Sample records for half-pitch hp node

  1. EUV lithography for 30nm half pitch and beyond: exploring resolution, sensitivity, and LWR tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Chandhok, Manish; Frasure, Kent

    2009-03-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 32nm half-pitch node and beyond. Readiness of EUV materials is currently one high risk area according to assessments made at the 2008 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data is presented utilizing Intel's Micro-Exposure Tool (MET) examining the feasibility of establishing a resist process that simultaneously exhibits <=30nm half-pitch (HP) L/S resolution at <=10mJ/cm2 with <=4nm LWR.

  2. EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Caudillo, Roman; Chandhok, Manish

    2010-04-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. Readiness of EUV materials is currently one high risk area according to recent assessments made at the 2009 EUVL Symposium. The main development issue regarding EUV resist has been how to simultaneously achieve high sensitivity, high resolution, and low line width roughness (LWR). This paper describes the strategy and current status of EUV resist development at Intel Corporation. Data collected utilizing Intel's Micro-Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <= 12.5mJ/cm2 with <= 4nm LWR.

  3. EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs

    NASA Astrophysics Data System (ADS)

    Putna, E. Steve; Younkin, Todd R.; Leeson, Michael; Caudillo, Roman; Bacuita, Terence; Shah, Uday; Chandhok, Manish

    2011-04-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. According to recent assessments made at the 2010 EUVL Symposium, the readiness of EUV materials remains one of the top risk items for EUV adoption. The main development issue regarding EUV resists has been how to simultaneously achieve high resolution, high sensitivity, and low line width roughness (LWR). This paper describes our strategy, the current status of EUV materials, and the integrated post-development LWR reduction efforts made at Intel Corporation. Data collected utilizing Intel's Micro- Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <=11.3mJ/cm2 with <=3nm LWR.

  4. PMJ 2007 panel discussion overview: double exposure and double patterning for 32-nm half-pitch design node

    NASA Astrophysics Data System (ADS)

    Nagaoka, Yoshinori; Watanabe, Hidehiro

    2007-10-01

    As part of the technical program in Photomask Japan 2007, we held a panel discussion to discuss challenges and solutions for the double exposure and double patterning lithography technique for 32nm half-pitch design node. 4 panelists, Rik Jonckheere of IMEC, Belgium), Tsann-Binn Chiou of ASML Taiwan Ltd., Taiwan), Judy Huckabay of Cadence Design Systems Inc. (USA) and Yoshimitsu Okuda of Toppan Printing Co., Ltd., Japan) were invited to represent each key technical area. We also took a survey from the PMJ attendees prior to the panel discussion, to vote which key technical area they think the challenge exists for the 32nm half-pitch DE/DP lithography. The result of the survey was also presented during the panel discussion. One would intuitively think that by using a DE/DP technique you're relaxing the design rule by 2x, thus for 32nm node it's essentially the 65nm process- you're just repeating it 2 times. Well, not exactly, as identified by the panelists and the participants in the discussion. We recognized the difficulties in the LSI fabrication process steps, the lithography tool overlay, photomask CD and registration, and the issue of data splitting conflict. These difficulties are big challenge for both LSI and photomask manufactures; however, we have confirmed some solutions are already examined by the theoretical and experimental works of the people in research. Despite these difficulties, we are convinced that the immersion lithography with double exposure and double patterning techniques is one of the most promising candidates of the lithography for 32nm half pitch design node.

  5. Extreme ultraviolet patterned mask inspection performance of advanced projection electron microscope system for 11nm half-pitch generation

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji

    2016-03-01

    Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.

  6. Pitching stability analysis of half-rotating wing air vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyi; Wu, Yang; Li, Qian; Li, Congmin; Qiu, Zhizhen

    2017-06-01

    Half-Rotating Wing (HRW) is a new power wing which had been developed by our work team using rotating-type flapping instead of oscillating-type flapping. Half-Rotating Wing Air Vehicle (HRWAV) is similar as Bionic Flapping Wing Air Vehicle (BFWAV). It is necessary to guarantee pitching stability of HRWAV to maintain flight stability. The working principle of HRW was firstly introduced in this paper. The rule of motion indicated that the fuselage of HRWAV without empennage would overturn forward as it generated increased pitching movement. Therefore, the empennage was added on the tail of HRWAV to balance the additional moment generated by aerodynamic force during flight. The stability analysis further shows that empennage could weaken rapidly the pitching disturbance on HRWAV and a new balance of fuselage could be achieved in a short time. Case study using numerical analysis verified correctness and validity of research results mentioned above, which could provide theoretical guidance to design and control HRWAV.

  7. REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography

    NASA Astrophysics Data System (ADS)

    McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.

    2012-03-01

    REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.

  8. Design and pitch scaling for affordable node transition and EUV insertion scenario

    NASA Astrophysics Data System (ADS)

    Kim, Ryoung-han; Ryckaert, Julien; Raghavan, Praveen; Sherazi, Yasser; Debacker, Peter; Trivkovic, Darko; Gillijns, Werner; Tan, Ling Ee; Drissi, Youssef; Blanco, Victor; Bekaert, Joost; Mao, Ming; Larivière, Stephane; McIntyre, Greg

    2017-04-01

    imec's DTCO and EUV achievement toward imec 7nm (iN7) technology node which is industry 5nm node equivalent is reported with a focus on cost and scaling. Patterning-aware design methodology supports both iArF multiple patterning and EUV under one compliant design rule. FinFET device with contacted poly pitch of 42nm and metal pitch of 32nm with 7.5-track, 6.5-track, and 6-track standard cell library are explored. Scaling boosters are used to provide additional scaling and die cost benefit while lessening pitch shrink burden, and it makes EUV insertion more affordable. EUV pattern fidelity is optimized through OPC, SMO, M3D, mask sizing and SRAF. Processed wafers were characterized and edge-placement-error (EPE) variability is validated for EUV insertion. Scale-ability and cost of ownership of EUV patterning in aligned with iN7 standard cell design, integration and patterning specification are discussed.

  9. An In situ Analysis of the Dissolution Characteristics of Half Pitch Line and Space Extreme Ultraviolet Lithography Resist Patterns

    NASA Astrophysics Data System (ADS)

    Santillan, Julius Joseph; Itani, Toshiro

    2013-06-01

    The characterization of the resist dissolution is one fundamental area of research that has been continuously investigated. This paper focuses on the preliminary work on the application the high speed atomic force microscope (HS-AFM) for the in situ dissolution analysis half-pitch (hp) lines and spaces (L/S) at standard developer concentration. In earlier works, this has been difficult but through extensive optimization and the use of carbon nano fiber-tipped cantilevers, the dissolution characterization of a 32 nm hp L/S pattern at 0.26 N aqueous tetramethylammonium hydroxide developer (standard developer concentration) was successfully achieved. Based on the results obtained using the EIDEC standard resist (ESR1) it was found that regardless of analysis condition such as resist pattern configuration (isolated or L/S pattern) and developer concentration (diluted or standard), similar dissolution characteristics in the form of resist swelling of exposed areas was observed. Moreover, further investigations using other types of model resist polymer platforms such as poly(hydroxystyrene) (PHS)-based and hybrid (PHS-methacryl)-based model resists have confirmed that dissolution behavior is not affected by the analysis conditions applied.

  10. Exploration of BEOL line-space patterning options at 12 nm half-pitch and below

    NASA Astrophysics Data System (ADS)

    Decoster, S.; Lazzarino, F.; Petersen Barbosa Lima, L.; Li, W.; Versluijs, J.; Halder, S.; Mallik, A.; Murdoch, G.

    2018-03-01

    While the semiconductor industry is almost ready for high-volume manufacturing of the 7 nm technology node, research centers are defining and troubleshooting the patterning options for the 5 nm technology node (N5) and below. The target dimension for imec's N5 BEOL applications is 20-24 nm Metal Pitch (MP), which requires Self-Aligned multiple (Double/Quadruple/Octuple) Patterning approaches (SAxP) in combination with EUV or immersion lithography at 193 nm. There are numerous technical challenges to enable gratings at the hard mask level such as good uniformity across wafer, low line edge/width roughness (LER/LWR), large process window, and all of this at low cost. An even greater challenge is to transfer these gratings into the dielectric material at such critical dimensions, where increased line edge roughness, line wiggling and even pattern collapse can be expected for materials with small mechanical stability such as highly porous low-k dielectrics. In this work we first compare three different patterning options for 12 nm half-pitch gratings at the hard mask level: EUV-based SADP and 193i-based SAQP and SAOP. This comparison will be based on process window, line edge/width roughness and cost. Next, the transfer of 12 nm line/space gratings in the dielectric material is discussed and presented. The LER of the dielectric lines is investigated as a function of the dielectric material, the trench depth, and the stress in the sacrificial hard mask. Finally, we elaborate on the different options to enable scaling down from 24 nm MP to 16 nm MP, and demonstrate 8 nm line/space gratings with 193i-based SAOP.

  11. Patterned mask inspection technology with Projection Electron Microscope (PEM) technique for 11 nm half-pitch (hp) generation EUV masks

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Yoshikawa, Shoji; Suematsu, Kenichi; Terao, Kenji

    2015-07-01

    High-sensitivity EUV mask pattern defect detection is one of the major issues in order to realize the device fabrication by using the EUV lithography. We have already designed a novel Projection Electron Microscope (PEM) optics that has been integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code), and which seems to be quite promising for 16 nm hp generation EUVL Patterned mask Inspection (PI). Defect inspection sensitivity was evaluated by capturing an electron image generated at the mask by focusing onto an image sensor. The progress of the novel PEM optics performance is not only about making an image sensor with higher resolution but also about doing a better image processing to enhance the defect signal. In this paper, we describe the experimental results of EUV patterned mask inspection using the above-mentioned system. The performance of the system is measured in terms of defect detectability for 11 nm hp generation EUV mask. To improve the inspection throughput for 11 nm hp generation defect detection, it would require a data processing rate of greater than 1.5 Giga- Pixel-Per-Second (GPPS) that would realize less than eight hours of inspection time including the step-and-scan motion associated with the process. The aims of the development program are to attain a higher throughput, and enhance the defect detection sensitivity by using an adequate pixel size with sophisticated image processing resulting in a higher processing rate.

  12. Writing time estimation of EB mask writer EBM-9000 for hp16nm/logic11nm node generation

    NASA Astrophysics Data System (ADS)

    Kamikubo, Takashi; Takekoshi, Hidekazu; Ogasawara, Munehiro; Yamada, Hirokazu; Hattori, Kiyoshi

    2014-10-01

    The scaling of semiconductor devices is slowing down because of the difficulty in establishing their functionality at the nano-size level and also because of the limitations in fabrications, mainly the delay of EUV lithography. While multigate devices (FinFET) are currently the main driver for scalability, other types of devices, such as 3D devices, are being realized to relax the scaling of the node. In lithography, double or multiple patterning using ArF immersion scanners is still a realistic solution offered for the hp16nm node fabrication. Other lithography candidates are those called NGL (Next Generation Lithography), such as DSA (Directed-Self-Assembling) or nanoimprint. In such situations, shot count for mask making by electron beam writers will not increase. Except for some layers, it is not increasing as previously predicted. On the other hand, there is another aspect that increases writing time. The exposure dose for mask writing is getting higher to meet tighter specifications of CD uniformity, in other words, reduce LER. To satisfy these requirements, a new electron beam mask writer, EBM-9000, has been developed for hp16nm/logic11nm generation. Electron optical system, which has the immersion lens system, was evolved from EBM-8000 to achieve higher current density of 800A/cm2. In this paper, recent shot count and dose trend are discussed. Also, writing time is estimated for the requirements in EBM-9000.

  13. Half pitch lower sound perception caused by carbamazepine.

    PubMed

    Konno, Shyu; Yamazaki, Etsuko; Kudoh, Masako; Abe, Takashi; Tohgi, Hideo

    2003-09-01

    We report a 16-year-old woman with secondary generalization of partial seizure, who complained of an auditory disturbance after carbamazepine (CBZ) administration. She had been taking sodium valproate (VPA) from the age of 15. However, her seizures remained poorly controlled. We changed her antiepileptic drug from VPA to CBZ. At 1 week after CBZ administration, she noticed that electone musical performances were heard as a semitone lower. When oral administration of CBZ was stopped, her pitch perception returned to normal. If she had not been able to discern absolute pitch, she might have been unable to recognize her lowered pitch perception. Auditory disturbance caused by CBZ is reversible and very rare.

  14. State-of-the-art EUV materials and processes for the 7nm node and beyond

    NASA Astrophysics Data System (ADS)

    Buitrago, Elizabeth; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Vockenhuber, Michaela; Mochi, Iacopo; Fallica, Roberto; Tasdemir, Zuhal; Ekinci, Yasin

    2017-03-01

    Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) being the most likely candidate to manufacture electronic devices for future technology nodes is to be introduced in high volume manufacturing (HVM) at the 7 nm logic node, at least at critical lithography levels. With this impending introduction, it is clear that excellent resist performance at ultra-high printing resolutions (below 20 nm line/space L/S) is ever more pressing. Nonetheless, EUVL has faced many technical challenges towards this paradigm shift to a new lithography wavelength platform. Since the inception of chemically amplified resists (CARs) they have been the base upon which state-of-the art photoresist technology has been developed from. Resist performance as measured in terms of printing resolution (R), line edge roughness (LER), sensitivity (D or exposure dose) and exposure latitude (EL) needs to be improved but there are well known trade-off relationships (LRS trade-off) among these parameters for CARs that hamper their simultaneous enhancement. Here, we present some of the most promising EUVL materials tested by EUV interference lithography (EUV-IL) with the aim of resolving features down to 11 nm half-pitch (HP), while focusing on resist performance at 16 and 13 nm HP as needed for the 7 and 5 nm node, respectively. EUV-IL has enabled the characterization and development of new resist materials before commercial EUV exposure tools become available and is therefore a powerful research and development tool. With EUV-IL, highresolution periodic images can be printed by the interference of two or more spatially coherent beams through a transmission-diffraction grating mask. For this reason, our experiments have been performed by EUV-IL at Swiss Light Source (SLS) synchrotron facility located at the Paul Scherrer Institute (PSI). Having the opportunity to test hundreds of EUVL materials from vendors and research partners from all over the world, PSI is able to give a global update on some of the

  15. Effect of high-pitch dual-source CT to compensate motion artifacts: a phantom study.

    PubMed

    Farshad-Amacker, Nadja A; Alkadhi, Hatem; Leschka, Sebastian; Frauenfelder, Thomas

    2013-10-01

    To evaluate the potential of high-pitch, dual-source computed tomography (DSCT) for compensation of motion artifacts. Motion artifacts were created using a moving chest/cardiac phantom with integrated stents at different velocities (from 0 to 4-6 cm/s) parallel (z direction), transverse (x direction), and diagonal (x and z direction combined) to the scanning direction using standard-pitch (SP) (pitch = 1) and high-pitch (HP) (pitch = 3.2) 128-detector DSCT (Siemens, Healthcare, Forchheim, Germany). The scanning parameters were (SP/HP): tube voltage, 120 kV/120 kV; effective tube current time product, 300 mAs/500 mAs; and a pitch of 1/3.2. Motion artifacts were analyzed in terms of subjective image quality and object distortion. Image quality was rated by two blinded, independent observers using a 4-point scoring system (1, excellent; 2, good with minor object distortion or blurring; 3, diagnostically partially not acceptable; and 4, diagnostically not acceptable image quality). Object distortion was assessed by the measured changes of the object's outer diameter (x) and length (z) and a corresponding calculated distortion vector (d) (d = √(x(2) + z(2))). The interobserver agreement was excellent (k = 0.91). Image quality using SP was diagnostically not acceptable with any motion in x direction (scores 3 and 4), in contrast to HP DSCT where it remained diagnostic up to 2 cm/s (scores 1 and 2). For motion in the z direction only, image quality remained diagnostic for SP and HP DSCT (scores 1 and 2). Changes of the object's diameter (x), length (z), and distortion vectors (d) were significantly greater with SP (overall: x = 1.9 cm ± 1.7 cm, z = 0.6 cm ± 0.8 cm, and d = 1.4 cm ± 1.5 cm) compared to HP DSCT (overall: x = 0.1 cm ± 0.1 cm, z = 0.0 cm ± 0.1 cm, and d = 0.1 cm ± 0.1 cm; each P < .05). High-pitch DSCT significantly decreases motion artifacts in various directions and improves image quality. Copyright © 2013 AUR. Published by Elsevier Inc. All rights

  16. Lateralization of the Huggins pitch

    NASA Astrophysics Data System (ADS)

    Zhang, Peter Xinya; Hartmann, William M.

    2004-05-01

    The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.

  17. Self-aligned blocking integration demonstration for critical sub-40nm pitch Mx level patterning

    NASA Astrophysics Data System (ADS)

    Raley, Angélique; Mohanty, Nihar; Sun, Xinghua; Farrell, Richard A.; Smith, Jeffrey T.; Ko, Akiteru; Metz, Andrew W.; Biolsi, Peter; Devilliers, Anton

    2017-04-01

    Multipatterning has enabled continued scaling of chip technology at the 28nm node and beyond. Selfaligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) as well as Litho- Etch/Litho-Etch (LELE) iterations are widely used in the semiconductor industry to enable patterning at sub 193 immersion lithography resolutions for layers such as FIN, Gate and critical Metal lines. Multipatterning requires the use of multiple masks which is costly and increases process complexity as well as edge placement error variation driven mostly by overlay. To mitigate the strict overlay requirements for advanced technology nodes (7nm and below), a self-aligned blocking integration is desirable. This integration trades off the overlay requirement for an etch selectivity requirement and enables the cut mask overlay tolerance to be relaxed from half pitch to three times half pitch. Selfalignement has become the latest trend to enable scaling and self-aligned integrations are being pursued and investigated for various critical layers such as contact, via, metal patterning. In this paper we propose and demonstrate a low cost flexible self-aligned blocking strategy for critical metal layer patterning for 7nm and beyond from mask assembly to low -K dielectric etch. The integration is based on a 40nm pitch SADP flow with 2 cut masks compatible with either cut or block integration and employs dielectric films widely used in the back end of the line. As a consequence this approach is compatible with traditional etch, deposition and cleans tools that are optimized for dielectric etches. We will review the critical steps and selectivities required to enable this integration along with bench-marking of each integration option (cut vs. block).

