reproduces the SGS character with increasing the lattice parameters to 6.784-6.840 Å. Small tetragonal distortions with ±0.2% will destroy the SGS character of Ti2CoSi.

  20. Effects of Ga substitution on the structural and magnetic properties of half metallic Fe{sub 2}MnSi Heusler compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedro, S. S., E-mail: sandrapedro@uerj.br; Caraballo Vivas, R. J.; Andrade, V. M.

    2015-01-07

    The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe{sub 2}MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system,more » but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.« less

  1. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials

    PubMed Central

    Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun

    2015-01-01

    Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron–phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm−2 at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability. PMID:26330371

  2. Growth and characterization of high crystalline quality Co2FeAlxSi1-x Heusler alloy films on MgAl2O4(001) substrates

    NASA Astrophysics Data System (ADS)

    Peters, Brian; Blum, Christian; Woodward, Patrick; Wurmehl, Sabine; Yang, Fengyuan

    2013-03-01

    A number of Heusler alloys have been predicted to be half-metallic and are thus ideal candidates for use in spintronics. Co2FeAlxSi1-x has been predicted and shown to have some of the highest Tc, saturation magnetization and lowest magnetic damping constant among Heusler half-metals. Here we outline the growth and characterization of the highest crystalline quality epitaxial Heusler films using a novel off-axis UHV sputtering technique. We grow these films onto a closely lattice matched MgAl2O4(001) substrate, without the need for a Cr-buffer layer or post annealing, as has been done previously. This eliminates the diffusion of Cr across the interface, thus improving the purity and crystallinity of the films at the interface. X-ray diffraction results demonstrate epitaxial films with distinct Laue oscillations and rocking curves of FWHM as low as 0.0035°, which demonstrates the highest crystalline quality for Heusler films reported to date. Magnetic measurements show highly square hysteresis loops with a remanence of 95-98%, near ideal saturation magnetization, very small coercivities - between 3-8 Oe, pronounced magnetocrystalline anisotropy. Department of Chemistry, The Ohio State University

  3. Surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Feng, Zhong-Ying; Zhang, Jian-Min

    2018-05-01

    The spin-polarized first-principles are used to study the surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy, and the bulk Zr2CoSn Heusler alloy are also discussed to make comparison. The conduction band minimum (CBM) of half-metallic (HM) bulk Zr2CoSn alloy is contributed by ZrA, ZrB and Co atoms, while the valence band maximum (VBM) is contributed by ZrB and Co atoms. The SnSn termination is the most stable surface with the highest spin polarizations P = 77.1% among the CoCo, ZrCo, ZrZr, ZrSn and SnSn terminations of the Zr2CoSn (001) surface. In the SnSn termination of the Zr2CoSn (001) surface, the atomic partial density of states (APDOS) of atoms in the surface, subsurface and third layers are much influenced by the surface effect and the total magnetic moment (TMM) is mainly contributed by the atomic magnetic moments of atoms in fourth to ninth layers.

  4. Development of half metallicity within mixed magnetic phase of Cu1‑x Co x MnSb alloy

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Abhisek; Neogi, Swarup Kumar; Paul, Atanu; Meneghini, Carlo; Bandyopadhyay, Sudipta; Dasgupta, Indra; Ray, Sugata

    2018-05-01

    Cubic half-Heusler Cu1‑x Co x MnSb () compounds have been investigated both experimentally and theoretically for their magnetic, transport and electronic properties in search of possible half metallic antiferromagnetism. The systems (Cu,Co)MnSb are of particular interest as the end member alloys CuMnSb and CoMnSb are semi metallic (SM) antiferromagnetic (AFM) and half metallic (HM) ferromagnetic (FM), respectively. Clearly, Co-doping at the Cu-site of CuMnSb introduces changes in the carrier concentration at the Fermi level that may lead to half metallic ground state but there remains a persistent controversy whether the AFM to FM transition occurs simultaneously. Our experimental results reveal that the AFM to FM magnetic transition occurs through a percolation mechanism where Co-substitution gradually suppresses the AFM phase and forces FM polarization around every dopant cobalt. As a result a mixed magnetic phase is realized within this composition range while a nearly HM band structure is developed already at the 10% Co-doping. Absence of T 2 dependence in the resistivity variation at low T-region serves as an indirect proof of opening up an energy gap at the Fermi surface in one of the spin channels. This is further corroborated by the ab initio electronic structure calculations that suggests that a nearly ferromagnetic half-metallic ground state is stabilized by Sb-p holes produced upon Co doping.

  5. Structural, Electronic and Elastic Properties of Half-Heusler Alloys CrNiZ (Z = Al, Si, Ge and As)

    NASA Astrophysics Data System (ADS)

    Zitouni, A.; Benstaali, W.; Abbad, A.; Lantri, T.; Bouadjemi, B.; Aziz, Z.

    2018-06-01

    In the present work, a self-consistent ab-initio calculation using the full- potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT) was used to study the structural, electronic, magnetic and elastic properties of the half Heusler alloys CrNiZ (Z = Al, Si, Ge and As) in three phases ( α, β and γ phases). The generalized gradient approximation (GGA) described by Perdew-Burke-Ernzerhof (PBE) was used. The results obtained for the spin-polarized band structure and the density of states show a halfmetallic behavior for the four compounds. The elastic constants ( C ij ) show that our compounds are ductile, stiff and anisotropic.

  6. Monocrystalline Heusler Co2FeSi alloy glass-coated microwires: Fabrication and magneto-structural characterization

    NASA Astrophysics Data System (ADS)

    Galdun, L.; Ryba, T.; Prida, V. M.; Zhukova, V.; Zhukov, A.; Diko, P.; Kavečanský, V.; Vargova, Z.; Varga, R.

    2018-05-01

    Large scale production of single crystalline phase of Heusler Co2FeSi alloy microwire is reported. The long microwire (∼1 km) with the metallic nucleus diameter of about 2 μm is characterized by well oriented monocrystalline structure (B2 phase, with the lattice parameter a = 5.615 Å). Moreover, the crystallographic direction [1 0 1] is parallel to the wire's axis along the entire length. Additionally, the wire is characterized by exhibiting a high Curie temperature (Tc > 800 K) and well-defined magnetic anisotropy mainly governed by shape. Electrical resistivity measurement reveals the exponential suppression of the electron-magnon scattering which provides strong evidence on the half-metallic behaviour of this material in the low temperature range.

  7. Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.

    PubMed

    Lee, Chung-Hyo

    2018-02-01

    We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.

  8. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    DOE PAGES

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; ...

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μ B, 866 K and 0.9 μ B, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L2 1 disordered structure. The antisitemore » disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less

  9. Bulk and surface half-metallicity: The case of D0{sub 3}-type Mn{sub 3}Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Gao, G. Y., E-mail: guoying-gao@mail.hust.edu.cn; Hu, Lei

    2014-01-21

    Motivated by the experimental realization of D0{sub 22}-type Mn{sub 3}Ge (001) films [Kurt et al. Appl. Phys. Lett. 101, 132410 (2012)] and the structural stability of D0{sub 3}-type Heusler alloy Mn{sub 3}Ge [Zhang et al. J. Phys.: Condens. Matter 25, 206006 (2013)], we use the first-principles calculations based on the full potential linearized augmented plane-wave method to investigate the electronic and magnetic properties of D0{sub 3}-type Heusler alloy Mn{sub 3}Ge and its (001) surface. We show that bulk D0{sub 3}-Mn{sub 3}Ge is a half-metallic ferromagnet with the minority-spin energy gap of 0.52 eV and the magnetic moment of 1.00 μ{sub B} permore » formula unit. The bulk half-metallicity is preserved at the pure Mn-terminated (001) surface due to the large exchange split, but the MnGe-terminated (001) surface destroys the bulk half-metallicity. We also reveal that the surface stabilities are comparable between the D0{sub 3}-Mn{sub 3}Ge (001) and the experimental D0{sub 22}-Mn{sub 3}Ge (001), which indicates the feasibility to grow the Mn{sub 3}Ge (001) films with D0{sub 3} phase other than D0{sub 22} one. The surface half-metallicity and stability make D0{sub 3}-Mn{sub 3}Ge a promising candidate for spintronic applications.« less

  10. Heusler Alloyed Electrodes Integrated in Magnetic Tunnel-Junctions

    NASA Astrophysics Data System (ADS)

    Hütten, Andreas; Kämmerer, Sven; Schmalhorst, Jan; Reiss, Günter

    As a consequence of the growing theoretically predictions of 100% spin polarized half- and full-Heusler compounds over the past 6 years, Heusler alloys are among the most promising materials class for future magnetoelectronic and spintronic applications. We have integrated Co2MnSi as a representative of the full-Heusler compound family as one magnetic electrode into technological relevant magnetic tunnel junctions. The resulting tunnel magnetoresistance at 20 K was determined to be 95% corresponding to a Co2MnSi spin polarization of 66% in combination with an AlOx barrier thickness of 1.8 nm. For magnetic tunnel junctions prepared with an initially larger Al layer prior to oxidation the tunnel magnetoresistance at 20 K increases to about 108% associated with a Co2MnSi spin polarization of 72% clearly proving that Co2MnSi is already superior to 3d-based magnetic elements or their alloys. The corresponding room temperature values of the tunnel magnetoresistance are 33% and 41%, respectively. Structural and magnetic properties of the Co2MnSi AlOx - barrier interface have been studied with X-ray diffraction, electron and X-ray absorption spectroscopy and X-ray magnetic circular dichroism and it is shown that the ferromagnetic order of Mn and Co spins at this interface is only induced in optimally annealed Co2MnSi layer. The underlying atomic ordering mechanism responsible for achieving about its theoretical magnetic moment could be assigned to the elimination of Co-Si antisite defects whereas the reduction of Co-Mn antisite defects results in large tunnel magnetoresistance. The presence of a step like tunnel barrier which is already created during plasma oxidation while preparing the AlOx tunnel barrier has been identified as the current limitation to achieve larger tunnel magnetoresistance and hence larger spin polarization and is a direct consequence of the oxygen affinity of the Co2MnSi - Heusler elements Mn and Si.

  11. Quantitative analysis of anisotropic magnetoresistance in Co2MnZ and Co2FeZ epitaxial thin films: A facile way to investigate spin-polarization in half-metallic Heusler compounds

    NASA Astrophysics Data System (ADS)

    Sakuraba, Y.; Kokado, S.; Hirayama, Y.; Furubayashi, T.; Sukegawa, H.; Li, S.; Takahashi, Y. K.; Hono, K.

    2014-04-01

    Anisotropic magnetoresistance (AMR) effect has been systematically investigated in various Heusler compounds Co2MnZ and Co2FeZ (Z = Al, Si, Ge, and Ga) epitaxial films and quantitatively summarized against the total valence electron number NV. It was found that the sign of AMR ratio is negative when NV is between 28.2 and 30.3, and turns positive when NV becomes below 28.2 and above 30.3, indicating that the Fermi level (EF) overlaps with the valence or conduction band edges of half-metallic gap at NV ˜ 28.2 or 30.3, respectively. We also find out that the magnitude of negative AMR ratio gradually increases with shifting of EF away from the gap edges, and there is a clear positive correlation between the magnitude of negative AMR ratio and magnetoresistive output of the giant magnetoresistive devices using the Heusler compounds. This indicates that AMR can be used as a facile way to optimize a composition of half-metallic Heusler compounds having a high spin-polarization at room temperature.

  12. Effect of multinary substitution on electronic and transport properties of TiCoSb based half-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Choudhary, Mukesh K.; Ravindran, P.

    2018-05-01

    The electronic structures of TixZrx/2CoPbxTex, TixZrx/2Hfx/2CoPbxTex (x = 0.5), and the parent compound TiCoSb were investigated using the full potential linearized augmented plane wave method. The thermoelectric transport properties of these alloys are calculated on the basis of semi-classical Boltzmann transport theory. From the band structure calculations we show that the substitution of Zr,Hf in the Ti site and Pb and Te in the Sb site lower the band gap value and also change the indirect band (IB) gap of TiCoSb to the direct band (DB) gap. The calculated band gap of TiCoSb, TixZrx/2CoPbxTex, and TixZrx/2Hfx/2CoPbxTex are 1.04 eV (IB), 0.92 eV (DB), and 0.93 eV (DB), respectively. All these alloys follow the empirical rule of 18 valence-electron content which is essential for bringing semiconductivity in half Heusler alloys. It is shown that the substitution of Hf at the Ti site improve the ZT value (˜1.05) at room temperature, whereas there is no significant difference in ZT is found at higher temperature. Based on the calculated thermoelectric transport properties, we conclude that the appropriate concentration of Hf substitution can further improve the thermoelectric performance of TixZrx/2Hfx/2CoPbxTex.

  13. Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Afaq, A.; Aneeza, A.

    2018-05-01

    In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.

  14. Accelerated discovery of new magnets in the Heusler alloy family

    PubMed Central

    Sanvito, Stefano; Oses, Corey; Xue, Junkai; Tiwari, Anurag; Zic, Mario; Archer, Thomas; Tozman, Pelin; Venkatesan, Munuswamy; Coey, Michael; Curtarolo, Stefano

    2017-01-01

    Magnetic materials underpin modern technologies, ranging from data storage to energy conversion to contactless sensing. However, the development of a new high-performance magnet is a long and often unpredictable process, and only about two dozen magnets are featured in mainstream applications. We describe a systematic pathway to the design of novel magnetic materials, which demonstrates a high throughput and discovery speed. On the basis of an extensive electronic structure library of Heusler alloys containing 236,115 prototypical compounds, we filtered those displaying magnetic order and established whether they can be fabricated at thermodynamic equilibrium. Specifically, we carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals. Among the possible 36,540 prototypes, 248 were thermodynamically stable but only 20 were magnetic. The magnetic ordering temperature, TC, was estimated by a regression calibrated on the experimental TC of about 60 known compounds. As a final validation, we attempted the synthesis of a few of the predicted compounds and produced two new magnets: Co2MnTi, which displays a remarkably high TC in perfect agreement with the predictions, and Mn2PtPd, which is an antiferromagnet. Our work paves the way for large-scale design of novel magnetic materials at potentially high speed. PMID:28439545

  15. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    NASA Astrophysics Data System (ADS)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  16. First-Principles Prediction of Electronic, Magnetic, and Optical Properties of Co2MnAs Full-Heusler Half-Metallic Compound

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Sarmazdeh, M. Majidiyan; Mendi, R. Taghavi; Boochani, A.

    2017-04-01

    Electronic, magnetic, and optical properties of Co2MnAs full-Heusler compound have been calculated using a first-principles approach with the full-potential linearized augmented plane-wave (FP-LAPW) method and generalized gradient approximation plus U (GGA + U). The results are compared with various properties of Co2Mn Z ( Z = Si, Ge, Al, Ga, Sn) full-Heusler compounds. The results of our calculations show that Co2MnAs is a half-metallic ferromagnetic compound with 100% spin polarization at the Fermi level. The total magnetic moment and half-metallic gap of Co2MnAs compound are found to be 6.00 μ B and 0.43 eV, respectively. It is also predicted that the spin-wave stiffness constant and Curie temperature of Co2MnAs compound are about 3.99 meV nm2 and 1109 K, respectively. The optical results show that the dominant behavior, at energy below 2 eV, is due to interactions of free electrons in the system. Interband optical transitions have been calculated based on the imaginary part of the dielectric function and analysis of critical points in the second energy derivative of the dielectric function. The results show that there is more than one plasmon energy for Co2MnAs compound, with the highest occurring at 25 eV. Also, the refractive index variations and optical reflectivity for radiation at normal incidence are calculated for Co2MnAs. Because of its high magnetic moment, high Curie temperature, and 100% spin polarization at the Fermi level as well as its optical properties, Co2MnAs is a good candidate for use in spintronic components and magnetooptical devices.

  17. EDITORIAL: Cluster issue on Heusler compounds and devices Cluster issue on Heusler compounds and devices

    NASA Astrophysics Data System (ADS)

    Felser, Claudia; Hillebrands, Burkard

    2009-04-01

    This is the third cluster issue of Journal Physics D: Applied Physics devoted to half-metallic Heusler compounds and devices utilizing this class of materials. Heusler compounds are named after Fritz Heusler, the owner of a German copper mine, the Isabellenhütte, who discovered this class of materials in 1903 [1]. He synthesized mixtures of Cu2Mn alloys with various main group metals Z = Al, Si, Sn, Sb, which became ferromagnetic despite all constituents being non-magnetic. The recent success story of Heusler compounds began in 1983 with the discovery of the half-metallic electronic structure in NiMnSb [2] and Co2MnZ [3], making these and similar materials, in particular PtMnSb, also useful for magneto-optical data storage media applications due to their high Kerr rotation. The real breakthrough, however, came in 2000 with the observation of a large magnetoresistance effect in Co2Cr0.6Fe0.4Al [4]. The Co2YZ (Y = Ti, Cr, Mn, Fe) compounds are a special class of materials, which follow the Slater-Pauling rule [5], and most of them are half-metallic bulk materials. The electronic structure of Heusler compounds is well understood [6] and Curie temperatures up to 1100 K have been observed [7]. In their contribution to this cluster issue, Thoene et al predict that still higher Curie temperatures can be achieved. A breakthrough from the viewpoint of materials design is the synthesis of nanoparticles of Heusler compounds as reported in the contribution by Basit et al. Nano-sized half- metallic ferromagnets will open new directions for spintronic applications. The challenge, however, is still to produce spintronic devices with well defined interfaces to take advantage of the half-metallicity of the electrodes. Several groups have succeeded in producing excellent tunnel junctions with high magnetoresistance effects at low temperatures and decent values at room temperature [8-11]. Spin-dependent tunnelling characteristics of fully epitaxial magnetic tunnel junctions with a

  18. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2016-08-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  19. First-Principles Study on the Structural, Electronic, Magnetic and Thermodynamic Properties of Full Heusler Alloys Co2VZ (Z = Al, Ga)

    NASA Astrophysics Data System (ADS)

    Bentouaf, Ali; Hassan, Fouad H.; Reshak, Ali H.; Aïssa, Brahim

    2017-01-01

    We report on the investigation of the structural and physical properties of the Co2VZ (Z = Al, Ga) Heusler alloys, with L21 structure, through first-principles calculations involving the full potential linearized augmented plane-wave method within density functional theory. These physical properties mainly revolve around the electronic, magnetic and thermodynamic properties. By using the Perdew-Burke-Ernzerhof generalized gradient approximation, the calculated lattice constants and spin magnetic moments were found to be in good agreement with the experimental data. Furthermore, the thermal effects using the quasi-harmonic Debye model have been investigated in depth while taking into account the lattice vibrations, the temperature and the pressure effects on the structural parameters. The heat capacities, the thermal expansion coefficient and the Debye temperatures have also been determined from the non-equilibrium Gibbs functions. An application of the atom in molecule theory is presented and discussed in order to analyze the bonding nature of the Heusler alloys. The focus is on the mixing of the metallic and covalent behavior of Co2VZ (Z = Al, Ga) Heusler alloys.

  20. Half-metallicity at the (110) interface between a full Heusler alloy and GaAs

    NASA Astrophysics Data System (ADS)

    Nagao, Kazutaka; Miura, Yoshio; Shirai, Masafumi

    2006-03-01

    The electronic properties of Co2CrAl/GaAs interfaces are investigated by using first-principles calculations with density functional theory. It is found that spin polarization tends to remain relatively high at the (110) interface and reaches almost unity for a specific (110) interfacial structure. Furthermore, the nearly-half-metallic interface turns out to be the most stable of the (110) interfacial structures studied here. Spin polarization calculated only from the sp -projected density of states is also examined in order to eliminate the effects stemming from the localized d components. The analysis shows that the high spin polarization at the (110) interface owes little to the localized d component and, therefore, is expected to be fairly relevant to transport properties. Co2CrSi/GaAs , Co2MnSi/GaAs , and Co2MnGe/GaAs heterostructures are also investigated, and similar half-metal-like behavior at (110) interface is observed for all of them.

  1. Using the 18-Electron Rule To Understand the Nominal 19-Electron Half-Heusler NbCoSb with Nb Vacancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeier, Wolfgang G.; Anand, Shashwat; Huang, Lihong

    The 18-electron rule is a widely used criterion in the search for new half-Heusler thermoelectric materials. However, several 19-electron compounds such as NbCoSb have been found to be stable and exhibit thermoelectric properties rivaling state-of-the art materials. Using synchrotron X-ray diffraction and density functional theory calculations, we show that samples with nominal (19-electron) composition NbCoSb actually contain a half-Heusler phase with composition Nb0.84CoSb. The large amount of stable Nb vacancies reduces the overall electron count, which brings the stoichiometry of the compound close to an 18-electron count, and stabilizes the material. Excess electrons beyond 18 electrons provide heavy doping neededmore » to make these good thermoelectric materials. This work demonstrates that considering possible defect chemistry and allowing small variation of electron counting leads to extra degrees of freedom for tailoring thermoelectric properties and exploring new compounds. Here we discuss the 18-electron rule as a guide to find defect-free half-Heusler semiconductors. Other electron counts such as 19-electron NbCoSb can also be expected to be stable as n-type metals, perhaps with cation vacancy defects to reduce the electron count.« less

  2. Phase stability, magnetic, electronic, half-metallic and mechanical properties of a new equiatomic quaternary Heusler compound ZrRhTiIn: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Xing; Chen, Z. B.; Gao, Y. C.

    2018-05-01

    In this manuscript, we have studied the electronic, magnetic, half-metallic and mechanical properties of a new Zr-based equiatomic quaternary Heusler (EQH) compound, ZrRhTiIn using first-principles calculations. The generalized gradient approximation (GGA) calculation results imply that at its equilibrium lattice constant of 6.70 Å, ZrRhTiIn is a half-metallic material (HMM) with a considerable band gap (Ebg) of 0.530 eV and a spin-filter/half-metallic band-gap (EHM) of 0.080 eV in the minority-spin channel. For ZrRhTiIn, the formation energy of -2.738 eV and the cohesive energy of 21.38 eV indicate that it is a thermodynamically stable material according to theory. The minority-spin EHM arises from the hybridization among Zr-4d, Ti-3d and Rh-4d electrons. The calculated total magnetic moment of ZrRhTiIn is 2 μB, meeting the well-known Slater-Pauling rule Mt = Zt -18. Furthermore, uniform strain and tetragonal strain were applied in this work to examine the magneto-electronic and half-metallic behaviors of the ZrRhTiIn system. Finally, we show that ZrRhTiIn is mechanically stable, ductile and anisotropic.

  3. DFT investigations on mechanical stability, electronic structure and magnetism in Co2TaZ (Z = Al, Ga, In) heusler alloys

    NASA Astrophysics Data System (ADS)

    Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2017-12-01

    Ferromagnetic Heusler compounds have vast and imminent applications for novel devices, smart materials thanks to density functional theory (DFT) based simulations, which have scored out a new approach to study these materials. We forecast the structural stability of Co2TaZ alloys on the basis of total energy calculations and mechanical stability criteria. The elastic constants, robust spin-polarized ferromagnetism and electron densities in these half-metallic alloys are also discussed. The observed structural aspects calculated to predict the stability and equilibrium lattice parameters agree well with the experimental results. The elastic parameters like elastic constants, bulk, Young’s and shear moduli, poison’s and Pugh ratios, melting temperatures, etc have been put together to establish their mechanical properties. The elaborated electronic band structures along with indirect band gaps and spin polarization favour the application of these materials in spintronics and memory device technology.

  4. Martensitic transformation and phase diagram in ternary Co-V-Ga Heusler alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagashima, Akihide; Nagasako, Makoto; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2017-03-01

    We report the martensitic transformation behavior in Co-V-Ga Heusler alloys. Thermoanalysis and thermomagnetization measurements were conducted to observe the martensitic transformation. By using a transmission electron microscope and an in situ X-ray diffractometer, martensitic transformation was found to occur from the L21 Heusler parent phase to the D022 martensite phase. Phase diagrams were determined for two pseudo-binary sections where martensitic transformation was detected. Magnetic properties, including the Curie temperatures and spontaneous magnetization of the parent phase, were also investigated. The magnetic properties showing behaviors different from those of NiMn-based alloys were found.

  5. Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: A first-principles study.

    PubMed

    Wang, Xiaotian; Khachai, Houari; Khenata, Rabah; Yuan, Hongkuan; Wang, Liying; Wang, Wenhong; Bouhemadou, Abdelmadjid; Hao, Liyu; Dai, Xuefang; Guo, Ruikang; Liu, Guodong; Cheng, Zhenxiang

    2017-11-23

    In this paper, we have investigated the structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the equiatomic quaternary Heusler (EQH) compound FeCrRuSi using the density functional theory (DFT) and the quasi-harmonic Debye model. Our results reveal that FeCrRuSi is a half-metallic material (HMM) with a total magnetic moment of 2.0 μ B in agreement with the well-known Slater-Pauling rule M t  = Z t  - 24. Furthermore, the origin of the half-metallic band gap in FeCrRuSi is well studied through a schematic diagram of the possible d-d hybridization between Fe, Cr and Ru elements. The half-metallic behavior of FeCrRuSi can be maintained in a relatively wide range of variations of the lattice constant (5.5-5.8 Å) under uniform strain and the c/a ratio (0.96-1.05) under tetragonal distortion. The calculated phonon dispersion, cohesive and formation energies, and mechanical properties reveal that FeCrRuSi is stable with an EQH structure. Importantly, the compound of interest has been prepared and is found to exist in an EQH type structure with the presence of some B2 disorder. Moreover, the thermodynamic properties, such as the thermal expansion coefficient α, the heat capacity C V , the Grüneisen constant γ, and the Debye temperature Θ D are calculated.

  6. Electronic structure and magnetic properties of quaternary Heusler alloy Co2CrGa1-xGex (x=0-1)

    NASA Astrophysics Data System (ADS)

    Seema, K.; Kumar, Ranjan

    2015-03-01

    The electronic structure of Co-based quaternary Heusler compounds Co2CrGa1-xGex (x=0.00, 0.25, 0.50, 0.75, 1.00) are calculated by first-principles density functional theory. The substitution of Ga by Ge leads to increase in the number of valence electrons. With increasing concentration of Ge, lattice constant decreases linearly whereas bulk modulus and total magnetic moment increases. This shows that the magnetic properties of the compound are dependent on electron concentration of main group element. The calculations show that the alloys with x=0.00, 0.25, 0.50 are not true half-metallic materials whereas alloy with x=0.75, 1.00 exhibit 100% spin polarization at the Fermi level. It shows that the Fermi level can be shifted within the energy-gap to achieve 100% spin polarization. The effect of volumetric and tetragonal strain on magnetic properties is also studied.

  7. Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films

    DOE PAGES

    Logan, J. A.; Patel, S. J.; Harrington, S. D.; ...

    2016-06-27

    The discovery of topological insulators, materials with bulk band gaps and protected cross-gap surface states in compounds such as Bi 2Se 3, has generated much interest in identifying topological surface states (TSSs) in other classes of materials. In particular, recent theoretical calculations suggest that TSSs may be found in half-Heusler ternary compounds. If experimentally realizable, this would provide a materials platform for entirely new heterostructure spintronic devices that make use of the structurally identical but electronically varied nature of Heusler compounds. Here we show the presence of a TSS in epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin-more » and angle-resolved photoemission spectroscopy, complemented by theoretical calculations, reveals a surface state with linear dispersion and a helical tangential spin texture consistent with previous predictions. As a result, this experimental verification of topological behavior is a significant step forward in establishing half-Heusler compounds as a viable material system for future spintronic devices.« less

  8. Temperature dependence of differential conductance in Co-based Heusler alloy Co2TiSn and superconductor Pb junctions

    NASA Astrophysics Data System (ADS)

    Ooka, Ryutaro; Shigeta, Iduru; Umetsu, Rie Y.; Nomura, Akiko; Yubuta, Kunio; Yamauchi, Touru; Kanomata, Takeshi; Hiroi, Masahiko

    2018-05-01

    We investigated temperature dependence of differential conductance G (V) in planar junctions consisting of Co-based Heusler alloy Co2TiSn and superconductor Pb. Ferromagnetic Co2TiSn was predicted to be half-metal by first-principles band calculations. The spin polarization P of Co2TiSn was deduced to be 60.0% at 1.4 K by the Andreev reflection spectroscopy. The G (V) spectral shape was smeared gradually with increasing temperature and its structure was disappeared above the superconducting transition temperature Tc. Theoretical model analysis revealed that the superconducting energy gap Δ was 1.06 meV at 1.4 K and the Tc was 6.8 K , indicating that both values were suppressed from bulk values. However, the temperature dependent Δ (T) behavior was in good agreement with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The experimental results exhibit that the superconductivity of Pb attached to half-metallic Co2TiSn was kept the conventional BCS mechanism characterized strong-coupling superconductors while its superconductivity was slightly suppressed by the superconducting proximity effect at the Co2TiSn/Pb interface.

  9. Ultra-low magnetic damping in metallic and half-metallic systems

    NASA Astrophysics Data System (ADS)

    Shaw, Justin

    The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.

  10. Unravelling the magnetism, high spin polarization and thermoelectric efficiency of ZrFeSi half-Heusler

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, D. C.

    2018-04-01

    We report the systematic investigation of structural properties, occupancy of density of states, nature of bonding and thermoelectric efficiency of half-Heusler ZrFeSi. The band structure analysis predicts the hybridization of Zr-d and Fe-d metal atoms resulting in occupation of density of states above the Fermi level (EF) while Fe-p and Si-p occupy the lower energy states below the EF. Thermoelectric transport coefficients are predicted using the Boltzmann transport theory under constant relaxation approximation, where Seebeck coefficient (S), total thermal conductivity and figure of merit are calculated. The negative value of total S as -14.02 μV/K predicts the material as n-type with thermoelectric figure of merit (zT) of 0.5 at 800 K. The lattice thermal conductivity decreases with increasing temperature with room temperature value of 4.18 W/mK and shows a significant reduction towards higher temperatures. In view of above elements, structural stability, high zT, ZrFeSi alloy have the capabilities to stimulate experimental verification as a promising materials for high temperature power generation and spintronic device fabrications.

  11. Effect of C and N Addition on Thermoelectric Properties of TiNiSn Half-Heusler Compounds.

    PubMed

    Dow, Hwan Soo; Kim, Woo Sik; Shin, Weon Ho

    2018-02-08

    We investigated the thermoelectric properties of the ternary half-Heusler compound, TiNiSn, when introducing C and N. The addition of C or N to TiNiSn leads to an enhanced power factor and a decreasing lattice thermal conductivity by point defect phonon scattering. The thermoelectric performances of TiNiSn alloys are significantly improved by adding 1 at. % TiN, TiC, and figure of merit ( ZT ) values of 0.43 and 0.34, respectively, can be obtained at 723 K. This increase in thermoelectric performance is very helpful in the commercialization of thermoelectric power generation in the mid-temperature range.

  12. Designing shape-memory Heusler alloys from first-principles

    NASA Astrophysics Data System (ADS)

    Siewert, M.; Gruner, M. E.; Dannenberg, A.; Chakrabarti, A.; Herper, H. C.; Wuttig, M.; Barman, S. R.; Singh, S.; Al-Zubi, A.; Hickel, T.; Neugebauer, J.; Gillessen, M.; Dronskowski, R.; Entel, P.

    2011-11-01

    The phase diagrams of magnetic shape-memory Heusler alloys, in particular, ternary Ni-Mn-Z and quarternary (Pt, Ni)-Mn-Z alloys with Z = Ga, Sn, have been addressed by density functional theory and Monte Carlo simulations. Finite temperature free energy calculations show that the phonon contribution stabilizes the high-temperature austenite structure while at low temperatures magnetism and the band Jahn-Teller effect favor the modulated monoclinic 14M or the nonmodulated tetragonal structure. The substitution of Ni by Pt leads to a series of magnetic shape-memory alloys with very similar properties to Ni-Mn-Ga but with a maximal eigenstrain of 14%.

  13. Heusler alloys with bcc tungsten seed layers for GMR junctions

    NASA Astrophysics Data System (ADS)

    Frost, William; Hirohata, Atsufumi

    2018-05-01

    We demonstrate that polycrystalline Co2FeSi Heusler alloys films can be grown with perpendicular anisotropy without the use of an MgO interface. By heating the substrate to 400 °C prior to deposition and using a tungsten seed layer perpendicular anisotropy is induced in the Heusler layer. This is maintained as the thickness of the Co2FeSi is increased up to 12.5 nm. The layers with thickness dependent coercivity can be implemented into a giant magnetoresistance structure leading to spin-valve behaviour without the need for an exchange biased pinned layer.

  14. Structure and magnetic properties of Heusler alloy Co2RuSi melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Xin, Yuepeng; Ma, Yuexing; Hao, Hongyue; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan; Liu, Enke; Wu, Guangheng

    2017-08-01

    Heusler alloy Co2RuSi has been synthesized by melt-spinning technology successfully. Co2RuSi bulk sample after annealing is composed of an HCP Co-rich phase and a BCC Ru-Si phase, but melt-spinning can suppress the precipitation of the HCP phase and produce a single Co2RuSi Heusler phase. In the XRD pattern, it is found that Ru has a strong preference for the (A, C) sites, though it has fewer valence electrons compared with Co. This site preference is different from the case in Heusler alloys containing only 3d elements and is supported further by first-principles calculations. Melt-spun Co2RuSi has a Ms of 2.67 μB/f.u. at 5 K and a Tc of 491 K. An exothermic peak is observed at 871 K in the DTA curve, corresponding to the decomposition of the Heusler phase. Finally, the site preference and magnetic properties of Co2RuSi were discussed based on electronic structure calculation and charge density difference.

  15. Magnetic and magnetocaloric properties of Co2-xFexVGa Heusler alloys

    NASA Astrophysics Data System (ADS)

    Schroeder, K.; Waybright, J.; Kharel, P.; Zhang, W.; Valloppilly, S.; Herran, J.; Lukashev, P.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2018-05-01

    The magnetic and magnetocaloric properties of iron-substituted Co2VGa alloys, Co2-xFexVGa (x = 0, 0.1, 0.15, 0.2, 0.3), were investigated. The Fe-substituted samples, prepared by arc melting, melt spinning, and annealing, crystallized in the L21 Heusler structure, without any secondary phases. The Curie temperature and high-field magnetization at 50 K decreased from 345 K and 44 emu/g (1.90 μB/f.u.) for Co2VGa to 275 K and 39 emu/g (1.66 μB/f.u.) for Co1.7Fe0.3VGa, respectively, but the maximum entropy change remained almost insensitive to Fe concentration for x ≤ 0.2, the highest value being 3.3 J/kgK at 7 T for Co1.85Fe0.15VGa. First-principle calculations show that Co2VGa retains its half-metallic band structure until at least 30% of the cobalt atoms are replaced by Fe atoms. The wide operating temperature window near room temperature and the lack of thermal and magnetic hysteresis are the interesting features of these materials for application in room-temperature magnetic refrigeration.

  16. Modeling of full-Heusler alloys within tight-binding approximation: Case study of Fe2MnAl

    NASA Astrophysics Data System (ADS)

    Azhar, A.; Majidi, M. A.; Nanto, D.

    2017-07-01

    Heusler alloys have been known for about a century, and predictions of magnetic moment values using Slater-Pauling rule have been successful for many such materials. However, such a simple counting rule has been found not to always work for all Heusler alloys. For instance, Fe2CuAl has been found to have magnetic moment of 3.30 µB per formula unit although the Slater-Pauling rule suggests the value of 2 µB. On the other hand, a recent experiment shows that a non-stoichiometric Heusler compound Fe2Mn0.5Cu0.5Al possesses magnetic moment of 4 µB, closer to the Slater-Pauling prediction for the stoichiometric compound. Such discrepancies signify that the theory to predict the magnetic moment of Heusler alloys in general is still far from being complete. Motivated by this issue, we propose to do a theoretical study on a full-Heusler alloy Fe2MnAl to understand the formation of magnetic moment microscopically. We model the system by constructing a density-functional-theory-based tight-binding Hamiltonian and incorporating Hubbard repulsive as well as spin-spin interactions for the electrons occupying the d-orbitals. Then, we solve the model using Green's function approach, and treat the interaction terms within the mean-field approximation. At this stage, we aim to formulate the computational algorithm for the overall calculation process. Our final goal is to compute the total magnetic moment per unit cell of this system and compare it with the experimental data.

  17. Biphasic thermoelectric materials derived from the half-Heusler/full-Heusler system Ti-Ni-Sn

    NASA Astrophysics Data System (ADS)

    Douglas, Jason Everett

    Among the possible avenues for increasing the efficiency of global energy usage, thermoelectrics are an exciting, solid-state option. Thermoelectric materials, which convert an internal temperature gradient into a voltage and vice versa, have found applications in refrigeration as well as power generation from waste heat. TiNiSn, a semiconductor of the half-Heusler (hH) crystal structure, is of particular interest due to its very favorable electronic transport properties, conductivity (sigma) and Seebeck coefficient ( S), at relevant temperature regimes (between 600 K and 900 K). Unfortunately, its overall efficiency is hampered by a comparatively high thermal conductivity (kappa). In the design of thermoelectric materials, a number of approaches have been taken to increase the thermoelectric figure of merit, ZT = ( S2sigma/kappa)T, where T is temperature. In this work we examine how microstructure can be used to alter these thermoelectric propertiesin a biphasic Ti-Ni-Sn materials containing full-Heusler (fH) TiNi2Sn embedded within hH thermoelectric TiNiSn. We explored a wide range of Ni compositions in TiNi1+xSn--from stoichiometric TiNiSn to high Heusler volume fraction, TiNi1.25Sn--materials prepared by levitation induction melting followed by annealing. Phase distributions and microstructure were characterized using synchrotron x-ray diffraction and optical and electron microscopy. In a sample of the nominal composition TiNi1.15Sn, a significant decrease in thermal conductivity (about 30%) is observed for the biphasic material despite the metallic second-phase particles existing at the micrometer scale; a 50% increase in the electrical conductivity is also measured. These result in a maximum figure of merit, ZT, of 0.44 at 800 K, which is 25% greater than is observed for the x = 0 sample. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as

  18. Investigations of the electronic and magnetic properties of newly (001) surface LiCrS and LiCrSe half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Hussain, Moaid K.

    2018-04-01

    We analyzed the electronic and magnetic properties of newly (001) surface LiCrS and LiCrSe half-Heusler compounds with the C1b structure, based on calculations of the first principles. We examine the influences of (001) surface and correlation interactions on the structural properties and electricity and magnetism of the bulk and surface (001) LiCrS and LiCrSe half-Heusler compounds with two ideal terminations named Cr-S and li-li and Cr-Se and li-term terminated (001) surfaces, respectively. We noticed that the half-metallicity assured in the bulk is kept at the Cr-S and Cr-Se terminations, with a total spin polarization equal to 100%, with a wide range in the energy gap, and the magnetic moments calculated for both terminations were found to be equal to 29 µB/f.u., which have a great scientifics in varied application. For the li-li and li-term terminations, we noticed that the half-metallicity is destroy with a total spin polarization equal to 84 and 67%, respectively, with a magnetic moment of 25.5 µB/f.u. The calculated magnetic moment of all terminations was found of all the subsurface is close to that of the bulk system and this makes these compounds of maximum benefit in the pilot applications of spintronic systems.

  19. Direct Observation of Inherent Atomic-Scale Defect Disorders responsible for High-Performance Ti1-x Hfx NiSn1-y Sby Half-Heusler Thermoelectric Alloys.

    PubMed

    Kim, Ki Sung; Kim, Young-Min; Mun, Hyeona; Kim, Jisoo; Park, Jucheol; Borisevich, Albina Y; Lee, Kyu Hyoung; Kim, Sung Wng

    2017-09-01

    Structural defects often dominate the electronic- and thermal-transport properties of thermoelectric (TE) materials and are thus a central ingredient for improving their performance. However, understanding the relationship between TE performance and the disordered atomic defects that are generally inherent in nanostructured alloys remains a challenge. Herein, the use of scanning transmission electron microscopy to visualize atomic defects directly is described and disordered atomic-scale defects are demonstrated to be responsible for the enhancement of TE performance in nanostructured Ti 1- x Hf x NiSn 1- y Sb y half-Heusler alloys. The disordered defects at all atomic sites induce a local composition fluctuation, effectively scattering phonons and improving the power factor. It is observed that the Ni interstitial and Ti,Hf/Sn antisite defects are collectively formed, leading to significant atomic disorder that causes the additional reduction of lattice thermal conductivity. The Ti 1- x Hf x NiSn 1- y Sb y alloys containing inherent atomic-scale defect disorders are produced in one hour by a newly developed process of temperature-regulated rapid solidification followed by sintering. The collective atomic-scale defect disorder improves the zT to 1.09 ± 0.12 at 800 K for the Ti 0.5 Hf 0.5 NiSn 0.98 Sb 0.02 alloy. These results provide a promising avenue for improving the TE performance of state-of-the-art materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Improved Thermoelectric Performance Achieved by Regulating Heterogeneous Phase in Half-Heusler TiNiSn-Based Materials

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Liang; Liu, Chengyan; Miao, Lei; Gao, Jie; Zheng, Yan-yan; Wang, Xiaoyang; Lu, Jiacai; Shu, Mingzheng

    2018-06-01

    With excellent high-temperature stability (up to 1000 K) and favorable electrical properties for thermoelectric application, TiNiSn-based half-Heusler (HH) alloys are expected to be promising thermoelectric materials for the recovery of waste heat in the temperature ranging from 700 K to 900 K. However, their thermal conductivity is always relatively high (5-10 W/mK), making it difficult to further enhance their thermoelectric figure-of-merit ( ZT). In the past decade, introducing nano-scale secondary phases into the HH alloy matrix has been proven to be feasible for optimizing the thermoelectric performance of TiNiSn. In this study, a series of TiNiSn-based alloys have been successfully synthesized by a simple solid-state reaction. The content and composition of the heterogeneous phase (TiNi2Sn and Sn) is accurately regulated and, as a result, the thermal conductivity successfully reduced from 4.9 W m-1 K-1 to 3.0 Wm-1 K-1 (750 K) due to multi-scale phonon scattering. Consequently, a ZT value of 0.49 is achieved at 750 K in our TiNiSn-based thermoelectric materials. Furthermore, the thermal stability of TiNiSn alloys is enhanced through reducing the Sn substance phase.