  18. Relationship between sensitizer concentration and resist performance of chemically amplified extreme ultraviolet resists in sub-10 nm half-pitch resolution region

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2017-01-01

    The development of lithography processes with sub-10 nm resolution is challenging. Stochastic phenomena such as line width roughness (LWR) are significant problems. In this study, the feasibility of sub-10 nm fabrication using chemically amplified extreme ultraviolet resists with photodecomposable quenchers was investigated from the viewpoint of the suppression of LWR. The relationship between sensitizer concentration (the sum of acid generator and photodecomposable quencher concentrations) and resist performance was clarified, using the simulation based on the sensitization and reaction mechanisms of chemically amplified resists. For the total sensitizer concentration of 0.5 nm-3 and the effective reaction radius for the deprotection of 0.1 nm, the reachable half-pitch while maintaining 10% critical dimension (CD) LWR was 11 nm. The reachable half-pitch was 7 nm for 20% CD LWR. The increase in the effective reaction radius is required to realize the sub-10 nm fabrication with 10% CD LWR.

  19. Data Transfers Among the HP-75, HP-86, and HP-9845 Microcomputers.

    DTIC Science & Technology

    1983-01-01

    AD-A139 438 DAT TRANSFERS AMONG THE HP-75 HP-86 AND HP-9845 / MICROCOMPUTENS(U) AIR FORCE INST OF TECH WNIOHT-PATTERSON AFN OH D P CONNOR 1983...hereafter called the ඓ") and the HP-86 (hereafter called the ඞ"). The computers are to be used for classroom instruction and research at SOC. On...the main campus another Hewlett-Packard desktop computer, the HP-9845 (hereafter called the 񕚕"), is already in use; it controls and processes data

  20. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    PubMed

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  1. Megasonic cleaning strategy for sub-10nm photomasks

    NASA Astrophysics Data System (ADS)

    Hsu, Jyh-Wei; Samayoa, Martin; Dress, Peter; Dietze, Uwe; Ma, Ai-Jay; Lin, Chia-Shih; Lai, Rick; Chang, Peter; Tuo, Laurent

    2016-10-01

    One of the main challenges in photomask cleaning is balancing particle removal efficiency (PRE) with pattern damage control. To overcome this challenge, a high frequency megasonic cleaning strategy is implemented. Apart from megasonic frequency and power, photomask surface conditioning also influences cleaning performance. With improved wettability, cleanliness is enhanced while pattern damage risk is simultaneously reduced. Therefore, a particle removal process based on higher megasonic frequencies, combined with proper surface pre-treatment, provides improved cleanliness without the unintended side effects of pattern damage, thus supporting the extension of megasonic cleaning technology into 10nm half pitch (hp) device node and beyond.

  2. EUV process establishment through litho and etch for N7 node

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming

    2016-03-01

    Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.

  3. Results from prototype die-to-database reticle inspection system

    NASA Astrophysics Data System (ADS)

    Mu, Bo; Dayal, Aditya; Broadbent, Bill; Lim, Phillip; Goonesekera, Arosha; Chen, Chunlin; Yeung, Kevin; Pinto, Becky

    2009-03-01

    A prototype die-to-database high-resolution reticle defect inspection system has been developed for 32nm and below logic reticles, and 4X Half Pitch (HP) production and 3X HP development memory reticles. These nodes will use predominantly 193nm immersion lithography (with some layers double patterned), although EUV may also be used. Many different reticle types may be used for these generations including: binary (COG, EAPSM), simple tritone, complex tritone, high transmission, dark field alternating (APSM), mask enhancer, CPL, and EUV. Finally, aggressive model based OPC is typically used, which includes many small structures such as jogs, serifs, and SRAF (sub-resolution assist features), accompanied by very small gaps between adjacent structures. The architecture and performance of the prototype inspection system is described. This system is designed to inspect the aforementioned reticle types in die-todatabase mode. Die-to-database inspection results are shown on standard programmed defect test reticles, as well as advanced 32nm logic, and 4X HP and 3X HP memory reticles from industry sources. Direct comparisons with currentgeneration inspection systems show measurable sensitivity improvement and a reduction in false detections.

  4. On the relation between pitch and level.

    PubMed

    Zheng, Yi; Brette, Romain

    2017-05-01

    Pitch is the perceptual dimension along which musical notes are ordered from low to high. It is often described as the perceptual correlate of the periodicity of the sound's waveform. Previous reports have shown that pitch can depend slightly on sound level. We wanted to verify that these observations reflect genuine changes in perceived pitch, and were not due to procedural factors or confusion between dimensions of pitch and level. We first conducted a systematic pitch matching task and confirmed that the pitch of low frequency pure tones, but not complex tones, decreases by an amount equivalent to a change in frequency of more than half a semitone when level increases. We then showed that the structure of pitch shifts is anti-symmetric and transitive, as expected for changes in pitch. We also observed shifts in the same direction (although smaller) in an interval matching task. Finally, we observed that musicians are more precise in pitch matching tasks than non-musicians but show the same average shifts with level. These combined experiments confirm that the pitch of low frequency pure tones depends weakly but systematically on level. These observations pose a challenge to current theories of pitch. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Scatterometry-based metrology for SAQP pitch walking using virtual reference

    NASA Astrophysics Data System (ADS)

    Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel

    2016-03-01

    Advanced technology nodes, 10nm and beyond, employing multi-patterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. Self-Aligned Quadruple Patterning (SAQP) process is used to create the Fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bares compounding effects from successive Reactive Ion Etch (RIE) and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes which work on an assumption that there is consistent spacing between fins. In SAQP there are 3 pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology such as Transmission Electron Microscopy (TEM). In this paper we will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.

  6. The Bifunctional Enzyme SpoT Is Involved in the Clarithromycin Tolerance of Helicobacter pylori by Upregulating the Transporters HP0939, HP1017, HP0497, and HP0471

    PubMed Central

    Geng, Xiwen; Li, Wen; Chen, Zhenghong; Gao, Sizhe; Hong, Wei; Ge, Xiaoran; Hou, Guihua; Hu, Zhekai; Zhou, Yabin; Zeng, Beini; Li, Wenjuan; Jia, Jihui

    2017-01-01

    ABSTRACT Clarithromycin (CLA) is a commonly recommended drug for Helicobacter pylori eradication. However, the prevalence of CLA-resistant H. pylori is increasing. Although point mutations in the 23S rRNA are key factors for CLA resistance, other factors, including efflux pumps and regulation genes, are also involved in the resistance of H. pylori to CLA. Guanosine 3′-diphosphate 5′-triphosphate and guanosine 3′,5′-bispyrophosphate [(p)ppGpp)], which are synthesized by the bifunctional enzyme SpoT in H. pylori, play an important role for some bacteria to adapt to antibiotic pressure. Nevertheless, no related research involving H. pylori has been reported. In addition, transporters have been found to be related to bacterial drug resistance. Therefore, this study investigated the function of SpoT in H. pylori resistance to CLA by examining the shifts in the expression of transporters and explored the role of transporters in the CLA resistance of H. pylori. A ΔspoT strain was constructed in this study, and it was shown that SpoT is involved in H. pylori tolerance of CLA by upregulating the transporters HP0939, HP1017, HP0497, and HP0471. This was assessed using a series of molecular and biochemical experiments and a cDNA microarray. Additionally, the knockout of genes hp0939, hp0471, and hp0497 in the resistant strains caused a reduction or loss (the latter in the Δhp0497 strain) of resistance to CLA. Furthermore, the average expression levels of these four transporters in clinical CLA-resistant strains were considerably higher than those in clinical CLA-sensitive strains. Taken together, our results revealed a novel molecular mechanism of H. pylori adaption to CLA stress. PMID:28242673

  7. The perception of complex pitch in cochlear implants: A comparison of monopolar and tripolar stimulation.

    PubMed

    Fielden, Claire A; Kluk, Karolina; Boyle, Patrick J; McKay, Colette M

    2015-10-01

    Cochlear implant listeners typically perform poorly in tasks of complex pitch perception (e.g., musical pitch and voice pitch). One explanation is that wide current spread during implant activation creates channel interactions that may interfere with perception of temporal fundamental frequency information contained in the amplitude modulations within channels. Current focusing using a tripolar mode of stimulation has been proposed as a way of reducing channel interactions, minimising spread of excitation and potentially improving place and temporal pitch cues. The present study evaluated the effect of mode in a group of cochlear implant listeners on a pitch ranking task using male and female singing voices separated by either a half or a quarter octave. Results were variable across participants, but on average, pitch ranking was at chance level when the pitches were a quarter octave apart and improved when the difference was a half octave. No advantage was observed for tripolar over monopolar mode at either pitch interval, suggesting that previously published psychophysical advantages for focused modes may not translate into improvements in complex pitch ranking. Evaluation of the spectral centroid of the stimulation pattern, plus a lack of significant difference between male and female voices, suggested that participants may have had difficulty in accessing temporal pitch cues in either mode.

  8. The transport kinetics and selectivity of HpUreI, the urea channel from Helicobacter pylori†

    PubMed Central

    Gray, Lawrence R; Gu, Sean X; Quick, Matthias; Khademi, Shahram

    2017-01-01

    Helicobacter pylori’s unique ability to colonize and survive in the acidic environment of the stomach is critically dependent on uptake of urea through the urea channel, HpUreI. Hence, HpUreI may represent a promising target for the development of specific drugs against this human pathogen. To obtain insight into the structure/function relationship of this channel, we have developed conditions for the high-yield expression and purification of stable recombinant HpUreI that allowed its detailed kinetic characterization in solubilized form and reconstituted into liposomes. Detergent-solubilized HpUreI forms homo-trimer, as determined by chemical cross-linking. Urea dissociation kinetics of purified HpUreI were determined by means of the scintillation proximity assay (SPA), whereas urea efflux was measured in HpUreI-containing proteoliposomes using stopped-flow spectrometry to determine the kinetics and selectivity of the urea channel. The kinetic analyses revealed that urea conduction in HpUreI is pH sensitive and saturable with a half-saturation concentration (or K0.5) of ~163 mM. Binding of urea by HpUreI was increased at lower pH; however, the apparent affinity of urea binding (~150 mM) was not significantly pH dependent. The solute selectivity analysis indicated that HpUreI is highly selective for urea and hydroxyurea. Removing either amino group of urea molecules diminishes their permeability through HpUreI. Similar to urea conduction, water diffusion through HpUreI is pH-dependent with low water permeability at neutral pH. PMID:21877689

  9. Evolution of roughness during the pattern transfer of high-chi, 10nm half-pitch, silicon-containing block copolymer structures

    NASA Astrophysics Data System (ADS)

    Blachut, Gregory; Sirard, Stephen M.; Liang, Andrew; Mack, Chris A.; Maher, Michael J.; Rincon-Delgadillo, Paulina A.; Chan, Boon Teik; Mannaert, Geert; Vandenberghe, Geert; Willson, C. Grant; Ellison, Christopher J.; Hymes, Diane

    2018-03-01

    A pattern transfer study was conducted to monitor the evolution of roughness in sub-10 nm half-pitch lines generated by the directed self-assembly (DSA) of a high-chi, silicon-containing block copolymer, poly(4-trimethylsilylstyrene)-block-poly(4-methoxystyrene). Unbiased roughness measurements were used to characterize the roughness of the structures before and after pattern transfer into silicon nitride. Parameters of the reactive ion etch process used as a dry development were systematically modified to minimize undesired line walking created by the DSA pre-pattern and to determine their impacts on roughness. The results of this study indicate that an optimized dry development can mitigate the effects of pre-pattern inhomogeneity, and that both dry development and pattern transfer steps effect the roughness of the final structures.

  10. Operation of the HP2250 with the HP9000 series 200 using PASCAL 3.0

    NASA Technical Reports Server (NTRS)

    Perry, John; Stroud, C. W.

    1986-01-01

    A computer program has been written to provide an interface between the HP Series 200 desktop computers, operating under HP Standard Pascal 3.0, and the HP2250 Data Acquisition and Control System. Pascal 3.0 for the HP9000 desktop computer gives a number of procedures for handling bus communication at various levels. It is necessary, however, to reach the lowest possible level in Pascal to handle the bus protocols required by the HP2250. This makes programming extremely complex since these protocols are not documented. The program described solves those problems and allows the user to immediately program, simply and efficiently, any measurement and control language (MCL/50) application with a few procedure calls. The complete set of procedures is available on a 5 1/4 inch diskette from Cosmic. Included in this group of procedures is an Exerciser which allows the user to exercise his HP2250 interactively. The exerciser operates in a fashion similar to the Series 200 operating system programs, but is adapted to the requirements of the HP2250. The programs on the diskette and the user's manual assume the user is acquainted with both the MCL/50 programming language and HP Standard Pascal 3.0 for the HP series 200 desktop computers.

  11. Measuring self-aligned quadruple patterning pitch walking with scatterometry-based metrology utilizing virtual reference

    NASA Astrophysics Data System (ADS)

    Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel

    2016-10-01

    Advanced technology nodes, 10 nm and beyond, employing multipatterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. A self-aligned quadruple patterning (SAQP) process is used to create the fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bears the compounding effects from successive reactive ion etch and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes, which work on an assumption that there is consistent spacing between fins. In SAQP, there are three pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology, such as transmission electron microscopy. We will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.

  12. Imaging performance and challenges of 10nm and 7nm logic nodes with 0.33 NA EUV

    NASA Astrophysics Data System (ADS)

    van Setten, Eelco; Schiffelers, Guido; Psara, Eleni; Oorschot, Dorothe; Davydova, Natalia; Finders, Jo; Depre, Laurent; Farys, Vincent

    2014-10-01

    The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33 and is positioned at a resolution of 22nm, which can be extended down to 18nm and below with off-axis illumination at full transmission. Multiple systems have been qualified and installed at customers. The NXE:3300B succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. It is expected that EUV will be adopted first for critical Logic layers at 10nm and 7nm nodes, such as Metal-1, to avoid the complexity of triple patterning schemes using ArF immersion. In this paper we will evaluate the imaging performance of (sub-)10nm node Logic M1 on the NXE:3300B EUV scanner. We will show the line-end performance of tip-to-tip and tip-to-space test features for various pitches and illumination settings and the performance enhancement obtained by means of a 1st round of OPC. We will also show the magnitude of local variations. The Logic M1 cell is evaluated at various critical features to identify hot spots. A 2nd round OPC model was calibrated of which we will show the model accuracy and ability to predict hot spots in the Logic M1 cell. The calibrated OPC model is used to predict the expected performance at 7nm node Logic using off-axis illumination at 16nm minimum half pitch. Initial results of L/S exposed on the NXE:3300B at 7nm node resolutions will be shown. An outlook is given to future 0.33 NA systems on the ASML roadmap with enhanced illuminator capabilities to further improve performance and process window.

  13. Sensorimotor Mismapping in Poor-pitch Singing.

    PubMed

    He, Hao; Zhang, Wei-Dong

    2017-09-01

    This study proposes that there are two types of sensorimotor mismapping in poor-pitch singing: erroneous mapping and no mapping. We created operational definitions for the two types of mismapping based on the precision of pitch-matching and predicted that in the two types of mismapping, phonation differs in terms of accuracy and the dependence on the articulation consistency between the target and the intended vocal action. The study aimed to test this hypothesis by examining the reliability and criterion-related validity of the operational definitions. A within-subject design was used in this study. Thirty-two participants identified as poor-pitch singers were instructed to vocally imitate pure tones and to imitate their own vocal recordings with the same articulation as self-targets and with different articulation from self-targets. Definitions of the types of mismapping were demonstrated to be reliable with the split-half approach and to have good criterion-related validity with findings that pitch-matching with no mapping was less accurate and more dependent on the articulation consistency between the target and the intended vocal action than pitch-matching with erroneous mapping was. Furthermore, the precision of pitch-matching was positively associated with its accuracy and its dependence on articulation consistency when mismapping was analyzed on a continuum. Additionally, the data indicated that the self-imitation advantage was a function of articulation consistency. Types of sensorimotor mismapping lead to pitch-matching that differs in accuracy and its dependence on the articulation consistency between the target and the intended vocal action. Additionally, articulation consistency produces the self-advantage. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Haptoglobin genotyping of Vietnamese: global distribution of HP del, complete deletion allele of the HP gene.

    PubMed

    Soejima, Mikiko; Agusa, Tetsuro; Iwata, Hisato; Fujihara, Junko; Kunito, Takashi; Takeshita, Haruo; Lan, Vi Thi Mai; Minh, Tu Binh; Takahashi, Shin; Trang, Pham Thi Kim; Viet, Pham Hung; Tanabe, Shinsuke; Koda, Yoshiro

    2015-01-01

    The haptoglobin (HP) gene deletion allele (HP(del)) is responsible for anhaptoglobinemia and a genetic risk factor for anaphylaxis reaction after transfusion due to production of the anti-HP antibody. The distribution of this allele has been explored by several groups including ours. Here, we studied the frequency of HP(del) in addition to the distribution of common HP genotypes in 293 Vietnamese. The HP(del) was encountered with the frequency of 0.020. The present result suggested that this deletion allele is restricted to East and Southeast Asians. Thus, this allele seems to be a potential ancestry informative marker for these populations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Temperature variation of pitch in a pitch pot

    NASA Astrophysics Data System (ADS)

    Droste, Stefan; Klinger, Charles

    2007-05-01

    Opticians have for years kept polishing pitch in electrified containers called "pitch pots" that keeps it in at an elevated temperature. The temperature is adjusted to achieve the desired pitch viscosity. When pitch is desired, the optician will remove the cover, reach into the pot and scoop out a glob of pitch with his hand. However, without thinking, most opticians will "fold over" or "push aside" the top layer of pitch to select pitch from deeper in the pot. This paper documents the change in temperature as the distance from the top surface increases. It also shows the effect of insulating the top cover.