  1. Improved Thermoelectric Performance Achieved by Regulating Heterogeneous Phase in Half-Heusler TiNiSn-Based Materials

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Liang; Liu, Chengyan; Miao, Lei; Gao, Jie; Zheng, Yan-yan; Wang, Xiaoyang; Lu, Jiacai; Shu, Mingzheng

    2017-12-01

    With excellent high-temperature stability (up to 1000 K) and favorable electrical properties for thermoelectric application, TiNiSn-based half-Heusler (HH) alloys are expected to be promising thermoelectric materials for the recovery of waste heat in the temperature ranging from 700 K to 900 K. However, their thermal conductivity is always relatively high (5-10 W/mK), making it difficult to further enhance their thermoelectric figure-of-merit (ZT). In the past decade, introducing nano-scale secondary phases into the HH alloy matrix has been proven to be feasible for optimizing the thermoelectric performance of TiNiSn. In this study, a series of TiNiSn-based alloys have been successfully synthesized by a simple solid-state reaction. The content and composition of the heterogeneous phase (TiNi2Sn and Sn) is accurately regulated and, as a result, the thermal conductivity successfully reduced from 4.9 W m-1 K-1 to 3.0 Wm-1 K-1 (750 K) due to multi-scale phonon scattering. Consequently, a ZT value of 0.49 is achieved at 750 K in our TiNiSn-based thermoelectric materials. Furthermore, the thermal stability of TiNiSn alloys is enhanced through reducing the Sn substance phase.

  2. Magnetic structures of REPdBi half-Heusler bismuthides (RE = Gd, Tb, Dy, Ho, Er)

    NASA Astrophysics Data System (ADS)

    Pavlosiuk, Orest; Fabreges, Xavier; Gukasov, Arsen; Meven, Martin; Kaczorowski, Dariusz; Wiśniewski, Piotr

    2018-05-01

    We present results of neutron diffraction on single crystals of several equiatomic ternary compounds of rare-earth elements with palladium and bismuth, crystallizing with cubic MgAgAs-type structure (half-Heusler phases). Band structure calculations showed that many members of that family possess electronic band inversion, which may lead to occurrence of topological insulator or topological semimetal. But even for the compounds without intrinsic band inversion another way of topologically non-trivial state realization, through a specific antiferromagnetic order, has been theoretically proposed. Our results show that the antiferromagnetic structures of all studied bismuthides are characterized by the propagation vector, allowing for antiferromagnetic topological insulator state. Therefore, the antiferromagnetic representatives of half-Heusler family are excellent candidates for extended investigations of coexistence of superconductivity, magnetic order and non-trivial topology of electronic states.

  3. Enhancement of thermoelectric properties in the Nb–Co–Sn half-Heusler/Heusler system through spontaneous inclusion of a coherent second phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffon, Malinda L. C., E-mail: mandibuffon@mrl.ucsb.edu; Verma, Nisha; Lamontagne, Leo

    Half-Heusler XYZ compounds with an 18 valence electron count are promising thermoelectric materials, being thermally and chemically stable, deriving from relatively earth-abundant components, and possessing appropriate electrical transport properties. The typical drawback with this family of compounds is their high thermal conductivity. A strategy for reducing thermal conductivity is through the inclusion of secondary phases designed to minimize negative impact on other properties. Here, we achieve this through the addition of excess Co to half-Heusler NbCoSn, which introduces precipitates of a semi-coherent NbCo{sub 2}Sn Heusler phase. A series of NbCo{sub 1+x}Sn materials are characterized here using X-ray and neutron diffractionmore » studies and electron microscopy. Electrical and thermal transport measurements and electronic structure calculations are used to understand property evolution. We find that annealing has an important role to play in determining antisite ordering and properties. Antisite disorder in the as-prepared samples improves thermoelectric performance through the reduction of thermal conductivity, but annealing during the measurement degrades properties to resemble those of the annealed samples. Similar to the more widely studied TiNi{sub 1+x}Sn system, Co addition to the NbCoSn phase results in improved thermoelectric performance through a decrease in thermal conductivity which results in a 20% improvement in the thermoelectric figure of merit, zT.« less

  4. Enhanced current-perpendicular-to-plane giant magnetoresistance effect in half-metallic NiMnSb based nanojunctions with multiple Ag spacers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhenchao; Yamamoto, Tatsuya; Kubota, Takahide

    2016-06-06

    Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) heterostructure devices using half-metallic NiMnSb Heusler alloy electrodes with single, dual, and triple Ag spacers were fabricated. The NiMnSb alloy films and Ag spacers show (001) epitaxial growth in all CPP-GMR multilayer structures. The dual-spacer CPP-GMR nanojunction exhibited an enhanced CPP-GMR ratio of 11% (a change in the resistance-area product, ΔRA, of 3.9 mΩ μm{sup 2}) at room temperature, which is approximately twice (thrice) of 6% (1.3 mΩ μm{sup 2}) in the single-spacer device. The enhancement of the CPP-GMR effects in the dual-spacer devices could be attributed to improved interfacial spin asymmetry. Moreover, it was observedmore » that the CPP-GMR ratios increased monotonically as the temperatures decreased. At 4.2 K, a CPP-GMR ratio of 41% (ΔRA = 10.5 mΩ μm{sup 2}) was achieved in the dual-spacer CPP-GMR device. This work indicates that multispacer structures provide an efficient enhancement of CPP-GMR effects in half-metallic material-based CPP-GMR systems.« less

  5. The effect of pressure on the structural, electronic, magnetic, and thermodynamic properties of the Mn2RuGe inverse Heusler alloy

    NASA Astrophysics Data System (ADS)

    Song, Ting; Sun, Xiao-Wei; Tian, Jun-Hong; Wei, Xiao-Ping; Wan, Gui-Xin; Ma, Qin

    2017-04-01

    In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn2RuGe in CuHg2Ti-type structure in the pressure range of 0-50 GPa. Present calculations predict that Mn2RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μB per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μB and -0.90 μB, respectively. In the study of the energy band structures and density of states, Mn2RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn2RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0-900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn2RuZ-type Heusler alloy family.

  6. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn.

    PubMed

    Barczak, Sonia A; Buckman, Jim; Smith, Ronald I; Baker, Annabelle R; Don, Eric; Forbes, Ian; Bos, Jan-Willem G

    2018-03-30

    TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi 1+y Sn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5-3 mW m -1 K -2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m -1 K -1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn.

  7. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn

    PubMed Central

    Barczak, Sonia A.; Smith, Ronald I.; Baker, Annabelle R.; Don, Eric; Forbes, Ian

    2018-01-01

    TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi1+ySn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5–3 mW m−1 K−2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m−1 K−1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn. PMID:29601547

  8. Unconventional superconductivity and surface pairing symmetry in half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Ze; Yu, Jiabin; Liu, Chao-Xing

    2018-06-01

    Signatures of nodal line/point superconductivity [Kim et al., Sci. Adv. 4, eaao4513 (2018), 10.1126/sciadv.aao4513; Brydon et al., Phys. Rev. Lett. 116, 177001 (2016), 10.1103/PhysRevLett.116.177001] have been observed in half-Heusler compounds, such as LnPtBi (Ln = Y, Lu). Topologically nontrivial band structures, as well as topological surface states, have also been confirmed by angular-resolved photoemission spectroscopy in these compounds [Liu et al., Nat. Commun. 7, 12924 (2016), 10.1038/ncomms12924]. In this paper, we present a systematical classification of possible gap functions of bulk states and surface states in half-Heusler compounds and the corresponding topological properties based on the representations of crystalline symmetry group. Different from all the previous studies based on the four band Luttinger model, our study starts with the six-band Kane model, which involves both four p-orbital type of Γ8 bands and two s-orbital type of Γ6 bands. Although the Γ6 bands are away from the Fermi energy, our results reveal the importance of topological surface states, which originate from the band inversion between Γ6 and Γ8 bands, in determining surface properties of these compounds in the superconducting regime by combining topological bulk state picture and nontrivial surface state picture.

  9. Investigation of thermoelectricity in KScSn half-Heusler compound

    NASA Astrophysics Data System (ADS)

    Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.

    2018-05-01

    The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.

  10. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  11. Search for thermoelectrics with high figure of merit in half-Heusler compounds with multinary substitution

    NASA Astrophysics Data System (ADS)

    Choudhary, Mukesh K.; Ravindran, P.

    2018-04-01

    In order to improve the thermoelectric performance of TiCoSb we have substituted 50% of Ti equally with Zr and Hf at Ti site and Sb with Sn and Se equally at Sb site. The electronic structure of Ti0.5Zr0.25Hf0.25CoSn0.5Se0.5 is investigated using the full potential linearized augmented plane wave method and the thermoelectric transport properties are calculated on the basis of semi-classical Boltzmann transport theory. Our band structure calculations show that Ti0.5Zr0.25Hf0.25CoSn0.5Se0.5 has semiconducting behavior with indirect band gap value of 0.98 eV which follow the empirical rule of 18 valence-electron content to bring semiconductivity in half Heusler compounds, indicating that one can have semiconducting behavior in multinary phase of half Heusler compounds if they full fill the 18 VEC rule and this open-up the possibility of designing thermoelectrics with high figure of merit in half Heusler compounds. We show that at high temperature of around 700K Ti0.5Zr0.25Hf0.25CoSn0.5Se0.5 has high thermoelectric figure of merit of ZT = 1.05 which is higher than that of TiCoSb (˜ 0.95) suggesting that by going from ternary to multinary phase system one can enhance the thermoelectric figure of merit at higher temperatures.

  12. Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers.

    PubMed

    Zhou, Jiawei; Zhu, Hangtian; Liu, Te-Huan; Song, Qichen; He, Ran; Mao, Jun; Liu, Zihang; Ren, Wuyang; Liao, Bolin; Singh, David J; Ren, Zhifeng; Chen, Gang

    2018-04-30

    Modern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.

  13. Lateral spin valves with two-different Heusler-alloy electrodes on the same platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oki, S.; Yamada, S.; Tanikawa, K.

    2013-11-18

    Using room-temperature molecular beam epitaxy on Si(111), we demonstrate Heusler-alloy bilayers consisting of L2{sub 1}-Co{sub 2}FeSi (CFS) and D0{sub 3}-Fe{sub 3}Si (FS). By fabricating lateral spin valves with L2{sub 1}-CFS and D0{sub 3}-FS electrodes, we can see ideal spin signals even though we use one L2{sub 1}-CFS as a spin injector and another D0{sub 3}-FS as a spin detector. The difference in the spin absorption between L2{sub 1}-CFS and D0{sub 3}-FS can also be examined, and we find that the spin resistance of D0{sub 3}-FS is larger than that of L2{sub 1}-CFS. This work will be useful for understanding spinmore » transport in lateral spin-valve devices with different Heusler-alloy electrodes.« less

  14. Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles.

    PubMed

    Fang, Teng; Zhao, Xinbing; Zhu, Tiejun

    2018-05-19

    Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type M NiSb ( M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type Fe R Sb ( R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed.

  15. Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles

    PubMed Central

    Fang, Teng; Zhao, Xinbing

    2018-01-01

    Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type MNiSb (M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type FeRSb (R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed. PMID:29783759

  16. Predictions of a Large Magnetocaloric Effect in Co- and Cr-Substituted Heusler Alloys Using First-Principles and Monte Carlo Approaches

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D.; Zagrebin, Mikhail A.; Grünebohm, Anna; Entel, Peter

    The effect of Co- and Cr-doping on magnetic and magnetocaloric poperties of Ni-Mn-(In, Ga, Sn, and Al) Heusler alloys has been theoretically studied by combining first principles with Monte Carlo approaches. The magnetic and magnetocaloric properties are obtained as a function of temperature and magnetic field using a mixed type of Potts and Blume-Emery-Griffiths model where the model parameters are obtained from ab initio calculations. The Monte Carlo calculations allowed to make predictions of a giant inverse magnetocaloric effect in partially new hypothetical magnetic Heusler alloys across the martensitic transformation.

  17. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. K.; Yang, L. X.; Wu, S. -C.

    Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observe the unusual topological surface states onmore » these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors.« less

  18. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y)

    DOE PAGES

    Liu, Z. K.; Yang, L. X.; Wu, S. -C.; ...

    2016-09-27

    Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observe the unusual topological surface states onmore » these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors.« less

  19. Synthesis, structural, magnetic and optical properties of Sr2CoSn based inverse Heusler alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Asvini, V.; Saravanan, G.; Kalaiezhily, R. K.; Ravichandran, K.

    2018-05-01

    The peculiar ternary full Heusler alloy Sr2CoSn nanoparticles are synthesized by co-precipitation method. X- ray diffraction pattern confirms the formation of XA or Xα structure of Sr2CoSn. Using Williamson-Hall plot (W-H plot), we are able to use the uniform deformation model and get low value of strain induced broadening. UV-Visible absorption spectrum shows sharp absorption peak at 210 nm and the estimated band gap energy of Sr2CoSn Heusler alloy nanoparticles is Eg = 4.6 eV (from Tauc plot). The presence of Sr2CoSn with the particle size of approximately 90 nm was observed using high resolution scanning electron microscopy. The magnetization measurements were carried out using VSM and studied M verses H hysteresis studies.

  20. Anti-site disorder and improved functionality of Mn₂NiX (X = Al, Ga, In, Sn) inverse Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Souvik; Kundu, Ashis; Ghosh, Subhradip, E-mail: subhra@iitg.ernet.in

    2014-10-07

    Recent first-principles calculations have predicted Mn₂NiX (X = Al, Ga, In, Sn) alloys to be magnetic shape memory alloys. Moreover, experiments on Mn₂NiGa and Mn₂NiSn suggest that the alloys deviate from the perfect inverse Heusler arrangement and that there is chemical disorder at the sublattices with tetrahedral symmetry. In this work, we investigate the effects of such chemical disorder on phase stabilities and magnetic properties using first-principles electronic structure methods. We find that except Mn₂NiAl, all other alloys show signatures of martensitic transformations in presence of anti-site disorder at the sublattices with tetrahedral symmetry. This improves the possibilities of realizingmore » martensitic transformations at relatively low fields and the possibilities of obtaining significantly large inverse magneto-caloric effects, in comparison to perfect inverse Heusler arrangement of atoms. We analyze the origin of such improvements in functional properties by investigating electronic structures and magnetic exchange interactions.« less

  1. Observation of martensitic transformation in Ni50Mn41Cu4Sn5 Heusler alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saini, Dinesh; Singh, Satyavir; Banerjee, M. K.; Sachdev, K.

    2017-05-01

    Mechanical alloying route has been employed for preparation of a single phase Ni50Mn41Cu4Sn5 (atomic %) Heusler alloy. Use of high energy planetary ball mill enables successful preparation of the same as authenticated by detailed X-ray diffraction (XRD) study. Microstructural study is carried out by optical and scanning electron microscopic techniques. XRD results reveal that increasing milling time leads to reduction in crystallite size and concurrent increase in lattice strain. Microstructural results indicate formation of self-assembled martensite twins.

  2. Extrinsic doping of the half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Stern, Robin; Dongre, Bonny; Madsen, Georg K. H.

    2016-08-01

    Controlling the p- and n-type doping is a key tool to improve the power-factor of thermoelectric materials. In the present work we provide a detailed understanding of the defect thermochemistry in half-Heusler compounds. We calculate the formation energies of intrinsic and extrinsic defects in state of the art n-type TiNiSn and p-type TiCoSb thermoelectric materials. It is shown how the incorporation of online repositories can reduce the workload in these calculations. In TiNiSn we find that Ni- and Ti-interstitial defects play a crucial role in the carrier concentration of TiNiSn. Furthermore, we find that extrinsic doping with Sb can substantially enhance the carrier concentration, in agreement with experiment. In case of TiCoSb, we find ScTi, FeCo and SnSb being possible p-type dopants. While experimental work has mainly focussed on Sn-doping of the Sb site, the present result underlines the possibility to p-dope TiCoSb on all lattice sites.

  3. Structure and Magnetic Properties in Ruthenium-Based Full-Heusler Alloys: AB INITIO Calculations

    NASA Astrophysics Data System (ADS)

    Bahlouli, S.; Aarizou, Z.; Elchikh, M.

    2013-12-01

    In this paper, we present ab initio calculations within density functional theory (DFT) to investigate structure, electronic and magnetic properties of Ru2CrZ (Z = Si, Ge and Sn) full-Heusler alloys. We have used the developed full-potential linearized muffin tin orbitals (FP-LMTO) based on the local spin density approximation (LSDA) with the PLane Wave expansion (PLW). In particular, we found that these Ruthenium-based Heusler alloys have the antiferromagnetic (AFM) type II as ground state. Then, we studied and discussed the magnetic properties belonging to our different magnetic structures: AFM type II, AFM type I and ferromagnetic (FM) phase. We also found that Ru2CrSi and Ru2CrGe exhibit a semiconducting behavior whereas Ru2CrSn has a semimetallic-like behavior as it is experimentally found. We made an estimation of Néel temperatures (TN) in the framework of the mean-field theory and used the energy differences approach to deduce the relevant short-range nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions. The calculated TN are somewhat overestimated to the available experimental ones.

  4. L2₁ and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb).

    PubMed

    Wang, Xiaotian; Cheng, Zhenxiang; Wang, Wenhong

    2017-10-20

    For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X₂YZ, i.e., Hf₂VAl, Hf₂CoZ (Z = Ga, In) and Hf₂CrZ (Z = Al, Ga, In). In this work, a series of Hf₂-based Heusler alloys, Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb), were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L2₁-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb) alloys have dropped dramatically when they form the L2₁-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L2₁-type or XA-type structures.

  5. Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors

    NASA Astrophysics Data System (ADS)

    Shi, Fangyi; Si, M. S.; Xie, Jiafeng; Mi, Kui; Xiao, Chuntao; Luo, Qiangjun

    2017-12-01

    Recently, 27 new half-Heusler compounds XYZ (X = Co, Rh, Fe, Ru, Ni; Y = Sc, Ti, V; Z = P, As, Sb, Si, Ge, Sn, Al, Ga, In) with 18 valence electrons are proposed and their bandgaps span a wide range of 0.10-1.39 eV, which have a great potential of applications in varied areas. Note that the bandgaps are predicted on the gradient-corrected Perdew-Burke-Ernzerhof functional, which underestimates the magnitude of bandgap. To obtain the accurate bandgaps, we recalculate them based on the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. Our results show that the nonlocal correction from the HSE06 functional mainly acts on the two lowest conduction bands. The variation in energy separation between these two bands dominates the relative increment of bandgap. More importantly, the band ordering is distinguished in the presence of HSE06 functional, where the dz2 orbital exhibits. When the lattice constant varies, such a band ordering can be inverted, similar to the case of topological insulators. In addition, we find an abnormal behavior of the bandgap related to the Pauling electronegativity difference between the X- and Z-sites, which arises from the delocalization of charge on the Y-site. We expect that our work can provide guidance to the study of bandgap based on the hybrid density functional theory in the half-Heusler semiconductors.

  6. A potential half-Heusler thermoelectric material ScAuSn: A first principle study

    NASA Astrophysics Data System (ADS)

    Joshi, H.; Rai, D. P.; Thapa, R. K.

    2018-04-01

    Density Functional Theory along with semi classical Boltzmann transport theory have been applied to study the electronic and thermoelectric property of the Heusler alloy ScAuSn. It has been found that ScAuSn is an indirect band gap semiconductor with a gap of 0.344 eV. The thermoelectric properties such as electrical conductivity (σ), Seebeck coefficient (S), electronic thermal conductivity (κ) etc. are reported as a function of chemical potential in the region ± 2.0 eV, with respect to constant temperature. The calculated ZT value is almost equal to 1, thus making ScAuSn a potential thermoelectric candidate.

  7. Recent progress in half-Heusler thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lihong; Zhang, Qinyong; Yuan, Bo

    2016-04-15

    Highlights: • Summarize the recent progress and advances in HH thermoelectric materials. • Preparing nanocomposites could reduce thermal conductivity. • Introducing enhance phonon scattering could further reduce the thermal conductivity. • Forming ternary systems to reducing the cost effectively. • The new class of HHs presents another opportunity to further optimize the HH system. - Abstract: Half-Heusler (HH) thermoelectric (TE) materials have been attracting extensive research interest over the last two decades, owing to their thermal stability, mechanical strength, and moderate ZT. This material system are potential candidates for medium to high temperature applications, which is close to the temperaturemore » range of most industrial waste heat sources. In this mini-review article, we briefly summarize the recent progress and advances in HH thermoelectric materials. Some effectively available approaches, such as HH nanocomposites to reduce thermal conductivity, using larger atomic mass and size differences to enhance phonon scattering to further reduce the thermal conductivity, forming ternary systems following the cost effective approach. In addition, new thermoelectric HH members are also discussed in this article, which points out that many new HH compounds may be possible for TE applications.« less

  8. Electronic and Piezoelectric properties of half-Heusler compounds: A first principles study

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Sandeep; Shankar, A.; Aly, Abeer E.; Patra, P. K.; Thapa, R. K.

    2016-10-01

    We have investigated the semiconducting and piezoelectric properties of bulk MNiSn (M=Ti, Zr, Hf) type a half-Heusler compound with cubic F-43m symmetry by means of density functional theory (DFT). For electron exchange correlation a generalized gradient approximation (GGA) was used. Special attention was paid to establish a most favourble ground state configuration on magnetic as well as non-magnetic ordering. With fully optimized structure the electronic and ferroelectric calculation was performed. The formation of band gap was discussed on the basis of d-d orbital hybridization. Further we have calculated the spontaneous polarization by means of structural deformation.

  9. The structural and magnetic properties of Fe2-xNiGa1+x Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhang (张玉洁), Y. J.; Xi (郗学奎), X. K.; Meng (孟凡斌), F. B.; Wang (王文洪), W. H.; Liu (刘恩克), E. K.; Chen (陈京兰), J. L.; Wu (吴光恒), G. H.

    2015-04-01

    The structural and magnetic properties of Fe2-xNiGa1+x (x=0~1) Heusler alloys have been investigated by experimental observation and calculation. In this system, a structural transition is found as a function of composition. A higher Ga content leads to an atomic-order transformation from Hg2CuTi to B2. The magnetization decreases due to the dilution effect and the competition between the magnetic interactions and enhanced covalent bonding. The calculation of electronic structure indicates that adding Ga enhances the p-d orbital hybridization between the transition-metal and main-group-element atoms at nearest-neighbor distance. A magnetic and a structural phase diagram have been obtained in which the composition dependences of the lattice constant, the ordering temperature and the Curie temperature show cusps at a critical composition of x=0.32.

  10. Ultralow Thermal Conductivity in Full Heusler Semiconductors.

    PubMed

    He, Jiangang; Amsler, Maximilian; Xia, Yi; Naghavi, S Shahab; Hegde, Vinay I; Hao, Shiqiang; Goedecker, Stefan; Ozoliņš, Vidvuds; Wolverton, Chris

    2016-07-22

    Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.

  11. New Inverse-Heusler Materials with Potential Spintronics Applications

    NASA Astrophysics Data System (ADS)

    Bakkar, Said Adnan

    Spintronics or spin-electronics attempt to utilize the electronic spin degree of freedom to make advanced materials and devices for the future. Heusler materials are considered very promising for spintronics applications as many highly spin-polarized materials potentially exist in this family. To accelerate materials discovery and development, The Materials Genome Initiative (https://www.mgi.gov/) was undertaken in 2011 to promote theory-driven search of new materials. In this thesis work, we outline our effort to develop several new materials that are predicted to be 100% spin-polarized (half-metallic) and thermodynamically stable by theory. In particular, two Mn-based Heusler families were investigated: Mn2CoZ (Z= Ga, Sb, Ge) and Mn2FeZ (Z=Si,Ge), where the latter is potentially a new Heusler family. These materials were synthesized using the arc-melting technique and their crystal structure was investigated using the X-ray diffraction (XRD) method before and after appropriate annealing of the samples. Preliminary magnetometry measurements are also reported. We first developed a heat-treatment procedure that could be applied to all the Mn-based compounds mentioned above. Mn2CoGa was successfully stabilized in the cubic inverse-Heusler phase with a=5.869 A and magnetic moment of 2.007 muB/fu. This is in good agreement with prior literature reports [1]. However, cubic phases of Mn2CoSb and Mn2CoGe could not be stabilized within the annealing temperature range that is accessible in our lab. We successfully synthesized a cubic Mn2FeSi phase using an annealing procedure similar to Mn2CoGa. The measured cubic lattice parameter of Mn2FeSi was 5.682 A. This is the first experimental report of this material to the best of our knowledge. Detailed analysis of relative intensities of different X-ray peaks revealed that the structure is most likely in an inverse Heusler phase, in agreement with theory. However, a substantial atomic-level disorder was also uncovered from XRD

  12. Low-moment ferrimagnetic phase of the Heusler compound Cr2CoAl

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.; Marshall, Luke G.; Sterbinsky, George E.; Lewis, Laura H.; Heiman, Don

    2015-11-01

    Synthesizing half-metallic fully compensated ferrimagnets that form in the inverse Heusler phase could lead to superior spintronic devices. These materials would have high spin polarization at room temperature with very little fringing magnetic fields. Previous theoretical studies indicated that Cr2CoAl should form in a stable inverse Heusler lattice due to its low activation energy. Here, stoichiometric Cr2CoAl samples were arc-melted and annealed at varying temperatures, followed by studies of their structural and magnetic properties. High-resolution synchrotron X-ray diffraction revealed a chemically ordered Heusler phase in addition to CoAl and Cr phases. Soft X-ray magnetic circular dichroism revealed that the Cr and Co magnetic moments are antiferromagnetically oriented leading to the observed low magnetic moment in Cr2CoAl.

  13. Growth, electrical, structural, and magnetic properties of half-Heusler CoT i1 -xF exSb

    NASA Astrophysics Data System (ADS)

    Harrington, S. D.; Rice, A. D.; Brown-Heft, T. L.; Bonef, B.; Sharan, A.; McFadden, A. P.; Logan, J. A.; Pendharkar, M.; Feldman, M. M.; Mercan, O.; Petukhov, A. G.; Janotti, A.; Colakerol Arslan, L.; Palmstrøm, C. J.

    2018-01-01

    Epitaxial thin films of the substitutionally alloyed half-Heusler series CoT i1 -xF exSb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0 ≤x ≤1.0 . The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and x-ray diffraction. Using in situ x-ray photoelectron spectroscopy, only small changes in the valence band are detected for x ≤0.5 . For films with x ≥0.05 , ferromagnetism is observed in SQUID magnetometry with a saturation magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x ≤0.5 . Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x =0.3 ) are observed for higher Fe content films. Evidence of superparamagnetism for x =0.3 and 0.2 suggests, for moderate levels of Fe, that demixing of the CoT i1 -xF exSb films into Fe-rich and Fe-deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in an x =0.3 film. Statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.

  14. Phenomenological analysis of thermal hysteresis in Ni-Mn-Ga Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zagrebin, M. A.; Sokolovskiy, V. V.; Buchelnikov, V. D.

    2018-05-01

    The manipulation of thermal hysteresis in Ni-Mn-Ga Heusler alloys with coupled magnetostructural phase transition is studied theoretically using the Landau theory, including magnetic, elastic and crystal lattice modulation order parameters as well as an external magnetic field. It is shown that for the assigned combination of phenomenological parameters, in the phase diagrams, the Austenite-Martensite first-order phase transition has a finite (critical) point in which the thermal hysteresis is disappeared. Moreover, this point depends on the relation between modulation and elastic constants as well as on the magnetic field. Obtained results have been compared with other theoretical end experimental data.

  15. Phase transition temperatures and magnetic entropy change in Ni-Mn-In-B based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun; Gautam, Bhoj; Dubenko, Igor; Ali, Naushad

    2008-03-01

    One of the aspects of great attention of Heusler alloys is the large value of magnetic entropy change (δSM) and their possible application as a working material in magnetocaloric effect based magnetic refrigerators. It was reported earlier that Ni50Mn34.8In15.2 has first order martensitic transition temperature TM 212K, Curie temperature of austenitic phase TC 328K and δSM value associated with TM and TC are respectively 13 and -7 J/kg K [1]. In the present study, we are reporting the effect of partial substitution of In by B in Ni50Mn34.8In15.2 by AC susceptibility, thermal expansion, and magnetization measurements. We observed that substitution of boron sharply increase TM, and significantly enhance the δSM peak value higher than 30 J/kg K at TM 296K; however the δSM value remains almost same at TC. Therefore, the Ni-Mn-In-B based Heusler alloys will be potential material for the study of room temperature magnetic refrigerator materials. Reference: [1] A. K. Pathak, M. Khan, I. Dubenko, S. Stadler, and N. Ali, Appl. Phys. Lett. 90, 262504 (2007).

  16. Realisation of magnetically and atomically abrupt half-metal/semiconductor interface: Co2FeSi0.5Al0.5/Ge(111)

    PubMed Central

    Nedelkoski, Zlatko; Kuerbanjiang, Balati; Glover, Stephanie E.; Sanchez, Ana M.; Kepaptsoglou, Demie; Ghasemi, Arsham; Burrows, Christopher W.; Yamada, Shinya; Hamaya, Kohei; Ramasse, Quentin M.; Hasnip, Philip J.; Hase, Thomas; Bell, Gavin R.; Hirohata, Atsufumi; Lazarov, Vlado K.

    2016-01-01

    Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors. PMID:27869132

  17. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density.

    PubMed

    Populoh, Sascha; Brunko, Oliver C; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-03-27

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm² and a maximum volumetric power density of 700 mW/cm³. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected.

  18. Growth, electrical, structural, and magnetic properties of half-Heusler CoT i 1 - x F e x Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, S. D.; Rice, A. D.; Brown-Heft, T. L.

    Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi 1-xFe xSb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0 ≤ x ≤ 1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and X-ray diffraction. Using in-situ X-ray photoelectron spectroscopy, only small changes in the valence band are detected for x ≤ 0.5. For films with x ≥ 0.05, ferromagnetism is observed in SQUID magnetometry with a saturationmore » magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x ≤ 0.5. Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x=0.3) are observed for higher Fe content films. Evidence of superparamagnetism for x=0.3 and x=0.2 suggests for moderate levels of Fe, demixing of the CoTi 1-xFe xSb films into Fe rich and Fe deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in a x=0.3 film. Finally, statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.« less

  19. Growth, electrical, structural, and magnetic properties of half-Heusler CoT i 1 - x F e x Sb

    DOE PAGES

    Harrington, S. D.; Rice, A. D.; Brown-Heft, T. L.; ...

    2018-01-12

    Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi 1-xFe xSb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0 ≤ x ≤ 1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and X-ray diffraction. Using in-situ X-ray photoelectron spectroscopy, only small changes in the valence band are detected for x ≤ 0.5. For films with x ≥ 0.05, ferromagnetism is observed in SQUID magnetometry with a saturationmore » magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x ≤ 0.5. Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x=0.3) are observed for higher Fe content films. Evidence of superparamagnetism for x=0.3 and x=0.2 suggests for moderate levels of Fe, demixing of the CoTi 1-xFe xSb films into Fe rich and Fe deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in a x=0.3 film. Finally, statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.« less

  20. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    NASA Astrophysics Data System (ADS)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  1. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density

    PubMed Central

    Populoh, Sascha; Brunko, Oliver C.; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-01-01

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm2 and a maximum volumetric power density of 700 mW/cm3. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected. PMID:28809212

  2. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less

  3. Structural and magnetic properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si Heusler alloy thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aftab, M.; Department of Physics, Quaid-i-Azam University, Islamabad; Hassnain Jaffari, G.

    2011-09-01

    We present the structural, magnetic, and transport properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si (0 {<=} x {<=} 1) Heusler alloy thin films prepared by DC magnetron sputtering on commercially available glass substrates without any buffer layer. Recent theoretical calculations have shown the compositions to be half-metallic. XRD patterns show the presence of L2{sub 1} structure in the films for x = 0, however, the peaks intensities are not in accordance with the literature. High resolution transmission electron microscopy images of films show granular morphologies, crystalline growth, and an ordered L2{sub 1} structure for x {<=} 0.6. For higher Crmore » concentrations, secondary phases start to appear in the films. Magnetization measurements as a function of applied magnetic field show that the saturation moments for x {<=} 0.2 follow the Slater-Pauling rule, however, for 0.2 < x {<=} 0.6 the saturation moments fall short of the theoretically predicted values. Transport measurements at room temperature show a monotonic increase in resistivity with increasing Cr concentration. These results are explained in terms of texturing effects, Co-Cr antisite disorder, presence of secondary phases, and the amount of disorder present in the films.« less

  4. Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Zahedifar, Maedeh; Kratzer, Peter

    2018-01-01

    Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0

  5. Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound

    NASA Astrophysics Data System (ADS)

    Shrivastava, Deepika; Sanyal, Sankar P.

    2018-05-01

    In the framework of density functional theory based on plane wave pseudopotential method and linear response technique, we have studied the electronic, phonon and superconducting properties of LaPtBi half-Heusler compound. The electronic band structure and density of states show that it is gapless semiconductor which is consistent with previous results. The positive phonon frequencies confirm the stability of this compound in cubic MgAgAs phase. Superconductivity is studied in terms of Eliashberg spectral function (α2F(ω)), electron-phonon coupling constants (λ). The value of electron-phonon coupling parameter is found to be 0.41 and the superconducting transition temperature is calculated to be 0.76 K, in excellent agreement with the experimentally reported values.

  6. Energy gap formation mechanism through the interference phenomena of electrons in face-centered cubic elements and compounds with the emphasis on half-Heusler and Heusler compounds

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Sato, H.

    2018-05-01

    Many face-centred cubic elements and compounds with the number of atoms per unit cell N equal to 8, 12 and 16 are known to be stabilised by forming either a band gap or a pseudogap at the Fermi level. They are conveniently expressed as cF8, cF12 and cF16, respectively, in the Pearson symbol. From the cF8 family, we worked on three tetravalent elements C (diamond), Si and Ge, SZn-type AsGa compound and NaCl-type compounds like BiLu, AsSc, etc. From the cF12 family, more than 80 compounds were selected, with a particular emphasis on ABC- and half-Heusler-type ternary equiatomic compounds. Among cF16 compounds, both the Heusler compounds ABC2 and Zintl compounds were studied. We revealed that, regardless of whether or not the transition metal (TM) and/or rare-earth (RE) elements are involved as constituent elements, the energy gap formation mechanism for cF8, cF12 and cF16 compounds can be universally discussed in terms of interference phenomenon of itinerant electrons with set of reciprocal lattice planes with ? = 8, 11 and 12, where ? refers to square of the critical reciprocal of lattice vector of an fcc lattice. The number of itinerant electrons per unit cell, e/uc, for all these band gap/pseudogap-bearing compounds is found to fall on a universal line called "3/2-power law" when plotted against ? on a logarithmic scale. This proves the validity of the fulfilment of the interference condition ? in conformity with other pseudogap compounds with different crystal symmetries and different sizes of the unit cell reported in literature.

  7. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    NASA Astrophysics Data System (ADS)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  8. Two successive magneto-structural transformations and their relation to enhanced magnetocaloric effect for Ni55.8Mn18.1Ga26.1 Heusler alloy

    PubMed Central

    Li, Zhe; Xu, Kun; Zhang, Yuanlei; Tao, Chang; Zheng, Dong; Jing, Chao

    2015-01-01

    In the present work, two successive magneto-structural transformations (MSTs) consisting of martensitic and intermartensitic transitions have been observed in polycrystalline Ni55.8Mn18.1Ga26.1 Heusler alloy. Benefiting from the additional latent heat contributed from intermediate phase, this alloy exhibits a large transition entropy change ΔStr with the value of ~27 J/kg K. Moreover, the magnetocaloric effect (MCE) has been also evaluated in terms of Maxwell relation. For a magnetic field change of 30 kOe, it was found that the calculated value of refrigeration capacity in Ni55.8Mn18.1Ga26.1 attains to ~72 J/kg around room temperature, which significantly surpasses those obtained for many Ni-Mn based Heusler alloys in the same condition. Such an enhanced MCE can be ascribed to the fact that the isothermal entropy change ΔST is spread over a relatively wide temperature interval owing to existence of two successive MSTs for studied sample. PMID:26450663

  9. Positron-annihilation 2D-ACAR studies of disordered and defected alloys

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Prasad, R.; Smedskjaer, L. C.; Benedek, R.; Mijnarends, P. E.

    1987-09-01

    Theoretical and experimental progess in connection with 2D-ACAR positron annihilation studies of ordered, disordered, and defected alloys is discussed. We present, in particular, some of the recent developments concerning the electronic structure of disordered alloys, and the work in the area of annihilation from positrons trapped at vacancy-type defects in metals and alloys. The electronic structure and properties of a number of compounds are also discussed briefly; we comment specifically on high T sub c ceramic superconductors, Heusler alloys, and transition-metal aluminides.

  10. Prediction of a new class of half-metallic ferromagnets from first principles [A new class of half-metallic ferromagnets from first principles

    DOE PAGES

    Griffin, Sinead M.; Neaton, Jeffrey B.

    2017-09-12

    Half-metallic ferromagnetism (HMFM) occurs rarely in materials and yet offers great potential for spintronic devices. Recent experiments suggest a class of compounds with the `ThCrmore » $$_{2}$$Si$$_{2}$$' (122) structure -- isostructural and containing elements common with Fe pnictide-based superconductors -- can exhibit HMFM. Here we use $ab$ $initio$ density-functional theory calculations to understand the onset of half-metallicity in this family of materials and explain the appearance of ferromagnetism at a quantum critical point. We also predict new candidate materials with HMFM and high Curie temperatures through A-site alloying.« less

  11. Robust tunability of magnetoresistance in half-Heusler R PtBi ( R = Gd , Dy, Tm, and Lu) compounds

    DOE PAGES

    Mun, Eundeok; Bud'ko, Sergey L.; Canfield, Paul C.

    2016-03-15

    We present the magnetic field dependencies of transport properties for RPtBi ( R = Gd, Dy, Tm, and Lu) half-Heusler compounds. Temperature- and field-dependent resistivity measurements of high-quality RPtBi single crystals reveal an unusually large, nonsaturating magnetoresistance (MR) up to 300 K under a moderate magnetic field of H = 140 kOe. At 300 K, the large MR effect decreases as the rare earth is traversed from Gd to Lu and the magnetic field dependence of MR shows a deviation from the conventional H2 behavior. The Hall coefficient ( RH) for R = Gd indicates a sign change around 120more » K, whereas RH curves for R = Dy, Tm, and Lu remain positive for all measured temperatures. At 300 K, the Hall resistivity reveals a deviation from the linear field dependence for all compounds. Thermoelectric power measurements on this family show strong temperature and magnetic field dependencies which are consistent with resistivity measurements. A highly enhanced thermoelectric power under applied magnetic field is observed as high as ~100 μV/K at 140 kOe. Furthermore, analysis of the transport data in this series reveals that the rare-earth-based half-Heusler compounds provide opportunities to tune MR effect through lanthanide contraction and to elucidate the mechanism of nontrivial MR.« less

  12. Performance of a Half-Heusler Thermoelectric Generator for Automotive Application

    DOE PAGES

    Szybist, James; Davis, Steven; Thomas, John; ...

    2018-04-03

    Thermoelectric generators (TEGs) have been researched and developed for harvesting energy from otherwise wasted heat. For automotive applications this will most likely involve using internal combustion engine exhaust as the heat source, with the TEG positioned after the catalyst system. Applications to exhaust gas recirculation systems and compressed air coolers have also been suggested. A thermoelectric generator based on half-Heusler thermoelectric materials was developed, engineered, and fabricated, targeting a gasoline passenger sedan application. This generator was installed on a gasoline engine exhaust system in a dynamometer cell, and positioned immediately downstream of the closecoupled three-way catalyst. The generator was characterizedmore » using a matrix of steady-state conditions representing the important portions of the engine map. Detailed performance results are presented. Measurements indicate the generator can produces over 300 W of power with 900 °C exhaust at relatively high flow rates, but less than 50 W when the exhaust is 600 °C and at lower flow rates. The latter condition is typical of standard test cycles and most driving scenarios.« less

  13. Performance of a Half-Heusler Thermoelectric Generator for Automotive Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James; Davis, Steven; Thomas, John

    Thermoelectric generators (TEGs) have been researched and developed for harvesting energy from otherwise wasted heat. For automotive applications this will most likely involve using internal combustion engine exhaust as the heat source, with the TEG positioned after the catalyst system. Applications to exhaust gas recirculation systems and compressed air coolers have also been suggested. A thermoelectric generator based on half-Heusler thermoelectric materials was developed, engineered, and fabricated, targeting a gasoline passenger sedan application. This generator was installed on a gasoline engine exhaust system in a dynamometer cell, and positioned immediately downstream of the closecoupled three-way catalyst. The generator was characterizedmore » using a matrix of steady-state conditions representing the important portions of the engine map. Detailed performance results are presented. Measurements indicate the generator can produces over 300 W of power with 900 °C exhaust at relatively high flow rates, but less than 50 W when the exhaust is 600 °C and at lower flow rates. The latter condition is typical of standard test cycles and most driving scenarios.« less

  14. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1-xMnxP (x = 0.03, 0.25, 0.5, and 0.75) Alloys.