  16. Improvements in resist performance towards EUV HVM

    NASA Astrophysics Data System (ADS)

    Yildirim, Oktay; Buitrago, Elizabeth; Hoefnagels, Rik; Meeuwissen, Marieke; Wuister, Sander; Rispens, Gijsbert; van Oosten, Anton; Derks, Paul; Finders, Jo; Vockenhuber, Michaela; Ekinci, Yasin

    2017-03-01

    Extreme ultraviolet (EUV) lithography with 13.5 nm wavelength is the main option for sub-10nm patterning in the semiconductor industry. We report improvements in resist performance towards EUV high volume manufacturing. A local CD uniformity (LCDU) model is introduced and validated with experimental contact hole (CH) data. Resist performance is analyzed in terms of ultimate printing resolution (R), line width roughness (LWR), sensitivity (S), exposure latitude (EL) and depth of focus (DOF). Resist performance of dense lines at 13 nm half-pitch and beyond is shown by chemical amplified resist (CAR) and non-CAR (Inpria YA Series) on NXE scanner. Resolution down to 10nm half pitch (hp) is shown by Inpria YA Series resist exposed on interference lithography at the Paul Sherrer Institute. Contact holes contrast and consequent LCDU improvement is achieved on a NXE:3400 scanner by decreasing the pupil fill ratio. State-of-the-art imaging meets 5nm node requirements for CHs. A dynamic gas lock (DGL) membrane is introduced between projection optics box (POB) and wafer stage. The DGL membrane will suppress the negative impact of resist outgassing on the projection optics by 100%, enabling a wider range of resist materials to be used. The validated LCDU model indicates that the imaging requirements of the 3nm node can be met with single exposure using a high-NA EUV scanner. The current status, trends, and potential roadblocks for EUV resists are discussed. Our results mark the progress and the improvement points in EUV resist materials to support EUV ecosystem.

  17. An examination of slo-pitch pitching trajectories.

    PubMed

    Wu, Tom; Gervais, Pierre

    2008-01-01

    Many slo-pitch coaches and players believe that generating spin on a ball can affect its trajectory. The influence of air resistance on a ball that is thrown at a moderate speed and spin is unclear. The aim of this study was to examine the influence of spin on the ball's trajectory in slo-pitch pitching using both experimental results and ball flight simulations. Fourteen pitchers participated in the study, each of whom threw five backspin and topspin pitches each. Data were collected using standard three-dimensional videography. The horizontal velocity, vertical velocity, angular velocity, release height, and horizontal displacement of the backspin pitches were significantly higher than those of the topspin pitches. The ball flight simulations were developed to examine the influence of the ball spin, and it was concluded that the spin of the ball had a significant effect on the ball's vertical and horizontal displacements. Furthermore, our results suggest that a backspin pitch that reaches the maximum height allowable and lands in the front edge of the strike zone has the steepest slope. The present results add to our understanding of projectile motion and aerodynamics.

  18. Pitch and Plasticity: Insights from the Pitch Matching of Chords by Musicians with Absolute and Relative Pitch

    PubMed Central

    McLachlan, Neil M.; Marco, David J. T.; Wilson, Sarah J.

    2013-01-01

    Absolute pitch (AP) is a form of sound recognition in which musical note names are associated with discrete musical pitch categories. The accuracy of pitch matching by non-AP musicians for chords has recently been shown to depend on stimulus familiarity, pointing to a role of spectral recognition mechanisms in the early stages of pitch processing. Here we show that pitch matching accuracy by AP musicians was also dependent on their familiarity with the chord stimulus. This suggests that the pitch matching abilities of both AP and non-AP musicians for concurrently presented pitches are dependent on initial recognition of the chord. The dual mechanism model of pitch perception previously proposed by the authors suggests that spectral processing associated with sound recognition primes waveform processing to extract stimulus periodicity and refine pitch perception. The findings presented in this paper are consistent with the dual mechanism model of pitch, and in the case of AP musicians, the formation of nominal pitch categories based on both spectral and periodicity information. PMID:24961624

  19. Lower pitch is larger, yet falling pitches shrink.

    PubMed

    Eitan, Zohar; Schupak, Asi; Gotler, Alex; Marks, Lawrence E

    2014-01-01

    Experiments using diverse paradigms, including speeded discrimination, indicate that pitch and visually-perceived size interact perceptually, and that higher pitch is congruent with smaller size. While nearly all of these studies used static stimuli, here we examine the interaction of dynamic pitch and dynamic size, using Garner's speeded discrimination paradigm. Experiment 1 examined the interaction of continuous rise/fall in pitch and increase/decrease in object size. Experiment 2 examined the interaction of static pitch and size (steady high/low pitches and large/small visual objects), using an identical procedure. Results indicate that static and dynamic auditory and visual stimuli interact in opposite ways. While for static stimuli (Experiment 2), higher pitch is congruent with smaller size (as suggested by earlier work), for dynamic stimuli (Experiment 1), ascending pitch is congruent with growing size, and descending pitch with shrinking size. In addition, while static stimuli (Experiment 2) exhibit both congruence and Garner effects, dynamic stimuli (Experiment 1) present congruence effects without Garner interference, a pattern that is not consistent with prevalent interpretations of Garner's paradigm. Our interpretation of these results focuses on effects of within-trial changes on processing in dynamic tasks and on the association of changes in apparent size with implied changes in distance. Results suggest that static and dynamic stimuli can differ substantially in their cross-modal mappings, and may rely on different processing mechanisms.

  20. Transcriptional Profiling of Type II Toxin-Antitoxin Genes of Helicobacter pylori under Different Environmental Conditions: Identification of HP0967-HP0968 System.

    PubMed

    Cárdenas-Mondragón, María G; Ares, Miguel A; Panunzi, Leonardo G; Pacheco, Sabino; Camorlinga-Ponce, Margarita; Girón, Jorge A; Torres, Javier; De la Cruz, Miguel A

    2016-01-01

    Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and is responsible for causing peptic ulcers and gastric carcinoma. The expression of virulence factors allows the persistence of H. pylori in the stomach, which results in a chronic, sometimes uncontrolled inflammatory response. Type II toxin-antitoxin (TA) systems have emerged as important virulence factors in many pathogenic bacteria. Three type II TA systems have previously been identified in the genome of H. pylori 26695: HP0315-HP0316, HP0892-HP0893, and HP0894-HP0895. Here we characterized a heretofore undescribed type II TA system in H. pylori , HP0967-HP0968, which is encoded by the bicistronic operon hp0968-hp0967 and belongs to the Vap family. The predicted HP0967 protein is a toxin with ribonuclease activity whereas HP0968 is an antitoxin that binds to its own regulatory region. We found that all type II TA systems were expressed in H. pylori during early stationary growth phase, and differentially expressed in the presence of urea, nickel, and iron, although, the hp0968-hp0967 pair was the most affected under these environmental conditions. Transcription of hp0968-hp0967 was strongly induced in a mature H. pylori biofilm and when the bacteria interacted with AGS epithelial cells. Kanamycin and chloramphenicol considerably boosted transcription levels of all the four type II TA systems. The hp0968-hp0967 TA system was the most frequent among 317 H. pylori strains isolated from all over the world. This study is the first report on the transcription of type II TA genes in H. pylori under different environmental conditions. Our data show that the HP0967 and HP0968 proteins constitute a bona fide type II TA system in H. pylori , whose expression is regulated by environmental cues, which are relevant in the context of infection of the human gastric mucosa.

  1. Transcriptional Profiling of Type II Toxin–Antitoxin Genes of Helicobacter pylori under Different Environmental Conditions: Identification of HP0967–HP0968 System

    PubMed Central

    Cárdenas-Mondragón, María G.; Ares, Miguel A.; Panunzi, Leonardo G.; Pacheco, Sabino; Camorlinga-Ponce, Margarita; Girón, Jorge A.; Torres, Javier; De la Cruz, Miguel A.

    2016-01-01

    Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and is responsible for causing peptic ulcers and gastric carcinoma. The expression of virulence factors allows the persistence of H. pylori in the stomach, which results in a chronic, sometimes uncontrolled inflammatory response. Type II toxin–antitoxin (TA) systems have emerged as important virulence factors in many pathogenic bacteria. Three type II TA systems have previously been identified in the genome of H. pylori 26695: HP0315–HP0316, HP0892–HP0893, and HP0894–HP0895. Here we characterized a heretofore undescribed type II TA system in H. pylori, HP0967–HP0968, which is encoded by the bicistronic operon hp0968–hp0967 and belongs to the Vap family. The predicted HP0967 protein is a toxin with ribonuclease activity whereas HP0968 is an antitoxin that binds to its own regulatory region. We found that all type II TA systems were expressed in H. pylori during early stationary growth phase, and differentially expressed in the presence of urea, nickel, and iron, although, the hp0968–hp0967 pair was the most affected under these environmental conditions. Transcription of hp0968–hp0967 was strongly induced in a mature H. pylori biofilm and when the bacteria interacted with AGS epithelial cells. Kanamycin and chloramphenicol considerably boosted transcription levels of all the four type II TA systems. The hp0968–hp0967 TA system was the most frequent among 317 H. pylori strains isolated from all over the world. This study is the first report on the transcription of type II TA genes in H. pylori under different environmental conditions. Our data show that the HP0967 and HP0968 proteins constitute a bona fide type II TA system in H. pylori, whose expression is regulated by environmental cues, which are relevant in the context of infection of the human gastric mucosa. PMID:27920769

  2. Difficulties with Pitch Discrimination Influences Pitch Memory Performance: Evidence from Congenital Amusia

    PubMed Central

    Jiang, Cunmei; Lim, Vanessa K.; Wang, Hang; Hamm, Jeff P.

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual’s threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones) differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory. PMID:24205375

  3. Variable Pitch Propellers

    NASA Technical Reports Server (NTRS)

    1920-01-01

    In this report are described four different types of propellers which appeared at widely separated dates, but which were exhibited together at the last Salon de l'Aeronautique. The four propellers are the Chaviere variable pitch propeller, the variable pitch propeller used on the Clement Bayard dirigible, the variable pitch propeller used on Italian dirigibles, and the Levasseur variable pitch propeller.

  4. Demonstration of electronic design automation flow for massively parallel e-beam lithography

    NASA Astrophysics Data System (ADS)

    Brandt, Pieter; Belledent, Jérôme; Tranquillin, Céline; Figueiro, Thiago; Meunier, Stéfanie; Bayle, Sébastien; Fay, Aurélien; Milléquant, Matthieu; Icard, Beatrice; Wieland, Marco

    2014-07-01

    For proximity effect correction in 5 keV e-beam lithography, three elementary building blocks exist: dose modulation, geometry (size) modulation, and background dose addition. Combinations of these three methods are quantitatively compared in terms of throughput impact and process window (PW). In addition, overexposure in combination with negative bias results in PW enhancement at the cost of throughput. In proximity effect correction by over exposure (PEC-OE), the entire layout is set to fixed dose and geometry sizes are adjusted. In PEC-dose to size (DTS) both dose and geometry sizes are locally optimized. In PEC-background (BG), a background is added to correct the long-range part of the point spread function. In single e-beam tools (Gaussian or Shaped-beam), throughput heavily depends on the number of shots. In raster scan tools such as MAPPER Lithography's FLX 1200 (MATRIX platform) this is not the case and instead of pattern density, the maximum local dose on the wafer is limiting throughput. The smallest considered half-pitch is 28 nm, which may be considered the 14-nm node for Metal-1 and the 10-nm node for the Via-1 layer, achieved in a single exposure with e-beam lithography. For typical 28-nm-hp Metal-1 layouts, it was shown that dose latitudes (size of process window) of around 10% are realizable with available PEC methods. For 28-nm-hp Via-1 layouts this is even higher at 14% and up. When the layouts do not reach the highest densities (up to 10∶1 in this study), PEC-BG and PEC-OE provide the capability to trade throughput for dose latitude. At the highest densities, PEC-DTS is required for proximity correction, as this method adjusts both geometry edges and doses and will reduce the dose at the densest areas. For 28-nm-hp lines critical dimension (CD), hole&dot (CD) and line ends (edge placement error), the data path errors are typically 0.9, 1.0 and 0.7 nm (3σ) and below, respectively. There is not a clear data path performance difference between

  5. Separating pitch chroma and pitch height in the human brain

    PubMed Central

    Warren, J. D.; Uppenkamp, S.; Patterson, R. D.; Griffiths, T. D.

    2003-01-01

    Musicians recognize pitch as having two dimensions. On the keyboard, these are illustrated by the octave and the cycle of notes within the octave. In perception, these dimensions are referred to as pitch height and pitch chroma, respectively. Pitch chroma provides a basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In contrast, pitch height provides a basis for segregation of notes into streams to separate sound sources. This paper reports a functional magnetic resonance experiment designed to search for distinct mappings of these two types of pitch change in the human brain. The results show that chroma change is specifically represented anterior to primary auditory cortex, whereas height change is specifically represented posterior to primary auditory cortex. We propose that tracking of acoustic information streams occurs in anterior auditory areas, whereas the segregation of sound objects (a crucial aspect of auditory scene analysis) depends on posterior areas. PMID:12909719

  6. Separating pitch chroma and pitch height in the human brain.

    PubMed

    Warren, J D; Uppenkamp, S; Patterson, R D; Griffiths, T D

    2003-08-19

    Musicians recognize pitch as having two dimensions. On the keyboard, these are illustrated by the octave and the cycle of notes within the octave. In perception, these dimensions are referred to as pitch height and pitch chroma, respectively. Pitch chroma provides a basis for presenting acoustic patterns (melodies) that do not depend on the particular sound source. In contrast, pitch height provides a basis for segregation of notes into streams to separate sound sources. This paper reports a functional magnetic resonance experiment designed to search for distinct mappings of these two types of pitch change in the human brain. The results show that chroma change is specifically represented anterior to primary auditory cortex, whereas height change is specifically represented posterior to primary auditory cortex. We propose that tracking of acoustic information streams occurs in anterior auditory areas, whereas the segregation of sound objects (a crucial aspect of auditory scene analysis) depends on posterior areas.

  7. Application of variable teeth pitch face mill as chatter suppression method for non-rigid technological system

    NASA Astrophysics Data System (ADS)

    Svinin, V. M.; Savilov, A. V.

    2018-03-01

    The article describes the results of experimental studies on the effects of variation type for variable teeth pitches on low-rigidity workpiece chatter suppression efficiency in a feed direction and in a direction of the normal to the machined surface. Mill operation performance was identified by comparing the amplitudes of dominant chatter harmonics using constant and variable teeth pitches. The following variable pitch formation variants were studied: alternative, linear rising, and linear rising falling. The angle difference of adjacent teeth pitches ranged from 0 to 10°, from 5 to 8° and from 5 to 10° with interval of 1°. The experiments showed that for all variants, machining dynamics performance resulted from the difference of adjacent pitches corresponding to a half the chatter wavelength along the cutting surface. The alternative nature of a variable teeth pitch is most efficient as it almost completely suppresses the chatters. Theoretical explanations of the results are presented

  8. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.

    PubMed

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-05-04

    The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.

  9. Murine chronic lymph node window for longitudinal intravital lymph node imaging.

    PubMed

    Meijer, Eelco F J; Jeong, Han-Sin; Pereira, Ethel R; Ruggieri, Thomas A; Blatter, Cedric; Vakoc, Benjamin J; Padera, Timothy P

    2017-08-01

    Chronic imaging windows in mice have been developed to allow intravital microscopy of many different organs and have proven to be of paramount importance in advancing our knowledge of normal and disease processes. A model system that allows long-term intravital imaging of lymph nodes would facilitate the study of cell behavior in lymph nodes during the generation of immune responses in a variety of disease settings and during the formation of metastatic lesions in cancer-bearing mice. We describe a chronic lymph node window (CLNW) surgical preparation that allows intravital imaging of the inguinal lymph node in mice. The CLNW is custom-made from titanium and incorporates a standard coverslip. It allows stable longitudinal imaging without the need for serial surgeries while preserving lymph node blood and lymph flow. We also describe how to build and use an imaging stage specifically designed for the CLNW to prevent (large) rotational changes as well as respiratory movement during imaging. The entire procedure takes approximately half an hour per mouse, and subsequently allows for longitudinal intravital imaging of the murine lymph node and surrounding structures for up to 14 d. Small-animal surgery experience is required to successfully carry out the protocol.

  10. Advances in dual-tone development for pitch frequency doubling

    NASA Astrophysics Data System (ADS)

    Fonseca, Carlos; Somervell, Mark; Scheer, Steven; Kuwahara, Yuhei; Nafus, Kathleen; Gronheid, Roel; Tarutani, Shinji; Enomoto, Yuuichiro

    2010-04-01

    Dual-tone development (DTD) has been previously proposed as a potential cost-effective double patterning technique1. DTD was reported as early as in the late 1990's2. The basic principle of dual-tone imaging involves processing exposed resist latent images in both positive tone (aqueous base) and negative tone (organic solvent) developers. Conceptually, DTD has attractive cost benefits since it enables pitch doubling without the need for multiple etch steps of patterned resist layers. While the concept for DTD technique is simple to understand, there are many challenges that must be overcome and understood in order to make it a manufacturing solution. Previous work by the authors demonstrated feasibility of DTD imaging for 50nm half-pitch features at 0.80NA (k1 = 0.21) and discussed challenges lying ahead for printing sub-40nm half-pitch features with DTD. While previous experimental results suggested that clever processing on the wafer track can be used to enable DTD beyond 50nm halfpitch, it also suggest that identifying suitable resist materials or chemistries is essential for achieving successful imaging results with novel resist processing methods on the wafer track. In this work, we present recent advances in the search for resist materials that work in conjunction with novel resist processing methods on the wafer track to enable DTD. Recent experimental results with new resist chemistries, specifically designed for DTD, are presented in this work. We also present simulation studies that help and support identifying resist properties that could enable DTD imaging, which ultimately lead to producing viable DTD resist materials.