    PubMed

    Laref, Amel; AlMudlej, Abeer; Laref, Slimane; Yang, Jun Tao; Xiong, Yong-Chen; Luo, Shi Jun

    2017-07-07

    Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga 1- x Mn x P ( x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U) technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level ( E F ) in the spin-down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga 1- x Mn x P alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.

  15. Structural, electronic, mechanical, and thermoelectric properties of a novel half Heusler compound HfPtPb

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Rai, D. P.; Thapa, R. K.; Srivastava, Sunita

    2017-07-01

    We explore the structural, electronic, mechanical, and thermoelectric properties of a new half Heusler compound HfPtPb, an all metallic heavy element, recently proposed to be stable [Gautier et al., Nat. Chem. 7, 308 (2015)]. In this work, we employ density functional theory and semi-classical Boltzmann transport equations with constant relaxation time approximation. The mechanical properties, such as shear modulus, Young's modulus, elastic constants, Poisson's ratio, and shear anisotropy factor, have been investigated. The elastic and phonon properties reveal that this compound is mechanically and dynamically stable. Pugh's ratio and Frantsevich's ratio demonstrate its ductile behavior, and the shear anisotropic factor reveals the anisotropic nature of HfPtPb. The band structure predicts this compound to be a semiconductor with a band gap of 0.86 eV. The thermoelectric transport parameters, such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity, and lattice thermal conductivity, have been calculated as a function of temperature. The highest value of Seebeck coefficient is obtained for n-type doping at an optimal carrier concentration of 1.0 × 1020 e/cm3. We predict the maximum value of figure of merit (0.25) at 1000 K. Our investigation suggests that this material is an n-type semiconductor.

  16. Ab-initio study of electronic structure and magnetic properties of half-metallic Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Go, Anna, E-mail: annago@alpha.uwb.edu.pl

    2014-11-15

    Ab-initio electronic structure calculations are carried out for quinternary Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys. When x=0 the alloy is half-metallic ferromagnet, with magnetic moment following the Slater–Pauling rule. Replacement of Mn by V, changes its electronic and magnetic structure. V-doped alloys exhibit half-metallic behavior for x≤0.25. However, even for higher V concentrations, electronic spin polarization is still very high, what makes the alloys interesting for spintronic applications. - Graphical abstract: Densities of states of Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} and magnetic moments of Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5}. - Highlights: • Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} is a half-metallicmore » ferromagnet with a minority band gap of 0.49 eV. • Half-metallic band gap is very stable against the change of the lattice parameter. • Half-metallic band gap is obtained for Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} for x≤0.25. • Electronic spin polarization is very high and equal to at least 95% for x≤0.625. • The main carrier of magnetism of the compound is manganese.« less

  17. Enhanced thermoelectric properties of n-type NbCoSn half-Heusler by improving phase purity

    DOE PAGES

    He, Ran; Huang, Lihong; Wang, Yumei; ...

    2016-06-01

    In this paper, we report the thermoelectric properties of NbCoSn-based n-type half-Heuslers (HHs) that were obtained through arc melting, ball milling, and hot pressing process. With 10% Sb substitution at the Sn site, we obtained enhanced n-type properties with a maximum power factor reaching ~35 μW cm -1 K -2 and figure of merit (ZT) value ~0.6 in NbCoSn 0.9Sb 0.1. The ZT is doubled compared to the previous report. In addition, the specific power cost ($ W -1) is decreased by ~68% comparing to HfNiSn-based n-type HH because of the elimination of Hf.

  18. Thin film Heusler compounds manganese nickel gallium

    NASA Astrophysics Data System (ADS)

    Jenkins, Catherine Ann

    Multiferroic Heusler compounds Mn3--xNi xGa (x=0,1,2) have a tetragonal unit cell that can variously be used for magneto-mechanically coupled shape memory ( x=1,2) and spin-mechanical applications (x=0). The first fabrication of fully epitaxial thin films of these and electronically related compounds by sputtering is discussed. Traditional and custom lab characterization of the magnetic and temperature driven multiferroic behavior is augmented by more detailed synchrotron-based high energy photoemission spectroscopic techniques to describe the atomic and electronic structure. Integration of the MnNi2Ga magnetic shape memory compound in microwave patch antennas and active free-standing structures represents a fraction of the available and promising applications for these compounds. Prototype magnetic tunnel junctions are demonstrated by Mn3Ga electrodes with perpendicular anisotropy for spin torque transfer memory structures. The main body of the work concentrates on the definition and exploration of the material series Mn3--xNi xGa (x=0,1,2) and the relevant multiferroic phenomena exhibited as a function of preparation and external stimuli. Engineering results on each x=0,1,2 are presented with device prototypes where relevant. In the appendices the process of the materials design undertaken with the goal of developing new ternary intermetallics with enhanced properties is presented with a full exploration of the road from band structure calculations to device implementation. Cobalt based compounds in single crystal and nanoparticle form are fabricated with an eye to developing the production methods for new cobalt- and iron-based magnetic shape memory compounds for device applications in different forms. Mn2CoSn, a compound isolectronic and with similar atomic ordering to Mn2NiGa is experimentally determined to be a nearly half-metallic ferromagnet in contrast to the metallic ferrimagnetism in the parent compound. High energy photoemission spectroscopy is shown to

  19. Effect of film thickness on soft magnetic behavior of Fe2CoSi Heusler alloy for spin transfer torque device applications

    NASA Astrophysics Data System (ADS)

    Asvini, V.; Saravanan, G.; Kalaiezhily, R. K.; Raja, M. Manivel; Ravichandran, K.

    2018-04-01

    Fe2CoSi based Heusler alloy thin films were deposited on Si (111) wafer (substrate) of varying thickness using ultra high vacuum DC magnetron sputtering. The structural behavior was observed and found to be hold the L21 structure. The deposited thin films were characterized magnetic properties using vibrating sample magnetometer; the result shows a very high saturated magnetization (Ms), lowest coercivity (Hc), high curie transition temperature (Tc) and low hysteresis loss. Thin film thickness of 75 nm Fe2CoSi sample maintained at substrate temperature 450°C shows the lowest coercivity (Hc=7 Oe). In general, Fe2CoSi Heusler alloys curie transition temperature is very high, due to strong exchange interaction between the Fe and Co atoms. The substrate temperature was kept constant at 450°C for varying thickness (e.g. 5, 20, 50, 75 and 100 nm) of thin film sample. The 75 nm thickness thin film sample shows well crystallanity and good magnetic properties, further squareness ratio in B-H loop increases with the increase in film thickness.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seema, K., E-mail: s-phy@yahoo.co.in; Department of Physics, PGGC, Sector 11, Chandigarh, India-160011; Kumar, Ranjan, E-mail: ranjan@pu.ac.in

    This paper presents the effect of disorder on electronic, magnetic and half-metallic properties of Co{sub 2}VGa Heusler alloy using density functional theory. Binary mixing is the most common form of atomic disorder in these compounds. We have considered three types of disorders: DO{sub 3}, A2 and B2 disorder which corresponds to X-Y, X-Z and Y-Z mixing respectively. After structural optimization, we found that A2 disorder has high formation energy and is most unlikely to occur. The half-metallic nature of the alloy is destroyed in presence of DO{sub 3} and A2 disorder. The destruction of half-metallicity is due to reconstruction ofmore » energy states. Also the loss of half-metallicity is accompanied by reversal of spin-polarization at the Fermi level. B2 disorder retains the half-metallic nature of the alloy but spin-polarization value is reduced as compared to the ordered alloy.« less

  1. Implicit measurement of the latent heat in a magnetocaloric NiMnIn Heusler alloy

    NASA Astrophysics Data System (ADS)

    Ghahremani, Mohammadreza; ElBidweihy, Hatem; Bennett, Lawrence H.; Della Torre, Edward; Zou, Min; Johnson, Francis

    2013-05-01

    The latent heat linked with the first-order transformation of a NiMnIn Heusler alloy has been studied through direct measurements of the adiabatic temperature change, ΔTad, during magnetization process. The experimental procedure used guarantees independent data points and negates any contribution of hysteretic losses to the magnetocaloric effect. Thus, the differences between the magnitudes of ΔTad measurements during the magnetization with the initial temperature change directions from low-to-high and high-to-low are solely attributed to the latent heat exchange, which accompanies the irreversible structural first-order transformation. An estimate of the latent heat inducing such differences is about 0.292 J/g.

  2. Near total magnetic moment compensation with high Curie temperature in Mn2V0.5Co0.5Z (Z  =  Ga,Al) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Midhunlal, P. V.; Arout Chelvane, J.; Arjun Krishnan, U. M.; Prabhu, D.; Gopalan, R.; Kumar, N. Harish

    2018-02-01

    Mn2V1-x Co x Z (Z  =  Ga,Al and x  =  0, 0.25, 0.5, 0.75, 1) Heusler alloys have been synthesized to investigate the effect of Co substitution at the V site on the magnetic moment and Curie temperature of half-metallic ferrimagnets Mn2VGa and Mn2VAl. Near total magnetic moment compensation was achieved with high Curie temperature for x  =  0.5 composition. The Co substituted alloys show a non linear decrease in lattice parameter without altering the crystal structure of the parent alloys. The end members Mn2VGa and Mn2CoGa have the saturation magnetization of 1.80 µ B/f.u. and 2.05 µ B/f.u. respectively whereas for the Mn2V0.5Co0.5Ga alloy, a near total magnetic moment compensation (0.10 µ B/f.u.) was observed due to the ferrimagnetic coupling of Mn with parallelly aligned V and Co. The Co substituted Mn2VAl has also shown a similar trend with compensated magnetic moment value of 0.06 µ B/f.u. for x  =  0.5. The Curie temperatures of the alloys including the x  =  0.5 composition are well above the room temperature (more than 650 K) which is in sharp contrast to the earlier reported values of 171 K for the (MnCo)VGa and 105 K for the (MnCo)VAl (substitution at the Mn site). The observed T C values are highest among the Mn2V based fully compensated ferrimagnets. The magnetic moment compensation without significant reduction in T C indicates that the V site substitution of Co does not weaken the magnetic interaction in Mn2VZ (Z  =  Ga,Al) alloys which is contrary to the earlier experimental reports on Mn site substitution.

  3. Half-heusler alloys with enhanced figure of merit and methods of making

    DOEpatents

    Ren, Zhifeng; Yan, Xiao; Joshi, Giri; Chen, Shuo; Chen, Gang; Poudel, Bed; Caylor, James Christopher

    2015-06-02

    Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.

  4. Gamma rays shielding parameters for white metal alloys

    NASA Astrophysics Data System (ADS)

    Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir

    2018-05-01

    In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.

  5. Design of Fatigue Resistant Heusler-strengthened PdTi-based Shape Memory Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Frankel, Dana J.

    The development of non-surgical transcatheter aortic valve implantation (TAVI) techniques, which utilize collapsible artificial heart valves with shape memory alloy (SMA)-based frames, pushes performance requirements for biomedical SMAs beyond those for well-established vascular stent applications. Fatigue life for these devices must extend into the ultra-high cycle fatigue (UHCF) regime (>600M cycles) with zero probability of failure predicted at applied strain levels. High rates of Ni-hypersensitivity raise biocompatibility concerns, driving the development of low-Ni and Ni-free SMAs. This work focuses on the development of biocompatible, precipitation-strengthened, fatigue-resistant PdTi-based SMAs for biomedical applications. Functional and structural fatigue are both manifestations of cyclic instability resulting in accumulation of slip and eventual structural damage. While functional fatigue is easily experimentally evaluated, structural fatigue is more difficult to measure without the proper equipment. Therefore, in this work a theoretical approach using a model well validated in steels is utilized to investigate structural fatigue behavior in NiTi in the UHCF regime, while low cycle functional fatigue is evaluated in order to monitor the core phenomena of the cyclic instability. Results from fatigue simulations modeling crack nucleation at non-metallic inclusions in commercial NiTi underscore the importance of increasing yield strength for UHCF performance. Controlled precipitation of nanoscale, low-misfit, L21 Heusler aluminides can provide effective strengthening. Phase relations, precipitation kinetics, transformation temperature, transformation strain, cyclic stability, and mechanical properties are characterized in both Ni-free (Pd,Fe)(Ti,Al) and low-Ni high-strength "hybrid" (Pd,Ni)(Ti,Zr,Al) systems. Atom probe tomography is employed to measure phase compositions and particle sizes used to calibrate LSW models for coarsening kinetics and Gibbs

  6. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  7. B2+L2{sub 1} ordering in Co{sub 2}MnAl Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinesh, A., E-mail: attatappa85@gmail.com; Sudheesh, V. D.; Lakshmi, N.

    Magnetic and structural properties of B2 ordered Co{sub 2}MnAl Heusler alloy have been studied by X-ray diffraction and DC magnetization techniques. X-ray diffractogram shows the structure is of B2 type with preferential site disorder between Mn and Al atoms and presence of a small L2{sub 1} phase. DC magnetization studies at low temperature establish that the antiferromagnetic nature arises mainly due to the antiparallel coupling of spin moments of 3d electrons of Co with Mn atoms. Curie temperature (T{sub c}) is 733 K which is close to T{sub c} of the L2{sub 1} phase.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mukhtiyar; Saini, Hardev S.; Thakur, Jyoti

    Heusler alloys based thin-films often exhibit a degree of atomic disorder which leads to the lowering of spin polarization in spintronic devices. We present ab-initio calculations of atomic disorder effects on spin polarization and half-metallicity of Mn{sub 2}CoSi inverse Heusler alloy. The five types of disorder in Mn{sub 2}CoSi have been proposed and investigated in detail. The A2{sub a}-type and B2-type disorders destroy the half-metallicity whereas it sustains for all disorders concentrations in DO{sub 3a}- and A2{sub b}-type disorder and for smallest disorder concentration studied in DO{sub 3b}-type disorder. Lower formation energy/atom for A2{sub b}-type disorder than other four disordersmore » in Mn{sub 2}CoSi advocates the stability of this disorder. The total magnetic moment shows a strong dependence on the disorder and the change in chemical environment. The 100% spin polarization even in the presence of disorders explicitly supports that these disorders shall not hinder the use of Mn{sub 2}CoSi inverse Heusler alloy in device applications. - Graphical abstract: Minority-spin gap (E{sub g↓}) and HM gap (E{sub sf}) as a function of concentrations of various possible disorder in Mn{sub 2}CoSi inverse Heusler alloy. The squares with solid line (black color)/dotted line (blue color)/dashed line (red color) reperesents E{sub g↓} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi and the spheres with solid line (black color)/dottedline (blue color)/dashed line (red color) represents E{sub sf} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi. - Highlights: • The DO{sub 3}- and A2-type disorders do not affect the half-metallicity in Mn{sub 2}CoSi. • The B2-type disorder solely destroys half-metallicity in Mn{sub 2}CoSi. • The A2-type disorder most probable to occur out of all three types. • The total spin magnetic moment strongly depends on the disorder concentrations.« less

  9. Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (Z = Si, Ge) Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, Dinesh C.

    2018-04-01

    The electronic, mechanical and thermoelectric properties of Zr2CoZ (Z = Si, Ge) Heusler alloys are investigated by the full-potential linearized augmented plane wave method. Using the Voigt-Reuss approximation, we calculated the various elastic constants, the shear and Young's moduli, and Poisson's ratio which predict the ductile nature of the alloys. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing a linearly increasing Seebeck coefficient with temperature mainly because of the existence of almost flat conduction bands along L to D directions of a high symmetry Brillouin zone. The efficiency of conversion was measured as the figure of merit by taking into effect the lattice thermal part that achieves an upper-limit of 0.14 at 1200 K which may favour their use for waste heat recovery at higher temperatures.

  10. Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors.

    PubMed

    Nakajima, Yasuyuki; Hu, Rongwei; Kirshenbaum, Kevin; Hughes, Alex; Syers, Paul; Wang, Xiangfeng; Wang, Kefeng; Wang, Renxiong; Saha, Shanta R; Pratt, Daniel; Lynn, Jeffrey W; Paglione, Johnpierre

    2015-06-01

    We report superconductivity and magnetism in a new family of topological semimetals, the ternary half-Heusler compound RPdBi (R: rare earth). In this series, tuning of the rare earth f-electron component allows for simultaneous control of both lattice density via lanthanide contraction and the strength of magnetic interaction via de Gennes scaling, allowing for a unique tuning of the normal-state band inversion strength, superconducting pairing, and magnetically ordered ground states. Antiferromagnetism with ordering vector (½,½,½) occurs below a Néel temperature that scales with de Gennes factor dG, whereas a superconducting transition is simultaneously supressed with increasing dG. With superconductivity appearing in a system with noncentrosymmetric crystallographic symmetry, the possibility of spin-triplet Cooper pairing with nontrivial topology analogous to that predicted for the normal-state electronic structure provides a unique and rich opportunity to realize both predicted and new exotic excitations in topological materials.

  11. Exchange interactions and magnetocaloric effects of the Heusler alloys Ni-Mn-In-R (R = Fe, Co)

    NASA Astrophysics Data System (ADS)

    Li, Yan-Ru; Su, Hui-Ling; Sun, Ji-Bing; Li, Ying

    2018-05-01

    The magnetic interactions and magnetocaloric effects in Ni2Mn1.4In0.6‑xRx (x = 0-0.2) (R = Fe, Co) Heusler alloys are investigated by the first-principles and Monte Carlo method. The ab initio calculations provide a basic understanding of the competition of ferromagnetic and antiferromagnetic interactions due to the chemical disorder of the alloy compositions. The thermodynamic properties including magnetization, specific heat and magnetic entropy change are calculated by the finite-temperature Monte Carlo simulations using the exchange couplings and magnetic moments from ab initio calculation as input parameters. The results show that the Fe or Co doping in Ni2Mn1.4In0.6 leads to an increase of magnetic moment and magnetic entropy change but a decrease of magnetic transition temperature with the increase in the Fe or Co contents. This indicates that the transition temperature and magnetocaloric properties of Ni2Mn1.4In0.6 alloy can be tuned by substituting In atom by Fe or Co with different contents.

  12. Dirac cone and pseudogapped density of states in the topological half-Heusler compound YPtBi

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Braun, J.; Minár, J.; Elmers, H.-J.; Kutnyakhov, D.; Zaporozhchenko, A. V.; Wallauer, R.; Chernov, S.; Medjanik, K.; Schönhense, G.; Kläui, M.; Chadov, S.; Ebert, H.; Jourdan, M.

    2016-10-01

    Topological insulators (TIs) are exciting materials, which exhibit unprecedented properties, such as helical spin-momentum locking, which leads to large torques for magnetic switching and highly efficient spin current detection. Here we explore the compound YPtBi, an example from the class of half-Heusler materials, for which the typical band inversion of topological insulators was predicted. We prepared this material as thin films by conventional cosputtering from elementary targets. By in situ time-of-flight momentum microscopy, a Dirac conelike surface state with a Dirac point ≃300 meV below the Fermi energy was observed, in agreement with electronic structure-photoemission calculations. Only little additional spectral weight due to other states was observed at EF, which corroborates the identification of the topologically protected surface state and is highly relevant for spintronics applications.

  13. Effect of substitutions and defects in half-Heusler FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jodin, L.; Tobola, J.; Pecheur, P.

    2004-11-01

    The structural and electron transport properties of the pure and Co-, Ti-, and Zr-substituted FeVSb half-Heusler phases have been investigated using x-ray diffraction, Moessbauer spectroscopy, and Electron Probe Microscopy Analysis as well as resistivity, thermopower, and Hall effect measurements in the 80-900 K temperature range. In a parallel study, the electronic structures of FeVSb and the aforementioned alloys were calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) in the LDA framework. The electronic densities of states and dispersion curves were obtained. The crystal structure stability and site preference analysis were addressed using total energy computations. Most ofmore » these experimental results correspond to electronic structure computations only if they take into account extra crystal defects such as antisite defects or vacancies present to various extents in the samples. Indeed a remarkable variation of KKR-CPA density of states occurring both in FeVSb and FeV{sub 1-x}Zr{sub x}Sb including defects may explain why FeVSb is not fully semiconducting as well as why there is a change of the thermopower sign in the FeV{sub 1-x}Zr{sub x}Sb versus x content.« less

  14. Soft X-ray magnetic circular dichroism of Heusler-type alloy Co 2MnGe

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Iori, K.; Kimura, A.; Xie, T.; Taniguchi, M.; Qiao, S.; Tsuchiya, K.

    2003-10-01

    Co and Mn 2p core absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectra have been measured for the ferromagnetic ternary alloy Co 2MnGe. The observed Co 2p XAS spectrum can be understood on the basis of the unoccupied Co 3d partial density of states, whereas the overall features of the Mn 2p XAS and XMCD spectra have been partly reproduced by the Mn 2p 53d 6 final state multiplets. We have found that the orbital polarization of the Co 3d and even the Mn 3d states are recognizable, which suggests that a spin-orbit coupling should be taken into account in the energy band structure in order to reproduce the half metallic nature of this alloy.

  15. Microstructure and Phase Stability of Single Crystal NiAl Alloyed with Hf and Zr

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Dickerson, R. M.; Garg, A.; Noebe, R. D.; Whittenberger, J. D.; Nathal, M. V.; Darolia, R.

    1996-01-01

    Six near stoichiometric, NiAl single-crystal alloys, with 0.05-1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Nil6X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (beta') was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.

  16. Ductile metal alloys, method for making ductile metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockeram, Brian V.

    A ductile alloy is provided comprising molybdenum, chromium and aluminum, wherein the alloy has a ductile to brittle transition temperature of about 300 C after radiation exposure. The invention also provides a method for producing a ductile alloy, the method comprising purifying a base metal defining a lattice; and combining the base metal with chromium and aluminum, whereas the weight percent of chromium is sufficient to provide solute sites within the lattice for point defect annihilation.

  17. Effect of different annealing condition on the structural and magnetic properties of Mn2NiGa Heusler alloys

    NASA Astrophysics Data System (ADS)

    Vagadia, Megha; Hester, James; Nigam, A. K.

    2018-04-01

    We studied the effect of different annealing conditions on structural and magnetic properties of Mn2NiGa Heusler alloys. Reitveld refinement of neutron diffraction pattern at RT confirms the tetragonal structure with cubic phase for I-W quenched alloy whereas Le Bail fitting trials performed on neutron diffraction pattern collected for other three alloys confirm 7M monoclinic structure with cubic phase. It is found that starting and finish temperatures associated with martensite and austenite phase transformation depends strongly on the cooling rate corresponding to different cooling techniques. Slow furnace cooled sample possesses the highest martensite start temperature above room temperature ˜ 326K which decreases to ˜ 198K for ice -water quenched sample. Variation in the drop in the magnetization around MS obtained upon warming from martensite to austenite phase under ZFC cycle suggests that change in the cooling condition strongly affects the magnetization in the low temperature martensite phase. Present results suggest that by varying the cooling rate, martensite transformation as well as the martensite structure can be tuned.

  18. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  19. Transport properties of Co2CrAl Heusler alloy films

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Y. V.; Lee, Y. P.; Yoo, Y. J.; Seo, M. S.; Kim, J. M.; Hwang, J. S.; Dubowik, J.; Kim, K. W.; Choi, E. H.; Prokhnenko, O.

    2012-01-01

    The effect of atomic disorder on the electron transport and the magnetoresistance (MR) of Co2CrAl Heusler alloy (HA) films has been investigated. We show that Co2CrAl films with L21 order exhibit a negative value for the temperature coefficient of resistivity (TCR) in a temperature range of 10 < T < 290 K, and the temperature dependence of electric conductivity varies as T 3/2 similarly to that of the zero-gap semiconductors. The atomic or the site disorder on the way of L21 → B2 → A2 → amorphous state in Co2CrAl HA films causes the deviation from this dependence: reduction in the absolute value of TCR as well as decrease in the resistivity down to ϱ( T = 293 K) ˜ 200 μΩ cm in comparison to ϱ( T = 293 K) ˜ 230 μΩ cm typical for the Co2CrAl films with L21 order. The magnetic-field dependence of MR of the Co2CrAl films with L21 order is determined by two competing contributions: a positive Lorentz scattering and a negative s-d scattering. The atomic disorder in Co2CrAl films drastically changes MR behavior due to its strong influence on the magnetic properties.

  20. Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods.

    PubMed

    Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio

    2018-01-18

    Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.

  1. Enhanced caloric effect induced by magnetoelastic coupling in NiMnGaCu Heusler alloys: Experimental study and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Zhao, Dewei; Castán, Teresa; Planes, Antoni; Li, Zongbin; Sun, Wen; Liu, Jian

    2017-12-01

    On the basis of a phenomenological Landau model combined with comprehensive experimental studies, the magnetostructural transition behavior and field induced caloric effects for NiMnGaCu Heusler alloys have been investigated. In Ni50Mn25 -xGa25Cux alloys with x =5.5 , 6, and 6.5, both magnetocaloric entropy change (Δ S ) and elastocaloric temperature change (Δ T ) increase with the increment of Cu content. The maximum Δ S of 1.01 J /mol K and Δ T of 8.1 K are obtained for the alloy with x =6.5 . In order to explore the physical origin behind the large caloric effect, here we quantitatively propose a crucial coefficient of magnetoelastic coupling κ ˜ by utilizing a thermodynamic formalism within the framework of the Landau approach. It has been verified that the enhancement of the strength of magnetoelastic coupling between lattice and magnetic freedoms results in the increased caloric response for NiMnGaCu alloys. Thus, the strengthened coupling of the magnetoelastic effect can be considered as an effective way to improve the caloric performance for these alloys having the same sign of magnetic and elastic entropy changes contributed to the total caloric effect.

  2. Prospective high thermoelectric performance of the heavily p -doped half-Heusler compound CoVSn

    DOE PAGES

    Shi, Hongliang; Ming, Wenmei; Parker, David S.; ...

    2017-05-11

    The electronic structure and transport properties of the half-Heusler compound CoVSn are studied in this paper systematically by combining first-principles electronic structure calculations and Boltzmann transport theory. The band structure at the valence-band edge is complex with multiple maxima derived from hybridized transition element d states. The result is a calculated thermopower larger than 200 μV /Κ within a wide range of doping concentrations and temperatures for heavily doped p-type CoVSn. The thermoelectric properties additionally benefit from the corrugated shapes of the hole pockets in our calculated isoenergy surfaces. Our calculated power factor S 2σ/τ (with respect to an averagemore » unknown scattering time) of CoVSn is comparable to that of FeNbSb. A smaller lattice thermal conductivity can be expected from the smaller group velocities of acoustical modes compared to FeNbSb. Finally, overall, good thermoelectric performance for CoVSn can be expected by considering the electronic transport and lattice thermal conductivity.« less

  3. Prospective high thermoelectric performance of the heavily p -doped half-Heusler compound CoVSn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Hongliang; Ming, Wenmei; Parker, David S.

    The electronic structure and transport properties of the half-Heusler compound CoVSn are studied in this paper systematically by combining first-principles electronic structure calculations and Boltzmann transport theory. The band structure at the valence-band edge is complex with multiple maxima derived from hybridized transition element d states. The result is a calculated thermopower larger than 200 μV /Κ within a wide range of doping concentrations and temperatures for heavily doped p-type CoVSn. The thermoelectric properties additionally benefit from the corrugated shapes of the hole pockets in our calculated isoenergy surfaces. Our calculated power factor S 2σ/τ (with respect to an averagemore » unknown scattering time) of CoVSn is comparable to that of FeNbSb. A smaller lattice thermal conductivity can be expected from the smaller group velocities of acoustical modes compared to FeNbSb. Finally, overall, good thermoelectric performance for CoVSn can be expected by considering the electronic transport and lattice thermal conductivity.« less

  4. Ordering tendencies and electronic properties in quaternary Heusler derivatives

    NASA Astrophysics Data System (ADS)

    Neibecker, Pascal; Gruner, Markus E.; Xu, Xiao; Kainuma, Ryosuke; Petry, Winfried; Pentcheva, Rossitza; Leitner, Michael

    2017-10-01

    The phase stabilities and ordering tendencies in the quaternary full-Heusler alloys NiCoMnAl and NiCoMnGa have been investigated by in situ neutron diffraction, calorimetry, and magnetization measurements. NiCoMnGa was found to adopt the L 21 structure, with distinct Mn and Ga sublattices but a common Ni-Co sublattice. A second-order phase transition to the B 2 phase with disorder also between Mn and Ga was observed at 1160 K . In contrast, in NiCoMnAl slow cooling or low-temperature annealing treatments are required to induce incipient L 21 ordering, otherwise the system displays only B 2 order. Linked to L 21 ordering, a drastic increase in the magnetic transition temperature was observed in NiCoMnAl, while annealing affected the magnetic behavior of NiCoMnGa only weakly due to the low degree of quenched-in disorder. First principles calculations were employed to study the thermodynamics as well as order-dependent electronic properties of both compounds. It was found that a near half-metallic pseudogap emerges in the minority spin channel only for the completely ordered Y structure. However, this structure is energetically unstable compared to a tetragonal structure with alternating layers of Ni and Co, which is predicted to be the low-temperature ground state. The experimental inaccessibility of the totally ordered structures is explained by kinetic limitations due to the low ordering energies.

  5. Observation of giant exchange bias in bulk Mn50Ni42Sn8 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Suresh, K. G.

    2015-02-01

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn50Ni42Sn8 Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (Tf) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  6. Magnetic properties and martensitic transformation of Ni-Mn-Ge Heusler alloys from first-principles and Monte Carlo studies

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, V. V.; Zagrebin, M. A.; Buchelnikov, V. D.

    2017-05-01

    In the present study, the magnetic properties and possibility of martensitic transformation in a series of off-stoichiometric Ni2+x Mn1-x Ge and Ni2Mn1+x Ge1-x Heusler alloys have been studied by using both first-principles and Monte Carlo methods. It is shown that in both cases an increase in chemical disorder stimulates the austenite-martensite transformation and leads to an increase in transition temperature. Moreover, the calculated formation energies confirm that these compounds are stable chemically. By using the exchange coupling constants obtained from ab initio calculations in combination with the Heisenberg model and Monte Carlo methods, the temperature-dependent magnetizations as well as Curie temperatures of the cubic and tetragonal Ni2+x Mn1-x Ge and Ni2Mn1+x Ge1-x have been determined. The phase diagrams of alloys studied showing the compositions with magnetostructural transformation are obtained. Calculated results demonstrate a similar trend to the previous experimental and theoretic results for Ni-Mn-(Ga, In, Sn, Sb) alloys that makes them possible promising magnetic materials in technological applications.

  7. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  8. Direct and indirect measurement of the magnetocaloric effect in bulk and nanostructured Ni-Mn-In Heusler alloy

    NASA Astrophysics Data System (ADS)

    Ghahremani, Mohammadreza; Aslani, Amir; Hosseinnia, Marjan; Bennett, Lawrence H.; Della Torre, Edward

    2018-05-01

    A systematic study of the magnetocaloric effect of a Ni51Mn33.4In15.6 Heusler alloy converted to nanoparticles via high energy ball-milling technique in the temperature range of 270 to 310 K has been performed. The properties of the particles were characterized by x-ray diffraction, electron microscopy, and magnetometer techniques. Isothermal magnetic field variation of magnetization exhibits field hysteresis in bulk Ni51Mn33.4In15.6 alloy across the martensitic transition which significantly lessened in the nanoparticles. The magnetocaloric effects of the bulk and nanoparticle samples were measured both with direct method, through our state of the art direct test bed apparatus with controllability over the applied fields and temperatures, as well as an indirect method through Maxwell and thermodynamic equations. In direct measurements, nanoparticle sample's critical temperature decreased by 6 K, but its magnetocaloric effect enhanced by 17% over the bulk counterpart. Additionally, when comparing the direct and indirect magnetocaloric curves, the direct method showed 14% less adiabatic temperature change in the bulk and 5% less adiabatic temperature change in the nanostructured sample.

  9. Insight into mechanical properties and thermoelectric efficiency of Zr2CoZ (Z  =  Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, Dinesh C.

    2017-11-01

    We investigated the electronic, mechanical and thermoelectric properties of Zr2CoZ (Z  =  Si, Ge) Heusler alloys using the first-principles calculation. From the analysis of various elastic constants, the shear and Young’s moduli, Poisson’s ratio, the ductile nature of the alloys is predicted. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing linearly increasing Seebeck coefficient with temperature. The value of total absolute Seebeck coefficients at 1200 K of Zr2CoSi and Zr2CoGe are 60 µV K-1 and 40 µV K-1 respectively mainly because of the existence of almost flat conduction bands along L to Г directions of high symmetry Brillouin zone. Further, the chemical potential variation of power factor confirms the n-type doping fruitful to increase their TE performance. The figure of merit achieves an upper-limit of 0.95 at 850 K and can favour their use for waste heat recovery at higher temperatures and thermoelectric spin generators.

  10. Synthesize and microstructure characterization of Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elwindari, Nastiti; Manaf, Azwar, E-mail: azwar@ui.ac.id

    2016-06-17

    The ferromagnetic heusler alloys are promising materials in many technical applications due to their multifunctional properties such as shape memory effect, magnetocaloric effect, giant magnetoresistance, etc. In this work, synthesize and characterization of polycrystalline Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} (NMCS) alloy are reported. Alloy preparation was conducted by melting the constitute elements under an innert Argon (Ar) atmosphere in a vacuum mini arc-melting furnace. Homogenization of the microstructure of the as-cast ingot was obtained after annealing process at 750°C for 48 hours. It is shown that the dendrites structure has changed to equaixed grains morphology after homogenization. Microstructure characteristics ofmore » material by x-ray diffraction revealed that the alloy has a L{sub 21}-type cubic crystal structure as the main phase at room temperature. In order to induce the shape anisotropy, a forging treatment was applied to show the shape orientation of material. Various enhancements of magnetic properties in a longitudinal direction were observed at various degree of anisotropy. The microstructure changes of as-cast NMCS and effects of homogenization treatments as studied by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) are discussed in details.« less

  11. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb.

    PubMed

    He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng

    2016-11-29

    Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm -1 ⋅K -2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb 0.95 Ti 0.05 FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm -2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.

  12. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb

    PubMed Central

    He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng

    2016-01-01

    Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm−1⋅K−2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm−2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications. PMID:27856743

  13. Thermoelectric Figures of Merit of Zn4Sb3 and Zrnisn-based Half-heusler Compounds Influenced by Mev Ion-beam Bombardments

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Muntele, C. I.; Ila, D.

    Semiconducting β-Zn4Sb3 and ZrNiSn-based half-Heusler compound thin films with applications as thermoelectric (TE) materials were prepared using ion beam assisted deposition (IBAD). High-purity solid zinc (Zn) and antimony (Sb) were evaporated by electron beam to grow the β-Zn4Sb3 thin film while high-purity zirconium (Zr) powder and nickel (Ni) tin (Sn) powders were evaporated by electron beam to grow the ZrNiSn-based half-Heusler compound thin film. Rutherford backscattering spectrometry (RBS) was used to analyze the composition of the thin films. The grown thin films were subjected to 5 MeV Si ions bombardment for generation of nanostructures in the films. We measured the thermal conductivity, Seebeck coefficient, and electrical conductivity of these two systems before and after 5 MeV Si ions beam bombardment. The two material systems have been identified as promising TE materials for the application of thermal-to-electrical energy conversion, but the efficiency still limits their applications. The electronic energy deposited due to ionization in the track of MeV ion beam couldcause localized crystallization. The nanostructures produced by MeV ion beam can cause significant change in both the electrical and the thermal conductivity of thin films, thereby improving the efficiency. We used the 3ω-method (3rd harmonic) measurement system to measure the cross-plane thermal conductivity, the van der Pauw measurement system to measure the electrical conductivity, and the Seebeck-coefficient measurement system to measure the cross-plane Seebeck coefficient. The thermoelectric figures of merit of the two material systems were then derived by calculations using the measurement results. The MeV ion-beam bombardment was found to decrease the thermal conductivity of thin films and increase the efficiency of thermal-to-electrical energy conversion.

  14. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    NASA Astrophysics Data System (ADS)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  15. Hysteresis and magnetocaloric effect at the magnetostructural phase transition of Ni-Mn-Ga and Ni-Mn-Co-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Basso, Vittorio; Sasso, Carlo P.; Skokov, Konstantin P.; Gutfleisch, Oliver; Khovaylo, Vladimir V.

    2012-01-01

    Hysteresis features of the direct and inverse magnetocaloric effect associated with first-order magnetostructural phase transitions in Ni-Mn-X (X = Ga, Sn) Heusler alloys have been disclosed by differential calorimetry measurements performed either under a constant magnetic field, H, or by varying H in isothermal conditions. We have shown that the magnetocaloric effect in these alloys crucially depends on the employed measuring protocol. Experimentally observed peculiarities of the magnetocaloric effect have been explained in the framework of a model that accounts for different contributions to the Gibbs energy of austenitic gA and martensitic gM phases. Obtained experimental results have been summarized by plotting a phase fraction of the austenite xA versus the driving force gM-gA. The developed approach allows one to predict reversible and irreversible features of the direct as well as inverse magnetocaloric effect in a variety of materials with first-order magnetic phase transitions.

  16. Spin Polarization of Alternate Monatomic Epitaxial [Fe/Co]n Superlattice

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Doi, Masaaki; Sahashi, Masashi; Rajanikanth, Ammanabrolu; Takahashi, Yukiko; Hono, Kazuhiro

    2012-09-01

    The spin polarization (P) of alternate monatomic layered (AML) epitaxial [Fe/Co]n superlattices grown on MgO(001) substrates by electron beam (EB) evaporation has been measured by the point contact Andreev reflection (PCAR) method. The intrinsic transport P of 0.60 was obtained for the AML epitaxial [Fe/Co]n superlattice grown at 75 °C, which is comparable to that of half-metallic Heusler alloys measured by PCAR. The AML epitaxial [Fe/Co]n superlattices on MgO(001), which are expected to possess the B2 ordered structure, show the highest spin polarization of metallic Fe-Co alloy films.

  17. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  18. Self-disintegrating Raney metal alloys

    DOEpatents

    Oden, Laurance L.; Russell, James H.

    1979-01-01

    A method of preparing a Raney metal alloy which is capable of self-disintegrating when contacted with water vapor. The self-disintegrating property is imparted to the alloy by incorporating into the alloy from 0.4 to 0.8 weight percent carbon. The alloy is useful in forming powder which can be converted to a Raney metal catalyst with increased surface area and catalytic activity.

  19. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    DOE PAGES

    Hong, A. J.; Li, L.; He, R.; ...

    2016-03-07

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less

  20. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, A. J.; Li, L.; He, R.

    The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half- Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k codemore » and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley’s deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens’ equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Tidoped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. Lastly, the present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.« less

  1. The Pressure Dependence of Structural, Electronic, Mechanical, Vibrational, and Thermodynamic Properties of Palladium-Based Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Çoban, Cansu

    2017-08-01

    The pressure dependent behaviour of the structural, electronic, mechanical, vibrational, and thermodynamic properties of Pd2TiX (X=Ga, In) Heusler alloys was investigated by ab initio calculations. The lattice constant, the bulk modulus and its first pressure derivative, the electronic band structure and the density of states (DOS), mechanical properties such as elastic constants, anisotropy factor, Young's modulus, etc., the phonon dispersion curves and phonon DOS, entropy, heat capacity, and free energy were obtained under pressure. It was determined that the calculated lattice parameters are in good agreement with the literature, the elastic constants obey the stability criterion, and the phonon dispersion curves have no negative frequency which shows that the compounds are stable. The band structures at 0, 50, and 70 GPa showed valence instability at the L point which explains the superconductivity in Pd2TiX (X=Ga, In).

  2. Anomalous Hall effect in ion-beam sputtered Co2FeAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Kumar, Ankit; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2017-11-01

    Investigations of temperature dependent anomalous Hall effect and longitudinal resistivity in Co2FeAl (CFA) thin films grown on Si(1 0 0) at different substrate temperature Ts are reported. The scaling of the anomalous Hall conductivity (AHC) and the associated phenomenological mechanisms (intrinsic and extrinsic) are analyzed vis-à-vis influence of Ts. The intrinsic contribution to AHC is found to be dominating over the extrinsic one. The appearance of a resistivity minimum at low temperature necessitates the inclusion of quantum corrections on account of weak localization and electron-electron scattering effects whose strength reduces with increase in Ts. The study establishes that the optimization of Ts plays an important role in the improvement of atomic ordering which indicates the higher strength of spin-orbit coupling and leads to the dominant intrinsic contribution to AHC in these CFA full Heusler alloy thin films.

  3. Robustness in spin polarization and thermoelectricity in newly tailored Mn2-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, S.; Gupta, D. C.

    2018-02-01

    Investigation of electronic structure, magnetism, hybridization and thermoelectricity of Mn2-based Heusler alloys within the framework of DFT simulation technique have been carried out. Through the optimized ground state parameters viz., lattice constant, total energy and bulk's modulus, electronic properties, magnetic properties and thermoelectric response of new tailored materials is reported. Mechanically stable with ductile nature and 100% spin polarization could favor their use in future spintronic materials. Thermoelectric properties are investigated through the variation of carrier concentration and temperature. Power factor analysis show a way for the selection of the optimal carrier concentration responsible for increasing their thermoelectric response with temperature. The power factor of 857.51 (966.16) × 109µW K-2 m-1 s-1 at an optimal concentration of 1018 cm-3 and temperature of 800 K for Mn2YSn (Mn2ZnSn) respectively is obtained. The Seebeck coefficient portray them as p-type materials and show a linear increase with temperature and vice versa for the carrier concentrations.