  11. Pitch features of environmental sounds

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Kang, Jian

    2016-07-01

    A number of soundscape studies have suggested the need for suitable parameters for soundscape measurement, in addition to the conventional acoustic parameters. This paper explores the applicability of pitch features that are often used in music analysis and their algorithms to environmental sounds. Based on the existing alternative pitch algorithms for simulating the perception of the auditory system and simplified algorithms for practical applications in the areas of music and speech, the applicable algorithms have been determined, considering common types of sound in everyday soundscapes. Considering a number of pitch parameters, including pitch value, pitch strength, and percentage of audible pitches over time, different pitch characteristics of various environmental sounds have been shown. Among the four sound categories, i.e. water, wind, birdsongs, and urban sounds, generally speaking, both water and wind sounds have low pitch values and pitch strengths; birdsongs have high pitch values and pitch strengths; and urban sounds have low pitch values and a relatively wide range of pitch strengths.

  12. Establishment of expanded and streamlined pipeline of PITCh knock-in – a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO

    PubMed Central

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-01-01

    ABSTRACT The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer (http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively. PMID:28453368

  13. Pitch discrimination learning: specificity for pitch and harmonic resolvability, and electrophysiological correlates.

    PubMed

    Carcagno, Samuele; Plack, Christopher J

    2011-08-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.

  14. The Effect of Timbre, Pitch, and Vibrato on Vocal Pitch-Matching Accuracy.

    PubMed

    Duvvuru, Sirisha; Erickson, Molly

    2016-05-01

    This study seeks to examine how target stimulus timbre, vibrato, pitch, and singer classification affect pitch-matching accuracy. This is a repeated-measures factorial design. Source signals were synthesized with a source slope of -12 dB/octave with and without vibrato at each of the pitches, C4, B4, and F5. These source signals were filtered using five formant patterns (A-E) constituting a total of 30 stimuli (5 formant patterns × 3 pitches × 2 vibrato conditions). Twelve sopranos and 11 mezzo-sopranos with at least 3 years of individual voice training were recruited from the University Of Tennessee, Knoxville, School of Music and the Knoxville Opera Company. Each singer attempted to match the pitch of all 30 stimuli presented twice in a random order. Results indicated that there was no significant effect of formant pattern on pitch-matching accuracy. With increasing pitch from C4 to F5, pitch-matching accuracy increased in midpoint of the vowel condition but not in prephonatory set condition. Mezzo-sopranos moved toward being in tune from prephonatory to midpoint of the vowel. However, sopranos at C4 sang closer to being in tune at prephonatory but lowered the pitch at the midpoint of the vowel. Presence or absence of vibrato did not affect the pitch-matching accuracy. However, the interesting finding of the study was that singers attempted to match the timbre of stimuli with vibrato. The results of this study show that pitch matching is a complex process affected by many parameters. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Resist image quality control via acid diffusion constant and/or photodecomposable quencher concentration in the fabrication of 11 nm half-pitch line-and-space patterns using extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2018-05-01

    Extreme-ultraviolet (EUV) lithography will be applied to the high-volume production of semiconductor devices with 16 nm half-pitch resolution and is expected to be extended to that of devices with 11 nm half-pitch resolution. With the reduction in the feature sizes, the control of acid diffusion becomes a significant concern. In this study, the dependence of resist image quality on T PEB D acid and photodecomposable quencher concentration was investigated by the Monte Carlo method on the basis of the sensitization and reaction mechanisms of chemically amplified EUV resists. Here, T PEB and D acid are the postexposure baking (PEB) time and the acid diffusion constant, respectively. The resist image quality of 11 nm line-and-space patterns is discussed in terms of line edge roughness (LER) and stochastic defect generation. For the minimization of LER, it is necessary to design and control not only the photodecomposable quencher concentration but also T PEB D acid. In this case, D acid should be adjusted to be 0.3–1.5 nm2 s‑1 for a PEB time of 60 s with optimization of the balance among LER and stochastic pinching and bridging. Even if it is difficult to decrease D acid to the range of 0.3–1.5 nm2 s‑1, the image quality can still be controlled via only the photodecomposable quencher concentration, although LER and stochastic pinching and bridging are slightly increased. In this case, accurate control of the photodecomposable quencher concentration and the reduction in the initial standard deviation of the number of protected units are required.

  16. Characterizing optical polishing pitch

    NASA Astrophysics Data System (ADS)

    Varshneya, Rupal; DeGroote, Jessica E.; Gregg, Leslie L.; Jacobs, Stephen D.

    2003-05-01

    Characterization data for five experimental optical polishing pitch products were compared to those for corresponding standard commercial optical polishing pitches. The experimental pitches were tested for three physical properties: hardness, viscosity at 90°C, and softening point. A Shore A Durometer test was used to measure hardness. Viscosity data were collected using a Stony Brook Scientific falling needle viscometer. Softening point was determined using the ASTM D3104-97 method. Results demonstrate that the softest and the hardest batches of the experimental grades of optical pitch are comparable to the industry-accepted standards, while the other grades of pitch are not. The experimental methodology followed in this research may allow opticians to rapidly compare different brands of pitch to help identify batch-to-batch differences and control pitch quality before use.

  17. Characterizing optical polishing pitch

    NASA Astrophysics Data System (ADS)

    Varshneya, Rupal

    2003-05-01

    Characterization data for five experimental optical polishing pitch products were compared to those for corresponding standard commercial optical polishing pitches. The experimental pitches were tested for three physical properties: hardness, viscosity at 90°C, and softening point. A Shore A Durometerl test was used to measure hardness. Viscosity data were collected using a Stony Brook Scientific' falling needle viscometer. Softening point was determined using the ASTM D3104-97 method. Results demonstrate that the softest and the hardest batches of the experimental grades of optical pitch are comparable to the industry-accepted standards, while the other grades of pitch are not. The experimental methodology followed in this research may allow opticians to rapidly compare different brands of pitch to help identify batch- to- batch differences and control pitch quality before use.

  18. Post place and route design-technology co-optimization for scaling at single-digit nodes with constant ground rules

    NASA Astrophysics Data System (ADS)

    Mattii, Luca; Milojevic, Dragomir; Debacker, Peter; Berekovic, Mladen; Sherazi, Syed Muhammad Yasser; Chava, Bharani; Bardon, Marie Garcia; Schuddinck, Pieter; Rodopoulos, Dimitrios; Baert, Rogier; Gerousis, Vassilios; Ryckaert, Julien; Raghavan, Praveen

    2018-01-01

    Standard-cell design, technology choices, and place and route (P&R) efficiency are deeply interrelated in CMOS technology nodes below 10 nm, where lower number of tracks cells and higher pin densities pose increasingly challenging problems to the router in terms of congestion and pin accessibility. To evaluate and downselect the best solutions, a holistic design-technology co-optimization approach leveraging state-of-the-art P&R tools is thus necessary. We adopt such an approach using the imec N7 technology platform, with contacted poly pitch of 42 nm and tightest metal pitch of 32 nm, by comparing post P&R area of an IP block for different standard cell configurations, technology options, and cell height. Keeping the technology node and the set of ground rules unchanged, we demonstrate that a careful combination of these solutions can enable area gains of up to 50%, comparable with the area benefits of migrating to another node. We further demonstrate that these area benefits can be achieved at isoperformance with >20% reduced power. As at the end of the CMOS roadmap, conventional scaling enacted through pitch reduction is made more and more challenging by constraints imposed by lithography limits, material resistivity, manufacturability, and ultimately wafer cost, the approach shown herein offers a valid, attractive, and low-cost alternative.

  19. The role of timbre in pitch matching abilities and pitch discrimination abilities with complex tones

    NASA Astrophysics Data System (ADS)

    Moore, Robert E.; Watts, Christopher R.; Zhang, Fawen

    2004-05-01

    Control of fundamental frequency (F0) is important for singing in-tune and is an important factor related to the perception of a talented singing voice. One purpose of the present study was to investigate the relationship between pitch-matching skills, which is one method of testing F0 control, and pitch discrimination skills. It was observed that there was a relationship between pitch matching abilities and pitch discrimination abilities. Those subjects that were accurate pitch matchers were also accurate pitch discriminators (and vice versa). Further, timbre differences appeared to play a role in pitch discrimination accuracy. A second part of the study investigated the effect of timbre on speech discrimination. To study this, all but the first five harmonics of complex tones with different timbre were removed for the pitch discrimination task, thus making the tones more similar in timbre. Under this condition no difference was found between the pitch discrimination abilities of those who were accurate pitch matchers and those who were inaccurate pitch matchers. The results suggest that accurate F0 control is at least partially dependent on pitch discrimination abilities, and timbre appears to play an important role in differences in pitch discrimination ability.

  20. Efficiency enhancement of a self-propelled pitching profile using non-sinusoidal trajectories

    NASA Astrophysics Data System (ADS)

    Mekadem, M.; Chihani, E.; Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2017-11-01

    A symmetrical profile is subjected to non-sinusoidal pitching motion. The airfoil has a chord length c = 0.006 m and a semi-circular leading edge with a diameter of D = 0.001 m. The extrados and intrados are two straight lines that intersect at a tapered trailing edge, and the pitching pivot point is positioned at the leading edge. The pitching frequency is in the range of 1 <= f <= 190 Hz, while the tangential amplitude of the flapping trailing edge varies from 18% to 114% of the foil cord. To improve the airfoil propulsive performance, two-dimensional numerical simulations are implemented on FLUENT. The Reynolds number based upon the maximum profile thickness D varies in the range of 35 <= Re <= 210 , which matches insect's Reynolds numbers. The foil movement is executed using the dynamic mesh technique and a user defined function (UDF). The adopted mesh has 70,445 nodes with 5,1960 quadrilateral cells. The results are in good agreement with prior experiments, and, compared to sinusoidal oscillations, show that non-sinusoidal flapping trajectories lead to advancing velocity increase of 550%. Additionally, if improved propulsive efficiency is sought, non-sinusoidal flapping lead to better thrust.

  1. Softball Pitching and Injury.

    PubMed

    Lear, Aaron; Patel, Niraj

    2016-01-01

    The windmill softball pitch generates considerable forces about the athlete's shoulder and elbow. The injury pattern of softball pitchers seems to be primarily overuse injury, and they seem not to suffer the same volume of injury that baseball pitchers do. This article will explore softball pitching techniques, kinetics and kinematics of the windmill pitch, epidemiology of softball pitchers, and discuss possible etiologies of softball pitching injuries.

  2. Binaural pitch fusion: Pitch averaging and dominance in hearing-impaired listeners with broad fusion.

    PubMed

    Oh, Yonghee; Reiss, Lina A J

    2017-08-01

    Both bimodal cochlear implant and bilateral hearing aid users can exhibit broad binaural pitch fusion, the fusion of dichotically presented tones over a broad range of pitch differences between ears [Reiss, Ito, Eggleston, and Wozny. (2014). J. Assoc. Res. Otolaryngol. 15(2), 235-248; Reiss, Eggleston, Walker, and Oh. (2016). J. Assoc. Res. Otolaryngol. 17(4), 341-356; Reiss, Shayman, Walker, Bennett, Fowler, Hartling, Glickman, Lasarev, and Oh. (2017). J. Acoust. Soc. Am. 143(3), 1909-1920]. Further, the fused binaural pitch is often a weighted average of the different pitches perceived in the two ears. The current study was designed to systematically measure these pitch averaging phenomena in bilateral hearing aid users with broad fusion. The fused binaural pitch of the reference-pair tone combination was initially measured by pitch-matching to monaural comparison tones presented to the pair tone ear. The averaged results for all subjects showed two distinct trends: (1) The fused binaural pitch was dominated by the lower-pitch component when the pair tone was either 0.14 octaves below or 0.78 octaves above the reference tone; (2) pitch averaging occurred when the pair tone was between the two boundaries above, with the most equal weighting at 0.38 octaves above the reference tone. Findings from two subjects suggest that randomization or alternation of the comparison ear can eliminate this asymmetry in the pitch averaging range. Overall, these pitch averaging phenomena suggest that spectral distortions and thus binaural interference may arise during binaural stimulation in hearing-impaired listeners with broad fusion.

  3. Perfect pitch reconsidered.

    PubMed

    Moulton, Calum

    2014-10-01

    Perfect pitch, or absolute pitch (AP), is defined as the ability to identify or produce the pitch of a sound without need for a reference pitch, and is generally regarded as a valuable asset to the musician. However, there has been no recent review of the literature examining its aetiology and its utility taking into account emerging scientific advances in AP research, notably in functional imaging. This review analyses the key empirical research on AP, focusing on genetic and neuroimaging studies. The review concludes that: AP probably has a genetic predisposition, although this is based on limited evidence; early musical training is almost certainly essential for AP acquisition; and, although there is evidence that it may be relevant to speech processing, AP can interfere with relative pitch, an ability on which humans rely to communicate effectively. The review calls into question the value of AP to musicians and non-musicians alike. © 2014 Royal College of Physicians.

  4. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech

    PubMed Central

    Yang, Wu-xia; Feng, Jie; Huang, Wan-ting; Zhang, Cheng-xiang; Nan, Yun

    2014-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent. PMID:24474944

  5. Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch.

    PubMed

    Schatzer, Reinhold; Vermeire, Katrien; Visser, Daniel; Krenmayr, Andreas; Kals, Mathias; Voormolen, Maurits; Van de Heyning, Paul; Zierhofer, Clemens

    2014-03-01

    Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEX(SOFT) electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding

  6. Hemispheric lateralization for early auditory processing of lexical tones: dependence on pitch level and pitch contour.

    PubMed

    Wang, Xiao-Dong; Wang, Ming; Chen, Lin

    2013-09-01

    In Mandarin Chinese, a tonal language, pitch level and pitch contour are two dimensions of lexical tones according to their acoustic features (i.e., pitch patterns). A change in pitch level features a step change whereas that in pitch contour features a continuous variation in voice pitch. Currently, relatively little is known about the hemispheric lateralization for the processing of each dimension. To address this issue, we made whole-head electrical recordings of mismatch negativity in native Chinese speakers in response to the contrast of Chinese lexical tones in each dimension. We found that pre-attentive auditory processing of pitch level was obviously lateralized to the right hemisphere whereas there is a tendency for that of pitch contour to be lateralized to the left. We also found that the brain responded faster to pitch level than to pitch contour at a pre-attentive stage. These results indicate that the hemispheric lateralization for early auditory processing of lexical tones depends on the pitch level and pitch contour, and suggest an underlying inter-hemispheric interactive mechanism for the processing. © 2013 Elsevier Ltd. All rights reserved.

  7. Intact EAV-HP Endogenous Retrovirus in Sonnerat's Jungle Fowl

    PubMed Central

    Sacco, M. A.; Howes, K.; Venugopal, K.

    2001-01-01

    The EAV-HP group of chicken endogenous retrovirus elements was previously shown to be defective, with large deletions of the pol gene. In this report, we demonstrate that genomes of other Gallus species also maintain EAV-HP elements with similar deletions. The chicken EAV-HP1 locus was detected in both red (Gallus gallus gallus) and Sonnerat's (Gallus sonneratii) jungle fowl with identical integration sites, indicating that these elements had integrated before separation of the Gallus species. Furthermore, we demonstrate for the first time that the G. sonneratii genome carries EAV-HP elements with intact pol regions. PMID:11160706

  8. Correlation between processing conditions, microstructure and charge transport in half-Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makongo, Julien P.A.; Zhou, Xiaoyuan; Misra, Dinesh K.