  4. Robustness in spin polarization and thermoelectricity in newly tailored Mn2-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, S.; Gupta, D. C.

    2018-07-01

    Investigation of electronic structure, magnetism, hybridization and thermoelectricity of Mn2-based Heusler alloys within the framework of DFT simulation technique have been carried out. Through the optimized ground state parameters viz., lattice constant, total energy and bulk's modulus, electronic properties, magnetic properties and thermoelectric response of new tailored materials is reported. Mechanically stable with ductile nature and 100% spin polarization could favor their use in future spintronic materials. Thermoelectric properties are investigated through the variation of carrier concentration and temperature. Power factor analysis show a way for the selection of the optimal carrier concentration responsible for increasing their thermoelectric response with temperature. The power factor of 857.51 (966.16) × 109µW K-2 m-1 s-1 at an optimal concentration of 1018 cm-3 and temperature of 800 K for Mn2YSn (Mn2ZnSn) respectively is obtained. The Seebeck coefficient portray them as p-type materials and show a linear increase with temperature and vice versa for the carrier concentrations.

  5. Studying the hopping parameters of half-Heusler NaAuS using maximally localized Wannier function

    NASA Astrophysics Data System (ADS)

    Sihi, Antik; Lal, Sohan; Pandey, Sudhir K.

    2018-04-01

    Here, the electronic behavior of half-Heusler NaAuS is studied using PBEsol exchange correlation functional by plotting the band structure curve. These bands are reproduced using maximally localized Wannier function using WANNIER90. Tight-binding bands are nicely matched with density functional theory bands. By fitting the tight-binding model, hopping parameter for NaAuS is obtained by including Na 2s, 2p, Au 6s, 5p, 5d and S 3s, 3p orbitals within the energy interval of -5 to 16 eV around the Fermi level. In present study, hopping integrals for NaAuS are computed for the first primitive unit cell atoms as well as the first nearest neighbor primitive unit cell. The most dominating hopping integrals are found for Na (3s) - S (3s), Na (2px) - S (2px), Au (6s) - S (3px), Au (6s) - S (3py) and Au (6s) - S (3pz) orbitals. The hopping integrals for the first nearest neighbor primitive unit cell are also discussed in this manuscript. In future, these hopping integrals are very important to find the topological invariant for NaAuS compound.

  6. Half-metallic magnetism in Ti 3Co 5-xFe xB 2

    DOE PAGES

    Pathak, Rohit; Ahamed, Imran; Zhang, W. Y.; ...

    2017-02-08

    Here, bulk alloys and thin films of Fe-substituted Ti 3Co 5B 2 have been investigated by first-principle density-functional calculations. The series, which is of interest in the context of alnico magnetism and spin electronics, has been experimentally realized in nanostructures but not in the bulk. Our bulk calculations predict paramagnetism for Ti 3Co 5B 2, Ti 3Co 4FeB 2 and Ti 3CoFe 4B 2, whereas Ti 3Fe 5B 2 is predicted to be ferromagnetic. The thin films are all ferromagnetic, indicating that moment formation may be facilitated at nanostructural grain boundaries. One member of the thin-film series, namely Ti 3CoFemore » 4B 2, is half-metallic and exhibits perpendicular easy-axis magnetic anisotropy. The half-metallicity reflects the hybridization of the Ti, Fe and Co 3d orbitals, which causes a band gap in minority spin channel, and the limited equilibrium solubility of Fe in bulk Ti 3Co 5B 2 may be linked to the emerging half-metallicity due to Fe substitution.« less

  7. Half-metallic magnetism in Ti 3Co 5-xFe xB 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Rohit; Ahamed, Imran; Zhang, W. Y.

    Here, bulk alloys and thin films of Fe-substituted Ti 3Co 5B 2 have been investigated by first-principle density-functional calculations. The series, which is of interest in the context of alnico magnetism and spin electronics, has been experimentally realized in nanostructures but not in the bulk. Our bulk calculations predict paramagnetism for Ti 3Co 5B 2, Ti 3Co 4FeB 2 and Ti 3CoFe 4B 2, whereas Ti 3Fe 5B 2 is predicted to be ferromagnetic. The thin films are all ferromagnetic, indicating that moment formation may be facilitated at nanostructural grain boundaries. One member of the thin-film series, namely Ti 3CoFemore » 4B 2, is half-metallic and exhibits perpendicular easy-axis magnetic anisotropy. The half-metallicity reflects the hybridization of the Ti, Fe and Co 3d orbitals, which causes a band gap in minority spin channel, and the limited equilibrium solubility of Fe in bulk Ti 3Co 5B 2 may be linked to the emerging half-metallicity due to Fe substitution.« less

  8. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  9. Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor.

    PubMed

    Fernández, J J; Tablero, C; Wahnón, P

    2004-06-08

    In this paper we present an analysis of the convergence of the band structure properties, particularly the influence on the modification of the bandgap and bandwidth values in half metallic compounds by the use of the exact exchange formalism. This formalism for general solids has been implemented using a localized basis set of numerical functions to represent the exchange density. The implementation has been carried out using a code which uses a linear combination of confined numerical pseudoatomic functions to represent the Kohn-Sham orbitals. The application of this exact exchange scheme to a half-metallic semiconductor compound, in particular to Ga(4)P(3)Ti, a promising material in the field of high efficiency solar cells, confirms the existence of the isolated intermediate band in this compound. (c) 2004 American Institute of Physics.

  10. Enhancement of current-perpendicular-to-plane giant magnetoresistance in Heusler-alloy based pseudo spin valves by using a CuZn spacer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furubayashi, T., E-mail: furubayashi.takao@nims.go.jp; Takahashi, Y. K.; Sasaki, T. T.

    2015-10-28

    Enhancement of magnetoresistance output was attained in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices by using a bcc CuZn alloy for the spacer. Pseudo spin valves that consisted of the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) Heusler alloy for ferromagnetic layers and CuZn alloy with the composition of Cu{sub 52.4}Zn{sub 47.6} for a spacer showed the large change of the resistance-area products, ΔRA, up to 8 mΩ·μm{sup 2} for a low annealing temperature of 350 °C. The ΔRA value is one of the highest reported so far for the CPP-GMR devices for the low annealing temperature, which is essential for processing read heads for hardmore » disk drives. We consider that the enhancement of ΔRA is produced from the spin-dependent resistance at the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/CuZn interfaces.« less

  11. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  12. The Influence of Alloying and Processing on the Microstructure and Properties of Beta-NiAl.

    DTIC Science & Technology

    1998-09-30

    transformation , such as the Heusler alloys .’J. 9 ] It is the purpose of this article to report crystal structure of the parent and martensite phases and...additions, thermal and constitutional vacancies, deviations from stoichiometry, processing defects/inhomogeneities and precipitate phases on both the low ...Mn-Al Heusler alloys aged at phase , in the Ni-Al-Mn alloys quenched from high tern- low temperatures. peratures over 1000 °C.t41 In these specimens

  13. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  14. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that...

  15. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that...

  16. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  17. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  18. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  19. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  20. Effect of the combination of dithiooctanoate monomers and acidic adhesive monomers on adhesion to precious metals, precious metal alloys and non-precious metal alloys.

    PubMed

    Ikemura, Kunio; Kojima, Katsunori; Endo, Takeshi; Kadoma, Yoshinori

    2011-01-01

    This study investigated the effect of the combination of a dithiooctanoate monomer and an acidic adhesive monomer on adhesion to precious metals, precious and non-precious metal alloys. From a selection of four dithiooctanoate monomers and six acidic adhesive monomers, 14 experimental primers containing a combination of 5.0 wt% of a dithiooctanoate monomer and 1.0 wt% of an acidic adhesive monomer in acetone were prepared. Tensile bond strengths (TBSs) of MMA-PMMA/TBBO resin to nine kinds of precious metals, precious metal alloys, and non-precious metal alloys after 2,000 thermal cycles were measured. Results showed that there were no significant differences in TBS among the primers to all the precious and non-precious metal adherends tested (p>0.05). Highest TBS values (46.5-55.8 MPa) for bonding to Au alloy, Au-Ag-Pd alloy, Co-Cr alloy, and Ni-Cr alloy were achieved with the primer which contained 5.0 wt% 10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) and 1.0 wt% 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA). Therefore, 5.0 wt% 10-MDDT and 1.0 wt% 6-MHPA was determined as the optimal combination for bonding to precious metals, precious and non-precious metal alloys.

  1. Spin-Polarized Tunneling at Interfaces Between Oxides and Metals or Semiconductors

    DTIC Science & Technology

    2006-09-01

    solution 3 3. Several miscellaneous compounds , including molecular oxygen and organic biradicals 4. Metals When a variable magnetic field is...substrate layer) Heusler alloys are considered to be prime candidates, because they show great potential for spin-injection contacts to compound and...usually employ simple parabolic bands and/or momentum and energy independent tunneling matrix elements. The classical theory of tunneling assumes that the

  2. Magnetic and magnetocaloric properties of Ni-Mn-Cr-Sn Heusler alloys under the effects of hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Pandey, Sudip; Us Saleheen, Ahmad; Quetz, Abdiel; Chen, Jing-Han; Aryal, Anil; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2018-05-01

    The magnetic, thermal, and magnetocaloric properties of Ni45Mn43CrSn11 Heusler alloy have been investigated using differential scanning calorimetry and magnetization with hydrostatic pressure measurements. A shift in the martensitic transition temperature (TM) to higher temperatures was observed with the application of pressure. The application of pressure stabilizes the martensitic state and demonstrated that pressure can be a parameter used to control and tune the martensitic transition temperature (the temperature where the largest magnetocaloric effect is observed). The magnetic entropy change significantly decreases from 33 J/kg K to 16 J/kg K under the application of a hydrostatic pressure of 0.95 GPa. The critical field of the direct metamagnetic transition increases, whereas the initial susceptibility (dM/dH) in the low magnetic field region drastically decreases with increasing pressure. The relevant parameters that affect the magnetocaloric properties are discussed.

  3. Electrical transport properties and giant baroresistance effect at martensitic transformation of Ni43.7Fe5.3Mn35.4In15.6 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanlei; He, Xijia; Li, Zhe; Xu, Kun; Liu, Changqin; Huang, Yinsheng; Jing, Chao

    2018-04-01

    The electrical transport properties at martensitic transformation (MT) in polycrystalline Ni43.7Fe5.3Mn35.4In15.6 have been intensively investigated under different hydrostatic pressures. For this alloy, the experimental results show that applying a higher hydrostatic pressure can convert its MT from the metamagnetic type into the paramagnetic type. It provides a unique opportunity to separate the relative contributions of electron-spin and electron-lattice scatterings across the metamagnetic MT based on the dynamical Clausius-Clapeyron equation, which delivers a deeper insight into the resistivity change of metamagnetic MT for the Mn-rich Ni-Mn based Heusler alloys. In addition, the studied alloy also reveals a giant positive baroresistance (BR) effect with a saturated value of 115% at 242 K. This performance originates from the combined effect of electron-spin and electron-lattice scatterings associated with a prominent hydrostatic pressure-induced MT, which contribute 46% and 69% to the overall BR ratio, respectively.

  4. Suppression of the ferromagnetic order in the Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15} by hydrostatic pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.

    2016-06-27

    We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to themore » magnetic properties.« less

  5. Diffusive-like effects and possible non trivial local topology on the half-Heusler YPdBi compound

    NASA Astrophysics Data System (ADS)

    Souza, J. C.; Lesseux, G. G.; Urbano, R. R.; Rettori, C.; Pagliuso, P. G.

    2018-05-01

    The non-ambiguous experimental identification of topological states of matter is one of the main interesting problems regarding this new quantum state of matter. In particular, the half-Heusler family RMT (R = rare-earth, T = Pd, Pt or Au and T = Bi, Sb, Pb or Sn) could be a useful platform to explore these states due to their cubic symmetry and the topological properties tunable via their unit cell volume and/or the nuclear charges of the M and T atoms. In this work, we report electron spin resonance (ESR) and complementary macroscopic measurements in the Nd3 + -doped putative topologically trivial semimetal YPdBi. Following the Nd3 + ESR lineshape as a function of microwave power, size of the particle and temperature, we have been able to observe an evolution from a Dysonian lineshape to a diffusive-like lineshape. Furthermore, the Nd3 + ESR intensity saturation is concentration dependent, which could be due to a phonon-bottleneck process. Comparing these results with the Nd3 + -doped YPtBi, we discuss a possible scenario in which the Nd3 + ions could locally tune the topological properties of the system.

  6. Thermoelectric and Structural Properties of Zr-/Hf-Based Half-Heusler Compounds Produced at a Large Scale

    NASA Astrophysics Data System (ADS)

    Zillmann, D.; Waag, A.; Peiner, E.; Feyand, M.-H.; Wolyniec, A.

    2018-02-01

    The half-Heusler (HH) systems are promising candidates for thermoelectric (TE) applications since they have shown high figures of merit ( zT) of ˜ 1, which are directly related to the energy conversion efficiency. To use HH compounds for TE devices, the materials must be phase-stable at operating temperatures up to 600°C. Currently, only a few HH compositions are available in large quantities. Hence, we focus on the TE and structural properties of three commercially available Zr-/Hf-based HH compounds in this publication. In particular, we evaluate the thermal conductivities and the figures of merit and critically discuss uncertainties and propagation error in the measurements. We find thermal conductivities of less than 6.0 W K^{-1}m^{-1} for all investigated materials and notably high figures of merit of 0.93 and 0.60 for n- and p-type compounds, respectively, at 600°C. Additionally, our investigations reveal that the grain structures of all materials also contain secondary phases like HfO2, Sn-Ni and Ti-Zr-Sn rich phases while an additional SnO_2 phase was found following several hours of harsh heat treatment at 800°C.

  7. Electronic structure and thermoelectric properties of half-Heusler compounds with eight electron valence count—KScX (X = C and Ge)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftci, Yasemin O.; Mahanti, Subhendra D.

    Electronic band structure and structural properties of two representative half-Heusler (HH) compounds with 8 electron valence count (VC), KScC and KScGe, have been studied using first principles methods within density functional theory and generalized gradient approximation. These systems differ from the well studied class of HH compounds like ZrNiSn and ZrCoSb which have VC = 18 because of the absence of d electrons of the transition metal atoms Ni and Co. Electronic transport properties such as Seebeck coefficient (S), electrical conductivity (σ), electronic thermal conductivity (κ{sub e}) (the latter two scaled by electronic relaxation time), and the power factor (S{sup 2}σ) havemore » been calculated using semi-classical Boltzmann transport theory within constant relaxation time approximation. Both the compounds are direct band gap semiconductors with band extrema at the X point. Their electronic structures show a mixture of heavy and light bands near the valance band maximum and highly anisotropic conduction and valence bands near the band extrema, desirable features of good thermoelectric. Optimal p- or n-type doping concentrations have been estimated based on thermopower and maximum power factors. The optimum room temperature values of S are ∼1.5 times larger than that of the best room temperature thermoelectric Bi{sub 2}Te{sub 3}. We also discuss the impact of the band structure on deviations from Weidemann-Franz law as one tunes the chemical potential across the band gap.« less

  8. Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Barwal, Vineet; Husain, Sajid; Behera, Nilamani; Goyat, Ekta; Chaudhary, Sujeet

    2018-02-01

    Angular dependent magnetization reversal has been investigated in Co2MnAl (CMA) full Heusler alloy thin films grown on Si(100) at different growth temperatures (Ts) by DC-magnetron sputtering. An M -shaped curve is observed in the in-plane angular (0°-360°) dependent coercivity (ADC) by magneto-optical Kerr effect measurements. The dependence of the magnetization reversal on Ts is investigated in detail to bring out the structure-property correlation with regards to ADC in these polycrystalline CMA thin films. This magnetization reversal ( M -shaped ADC behavior) is well described by the two-phase model, which is a combination of Kondorsky (domain wall motion) and Stoner Wohlfarth (coherent rotation) models. In this model, magnetization reversal starts with depinning of domain walls, with their gradual displacement explained by the Kondorsky model, and at a higher field (when the domain walls merge), the system follows coherent rotation before reaching its saturation following the Stoner Wohlfarth model. Further, the analysis of angular dependent squareness ratio (Mr/Ms) indicates that our films clearly exhibited twofold uniaxial anisotropy, which is related to self-steering effect arising due to the obliquely incident flux during the film-growth.

  9. Core-protective half-metallicity in trilayer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jeon, Gi Wan; Lee, Kyu Won; Lee, Cheol Eui

    2017-07-01

    Half-metals, playing an important role in spintronics, can be described as materials that enable fully spin-polarized electrical current. Taking place in graphene-based materials, half-metallicity has been shown in zigzag-edged graphene nanoribbons (ZGNRs) under an electric field. Localized electron states on the edge carbons are a key to enabling half-metallicity in ZGNRs. Thus, modification of the localized electron states is instrumental to the carbon-based spintronics. Our simple model shows that in a trilayer ZGNRs (triZGNRs) only the middle layer may become half-metallic leaving the outer layers insulating in an electric field, as confirmed by our density functional theory (DFT) calculations. Due to the different circumstances of the edge carbons, the electron energies at the edge carbons are different near the Fermi level, leading to a layer-selective half-metallicity. We believe that triZGNRs can be the tiniest electric cable (nanocable) form and can open a route to graphene-based spintronics applications.

  10. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal... “Class II Special Controls Guidance Document: Dental Noble Metal Alloys.” The devices are exempt from the...

  11. Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl

    DTIC Science & Technology

    2016-08-24

    of the Fe doped half-Heusler and Heusler compounds CoFexCrAl and Co2-xFexCrAl (x = 0, 0.25, 0.5, 0.75, 1.0), respectively, have been studied both...Oogane, A. Hirohata, and V. K. Lazarov, “The Effect of Cobalt -Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys,” Materials 7

  12. Investigation of americium-241 metal alloys for target applications. [Alloys with cerium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, W.V.

    1980-01-01

    Several americium-241 metal alloys have been investigated for possible use in the Lawrence Livermore National Laboratory Radiochemical Diagnostic Tracer Program. Alloys investigated have included uranium-americium, aluminum-americium, and cerium-americium. Uranium-americium alloys with the desired properties proved to be difficult to prepare, and work with this alloy was discontinued. Aluminum-americium alloys were much easier to prepare, but the alloy consisted of an aluminum-americium intermetallic compound (AmAl/sub 4/) in an aluminum matrix. This alloy could be cast and formed into shapes, but the low density of aluminum, and other problems; made the alloy unsuitable for the intended application. Americium metal was found tomore » have a high solid solubility in cerium and alloys prepared from these two elements exhibited all of the properties desired for the tracer program application. Cerium-americium alloys containing up to 34 wt % americium have been prepared using both comelting and coreduction techniques. The latter technique involves coreduction of Ce F/sub 4/ and AmF/sub 4/ with calcium metal in a sealed reduction vessel. Casting techniques have been developed for preparing up to eight 0.87 inch (2.2 cm) diameter disks in a single casting, and cerium-americium metal alloy disks containing from 10 to 25 wt % americium-241 have been prepared using these techniques.« less

  13. Improved half-metallic gap of zincblende half-metal superlattices with the Tran-Blaha modified Becke-Johnson density functional

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2016-08-01

    Binary transition-metal pnictides and chalcogenides half-metallic ferromagnetic materials with zincblende structure, being compatible with current semiconductor technology, can be used to make high-performance spintronic devices. Here, we investigate electronic structures and magnetic properties of composite structure ((CrX)2 /(YX)2 (X=As, Sb; Se, Te and Y=Ga; Zn) superlattices) of zincblende half-metallic ferromagnetism and semiconductor by using Tran and Blaha's modified Becke and Johnson (mBJ) exchange potential. Calculated results show that they all are half-metallic ferromagnets with both generalized gradient approximation (GGA) and mBJ, and the total magnetic moment per formula unit follows a Slater-Pauling-like "rule of 8". The key half-metallic gaps by using mBJ are enhanced with respect to GGA results, which is because mBJ makes the occupied minority-spin p-bands move toward lower energy, but toward higher energy for empty minority-spin Cr-d bands. When the spin-orbit coupling (SOC) is included, the spin polarization deviates from 100%, and a most reduced polarization of 98.3% for (CrSb)2 /(GaSb)2, which indicates that SOC has small effects, of the order of 1%, in the considered four kinds of superlattice.

  14. Methods to induce perpendicular magnetic anisotropy in full-Heusler Co2FeSi thin layers in a magnetic tunnel junction structure

    NASA Astrophysics Data System (ADS)

    Shinohara, Koki; Suzuki, Takahiro; Takamura, Yota; Nakagawa, Shigeki

    2018-05-01

    In this study, to obtain perpendicular magnetic tunnel junctions (p-MTJs) using half-metallic ferromagnets (HMFs), several methods were developed to induce perpendicular magnetic anisotropy (PMA) in full-Heusler Co2FeSi (CFS) alloy thin layers in an MTJ multilayer composed of a layered CFS/MgO/CFS structure. Oxygen exposure at 2.0 Pa for 10 min after deposition of the bottom CFS layer was effective for obtaining PMA in the CFS layer. One of the reasons for the PMA is the formation of nearly ideal CFS/MgO interfaces due to oxygen exposure before the deposition of the MgO layer. The annealing process was effective for obtaining PMA in the top CFS layer capped with a Pd layer. PMA was clearly observed in the top CFS layer of a Cr(40 nm)/Pd(50 nm)/bottom CFS(0.6 nm)/MgO(2.0 nm)/top CFS(0.6 nm)/ Pd(10 nm) multilayer, where the top CFS and Pd thin films were deposited at RT and subsequently annealed at 300°C. In addition to the continuous layer growth of the films, the crystalline orientation alignment at the top CFS/Pd interface probably attributes to the origin of PMA at the top CFS layer.

  15. Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Jyoti; Suresh, K. G., E-mail: suresh@iitb.ac.in

    2015-02-16

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and coolingmore » field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.« less

  16. Neutron diffraction study of the martensitic transformation and chemical order in Heusler alloy Ni 1.91Mn 1.29Ga 0.8

    DOE PAGES

    Ari-Gur, Pnina; Garlea, Vasile O.; Cao, Huibo; ...

    2015-11-05

    In this study, Heusler alloys of Ni-Mn-Ga compositions demonstrate ferromagnetic shape memory effect in the martensitic state. The transformation temperature and the chemical order depend strongly on the composition. In the current work, the structure and chemical order of the martensitic phase of Ni 1.91Mn 1.29Ga 0.8 were studied using neutron diffraction; the diffraction pattern was refined using the FullProf software. It was determined that the structural transition occurs around 330 K. At room temperature, 300 K, which is below the martensite transformation temperature, all the Bragg reflections can be described by a monoclinic lattice with a symmetry of spacemore » group P 1 2/m 1 and lattice constants of a = 4.23047(7) [Å], b = 5.58333(6) [Å], c = 21.0179(2) [Å], beta = 90.328(1). The chemical order is of critical importance in these alloys, and it was previously studied at 363 K. Analysis of the neutron diffraction in the monoclinic phase shows that the chemical order is maintained during the martensitic transformation.« less

  17. First-principles study of high spin-polarization and thermoelectric efficiency of ferromagnetic CoFeCrAs quaternary Heusler alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-03-01

    The ground state properties along with thermodynamic and thermoelectric properties of quaternary CoFeCrAs alloy within the ordered LiMgPdSn-type structure have been investigated by employing first-principles calculations. The alloy offers half-metallic ferromagnet character with an indirect band gap of 1.12 eV in the minority spin state with total spin magnetic moment of 4μB and follows Slater-Pauling relation. Effects on various properties of the material has been studied by the variation of the pressure and temperature. CoFeCrAs tenders large value of the Grüneisen parameter and small value for the thermal expansion coefficient. The materials present high Seebeck coefficient and huge power factor with the room temperature value of ∼-40 μV/K and 18 (1014 μWcm-1 K-2 s-1) respectively, which make CoFeCrAs promising candidate for efficient thermoelectric material.

  18. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  19. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  20. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, Uday B.; Sadoway, Donald R.

    1997-01-01

    A process for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere.

  1. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, U.B.; Sadoway, D.R.

    1997-05-27

    A process is described for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere. 2 figs.

  2. International Round-Robin Study on Thermoelectric Transport Properties of n-type Half-Heusler from 300 K to 773 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Bai, Shengqiang; Chen, Lidong

    2015-09-03

    International transport property measurement round-robins have been conducted by the Thermoelectric Annex under the International Energy Agency (IEA) Implementing Agreement on Advanced Materials for Transportation (AMT). The previous round-robins used commercially available bismuth telluride as the testing material, with the goals of understanding measurement issues and developing standard testing procedures. The current round-robin extended the measurement temperature range to 773 K. It was designed to meet the increasing demands for reliable transport data of thermoelectric materials for power generation applications. Eleven laboratories from six IEA-AMT member countries participated in this study. Half-Heusler (n-type) material prepared by GMZ Energy was selectedmore » for the round-robin. The measured transport properties showed narrower distribution on uncertainties compared to previous round-robin efforts. The study intentionally included multiple testing methods and instrument types. Over the full temperature range, the measurement discrepancies on the figure of merit, ZT, in this round-robin were ±1.5 to ±16.4% from the averages.« less

  3. Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fu, Chenguang; Liu, Yintu; Xie, Hanhui; Liu, Xiaohua; Zhao, Xinbing; Jeffrey Snyder, G.; Xie, Jian; Zhu, Tiejun

    2013-10-01

    The electron and phonon transport characteristics of n-type Fe1-xCoxV0.6Nb0.4Sb half-Heusler thermoelectric compounds is analyzed. The acoustic phonon scattering is dominant in the carrier transport. The deformation potential of Edef = 14.1 eV and the density of state effective mass m* ≈ 2.0 me are derived under a single parabolic band assumption. The band gap is calculated to be ˜0.3 eV. Electron and phonon mean free paths are estimated based on the low and high temperature measurements. The electron mean free path is higher than the phonon one above room temperature, which is consistent with the experimental result that the electron mobility decreases more than the lattice thermal conductivity by grain refinement to enhance boundary scattering. A maximum ZT value of ˜0.33 is obtained at 650 K for x = 0.015, an increase by ˜60% compared with FeVSb. The optimal doping level is found to be ˜3.0 × 1020 cm-3 at 600 K.

  4. YZ (Y = V, Cr; Z = Al, Ga) under pressure: a DFT study

    NASA Astrophysics Data System (ADS)

    Seema, K.; Kumar, Ranjan

    2014-09-01

    The structural, electronic and magnetic properties of Co-based Heusler compounds Co2YZ (Y = V, Cr; Z = Al, Ga) under pressure are studied using first principles density functional theory. The calculations are performed within generalized gradient approximation. The total magnetic moment decreases slightly on compression. Under application of external pressure, the valence band and conduction band are shifted downward which leads to the modification of electronic structure. There exists an indirect band gap along Г- X for all the alloys studied. Co2CrAl shows half-metallic nature up to 85 GPa. After this pressure transition from true half-metallic behavior to nearly half-metallic behavior is observed and at 90 GPa it shows metallic behavior. Co2CrGa shows nearly half-metallic behavior at ambient pressure, but true half-metallic behavior is observed as pressure is increased to 100 GPa. For Co2VGa, true half-metallic to nearly half-metallic transition is observed at 40 GPa and around 100 GPa, Co2VGa shows metallic behavior. For Co2VAl, true half-metallic behavior is not observed at ambient as well as higher pressures. The half metal-to-metal transition in Co2VAl and Co2CrAl is accompanied by quenching of magnetic moment.

  5. Water-soluble metal working fluids additives derived from the esters of acid anhydrides with higher alcohols for aluminum alloy materials.

    PubMed

    Yamamoto, Syutaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short article describes properties of new additives in water-soluble metal working fluids for aluminum alloy materials. Many half esters or diesters were prepared from the reactions of higher alcohols with acid anhydrides. Interestingly, diesters of PTMG (tetrahydrofuran oligomer, MW = 650 and 1000) and polybutylene oxide (MW = 650) with maleic anhydride and succinic anhydride showed both of an excellent anti-corrosion property for aluminum alloy and a good hard water tolerance. The industrial soluble type processing oils including these additives also showed anti-corrosion property and hard water tolerance.

  6. Internal gettering by metal alloy clusters

    DOEpatents

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  7. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  8. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  9. Spin transport at high temperatures in epitaxial Heusler alloy/n-GaAs lateral spin valves

    NASA Astrophysics Data System (ADS)

    Peterson, Timothy A.; Christie, Kevin D.; Patel, Sahil J.; Crowell, Paul A.; Palmstrøm, Chris J.

    2015-03-01

    We report on electrical injection and detection of spin accumulation in ferromagnet/ n-GaAs lateral spin-valve devices, observed up to and above room temperature. The ferromagnet in these measurements is the Heusler alloy Co2FeSi, and the semiconductor channel is GaAs doped at 3 ×1016 cm-3. The spin signal is enhanced by operating the detection contact under forward bias. The enhancement originates from drift effects at low-temperatures and an increase of the detection efficiency at all temperatures. The detector bias dependence of the observed spin-valve signal is interpreted by taking into account the quantum well (QW) which forms in the degenerately doped region immediately behind the Schottky tunnel barrier. In particular, we believe the QW is responsible for the minority spin accumulation (majority spin current) under large forward bias. The spin diffusion length and lifetime are determined by measuring the separation dependence of the non-local spin valve signal in a family of devices patterned by electron beam lithography. A spin diffusion length of 700 nm and lifetime of 46 picoseconds are found at a temperature of 295 K. This work was supported by the NSF under DMR-1104951, the NSF MRSEC program and C-SPIN, a SRC STARNET center sponsored by MARCO and DARPA.

  10. Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy

    NASA Astrophysics Data System (ADS)

    Salazar Mejía, C.; Born, N.-O.; Schiemer, J. A.; Felser, C.; Carpenter, M. A.; Nicklas, M.

    2018-03-01

    Resonant ultrasound spectroscopy and magnetic susceptibility experiments have been used to characterize strain coupling phenomena associated with structural and magnetic properties of the shape-memory Heusler alloy series Ni50 +xMn25 -xGa25 (x =0 , 2.5, 5.0, and 7.5). All samples exhibit a martensitic transformation at temperature TM and ferromagnetic ordering at temperature TC, while the pure end member (x =0 ) also has a premartensitic transition at TP M, giving four different scenarios: TC>TP M>TM,TC>TM without premartensitic transition, TC≈TM , and TC

  11. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    NASA Astrophysics Data System (ADS)

    Patel, Sahil Jaykumar

    Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface

  12. Thermal and magnetic hysteresis associated with martensitic and magnetic phase transformations in Ni52Mn25In16Co7 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Madiligama, A. S. B.; Ari-Gur, P.; Ren, Y.; Koledov, V. V.; Dilmieva, E. T.; Kamantsev, A. P.; Mashirov, A. V.; Shavrov, V. G.; Gonzalez-Legarreta, L.; Grande, B. H.

    2017-11-01

    Ni-Mn-In-Co Heusler alloys demonstrate promising magnetocaloric performance for use as refrigerants in magnetic cooling systems with the goal of replacing the lower efficiency, eco-adverse fluid-compression technology. The largest change in entropy occurs when the applied magnetic field causes a merged structural and magnetic transformation and the associated entropy changes of the two transformations works constructively. In this study, magnetic and crystalline phase transformations were each treated separately and the effects of the application of magnetic field on thermal hystereses associated with both structural and magnetic transformations of the Ni52Mn25In16Co7 were studied. From the analysis of synchrotron diffraction data and thermomagnetic measurements, it was revealed that the alloy undergoes both structural (from cubic austenite to a mixture of 7M &5M modulated martensite) and magnetic (ferromagnetic to a low-magnetization phase) phase transformations. Thermal hysteresis is associated with both transformations, and the variation of the thermal hystereses of the magnetic and structural transformations with applied magnetic field is significantly different. Because of the differences between the hystereses loops of the two transformations, they merge only upon heating under a certain magnetic field.

  13. Study on electrical properties of metal/GaSb junctions using metal-GaSb alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishi, Koichi, E-mail: nishi@mosfet.t.u-tokyo.ac.jp; Yokoyama, Masafumi; Kim, Sanghyeon

    2014-01-21

    We study the metal-GaSb alloy formation, the structural properties and the electrical characteristics of the metal-alloy/GaSb diodes by employing metal materials such as Ni, Pd, Co, Ti, Al, and Ta, in order to clarify metals suitable for GaSb p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) as metal-GaSb alloy source/drain (S/D). It is found that Ni, Pd, Co, and Ti can form alloy with GaSb by rapid thermal annealing at 250, 250, 350, and 450 °C, respectively. The Ni-GaSb and Pd-GaSb alloy formation temperature of 250 °C is lower than the conventional dopant activation annealing for ion implantation, which enable us to lower the processmore » temperature. The alloy layers show lower sheet resistance (R{sub Sheet}) than that of p{sup +}-GaSb layer formed by ion implantation and activation annealing. We also study the electrical characteristics of the metal-alloy/GaSb junctions. The alloy/n-GaSb contact has large Schottky barrier height (ϕ{sub B}) for electrons, ∼0.6 eV, and low ϕ{sub B} for holes, ∼0.2 eV, which enable us to realize high on/off ratio in pMOSFETs. We have found that the Ni-GaSb/GaSb Schottky junction shows the best electrical characteristics with ideal factor (n) of 1.1 and on-current/off-current ratio (I{sub on}/I{sub off}) of ∼10{sup 4} among the metal-GaSb alloy/GaSb junctions evaluated in the present study. These electrical properties are also superior to those of a p{sup +}-n diode fabricated by Be ion implantation with activation annealing at 350 °C. As a result, the Ni-GaSb alloy can be regarded as one of the best materials to realize metal S/D in GaSb pMOSFETs.« less

  14. Comparing magnetostructural transitions in Ni50Mn18.75Cu6.25Ga25 and Ni49.80Mn34.66In15.54 Heusler alloys

    NASA Astrophysics Data System (ADS)

    Dubenko, Igor; Granovsky, Alexander; Lahderanta, Erkki; Kashirin, Maxim; Makagonov, Vladimir; Aryal, Anil; Quetz, Abdiel; Pandey, Sudip; Rodionov, Igor; Samanta, Tapas; Stadler, Shane; Mazumdar, Dipanjan; Ali, Naushad

    2016-03-01

    The crystal structure, magnetic and transport properties, including resistivity and thermopower, of Ni50Mn18.75Cu6.25Ga25 and Ni49.80Mn34.66In15.54 Heusler alloys were studied in the (10-400) K temperature interval. We show that their physical properties are remarkably different, thereby pointing to different origin of their magnetostructural transition (MST). A Seebeck coefficient (S) was found to pass minimum of about -20 μV/K in respect of temperature for both compounds. It was shown that MST observed for both compounds results in jump-like changes in S for Ga-based compound and jump in resistivity of about 20 and 200 μΩ cm for Ga and In -based compounds, respectively. The combined analyzes of the present results with that from literature show that the density of states at the Fermi level does not change strongly at the MST in the case of Ni-Mn-In alloys as compared to that of Ni-Mn-Ga.

  15. Phase transitions, magnetotransport and magnetocaloric effects in a new family of quaternary Ni-Mn-In-Z Heusler alloys.

    PubMed

    Kazakov, Alexander; Prudnikov, Valerii; Granovsky, Alexander; Perov, Nikolai; Dubenko, Igor; Pathak, Arjun Kumar; Samanta, Tapas; Stadler, Shane; Ali, Naushad; Zhukov, Arcady; Ilyin, Maxim; Gonzalez, Julian

    2012-09-01

    The magnetic, magnetotransport, and magnetocaloric properties near compound phase transitions in Ni50Mn35In14Z (Z = In, Ge, Al), and Ni48Co2Mn35In15 Heusler alloys have been studied using VSM and SQUID magnetometers (at magnetic fields (H) up to 5 T), four-probe method (at H = 0.005-1.5 T), and an adiabatic magnetocalorimeter (for H changes up to deltaH = 1.8 T), respectively. The martensitic transformation (MT) is accompanied by large magnetoresistance (up to 70%), a significant change in resistivity (up to 200%), and a sign reversal of the ordinary Hall effect coefficient, all related to a strong change in the electronic spectrum at the MT. The field dependences of the Hall resistance are complex in the vicinity of the MT, indicating a change in the relative concentrations of the austenite and martensite phases at strong fields. Negative and positive changes in adiabatic temperatures of about -2 K and +2 K have been observed in the vicinity of MT and Curie temperatures, respectively, for deltaH = 1.8 T.

  16. Large magnetoresistance in Heusler-alloy-based epitaxial magnetic junctions with semiconducting Cu(In{sub 0.8}Ga{sub 0.2})Se{sub 2} spacer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasai, S.; Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako 351-0198; Takahashi, Y. K.

    2016-07-18

    We investigated the structure and magneto-transport properties of magnetic junctions using a Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) Heusler alloy as ferromagnetic electrodes and a Cu(In{sub 0.8}Ga{sub 0.2})Se{sub 2} (CIGS) semiconductor as spacers. Owing to the semiconducting nature of the CIGS spacer, large magnetoresistance (MR) ratios of 40% at room temperature and 100% at 8 K were obtained for low resistance-area product (RA) values between 0.3 and 3 Ω μm{sup 2}. Transmission electron microscopy observations confirmed the fully epitaxial growth of the chalcopyrite CIGS layer, and the temperature dependence of RA indicated that the large MR was due to spin dependent tunneling.

  17. Composition induced metal-insulator quantum phase transition in the Heusler type Fe2VAl.

    PubMed

    Naka, Takashi; Nikitin, Artem M; Pan, Yu; de Visser, Anne; Nakane, Takayuki; Ishikawa, Fumihiro; Yamada, Yuh; Imai, Motoharu; Matsushita, Akiyuki

    2016-07-20

    We report the magnetism and transport properties of the Heusler compound Fe2+x V1-x Al at  -0.10  ⩽  x  ⩽  0.20 under pressure and a magnetic field. A metal-insulator quantum phase transition occurred at x  ≈  -0.05. Application of pressure or a magnetic field facilitated the emergence of finite zero-temperature conductivity σ 0 around the critical point, which scaled approximately according to the power law (P  -  P c ) (γ) . At x  ⩽  -0.05, a localized paramagnetic spin appeared, whereas above the ferromagnetic quantum critical point at x  ≈  0.05, itinerant ferromagnetism was established. At the quantum critical points at x  =  -0.05 and 0.05, the resistivity and specific heat exhibited singularities characteristic of a Griffiths phase appearing as an inhomogeneous electronic state.

  18. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    DOEpatents

    Wang, Jia X [East Setauket, NY; Adzic, Radoslav R [East Setauket, NY

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  19. Modification of surface properties of copper-refractory metal alloys

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  20. Structural, electronic, magnetic, elastic, and thermal properties of Co-based equiatomic quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Paudel, Ramesh; Zhu, Jingchuan

    2018-05-01

    In this research work, we have predicted the physical properties of CoFeZrGe and CoFeZrSb for the first time by utilizing first principle calculations based on density functional theory. The exchange-correlation potentials are treated within the generalized-gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). The investigated equilibrium lattice parameters of CoFeCrSi are in agreement with available theoretical data and for CoFeZrZ(Z = Ge,Sb) are 6.0013 and 6.2546 Å respectively. The calculated magnetic moments are 1.01μB /fu , 2μB /fu and 1μB /fu for CoFeZrZ(Z = Ge, Sb and Si) respectively, and agree with the Slater-Pauling rule, Mt =Zt - 24 . The CoFeZrGe, CoFeZrSb and CoFeZrSi composites showed half-metallic behaviour with 100 % spin polarization at equilibrium lattice parameters with band gap of 0.43, 0.70 and 0.59 eV for GGA and an improved band gap of 0.86, 1.01 and 1.08 for GGA + U respectively. Elastic properties are also discussed in this paper and it is found that all the materials are mechanically stable and ductile in nature. The CoFeZrSi alloy is found to be stiffer than CoFeZrZ(Z = Ge and Sb) alloys. The Debye temperatures are predicted by using calculated elastic constants. Moreover, the volume heat capacities (Cv) are investigated by utilizing the quasi-harmonic Debye model.

  1. Design of Heusler Precipitation Strengthened NiTi- and PdTi-Base SMAs for Cyclic Performance

    NASA Astrophysics Data System (ADS)

    Frankel, Dana J.; Olson, Gregory B.

    2015-06-01

    For a wide range of actuation applications, the performance of NiTi-based shape memory alloys is limited by cyclic instability associated with accommodation slip. For medical applications, low-Ni compositions are also desirable. Increasing yield strength via precipitation of a coherent nanoscale Ni2TiAl-type Heusler phase from a supersaturated B2 matrix is an effective approach for eliminating slip in order to improve the stability of the functional response and increase the structural fatigue life. Quaternary additions that partition into the L21 Heusler phase, such as Zr or Pd, are favorable for reducing interphase misfit and maintaining coherency during aging. Phase relations and precipitation kinetics in quaternary Ni(TiZrAl), low-Ni (PdNi)(TiAl), and Ni-free (PdFe)(TiAl) systems are summarized from TEM and atom probe tomography data in the literature. Strengthening behavior during isothermal aging is compared in the NiTiZrAl and PdNiTiAl systems, and recent work characterizing a high-strength, low-Ni "Hybrid" (PdNi)(TiZrAl) alloy is presented. A systems design approach is taken in which an optimal microstructure for peak strengthening is identified while other property objectives such as transformation temperature, misfit, radiopacity, and biocompatibility are satisfied.

  2. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites

    NASA Astrophysics Data System (ADS)

    Gurau, G.; Gurau, C.; Bujoreanu, L. G.; Sampath, V.

    2017-06-01

    A new severe plastic deformation method based on High Pressure Torsion is described. The method patented as High Speed High Pressure Torsion (HSHPT) shows a wide scope and excellent adaptability assuring large plastic deformation degree on metals, alloys even on hard to deform or brittle alloys. The paper present results obtained on aluminium, magnesium, titan, iron and coper alloys. In addition capability of HSHPT to process metallic composites is described. OM SEM, TEM, DSC, RDX and HV investigation methods were employed to confirm fine and ultrafine structure.

  3. Microstructure and magnetism of Co2FeAl Heusler alloy prepared by arc and induction melting compared with planar flow casting

    NASA Astrophysics Data System (ADS)

    Titov, A.; Jiraskova, Y.; Zivotsky, O.; Bursik, J.; Janickovic, D.

    2018-04-01

    This paper is devoted to investigations of the structural and magnetic properties of the Co2FeAl Heusler alloy produced by three technologies. The alloys prepared by arc and induction melting have resulted in coarse-grained samples in contrast to the fine-grained ribbon-type sample prepared by planar flow casting. Scanning electron microscopy completed by energy dispersive X-ray spectroscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic methods sensitive to both bulk and surface were applied. The chemical composition was slightly different from the nominal only for the ribbon sample. From the viewpoint of magnetic properties, the bulk coercivity and remnant magnetization have followed the structure influenced by the technology used. Saturation magnetization was practically the same for samples prepared by arc and induction melting, whereas the magnetization of ribbon is slightly lower due to a higher Al content at the expense of iron and cobalt. The surface magnetic properties were markedly influenced by anisotropy, grain size, and surface roughness of the samples. The surface roughness and brittleness of the ribbon-type sample did not make domain structure observation possible. The other two samples could be well polished and their highly smooth surface has enabled domain structure visualization by both magneto-optical Kerr microscopy and magnetic force microscopy.

  4. The interaction of hydrogen with metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Montano, J. W.

    1991-01-01

    Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.

  5. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    PubMed

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  6. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  7. Magnetic and transport properties of Ga-Mn-Co full Heusler alloy

    NASA Astrophysics Data System (ADS)

    Samanta, Tamalika; Bhobe, P. A.

    2018-04-01

    We report structural, electrical and magnetic studies of the Ga rich Heusler compound Ga48Mn25Co27. The Ga-Co-Mn compounds have been predicted to be useful candidates for spintronic applications. We found that the Ga48Mn25Co27 compound crystallizes in cubic L21 structure. It shows a very low curie temperature of 88 K and a soft magnetic behavior. We observed an unusual, non-saturating magnetic hysteresis loop where the virgin curve stays out of the loop. The origin of such behavior might lie in the fact that there exist two competing magnetic sub-lattices with different exchange interactions.

  8. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non

  9. Phase stability of transition metals and alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.

    1997-06-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloymore » systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results.« less

  10. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  11. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  12. Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects.

    PubMed

    Berche, Alexandre; Jund, Philippe

    2018-05-23

    For thermoelectric applications, ab initio methods generally fail to predict the transport properties of the materials because of their inability to predict properly the carrier concentrations that control the electronic properties. In this work, a methodology to fill in this gap is applied on the NiTiSn half Heusler phase. For that, we show that the main defects act as donor of electrons and are responsible of the electronic properties of the material. Indeed, the presence of Ni i interstitial defects explains the experimental valence band spectrum and its associated band gap reported in the literature. Moreover, combining the DOS of the solid solutions with the determination of the energy of formation of charged defects, we show that Ni i defects are also responsible of the measured carrier concentration in experimentally supposed "pure" NiTiSn compounds. Subsequently the thermoelectric properties of NiTiSn can be calculated using a fully ab initio description and an overall correct agreement with experiments is obtained. This methodology can be extended to predict the result of extrinsic doping and thus to select the most efficient dopant for specific thermoelectric applications.

  13. Bioaccessibility of metals in alloys: Evaluation of three surrogate biofluids

    PubMed Central

    Hillwalker, Wendy E.; Anderson, Kim A.

    2014-01-01

    Bioaccessibility in vitro tests measure the solubility of materials in surrogate biofluids. However, the lack of uniform methods and the effects of variable test parameters on material solubility limit interpretation. One aim of this study was to measure and compare bioaccessibility of selected economically important alloys and metals in surrogate physiologically based biofluids representing oral, inhalation and dermal exposures. A second aim was to experimentally test different biofluid formulations and residence times in vitro. A third aim was evaluation of dissolution behavior of alloys with in vitro lung and dermal biofluid surrogates. This study evaluated the bioaccessibility of sixteen elements in six alloys and 3 elemental/metal powders. We found that the alloys/metals, the chemical properties of the surrogate fluid, and residence time all had major impacts on metal solubility. The large variability of bioaccessibility indicates the relevancy of assessing alloys as toxicologically distinct relative to individual metals. PMID:24212234

  14. Pressure-magnetic field induced phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rama Rao, N. V., E-mail: nvrrao@dmrl.drdo.in; Manivel Raja, M.; Pandian, S.

    2014-12-14

    The effect of hydrostatic pressure and magnetic field on the magnetic properties and phase transformation in Ni{sub 46}Mn{sub 41}In{sub 13} Heusler alloy was investigated. Pressure (P)-magnetic field (H)-temperature (T) phase diagram has been constructed from experimental results. In the P–T contour of the phase diagram, the slope of the austenite-martensite phase boundary line appears positive (dT/dP > 0), while it appears negative (dT/dH < 0) in the H–T contour. The results revealed that pressure and magnetic field have opposite effect on phase stabilization. The combined effect of pressure and magnetic field on martensitic transition has led to two important findings: (i) pressure dependent shiftmore » of austenite start temperature (A{sub s}) is higher when larger field is applied, and (ii) field dependent shift of A{sub s} is lowered when a higher pressure is applied. The pressure and magnetic field dependent shift observed in the martensitic transformation has been explained on the basis of thermodynamic calculations. Curie temperature of the phases was found to increase with pressure at a rate of 0.6 K/kbar.« less

  15. Thermoelectric metal comparator determines composition of alloys and metals

    NASA Technical Reports Server (NTRS)

    Stone, C. C.; Walker, D. E.

    1967-01-01

    Emf comparing device nondestructively inspects metals and alloys for conformance to a chemical specification. It uses the Seebeck effect to measure the difference in emf produced by the junction of a hot probe and the junction of a cold contact on the surface of an unknown metal.

  16. Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials.

    PubMed

    Hu, Tiezheng; Yang, Dongwang; Su, Xianli; Yan, Yonggao; You, Yonghui; Liu, Wei; Uher, Ctirad; Tang, Xinfeng

    2018-01-10

    The ZrNiSn alloy, a member of the half-Heusler family of thermoelectric materials, shows great potential for mid-to-high-temperature power generation applications due to its excellent thermoelectric properties, robust mechanical properties, and good thermal stability. The existing synthesis processes of half-Heusler alloys are, however, rather time and energy intensive. In this study, single-phase ZrNiSn bulk materials were prepared by self-propagating high-temperature synthesis (SHS) combined with spark plasma sintering (SPS) for the first time. The analysis of thermodynamic and kinetic processes shows that the SHS reaction in the ternary ZrNiSn alloy is different from the more usual binary systems. It consists of a series of SHS reactions and mass transfers triggered by the SHS fusion of the binary Ni-Sn system that eventually culminates in the formation of single-phase ternary ZrNiSn in a very short time, which reduced the synthesis period from few days to less than an hour. Moreover, the nonequilibrium feature induces Ni interstitials in the structure, which simultaneously enhances the electrical conductivity and decreases the thermal conductivity, which is favorable for thermoelectric properties. The maximum thermoelectric figure of merit ZT of the SHS + SPS-processed ZrNiSn 1-x Sb x alloy reached 0.7 at 870 K. This study opens a new avenue for the fast and low-cost fabrication of half-Heusler thermoelectric materials.

  17. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  18. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE PAGES

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    2017-12-04

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  19. Structural, electronic, elastic, thermoelectric and thermodynamic properties of the NbMSb half heusler (M=Fe, Ru, Os) compounds with first principle calculations

    NASA Astrophysics Data System (ADS)

    Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.

    2016-05-01

    The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.

  20. Influence of the transition width on the magnetocaloric effect across the magnetostructural transition of Heusler alloys

    PubMed Central

    2016-01-01

    We report a complete structural and magneto-thermodynamic characterization of four samples of the Heusler alloy Ni-Co-Mn-Ga-In, characterized by similar compositions, critical temperatures and high inverse magnetocaloric effect across their metamagnetic transformation, but different transition widths. The object of this study is precisely the sharpness of the martensitic transformation, which plays a key role in the effective use of materials and which has its origin in both intrinsic and extrinsic effects. The influence of the transition width on the magnetocaloric properties has been evaluated by exploiting a phenomenological model of the transformation built through geometrical considerations on the entropy versus temperature curves. A clear result is that a large temperature span of the transformation is unfavourable to the magnetocaloric performance of a material, reducing both isothermal entropy change and adiabatic temperature change obtainable in a given magnetic field and increasing the value of the maximum field needed to fully induce the transformation. The model, which is based on standard magnetometric and conventional calorimetric measurements, turns out to be a convenient tool for the determination of the optimum values of transformation temperature span in a trade-off between sheer performance and amplitude of the operating range of a material. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402934

  1. Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys

    NASA Astrophysics Data System (ADS)

    Jinshui, Chen; Bin, Yang; Junfeng, Wang; Xiangpeng, Xiao; Huiming, Chen; Hang, Wang

    2018-02-01

    The crystallography and morphology of precipitate particles of Cu-Cr-Zr alloys with varying Zr contents were studied by transmission electron microscopy (TEM) after solution treatments at 950 °C for 1 h and aging treatments at 500 °C for different times ranged from 0.5 h to 24 h. The microhardness and electrical conductivity of Cu-Cr-Zr alloys after various aging process were tested. The results show that the microhardness and electrical conductivity rapidly increased at first, then the microhardness decreased slowly after reaching the peak, while the conductivity continues to increase. Nano-scaled precipitates exhibit two kinds of morphology (coffee bean and ellipse shaped). With increasing Zr content, the Zr-containing precipitation sequence of Cu-Cr-Zr alloys at peak-ageing is Heusler CrCu2Zr → Cu5Zr → Cu4Zr. The Heusler CrCu2Zr phase decomposed into fine and homogeneous Cr and Cu4Zr, resulting in improved alloy properties.

  2. Correlations Between Structural and Magnetic Properties of Co2 FeSi Heusler-Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Zhu, Weihua; Wu, Di; Zhao, Bingcheng; Zhu, Zhendong; Yang, Xiaodi; Zhang, Zongzhi; Jin, Q. Y.

    2017-09-01

    The structural and magnetic properties are the most important parameters for practical applications of Co-based Heusler alloys. The correlations between the crystallization degree, chemical order, magnetic coercivity, saturation magnetization (MS ), and in-plane magnetic anisotropies are systematically investigated for Co2FeSi (CFS) films fabricated at different temperatures (TS ). XRD shows that the CFS layer changes progressively from a disordered crystal structure into a chemically disordered A 2 structure and further into a chemically ordered B 2 and even L 21 structures when increasing TS up to 480 °C . Meanwhile, the static angular remanence magnetization curves show a clear transition of magnetic anisotropy from twofold to fourfold symmetry, due to the competition effect between the uniaxial anisotropy field HU and biaxial anisotropy field HB . The HU value is found to be weakly dependent on TS , while HB shows a continuous enhancement at TS>300 °C , implying that the enhancement of the L 21 ordering degree would not weaken the biaxial anisotropy. The varying trend of HB is similar to MS , which can be respectively attributed to the improved crystal structure and chemical order. The anisotropic fields and their variation behaviors determined by a vibrating sample magnetometer are highly consistent with the results by a time-resolved magneto-optical Kerr effect study. Our findings provide a better understanding of the structural ordering and magnetic anisotropy, which will be helpful for designing advanced spintronic devices.

  3. Reentrant cluster glass and stability of ferromagnetism in the Ga2MnCo Heusler alloy

    NASA Astrophysics Data System (ADS)

    Samanta, Tamalika; Bhobe, P. A.; Das, A.; Kumar, A.; Nigam, A. K.

    2018-05-01

    We present here a detailed investigation into the magnetic ordering of a full Heusler alloy Ga2MnCo using dc and ac magnetization measurements, neutron diffraction, and neutron depolarization experiments. The crystal structure at room temperature was first confirmed to be L 21 using the highly intense synchrotron x-ray diffraction technique. Temperature-dependent magnetization reveals that Ga2MnCo enters a ferromagnetic (FM) state at TC=154 K, characterized by a sharp increase in magnetization and a plateaulike region hereafter. As the temperature is decreased further, a sharp drop in magnetization is observed at Tf=50 K, hinting toward an antiferromagnetic (AFM) phase change. Neutron diffraction (ND) recorded over the range of temperature from 6 to 300 K provides combined information regarding crystal as well as magnetic structure. Accordingly, an increase in the intensity of the ND pattern is seen at 150 K, signaling the onset of long-range FM order. However, there is no sign of the appearance of superlattice reflections corresponding to the AFM phase in the patterns recorded below 50 K. An unusual discontinuity in the unit-cell volume is seen around Tf, indicating a coupling of this second transition with the contraction of the lattice. Attempts to unravel this interesting magnetic behavior using ac susceptibility measurements led to the existence of glassy magnetism below Tf. Systematic analysis of the susceptibility results along with neutron depolarization measurement identifies the low-temperature phase as a reentrant cluster glass.

  4. The solubility of metals in Pb17Li liquid alloy

    NASA Astrophysics Data System (ADS)

    Borgstedt, H. U.; Feuerstein, H.

    1992-09-01

    The solubility data of iron in the eutectic alloy Pb17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels.A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentrations of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum.

  5. Evolution of phase transformation and magnetic properties with Fe content in Ni55-x Fe x Mn20Ga25 Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao

    2018-02-01

    A series of Ni55-x Fe x Mn20Ga25 (0  ⩽  x  ⩽  5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x  =  0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M  →  L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M  →  5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5  ×  105 J m-3) for the alloys with x  >  3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x  =  4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.

  6. Compositional instability of {beta}-phase in Ni-Mn-Ga alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernenko, V.A.

    1999-02-05

    The ferromagnetic Heusler alloys of stoichiometric Ni{sub 2}MnGa and nonstoichiometric Ni-Mn-Ga chemical compositions though not containing a noble-metal, indeed, belong to {beta}-alloys which lattice stability is decided by the Hume-Rothery mechanism: electron concentration e/a measuring the decrease of the electron energy due to the pseudogap formation and size factor. The intriguing feature of Ni-Mn-Ga alloys similarly to Ti-Ni, Cu-Al-Be and Ni-Al alloys arises that transformation temperature, M{sub s}, is dramatically dependent on concentration reflecting an extremely high sensitivity of the lattice stability toward the content variation. The main purpose of present paper is an analysis of previous data concerning themore » compositional dependence of M{sub s} from the viewpoint of searching for empirical correlation between the electron concentration and stability of {beta}-phase in Ni-Mn-Ga system. This analysis will provide a confirmation of the feasibility of a reasonable explanation of seemingly random collection of alloys grouped with respect to their M{sub s} values as well as other features. The alloys of compositional range studied previously are added here to a few alloys including ones doped with V and Ge to ensure the decisive role of e/a ratio on M{sub s}. Original results about the temperature dependent resistance behavior are presented as well.« less

  7. In vitro element release and biological aspects of base–metal alloys for metal-ceramic applications

    PubMed Central

    Holm, Charlotta; Morisbak, Else; Kalfoss, Torill; Dahl, Jon E.

    2015-01-01

    Abstract Objective: The aims of this study were to investigate the release of element from, and the biological response in vitro to, cobalt–chromium alloys and other base–metal alloys used for the fabrication of metal-ceramic restorations. Material and methods: Eighteen different alloys were investigated. Nine cobalt–chromium alloys, three nickel–chromium alloys, two cobalt–chromium–iron alloys, one palladium–silver alloy, one high-noble gold alloy, titanium grade II and one type III copper–aluminium alloy. Pure copper served as positive control. The specimens were prepared according to the ISO standards for biological and corrosion testing. Passive leaching of elements was measured by using Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) after incubation in cell culture media, MEM, for 3 days. Corrosion testing was carried out in 0.9% sodium chloride (NaCl) and 1% lactic acid for 7 days, and the element release was measured by Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES). The biological response from the extract solutions was measured though MTT cytotoxicity testing and the Hen's egg test-chorio-allantoic membrane (HET-CAM) technique for irritationt. Results: The corrosion test showed similar element release from base-metal alloys compared to noble alloys such as gold. Apart from the high-copper alloy, all alloys expressed low element release in the immersion test, no cytotoxic effect in the MTT test, and were rated non-irritant in the HET-CAM test. Conclusions: Minimal biological response was observed for all the alloys tested, with the exception of the high-copper alloy. PMID:28642904

  8. Application of High-Throughput Seebeck Microprobe Measurements on Thermoelectric Half-Heusler Thin Film Combinatorial Material Libraries.

    PubMed

    Ziolkowski, Pawel; Wambach, Matthias; Ludwig, Alfred; Mueller, Eckhard

    2018-01-08

    In view of the variety and complexity of thermoelectric (TE) material systems, combinatorial approaches to materials development come to the fore for identifying new promising compounds. The success of this approach is related to the availability and reliability of high-throughput characterization methods for identifying interrelations between materials structures and properties within the composition spread libraries. A meaningful characterization starts with determination of the Seebeck coefficient as a major feature of TE materials. Its measurement, and hence the accuracy and detectability of promising material compositions, may be strongly affected by thermal and electrical measurement conditions. This work illustrates the interrelated effects of the substrate material, the layer thickness, and spatial property distributions of thin film composition spread libraries, which are studied experimentally by local thermopower scans by means of the Potential and Seebeck Microprobe (PSM). The study is complemented by numerical evaluation. Material libraries of the half-Heusler compound system Ti-Ni-Sn were deposited on selected substrates (Si, AlN, Al 2 O 3 ) by magnetron sputtering. Assuming homogeneous properties of a film, significant decrease of the detected thermopower S m can be expected on substrates with higher thermal conductivity, yielding an underestimation of materials thermopower between 15% and 50%, according to FEM (finite element methods) simulations. Thermally poor conducting substrates provide a better accuracy with thermopower underestimates lower than 8%, but suffer from a lower spatial resolution. According to FEM simulations, local scanning of sharp thermopower peaks on lowly conductive substrates is linked to an additional deviation of the measured thermopower of up to 70% compared to homogeneous films, which is 66% higher than for corresponding cases on substrates with higher thermal conductivity of this study.

  9. Influence of S. mutans on base-metal dental casting alloy toxicity.

    PubMed

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p < 0.0001) and cell metabolic activity (p < 0.0001), and significantly increased cell toxicity (p < 0.0001) and inflammatory cytokine expression (p < 0.0001). S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  10. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    DOEpatents

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  11. Robust half-metallicity of hexagonal SrNiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gao-Yuan; Ma, Chun-Lan, E-mail: machunlan@126.com; Chen, Da

    In the rich panorama of the electronic and magnetic properties of 3d transition metal oxides SrMO{sub 3} (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu), one member (SrNiO{sub 3}) is missing. In this paper we use GGA+U method based on density functional theory to examine its properties. It is found that SrNiO{sub 3} is a ferromagnetic half-metal. The charge density map shows a high degree of ionic bonding between Sr and other atoms. Meanwhile, a covalent-bonding Ni–O–Ni–O–Ni chain is observed. The spin density contour of SrNiO{sub 3} further indicates that the magnetic interaction between Ni atoms mediated by O ismore » semicovalent exchange. The density of states are examined to explore the unusual indirect magnetic-exchange mechanism. Corresponding to the total energies results, a robust half-metallic character is observed, suggesting a promising giant magneto-optical Kerr property of the material. The partial density of states are further examined to explore the origin of ferromagnetic half-metallicity. The O atoms are observed to have larger contribution at fermi level than Ni atoms to the spin-polarized states, demonstrating that O atoms play a critical role in ferromagnetic half-metallicity of SrNiO{sub 3}. Hydrostatic pressure effect is examined to evaluate how robust the half-metallic ferromagnetism is. - Graphical abstract: (a) The total energy as a function of the lattice constant a for hexagonal SrNiO3 with various magnetic phases. (b) The total electronic density of states for hexagonal SrNiO{sub 3} with FM configuration from GGA+U calculations. (c) Total electron-density distribution in the (110) plane. The colors gradually change from cyan (through pink) to yellow corresponding to charge density value from 0 to 4.0. (d) The magnetization density map in the (110) plane. The colors range from blue (through green) to red corresponding to magnetization density value from −0.15 to 0.45. Black and white contours stand for positive and negative values

  12. Magnetotransport properties of microstructured AlCu2Mn Heusler alloy thin films in the amorphous and crystalline phase

    NASA Astrophysics Data System (ADS)

    Barzola-Quiquia, José; Stiller, Markus; Esquinazi, Pablo D.; Quispe-Marcatoma, Justiniano; Häussler, Peter

    2018-06-01

    We have studied the resistance, magnetoresistance and Hall effect of AlCu2Mn Heusler alloy thin films prepared by flash evaporation on substrates cooled at 4He liquid temperature. The as-prepared samples were amorphous and were annealed stepwise to induce the transformation to the crystalline phase. The amorphous phase is metastable up to above room temperature and the transition to the crystalline phase was observed by means of resistance measurements. Using transmission electron microscopy, we have determined the structure factor S (K) and the pair correlation function g (r) , both results indicate that amorphous AlCu2Mn is an electronic stabilized phase. The X-ray diffraction of the crystallized film shows peaks corresponding to the well ordered L21 phase. The resistance shows a negative temperature coefficient in both phases. The magnetoresistance (MR) is negative in both phases, yet larger in the crystalline state compared to the amorphous one. The magnetic properties were studied further by anomalous Hall effect measurements, which were present in both phases. In the amorphous state, the anomalous Hall effect disappears at temperatures below 175 K and is present up to above room temperature in the case of crystalline AlCu2Mn.

  13. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility wasmore » compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.« less

  14. Magnetic and transport properties of Co2Mn1-xCrxSi Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Aftab, M.; Hassnain Jaffari, G.; Hasanain, S. K.; Ali Abbas, Turab; Ismat Shah, S.

    2013-09-01

    Magnetic, transport, and magnetotransport properties of Co2Mn1-xCrxSi (0 ≤ x ≤ 1) DC sputter grown thin films have been investigated. In films with x > 0.2 saturation magnetization values are seen to deviate from the Slater-Pauling rule due to the enhancement of Co-Cr antisite disorder. The increasing structural disorder eventually results in a sign change of the temperature coefficient of resistivity (at x > 0.6), while a resistivity minimum is observed for the metallic compositions. From resistivity measurements, we conclude that there is a phase transition from a half-metallic ferromagnetic phase to a normal ferromagnetic phase at T ˜ 68 K in composition with x ≤ 0.2. Both the onset temperature and the temperature range for half metallic phase were found to decrease with increasing x among the metallic compositions. Magnetotransport measurements performed on metallic compositions at temperatures below and above the resistivity minimum suggest the presence of both the metallic as well as semiconducting/localized states.

  15. Development and fabrication of high strength alloy fibers for use in metal-metal matrix composites

    NASA Technical Reports Server (NTRS)

    King, G. W.; Petrasek, D. W.

    1979-01-01

    Metal fiber reinforced superalloys are being considered for construction of critical components in turbine engines that operate at high temperature. The problems involved in fabricating refractory metal alloys into wire form in such a manner as to maximize their strength properties without developing excessive structural defects are described. The fundamental principles underlying the development of such alloy fibers are also briefly discussed. The progress made to date in developing tungsten, tantalum and columbium base alloys for fiber reinforcement is reported and future prospects for alloy fiber development considered.

  16. Design of thermoelectrically highly efficient Heusler compounds using phase separations and nano-composites under an economic point of view

    NASA Astrophysics Data System (ADS)

    Balke, Benjamin

    Half-Heusler (HH) compounds are one of the most promising candidates for thermoelectric materials for automotive and industrial waste heat recovery applications. In this talk, I will give an overview about our recent investigations of phase separations in HH thermoelectrics, focusing on the ternary system TiNiSn-ZrNiSn-HfNiSn. I will show how we adapted this knowledge to design a p-type HH compound which exhibits a ZT that is increased by 130% compared to the best published bulk p-type Heusler. I will also present how we used the phase separation to design thermoelectric highly efficient nano-composites of different single-phase materials. Since the price for Hafnium doubled within the last year, our research focused on the design of HH compounds without Hafnium. I will present a very recent calculation on ZT per Euro and efficiency per Euro for various materials followed by our latest very promising results for n-type Heusler compunds without Hafnium resulting in 20 times higher ZT/Euro values. These results strongly underline the importance of phase separations as a powerful tool for designing highly efficient materials for thermoelectric applications that fulfill the industrial demands for a thermoelectric converter. The author gratefully acknowledges financial support by the thermoHEUSLER2 Project (Project No. 19U15006F) of the German Federal Ministry of Economics and Technology (BMWi).

  17. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  18. Promising half-metallicity in ductile NbF3: a first-principles prediction.

    PubMed

    Yang, Bo; Wang, Junru; Liu, Xiaobiao; Zhao, Mingwen

    2018-02-14

    Materials with half-metallicity are long desired in spintronics. Using first-principles calculations, we predicted that the already-synthesized NbF 3 crystal is a promising half-metal with a large exchange splitting and stable ferromagnetism. The mechanical stability, ductility and softness of the NbF 3 crystal were confirmed by its elastic constants and moduli. The Curie temperature (T C = 120 K) estimated from the Monte Carlo simulations based on the 3D Ising model is above the liquid nitrogen temperature (78 K). The ferromagnetism and half-metallicity can be preserved on the surfaces of NbF 3 . The NbOF 2 formed by substituting F with O atoms, however, has an antiferromagnetic ground state and a normal metallic band structure. This work opens an avenue for half-metallic materials and may find applications in spintronic devices.

  19. Doping effects on structural and magnetic properties of Heusler alloys Fe2Cr1-xCoxSi

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Ren, Lizhu; Zheng, Yuhong; He, Shikun; Liu, Yang; Yang, Ping; Yang, Hyunsoo; Teo, Kie Leong

    2018-05-01

    In this work, 30nm Fe2Cr1-xCoxSi (FCCS) magnetic films were deposited on Cr buffered MgO (100) substrates by sputtering. Fe2Cr0.5Co0.5Si exhibits the largest magnetization and optimal ordered L21 cubic structure at in-situ annealing temperature (Tia) of 450°C. The Co composition dependence of crystalline structures, surface morphology, defects, lattice distortions and their correlation with the magnetic properties are analyzed in detail. The Co-doped samples show in-plane M-H loops with magnetic squareness ratio of 1 and increasing anisotropy energy density with Co composition. Appropriate Co doping composition promotes L21 phase but higher Co composition converts L21 to B2 phase. Doping effect and lattice mismatch both are proved to increase the defect density. In addition, distortions of the FCCS lattice are found to be approximately linear with Co composition. The largest lattice distortion (c/a) is 0.969 for Fe2Cr0.25Co0.75Si and the smallest is 0.983 for Fe2CrSi. Our analyses suggest that these tetragonal distortions mainly induced by an elastic stress from Cr buffer account for the large in-plane anisotropy energy. This work paves the way for further tailoring the magnetic and structural properties of quaternary Heusler alloys.

  20. 49 CFR 173.187 - Pyrophoric solids, metals or alloys, n.o.s.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Pyrophoric solids, metals or alloys, n.o.s. 173... Class 1 and Class 7 § 173.187 Pyrophoric solids, metals or alloys, n.o.s. Packagings for pyrophoric solids, metals, or alloys, n.o.s. must conform to the requirements of part 178 of this subchapter at the...

  1. The thermodynamics of latent fingerprint corrosion of metal elements and alloys.

    PubMed

    Bond, John W

    2008-11-01

    Redox reactions taking place between the surface of a metal and fingerprint residue have been expressed thermodynamically in terms of both the Nernst equation for reduction potential and the complexation constant for the formation of complex metal halide ions in aqueous solution. These expressions are used to explain experimental results for the corrosion of 10 different metal elements by fingerprint residue in air at room temperature. Corrosion of noble metals, such as silver and gold, supports the proposition that the degree of metal corrosion is enhanced by the presence of chloride ions in eccrine sweat. Extending the experiments to include 10 metal alloys enabled the construction of a fingerprint corrosion series for 20 different metals. Fingerprint corrosion on metals alloyed with > approximately 40% copper was found to display third level fingerprint detail. A comparison of both conventional ink on paper and digital (Livescan) fingerprinting techniques with fingerprints deposited on 9 Karat gold alloy has shown that gold alloy depositions are least susceptible to third level detail obliteration by poor fingerprint capturing techniques.

  2. Half-metallic ferromagnetism in substitutionally doped boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-11-01

    We perform first-principles molecular dynamics simulations to investigate the magnetoelectronic response of substitutionally doped boronitrene to thermal excitation. We show that the local geometry, size, and edge termination of the substitutional complexes of boron, carbon, or nitrogen determine the thermodynamic stability of the monolayer. We find that hexagonal boron or triangular carbon clusters induce finite magnetic moments with 100% spin-polarized Fermi-level electrons in boronitrene. In such carbon substitutions, the spontaneous magnetic moment increases with the size of the embedded carbon cluster, and results in half-metallic ferrimagnetism above 750 K with a corresponding Curie point of 1250 K, above which the magnetization density vanishes. We predict an ultrahigh temperature half-metallic ferromagnetic phase in impurity-free boronitrene, when any three nearest-neighbor nitrogen atoms are substituted with boron, with unquenched magnetic moment up to its melting point.

  3. Method of fabricating a homogeneous wire of inter-metallic alloy

    DOEpatents

    Ohriner, Evan Keith; Blue, Craig Alan

    2001-01-01

    A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.

  4. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  5. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  6. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Not Available

    1980-05-28

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking is described. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  7. Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination

    DOEpatents

    Sopori, Bhushan L.

    1993-01-01

    Metal strips deposited on a top surface of a semiconductor substrate are sintered at one temperature simultaneously with alloying a metal layer on the bottom surface at a second, higher temperature. This simultaneous sintering of metal strips and alloying a metal layer on opposite surfaces of the substrate at different temperatures is accomplished by directing infrared radiation through the top surface to the interface of the bottom surface with the metal layer where the radiation is absorbed to create a primary hot zone with a temperature high enough to melt and alloy the metal layer with the bottom surface of the substrate. Secondary heat effects, including heat conducted through the substrate from the primary hot zone and heat created by infrared radiation reflected from the metal layer to the metal strips, as well as heat created from some primary absorption by the metal strips, combine to create secondary hot zones at the interfaces of the metal strips with the top surface of the substrate. These secondary hot zones are not as hot as the primary hot zone, but they are hot enough to sinter the metal strips to the substrate.

  8. Ferrimagnetism and disorder of epitaxial Mn2-xCoxVAl Heusler compound thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinert, Markus; Schmalhorst, Jan-Michael; Reiss, Gunter

    The quaternary full Heusler compound Mn{sub 2-x}Co{sub x}VAl with x = 1 is predicted to be a half-metallic antiferromagnet. Thin films of the quaternary compounds with x = 0-2 were prepared by dc and RF magnetron co-sputtering on heated MgO (0 0 1) substrates. The magnetic structure was examined by x-ray magnetic circular dichroism and the chemical disorder was characterized by x-ray diffraction. Ferrimagnetic coupling of V to Mn was observed for Mn{sub 2}VAl (x = 0). For x = 0.5, we also found ferrimagnetic order with V and Co antiparallel to Mn. The observed reduced magnetic moments are interpretedmore » with the help of band structure calculations in the coherent potential approximation. Mn{sub 2}VAl is very sensitive to disorder involving Mn, because nearest-neighbour Mn atoms couple antiferromagnetically. Co{sub 2}VAl has B2 order and has reduced magnetization. In the cases with x {ge} 0.9 conventional ferromagnetism was observed, closely related to the atomic disorder in these compounds.« less

  9. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  10. SCC of Alloy 690 and its Weld Metals

    NASA Astrophysics Data System (ADS)

    Andresen, Peter L.; Morra, Martin M.; Ahluwalia, Kawaljit

    Alloy 690 base metal, HAZ and weld metal were tested in representative PWR primary water at 290 to 360°C. Intergranular cracking was observed in all materials. Growth rates as high as 1.2 × 10-6 mm/s were observed in the S-L orientation with micro structural banded material after cold rolling or forging to align the planes of banding, rolling and cracking. However, not all banded material has exhibited such high growth rates. Growth rates on homogeneous Alloy 690, including extruded CRDM tubing, often showed growth rates in the range of 2 - 8 × 10-8 mm/s in cold worked condition and an S-L orientation. Crack growth rates in some Alloy 690 tests were in the range of 1 to 10 × 10-9 mm/s, primarily in orientations other than S-L. For cracks aligned along the HAZ, growth rates as high as 1.2 × 10-8 mm/s were observed. Alloy 152/52/52i weld metals always exhibited low growth rates, apart from a weld that was further cold worked by 20%, which grew at 7 × 10-9 mm/s.

  11. The effect of oxide film properties on the corrosion behavior of SiC/Al metal-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golledge, S.L.

    1991-01-01

    Oxide growth on pure aluminum, aluminum alloy 6061, and the aluminum-based metal matrix composite SiC/AA6061 was studied, and the properties of the oxides related to the pit-initiation behavior of the materials. The objectives of the work were to identify the effect of alloying elements and SiC reinforcement on the oxide film, and to better understand how the oxide properties control pit initiation behavior. To this end, electrochemical and optical studies of the materials were carried out in a buffered sodium/boric acid solution at pH values of 8.4 and 7.2. The alloy and metal-matrix composite showed a slightly lesser tendency tomore » pit than pure aluminum, as measured by the pitting potential. The oxide on the composite was less resistant to pit initiation, and was found to exhibit slower repassivation rates than the other materials. The repassivation behavior and resistance to pit initiation were quite similar in the case of the alloy and the pure aluminum. Induction times for pit initiation were consistent with the predictions of Heusler's model for the breakdown of passivity.« less

  12. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    NASA Astrophysics Data System (ADS)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  13. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  14. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  15. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  16. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zhou, Guangmin; Yan, Kai; Xie, Jin; Li, Yuzhang; Liao, Lei; Jin, Yang; Liu, Kai; Hsu, Po-Chun; Wang, Jiangyan; Cheng, Hui-Ming; Cui, Yi

    2017-10-01

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed LixM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding LixM/graphene foils are stable in different air conditions. With fully expanded LixSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). This foil is also paired with high-capacity Li-free V2O5 and sulfur cathodes to achieve stable full-cell cycling.

  17. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    DOE PAGES

    Zhao, Jie; Zhou, Guangmin; Yan, Kai; ...

    2017-07-10

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less

  18. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Zhou, Guangmin; Yan, Kai

    Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by largemore » graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.« less

  19. Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics.

    PubMed

    Ferluccio, Daniella A; Smith, Ronald I; Buckman, Jim; Bos, Jan-Willem G

    2018-02-07

    The half-Heuslers NbCoSn and NbCoSb have promising thermoelectric properties. Here, an investigation of the NbCo 1+y Sn 1-z Sb z (y = 0, 0.05; 0 ≤ z ≤ 1) solid-solution is presented. In addition, the p-type doping of NbCoSn using Ti and Zr substitution is investigated. Rietveld analysis reveals the gradual creation of Nb vacancies to compensate for the n-type doping caused by the substitution of Sb in NbCoSn. This leads to a similar valence electron count (∼18.25) for the NbCo 1+y Sn 1-z Sb z samples (z > 0). Mass fluctuation disorder due to the Nb vacancies strongly decreases the lattice thermal conductivity from 10 W m -1 K -1 (z = 0) to 4.5 W m -1 K -1 (z = 0.5, 1). This is accompanied by a transition to degenerate semiconducting behaviour leading to large power factors, S 2 /ρ = 2.5-3 mW m -1 K -2 and figures of merit, ZT = 0.25-0.33 at 773 K. Ti and Zr can be used to achieve positive Seebeck values, e.g. S = +150 μV K -1 for 20% Zr at 773 K. However, the electrical resistivity, ρ 323K = 27-35 mΩ cm, remains too large for these materials to be considered useful p-type materials.

  20. Ab Initio Prediction of the Structural, Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Ternary Compounds TiIrX (X = As and Sb)

    NASA Astrophysics Data System (ADS)

    Chibani, S.; Arbouche, O.; Zemouli, M.; Amara, K.; Benallou, Y.; Azzaz, Y.; Belgoumène, B.; Bentayeb, A.; Ameri, M.

    2018-01-01

    The structural, electronic, elastic, and thermoelectric properties of TiIrX (X = As and Sb) half-Heusler compounds with 18 valence electrons were studied using density functional theory. The generalized gradient approximation of Perdew-Burke and Ernzerhof used for calculation of the structural parameters and elastic properties of TiIrAs and TiIrSb denotes that the computed lattice constants were in excellent agreement with the available experimental data and previous theoretical works. Furthermore, the calculated elastic constants for both compounds satisfy the Born criteria indicating their mechanical stabilities. The modified Becke-Johnson potential (TB-mBJ) was used to provide a better description of the electronic structures, which indicate that both compounds are narrow-gap semiconductors. Additionally, the investigations of thermoelectric performance were carried out using the results of ab initio band-structure calculations and the semi-classical Boltzmann theory within the constant relaxation time approximations. The predicted values of the figure of merit ZT e are close to unity at room temperature. This reveals that TiIrAs and TiIrSb compounds are excellent candidates for practical applications in the thermoelectric devices.

  1. Corrosion behavior of metals and alloys in marine-industrial environment

    PubMed Central

    Natesan, Mariappan; Selvaraj, Subbiah; Manickam, Tharmakkannu; Venkatachari, Gopalachari

    2008-01-01

    This work deals with atmospheric corrosion to assess the degrading effects of air pollutants on ferrous and non-ferrous metals and alloys, which are mostly used as engineering materials. An exposure study was conducted in the Tuticorin port area located on the east coast of South India, in the Gulf of Mannar with Sri Lanka to the southeast. Common engineering materials, namely mild steel, galvanized iron, Zn, Al, Cu and Cu–Zn alloys (Cu–27Zn, Cu–30Zn and Cu–37Zn), were used in the investigation. The site was chosen where the metals are exposed to marine and industrial atmospheres. Seasonal 1 to 12 month corrosion losses of these metals and alloys were determined by a weight loss method. The weight losses showed strong corrosion of mild steel, galvanized iron, Cu and Zn and minor effect on Al and Cu–Zn alloys. Linear regression analysis was conducted to study the mechanism of corrosion. The composition of corrosion products formed on the metal surfaces was identified by x-ray diffraction and Fourier transform infrared spectroscopy. PMID:27878030

  2. Transport properties of high-performance all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi giant magnetoresistance device

    NASA Astrophysics Data System (ADS)

    Bai, Z. Q.; Lu, Y. H.; Shen, L.; Ko, V.; Han, G. C.; Feng, Y. P.

    2012-05-01

    Transport properties of giant magnetoresistance (MR) junction consisting of trilayer Co2CrSi/Cu2CrAl/Co2CrSi Heusler alloys (L21) are studied using first-principles approach based on density functional theory and the non-equilibrium Green's function method. Highly conductive channels are found in almost the entire k-plane when the magnetizations of the electrodes are parallel, while they are completely blocked in the antiparallel configuration, which leads to a high magnetoresistance ratio (the pessimistic MR ratio is nearly 100%). Furthermore, the calculated I-V curve shows that the device behaves as a good spin valve with a considerable disparity in currents under the parallel and antiparallel magnetic configurations of the electrodes. The Co2CrSi/Cu2CrAl/Co2CrSi junction could be useful for high-performance all-metallic current-perpendicular-to-plane giant magnetoresistance reading head for the next generation high density magnetic storage.

  3. Alloy with metallic glass and quasi-crystalline properties

    DOEpatents

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  4. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  5. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  6. Temperature-dependence of current-perpendicular-to-the-plane giant magnetoresistance spin-valves using Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, M. R.; Nakatani, T. M., E-mail: nakatani.tomoya@nims.go.jp; Stewart, D. A.

    2016-04-21

    The properties of Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge (CMFG) (x = 0–0.4) Heusler alloy magnetic layers within polycrystalline current-perpendicular-to-the plane giant magnetoresistance (CPP-GMR) spin-valves are investigated. CMFG films annealed at 220–320 °C exhibit partly ordered B2 structure with an order parameter S{sub B2} = 0.3–0.4, and a lower S{sub B2} was found for a higher Fe content. Nevertheless, CPP-GMR spin-valve devices exhibit a relatively high magnetoresistance ratio of ∼13% and a magnetoresistance-area product (ΔRA) of ∼6 mΩ μm{sup 2} at room temperature, which is almost independent of the Fe content in the CMFG films. By contrast, at low temperatures, ΔRA clearly increases with higher Fe content,more » despite the lower B2 ordering for increasing the Fe content. Indeed, first-principles calculations reveal that the CMFG alloy with a partially disordered B2 structure has a greater density of d-state at the Fermi level in the minority band compared to the Fe-free (Co{sub 2}MnGe) alloy. This could explain the larger ΔRA measured on CMFG at low temperatures by assuming that s-d scattering mainly determines the spin asymmetry of resistivity as described in Mott's theory.« less

  7. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  8. Molybdenum-A Key Component of Metal Alloys

    USGS Publications Warehouse

    Kropschot, S.J.