    2013-05-01

    Five bulk samples of n-type Zr₀.₂₅Hf₀.₇₅NiSn₀.₉₇₅Sb₀.₀₂₅ half-Heusler (HH) alloy were fabricated by reacting elemental powders via (1) high temperature solid state (SS) reaction and (2) mechanical alloying (MA), followed by densification using spark plasma sintering (SPS) and/or hot pressing (HP). A portion of the sample obtained by SS reaction was mechanically alloyed before consolidation by hot pressing (SS–MA–HP). X-ray powder diffraction and transmission electron microscopy studies revealed that all SS specimen (SS–SPS, SS–HP, SS–MA–HP) are single phase HH alloys, whereas the MA sample (MA–SPS) contains metallic nanoprecipitates. Electronic and thermal transport measurements showed that the embedded nanoprecipitates induce a drasticmore » increase in the carrier concentration (n), a large decrease in the Seebeck coefficient (S) and a marginal decrease in the lattice thermal conductivity (κ l) of the MA–SPS sample leading to lower ZT values when compared to the SS–HP samples. Constant values of S are observed for the SS series regardless of the processing method. However, a strong dependence of the carrier mobility (μ), electrical conductivity (σ) and κ l on the processing and consolidation method is observed. For instance, mechanical alloying introduces additional structural defects which enhance electron and phonon scattering leading to moderately low values of μ and large reduction in κ l. This results in a net 20% enhancement in the figure of merit (ZT=0.6 at 775 K). HH specimen of the same nominal composition with higher ZT is anticipated from a combination of SS reaction, MA and SPS (SS–MA–SPS). - Graphical abstract: In half-Heusler alloys, thermopower values are insensitive to processing method, whereas carrier mobility (μ), electrical conductivity (σ), and κ l strongly dependent on the microstructure which in turn is altered by the synthesis, processing and consolidation method. Highlights:

  9. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    PubMed Central

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  10. Animal Pitch Perception: Melodies and Harmonies

    PubMed Central

    Hoeschele, Marisa

    2017-01-01

    Pitch is a percept of sound that is based in part on fundamental frequency. Although pitch can be defined in a way that is clearly separable from other aspects of musical sounds, such as timbre, the perception of pitch is not a simple topic. Despite this, studying pitch separately from other aspects of sound has led to some interesting conclusions about how humans and other animals process acoustic signals. It turns out that pitch perception in humans is based on an assessment of pitch height, pitch chroma, relative pitch, and grouping principles. How pitch is broken down depends largely on the context. Most, if not all, of these principles appear to also be used by other species, but when and how accurately they are used varies across species and context. Studying how other animals compare to humans in their pitch abilities is partially a reevaluation of what we know about humans by considering ourselves in a biological context. PMID:28649291

  11. Audio-visual interactions uniquely contribute to resolution of visual conflict in people possessing absolute pitch.

    PubMed

    Kim, Sujin; Blake, Randolph; Lee, Minyoung; Kim, Chai-Youn

    2017-01-01

    Individuals possessing absolute pitch (AP) are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3-19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On "pitch-congruent" trials, participants heard an auditory melody that was congruent in pitch with the visual score, on "pitch-incongruent" trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on "melody-incongruent" trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts the salience of a

  12. Audio-visual interactions uniquely contribute to resolution of visual conflict in people possessing absolute pitch

    PubMed Central

    Kim, Sujin; Blake, Randolph; Lee, Minyoung; Kim, Chai-Youn

    2017-01-01

    Individuals possessing absolute pitch (AP) are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3–19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On “pitch-congruent” trials, participants heard an auditory melody that was congruent in pitch with the visual score, on “pitch-incongruent” trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on “melody-incongruent” trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts the

  13. Mitotic Mysteries: The Case of HP1.

    PubMed

    Higgins, Jonathan M G; Prendergast, Lisa

    2016-03-07

    The role of Heterochromatin Protein-1 (HP1) during mitosis has been controversial. Two recent studies in Science and Developmental Cell, from Tanno et al. (2015) and Abe et al. (2016), suggest that the means of HP1 localization and its function at inner centromeres are altered in cancer cells with chromosomal instability. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Considerations for fine hole patterning for the 7nm node

    NASA Astrophysics Data System (ADS)

    Yaegashi, Hidetami; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shohei; Yamato, Masatoshi; Koike, Kyohei

    2016-03-01

    One of the practical candidates to produce 7nm node logic devices is to use the multiple patterning with 193-immersion exposure. For the multiple patterning, it is important to evaluate the relation between the number of mask layer and the minimum pitch systematically to judge the device manufacturability. Although the number of the time of patterning, namely LE(Litho-Etch) ^ x-time, and overlay steps have to be reduced, there are some challenges in miniaturization of hole size below 20nm. Various process fluctuations on contact hole have a direct impact on device performance. According to the technical trend, 12nm diameter hole on 30nm-pitch hole will be needed on 7nm node. Extreme ultraviolet lithography (EUV) and Directed self-assembly (DSA) are attracting considerable attention to obtain small feature size pattern, however, 193-immersion still has the potential to extend optical lithography cost-effectively for sub-7nm node. The objective of this work is to study the process variation challenges and resolution in post-processing for the CD-bias control to meet sub-20nm diameter contact hole. Another pattern modulation is also demonstrated during post-processing step for hole shrink. With the realization that pattern fidelity and pattern placement management will limit scaling long before devices and interconnects fail to perform intrinsically, the talk will also outline how circle edge roughness (CER) and Local-CD uniformity can correct efficiency. On the other hand, 1D Gridded-Design-Rules layout (1D layout) has simple rectangular shapes. Also, we have demonstrated CD-bias modification on short trench pattern to cut grating line for its fabrication.

  15. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch.

    PubMed

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A; Larson, Charles R

    2014-02-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. 64nm pitch metal1 double patterning metrology: CD and OVL control by SEMCD, image based overlay and diffraction based overlay

    NASA Astrophysics Data System (ADS)

    Ducoté, Julien; Dettoni, Florent; Bouyssou, Régis; Le-Gratiet, Bertrand; Carau, Damien; Dezauzier, Christophe

    2015-03-01

    Patterning process control of advanced nodes has required major changes over the last few years. Process control needs of critical patterning levels since 28nm technology node is extremely aggressive showing that metrology accuracy/sensitivity must be finely tuned. The introduction of pitch splitting (Litho-Etch-Litho-Etch) at 14FDSOInm node requires the development of specific metrologies to adopt advanced process control (for CD, overlay and focus corrections). The pitch splitting process leads to final line CD uniformities that are a combination of the CD uniformities of the two exposures, while the space CD uniformities are depending on both CD and OVL variability. In this paper, investigations of CD and OVL process control of 64nm minimum pitch at Metal1 level of 14FDSOI technology, within the double patterning process flow (Litho, hard mask etch, line etch) are presented. Various measurements with SEMCD tools (Hitachi), and overlay tools (KT for Image Based Overlay - IBO, and ASML for Diffraction Based Overlay - DBO) are compared. Metrology targets are embedded within a block instanced several times within the field to perform intra-field process variations characterizations. Specific SEMCD targets were designed for independent measurement of both line CD (A and B) and space CD (A to B and B to A) for each exposure within a single measurement during the DP flow. Based on those measurements correlation between overlay determined with SEMCD and with standard overlay tools can be evaluated. Such correlation at different steps through the DP flow is investigated regarding the metrology type. Process correction models are evaluated with respect to the measurement type and the intra-field sampling.

  17. HP-1γ Controls High-Affinity Antibody Response to T-Dependent Antigens

    PubMed Central

    Ha, Ngoc; Pham, Duc-Hung; Shahsafaei, Aliakbar; Naruse, Chie; Asano, Masahide; Thai, To-Ha

    2014-01-01

    In vitro observations suggest a role for the mouse heterochromatin protein 1γ (HP-1γ) in the immune system. However, it has not been shown if and how HP-1γ contributes to immunity in vivo. Here we show that in mice, HP-1γ positively regulates the germinal center reaction and high-affinity antibody response to thymus (T)-dependent antigens by limiting the size of CD8+ regulatory T-cell (Treg) compartment without affecting progenitor B- or T-cell-development. Moreover, HP-1γ does not control cell proliferation or class switch recombination. Haploinsufficiency of cbx-3 (gene encoding HP-1γ) is sufficient to expand the CD8+ Treg population and impair the immune response in mice despite the presence of wild-type HP-1α and HP-1β. This is the first in vivo evidence demonstrating the non-redundant role of HP-1γ in immunity. PMID:24971082

  18. Global investigations of the satellite-based Fugro OmniSTAR HP service

    NASA Astrophysics Data System (ADS)

    Pflugmacher, Andreas; Heister, Hansbert; Heunecke, Otto

    2009-12-01

    OmniSTAR is one of the world's leading suppliers of satellite-based augmentation services for onshore and offshore GNSS applications. OmniSTAR currently offers three services: VBS, HP and XP. OmniSTAR VBS is the code-based service, suitable for sub-metre positioning accuracy. The HP and XP services provide sub-decimetre accuracy, with the HP service based on a precise differential methodology and the XP service uses precise absolute positioning. The sub-decimetre HP and XP services both have distinctive convergence behaviour, and the positioning task is essentially a time-dependent process during which the accuracy of the estimated coordinates continuously improves over time. To validate the capabilities of the OmniSTAR services, and in particular the HP (High Performance) service, globally distributed measurement campaigns were performed. The results of these investigations confirm that the HP service satisfies its high accuracy specification, but only after a sufficient initialisation phase. Two kinds of disturbances can handicap HP operation: lack of GNSS observations and outages of the augmentation signal. The most serious kind of disturbance is the former. Within a few seconds the achieved convergence level is completely lost. Outages in the reception of augmentation data merely affect the relevant period of the outage - the accuracy during the outage is degraded. Only longer interruptions lead to a loss of the HP solution. When HP convergence is lost, the HP process has to be re-initialized. If there are known points (so-called “seed points”) available, a shortened “kick-start”-initialization is possible. With the aid of seed points it only takes a few minutes to restore convergence.

  19. The Hughes HS601HP spacecraft power subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krummann, W.; Ayvazian, H.

    1998-07-01

    The introduction of the Hughes HS 601HP (high power) spacecraft product line continuous the highly successful HS601 three axis stabilized geosynchronus spacecraft with increased power capabilities for larger payload applications. The enhanced power capabilities of the HS 601HP are built upon the heritage of 29 HS601 spacecraft presently in operation. The HS 601HP accommodates payload power ranges of 3 to 7 kilowatts and provides a smooth transition from the lower power HS 601 spacecraft to the HS 702 spacecraft, which has a payload capability up to 13 kilowatts. The HS 601HP spacecraft is designed for a 15 year life withmore » minimal operator interaction. The HS 601HP power subsystem provides a regulated power bus with a voltage range of 52 to 53 volts during all operational phases. The power subsystem is tailored to the specific needs of the spacecraft by selecting standard products from the HS 601HP power catalog. The solar arrays, battery, power control electronics and power distribution electronics are all modular and configurable to the requirements of the spacecraft. The HS 601HP solar array is the primary power source for the spacecraft. The solar array is comprised of two sets of planar solar panels (solar wings) which track the sun in a single spacecraft axis. The solar cells are selected from three different types based upon the spacecraft power generation requirements; silicon, single junction gallium arsenide or dual junction gallium arsenide. The maximum power capability at end of life (15 years, summer solstice) ranges from 4 to 7.7 kilowatts for the three types of solar cells. The HS 601HP battery is the power source for the spacecraft during eclipse and peak sunlight power periods. The battery is comprised of four individual battery packs connected in series to produce a single battery. Each battery pack can accommodate a maximum of eight battery cells with a capacity of 350 ampere-hours. The battery pack also provides for mounting of all

  20. Propeller/fan-pitch feathering apparatus

    NASA Technical Reports Server (NTRS)

    Schilling, Jan C. (Inventor); Adamson, Arthur P. (Inventor); Bathori, Julius (Inventor); Walker, Neil (Inventor)

    1990-01-01

    A pitch feathering system for a gas turbine driven aircraft propeller having multiple variable pitch blades utilizes a counter-weight linked to the blades. The weight is constrained to move, when effecting a pitch change, only in a radial plane and about an axis which rotates about the propeller axis. The system includes a linkage allowing the weight to move through a larger angle than the associated pitch change of the blade.

  1. Pitch perception prior to cortical maturation

    NASA Astrophysics Data System (ADS)

    Lau, Bonnie K.

    Pitch perception plays an important role in many complex auditory tasks including speech perception, music perception, and sound source segregation. Because of the protracted and extensive development of the human auditory cortex, pitch perception might be expected to mature, at least over the first few months of life. This dissertation investigates complex pitch perception in 3-month-olds, 7-month-olds and adults -- time points when the organization of the auditory pathway is distinctly different. Using an observer-based psychophysical procedure, a series of four studies were conducted to determine whether infants (1) discriminate the pitch of harmonic complex tones, (2) discriminate the pitch of unresolved harmonics, (3) discriminate the pitch of missing fundamental melodies, and (4) have comparable sensitivity to pitch and spectral changes as adult listeners. The stimuli used in these studies were harmonic complex tones, with energy missing at the fundamental frequency. Infants at both three and seven months of age discriminated the pitch of missing fundamental complexes composed of resolved and unresolved harmonics as well as missing fundamental melodies, demonstrating perception of complex pitch by three months of age. More surprisingly, infants in both age groups had lower pitch and spectral discrimination thresholds than adult listeners. Furthermore, no differences in performance on any of the tasks presented were observed between infants at three and seven months of age. These results suggest that subcortical processing is not only sufficient to support pitch perception prior to cortical maturation, but provides adult-like sensitivity to pitch by three months.

  2. Cortical pitch response components show differential sensitivity to native and nonnative pitch contours

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to evaluate how nonspeech pitch contours of varying shape influence latency and amplitude of cortical pitch-specific response (CPR) components differentially as a function of language experience. Stimuli included time-varying, high rising Mandarin Tone 2 (T2) and linear rising ramp (Linear), and steady-state (Flat). Both the latency and magnitude of CPR components were differentially modulated by (i) the overall trajectory of pitch contours (time-varying vs. steady-state), (ii) their pitch acceleration rates (changing vs. constant), and (iii) their linguistic status (lexical vs. non-lexical). T2 elicited larger amplitude than Linear in both language groups, but size of the effect was larger in Chinese than English. The magnitude of CPR components elicited by T2 were larger for Chinese than English at the right temporal electrode site. Using the CPR, we provide evidence in support of experience-dependent modulation of dynamic pitch contours at an early stage of sensory processing. PMID:25306506

  3. Development and analytical performance evaluation of FREND-SAA and FREND-Hp

    NASA Astrophysics Data System (ADS)

    Choi, Eunha; Seong, Jihyun; Lee, Seiyoung; Han, Sunmi

    2017-07-01

    The FREND System is a portable cartridge reader, quantifying analytes by measuring laser-induced fluorescence in a single-use reagent cartridge. The objective of this study was to evaluate FREND-SAA and FREND-Hp assays. The FREND-SAA and Hp assays were standardized to the WHO and IFCC reference materials. Analytical performance studies of Precision, Linearity, Limits of Detections, Interferences, and Method Comparisons for both assays were performed according to the CLSI guidelines. Both assays demonstrated acceptable imprecision of %CV in three different levels of samples. The linearity of the assays was found to be acceptable (SAA 5 150 mg/L, Hp 30 400 mg/dL). The detection limits were 3.8 mg/L (SAA) and 10.2 mg/dL (Hp). No significant interference and no significant deviation from linearity was found in the both comparison studies. In conclusion, NanoEnTek's FREND-SAA and Hp assays represent rapid, accurate and convenient means to quantify SAA and Hp in human serum on FREND system.

  4. The h-p Version of the Finite Element Method.

    DTIC Science & Technology

    1985-07-01

    commerical code (released in 1985) using the p and h-p versions. The h-p version combines the h and p-versions. The p-version was first theoretically studied ...satisfied 121 L1]- We will study the approximation (in the space H1 ) of functions u B2 ,d 2) by the h-p version and will show that exponential rate...where its various properties were studied . Let us mention the following lemma proven in [51 which will be needed r later. 2 2 0- Lemma 2.1. H5 (0 ) C

  5. Cam-Operated Pitch-Change Apparatus

    NASA Technical Reports Server (NTRS)

    Barnes, P. E. (Inventor)

    1978-01-01

    A pitch-change apparatus for a ducted thrust fan having a plurality of variable pitch blades employs a camming ring mounted coaxially at the hub at an axially fixed station along the hub axis for rotation about the hub axis both with the blades and relative to the blades. The ring has a generally spherical outer periphery and a plurality of helical camming grooves extending in a generally spherical plane on the periphery. Each of the variable pitch blades is connected to a pitch-change horn having a cam follower mounted on its outer end, and the camming ring and the horns are so arranged about the hub axis that the plurality of followers on the horns engage respectively the plurality of helical camming grooves. Rotary drive means rotates the camming ring relative to the blades to cause blade pitch to be changed through the cooperative operation of the camming grooves on the ring and the cam followers on the pitch-change horns.

  6. Cross-cultural perspectives on pitch memory.

    PubMed

    Trehub, Sandra E; Glenn Schellenberg, E; Nakata, Takayuki

    2008-05-01

    We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and 6-year-olds distinguished the pitch-shifted foils from the originals, performing significantly better than same-age Canadian children (Experiment 2). Moreover, Japanese 6-year-olds were more accurate than their 5-year-old counterparts. These findings challenge the prevailing view of enhanced pitch memory during early life. We consider factors that may account for Japanese children's superior performance such as their use of a pitch accent language (Japanese) rather than a stress accent language (English) and their experience with musical pitch labels.

  7. How Single-site Mutation Affects HP Lattice Proteins

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Landau, David P.; Vogel, Thomas; Wüst, Thomas; Li, Ying Wai

    2014-03-01

    We developed a heuristic method based on Wang-Landauand multicanonical sampling for determining the ground-state degeneracy of HP lattice proteins . Our algorithm allowed the most precise estimations of the (sometimes substantial) ground-state degeneracies of some widely studied HP sequences. We investigated the effects of single-site mutation on specific long HP lattice proteins comprehensively, including structural changes in ground-states, changes of ground-state degeneracy and thermodynamic properties of the systems. Both extremely sensitive and insensitive cases have been observed; consequently, properties such as specific heat, tortuosities etc. may be either largely unaffected or may change significantly due to mutation. More interestingly, mutation can even induce a lower ground-state energy in a few cases. Supported by NSF.

  8. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.

  9. The 3600 hp split-torque helicopter transmission

    NASA Technical Reports Server (NTRS)

    White, G.

    1985-01-01

    Final design details of a helicopter transmission that is powered by GE twin T 700 engines each rated at 1800 hp are presented. It is demonstrated that in comparison with conventional helicopter transmission arrangements the split torque design offers: weight reduction of 15%; reduction in drive train losses of 9%; and improved reliability resulting from redundant drive paths between the two engines and the main shaft. The transmission fits within the NASA LeRC 3000 hp Test Stand and accepts the existing positions for engine inputs, main shaft, connecting drive shafts, and the cradle attachment points. One necessary change to the test stand involved gear trains of different ratio in the tail drive gearbox. Progressive uprating of engine input power from 3600 to 4500 hp twin engine rating is allowed for in the design. In this way the test transmission will provide a base for several years of analytical, research, and component development effort targeted at improving the performance and reliability of helicopter transmission.

  10. Rationale of lymph node dissection for breast cancer--from the viewpoint of analysis of axillary lymphatic flow using activated carbon particle CH40.

    PubMed

    Sawai, K; Hagiwara, A; Shimotsuma, M; Sakakibara, T; Imanishi, T; Takemoto, Y; Takahashi, T

    1996-03-01

    In order to rationalize lymph node dissection for breast cancer, we reviewed regional lymphatic flow from the mesial and outer half of the breast using intra-tumoral injection of activated carbon particles (CH40). Seventy patients with breast cancer were included in this study. Cancers were located in the mesial half of the breast in 25 cases and in its outer half in 41 cases. Since regional lymph nodes were blackened by CH40, lymph node dissection was performed easily and small lymph nodes could be readily examined. The average number of resected nodes in each case was 29.4. When CH40 was injected into the mesial half of the breast, the rates of blackened nodes (number of macroscopically blackened lymph nodes/number of total removed lymph nodes) in the stations were 46.6% (No. 1a), 41.4% (No. 1b), 62.1% (No. 1c), 61.8% (No. 2), 69.2.% (No. 2h), and 65.6% (No. 3). When CH40 was injected into outer half of the breast, those were 62.0% (No. 1a), 64.3% (No. 1b), 68.7% (No. 1c), 75.3% (No. 2), and 67.8% (No. 2h). Regardless of tumor location, the rates of blackened nodes were high in each station. In conclusion, regardless of tumor location it is impossible to determine the level of axillary dissection for breast cancer. It should be all or nothing.

  11. Design of an advanced 500-HP helicopter transmission

    NASA Technical Reports Server (NTRS)

    Braddock, C. E.

    1982-01-01

    A 500-hp Advanced Technology Demonstrator helicopter transmission was designed by an American aerospace company under a NASA contract. The project was mainly concerned with designing a 500-hp version of the OH-58C 317-hp transmission which would have the capabilities for a long, quiet life at a minimum increase in cost, weight, and space, which usually increase along with power increases. This objective was accomplished by implementing advanced technology which has been developed during the last decade and by making improvements dictated by field experience. The improvements are related to bearings made of cleaner gear steels, spiral bevel gears made of cleaner gear steels, high contact ratio spur gear teeth in the planetary which will reduce noise level and increase gear life, and modifications concerning the sun gear.

  12. Method of casting pitch based foam

    DOEpatents

    Klett, James W.

    2002-01-01

    A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.

  13. Locally advanced pancreatic cancer: association between prolonged preoperative treatment and lymph-node negativity and overall survival.

    PubMed

    Kadera, Brian E; Sunjaya, Dharma B; Isacoff, William H; Li, Luyi; Hines, O Joe; Tomlinson, James S; Dawson, David W; Rochefort, Matthew M; Donald, Graham W; Clerkin, Barbara M; Reber, Howard A; Donahue, Timothy R

    2014-02-01

    Treatment of patients with locally advanced/borderline resectable (LA/BR) pancreatic ductal adenocarcinoma (PDAC) is not standardized. To (1) perform a detailed survival analysis of our institution's experience with patients with LA/BR PDAC who were downstaged and underwent surgical resection and (2) identify prognostic biomarkers that may help to guide a decision for the use of adjuvant therapy in this patient subgroup. Retrospective observational study of 49 consecutive patients from a single institution during 1992-2011 with American Joint Committee on Cancer stage III LA/BR PDAC who were initially unresectable, as determined by staging computed tomography and/or surgical exploration, and who were treated and then surgically resected. Clinicopathologic variables and prognostic biomarkers SMAD4, S100A2, and microRNA-21 were correlated with survival by univariate and multivariate Cox proportional hazard modeling. All 49 patients were deemed initially unresectable owing to vascular involvement. After completing preoperative chemotherapy for a median of 7.1 months (range, 5.4-9.6 months), most (75.5%) underwent a pylorus-preserving Whipple operation; 3 patients (6.1%) had a vascular resection. Strikingly, 37 of 49 patients were lymph-node (LN) negative (75.5%) and 42 (85.7%) had negative margins; 45.8% of evaluable patients achieved a complete histopathologic (HP) response. The median overall survival (OS) was 40.1 months (range, 22.7-65.9 months). A univariate analysis of HP prognostic biomarkers revealed that perineural invasion (hazard ratio, 5.5; P=.007) and HP treatment response (hazard ratio, 9.0; P=.009) were most significant. Lymph-node involvement, as a marker of systemic disease, was also significant on univariate analysis (P=.05). Patients with no LN involvement had longer OS (44.4 vs 23.2 months, P=.04) than LN-positive patients. The candidate prognostic biomarkers, SMAD4 protein loss (P=.01) in tumor cells and microRNA-21 expression in the stroma (P=.05

  14. High coking value pitch

    DOEpatents

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  15. Feminization laryngoplasty: assessment of surgical pitch elevation.

    PubMed

    Thomas, James P; Macmillan, Cody

    2013-09-01

    The aim of this study is to analyze change in pitch following feminization laryngoplasty, a technique to alter the vocal tract of male to female transgender patients. This is a retrospective review of 94 patients undergoing feminization laryngoplasty between June 2002 and April 2012 of which 76 individuals completed follow-up audio recordings. Feminization laryngoplasty is a procedure removing the anterior thyroid cartilage, collapsing the diameter of the larynx as well as shortening and tensioning the vocal folds to raise the pitch. Changes in comfortable speaking pitch, lowest vocal pitch and highest vocal pitch are assessed before and after surgery. Acoustic parameters of speaking pitch and vocal range were compared between pre- and postoperative results. The average comfortable speaking pitch preoperatively, C3# (139 Hz), was raised an average of six semitones to G3 (196 Hz), after surgical intervention. The lowest attainable pitch was raised an average of seven semitones and the highest attainable pitch decreased by an average of two semitones. One aspect of the procedure, thyrohyoid approximation (introduced in 2006 to alter resonance), did not affect pitch. Feminization laryngoplasty successfully increased the comfortable fundamental frequency of speech and removed the lowest notes from the patient's vocal range. It does not typically raise the upper limits of the vocal range.

  16. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    PubMed

    Erfanian Saeedi, Nafise; Blamey, Peter J; Burkitt, Anthony N; Grayden, David B

    2016-04-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  17. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks

    PubMed Central

    Erfanian Saeedi, Nafise; Blamey, Peter J.; Burkitt, Anthony N.; Grayden, David B.

    2016-01-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons’ action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy. PMID:27049657

  18. Pitch-Responsive Cortical Regions in Congenital Amusia.

    PubMed

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  19. Dual-Pitch Processing Mechanisms in Primate Auditory Cortex

    PubMed Central

    Bendor, Daniel; Osmanski, Michael S.

    2012-01-01

    Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound. We have investigated how cues derived from the temporal envelope and spectrum of an acoustic signal are used for pitch extraction in the common marmoset (Callithrix jacchus), a vocal primate species, by measuring pitch discrimination behaviorally and examining pitch-selective neuronal responses in auditory cortex. We find that pitch is extracted by marmosets using temporal envelope cues for lower pitch sounds composed of higher-order harmonics, whereas spectral cues are used for higher pitch sounds with lower-order harmonics. Our data support dual-pitch processing mechanisms, originally proposed by psychophysicists based on human studies, whereby pitch is extracted using a combination of temporal envelope and spectral cues. PMID:23152599

  20. Haptoglobin polymorphism among Saharian and West African groups. Haptoglobin phenotype determination by radioimmunoelectrophoresis on Hp O samples.

    PubMed Central

    Constans, J; Viau, M; Gouaillard, C; Clerc, A

    1981-01-01

    The haptoglobin (Hp) polymorphism is investigated in 11 African groups living in an area from the Algerian Sahara to Central Africa. More than 4,000 samples were examined. In the Saharian samples, the Hp1 gene frequency is higher than in any other African group. From north to south, a decrease in the Hp1 gene frequency is observed; in the Pygmy sample only, this frequency is lower than the frequency of the Hp2 gene. By means of a sensitive radioimmunoelectrophoresis, the presence of a residual Hp in Hp O sera in which the Hp polymorphism can also be determined can be revealed. Absence of Hp 1-1 and significant excess of Hp 2-2 individuals were observed. More Hp 2-1M phenotypes were detected in the Hp O population than in the non-Hp O population examined. In the Hp O samples, the influence of the phenotype distribution on the Hp gene frequencies is discussed. The heavy polymers of the Hp related to the presence of the alpha 2 chain (Hp2 gene product) are involved only in the biological mechanisms responsible for the presence of Hp O and Hp 2-1 M phenotypes among African groups. Images Fig. 1 PMID:7258189

  1. Parametric study of a simultaneous pitch/yaw thrust vectoring single expansion ramp nozzle

    NASA Technical Reports Server (NTRS)

    Schirmer, Alberto W.; Capone, Francis J.

    1989-01-01

    In the course of the last eleven years, the concept of thrust vectoring has emerged as a promising method of enhancing aircraft control capabilities in post-stall flight incursions during combat. In order to study the application of simultaneous pitch and yaw vectoring to single expansion ramp nozzles, a static test was conducted in the NASA-Langley 16 foot transonic tunnel. This investigation was based on internal performance data provided by force, mass flow and internal pressure measurements at nozzle pressure ratios up to 8. The internal performance characteristics of the nozzle were studied for several combinations of six different parameters: yaw vectoring angle, pitch vectoring angle, upper ramp cutout, sidewall hinge location, hinge inclination angle and sidewall containment. Results indicated a 2-to- 3-percent decrease in resultant thrust ratio with vectoring in either pitch or yaw. Losses were mostly associated with the turning of supersonic flow. Resultant thrust ratios were also decreased by sideways expansion of the jet. The effects of cutback corners in the upper ramp and lower flap on performance were small. Maximum resultant yaw vector angles, about half of the flap angle, were achieved for the configuration with the most forward hinge location.

  2. Pitch Perception in the First Year of Life, a Comparison of Lexical Tones and Musical Pitch.

    PubMed

    Chen, Ao; Stevens, Catherine J; Kager, René

    2017-01-01

    Pitch variation is pervasive in speech, regardless of the language to which infants are exposed. Lexical tone is influenced by general sensitivity to pitch. We examined whether the development in lexical tone perception may develop in parallel with perception of pitch in other cognitive domains namely music. Using a visual fixation paradigm, 100 and one 4- and 12-month-old Dutch infants were tested on their discrimination of Chinese rising and dipping lexical tones as well as comparable three-note musical pitch contours. The 4-month-old infants failed to show a discrimination effect in either condition, whereas the 12-month-old infants succeeded in both conditions. These results suggest that lexical tone perception may reflect and relate to general pitch perception abilities, which may serve as a basis for developing more complex language and musical skills.

  3. Mapping Sequence performed during the STS-135 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2011-07-10

    ISS028-E-015593 (10 July 2011) --- This is one of a series of images showing various parts of the space shuttle Atlantis in Earth orbit as photographed by one of three crew members -- half the station crew -- who were equipped with still cameras for this purpose on the International Space Station as the shuttle “posed” for photos and visual surveys and performed a back-flip for the rendezvous pitch maneuver (RPM). A 1000 millimeter lens was used to capture this particular series of images.

  4. Mapping Sequence performed during the STS-135 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2011-07-10

    ISS028-E-015600 (10 July 2011) --- This is one of a series of images showing various parts of the space shuttle Atlantis in Earth orbit as photographed by one of three crew members -- half the station crew -- who were equipped with still cameras for this purpose on the International Space Station as the shuttle “posed” for photos and visual surveys and performed a back-flip for the rendezvous pitch maneuver (RPM). A 1000 millimeter lens was used to capture this particular series of images.

  5. Mapping Sequence performed during the STS-135 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2011-07-10

    ISS028-E-015662 (10 July 2011) --- This is one of a series of images showing various parts of the space shuttle Atlantis in Earth orbit as photographed by one of three crew members -- half the station crew -- who were equipped with still cameras for this purpose on the International Space Station as the shuttle “posed” for photos and visual surveys and performed a back-flip for the rendezvous pitch maneuver (RPM). A 1000 millimeter lens was used to capture this particular series of images.

  6. Mapping Sequence performed during the STS-135 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2011-07-10

    ISS028-E-015668 (10 July 2011) --- This is one of a series of images showing various parts of the space shuttle Atlantis in Earth orbit as photographed by one of three crew members -- half the station crew -- who were equipped with still cameras for this purpose on the International Space Station as the shuttle “posed” for photos and visual surveys and performed a back-flip for the rendezvous pitch maneuver (RPM). A 1000 millimeter lens was used to capture this particular series of images.

  7. Disorders of Pitch Production in Tone Deafness

    PubMed Central

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10–15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as “tone deafness,” has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language. PMID:21811479

  8. Pitch Angles Of Artificially Redshifted Galaxies

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Davis, B.; Johns, L.; Berrier, J. C.; Kennefick, D.; Kennefick, J.; Seigar, M.

    2012-05-01

    We present the pitch angles of several galaxies that have been artificially redshifted using Barden et al’s FERENGI software. The (central black hole mass)-(spiral arm pitch angle) relation has been used on a statistically complete sample of local galaxies to determine the black hole mass function of local spiral galaxies. We now measure the pitch angles at increasing redshifts by operating on the images pixel-by-pixel. The results will be compared to the pitch angle function as measured in the GOODS field. This research was funded in part by NASA / EPScOR.

  9. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung.

    PubMed

    Abdullah, Mahdi; Goldmann, Torsten

    2012-11-20

    Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with surfactant protein-B in lamellar bodies of alveolar epithelial cells type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912.

  10. The decay of pitch memory during rehearsal.

    PubMed

    Kaernbach, Christian; Schlemmer, Kathrin

    2008-04-01

    The present study investigates the decay of pitch memory over time. In a delayed pitch comparison paradigm, participants had to memorize the pitch of a Shepard tone, with silent, overt, or without any rehearsal. During overt rehearsal, recordings of the rehearsing were effectuated. Performance was best for silent rehearsal and worst for overt rehearsal. The differences, although partially significant, were not marked. The voice pitch during overt rehearsal was compatible with a random walk model, providing a possible explanation of why rehearsal does not improve the retention of the pitch trace.

  11. High- and Low-mobility Populations of HP1 in Heterochromatin of Mammalian CellsD⃞

    PubMed Central

    Schmiedeberg, Lars; Weisshart, Klaus; Diekmann, Stephan; Meyer zu Hoerste, Gabriele; Hemmerich, Peter

    2004-01-01

    Heterochromatin protein 1 (HP1) is a conserved nonhistone chromosomal protein with functions in euchromatin and heterochromatin. Here we investigated the diffusional behaviors of HP1 isoforms in mammalian cells. Using fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) we found that in interphase cells most HP1 molecules (50–80%) are highly mobile (recovery halftime: t1/2 ≈ 0.9 s; diffusion coefficient: D ≈ 0.6–0.7 μm2 s-1). Twenty to 40% of HP1 molecules appear to be incorporated into stable, slow-moving oligomeric complexes (t1/2 ≈ 10 s), and constitutive heterochromatin of all mammalian cell types analyzed contain 5–7% of very slow HP1 molecules. The amount of very slow HP1 molecules correlated with the chromatin condensation state, mounting to more than 44% in condensed chromatin of transcriptionally silent cells. During mitosis 8–14% of GFP-HP1α, but not the other isoforms, are very slow within pericentromeric heterochromatin, indicating an isoform-specific function of HP1α in heterochromatin of mitotic chromosomes. These data suggest that mobile as well as very slow populations of HP1 may function in concert to maintain a stable conformation of constitutive heterochromatin throughout the cell cycle. PMID:15064352

  12. Reading sentences describing high- or low-pitched auditory events: only pianists show evidence for a horizontal space-pitch association.

    PubMed

    Wolter, Sibylla; Dudschig, Carolin; Kaup, Barbara

    2017-11-01

    This study explored differences between pianists and non-musicians during reading of sentences describing high- or low-pitched auditory events. Based on the embodied model of language comprehension, it was hypothesized that the experience of playing the piano encourages a corresponding association between high-pitched sounds and the right and low-pitched sounds and the left. This pitch-space association is assumed to become elicited during understanding of sentences describing either a high- or low-pitched auditory event. In this study, pianists and non-musicians were tested based on the hypothesis that only pianists show a compatibility effect between implied pitch height and horizontal space, because only pianists have the corresponding experience with the piano keyboard. Participants read pitch-related sentences (e.g., the bear growls deeply, the soprano singer sings an aria) and judged whether the sentence was sensible or not by pressing either a left or right response key. The results indicated that only the pianists showed the predicted compatibility effect between implied pitch height and response location. Based on the results, it can be inferred that the experience of playing the piano led to an association between horizontal space and pitch height in pianists, while no such spatial association was elicited in non-musicians.

  13. Spectral/ hp element methods: Recent developments, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  14. A Structural Theory of Pitch1,2,3

    PubMed Central

    Laudanski, Jonathan; Zheng, Yi

    2014-01-01

    Abstract Musical notes can be ordered from low to high along a perceptual dimension called “pitch”. A characteristic property of these sounds is their periodic waveform, and periodicity generally correlates with pitch. Thus, pitch is often described as the perceptual correlate of the periodicity of the sound’s waveform. However, the existence and salience of pitch also depends in a complex way on other factors, in particular harmonic content. For example, periodic sounds made of high-order harmonics tend to have a weaker pitch than those made of low-order harmonics. Here we examine the theoretical proposition that pitch is the perceptual correlate of the regularity structure of the vibration pattern of the basilar membrane, across place and time—a generalization of the traditional view on pitch. While this proposition also attributes pitch to periodic sounds, we show that it predicts differences between resolved and unresolved harmonic complexes and a complex domain of existence of pitch, in agreement with psychophysical experiments. We also present a possible neural mechanism for pitch estimation based on coincidence detection, which does not require long delays, in contrast with standard temporal models of pitch. PMID:26464959

  15. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Sensitivity enhancement of the high-resolution xMT multi-trigger resist for EUV lithography

    NASA Astrophysics Data System (ADS)

    Popescu, Carmen; Frommhold, Andreas; McClelland, Alexandra; Roth, John; Ekinci, Yasin; Robinson, Alex P. G.

    2017-03-01

    Irresistible Materials is developing a new molecular resist system that demonstrates high-resolution capability based on the multi-trigger concept. A series of studies such as resist purification, developer choice,and enhanced resist crosslinking were conducted in order to optimize the performance of this material. The optimized conditions allowed patterning 14 nm half-pitch (hp) lines with a line width roughness (LWR) of 2.7 nm at the XIL beamline of the Swiss Light source. Furthermore it was possible to pattern 14 nm hp features with dose of 14 mJ/cm2 with an LWR of 4.9 nm. We have also begun to investigate the addition of high-Z additives to EUV photoresist as a means to increase sensitivity and modify secondary electron blur.