    2010-01-01

    Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.

  9. Diffusion and surface alloying of gradient nanostructured metals

    PubMed Central

    Lu, Ke

    2017-01-01

    Gradient nanostructures (GNSs) have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed. PMID:28382244

  10. Multiscale model of metal alloy oxidation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  11. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romaka, V.V., E-mail: romakav@lp.edu.ua; Romaka, L.; Horyn, A.

    The phase equilibria in the Gd–Ni–Sb and Lu-Ni-Sb ternary systems were studied at 873 K by X-ray and metallographic analyses in the whole concentration range. The interaction of the elements in the Gd–Ni–Sb system results the formation of five ternary compounds at investigated temperature: Gd{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), Gd{sub 5}NiSb{sub 2} (Yb{sub 5}Sb{sub 3}-type), GdNiSb (MgAgAs-type), Gd{sub 3}Ni{sub 6}Sb{sub 5} (Y{sub 3}Ni{sub 6}Sb{sub 5}-type), and GdNi{sub 0.72}Sb{sub 2} (HfCuSi{sub 2}-type). At investigated temperature the Lu-Ni-Sb system is characterized by formation of the LuNiSb (MgAgAs-type), Lu{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), and Lu{sub 5}Ni{sub 0.56}Sb{sub 2.44} (Yb{sub 5}Sb{sub 3}-type)more » compounds. The disordering in the crystal structure of half-Heusler GdNiSb and LuNiSb was revealed by EPMA and studied by means of Rietveld refinement and DFT modeling. The performed electronic structure calculations are in good agreement with electrical transport property studies. - Graphical abstract: Crystal structure model and electron localization function of Lu{sub 5}Ni{sub 2}Sb. Display Omitted - Highlights: • Gd-Ni-Sb and Lu-Ni-Sb phase diagrams were constructed at 873 K. • GdNiSb and LuNiSb are characterized by disordered crystal structure. • Crystal structure optimization with DFT calculations confirmed crystal structure disorder in GdNiSb and LuNiSb.« less

  12. Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing

    PubMed Central

    Hofmann, Douglas C.; Roberts, Scott; Otis, Richard; Kolodziejska, Joanna; Dillon, R. Peter; Suh, Jong-ook; Shapiro, Andrew A.; Liu, Zi-Kui; Borgonia, John-Paul

    2014-01-01

    Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels. PMID:24942329

  13. Metal Alloy Compositions And Process Background Of The Invention

    DOEpatents

    Flemings, Merton C.; Martinez-Ayers, Raul A.; de Figueredo, Anacleto M.; Yurko, James A.

    2003-11-11

    A skinless metal alloy composition free of entrapped gas and comprising primary solid discrete degenerate dendrites homogeneously dispersed within a secondary phase is formed by a process wherein the metal alloy is heated in a vessel to render it a liquid. The liquid is then rapidly cooled while vigorously agitating it under conditions to avoid entrapment of gas while forming solid nuclei homogeneously distributed in the liquid. Agitation then is ceased when the liquid contains a small fraction solid or the liquid-solid alloy is removed from the source of agitation while cooling is continued to form the primary solid discrete degenerate dendrites in liquid secondary phase. The solid-liquid mixture then can be formed such as by casting.

  14. Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2017-08-01

    The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y1 type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK-1 at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.

  15. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  16. Atomic origin of the spin-polarization of the Co2FeAl Heusler compound

    NASA Astrophysics Data System (ADS)

    Liang, Jaw-Yeu; Lam, Tu-Ngoc; Lin, Yan-Cheng; Chang, Shu-Jui; Lin, Hong-Ji; Tseng, Yuan-Chieh

    2016-02-01

    Using synchrotron x-ray techniques, we studied the Co2FeAl spin-polarization state that generates the half-metallicity of the compound during an A2 (low-spin)  →  B2 (high-spin) phase transition. Given the advantage of element specificity of x-ray techniques, we could fingerprint the structural and magnetic cross-reactions between Co and Fe within a complex Co2FeAl structure deposited on a MgO (0 0 1) substrate. X-ray diffraction and extended x-ray absorption fine structure investigations determined that the Co atoms preferably populate the (1/4,1/4,1/4) and (3/4,3/4,3/4) sites during the development of the B2 phase. X-ray magnetic spectroscopy showed that although the two magnetic elements were ferromagnetically coupled, they interacted in a competing manner via a charge-transfer effect, which enhanced Co spin polarization at the expense of Fe spin polarization during the phase transition. This means that the spin-polarization of Co2FeAl was electronically dominated by Fe in A2 whereas the charge transfer turned the dominance to Co upon B2 formation. Helicity-dependent x-ray absorption spectra also revealed that only the minority state of Co/Fe was involved in the charge-transfer effect whereas the majority state was independent of it. Despite an overall increase of Co2FeAl magnetization, the charge-transfer effect created an undesired trade-off during the Co-Fe exchange interactions, because of the presence of twice as many X sites (Co) as Y sites (Fe) in the Heusler X 2 YZ formula. This suggests that the spin-polarization of Co2FeAl is unfortunately regulated by compromising the enhanced X (Co) sites and the suppressed Y (Fe) sites, irrespective of the development of the previously known high-spin-polarization phase of B2. This finding provides a possible cause for the limited half-metallicity of Co2FeAl discovered recently. Electronic tuning between the X and Y sites is necessary to further increase the spin-polarization, and likely the half-metallicity

  17. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media

    PubMed Central

    Al-Harbi, Albandaree K.

    2018-01-01

    The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution. PMID:29337992

  18. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    PubMed

    Emran, Khadijah M; Al-Harbi, Albandaree K

    2018-01-01

    The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  19. Multiscale model of metal alloy oxidation at grain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sushko, Maria L., E-mail: maria.sushko@pnnl.gov; Alexandrov, Vitaly; Schreiber, Daniel K.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate thatmore » the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the

  20. (abstract) Studies on AB(sub 5) Metal Hydride Alloys with Sn Additives

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Surampudi, S.; Stefano, S. Di; Halpert, G.; Witham, C.; Fultz, B.

    1994-01-01

    The use of metal hydrides as negative electrodes in alkaline rechargeable cells is becoming increasingly popular, due to several advantages offered by the metal hydrides over conventional anode materials (such as Zn, Cd) in terms of specific energy environmental cycle life and compatibility. Besides, the similarities in the cell voltage pressure characteristics, and charge control methods of the Ni-MH cells to the commonly used Ni-Cd point to a projected take over of 25% of the Ni-Cd market for consumer electronics by the Ni-MH cells in the next couple of years. Two classes of metal hydrides alloys based on rare earth metals (AB(sub 5)) and titanium (AB(sub 2)) are being currently developed at various laboratories. AB(sub 2) alloys exhibit higher specific energy than the AB(sub 5) alloys but the state of the art commercial Ni-MH cells are predominately manufactured using AB(sub 5) alloys.

  1. A vanadium alloy for the application in a liquid metal blanket of a fusion reactor

    NASA Astrophysics Data System (ADS)

    Borgstedt, H. U.; Grundmann, M.; Konys, J.; Perić, Z.

    1988-07-01

    The vanadium alloy V3Ti1Si has been corrosion tested in liquid lithium and the eutectic alloy Pb-17Li at 550°C. This alloy has a comparable corrosion resistance to the alloy V15Cr5Ti in lithium. In this molten metal it is superior to stainless steel AISI 316. In the Pb-17Li melt it is even superior to martensitic steels. The alloy has only a weak tendency to be dissolved. It is sensitive to an exchange of non-metallic elements, which causes the formation of a hardened surface layer. These chemical effects are influenced by the mass and surface ratios of the vanadium alloy to the molten metals and other structural materials. These ratios are unfavorable in the two test loops. The effects might be less pronounced in a vanadium alloy/liquid metal fusion reactor blanket.

  2. Simultaneous laser excitation of backward volume and perpendicular standing spin waves in full-Heusler Co2FeAl0.5Si0.5 films

    PubMed Central

    Chen, Zhifeng; Yan, Yong; Li, Shufa; Xu, Xiaoguang; Jiang, Yong; Lai, Tianshu

    2017-01-01

    Spin-wave dynamics in full-Heusler Co2FeAl0.5Si0.5 films are studied using all-optical pump-probe magneto-optical polar Kerr spectroscopy. Backward volume magnetostatic spin-wave (BVMSW) mode is observed in films with thickness ranging from 20 to 100 nm besides perpendicular standing spin-wave (PSSW) mode, and found to be excited more efficiently than the PSSW mode. The field dependence of the effective Gilbert damping parameter appears especial extrinsic origin. The relationship between the lifetime and the group velocity of BVMSW mode is revealed. The frequency of BVMSW mode does not obviously depend on the film thickness, but the lifetime and the effective damping appear to do so. The simultaneous excitation of BVMSW and PSSW in Heusler alloy films as well as the characterization of their dynamic behaviors may be of interest for magnonic and spintronic applications. PMID:28195160

  3. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation

    PubMed Central

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-01-01

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826

  4. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation.

    PubMed

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-04-27

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Renu; Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, NE 68588; Kharel, Parashu

    Disordered CoFeCrAl and CoFeCrSi{sub 0.5}Al{sub 0.5} alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSi{sub 0.5}Al{sub 0.5} is predicted to increasemore » from 2.01 μ{sub B} to 2.50 μ{sub B} per formula unit, in good agreement with experiment.« less

  6. A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-metal Alloys (Ni-cr-T3, VeraBond, Super Cast) and One Noble Alloy (X-33) in Metal-ceramic Restorations

    PubMed Central

    Ahmadzadeh, A; Neshati, A; Mousavi, N; Epakchi, S; Dabaghi Tabriz, F; Sarbazi, AH

    2013-01-01

    Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the commonly used VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, and VeraBond) and one group of noble alloy (X-33) were selected. Each group consisted of 15 alloy samples. All groups went through the casting process and change from wax pattern into metal disks. The VMK Master Porcelain was then fired on each group. All the specimens were put in the UTM; a shear force was loaded until a fracture occurred and the fracture force was consequently recorded. The data were analyzed by SPSS Version 16 and One-Way ANOVA was run to compare the shear strength between the groups. Furthermore, the groups were compared two-by-two by adopting Tukey test. Results: The findings of this study revealed shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 MPa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87Mpa or 283.87 N). Both VeraBond (69.66 MPa or 245 N) and x-33 alloys (66.53 MPa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, employment of this low-cost alloy is recommended in metal-ceramic restorations. PMID:24724144

  7. Metal alloy coatings and methods for applying

    DOEpatents

    Merz, Martin D.; Knoll, Robert W.

    1991-01-01

    A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.

  8. Effect of Heat-Treatment on the Phases of Ni-Mn-Ga Magnetic Shape Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq, Ashfia; Ari-Gur, Pnina; Kimmel, Giora

    2009-01-01

    The Heusler alloys Ni50Mn25+xGa25-x display magnetic shape memory effect (MSM) with very fast and large reversible strain under magnetic fields. This large strain and the speed of reaction make MSM alloys attractive as smart materials. Our crystallographic investigation of these alloys, focused on non-stoichiometric composition with excess of manganese. Using neutron diffraction, we revealed the necessary processing parameters to achieve and preserve the homogeneous metastable one-phase martensitic structure that is needed for an MSM effect at room temperature.

  9. First-principles investigation of competing magnetic interactions in (Mn ,Fe )Ru2Sn Heusler solid solutions

    NASA Astrophysics Data System (ADS)

    Decolvenaere, Elizabeth; Gordon, Michael; Seshadri, Ram; Van der Ven, Anton

    2017-10-01

    Many Heusler compounds possess magnetic properties well suited for applications as spintronic materials. The pseudobinary Mn0.5Fe0.5Ru2Sn , formed as a solid solution of two full Heuslers, has recently been shown to exhibit exchange hardening suggestive of two magnetic phases, despite existing as a single chemical phase. We have performed a first-principles study of the chemical and magnetic degrees of freedom in the Mn1 -xFexRu2Sn pseudobinary to determine the origin of the unique magnetic behavior responsible for exchange hardening within a single phase. We find a transition from antiferromagnetic (AFM) to ferromagnetic (FM) behavior upon replacement of Mn with Fe, consistent with experimental results. The lowest energy orderings in Mn1 -xFexRu2Sn consist of chemically and magnetically uniform (111) planes, with Fe-rich regions preferring FM ordering and Mn-rich regions preferring AFM ordering, independent of the overall composition. Analysis of the electronic structure suggests that the magnetic behavior of this alloy arises from a competition between AFM-favoring Sn-mediated superexchange and FM-favoring RKKY exchange mediated by spin-polarized conduction electrons. Changes in valency upon replacement of Mn with Fe shifts the balance from superexchange-dominated interactions to RKKY-dominated interactions.

  10. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    NASA Astrophysics Data System (ADS)

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  11. The polarization of Sb overlayers on NiMnSb(100)

    NASA Astrophysics Data System (ADS)

    Komesu, Takashi; Borca, C. N.; Jeong, Hae-Kyung; Dowben, P. A.; Ristoiu, Delia; Nozières, J. P.; Stadler, Shane; Idzerda, Y. U.

    2000-08-01

    We have investigated the induced polarization of paramagnetic Sb overlayers on the Heusler alloy NiMnSb. From combined X-ray absorption spectroscopy (XAS) and spin-polarized inverse photoemission spectroscopy (SPIPES), we can assign some of the unoccupied states of the Heusler alloy NiMnSb. With increasing thickness of the Sb overlayer, there is a decline in the density of states near the Fermi energy, as expected for a semimetal overlayer on a metallic substrate. While the Sb is polarized by the ferromagnetic NiMnSb substrate, consistent with the expectations of mean field theory, the polarization at the center of the surface/overlayer Brillouin zone cannot be easily related to the induced magnetization.

  12. Graphene-based half-metal and spin-semiconductor for spintronic applications.

    PubMed

    Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji

    2016-03-31

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics.

  13. Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films

    PubMed Central

    Lin, Bao; Kong, Lingxue; Hodgson, Peter D.; Dumée, Ludovic F.

    2014-01-01

    Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30) and white gold (Au50Ag50) foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA) parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM). Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB) milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD) and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested. PMID:28344253

  14. First-Principles Study on the Gilbert Damping Constants of Transition Metal Alloys, Fe--Ni and Fe--Pt Systems

    NASA Astrophysics Data System (ADS)

    Sakuma, Akimasa

    2012-08-01

    We adapt the tight-binding linear muffin-tin orbital (TB-LMTO) method to the torque-correlation model for the Gilbert damping constant α and perform the first-principles calculation for disordered transition metal alloys, Fe--Ni and Fe--Pt systems, within the framework of the CPA. Quantitatively, the calculated α values are about one-half of the experimental values, whereas the variations in the Fermi level dependence of α are much larger than these discrepancies. As expected, we confirm in the (Fe--Ni)1-XPtX and FePt systems that Pt atoms certainly enhance α owing to their large spin--orbit coupling. For the disordered alloys, we find that α decreases with increasing chemical degree of order in a wide range.

  15. Method for low temperature preparation of a noble metal alloy

    DOEpatents

    Even, Jr., William R.

    2002-01-01

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  16. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    PubMed

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  17. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  18. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  19. Overlay metallic-cermet alloy coating systems

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  20. Ab initio study of the composite phase diagram of Ni-Mn-Ga shape memory alloys

    NASA Astrophysics Data System (ADS)

    Sokolovskaya, Yu. A.; Sokolovskiy, V. V.; Zagrebin, M. A.; Buchelnikov, V. D.; Zayak, A. T.

    2017-07-01

    The magnetic and structural properties of a series of nonstoichiometric Ni-Mn-Ga Heusler alloys are theoretically investigated in terms of the density functional theory. Nonstoichiometry is formed in the coherent potential approximation. Concentration dependences of the equilibrium lattice parameter, the bulk modulus, and the total magnetic moment are obtained and projected onto the ternary phase diagram of the alloys. The stable crystalline structures and the magnetic configurations of the austenitic phase are determined.

  1. [Effect of porcelain firing cycle on microstructure and corrosion resistance of 4 metal ceramic alloys].

    PubMed

    Chen, Lei; Cai, Hui; Xu, Guo-fu; Fang, Chang-yun

    2006-06-01

    To determine the effect of porcelain firing cycle on microstructure of 4 metal ceramic alloys, and to analyze the changes of their corrosion resistance in the artificial saliva. We simulated the process of firing and repolishing when fabricating porcelain-fused-to-metal restoration in clinic,and then observed the microstructures of Ni-Cr, Ni-Cr-Ti, Co-Cr alloys and high gold alloy by field emission scanning electron microscopy and energy dispersive spectroscopy. The electrochemical corrosion behavior of alloys in artificial saliva was analyzed by polarization curves and corrview 2 corrosion analysis software. The data of self-corrosion potential and transpassive potential were obtained and analyzed. After the porcelain firing cycle, the surface composition changed slightly, and the morphological in the 3 predominate base metal alloys also changed. The self-corrosion potential turned to more negative, and the transpassive potential declined. The procedure of porcelain firing cycle can affect the surface microstructure and increase the corrosion of 4 metal-ceramic alloys.

  2. Multiscale model of metal alloy oxidation at grain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sushko, Maria L.; Alexandrov, Vitali Y.; Schreiber, Daniel K.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model at experimentally relevant length scales is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides.more » The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2 - 1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  3. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  4. Effects of strong interactions in a half-metallic magnet: A determinant quantum Monte Carlo study

    DOE PAGES

    Jiang, M.; Pickett, W. E.; Scalettar, R. T.

    2013-04-03

    Understanding the effects of electron-electron interactions in half-metallic magnets (HMs), which have band structures with one gapped spin channel and one metallic channel, poses fundamental theoretical issues as well as having importance for their potential applications. Here we use determinant quantum Monte Carlo to study the impacts of an on-site Hubbard interaction U, finite temperature, and an external (Zeeman) magnetic field on a bilayer tight-binding model which is a half-metal in the absence of interactions, by calculating the spectral density, conductivity, spin polarization of carriers, and local magnetic properties. We quantify the effect of U on the degree of thermalmore » depolarization, and follow relative band shifts and monitor when significant gap states appear, each of which can degrade the HM character. For this model, Zeeman coupling induces, at fixed particle number, two successive transitions: compensated half-metal with spin-down band gap → metallic ferromagnet → saturated ferromagnetic insulator. However, over much of the more relevant parameter regime, the half-metallic properties are rather robust to U.« less

  5. A new method for promoting adhesion between precious metal alloys and dental adhesives.

    PubMed

    Ohno, H; Araki, Y; Endo, K

    1992-06-01

    A new, simple method of modifying the adherend metal surface by a liquid Ga-Sn alloy (Adlloy) was applied to dental precious and base-metal alloys for adhesion with 4-META adhesive resin. Adhesions of 4-META resin to three other surface states--as-polished, oxidized at high temperature, and electroplated tin--were also performed for comparison with the adhesion on Adlloy-modified surfaces. Bond strength measurements were made, and the durability against water at the adhering interface was evaluated. The Adlloy-modified gold alloys (Type IV and 14 K) and silver-based alloys (Ag-Pd and Ag-Cu) showed not only high bond strengths but also excellent water durability at the adhesion interface. Surface modification by Adlloy, however, did not affect adhesion to Ag-In-Zn and base-metal (SUS, Co-Cr, and Ni-Cr) alloys. Adhesion to the tin-electroplated specimens was comparable with that to the Adlloy-modified specimens.

  6. Soldering of Carbon Materials Using Transition Metal Rich Alloys.

    PubMed

    Burda, Marek; Lekawa-Raus, Agnieszka; Gruszczyk, Andrzej; Koziol, Krzysztof K K

    2015-08-25

    Joining of carbon materials via soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent (2.5-5%) of transition metal such as chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and electrically conductive joints between carbon materials and, when supported by a simple two-step technique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon-solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon-alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials.

  7. Anti-ferromagnetic/ferromagnetic transition in half-metallic Co9Se8 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Jai; Kumar, Pushpendra

    2015-09-01

    The size, shape and defects of the half-metallic Co9Se8 nanoparticles (NPs) play a crucial role in the magnetic transition at the local magnetic regime at low temperatures. A general, non-injection, one-pot reaction route without toxic reagents, such as TOPO/TOPSe, surfactant and/or chelating agent, were used to synthesize gram scale of well-dispersed, high-quality Co9Se8 NPs. The calculated mean crystallite size of the NPs was ∼10 nm, which is consistent with the transmission electron microscope data. This study reveals an unusual anti-ferromagnetic/ferromagnetic transition with some super-paramagnetic character in the low temperature region of Co9Se8 NPs. These investigations are expected not only to help the observed phenomenon, but also help in identifying new half-metallic magnetic NPs for spintronics devices. The outcome provides better understanding of the occurrence of superparamagnetism at low temperatures in the nano-regime, for half-metallic systems.

  8. First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki

    2017-06-01

    The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.

  9. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  10. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, Xianghong; Peker, Atakan; Johnson, William L.

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  11. Magnetocaloric effects and electrical resistivity of Ni2Mn0.55CoxCr0.45-xGa - A Heusler alloy system exhibiting a partially-decoupled first-order phase transition

    NASA Astrophysics Data System (ADS)

    Brock, Jeffrey; Khan, Mahmud

    2018-05-01

    The phase transitions and associated magnetocaloric properties of the Ni2Mn0.55CoxCr0.45-xGa (0 ≤ x ≤ 0.25) Heusler alloy system have been investigated. All samples exhibit a first-order martensitic phase transition, evidenced by a sharp drop in the resistivity versus temperature data and a thermomagnetic irreversibility in the dc magnetization data of the respective samples. Large magnetic entropy changes have also been observed near the phase transitions. The martensitic transformation temperature increases as Cr is partially replaced with Co. Additionally, this substitution leads to a partial decoupling of the magnetic and structural phase transitions, dramatically suppressing any magnetic hysteresis losses. Furthermore, the change in electrical resistivity during the phase transition remains relatively constant across the system, despite major changes in the degree of structural disorder and magnetostructural phase transition coupling. Detailed experimental results and conjectures as to the origin of these behaviors have been provided.

  12. Effects of metal primers on the bonding of an adhesive resin cement to noble metal ceramic alloys after thermal cycling.

    PubMed

    Minami, Hiroyuki; Murahara, Sadaaki; Suzuki, Shiro; Tanaka, Takuo

    2011-12-01

    Although the effectiveness of primers for resin bonding to noble alloys has been demonstrated, no effective clinical technique for bonding to noble metal ceramic alloys has been established. The purpose of this study was to evaluate the effects of metal primers on the shear bond strength of an adhesive resin to noble metal ceramic alloys after thermal cycling. Sixty-three disk-shaped specimens (10 × 2.5 mm) were cast from high-gold-content alloys (Super Metal W-85: W85 or IFK88 GR: IFK88), a high-palladium-content alloy (Super Metal N-40: N40), and an Ag-Pd-Cu-Au alloy (Castwell M.C.12: MC12). Smaller-sized disk-shaped specimens (8 × 2.5 mm) were fabricated with MC12. Bonding surfaces were finished with 600-grit SiC-paper and airborne-particle abraded with 50-μm alumina. Pairs of disks were primed (V-Primer: VP; ML Primer: ML; or Metaltite: MT) and bonded with an adhesive resin (Super-Bond C&B). The bond strengths were determined before and after 20,000 and 50,000 thermal cycles (n=7). Data were analyzed by using a 3-way ANOVA and the Bonferroni test (α=.05). Failure modes were determined by optical microscope and SEM observation. Bond strengths to high-gold-content alloys with VP and MT significantly decreased after the thermal cycling (P<.001). Bond strengths to W85 (35.27 ±4.25 MPa) and IFK88 (33.57 ±3.56 MPa) after 50,000 thermal cycles obtained by ML were the highest (P<.001), and these groups showed combination failures. Bond strengths to N40 significantly decreased after 50,000 thermal cycles (P<.001), regardless of primers. Shear bond strengths (SBS) to high-gold-content alloys were not degraded up to 50,000 thermal cycles when primed with ML. None of the primers evaluated was effective for high-palladium-content alloy. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  13. Simulation study of ballistic spin-MOSFET devices with ferromagnetic channels based on some Heusler and oxide compounds

    NASA Astrophysics Data System (ADS)

    Graziosi, Patrizio; Neophytou, Neophytos

    2018-02-01

    Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. In this work, using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts. Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. We examine the operation of four material systems that are currently considered some of the most prominent known ferromagnetic semiconductors: three Heusler-type alloys (Mn2CoAl, CrVZrAl, and CoVZrAl) and one from the oxide family (NiFe2O4). We describe their band structures by using data from DFT (Density Functional Theory) calculations. We investigate under which conditions high spin polarization and significant ION/IOFF ratio, two essential requirements for the spin-MOSFET operation, are both achieved. We show that these particular Heusler channels, in their bulk form, do not have adequate bandgap to provide high ION/IOFF ratios and have small magnetoconductance compared to state-of-the-art devices. However, with confinement into ultra-narrow sizes down to a few nanometers, and by engineering their spin dependent contact resistances, they could prove promising channel materials for the realization of spin-MOSFET transistor devices that offer combined logic and memory functionalities. Although the main compounds of interest in this paper are Mn2CoAl, CrVZrAl, CoVZrAl, and NiFe2O4 alone, we expect that the insight we provide is relevant to other classes of such materials as well.

  14. Carcinogenicity and Immunotoxicity of Embedded Depleted Uranium and Heavy-Metal Tungsten Alloy in Rodents

    DTIC Science & Technology

    2006-10-01

    Embedded Depleted Uranium and Heavy-Metal Tungsten Alloy in Rodents PRINCIPAL INVESTIGATOR: John F. Kalinich, Ph.D...Carcinogenicity and Immunotoxicity of Embedded Depleted Uranium and Heavy- Metal Tungsten Alloy in Rodents 5b. GRANT NUMBER DAMD17-01-1-0821 5c...ABSTRACT This study investigated the carcinogenic and immunotoxic potential of embedded fragments of depleted uranium (DU) and a heavy-metal tungsten

  15. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    NASA Astrophysics Data System (ADS)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  16. Graphene-like monolayer InSe–X: several promising half-metallic nanosheets in spintronics

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Kang, Wei; Zhou, Ting-Yan; Ma, Chong-Geng

    2018-04-01

    Several half-metallic graphene-like nanosheets, namely halogen atom adsorbed InSe–X (X  =  F, Cl, Br and I) nanosheets, are predicted by first-principles calculations. Then, their structural, electric and magnetic properties are studied in detail. The calculated negative adsorption energies of these InSe–X nanosheets ensure that they attain stable adsorption structures, which suggests that they may be prepared experimentally. The pristine InSe monolayer is a typical semi-conductor, whereas it is interesting that the X ion (X  =  F, Cl, Br and I) adsorbed InSe–X nanosheets are electronically conductive. They can be promising and good candidates for applications of half-metallic 2D materials. The calculated magnetic moments of these nanosheets are close to 1.0 µ B. In the InSe–F nanosheet, there are sp2 hybridized orbitals due to the crystal field effect, and its electroconductibility, half-metallicity and magnetic moments originate from the In and Se ions, not the F ion. However, in InSe–X (X  =  Cl, Br and I) nanosheets, there are sp3 hybridized orbitals, and their electroconductibility, half-metallicity and magnetic moments originate mainly from X ions, together partially with the In and Se ions.

  17. Self-assembly of metal nanostructures on binary alloy surfaces

    PubMed Central

    Duguet, T.; Han, Yong; Yuen, Chad; Jing, Dapeng; Ünal, Barış; Evans, J. W.; Thiel, P. A.

    2011-01-01

    Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems. PMID:21097706

  18. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  19. Alloy metal nanoparticles for multicolor cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Baptista, Pedro V.; Doria, Gonçalo; Conde, João

    2011-03-01

    Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus results in a more accurate indicator of degree of cancerous activity than either locus alone. Metal nanoparticles have been thoroughly used as labels for in vitro identification and quantification of target sequences. We have synthesized nanoparticles with assorted noble metal compositions in an alloy format and functionalized them with thiol-modified ssDNA (nanoprobes). These nanoprobes were then used for the simultaneous specific identification of several mRNA targets involved in cancer development - one pot multicolor detection of cancer expression. The different metal composition in the alloy yield different "colors" that can be used as tags for identification of a given target. Following a non-cross-linking hybridization procedure previously developed in our group for gold nanoprobes, these multicolor nanoprobes were used for the molecular recognition of several different targets including differently spliced variants of relevant genes (e.g. gene products involved in chronic myeloid leukemia BCR, ABL, BCR-ABL fusion product). Based on the spectral signature of mixtures, before and after induced aggregation of metal nanoparticles, the correct identification could be made. Further application to differentially quantify expression of each locus in relation to another will be presented. The differences in nanoparticle stability and labeling efficiency for each metal combination composing the colloids, as well as detection capability for each nanoprobe will be discussed. Additional studies will be conducted towards allele specific expression studies.

  20. Monotropic polymorphism in a glass-forming metallic alloy

    NASA Astrophysics Data System (ADS)

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Maris, P.; Schäublin, R.; Uggowitzer, P. J.; Löffler, J. F.

    2018-06-01

    This study investigates the crystallization and phase transition behavior of the amorphous metallic alloy Au70Cu5.5Ag7.5Si17. This alloy has been recently shown to exhibit a transition of a metastable to a more stable crystalline state, occurring via metastable melting under strong non-equilibrium conditions. Such behavior had so far not been observed in other metallic alloys. In this investigation fast differential scanning calorimetry (FDSC) is used to explore crystallization and the solid–liquid–solid transition upon linear heating and during isothermal annealing, as a function of the conditions under which the metastable phase is formed. It is shown that the occurrence of the solid–liquid–solid transformation in FDSC depends on the initial conditions; this is explained by a history-dependent nucleation of the stable crystalline phase. The microstructure was investigated by scanning and transmission electron microscopy and x-ray diffraction. Chemical mapping was performed by energy dispersive x-ray spectrometry. The relationship between the microstructure and the phase transitions observed in FSDC is discussed with respect to the possible kinetic paths of the solid–liquid–solid transition, which is a typical phenomenon in monotropic polymorphism.

  1. Inhomogeneous composition distribution in monolayer transition metal dichalcogenide alloys

    NASA Astrophysics Data System (ADS)

    Xie, Shuang; Xu, Mingsheng; Huang, Shuyun; Liang, Tao; Wang, Shengping; Li, Hongfei; Iwai, Hideo; Onishi, Keiko; Hanagata, Nobutaka; Fujita, Daisuke; Ma, Xiangyang; Yang, Deren

    2017-04-01

    Alloying with various compositions is an efficient method to tailor the optoelectronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). However, the composition distribution in the monolayer of TMDs alloys lacks detailed investigation. Here, by exploring scanning Auger electron spectroscopy, we investigate the composition distribution in MoS2(1-x)Se2x monolayers with high spatial resolution. Our results demonstrate that inhomogeneous composition distribution exists not only among different nanosheets on a substrate but also within individual nanosheets. Our study would be helpful to develop new methods for controllable synthesis of TMDs alloys and other 2D materials.

  2. Computing elastic anisotropy to discover gum-metal-like structural alloys

    NASA Astrophysics Data System (ADS)

    Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.

    2017-08-01

    The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.

  3. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  4. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  5. Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature.

    PubMed

    Navarrete, Nuria; Gimeno-Furio, Alexandra; Mondragon, Rosa; Hernandez, Leonor; Cabedo, Luis; Cordoncillo, Eloisa; Julia, J Enrique

    2017-12-14

    Nanofluids using nanoencapsulated Phase Change Materials (nePCM) allow increments in both the thermal conductivity and heat capacity of the base fluid. Incremented heat capacity is produced by the melting enthalpy of the nanoparticles core. In this work two important advances in this nanofluid type are proposed and experimentally tested. It is firstly shown that metal and metal alloy nanoparticles can be used as self-encapsulated nePCM using the metal oxide layer that forms naturally in most commercial synthesis processes as encapsulation. In line with this, Sn/SnOx nanoparticles morphology, size and thermal properties were studied by testing the suitability and performance of encapsulation at high temperatures and thermal cycling using a commercial thermal oil (Therminol 66) as the base fluid. Secondly, a mechanism to control the supercooling effect of this nePCM type based on non-eutectic alloys was developed.

  6. Microstructural Characterization of Base Metal Alloys with Conductive Native Oxides for Electrical Contact Applications

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge Seda

    Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one

  7. Synthesis and Characterization of TiNi1+xSn Thermoelectric Alloys

    NASA Astrophysics Data System (ADS)

    Young, Jacob Steele

    Thermoelectric materials, a unique semiconductor-like class of materials, can convert waste heat into electricity and vice versa. An investigation into the synthesis and characterization of half-Heusler TiNi1+xSn alloys was conducted. An arc-melting and annealing procedure was conducted to achieve the desired phase equilibrium. Additional Ni was added as an interstitial dopant to form a small amount of full-Heusler TiNi2Sn phase, which has been seen to improve upon thermoelectric properties in the literature. Annealing time (0 to 21 days), annealing temperature (700 to 900 °C), and nickel content (x = 0, 0.15) were investigated as key synthesis parameters. Results illustrate that before annealing, many binary and ternary phases are present. The final phase distribution after annealing, a two-phase mixture containing TiNiSn and TiNi2Sn, was analyzed using XRD, SEM, EBSD, and EDS techniques. The electrical conductivity (1515 to 1618 S cm -1 from 30 to 340 °C), Seebeck coefficient (-25 to -53 microV K-1 from 30 to 414 °C), thermal conductivity (6.68 to 6.90 W m-1 K-1 from 318 to 414 °C), and thermoelectric figure of merit, ZT, (0.009 to 0.046 from 30 to 430 °C) of single phase TiNiSn using the arc-melting and annealing synthesis method was measured and compared to other methods found in literature. The lattice constants of TiNiSn and TiNi2Sn as a function of annealing time, annealing temperature, and composition were calculated based on XRD and deviated slightly from the ICDD standards due to Ni-defect behavior (TiNiSn: +0.04 to 0.47% deviation, TiNi2Sn: -0.09 to -0.40%). The activation energy for conduction (bandgap) of TiNiSn was derived from the measured electrical conductivity and was approximately 0 eV, implying a metallic conduction behavior. Optimum annealing conditions were determined in order to achieve phase equilibrium with minimum time (14 to 21 days) and temperature required (700 °C).

  8. Design and development of NiTi-based precipitation-strengthened high-temperature shape memory alloys for actuator applications

    NASA Astrophysics Data System (ADS)

    Hsu, Derek Hsen Dai

    As a vital constituent in the field of smart materials and structures, shape memory alloys (SMAs) are becoming ever-more important due to their wide range of commercial and industrial applications such as aircraft couplings, orthodontic wires, and eyeglasses frames. However, two major obstacles preventing SMAs from fulfilling their potential as excellent actuator materials are: 1) the lack of commercially-viable SMAs that operate at elevated temperatures, and 2) the degradation of mechanical properties and shape memory behavior due to thermal cyclic fatigue. This research utilized a thermodynamically-driven systems design approach to optimize the desired properties by controlling the microstructure and processing of high-temperature SMAs (HTSMAs). To tackle the two aforementioned problems with HTSMAs, the introduction of Ni2TiAl coherent nanoprecipitates in a Ni-Ti-Zr/Hf HTSMA matrix is hypothesized to strengthen the martensite phase while simultaneously increasing the transformation temperature. Differential scanning calorimetry (DSC) was used to determine the transformation temperatures and thermal cyclic stability of each alloy. Also, microstructural characterization was performed using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom probe tomography (APT). Lastly, compression testing was used to assess the mechanical behavior of the alloys. From the investigation of the first set of Ni48.5Ti31.5-X Zr20AlX (X = 0, 1, 2, 3) prototype alloys, Al addition was found to decrease the transformation temperatures, decrease the thermal cyclic stability, but also increase the strength due to the nucleation and growth of embrittling NiTi2 and NiTiZr Laves phases. However, the anticipated Heusler phase precipitation did not occur. The next study focused on Ni50Ti30-XHf20Al X (X = 0, 1, 2, 3, 4, 5) prototype alloys which replaced Zr with Hf to avoid the formation of brittle Laves phases

  9. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  10. Size dependence of vortex-type spin torque oscillation in a Co2Fe0.4Mn0.6Si Heusler alloy disk

    NASA Astrophysics Data System (ADS)

    Seki, T.; Kubota, T.; Yamamoto, T.; Takanashi, K.

    2018-02-01

    This paper reports the systematic investigation of vortex-type spin torque oscillation in circular disks of highly spin-polarized Co2Fe0.4Mn0.6Si (CFMS) Heusler alloys. We fabricated the current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with various disk diameters (D) using the layer stack of CFMS/Ag3Mg/CFMS. The gyrotropic motion of the vortex core was successfully excited for the CFMS circular disks with 0.2 µm  ⩽  D  ⩽  0.3 µm. The CPP-GMR device with D  =  0.2 µm exhibited the Q factor of more than 5000 and the large output power of 0.4 nW owing to the high coherency of vortex dynamics and the high spin-polarization of CFMS. However, the Q factor was remarkably decreased as D was reduced from 0.2 µm to 0.14 µm. The comparison with the calculated resonance frequencies suggested that this degradation of the Q factor was due to the transition of the oscillation mode from the vortex mode to other modes such as the low-coherent out-of-plane precession mode. The present experimental results also suggest that there exists an adequate disk size for the enhanced Q factor of the vortex-type spin torque oscillation.

  11. Rare-earth metals in nickel aluminide-based alloys: III. Structure and properties of multicomponent Ni3Al-based alloys

    NASA Astrophysics Data System (ADS)

    Bazyleva, O. A.; Povarova, K. B.; Kazanskaya, N. K.; Drozdov, A. A.

    2009-04-01

    The possibility of increasing the life of heterophase cast light Ni3Al-based superalloys at temperatures higher than 0.8 T m of Ni3Al is studied when their directional structure is additionally stabilized by nanoprecipitates, which form upon additional alloying of these alloys by refractory and active metals, and using special methods for preparing and melting of an alloy charge. The effect of the method of introducing the main components and refractory reaction-active and surface-active alloying elements into Ni3Al-based cast superalloys, which are thermally stable natural composite materials of the eutectic type, on the structure-phase state and the life of these alloys is studied. When these alloys are melted, it is necessary to perform a set of measures to form particles of refractory oxide cores covered with the β-NiAl phase and, then, γ'prim-Ni3Al phase precipitates during solidification. The latter phase forms the outer shell of grain nuclei, which provides high thermal stability and hot strength of an intermetallic compound-based alloy. As a result, a modified structure that is stabilized by the nanoprecipitates of nickel and aluminum lanthanides and the nanoprecipitates of phases containing refractory metals is formed. This structure enhances the life of the alloy at 1000 °C by a factor of 1.8-2.5.

  12. The Effect of Boronizing on Metallic Alloys for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Petrova, Roumiana S.; Suwattananont, Naruemon; Samardzic, Veljko

    2008-06-01

    In this study the wear resistance, corrosion resistance, and oxidation resistance of boronized metallic alloys were investigated. Thermochemical treatment was performed by powder pack boronizing process at temperature 850-950 °C for 4 h. Saw-tooth morphology and smooth interface microstructures were observed with an optical microscope; microhardness was measured across the coating depth. The phases present in the boron coatings depend on the substrate material. High-temperature oxidation resistance was investigated and it was found that boron coating on ferrous alloys can resist temperatures up to 800 °C. The corrosion resistance of the boronized samples was improved and the corrosion rate was calculated for boronized and plain specimens. Wear testing was conducted by following the procedures of ASTM G99, ASTM D2526, and ASTM D4060. The obtained experimental results revealed that boronizing significantly improves the wear-resistance, corrosion-resistance, and oxidation resistance of metallic alloys.

  13. [Clinical evaluation of the effect of gold alloy and Ni-Cr alloy porcelain fused metal crown restorations].

    PubMed

    Sun, Wei-ge; Liu, Xiang-hui; Zhang, Ling; Zhang, Chun; Xie, Ming-yi; Zhou, Wen-juan

    2009-02-01

    To observe the clinical effect of gold alloy porcelain fused metal (PFM) crown restoration and Ni-Cr alloy PFM crown restoration. A total of 168 teeth from 48 patients were restored with gold alloy PFM crown. The other 48 patients, with a total of 179 teeth were restored with Ni-Cr alloy PFM crown. They were examined in integrality, retention, shade, cervical margin, and gingival health immediately, 6 months, one year, two years ,and three years after restoration. The date was analyzed by rank sum test using SPSS12.0 software package. The clinical effect of Ni-Cr alloy PFM crown was as good as gold alloy PFM crown when checked up after cementation at once. However, when they were examined 6 months, one year, two years ,and three years after restoration, the clinical effect of gold alloy PFM crown group was significantly better than that of Ni-Cr alloy PFM crown, P<0.05. The gold alloy PFM crown has better properties than Ni-Cr alloy PFM crown as a kind of long-term restoration, especially on the aspect of shade.

  14. PROCESS OF COATING METALS WITH BISMUTH OR BISMUTH-BASE ALLOYS

    DOEpatents

    Beach, J.G.