  17. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung

    PubMed Central

    2012-01-01

    Abstract Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with Surfactant protein-B in lamellar bodies of Alveolar Epithelial Cells Type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912. PMID:23164167

  18. Mapping Sequence performed during the STS-135 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2011-07-10

    ISS028-E-015588 (10 July 2011) --- This picture of Atlantis' main and subsystem engines is one of a series of images showing various parts of the space shuttle Atlantis in Earth orbit as photographed by one of three crew members -- half the station crew -- who were equipped with still cameras for this purpose on the International Space Station as the shuttle “posed” for photos and visual surveys and performed a back-flip for the rendezvous pitch maneuver (RPM). A 1000 millimeter lens was used to capture this particular series of images.

  19. A Neuronal Network Model for Pitch Selectivity and Representation

    PubMed Central

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions. PMID:27378900

  20. A Neuronal Network Model for Pitch Selectivity and Representation.

    PubMed

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions.

  1. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  2. Molecular modeling and cytotoxicity of diffractaic acid: HP-β-CD inclusion complex encapsulated in microspheres.

    PubMed

    Silva, Camilla V N S; Barbosa, Jéssica A P; Ferraz, Milena S; Silva, Nicácio H; Honda, Neli K; Rabello, Marcelo M; Hernandes, Marcelo Z; Bezerra, Beatriz P; Cavalcanti, Isabella M F; Ayala, Alejandro P; Santos, Noemia P S; Santos-Magalhães, Nereide S

    2016-11-01

    In this pioneer study, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was used to improve the solubility of the diffractaic acid (DA) via inclusion complex (DA:HP-β-CD). Subsequently, DA:HP-β-CD was incorporated into poly-ε-caprolactone (PCL) microspheres (DA:HP-β-CD-MS). Microspheres containing DA (DA-MS) or DA:HP-β-CD (DA:HP-β-CD-MS) were prepared using the multiple W/O/W emulsion-solvent evaporation technique. The phase-solubility diagram of DA in HP-β-CD (10-50mM) showed an A L type curve with a stability constant K 1:1 =821M -1 . 1 H NMR, FTIR, X-ray diffraction and thermal analysis showed changes in the molecular environment of DA in DA:HP-β-CD. The molecular modeling approach suggests a guest-host complex formation between the carboxylic moiety of both DA and the host (HP-β-CD). The mean particle size of the microspheres were ∅ DA-MS =5.23±1.65μm and ∅ DA:HP-β-CD-MS =4.11±1.39μm, respectively. The zeta potential values of the microspheres were ζ DA-MS =-7.85±0.32mV and ζ DA:HP-β-CD-MS =-6.93±0.46mV. Moreover, the encapsulation of DA:HP-β-CD into microspheres resulted in a more slower release (k 2 =0.042±0.001; r 2 =0.996) when compared with DA-MS (k 2 =0.183±0.005; r 2 =0.996). The encapsulation of DA or DA:HP-β-CD into microspheres reduced the cytotoxicity of DA (IC 50 =43.29μM) against Vero cells (IC 50 of DA-MS=108.48μM and IC 50 of DA:HP-β-CD-MS=142.63μM). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Pitch based foam with particulate

    DOEpatents

    Klett, James W.

    2001-01-01

    A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

  4. [Volume changes to the neck lymph node metastases in head-neck tumors. The evaluation of radiotherapeutic treatment success].

    PubMed

    Liszka, G; Thalacker, U; Somogyi, A; Németh, G

    1997-08-01

    This work is engaged with the volume change of neck lymph node metastasis of malignant tumors in the head-neck region during radiotherapy. In 54 patients with head and neck tumors, the volume of neck lymph nodes before and after radiation was measured. The volumetry was done with CT planimetry. The total dose was 66 Gy (2 Gy/d) telecobalt from 2 lateral opponated fields. The time of volume change could be defined with measuring of the half-time and the doubling-time by the help of Schwartz formula. After 10 Gy the volume diminution was about 20% and half-time 24 to 26 days. Afterwards the time of volume diminution picked up speed and finally achieved 60 to 72%. Meanwhile the half-time decreased to the half value. The result was independent of the site of primary tumor, the patient's sex and age. In our opinion the effectivity of radiotherapy can best be judged with defining of the volume change of lymph nodes of the neck.

  5. Galaxy Zoo and SPARCFIRE: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Hayes, Wayne B.; Cardamone, Carolin N.; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-12-01

    In this paper, we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6222 SDSS spiral galaxies is selected. We use the machine vision algorithm SPARCFIRE to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4°-6°) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-armed structures are looser (by 2°) than those in two-armed galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories.

  6. Implementation of Unsteady Double-Axis of Rotation Motion to Predict Pitch-Damping Moment

    DTIC Science & Technology

    2016-10-18

    2014;51(5). 4. Dupuis A. Aeroballistic range and wind tunnel tests of the basic finner reference projectile from subsonic to high supersonic velocities... modelled . Typically, when computing aerodynamic coefficients, motion about each axis is considered individually (i.e., spin around body-axis, pitch about...has a diameter, , of 0.03 m (1 caliber) and consists of a 10° half- angle cone that is 2.84-calibers long, followed by a 7.16-caliber cylindrical

  7. Evidence for pitch chroma mapping in human auditory cortex.

    PubMed

    Briley, Paul M; Breakey, Charlotte; Krumbholz, Katrin

    2013-11-01

    Some areas in auditory cortex respond preferentially to sounds that elicit pitch, such as musical sounds or voiced speech. This study used human electroencephalography (EEG) with an adaptation paradigm to investigate how pitch is represented within these areas and, in particular, whether the representation reflects the physical or perceptual dimensions of pitch. Physically, pitch corresponds to a single monotonic dimension: the repetition rate of the stimulus waveform. Perceptually, however, pitch has to be described with 2 dimensions, a monotonic, "pitch height," and a cyclical, "pitch chroma," dimension, to account for the similarity of the cycle of notes (c, d, e, etc.) across different octaves. The EEG adaptation effect mirrored the cyclicality of the pitch chroma dimension, suggesting that auditory cortex contains a representation of pitch chroma. Source analysis indicated that the centroid of this pitch chroma representation lies somewhat anterior and lateral to primary auditory cortex.

  8. Effects of Game Pitch Count and Body Mass Index on Pitching Biomechanics in 9- to 10-Year-Old Baseball Athletes.

    PubMed

    Darke, Jim D; Dandekar, Eshan M; Aguinaldo, Arnel L; Hazelwood, Scott J; Klisch, Stephen M

    2018-04-01

    Pitching while fatigued and body composition may increase the injury risk in youth and adult pitchers. However, the relationships between game pitch count, biomechanics, and body composition have not been reported for a study group restricted to 9- to 10-year-old athletes. During a simulated game with 9- to 10-year-old athletes, (1) participants will experience biomechanical signs of fatigue, and (2) shoulder and elbow kinetics will correlate with body mass index (BMI). Descriptive laboratory study. Thirteen 9- to 10-year-old youth baseball players pitched a simulated game (75 pitches). Range of motion and muscular output tests were conducted before and after the simulated game to quantify fatigue. Kinematic parameters at foot contact, maximum external rotation, and maximum internal rotation velocity (MIRV), as well as maximum shoulder and elbow kinetics between foot contact and MIRV were compared at pitches 1-5, 34-38, and 71-75. Multivariate analyses of variance were used to test the first hypothesis, and linear regressions were used to test the second hypothesis. MIRV increased from pitches 1-5 to 71-75 ( P = .007), and head flexion at MIRV decreased from pitches 1-5 to 34-38 ( P = .022). Maximum shoulder horizontal adduction, external rotation, and internal rotation torques increased from pitches 34-38 to 71-75 ( P = .031, .023, and .021, respectively). Shoulder compression force increased from pitches 1-5 to 71-75 ( P = .011). Correlations of joint torque/force with BMI were found at every pitch period: for example, shoulder internal rotation ( R 2 = 0.93, P < .001) and elbow varus ( R 2 = 0.57, P = .003) torques at pitches 1-5. Several results differed from those of previous studies with adult pitchers: (1) pitch speed remained steady, (2) shoulder MIRV increased, and (3) shoulder kinetics increased during a simulated game. The strong correlations between joint kinetics and BMI reinforce previous findings that select body composition measures may be

  9. Perceptual Distortions in Pitch and Time Reveal Active Prediction and Support for an Auditory Pitch-Motion Hypothesis

    PubMed Central

    Henry, Molly J.; McAuley, J. Devin

    2013-01-01

    A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration) or pitch change of a comparison frequency glide relative to a standard (referent) glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt) of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners’ judgments along the task-relevant dimension (pitch or time) were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception. PMID:23936462

  10. Perceptual distortions in pitch and time reveal active prediction and support for an auditory pitch-motion hypothesis.

    PubMed

    Henry, Molly J; McAuley, J Devin

    2013-01-01

    A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration) or pitch change of a comparison frequency glide relative to a standard (referent) glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt) of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners' judgments along the task-relevant dimension (pitch or time) were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception.

  11. Evidence for Pitch Chroma Mapping in Human Auditory Cortex

    PubMed Central

    Briley, Paul M.; Breakey, Charlotte; Krumbholz, Katrin

    2013-01-01

    Some areas in auditory cortex respond preferentially to sounds that elicit pitch, such as musical sounds or voiced speech. This study used human electroencephalography (EEG) with an adaptation paradigm to investigate how pitch is represented within these areas and, in particular, whether the representation reflects the physical or perceptual dimensions of pitch. Physically, pitch corresponds to a single monotonic dimension: the repetition rate of the stimulus waveform. Perceptually, however, pitch has to be described with 2 dimensions, a monotonic, “pitch height,” and a cyclical, “pitch chroma,” dimension, to account for the similarity of the cycle of notes (c, d, e, etc.) across different octaves. The EEG adaptation effect mirrored the cyclicality of the pitch chroma dimension, suggesting that auditory cortex contains a representation of pitch chroma. Source analysis indicated that the centroid of this pitch chroma representation lies somewhat anterior and lateral to primary auditory cortex. PMID:22918980

  12. Memory for vocal tempo and pitch.

    PubMed

    Boltz, Marilyn G

    2017-11-01

    Two experiments examined the ability to remember the vocal tempo and pitch of different individuals, and the way this information is encoded into the cognitive system. In both studies, participants engaged in an initial familiarisation phase while attending was systematically directed towards different aspects of speakers' voices. Afterwards, they received a tempo or pitch recognition task. Experiment 1 showed that tempo and pitch are both incidentally encoded into memory at levels comparable to intentional learning, and no performance deficit occurs with divided attending. Experiment 2 examined the ability to recognise pitch or tempo when the two dimensions co-varied and found that the presence of one influenced the other: performance was best when both dimensions were positively correlated with one another. As a set, these findings indicate that pitch and tempo are automatically processed in a holistic, integral fashion [Garner, W. R. (1974). The processing of information and structure. Potomac, MD: Erlbaum.] which has a number of cognitive implications.

  13. Mapping Sequence performed during the STS-135 R-Bar Pitch Maneuver  

    NASA Image and Video Library

    2011-07-10

    ISS028-E-015396 (10 July 2011) --- This is one of a series of images showing various parts of the space shuttle Atlantis in Earth orbit as photographed by one of three crewmembers – half the International Space Station crew – who were equipped with still cameras for this purpose on t station as the shuttle “posed” for photos and visual surveys and performed a back-flip for the rendezvous pitch maneuver (RPM). An 800 millimeter lens was used to capture this particular series of images.

  14. Particle chaos and pitch angle scattering

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Dusenbery, P. B.; Speiser, T. W.

    1995-01-01

    Pitch angle scattering is a factor that helps determine the dawn-to-dusk current, controls particle energization, and it has also been used as a remote probe of the current sheet structure. Previous studies have interpreted their results under the exception that randomization will be greatest when the ratio of the two timescales of motion (gyration parallel to and perpendicular to the current sheet) is closet to one. Recently, the average expotential divergence rate (AEDR) has been calculated for particle motion in a hyperbolic current sheet (Chen, 1992). It is claimed that this AEDR measures the degree of chaos and therefore may be thought to measure the randomization. In contrast to previous expectations, the AEDR is not maximized when Kappa is approximately equal to 1 but instead increases with decreasing Kappa. Also contrary to previous expectations, the AEDR is dependent upon the parameter b(sub z). In response to the challenge to previous expectations that has been raised by this calculation of the AEDR, we have investigated the dependence of a measure of particle pitch angle scattering on both the parameters Kappa and b(sub z). We find that, as was previously expected, particle pitch angle scattering is maximized near Kappa = 1 provided that Kappa/b(sub z) greater than 1. In the opposite regime, Kappa/b(sub z) less than 1, we find that particle pitch angle scattering is still largest when the two timescales are equal, but the ratio of the timescales is proportional to b(sub z). In this second regime, particle pitch angle scattering is not due to randomization, but is instead due to a systematic pitch angle change. This result shows that particle pitch angle scattering need not be due to randomization and indicates how a measure of pitch angle scattering can exhibit a different behavior than a measure of chaos.

  15. Pitch angle of galactic spiral arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro, E-mail: michiko@mail.doshisha.ac.jp, E-mail: kokubo@th.nao.ac.jp

    2014-06-01

    One of the key parameters that characterizes spiral arms in disk galaxies is a pitch angle that measures the inclination of a spiral arm to the direction of galactic rotation. The pitch angle differs from galaxy to galaxy, which suggests that the rotation law of galactic disks determines it. In order to investigate the relation between the pitch angle of spiral arms and the shear rate of galactic differential rotation, we perform local N-body simulations of pure stellar disks. We find that the pitch angle increases with the epicycle frequency and decreases with the shear rate and obtain the fittingmore » formula. This dependence is explained by the swing amplification mechanism.« less

  16. Method for extruding pitch based foam

    DOEpatents

    Klett, James W.

    2002-01-01

    A method and apparatus for extruding pitch based foam is disclosed. The method includes the steps of: forming a viscous pitch foam; passing the precursor through an extrusion tube; and subjecting the precursor in said extrusion tube to a temperature gradient which varies along the length of the extrusion tube to form an extruded carbon foam. The apparatus includes an extrusion tube having a passageway communicatively connected to a chamber in which a viscous pitch foam formed in the chamber paring through the extrusion tube, and a heating mechanism in thermal communication with the tube for heating the viscous pitch foam along the length of the tube in accordance with a predetermined temperature gradient.

  17. Helicobacter pylori HP1512 Is a Nickel-Responsive NikR-Regulated Outer Membrane Protein▿

    PubMed Central

    Davis, Gregg S.; Flannery, Erika L.; Mobley, Harry L. T.

    2006-01-01

    Helicobacter pylori is dependent upon the production of the highly abundant and active metalloenzyme urease for colonization of the human stomach. Thus, H. pylori has an absolute requirement for the transition metal nickel, a required cofactor for urease. To investigate the contribution of genes that are factors in this process, microarray analysis comparing the transcriptome of wild-type H. pylori 26695 cultured in brucella broth containing fetal calf serum (BBF) alone or supplemented with 100 μM NiCl2 suggested that HP1512 is repressed in the presence of 100 μM supplemental nickel. When measured by comparative real-time quantitative PCR (qPCR), HP1512 transcription was reduced 43-fold relative to the value for the wild type when cultured in BBF supplemented with 10 μM NiCl2. When grown in unsupplemented BBF, urease activity of an HP1512::cat mutant was significantly reduced compared to the wild type, 4.9 ± 0.5 μmol/min/mg of protein (n = 7) and 17.1 ± 4.9 μmol/min/mg of protein (n = 13), respectively (P < 0.0001). In silico analysis of the HP1511-HP1512 (HP1511-1512) intergenic region identified a putative NikR operator upstream of HP1512. Gel shift analysis with purified recombinant NikR verified nickel-dependent binding of H. pylori NikR to the HP1511-1512 intergenic region. Furthermore, comparative real-time qPCR of four nickel-related genes suggests that mutation of HP1512 results in reduced intracellular nickel concentration relative to wild-type H. pylori 26695. Taken together, these data suggest that HP1512 encodes a NikR-nickel-regulated outer membrane protein. PMID:17030579

  18. Effect of Mutations on HP Lattice Proteins

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Vogel, Thomas; Landau, David; Li, Ying; Wüst, Thomas

    2013-03-01

    Using Wang-Landau sampling with approriate trial moves[2], we investigate the effect of different types of mutations on lattice proteins in the HP model. While exact studies have been carried out for short HP proteins[3], the systems we investigate are of much larger size and hence not accessible for exact enumerations. Based on the estimated density of states, we systematically analyse the changes in structure and degeneracy of ground states of particular proteins and measure thermodynamic quantities like the stability of ground states and the specific heat, for example. Both, neutral mutations, which do not change the structure and stability of ground states, as well as critical mutations, which do change the thermodynamic behavior qualitatively, have been observed. Research supported by NSF

  19. Cortical encoding of pitch: Recent results and open questions

    PubMed Central

    Walker, Kerry M.M.; Bizley, Jennifer K.; King, Andrew J.; Schnupp, Jan W.H.