    1958-01-28

    A method is described for producing coatings of bismuth or bismuth alloys on a metal base. This is accomplished by electrodepositing the bismuth from an aqueous solution of BiCl/sub 3/, and by making the metal base alternately the cathode and the anode, the cathode periods being twice as long as the anode periods. In one embodiment a nickel coating is first electrodeposited in a known way, and this nickel plated piece is tae base upon which tae bismuth is deposited by the process of this patent. The coated piece is then heat treated to produce a homogeneous Ni--Bi alloy by diffusion.

  15. Electrochemical corrosion of a noble metal-bearing alloy-oxide composite

    DOE PAGES

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2017-04-27

    The effects of added Ru and Pd on the microstructure and electrochemical behaviour of a composite material made by melting those metals with AISI 410 stainless steel, Zr, Mo, and lanthanide oxides were assessed using electrochemical and microscopic methods Furthermore, the lanthanide oxides reacted with Zr to form durable lanthanide zirconates and Mo alloyed with steel to form FeMoCr intermetallics. The noble metals alloyed with the steel to provide solid solution strengthening and inhibit carbide/nitride formation. In a passive film formed during electrochemical tests in acidic NaCl solution, but became less effective as corrosion progressed and regions over the intermetallicsmore » eventually failed.« less

  16. A comparison of thermoelectric phenomena in diverse alloy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Bruce

    1999-01-01

    The study of thermoelectric phenomena in solids provides a wealth of opportunity for exploration of the complex interrelationships between structure, processing, and properties of materials. As thermoelectricity implies some type of coupled thermal and electrical behavior, it is expected that a basic understanding of transport behavior in materials is the goal of such a study. However, transport properties such as electrical resistivity and thermal diffusivity cannot be fully understood and interpreted without first developing an understanding of the material's preparation and its underlying structure. It is the objective of this dissertation to critically examine a number of diverse systems inmore » order to develop a broad perspective on how structure-processing-property relationships differ from system to system, and to discover the common parameters upon which any good thermoelectric material is based. The alloy systems examined in this work include silicon-germanium, zinc oxide, complex intermetallic compounds such as the half-Heusler MNiSn, where M = Ti, Zr, or Hf, and rare earth chalcogenides.« less

  17. METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS

    DOEpatents

    Baker, R.D.; Hayward, B.R.

    1963-01-01

    >This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)

  18. Long range ordered alloys modified by group IV-B metals

    DOEpatents

    Liu, Chain T.; Inouye, Henry; Schaffhauser, Anthony C.

    1983-01-01

    Ductile long range ordered alloys having high critical ordering temperatures exist in the (V,M)(Fe,Ni,Co).sub.3 system having the composition comprising by weight 20.6%-22.6% V, 14-50% Fe, 0-64% Co, and 0-40% Ni, and 0.4-1.4% M, where M is a metal selected from the group consisting of Ti, Zr, Hf, and their mixtures. These modified alloys have an electron density no greater than 8.00 and exhibit marked increases at elevated temperature in ductility and other mechanical properties over previously known ordered alloys.

  19. Numerical simulation of the alloying process during impulse induction heating of the metal substrate

    NASA Astrophysics Data System (ADS)

    Popov, V. N.

    2017-10-01

    2D numerical modeling of the processes during the alloying of the substrate surface metal layer is carried out. Heating, phase transition, heat and mass transfer in the molten metal, solidification of the melt are considered with the aid the proposed mathematical model. Under study is the applicability of the high-frequency electromagnetic field impulse for metal heating and melting. The distribution of the electromagnetic energy in the metal is described by empirical formulas. According to the results of numerical experiments, the flow structure in the melt and distribution of the alloying substances is evaluated.

  20. Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition.

    PubMed

    Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi

    2015-12-02

    Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.

  1. Ferromagnetism and spin glass ordering in transition metal alloys (invited)

    NASA Astrophysics Data System (ADS)

    Crane, S.; Carnegie, D. W., Jr.; Claus, H.

    1982-03-01

    Magnetic properties of transition metal alloys near the percolation threshold are often complicated by metallurgical effects. Alloys like AuFe, VFe, CuNi, RhNi, and PdNi are in general not random solid solutions but have various degrees of atomic clustering or short-range order (SRO), depending on the heat treatment. First, it is shown how the magnetic ordering temperature of these alloys varies with the degree of clustering or SRO. Second, by systematically changing this degree of clustering or SRO, important information can be obtained about the magnetic phase diagram. In all these alloys below the percolation limit, the onset of ferromagnetic order is probably preceded by a spin glass-type ordering. However, details of the magnetic phase diagram near the critical point can be quite different alloy systems.

  2. [Research progress in CoCr metal-ceramic alloy fabricated by selective laser melting].

    PubMed

    Yan, X; Lin, H

    2018-02-09

    Cobalt-chromium alloys have been applied to dental porcelain fused to metal (PFM) restorations over the past decades owing to their excellent corrosion resistance, good biocompatibility and low price. The production of CoCr metal-ceramic restorations has always been based on traditional lost-wax casting techniques. However, in recent years, selective laser melting (SLM) is becoming more and more highly valued by dental laboratories and dental practitioners due to its individuation, precision and efficiency. This paper mainly reviews the recent researches on the production process of copings, microstructure, mechanical property, metal-ceramic bond strength, fit of copings, corrosion resistance and biocompatibility of SLM CoCr metal-ceramic alloy.

  3. Quality of Heusler single crystals examined by depth-dependent positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Bauer, A.; Böni, P.; Ceeh, H.; Eijt, S. W. H.; Gigl, T.; Pfleiderer, C.; Piochacz, C.; Neubauer, A.; Reiner, M.; Schut, H.; Weber, J.

    2015-06-01

    Heusler compounds exhibit a wide range of different electronic ground states and are hence expected to be applicable as functional materials in novel electronic and spintronic devices. Since the growth of large and defect-free Heusler crystals is still challenging, single crystals of Fe2TiSn and Cu2MnAl were grown by the optical floating zone technique. Two positron annihilation techniques—angular correlation of annihilation radiation and Doppler broadening spectroscopy (DBS)—were applied in order to study both the electronic structure and lattice defects. Recently, we succeeded to observe clearly the anisotropy of the Fermi surface of Cu2MnAl, whereas the spectra of Fe2TiSn were disturbed by foreign phases. In order to estimate the defect concentration in different samples of Heusler compounds, the positron diffusion length was determined by DBS using a monoenergetic positron beam.

  4. Understanding Organic Film Behavior on Alloy and Metal Oxides

    PubMed Central

    Raman, Aparna; Quiñones, Rosalynn; Barriger, Lisa; Eastman, Rachel; Parsi, Arash

    2010-01-01

    Native oxide surfaces of stainless steel 316L and Nitinol alloys and their constituent metal oxides namely, nickel, chromium, molybdenum, manganese, iron and titanium were modified with long chain organic acids to better understand organic film formation. The adhesion and stability of films of octadecylphosphonic acid, octadecylhydroxamic acid, octadecylcarboxylic acid and octadecylsulfonic acid on these substrates was examined in this study. The films formed on these surfaces were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, contact angle goniometry, atomic force microscopy and matrix assisted laser desorption ionization mass spectrometry. The effect of the acidity of the organic moiety and substrate composition on the film characteristics and stability is discussed. Interestingly, on the alloy surfaces, the presence of less reactive metal sites does not inhibit film formation. PMID:20039608

  5. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  6. Coating with overlay metallic-cermet alloy systems

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  7. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling).

    PubMed

    Agrawal, Amit; Hashmi, Syed W; Rao, Yogesh; Garg, Akanksha

    2015-07-01

    Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly.

  8. High temperature seal for joining ceramics and metal alloys

    DOEpatents

    Maiya, P.S.; Picciolo, J.J.; Emerson, J.E.; Dusek, J.T.; Balachandran, U.

    1998-03-10

    For a combination of a membrane of SrFeCo{sub 0.5}O{sub x} and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo{sub 0.50}O{sub x} is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed. 3 figs.

  9. High temperature seal for joining ceramics and metal alloys

    DOEpatents

    Maiya, P. Subraya; Picciolo, John J.; Emerson, James E.; Dusek, Joseph T.; Balachandran, Uthamalingam

    1998-01-01

    For a combination of a membrane of SrFeCo.sub.0.5 O.sub.x and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo.sub.0.50 O.sub.x is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed.

  10. Migration protocol to estimate metal exposure from mouthing copper and tin alloy objects

    PubMed Central

    2014-01-01

    Background Low blood lead levels previously thought to pose no health risks may have an adverse impact on the cognitive development of children. This concern has given rise to new regulatory restrictions upon lead metal containing products intended for child use. However few reliable experimental testing methods to estimate exposure levels from these materials are available. Methods The present work describes a migration test using a mimetic saliva fluid to estimate the chronic exposure of children to metals such as lead while mouthing metallic objects. The surrogate saliva medium was composed of: 150 mM NaCl, 0.16% porcine Mucin and 5 mM buffer MOPS, adjusted to pH 7.2. Alloys samples, in the form of polished metallic disc of known surface area, were subjected to an eight hours test. Results Two whitemetal alloys Sn/Pb/Sb/Cu and three brass alloys Cu/Zn/Pb were tested using the saliva migration protocol. In the case of the whitemetal alloys, first order release kinetics resulting in the release of 0.03 and 0.51 μg lead/cm2 after 8 hours of tests were observed, for lead contents of 0.05-0.07% and 5.5%, respectively. Brasses exhibited linear incremental release rates of 0.043, 0.175 and 0.243 μg lead/cm2h for lead contents of 0.1-0.2%, 1.7-2.2% and 3.1-3.5%, respectively. The linear regression analysis of lead release rates relative to Pb content in brasses yielded a slope of 0.08 μg lead/cm2h%Pb (r2 = 0.92). Lead release rates were used to estimate the mean daily mouthing exposure of a child to lead, according to age-specific estimates of mouthing time behavior. Calculated daily intakes were used as oral inputs for the IEUBK toxicokinetic model, predicting only marginal changes in blood lead levels (0.2 μg lead/dL or less) for children aged 0.5 to 1 years old exposed to either class of alloy. Conclusions The results of this study as a whole support the use of migration data of metal ions, rather than total metal content, to estimate health risk

  11. Refractory metal alloys and composites for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  12. Two-Center/Three-Electron Sigma Half-Bonds in Main Group and Transition Metal Chemistry.

    PubMed

    Berry, John F

    2016-01-19

    First proposed in a classic Linus Pauling paper, the two-center/three-electron (2c/3e) σ half-bond challenges the extremes of what may or may not be considered a chemical bond. Two electrons occupying a σ bonding orbital and one electron occupying the antibonding σ* orbital results in bond orders of ∼0.5 that are characteristic of metastable and exotic species, epitomized in the fleetingly stable He2(+) ion. In this Account, I describe the use of coordination chemistry to stabilize such fugacious three-electron bonded species at disparate ends of the periodic table. A recent emphasis in the chemistry of metal-metal bonds has been to prepare compounds with extremely short metal-metal distances and high metal-metal bond orders. But similar chemistry can be used to explore metal-metal bond orders less than one, including 2c/3e half-bonds. Bimetallic compounds in the Ni2(II,III) and Pd2(II,III) oxidation states were originally examined in the 1980s, but the evidence collected at that time suggested that they did not contain 2c/3e σ bonds. Both classes of compounds have been re-examined using EPR spectroscopy and modern computational methods that show the unpaired electron of each compound to occupy a M-M σ* orbital, consistent with 2c/3e Ni-Ni and Pd-Pd σ half-bonds. Elsewhere on the periodic table, a seemingly unrelated compound containing a trigonal bipyramidal Cu3S2 core caused a stir, leaving prominent theorists at odds with one another as to whether the compound contains a S-S bond. Due to my previous experience with 2c/3e metal-metal bonds, I suggested that the Cu3S2 compound could contain a 2c/3e S-S σ half-bond in the previously unknown oxidation state of S2(3-). By use of the Cambridge Database, a number of other known compounds were identified as potentially containing S2(3-) ligands, including a noteworthy set of cyclopentadienyl-supported compounds possessing diamond-shaped Ni2E2 units with E = S, Se, and Te. These compounds were subjected to

  13. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  14. Properties of open-cell porous metals and alloys for orthopaedic applications.

    PubMed

    Lewis, Gladius

    2013-10-01

    One shortcoming of metals and alloys used to fabricate various components of orthopaedic systems, such as the femoral stem of a total hip joint replacement and the tibial plate of a total knee joint replacement, is well-recognized. This is that the material modulus of elasticity (E') is substantially larger than that of the contiguous cancellous bone, a consequence of which is stress shielding which, in turn, has been postulated to be implicated in a cascade of events that culminates in the principal life-limiting phenomenon of these systems, namely, aseptic loosening. Thus, over the years, a host of research programs have focused on the synthesis of metallic biomaterials whose E' can be tailored to match that of cancellous bone. The present work is a review of the extant large volume of literature on these materials, which are called open-cell porous metals/alloys (or, sometimes, metal foams or cellular materials). As such, its range is wide, covering myriad aspects such as production methods, characterization studies, in vitro evaluations, and in vivo performance. The review also includes discussion of seven areas for future research, such as parametric studies of the influence of an assortment of process variables (such as the space holder material and the laser power in the space holder method and the laser-engineered net-shaping process, respectively) on various properties (notably, permeability, fatigue strength, and corrosion resistance) of a given porous metal/alloy, innovative methods of determining fatigue strength, and modeling of corrosion behavior.

  15. Distribution of impurity states and charge transport in Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuanfeng; Makongo, Julien P.A.; Page, Alexander

    Energy filtering of charge carriers in a semiconducting matrix using atomically coherent nanostructures can lead to a significant improvement of the thermoelectric figure of merit of the resulting composite. In this work, several half-Heusler/full-Heusler (HH/FH) nanocomposites with general compositions Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} (0≤x≤0.15 and y=0.005, 0.01 and 0.025) were synthesized in order to investigate the behavior of extrinsic carriers at the HH/FH interfaces. Electronic transport data showed that energy filtering of carriers at the HH/FH interfaces in Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} samples strongly depends on the doping level (y value) as well as the energymore » levels occupied by impurity states in the samples. For example, it was found that carrier filtering at HH/FH interfaces is negligible in Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} (y=0.01 and 0.025) composites where donor states originating from Sb dopant dominate electronic conduction. However, we observed a drastic decrease in the effective carrier density upon introduction of HH/FH interfaces for the mechanically alloyed Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 0.995}Sb{sub 0.005} samples where donor states from unintentional Fe impurities contribute the largest fraction of conduction electrons. This work demonstrates the ability to synergistically integrate the concepts of doping and energy filtering through nanostructuring for the optimization of electronic transport in semiconductors. - Graphical abstract: Electronic transport in semiconducting half-Heusler (HH) matrices containing full-Heusler (FH) nanoinclusions strongly depends on the energy distribution of impurity states within the HH matrix with respect to the magnitude of the potential energy barrier at the HH/FH interfaces. - Highlights: • Coherent nanostructures enhanced thermoelectric behavior of half-Heusler alloys. • Nanostructures act as energy

  16. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Wuwei, E-mail: wfeng@cugb.edu.cn; Wang, Weihua; Zhao, Chenglong

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperaturemore » is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.« less

  17. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Li, M.; Soppet, W.K.

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated tomore » evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited

  18. Cleavage fracture in high strength low alloy weld metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, W.W.; Bowen, P.; Strangwood, M.

    1996-12-31

    The present investigation gives an evaluation of the effect of microstructure on the cleavage fracture process of High Strength Low Alloy (HSLA) multipass weld metals. With additions of alloying elements, such as Ti, Ni, Mo and Cr, the microstructure of C-Mn weld metal changes from the classical composition, i.e., allotriomorphic ferrite with acicular ferrite and Widmanstaetten ferrite, to bainite and low carbon martensite. Although the physical metallurgy of some HSLA weld metals has been studied before, more work is necessary to correlate the effect of the microstructure on the fracture behavior of such weld metals. In this work detailed microstructuralmore » analysis was carried out using optical and electron (SEM and TEM) microscopy. Single edge notched (SEN) bend testpieces were used to assess the cleavage fracture stress, {sigma}{sub F}. Inclusions beneath the notch surface were identified as the crack initiators of unstable cleavage fracture. From the size of such inclusions and the value of tensile stress predicted at the initiation site, the effective surface energy for cleavage was calculated using a modified Griffth energy balance for a penny shape crack. The results suggest that even though inclusions initiate cleavage fracture, the local microstructure may play an important role in the fracture process of these weld metals. The implications of these observations for a quantitative theory of the cleavage fracture of ferritic steels is discussed.« less

  19. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads.

    PubMed

    Takeuchi, I; Famodu, O O; Read, J C; Aronova, M A; Chang, K-S; Craciunescu, C; Lofland, S E; Wuttig, M; Wellstood, F C; Knauss, L; Orozco, A

    2003-03-01

    Exploration of new ferroic (ferroelectric, ferromagnetic or ferroelastic) materials continues to be a central theme in condensed matter physics and to drive advances in key areas of technology. Here, using thin-film composition spreads, we have mapped the functional phase diagram of the Ni-Mn-Ga system whose Heusler composition Ni(2)MnGa is a well known ferromagnetic shape-memory alloy. A characterization technique that allows detection of martensitic transitions by visual inspection was combined with quantitative magnetization mapping using scanning SQUID (superconducting quantum interference device) microscopy. We find that a large, previously unexplored region outside the Heusler composition contains reversible martensites that are also ferromagnetic. A clear relationship between magnetization and the martensitic transition temperature is observed, revealing a strong thermodynamical coupling between magnetism and martensitic instability across a large fraction of the phase diagram.

  20. Electrochemical Study of Corrosion Phenomena in Zirconium Alloys

    DTIC Science & Technology

    2005-06-01

    required reaction rates [1.1]. Based predominantly on this fact, zirconium alloys were chosen to sheath, or clad, the fuel. With the increasing demand...cathode or anode. As the oxidation and reduction reactions occur, a galvanic cell is developed. The electrons on the anode are released from the metallic...matrix as the ions are released into the aqueous solution in the initial half-cell reaction . The second half-cell reaction , taking place on the

  1. Comparison of the metal-to-ceramic bond strengths of four noble alloys with press-on-metal and conventional porcelain layering techniques.

    PubMed

    Khmaj, Mofida R; Khmaj, Abdulfatah B; Brantley, William A; Johnston, William M; Dasgupta, Tridib

    2014-11-01

    New noble alloys for metal ceramic restorations introduced by manufacturers are generally lower-cost alternatives to traditional higher-gold alloys. Information about the metal-to-ceramic bond strength for these alloys, which is needed for rational clinical selection, is often lacking. The purpose of this study was to evaluate the bond strength of 4 recently introduced noble alloys by using 2 techniques for porcelain application. Aquarius Hard (high-gold: 86.1 gold, 8.5 platinum, 2.6 palladium, 1.4 indium; values in wt. %), Evolution Lite (reduced-gold: 40.3 gold, 39.3 palladium, 9.3 indium, 9.2 silver, 1.8 gallium), Callisto 75 Pd (palladium-silver containing gold: 75.2 palladium, 7.1 silver, 2.5 gold, 9.3 tin, 1.0 indium), and Aries, (conventional palladium-silver: 63.7 palladium, 26.0 silver, 7.0 tin, 1.8 gallium, 1.5 indium) were selected for bonding to leucite-containing veneering porcelains. Ten metal ceramic specimens that met dimensional requirements for International Organization for Standardization (ISO) Standard 9693 were prepared for each alloy by using conventional porcelain layering and press-on-metal methods. The 3-point bending test in ISO Standard 9693 was used to determine bond strength. Values were compared with 2-way ANOVA (maximum likelihood analysis, SAS Mixed Procedure) and the Tukey test (α=.05). Means (standard deviations) for bond strength with conventional porcelain layering were as follows: Aquarius Hard (50.7 ±5.5 MPa), Evolution Lite (40.2 ±3.3 MPa), Callisto 75 Pd (37.2 ±3.9 MPa), and Aries (34.0 ±4.9 MPa). For the press-on-metal technique, bond strength results were as follows: Aquarius Hard (33.7 ±11.5 MPa), Evolution Lite (34.9 ±4.5 MPa), Callisto 75 Pd (37.2 ±11.9 MPa), and Aries (30.7 ±10.8 MPa). From statistical analyses, the following 3 significant differences were found for metal-to-ceramic bond strength: the bond strength for Aquarius Hard was significantly higher for conventional porcelain layers compared with

  2. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  3. METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-11-13

    A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

  4. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.

    PubMed

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C

    2008-04-01

    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P < 0.05). Metal ion release from the two alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  5. Properties- and applications of quasicrystals and complex metallic alloys.

    PubMed

    Dubois, Jean-Marie

    2012-10-21

    This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section.

  6. Compensated Ferrimagnetism in the Zero-Moment Heusler Alloy Mn3Al

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.; Wang, Yung Jui; Stephen, Gregory M.; McDonald, Ian J.; Grutter, Alexander J.; Sterbinsky, George E.; Arena, Dario A.; Borchers, Julie A.; Kirby, Brian J.; Lewis, Laura H.; Barbiellini, Bernardo; Bansil, Arun; Heiman, Don

    2017-06-01

    While antiferromagnets have been proposed as components to limit stray magnetic fields, their inability to be spin polarized inhibits their use in spintronic devices. Compensated ferrimagnets are a unique solution to this dilemma since they have zero net moment, but their nonsymmetric density of states allows the achievement of high spin polarization. Density-functional theory predicts Mn3Al in the D 03 structure to be fully compensated and retain half-metallicity at room temperature. In this work, 50-nm Mn3Al thin films are synthesized using molecular beam epitaxy and annealed at various temperatures in order to investigate their magnetic properties. Magnetometry measurements confirm the high Curie temperature of 605 K. Polarized-neutron reflectometry (PNR) indicates a low net magnetic moment, along with depth profiles of the structure and magnetization. From the PNR data, a saturation moment of 0.11 ±0.04 μB/f .u . is extracted, confirming the nominal zero moment present in these thin films.

  7. Development of Metallic Sensory Alloys

    NASA Technical Reports Server (NTRS)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  8. Growth of Co2FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Akansel, Serkan; Kumar, Ankit; Svedlindh, Peter; Chaudhary, Sujeet

    2016-06-01

    The influence of growth temperature Ts (300-773 K) on the structural phase ordering, static and dynamic magnetization behaviour has been investigated in ion beam sputtered full Heusler alloy Co2FeAl (CFA) thin films on industrially important Si(100) substrate. The B2 type magnetic ordering is established in these films based on the clear observation of the (200) diffraction peak. These ion beam sputtered CFA films possess very small surface roughness of the order of subatomic dimensions (<3 Å) as determined from the fitting of XRR spectra and also by AFM imaging. This is supported by the occurrence of distinct Kiessig fringes spanning over the whole scanning range (~4°) in the x-ray reflectivity (XRR) spectra. The Gilbert damping constant α and effective magnetization 4πMeff are found to vary from 0.0053 ± 0.0002 to 0.0015 ± 0.0001 and 13.45 ± 00.03 kG to 14.03 ± 0.04 kG, respectively. These Co2FeAl films possess saturation magnetization ranging from 4.82 ± 0.09 to 5.22 ± 0.10 μB/f.u. consistent with the bulk L21-type ordering. A record low α-value of 0.0015 is obtained for Co2FeAl films deposited on Si substrate at Ts ~ 573 K.

  9. Growth of Co2FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering.

    PubMed

    Husain, Sajid; Akansel, Serkan; Kumar, Ankit; Svedlindh, Peter; Chaudhary, Sujeet

    2016-06-30

    The influence of growth temperature Ts (300-773 K) on the structural phase ordering, static and dynamic magnetization behaviour has been investigated in ion beam sputtered full Heusler alloy Co2FeAl (CFA) thin films on industrially important Si(100) substrate. The B2 type magnetic ordering is established in these films based on the clear observation of the (200) diffraction peak. These ion beam sputtered CFA films possess very small surface roughness of the order of subatomic dimensions (<3 Å) as determined from the fitting of XRR spectra and also by AFM imaging. This is supported by the occurrence of distinct Kiessig fringes spanning over the whole scanning range (~4°) in the x-ray reflectivity (XRR) spectra. The Gilbert damping constant α and effective magnetization 4πMeff are found to vary from 0.0053 ± 0.0002 to 0.0015 ± 0.0001 and 13.45 ± 00.03 kG to 14.03 ± 0.04 kG, respectively. These Co2FeAl films possess saturation magnetization ranging from 4.82 ± 0.09 to 5.22 ± 0.10 μB/f.u. consistent with the bulk L21-type ordering. A record low α-value of 0.0015 is obtained for Co2FeAl films deposited on Si substrate at Ts ~ 573 K.

  10. Increasing the reliability and quality of important cast products made of chemically active metals and alloys

    NASA Astrophysics Data System (ADS)

    Varfolomeev, M. S.; Moiseev, V. S.; Shcherbakova, G. I.

    2017-01-01

    A technology is developed to produce highly thermoresistant ceramic monoxide corundum molds using investment casting and an aluminum-organic binder. This technology is a promising trend in creating ceramic molds for precision complex-shape casting of important ingots made of high-alloy steels, high-temperature and titanium alloys, and refractory metals. The use of the casting molds that have a high thermal and chemical resistance to chemically active metals and alloys under high-temperature casting minimizes the physicochemical interaction and substantially decreases the depth of the hard-to-remove metal oxide layer on important products, which increases their service properties.

  11. Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys.

    PubMed

    Zinelis, Spiros; Tsetsekou, Athena; Papadopoulos, Triantafillos

    2003-10-01

    Statement of problem Low-fusing porcelains for titanium veneering have demonstrated inferior color stability and metal-ceramic longevity compared to conventional porcelains. This study evaluated the microstructure and thermal expansion coefficients of some experimental titanium alloys as alternative metallic substrates for low-fusing conventional porcelain. Commercially pure titanium (CP Ti) and various metallic elements (Al, Co, Sn, Ga, In, Mn) were used to prepare 8 titanium alloys using a commercial 2-chamber electric-arc vacuum/inert gas dental casting machine (Cyclarc). The nominal compositions of these alloys were the following (wt%): I: 80Ti-18Sn-1.5In-0.5Mn; II: 76Ti-12Ga-7Sn-4Al-1Co; III: 87Ti-13Ga; IV: 79Ti-13Ga-7Al-1Co; V: 82Ti-18In; VI: 75.5Ti-18In-5Al-1Co-0.5Mn; VII: 85Ti-10Sn-5Al; VIII: 78Ti-12Co-7Ga-3Sn. Six rectangular wax patterns for each test material (l = 25 mm, w = 3 mm, h = 1 mm) were invested with magnesia-based material and cast with grade II CP Ti (control) and the 8 experimental alloys. The porosity of each casting was evaluated radiographically, and defective specimens were discarded. Two cast specimens from CP Ti and alloys I-VIII were embedded in epoxy resin and, after metallographic grinding and polishing, were studied by means of scanning electron microscopy and wavelength dispersive electron probe microanalysis. One specimen of each material was utilized for the determination of coefficient of thermal expansion (CTE) with a dilatometer operating from room temperature up to 650 degrees C at a heating rate of 5 degrees C/minute. Secondary electron images (SEI) and compositional backscattered electron images (BEI-COMPO) revealed that all cast specimens consisted of a homogeneous matrix except Alloy VIII, which contained a second phase (possibly Ti(2)Co) along with the titanium matrix. The results showed that the coefficient of thermal expansion (CTE) varied from 10.1 to 13.1 x 10(-6)/ degrees C (25 degrees -500 degrees C), depending on

  12. Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique.

    PubMed

    Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Fan, Zhiyong

    2018-03-01

    Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I 2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb-Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effectiveness of metal surface treatments in controlling microleakage of the acrylic resin-metal framework interface.

    PubMed

    Sharp, B; Morton, D; Clark, A E

    2000-12-01

    Microleakage at the junction between the metal alloy and acrylic resin in a removable partial denture may result in discoloration, fluid percolation, and acrylic resin deterioration. The junction between a metal alloy and acrylic resin is an area of clinical concern. Failure of a removable partial denture may be linked to this interface. Enhancing resistance to microleakage at this interface may improve the long-term union between the 2 materials. This investigation was designed to determine the effects of various metal surface treatment protocols on microleakage and bond strength between the metal alloy and acrylic resin used in the fabrication of a removable partial denture. Ninety-six nickel-chromium-beryllium alloy specimens were randomly divided into 8 groups. After adaptation of baseplate wax, each specimen was invested. Subsequent to wax removal, each specimen was divided into a control half and an experimental half. Air abrasion, tinplating/oxidation, and silanation were evaluated individually and in all combinations. Heat-polymerized acrylic resin was processed against all specimens before storage in distilled water at 37 degrees C for 72 hours. Each specimen then was thermocycled in distilled water (3000 cycles) before immersion in sodium fluorescein dye for 24 hours. Counting grids that exhibited dye penetration under ultraviolet light exposure allowed assessment of microleakage. Air abrasion resulted in a significant decrease in microleakage when used individually and in all combinations (P<0.05). All experimental combinations that did not involve air abrasion demonstrated no significant reduction in measured microleakage between the experimental and control sides. Tukey's pair-wise comparison of the difference in the mean number of squares exhibiting microleakage between the control and treated sites for each experimental group revealed a significant difference, based on the involvement of air abrasion. Groups involving air abrasion did not differ

  14. Perovskite- and Heusler based materials for thermoelectric converters

    NASA Astrophysics Data System (ADS)

    Weidenkaff, Anke

    2015-03-01

    The broad application of thermoelectric converters in future energy technologies requires the development of active, stable, low cost and sustainable materials. Semiconductors based on perovskite and heusler structures show substantial potential for thermoelectric energy conversion processes. Their good performance can be explained based on their suitable band structure, adjusted charge carrier density, mass and mobility, limited phonon transport, electron filtering possibilities, strongly correlated electronic systems, etc. These properties are widely tuneable by following theoretical concepts and a deep composition-structure-property understanding to change the composition, structure and size of the crystallites in innovative scalable synthesis procedures. Improved thermoelectric materials are developed, synthesised and tested in diverse high temperature applications to improve the efficiency and energy density of the thermoelectric conversion process. The lecture will provide a summary on the field of advanced perovskite-type ceramics and Heusler compounds gaining importance for a large number of future energy technologies.

  15. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Shou-juan; Zhang, Chang-wen; Zhang, Shu-feng; Ji, Wei-xiao; Li, Ping; Wang, Pei-ji; Li, Sheng-shi; Yan, Shi-shen

    2017-11-01

    The quantum anomalous Hall (QAH) effect has attracted extensive attention due to time-reversal symmetry broken by a staggered magnetic flux emerging from ferromagnetic ordering and spin-orbit coupling. However, the experimental observations of the QAH effect are still challenging due to its small nontrivial bulk gap. Here, based on density functional theory and Berry curvature calculations, we propose the realization of intrinsic QAH effect in two-dimensional hexagonal metal-oxide lattice, N b2O3 , which is characterized by the nonzero Chern number (C =1 ) and chiral edge states. Spin-polarized calculations indicate that it exhibits a Dirac half-metal feature with temperature as large as TC=392 K using spin-wave theory. When the spin-orbit coupling is switched on, N b2O3 becomes a QAH insulator. Notably, the nontrivial topology is robust against biaxial strain with its band gap reaching up to Eg=75 meV , which is far beyond room temperature. A tight-binding model is further constructed to understand the origin of nontrivially electronic properties. Our findings on the Dirac half-metal and room-temperature QAH effect in the N b2O3 lattice can serve as an ideal platform for developing future topotronics devices.

  16. THE BREAKDOWN OF THE PROTECTIVE OXIDE FILM ON TRANSITION METAL ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smeltzer, W.W.

    1960-04-01

    Initial breaks in oxidation curves of iron-chromium alloys were found to be associated with the ferriteaustenitic phase transformation. This transformation was caused by preferential oxidation of chromium at a rate much larger than its replenishment by diffusion the metal-oxide interface. The stress resulting from this transformation caused breakdown of the protective oxide film. Results indicated that continuous oxidation curves for iron-chromium alloys could be obtained under conditions where preferential oxidation of in alloy constituent did not cause the ferritic-austentic phase transformation. (M.C.G.)

  17. [Effect of preparation methods on the metal-porcelain bond strength of Co-Cr alloys].

    PubMed

    Liu, Jie; Chi, Shuai; Xu, Jin; Wang, Yanyan; Zhan, Desong

    2014-04-01

    To compare the shear bond strength(SBS) of cast Co-Cr alloys and selective laser melting(SLM) Co-Cr alloys with those of dental porcelain. A dental porcelain (Vita) was applied on cast and SLM Co-Cr alloy specimens (n = 10). SBS test was conducted, and fracture mode analysis was determined. Student's t-test by SPSS 13.0 software was employed to analyze the data. The SLM Co-Cr alloy specimens had lower SBS values than the cast Co-Cr alloy specimens (P > 0.05). The metal-porcelain bond strength value of the cast group was (33.11 +/- 4.98) MPa, and that of the SLM group was (30.94 +/- 5.98) MPa. The specimens in both test groups exhibited mixed failure. The metal-porcelain system processed by SLM exhibit a bond strength that is similar to that of the cast group. This system also display a high precision.

  18. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  19. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    PubMed

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2018-03-01

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  20. Thermodynamics of Liquid Alkali Metals and Their Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Patel, Minal H.; Gajjar, P. N.; Jani, A. R.

    2009-07-01

    The theoretical investigation of thermodynamic properties like internal energy, entropy, Helmholtz free energy, heat of mixing (ΔE) and entropy of mixing (ΔS) of liquid alkali metals and their binary alloys are reported in the present paper. The effect of concentration on the thermodynamic properties of Ac1Bc2 alloy of the alkali-alkali elements is investigated and reported for the first time using our well established local pseudopotential. To investigate influence of exchange and correlation effects, we have used five different local field correction functions viz; Hartree(H), Taylor(T), Ichimaru and Utsumi(IU), Farid et al. (F) and Sarkar et al. (S). The increase of concentration C2, increases the internal energy and Helmholtz free energy of liquid alloy Ac1Bc2. The behavior of present computation is not showing any abnormality in the outcome and hence confirms the applicability of our model potential in explaining the thermodynamics of liquid binary alloys.

  1. Investigation of thermally evaporated high resistive B-doped amorphous selenium alloy films and metal contact studies

    NASA Astrophysics Data System (ADS)

    Oner, Cihan; Nguyen, Khai V.; Pak, Rahmi O.; Mannan, Mohammad A.; Mandal, Krishna C.

    2015-08-01

    Amorphous selenium (a-Se) alloy materials with arsenic, chlorine, boron, and lithium doping were synthesized for room temperature nuclear radiation detector applications using an optimized alloy composition for enhanced charge transport properties. A multi-step synthetic process has been implemented to first synthesize Se-As and Se-Cl master alloys from zone-refined Se (~ 7N), and then synthesized the final alloys for thermally evaporated large-area thin-film deposition on oxidized aluminum (Al/Al2O3) and indium tin oxide (ITO) coated glass substrates. Material purity, morphology, and compositional characteristics of the alloy materials and films were examined using glow discharge mass spectroscopy (GDMS), inductively coupled plasma mass spectroscopy (ICP-MS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive analysis by x-rays (EDAX). Current-Voltage (I-V) measurements were carried out to confirm very high resistivity of the alloy thin-films. We have further investigated the junction properties of the alloy films with a wide variety of metals with different work functions (Au, Ni, W, Pd, Cu, Mo, In, and Sn). The aim was to investigate whether the choice of metal can improve the performance of fabricated detectors by minimizing the dark leakage current. For various metal contacts, we have found significant dependencies of metal work functions on current transients by applying voltages from -800 V to +1000 V.

  2. Performance of coated columbium and tantalum alloys in plasma arc reentry simulation tests

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Merutka, J. P.

    1974-01-01

    The evaluation of coated refractory metals screened in stagnation model plasma arc tests is reported. Columbium alloys FS-85, C-129Y, and Cb-752 coated with Si-20Cr-20Fe (R512E) were tested at 1390 C. Three silicide coatings on Ta-10W were tested at 1470 C. Half-hour cycles and a 6500 N/sqm stagnation pressure were used. The best R512E coated columbium alloy was FS-85 with first local coating breakdowns occurring in 12 to 50 cycles. At coating defects, low metal recession rates (0.005 mm/min) were generally observed on coated columbium alloys while high rates (0.15 mm/min) were observed on coated Ta-10W. Coated columbium suffered large emittance losses (to below 0.7) due to surface refractory metal pentoxide formation.

  3. Osteoconductive Properties Of Metal/Metal Alloy Coated Silicon Dioxide Nanosprings

    NASA Astrophysics Data System (ADS)

    Hass, Jamie L.

    This dissertation focuses on the potential of silicon dioxide nanosprings as an osteoconductive nanobiomaterial. The use of nanomaterials as substrates for tissue engineering has recently been considered and the remarkable similarity of the nanosprings and the amorphic mat to collagen fiber type 1 and woven bone, respectively, makes this nanobiomaterial a promising substrate for bone growth. The nanosprings are easily grown on many materials such as glass and orthopedic metals. In addition, there is a unique ability to coat the nanospring surface with both osteogenic metal/metal alloys and proteins. In-vitro bone tissue culture studies, surface science evaluation of osteoblast and protein attachment, and nanomechanical characterization are protocols to determine if nanosprings exhibits promise as an osteoconductive nanomaterial. Firstly, osteoblast cell behaviors on nanosprings are assessed, which were found to display a greater magnitude of proliferation, differentiation, and calcium deposition as a function of the metal/metal alloy when compared to the controls. All the nanospring substrates proved to be biocompatible and durable in the tissue culture environment for an entire 36-day incubation. Secondly, a protocol was developed to evaluate different wettable surface characteristics of the nanospring substrates and relate these to osteoblast attachment, as well as the adsorption of the serum proteins albumin and fibronectin. Fourier transform infrared spectroscopy (FTIR) and x-ray photoemission spectroscopy (XPS) elucidated the surface stoichiometry of the nanospring substrates and after attachment of the proteins. The surface examination exposed preference for albumin to hydrophobic nanospring substrate and fibronectin to dynamically hydrophilic nanospring substrate. Lastly, nanoindentation testing of nanospring substrates before and after bone growth was performed. The hardness, stiffness and reduced elastic moduli values of the nanospring-bone matrix that

  4. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernenko, V.A.; Kokorin, V.V.; Vitenko, I.N.

    1995-10-15

    The Ferromagnetic Heusler alloy Ni{sub 2}MnGa is known to undergo a structural phase transformation of martensitic type. Thermoelastic nature, shape memory effect (SME) and superelasticity were sound to be intrinsic to this transformation. In this work the authors present the results of the investigation of the following problems: how M{sub s}, the thermal hysteresis, Curie temperature, transformation heat are affected by the composition variation in the Ni-Mn-Ga alloy system in a concentration interval for each component of about 10 at. %. This work was performed to make sure that the new family of Ni-Mn-Ga based shape memory alloys (SMA) withmore » a wide variety of structural and magnetic properties is actually elaborated.« less

  5. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.

    PubMed

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2012-03-01

    Cyclic stresses are often related to the premature mechanical failure of metallic biomaterials. The complex interaction between fatigue and corrosion in the physiological environment has been subject of many investigations. In this context, microstructure, heat treatments, plastic deformation, surface finishing and coatings have decisive influence on the mechanisms of fatigue crack nucleation and growth. Furthermore, wear is frequently present and contributes to the process. However, despite all the effort at elucidating the mechanisms that govern corrosion fatigue of biomedical alloys, failures continue to occur. This work reviews the literature on corrosion-fatigue-related phenomena of Ti alloys, surgical stainless steels, Co-Cr-Mo and Mg alloys. The aim was to discuss the correlation between structural and surface aspects of these materials and the onset of fatigue in the highly saline environment of the human body. By understanding such correlation, mitigation of corrosion fatigue failure may be achieved in a reliable scientific-based manner. Different mitigation methods are also reviewed and discussed throughout the text. It is intended that the information condensed in this article should be a valuable tool in the development of increasingly successful designs against the corrosion fatigue of metallic implants. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique.

    PubMed

    Dimitriadis, Konstantinos; Spyropoulos, Konstantinos; Papadopoulos, Triantafillos

    2018-02-01

    The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity ( E ) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was 222 ± 5.13 GPa and 227 ± 3 GPa, respectively. The bond strength was 51.87 ± 7.50 MPa for test group and 54.60 ± 6.20 MPa for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use.

  7. Structure of metal-oxide Ti-Ta-(Ti,Ta)xOy coatings during spark alloying and induction-thermal oxidation

    NASA Astrophysics Data System (ADS)

    Koshuro, V.; Fomin, A.; Fomina, M.; Rodionov, I.; Brzhozovskii, B.; Martynov, V.; Zakharevich, A.; Aman, A.; Oseev, A.; Majcherek, S.; Hirsch, S.

    2016-08-01

    The study focuses on combined spark alloying of titanium and titanium alloy surface and porous matrix structure oxidation. The metal-oxide coatings morphology is the result of melt drop transfer, heat treatment, and oxidation. The study establishes the influence of technological regimes of alloying and oxidation on morphological heterogeneity of metal- oxide system Ti-Ta-(Ti,Ta)xOy.

  8. Design and Characterisation of Metallic Glassy Alloys of High Neutron Shielding Capability

    NASA Astrophysics Data System (ADS)

    Khong, J. C.; Daisenberger, D.; Burca, G.; Kockelmann, W.; Tremsin, A. S.; Mi, J.

    2016-11-01

    This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass alloys with the aim of achieving the combined properties of high neutron absorption capability and sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods were used to characterise the crystalline or amorphous states of the samples. Neutron transmission and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved neutron imaging method and the very recently developed microchannel plate detector. The study found that the newly designed alloy (Fe48Cr15Mo14C15B6Gd2 with a glass forming ability of Ø5.8 mm) has the highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a promising material for neutron shielding applications.

  9. Design and Characterisation of Metallic Glassy Alloys of High Neutron Shielding Capability.

    PubMed

    Khong, J C; Daisenberger, D; Burca, G; Kockelmann, W; Tremsin, A S; Mi, J

    2016-11-16

    This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass alloys with the aim of achieving the combined properties of high neutron absorption capability and sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods were used to characterise the crystalline or amorphous states of the samples. Neutron transmission and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved neutron imaging method and the very recently developed microchannel plate detector. The study found that the newly designed alloy (Fe 48 Cr 15 Mo 14 C 15 B 6 Gd 2 with a glass forming ability of Ø5.8 mm) has the highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a promising material for neutron shielding applications.

  10. Design and Characterisation of Metallic Glassy Alloys of High Neutron Shielding Capability

    PubMed Central

    Khong, J. C.; Daisenberger, D.; Burca, G.; Kockelmann, W.; Tremsin, A. S.; Mi, J.

    2016-01-01

    This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass alloys with the aim of achieving the combined properties of high neutron absorption capability and sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods were used to characterise the crystalline or amorphous states of the samples. Neutron transmission and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved neutron imaging method and the very recently developed microchannel plate detector. The study found that the newly designed alloy (Fe48Cr15Mo14C15B6Gd2 with a glass forming ability of Ø5.8 mm) has the highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a promising material for neutron shielding applications. PMID:27848991

  11. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  12. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  13. Alloys for a liquid metal fast breeder reactor

    DOEpatents

    Rowcliffe, Arthur F.; Bleiberg, Melvin L.; Diamond, Sidney; Bajaj, Ram

    1979-01-01

    An essentially gamma-prime precipitation-hardened iron-chromium-nickel alloy has been designed with emphasis on minimum nickel and chromium contents to reduce the swelling tendencies of these alloys when used in liquid metal fast breeder reactors. The precipitation-hardening components have been designed for phase stability and such residual elements as silicon and boron, also have been selected to minimize swelling. Using the properties of these alloys in one design would result in an increased breeding ratio over 20% cold worked stainless steel, a reference material, of 1.239 to 1.310 and a reduced doubling time from 15.8 to 11.4 years. The gross stoichiometry of the alloying composition comprises from about 0.04% to about 0.06% carbon, from about 0.05% to about 1.0% silicon, up to about 0.1% zirconium, up to about 0.5% vanadium, from about 24% to about 31% nickel, from 8% to about 11% chromium, from about 1.7% to about 3.5% titanium, from about 1.0% to about 1.8% aluminum, from about 0.9% to about 3.7% molybdenum, from about 0.04% to about 0.8% boron, and the balance iron with incidental impurities.

  14. Investigation of spin-dependent transports and microstructure in NiMnSb-based magnetoresistive devices

    NASA Astrophysics Data System (ADS)

    Qu, Guanxiong; Cheng, P.-H.; Du, Ye; Sakuraba, Yuya; Kasai, Shinya; Hono, Kazuhiro

    2017-11-01

    We have fabricated fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using C1b-half Heusler compound NiMnSb, the first candidate of the half-metallic material, as the electrode with a Ag spacer. The device shows magnetoresistance ratios of 25% at 4.2 K and 9.6% at 290 K, which are one of the highest values for the CPP-GMR with half-Heusler compounds. However, these values are much lower compared to those reported for CPP-GMR devices with L21-full Heusler compounds. Careful analysis of the microstructure using scanning transmission electron microscopy and energy dispersive spectroscopy through the upper NiMnSb/Ag interface indicates the heterogeneous formation of Ag-rich solid solution or the island growth of Ag on top of NiMnSb, which clarified a difficulty in evaluating an intrinsic spin-polarization in NiMnSb from CPP-GMR devices. Thus, to evaluate a spin-polarization of a NiMnSb thin film, we fabricated non-local spin valve (NLSV) devices using NiMnSb with Cu channel wires, which is free from the diffusion of Cu to NiMnSb because of no annealing proccess after deposition of Cu. Finally, intrinsic spin polarization of the NiMnSb single layer was extrapolated to be around 50% from NLSV, suggesting a difficulty in obtaining half-metallic nature in the NiMnSb epitaxial thin film.

  15. Effects of the thermal and magnetic paths on first order martensite transition of disordered Ni45Mn44Sn9In2 Heusler alloy exhibiting a giant magnetocaloric effect and magnetoresistance near room temperature

    NASA Astrophysics Data System (ADS)

    Chabri, T.; Ghosh, A.; Nair, Sunil; Awasthi, A. M.; Venimadhav, A.; Nath, T. K.

    2018-05-01

    The existence of a first order martensite transition in off-stoichiometric Ni45Mn44Sn9In2 ferromagnetic shape memory Heusler alloy has been clearly observed by thermal, magnetic, and magneto-transport measurements. Field and thermal path dependence of the change in large magnetic entropy and negative magnetoresistance are observed, which originate due to the sharp change in magnetization driven by metamagnetic transition from the weakly magnetic martensite phase to the ferromagnetic austenite phase in the vicinity of the martensite transition. The noticeable shift in the martensite transition with the application of a magnetic field is the most significant feature of the present study. This shift is due to the interplay of the austenite and martensite phase fraction in the alloy. The different aspects of the first order martensite transition, e.g. broadening of the martensite transition and the field induced arrest of the austenite phase are mainly related to the dynamics of coexisting phases in the vicinity of the martensite transition. The alloy also shows a second order ferromagnetic  →  paramagnetic transition near the Curie temperature of the austenite phase. A noticeably large change in magnetic entropy (ΔS M   =  24 J kg‑1 K‑1 at 298 K) and magnetoresistance (=  ‑33% at 295 K) has been observed for the change in 5 and 8 T magnetic fields, respectively. The change in adiabatic temperature for the change in a magnetic field of 5 T is found to be  ‑3.8 K at 299 K. The low cost of the ingredients and the large change in magnetic entropy very near to the room temperature makes Ni45Mn44Sn9In2 alloy a promising magnetic refrigerant for real technological application.

  16. The use of alloy 117 as a liquid metal current collector

    NASA Astrophysics Data System (ADS)

    Maribo, David; Sondergaard, Neal

    1987-09-01

    Low melting point, bismuth based alloys are potential replacements for NaK78 as liquid metal slip ring material because of their lower reactivity and potentially greater hydrodynamic stability. This paper describes experiments with one such alloy in a model of a 300 kW superconducting homopolar motor using close clearance braid type collectors. Slip ring tip velocities varied from 5 to 20 m/s and currents ranging from 500 to 2000 A. Viscous power losses tend to follow a simple turbulent mode. In all, the data supports the use of low melting point alloys as an alternative to Na78.

  17. Electronic structure and glass forming ability in early and late transition metal alloys

    NASA Astrophysics Data System (ADS)

    Babić, E.; Ristić, R.; Figueroa, I. A.; Pajić, D.; Skoko, Ž.; Zadro, K.

    2018-03-01

    A correlation between the change in magnetic susceptibility (Δχexp) upon crystallisation of Cu-Zr and Hf metallic glasses (MG) with their glass forming ability (GFA) observed recently, is found to apply to Cu-Ti and Zr-Ni alloys, too. In particular, small Δχexp, which reflects similar electronic structures, ES, of glassy and corresponding crystalline alloys, corresponds to high GFA. Here, we studied Δχexp for five Cu-Ti and four Cu-Zr and Ni-Zr MGs. The fully crystalline final state of all alloys was verified from X-ray diffraction patterns. The variation of GFA with composition in Cu-Ti, Cu-Zr and Cu-Hf MGs was established from the variation of the corresponding critical casting thickness, dc. Due to the absence of data for dc in Ni-Zr MGs their GFA was described using empirical criteria, such as the reduced glass transition temperature. A very good correlation between Δχexp and dc (and/or other criteria for GFA) was observed for all alloys studied. The correlation between the ES and GFA showed up best for Cu-Zr and NiZr2 alloys where direct data for the change in ES (ΔES) upon crystallisation are available. The applicability of the Δχexp (ΔES) criterion for high GFA (which provides a simple way to select the compositions with high GFA) to other metal-metal MGs (including ternary and multicomponent bulk MGs) is briefly discussed.

  18. Spin-gapless and half-metallic ferromagnetism in potassium and calcium δ-doped GaN digital magnetic heterostructures for possible spintronic applications: insights from first principles

    NASA Astrophysics Data System (ADS)

    Du, Jiangtao; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Feng, Liefeng

    2017-04-01

    The reports previously issued predominantly paid attention to the d-block magnetic elements δ-doped digital magnetic materials. In this work, GaN δ-doped with non-magnetic main group s-block elements K and Ca as digital magnetic heterostructures were purposed and explored theoretically. We found that K- and Ca-embedded GaN digital alloys exhibit spin-gapless and half-metallic ferromagnetic characteristics, respectively. All compounds obey the Slater-Pauling rule with diverse electronic and magnetic properties. For these digital ferromagnetic heterostructures, spin polarization occurs in nitrogen within a confined space around the δ-doped layer, demonstrating a hole-mediated two-dimensional magnetic phenomenon.

  19. Net Shaped Component Fabrication of Refractory Metal Alloys using Vacuum Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Sen, S.; ODell, S.; Gorti, S.; Litchford, R.

    2006-01-01

    The vacuum plasma spraying (VPS) technique was employed to produce dense and net shaped components of a new tungsten-rhenium (W-Re) refractory metal alloy. The fine grain size obtained using this technique enhanced the mechanical properties of the alloy at elevated temperatures. The alloy development also included incorporation of thermodynamically stable dispersion phases to pin down grain boundaries at elevated temperatures and thereby circumventing the inherent problem of recrystallization of refractory alloys at elevated temperatures. Requirements for such alloys as related to high temperature space propulsion components will be discussed. Grain size distribution as a function of cooling rate and dispersion phase loading will be presented. Mechanical testing and grain growth results as a function of temperature will also be discussed.

  20. New vistas in the determination of hydrogen in aerospace engine metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1986-01-01

    The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.

  1. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  2. MR Measurement of Alloy Magnetic Susceptibility: Towards Developing Tissue-Susceptibility Matched Metals

    PubMed Central

    Astary, Garrett W.; Peprah, Marcus K.; Fisher, Charles R.; Stewart, Rachel L.; Carney, Paul R.; Sarntinoranont, Malisa; Meisel, Mark W.; Manuel, Michele V.; Mareci, Thomas H.

    2013-01-01

    Magnetic resonance imaging (MRI) can be used to relate structure to function mapped with high-temporal resolution electrophysiological recordings using metal electrodes. Additionally, MRI may be used to guide the placement of electrodes or conductive cannula in the brain. However, the magnetic susceptibility mismatch between implanted metals and surrounding brain tissue can severely distort MR images and spectra, particularly in high magnetic fields. In this study, we present a modified MR method of characterizing the magnetic susceptibility of materials that can be used to develop biocompatible, metal alloys that match the susceptibility of host tissue in order to eliminate MR distortions proximal to the implant. This method was applied at 4.7 T and 11.1 T to measure the susceptibility of a model solid-solution alloy of Cu and Sn, which is inexpensive but not biocompatible. MR-derived relative susceptibility values of four different compositions of Cu-Sn alloy deviated by less than 3.1% from SQUID magnetometry absolute susceptibility measurements performed up to 7 T. These results demonstrate that the magnetic susceptibility varies linearly with atomic percentage in these solid-solution alloys, but are not simply the weighted average of Cu and Sn magnetic susceptibilities. Therefore susceptibility measurements are necessary when developing susceptibility-matched, solid-solution alloys for the elimination of susceptibility artifacts in MR. This MR method does not require any specialized equipment and is free of geometrical constraints, such as sample shape requirements associated with SQUID magnetometry, so the method can be used at all stages of fabrication to guide the development of a susceptibility matched, biocompatible device. PMID:23727587

  3. From chemistry to mechanics: bulk modulus evolution of Li-Si and Li-Sn alloys via the metallic electronegativity scale.

    PubMed

    Li, Keyan; Xie, Hui; Liu, Jun; Ma, Zengsheng; Zhou, Yichun; Xue, Dongfeng

    2013-10-28

    Toward engineering high performance anode alloys for Li-ion batteries, we proposed a useful method to quantitatively estimate the bulk modulus of binary alloys in terms of metallic electronegativity (EN), alloy composition and formula volume. On the basis of our proposed potential viewpoint, EN as a fundamental chemistry concept can be extended to be an important physical parameter to characterize the mechanical performance of Li-Si and Li-Sn alloys as anode materials for Li-ion batteries. The bulk modulus of binary alloys is linearly proportional to the combination of average metallic EN and atomic density of alloys. We calculated the bulk moduli of Li-Si and Li-Sn alloys with different Li concentrations, which can agree well with the reported data. The bulk modulus of Li-Si and Li-Sn alloys decreases with increasing Li concentration, leading to the elastic softening of the alloys, which is essentially caused by the decreased strength of constituent chemical bonds in alloys from the viewpoint of EN. This work provides a deep understanding of mechanical failure of Si and Sn anodes for Li-ion batteries, and permits the prediction of the composition dependent bulk modulus of various lithiated alloys on the basis of chemical formula, metallic EN and cell volume (or alloy density), with no structural details required.

  4. 2 p -insulator heterointerfaces: Creation of half-metallicity and anionogenic ferromagnetism via double exchange

    NASA Astrophysics Data System (ADS)

    Zhang, Baomin; Cao, Chonglong; Li, Guowei; Li, Feng; Ji, Weixiao; Zhang, Shufeng; Ren, Miaojuan; Zhang, Haikun; Zhang, Rui-Qin; Zhong, Zhicheng; Yuan, Zhe; Yuan, Shengjun; Blake, Graeme R.

    2018-04-01

    We use first-principles calculations to predict the occurrence of half-metallicity and anionogenic ferromagnetism at the heterointerface between two 2p insulators, taking the KO2/BaO2 (001) interface as an example. Whereas a sharp heterointerface is semiconducting, a heterointerface with a moderate concentration of swapped K and Ba atoms is half-metallic and ferromagnetic at ambient pressure due to the double exchange mechanism. The K-Ba swap renders the interfacial K-O and Ba-O atomic layers electron-doped and hole-doped, respectively. Our findings pave the way to realize metallicity and ferromagnetism at the interface between two 2 p insulators, and such systems can constitute a new family of heterostructures with novel properties, expanding studies on heterointerfaces from 3 d insulators to 2 p insulators.

  5. Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique

    PubMed Central

    Spyropoulos, Konstantinos

    2018-01-01

    PURPOSE The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. MATERIALS AND METHODS Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity (E) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. RESULTS Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was 222 ± 5.13 GPa and 227 ± 3 GPa, respectively. The bond strength was 51.87 ± 7.50 MPa for test group and 54.60 ± 6.20 MPa for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. CONCLUSION Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use. PMID:29503711

  6. Electrical and Magnetic Properties of Binary Amorphous Transition Metal Alloys.

    NASA Astrophysics Data System (ADS)

    Liou, Sy-Hwang

    The electrical, superconductive and magnetic properties of several binary transition metal amorphous and metastable crystalline alloys, Fe(,x)Ti(,100-x) (30 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Zr(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 93), Fe(,x)Hf(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Nb(,100 -x) (22 (LESSTHEQ) x (LESSTHEQ) 85), Ni(,x)Nb(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 80), Cu(,x)Nb(,100-x) (10 (LESSTHEQ) x (LESSTHEQ) 90) were studied over a wide composition range. Films were made using a magnetron sputtering system, and the structure of the films was investigated by energy dispersive x-ray diffraction. The composition region of each amorphous alloys system was determined and found in good agreement with a model proposed by Egami and Waseda. The magnetic properties and hyperfine interactions in the films were investigated using a conventional Mossbauer spectrometer and a ('57)Co in Rh matrix source. In all Fe-early transition metal binary alloys systems, Fe does not retain its moment in the low iron concentration region and the result is that the critical concentration for magnetic order (x(,c)) is much larger than anticipated from percolation considerations. A direct comparison between crystalline alloys and their amorphous counterparts of the same composition illustrate no clear correlation between crystalline and amorphous states. Pronounced discontinuities in the magnetic properties with variation in Fe content of all Fe-early transition metal alloys at phase boundaries separating amorphous and crystalline states have been observed. This is caused by the differences in the atomic arrangement and the electronic structure between crystalline and amorphous solids. The temperature dependence of resistivity, (rho)(T), of several binary amorphous alloys of Fe-TM (where TM = Ti, Zr, Hf, Nb etc.) has been studied from 2K to 300K. The Fe-poor (x < x(,c)) samples and the Fe-rich (x > x(,c)) samples have distinctive differences in (rho)(T) at low temperature

  7. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage.

    PubMed

    Ortiz, Antonio José; Fernández, Esther; Vicente, Ascensión; Calvo, José L; Ortiz, Clara

    2011-09-01

    The aims of this study were to determine the amounts of metallic ions that stainless steel, nickel-free, and titanium alloys release to a culture medium, and to evaluate the cellular viability and DNA damage of cultivated human fibroblasts with those mediums. The metals were extracted from 10 samples (each consisting of 4 buccal tubes and 20 brackets) of the 3 orthodontic alloys that were submerged for 30 days in minimum essential medium. Next, the determination of metals was performed by using inductively coupled plasma mass spectrometry, cellular viability was assessed by using the tetrazolium reduction assay (MTT assay) (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide), and DNA damage was determined with the Comet assay. The metals measured in all the samples were Ti(47), Cr(52), Mn(55), Co(59), Ni(60), Mo(92), Fe(56), Cu(63), Zn(66), As(75), Se(78), Cd(111), and Pb(208). The cellular viability of the cultured fibroblasts incubated for 7 days with minimum essential medium, with the stainless steel alloy submerged, was close to 0%. Moreover, high concentrations of titanium, chromium, manganese, cobalt, nickel, molybdenum, iron, copper, and zinc were detected. The nickel-free alloy released lower amounts of ions to the medium. The greatest damage in the cellular DNA, measured as the olive moment, was also produced by the stainless steel alloy followed by the nickel-free alloy. Conversely, the titanium alloy had an increased cellular viability and did not damage the cellular DNA, as compared with the control values. The titanium brackets and tubes are the most biocompatible of the 3 alloys studied. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. Ultrashort pulse laser machining of metals and alloys

    DOEpatents

    Perry, Michael D.; Stuart, Brent C.

    2003-09-16

    The invention consists of a method for high precision machining (cutting, drilling, sculpting) of metals and alloys. By using pulses of a duration in the range of 10 femtoseconds to 100 picoseconds, extremely precise machining can be achieved with essentially no heat or shock affected zone. Because the pulses are so short, there is negligible thermal conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond approximately 0.1-1 micron (dependent upon the particular material) from the laser machined surface. Due to the short duration, the high intensity (>10.sup.12 W/cm.sup.2) associated with the interaction converts the material directly from the solid-state into an ionized plasma. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces with negligible redeposition either within the kerf or on the surface. Since there is negligible heating beyond the depth of material removed, the composition of the remaining material is unaffected by the laser machining process. This enables high precision machining of alloys and even pure metals with no change in grain structure.

  9. Thermodynamic properties of Heusler Fe2VSi

    NASA Astrophysics Data System (ADS)

    Ito, Masakazu; Kai, Keita; Furuta, Tatsuya; Manaka, Hirotaka; Terada, Norio; Hiroi, Masahiko; Kondo, Akihiro; Kindo, Koichi

    2018-05-01

    We investigated temperature, T, dependence of magnetization, M(T), electrical resistivity, ρ(T), and specific heat, Cp(T), for the Heusler compound Fe2VSi. M(T) shows anomalies at TN1 ˜ 115 K and at TN2 ˜ 35 K. The anomaly at TN1 is caused by the magnetic transition with a crystal structural change. On the other hand, ρ(T) and Cp(T) show only anomaly at TN1, and no trace of anomaly at TN2 is observed. Because of the irreversibility of M(T), which is the characteristic of spin-glass freezing, appears below TN2, a spin-glass freezing may occur at TN2. From the analogy of the Heusler compound (Fe1-xVx ) 3Si with the cubic D03 crystal structure, (0 ≤ x ≤ 0.2), we suggested that the atomic disorder of V site by the Fe atoms gives rise to the magnetic frustration. This could be cause for the spin-glass freezing. By the Clausius-Clapeyron relation, pressure, P, derivative of TN1, (d/TN 1 d P ), is estimated to be ˜-10 K/Gpa.

  10. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  11. Determination of Thermodynamic Properties of Alkaline Earth-liquid Metal Alloys Using the Electromotive Force Technique

    PubMed Central

    Nigl, Thomas P.; Smith, Nathan D.; Lichtenstein, Timothy; Gesualdi, Jarrod; Kumar, Kuldeep; Kim, Hojong

    2017-01-01

    A novel electrochemical cell based on a CaF2 solid-state electrolyte has been developed to measure the electromotive force (emf) of binary alkaline earth-liquid metal alloys as functions of both composition and temperature in order to acquire thermodynamic data. The cell consists of a chemically stable solid-state CaF2-AF2 electrolyte (where A is the alkaline-earth element such as Ca, Sr, or Ba), with binary A-B alloy (where B is the liquid metal such as Bi or Sb) working electrodes, and a pure A metal reference electrode. Emf data are collected over a temperature range of 723 K to 1,123 K in 25 K increments for multiple alloy compositions per experiment and the results are analyzed to yield activity values, phase transition temperatures, and partial molar entropies/enthalpies for each composition. PMID:29155770

  12. Effect of soldering on the metal-ceramic bond strength of an Ni-Cr base alloy.

    PubMed

    Nikellis, Ioannis; Levi, Anna; Zinelis, Spiros

    2005-11-01

    Although soldering is a common laboratory procedure, the use of soldering alloys may adversely affect metal-ceramic bond strength and potentially decrease the longevity of metal-ceramic restorations. The purpose of this study was to investigate the effect of soldering on metal-ceramic bond strength of a representative Ni-Cr base metal alloy. Twenty-eight rectangular (25 x 3 x 0.5 mm) Ni-based alloy (Wiron 99) specimens were equally divided into soldering (S) and reference (R) groups. Soldering group specimens were covered with a 0.1-mm layer of the appropriate solder (Wiron-Lot) and reduced by 0.1 mm on the opposite side. Five specimens of each group were used for the measurement of surface roughness parameter (R(z)) and hardness, and 3 were used for measurement of the modulus of elasticity. Six specimens of each group were covered with porcelain (Ceramco 3) and subjected to a 3-point bending test for evaluation of the metal-ceramic bond strength according to the ISO 9693 specification. The data from surface roughness, hardness, modulus of elasticity, and metal-ceramic bond strength were analyzed statistically, using independent t tests (alpha=.05). Statistical analysis of the R(z) surface roughness parameter (S: 3.4 +/- 0.3 mum; R: 3.7 +/- 0.7 microm; P=.07) and bond strength (S: 46 +/- 3 MPa; R: 40 +/- 5 MPa; P=.057) failed to reveal any significant difference between the 2 groups. The specimens of the soldering group demonstrated significantly lower values both in hardness (S: 128 +/- 11 VHN; R: 217 +/- 4 VHN; P<.001) and in modulus of elasticity (S: 135 +/- 4 GPa; R: 183 +/- 6 GPa; P=.035) than the reference group. Under the conditions of the present study, the addition of solder to the base metal alloy did not affect the metal-ceramic bond strength.

  13. Materials physics of half-metallic magnetic oxide films by pulsed laser deposition: Controlling the crystal structure and near-surface properties of strontium iron molybdenum oxide and chromium oxide films

    NASA Astrophysics Data System (ADS)

    Jalili, Helia

    The idea of half-metallic ferromagnets was first introduced by de Groot et al. in 1983 based on their calculations. The density of state at the Fermi level for half-metallic ferromagnet is completely polarized, meaning that only one of the spin up or spin down channel exists and has metallic behaviour while the other spin channel behaves as a semiconductor or insulator. This unusual electronic structure can be seen in different materials including Sr2FeMoO6, CrO2 and Mn-based Heusler alloys. The high spin polarization degree of the half-metallic ferromagnets makes them a perfect candidate to be used as a spin-injector/detector in spin-based electronics device (spintronics). However, the degree of spin polarization of these materials, particularly in the multilayered structure spintronic devices, strongly depends on the surface/interface quality and the presence of defects, which was the subject of the present study. Pulsed laser deposition (PLD) has been used to grow two examples of the half-metallic ferromagnets, namely, Sr2FeMoO6 and CrO2. The effects of the growth conditions (deposition temperature, gas pressure, laser power, target-to-substrate distance, post-annealing) and of the substrate lattice mismatch and thickness evolution have been studied. By optimizing the growth conditions, nanocrystalline Sr2FeMoO6 films have been grown on a Si(100) substrate for the first time. This single-phase Sr 2FeMoO6 film was obtained at a temperature as low as 600°C, and it exhibits a high saturation magnetic moment of 3.4 muB per formula unit at 77 K. By using glancing-incidence X-ray diffraction with different incident beam angles, the crystal structure of the film was sampled as a function of depth. Despite the lack of good lattice matching with the Si substrate, a preferential orientation of the nanocrystals in the film was observed for the as-grown Sr2FeMoO6 films thicker than 60 nm. Furthermore, effects of the deposition temperature on the epitaxial growth of the Sr2

  14. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poineau, Frederic; Tamalis, Dimitri

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 10 5 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium wastemore » forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc ( 99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational

  15. Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses

    PubMed Central

    Chen, Na; Martin, Laura; Luzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2010-01-01

    Alloying addition, as a means of improving mechanical properties and saving on costs of materials, has been applied to a broad range of uses and products in the metallurgical fields. In the field of bulk metallic glasses (BMGs), alloying additions have also proven to play effective and important roles in promoting glass formation, enhancing thermal stability and improving plasticity of the materials. Here, we review the work on the role of alloying additions in glass formation and performance improvement of BMGs, with focus on our recent results of alloying additions in Pd-based BMGs. PMID:28883386

  16. Preserving half-metallic surface states in Cr O2 : Insights into surface reconstruction rules

    NASA Astrophysics Data System (ADS)

    Deng, Bei; Shi, X. Q.; Chen, L.; Tong, S. Y.

    2018-04-01

    The issue of whether the half-metallic (HM) nature of Cr O2 could be retained at its surface has been a standing problem under debate for a few decades, but until now is still controversial. Here, based on the density functional theory calculations we show, in startling contrast to the previous theoretical understandings, that the surfaces of Cr O2 favorably exhibit a half-metallic-semiconducting (SmC) transition driven by means of a surface electronic reconstruction largely attributed to the participation of the unexpected local charge carriers (LCCs), which convert the HM double exchange surface state into a SmC superexchange state and in turn, stabilize the surface as well. On the basis of the LCCs model, a new insight into the surface reconstruction rules is attained. Our novel finding not only provided an evident interpretation for the widely observed SmC character of Cr O2 surface, but also offered a novel means to improve the HM surface states for a variety of applications in spintronics and superconductors, and promote the experimental realization of the quantum anomalous Hall effect in half-metal based systems.

  17. Chemical disorder as an engineering tool for spin polarization in Mn3Ga -based Heusler systems

    NASA Astrophysics Data System (ADS)

    Chadov, S.; D'Souza, S. W.; Wollmann, L.; Kiss, J.; Fecher, G. H.; Felser, C.

    2015-03-01

    Our study highlights spin-polarization mechanisms in metals by focusing on the mobilities of conducting electrons with different spins instead of their quantities. Here, we engineer electron mobility by applying chemical disorder induced by nonstoichiometric variations. As a practical example, we discuss the scheme that establishes such variations in tetragonal Mn3Ga Heusler material. We justify this approach using first-principles calculations of the spin-projected conductivity components based on the Kubo-Greenwood formalism. It follows that, in the majority of cases, even a small substitution of some other transition element instead of Mn may lead to a substantial increase in spin polarization along the tetragonal axis.

  18. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  19. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    PubMed

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  20. Effects of thermomechanical processing on strength and toughness of iron - 12-percent-nickel - reactive metal alloys at -196 C

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1978-01-01

    Thermomechanical processing (TMP) was evaluated as a method of strengthening normally tough iron-12-nickel-reactive metal alloys at cryogenic temperatures. Five iron-12 nickel alloys with reactive metal additions of aluminum, niobium, titanium, vanadium, and aluminum plus niobium were investigated. Primary evaluation was based on the yield strength and fracture toughness of the thermomechanically processed alloys at -196 C.

  1. Assessment of the genetic risks of a metallic alloy used in medical implants.

    PubMed

    Gomes, Cristiano C; Moreira, Leonardo M; Santos, Vanessa J S V; Ramos, Alfeu S; Lyon, Juliana P; Soares, Cristina P; Santos, Fabio V

    2011-01-01

    The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials.

  2. Assessment of the genetic risks of a metallic alloy used in medical implants

    PubMed Central

    Gomes, Cristiano C.; Moreira, Leonardo M.; Santos, Vanessa J.S.V.; Ramos, Alfeu S.; Lyon, Juliana P.; Soares, Cristina P.; Santos, Fabio V.

    2011-01-01

    The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials. PMID:21637553

  3. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co 2TiX (X=Si, Ge, or Sn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Guoqing; Xu, Su -Yang; Zheng, Hao

    Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal states in the ferromagnetic half-metal compounds Co 2TiX (X = Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that,more » in the absence of spin-orbit coupling, Co 2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Lastly, our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperature, but also suggest potential applications such as unusual anomalous Hall effect in engineered monolayers of the Co 2TiX compounds at high temperature.« less

  4. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co 2TiX (X=Si, Ge, or Sn)

    DOE PAGES

    Chang, Guoqing; Xu, Su -Yang; Zheng, Hao; ...

    2016-12-15

    Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal states in the ferromagnetic half-metal compounds Co 2TiX (X = Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that,more » in the absence of spin-orbit coupling, Co 2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Lastly, our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperature, but also suggest potential applications such as unusual anomalous Hall effect in engineered monolayers of the Co 2TiX compounds at high temperature.« less

  5. Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Rekha, Suganthini; Bupesh Raja, V. K.

    2017-05-01

    The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.

  6. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    PubMed

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  7. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    DTIC Science & Technology

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal...including Al, Cu, Ni, Zr, Mg, Pd, Ga , Ca. Many new Al-based amorphous alloys were found within the numerous alloy systems studied in this project, and

  8. Memory and Spin Injection Devices Involving Half Metals

    DOE PAGES

    Shaughnessy, M.; Snow, Ryan; Damewood, L.; ...

    2011-01-01

    We suggest memory and spin injection devices fabricated with half-metallic materials and based on the anomalous Hall effect. Schematic diagrams of the memory chips, in thin film and bulk crystal form, are presented. Spin injection devices made in thin film form are also suggested. These devices do not need any external magnetic field but make use of their own magnetization. Only a gate voltage is needed. The carriers are 100% spin polarized. Memory devices may potentially be smaller, faster, and less volatile than existing ones, and the injection devices may be much smaller and more efficient than existing spin injectionmore » devices.« less

  9. A comparative analysis of metal allergens associated with dental alloy prostheses and the expression of HLA-DR in gingival tissue

    PubMed Central

    ZHANG, XIN; WEI, LI-CHENG; WU, BIN; YU, LI-YING; WANG, XIAO-PING; LIU, YUE

    2016-01-01

    The present study aimed to provide guidance for the selection of prosthodontic materials and the management of patients with a suspected metal allergy. This included a comparison of the sensitivity of patients to alloys used in prescribed metal-containing prostheses, and correlation analysis between metal allergy and accompanying clinical symptoms of sensitized patients using a patch test. The results from the patch test and metal component analyses were processed to reach a final diagnosis. In the present study, four dental alloys were assessed. Subsequent to polishing the surface of a metal restoration, the components were analyzed using an X-ray fluorescence microscopy and spectrometry. Immunohistochemical analysis, reverse transcription-polymerase chain reaction and western blotting were used to detect the expression levels of human leukocyte antigen (HLA)-DR in gingival tissues affected by alloy restoration, and in normal gingival tissue samples. Positive allergens identified in the patch test were consistent with the components of the metal prostheses. The prevalence of nickel (Ni) allergy was highest (22.8%), and women were significantly more allergic to palladium and Ni than men (P<0.05). The protein and gene expression levels of HLA-DR in the Ni-chromium (Cr) prosthesis group were significantly higher, compared with those in the other groups (P<0.01); followed by cobalt-Cr alloy, gold alloy and titanium alloy. In conclusion, dentists require an understanding of the corrosion and allergy rates of prescribed alloys, in order to reduce the risk of allergic reactions. Patch testing for hypersensitive patients is recommended and caution is required when planning to use different alloys in the mouth. PMID:26573458

  10. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    NASA Technical Reports Server (NTRS)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  11. [Cervical adaptation of complete cast crowns of various metal alloys, with and without die spacers].

    PubMed

    Stephano, C B; Roselino, R F; Roselino, R B; Campos, G M

    1989-01-01

    A metallic replica from a dental preparation for crown was used to make 8 class-IV stone dies. The wax patterns for the casting of the crowns were obtained in two conditions: a) from the stone die with no spacer; and b) from the stone die with an acrylic spacer. Thus, 64 metallic crowns were casted, using 4 different alloys: DURACAST (Cu-Al), NICROCAST (Ni-Cr) and DURABOND (Ni-Cr), and gold. The casted crowns were fitted in the metallic replica and measured as to the cervical discrepance of fitting. The results showed that the use of die spacers decreases the clinical discrepancies of fitting of the casted crowns (in a statistically significant level), no matter the metallic alloy employed.

  12. Noncontact temperature measurement: Requirements and applications for metals and alloys research

    NASA Technical Reports Server (NTRS)

    Perepezko, J. H.

    1988-01-01

    Temperature measurement is an essential capability for almost all areas of metals and alloys research. In the microgravity environment many of the science priorities that have been identified for metals and alloys also require noncontact temperature measurement capability. For example, in order to exploit the full potential of containerless processing, it is critical to have available a suitable noncontact temperature measurement system. This system is needed to track continuously the thermal history, including melt undercooling and rapid recalescence, of relatively small metal spheres during free-fall motion in drop tube systems. During containerless processing with levitation-based equipment, accurate noncontact temperature measurement is required to monitor one or more quasi-static samples with sufficient spatial and thermal resolution to follow the progress of solidification fronts originating in undercooled melts. In crystal growth, thermal migration, coarsening and other experiments high resolution thermal maps would be a valuable asset in the understanding and modeling of solidification processes, fluid flows and microstructure development. The science and applications requirements place several constraints on the spatial resolution, response time and accuracy of suitable instrumentation.

  13. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, T; Kim, H; Ning, XH

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75more » V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.« less

  14. Planar heterostructures of single-layer transition metal dichalcogenides: Composite structures, Schottky junctions, tunneling barriers, and half metals

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin; Ciraci, S.

    2017-02-01

    Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.

  15. Tunable multifunctional topological insulators in ternary Heusler and related compounds

    NASA Astrophysics Data System (ADS)

    Felser, Claudia

    2011-03-01

    Recently the quantum spin Hall effect was theoretically predicted and experimentally realized in quantum wells based on the binary semiconductor HgTe. The quantum spin Hall state and topological insulators are new states of quantum matter interesting for both fundamental condensed-matter physics and material science. Many Heusler compounds with C1b structure are ternary semiconductors that are structurally and electronically related to the binary semiconductors. The diversity of Heusler materials opens wide possibilities for tuning the bandgap and setting the desired band inversion by choosing compounds with appropriate hybridization strength (by the lattice parameter) and magnitude of spin--orbit coupling (by the atomic charge). Based on first-principle calculations we demonstrate that around 50 Heusler compounds show band inversion similar to that of HgTe. The topological state in these zero-gap semiconductors can be created by applying strain or by designing an appropriate quantumwell structure, similar to the case of HgTe. Many of these ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the rare-earth element Ln, which can realize additional properties ranging from superconductivity (for example LaPtBi) to magnetism (for example GdPtBi) and heavy fermion behaviour (for example YbPtBi). These properties can open new research directions in realizing the quantized anomalous Hall effect and topological superconductors. Heusler compounds are similar to a stuffed diamond, correspondingly, it should be possible to find the ``high Z'' equivalent of graphene in a graphite-like structure with 18 valence electrons and with inverted bands. Indeed the ternary compounds, such as LiAuSe and KHgSb with a honeycomb structure of their Au-Se and Hg-Sb layers feature band inversion very similar to HgTe which is a strong precondition for existence of the topological surface states. These materials have a gap at the Fermi energy and are therefore candidates

  16. Magnetic and thermodynamic properties of Heusler alloys Ni55Mn26Al19

    NASA Astrophysics Data System (ADS)

    Ito, Masakazu; Onda, Keijiro; Taira, Atsushi; Sonoda, Kazuki; Hiroi, Masahiko; Uwatoko, Yoshiya

    2018-05-01

    The temperature dependence of magnetization, M(T), specific heat, Cp(T), and thermal expansion, ΔL/L300K(T) were investigated for the Heusler compound Ni55Mn26Al19 with B2 structure. M(T) has a cusp-type anomaly for the antiferromagnetic (AF) transition at the Néel temperature TN = 280 K that is irreversible between the field-cooled and zero-field-cooled processes below Tf ˜ 60 K, which is characteristic of spin glass. Cp(T) also has an anomaly at TN = 280 K. For temperatures T < 280 K, Cp(T) shows no anomaly without indicating any phase transition. These results mean that with decreasing T Ni55Mn26Al19 has a reentrant spin glass below Tf from the AF state. ΔL/L300K(T) shows no discontinuity indicating a structural transition in the range 5 < T < 300 K, i.e., Ni55Mn26Al19 has no martensitic transformation. TN increases proportionally with pressure, P, because of the enhancement of the AF interaction. The value of its initial rate is estimated to be d/TN d P = 5.25 K/GPa. Tf also increases proportionally with P with d/Tf d P = 2.21 K/GPa, and hence magnetic frustration, which promotes the spin glass system, is enhanced under pressurization.

  17. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys.

    PubMed

    Lee, Won-Jong; Chia, Wen-Jui; Wang, Jinliu; Chen, Yanfeng; Vaynman, Semyon; Fine, Morris E; Chung, Yip-Wah

    2010-11-02

    This article explores the subtle effects of surfaces and interfaces on the mechanical properties of bulk metallic alloys using three examples: environmental effects on fatigue life, hydrogen embrittlement effects on the ductility of intermetallics, and the role of coherent precipitates in the toughness of steels. It is demonstrated that the marked degradation of the fatigue life of metals is due to the strong chemisorption of adsorbates on exposed slip steps that are formed during fatigue deformation. These adsorbates reduce the reversibility of slip, thus accelerating fatigue damage in a chemically active gas environment. For certain intermetallic alloys such as Ni(3)Al and Ni(3)Fe, the ductility depends on the ambient gas composition and the atomic ordering in these alloys, both of which govern the complex surface chemical reactions taking place in the vicinity of crack tips. Finally, it is shown that local stresses at a coherent precipitate-matrix interface can activate dislocation motion at low temperatures, thus improving the fracture toughness of bulk alloys such as steels at cryogenic temperatures. These examples illustrate the complex interplay between surface chemistry and mechanics, often yielding unexpected results.

  18. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) Heusler alloy and NiAl spacer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiamin; Hono, K., E-mail: kazuhiro.hono@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-2-1, Sengen, Tsukuba 305-0047

    2015-05-07

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation,more » which made it a good candidate for CPP-GMR device.« less

  19. A polarized neutron study of the magnetization distribution in Co₂FeSi.

    PubMed

    Brown, P J; Kainuma, R; Kanomata, T; Neumann, K-U; Okubo, A; Umetsu, R Y; Ziebeck, K R A

    2013-05-22

    The magnetization distribution in Co2FeSi which has the largest moment per formula unit ∼6 μB of all Heusler alloys, has been determined using polarized neutron diffraction. The experimentally determined magnetization has been integrated over spheres centred on the three sites of the L12 structure giving μ Fe = 3.10(3) μB and μ Co = 1.43(2) μB, results which are slightly lower than the moments in atomic spheres of similar radii obtained in recent LDA + U band structure calculations (Li et al 2010 Chin. Phys. B 19 097102). Approximately 50% of the magnetic carriers at the Fe sites were found to be in orbitals with eg symmetry. This was higher, ≃65%, at the Co sites. Both Fe and Co were found to have orbital moments that are larger than those predicted. Comparison with similar results obtained for related alloys suggests that there must be a finite density of states in both spin bands at the Fermi energy indicating that Co2FeSi is not a perfect half-metallic ferromagnet.

  20. Effect of rhenium on the structure and properties of the weld metal of a molybdenum alloy

    NASA Technical Reports Server (NTRS)

    Dyachenko, V. V.; Morozov, B. P.; Tylkina, M. A.; Savitskiy, Y. M.; Nikishanov, V. V.

    1984-01-01

    The structure and properties of welds made in molybdenum alloy VM-1 as a function of rhenium concentrations in the weld metal were studied. Rhenium was introduced into the weld using rhenium wire and tape or wires of Mo-47Re and Mo-52Re alloys. The properties of the weld metal were studied by means of metallographic techniques, electron microscopy, X-ray analysis, and autoradiography. The plasticity of the weld metal sharply was found to increase with increasing concentration of rhenium up to 50%. During welding, a decarburization process was observed which was more pronounced at higher concentrations of rhenium.