    2011-01-01

    It is widely appreciated that the key predictor of the pitch of a sound is its periodicity. Neural structures which support pitch perception must therefore be able to reflect the repetition rate of a sound, but this alone is not sufficient. Since pitch is a psychoacoustic property, a putative cortical code for pitch must also be able to account for the relationship between the amount to which a sound is periodic (i.e. its temporal regularity) and the perceived pitch salience, as well as limits in our ability to detect pitch changes or to discriminate rising from falling pitch. Pitch codes must also be robust in the presence of nuisance variables such as loudness or timbre. Here, we review a large body of work on the cortical basis of pitch perception, which illustrates that the distribution of cortical processes that give rise to pitch perception is likely to depend on both the acoustical features and functional relevance of a sound. While previous studies have greatly advanced our understanding, we highlight several open questions regarding the neural basis of pitch perception. These questions can begin to be addressed through a cooperation of investigative efforts across species and experimental techniques, and, critically, by examining the responses of single neurons in behaving animals. PMID:20457240

  20. Pitch sensation involves stochastic resonance

    PubMed Central

    Martignoli, Stefan; Gomez, Florian; Stoop, Ruedi

    2013-01-01

    Pitch is a complex hearing phenomenon that results from elicited and self-generated cochlear vibrations. Read-off vibrational information is relayed higher up the auditory pathway, where it is then condensed into pitch sensation. How this can adequately be described in terms of physics has largely remained an open question. We have developed a peripheral hearing system (in hardware and software) that reproduces with great accuracy all salient pitch features known from biophysical and psychoacoustic experiments. At the level of the auditory nerve, the system exploits stochastic resonance to achieve this performance, which may explain the large amount of noise observed in the working auditory nerve. PMID:24045830

  1. Local Cochlear Correlations of Perceived Pitch

    NASA Astrophysics Data System (ADS)

    Martignoli, Stefan; Stoop, Ruedi

    2010-07-01

    Pitch is one of the most salient attributes of the human perception of sound, but is still not well understood. This difficulty originates in the entwined nature of the phenomenon, in which a physical stimulus as well as a psychophysiological signal receiver are involved. In an electronic realization of a biophysically detailed nonlinear model of the cochlea, we find local cochlear correlates of the perceived pitch that explain all essential pitch-shifting phenomena from physical grounds.

  2. Global distribution of the pitch canker fungus

    Treesearch

    L. David Dwinell

    1998-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, causes diseases of pines in the United States, Haiti, Japan, Mexico, Spain, and South Africa. Pitch canker was first reported in Virginia pine in North Carolina in 1946. Although the disease was reported in Haitian pine in 1953, pitch canker was generally considered a...

  3. On the Perceptual Subprocess of Absolute Pitch.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.

  4. On the Perceptual Subprocess of Absolute Pitch

    PubMed Central

    Kim, Seung-Goo; Knösche, Thomas R.

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them. PMID:29085275

  5. Mapping Sequence performed during the STS-135 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2011-07-10

    ISS028-E-015671 (10 July 2011) --- This head-on picture of Atlantis' nose and part of the underside's thermal protective system tiles is one of a series of images showing various parts of the shuttle in Earth orbit as photographed by one of three crew members -- half the station crew -- who were equipped with still cameras for this purpose on the International Space Station as the shuttle “posed” for photos and visual surveys and performed a back-flip for the rendezvous pitch maneuver (RPM). A 1000 millimeter lens was used to capture this particular series of images.

  6. Macaque Monkeys Discriminate Pitch Relationships

    ERIC Educational Resources Information Center

    Brosch, Michael; Selezneva, Elena; Bucks, Cornelia; Scheich, Henning

    2004-01-01

    This study demonstrates that non-human primates can categorize the direction of the pitch change of tones in a sequence. Two "Macaca fascicularis" were trained in a positive-reinforcement behavioral paradigm in which they listened to sequences of a variable number of different acoustic items. The training of discriminating pitch direction was…

  7. The CompHP Core Competencies Framework for Health Promotion in Europe

    ERIC Educational Resources Information Center

    Barry, Margaret M.; Battel-Kirk, Barbara; Dempsey, Colette

    2012-01-01

    Background: The CompHP Project on Developing Competencies and Professional Standards for Health Promotion in Europe was developed in response to the need for new and changing health promotion competencies to address health challenges. This article presents the process of developing the CompHP Core Competencies Framework for Health Promotion across…

  8. Effect of Pitching Consecutive Days in Youth Fast-Pitch Softball Tournaments on Objective Shoulder Strength and Subjective Shoulder Symptoms.

    PubMed

    Skillington, S Andrew; Brophy, Robert H; Wright, Rick W; Smith, Matthew V

    2017-05-01

    The windmill pitching motion has been associated with risk for shoulder injury. Because there are no pitching limits on youth fast-pitch softball pitchers, these athletes often pitch multiple games across consecutive days. Strength changes, fatigue levels, and shoulder pain that develop among female fast-pitch pitchers over the course of consecutive days of pitching have not been investigated. Over the course of 2- and 3-day fast-pitch softball tournaments, pitchers will develop progressive objective weakness and increased subjective shoulder fatigue and pain without complete recovery between days. Cross-sectional study; Level of evidence, 3. Fourteen female fast-pitch softball pitchers between the ages of 14 and 18 years were evaluated for strength and fatigue changes across 2- and 3-day tournaments. At the beginning and end of each day of tournament play, pitchers were asked to quantify shoulder fatigue and shoulder pain levels of their dominant throwing arm using a 10-point visual analog scale (VAS). Shoulder abduction, flexion, external rotation, internal rotation, elbow flexion, and elbow extension strength measurements were gathered using a handheld dynamometer. Over the course of an average single day of tournament participation, pitchers developed significant increases in VAS scores for shoulder fatigue (median, 2.0; 95% CI, 1.3-3.0) and pain (median, 1.3; 95% CI, 0.5-2.3) and significant strength loss in all tested motions. Pitchers also developed significant increases in VAS shoulder fatigue (median, 3.5; 95% CI, 1.5-5.5), VAS shoulder pain (median, 2.5; 95% CI, 1.0-4.5), and strength loss in all tested motions over the entire tournament. Shoulder pain, fatigue, and strength do not fully recover between days. The accumulation of subjective shoulder pain and fatigue over the course of tournament play were closely correlated. Among youth female fast-pitch softball pitchers, there is a progressive increase in shoulder fatigue, pain, and weakness over the

  9. Small pixel pitch MCT IR-modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  10. Changes in pitch height elicit both language universal and language dependent changes in neural representation of pitch in the brainstem and auditory cortex

    PubMed Central

    Krishnan, Ananthanarayan; Suresh, Chandan H.; Gandour, Jackson T.

    2017-01-01

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on i) neural responses to variations in pitch height, ii) presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na–Pb and Pb–Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na–Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. PMID:28108254

  11. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex.

    PubMed

    Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T

    2017-03-27

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Representations of pitch and slow modulation in auditory cortex

    PubMed Central

    Barker, Daphne; Plack, Christopher J.; Hall, Deborah A.

    2013-01-01

    Iterated ripple noise (IRN) is a type of pitch-evoking stimulus that is commonly used in neuroimaging studies of pitch processing. When contrasted with a spectrally matched Gaussian noise, it is known to produce a consistent response in a region of auditory cortex that includes an area antero-lateral to the primary auditory fields (lateral Heschl's gyrus). The IRN-related response has often been attributed to pitch, although recent evidence suggests that it is more likely driven by slowly varying spectro-temporal modulations not related to pitch. The present functional magnetic resonance imaging (fMRI) study showed that both pitch-related temporal regularity and slow modulations elicited a significantly greater response than a baseline Gaussian noise in an area that has been pre-defined as pitch-responsive. The region was sensitive to both pitch salience and slow modulation salience. The responses to pitch and spectro-temporal modulations interacted in a saturating manner, suggesting that there may be an overlap in the populations of neurons coding these features. However, the interaction may have been influenced by the fact that the two pitch stimuli used (IRN and unresolved harmonic complexes) differed in terms of pitch salience. Finally, the results support previous findings suggesting that the cortical response to IRN is driven in part by slow modulations, not by pitch. PMID:24106464

  13. A methodology for double patterning compliant split and design

    NASA Astrophysics Data System (ADS)

    Wiaux, Vincent; Verhaegen, Staf; Iwamoto, Fumio; Maenhoudt, Mireille; Matsuda, Takashi; Postnikov, Sergei; Vandenberghe, Geert

    2008-11-01

    Double Patterning allows to further extend the use of water immersion lithography at its maximum numerical aperture NA=1.35. Splitting of design layers to recombine through Double Patterning (DP) enables an effective resolution enhancement. Single polygons may need to be split up (cut) depending on the pattern density and its 2D content. The split polygons recombine at the so-called 'stitching points'. These stitching points may affect the yield due to the sensitivity to process variations. We describe a methodology to ensure a robust double patterning by identifying proper split- and design- guidelines. Using simulations and experimental data, we discuss in particular metal1 first interconnect layers of random LOGIC and DRAM applications at 45nm half-pitch (hp) and 32nm hp where DP may become the only timely patterning solution.

  14. HP-41CX Programs for HgCdTe Detectors and IR Systems.

    DTIC Science & Technology

    1987-10-01

    FIELD GROUP SUB-GROUP IPocket Computer HgCdTe PhotoSensor Programs Detectors Analysis I I l-IP-41 Infrared IR Systems __________ 19 ABSTRACT (Continue... HgCdTe detectors , focal planes, and infrared systems. They have been written to run in a basic HP-41CV or HP-41CX with no card reader or additional ROMs...Programs have been written for the HP-41CX which aid in the analysis of HgCdTe detectors , focal r planes, and infrared systems. They have been installed as a

  15. In-die mask registration measurement on 28nm-node and beyond

    NASA Astrophysics Data System (ADS)

    Chen, Shen Hung; Cheng, Yung Feng; Chen, Ming Jui

    2013-09-01

    As semiconductor go to smaller node, the critical dimension (CD) of process become more and more small. For lithography, RET (Resolution Enhancement Technology) applications can be used for wafer printing of smaller CD/pitch on 28nm node and beyond. SMO (Source Mask Optimization), DPT (Double Patterning Technology) and SADP (Self-Align Double Patterning) can provide lower k1 value for lithography. In another way, image placement error and overlay control also become more and more important for smaller chip size (advanced node). Mask registration (image placement error) and mask overlay are important factors to affect wafer overlay control/performance especially for DPT or SADP. In traditional method, the designed registration marks (cross type, square type) with larger CD were put into scribe-line of mask frame for registration and overlay measurement. However, these patterns are far way from real patterns. It does not show the registration of real pattern directly and is not a convincing method. In this study, the in-die (in-chip) registration measurement is introduced. We extract the dummy patterns that are close to main pattern from post-OPC (Optical Proximity Correction) gds by our desired rule and choose the patterns that distribute over whole mask uniformly. The convergence test shows 100 points measurement has a reliable result.

  16. Direct Recordings of Pitch Responses from Human Auditory Cortex

    PubMed Central

    Griffiths, Timothy D.; Kumar, Sukhbinder; Sedley, William; Nourski, Kirill V.; Kawasaki, Hiroto; Oya, Hiroyuki; Patterson, Roy D.; Brugge, John F.; Howard, Matthew A.

    2010-01-01

    Summary Pitch is a fundamental percept with a complex relationship to the associated sound structure [1]. Pitch perception requires brain representation of both the structure of the stimulus and the pitch that is perceived. We describe direct recordings of local field potentials from human auditory cortex made while subjects perceived the transition between noise and a noise with a regular repetitive structure in the time domain at the millisecond level called regular-interval noise (RIN) [2]. RIN is perceived to have a pitch when the rate is above the lower limit of pitch [3], at approximately 30 Hz. Sustained time-locked responses are observed to be related to the temporal regularity of the stimulus, commonly emphasized as a relevant stimulus feature in models of pitch perception (e.g., [1]). Sustained oscillatory responses are also demonstrated in the high gamma range (80–120 Hz). The regularity responses occur irrespective of whether the response is associated with pitch perception. In contrast, the oscillatory responses only occur for pitch. Both responses occur in primary auditory cortex and adjacent nonprimary areas. The research suggests that two types of pitch-related activity occur in humans in early auditory cortex: time-locked neural correlates of stimulus regularity and an oscillatory response related to the pitch percept. PMID:20605456

  17. The sentinel lymph node spread determines quantitatively melanoma seeding to non-sentinel lymph nodes and survival.

    PubMed

    Ulmer, Anja; Dietz, Klaus; Werner-Klein, Melanie; Häfner, Hans-Martin; Schulz, Claudia; Renner, Philipp; Weber, Florian; Breuninger, Helmut; Röcken, Martin; Garbe, Claus; Fierlbeck, Gerhard; Klein, Christoph A

    2018-03-01

    Complete lymph node dissection (CLND) after a positive sentinel node (SN) biopsy provides important prognostic information in melanoma patients but has been questioned for therapeutic use recently. We explored whether quantification of the tumour spread to SNs may replace histopathology of non-sentinel nodes (NSNs) for staging purposes. We quantified melanoma spread in SNs and NSNs in 128 patients undergoing CLND for a positive SN. In addition to routine histopathology, one-half of each of all 1496 SNs and NSNs was disaggregated into a single cell suspension and stained immunocytochemically to determine the number of melanoma cells per 10 6 lymph node cells, i.e. the disseminated cancer cell density (DCCD). We uncovered melanoma spread to NSNs in the majority of patients; however, the tumour load and the proportion of positive nodes were significantly lower in NSNs than in SNs. The relation between SN and NSN spread could be described by a mathematical function with DCCD NSN  = DCCD SN c /10 1 - c (c = 0.69; 95% confidence interval [CI]: 0.62-0.76). At a median follow-up of 67 months, multivariable Cox regression analyses revealed that DCCD SN (p = 0.02; HR 1.34, 95% CI: 1.05-1.71) and the total number of pathologically positive nodes (p = 0.02; HR 1.53, 95% CI: 1.07-2.22) were significant risk factors after controlling for age, gender, thickness of melanoma and ulceration status. A prognostic model based on DCCD SN and melanoma thickness predicted outcome as accurately as a model including pathological information of both SNs and NSNs. The assessment of DCCD SN renders CLND for staging purposes unnecessary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Language experience enhances early cortical pitch-dependent responses

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  19. Self-aligned blocking integration demonstration for critical sub-30nm pitch Mx level patterning with EUV self-aligned double patterning

    NASA Astrophysics Data System (ADS)

    Raley, Angélique; Lee, Joe; Smith, Jeffrey T.; Sun, Xinghua; Farrell, Richard A.; Shearer, Jeffrey; Xu, Yongan; Ko, Akiteru; Metz, Andrew W.; Biolsi, Peter; Devilliers, Anton; Arnold, John; Felix, Nelson

    2018-04-01

    We report a sub-30nm pitch self-aligned double patterning (SADP) integration scheme with EUV lithography coupled with self-aligned block technology (SAB) targeting the back end of line (BEOL) metal line patterning applications for logic nodes beyond 5nm. The integration demonstration is a validation of the scalability of a previously reported flow, which used 193nm immersion SADP targeting a 40nm pitch with the same material sets (Si3N4 mandrel, SiO2 spacer, Spin on carbon, spin on glass). The multi-color integration approach is successfully demonstrated and provides a valuable method to address overlay concerns and more generally edge placement error (EPE) as a whole for advanced process nodes. Unbiased LER/LWR analysis comparison between EUV SADP and 193nm immersion SADP shows that both integrations follow the same trend throughout the process steps. While EUV SADP shows increased LER after mandrel pull, metal hardmask open and dielectric etch compared to 193nm immersion SADP, the final process performance is matched in terms of LWR (1.08nm 3 sigma unbiased) and is only 6% higher than 193nm immersion SADP for average unbiased LER. Using EUV SADP enables almost doubling the line density while keeping most of the remaining processes and films unchanged, and provides a compelling alternative to other multipatterning integrations, which present their own sets of challenges.

  20. Dichotomy and perceptual distortions in absolute pitch ability

    PubMed Central

    Athos, E. Alexandra; Levinson, Barbara; Kistler, Amy; Zemansky, Jason; Bostrom, Alan; Freimer, Nelson; Gitschier, Jane

    2007-01-01

    Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved to have extraordinary pitch-naming ability. The bimodal distribution in pitch-naming ability signifies AP as a distinct perceptual trait, with possible implications for its genetic basis. The wealth of these data has allowed us to uncover unsuspected note-naming irregularities suggestive of a “perceptual magnet” centered at the note “A.” In addition, we document a gradual decline in pitch-naming accuracy with age, characterized by a perceptual shift in the “sharp” direction. These findings speak both to the process of acquisition of AP and to its stability. PMID:17724340

  1. HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-33.

    PubMed

    Osbourn, Megan; Soares, Dinesh C; Vacca, Francesco; Cohen, E Suzanne; Scott, Ian C; Gregory, William F; Smyth, Danielle J; Toivakka, Matilda; Kemter, Andrea M; le Bihan, Thierry; Wear, Martin; Hoving, Dennis; Filbey, Kara J; Hewitson, James P; Henderson, Holly; Gonzàlez-Cìscar, Andrea; Errington, Claire; Vermeren, Sonja; Astier, Anne L; Wallace, William A; Schwarze, Jürgen; Ivens, Alasdair C; Maizels, Rick M; McSorley, Henry J

    2017-10-17

    Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine's activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.

    2016-01-01

    There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201

  3. Relating binaural pitch perception to the individual listener's auditory profile.

    PubMed

    Santurette, Sébastien; Dau, Torsten

    2012-04-01

    The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.

  4. Timing matters: the processing of pitch relations

    PubMed Central

    Weise, Annekathrin; Grimm, Sabine; Trujillo-Barreto, Nelson J.; Schröger, Erich

    2014-01-01

    The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms), impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g., pitch of second tone of a pair higher than pitch of first tone, while absolute pitch values varied across pairs). We measured the mismatch negativity (MMN; the brain’s error signal to auditory regularity violations) to second tones that rarely violated the pitch relation (e.g., pitch of second tone lower). A Short condition in which tone duration (90 ms) and stimulus onset asynchrony between the tones of a pair were short (110 ms) was compared to two conditions, where this onset asynchrony was long (510 ms). In the Long Gap condition, the tone durations were identical to Short (90 ms), but the silent interval was prolonged by 400 ms. In Long Tone, the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms). Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing. PMID:24966823

  5. Digital Pitch-And-Roll Monitor

    NASA Technical Reports Server (NTRS)

    Finley, Tom D.; Brown, Jeff; Campbell, Ryland

    1991-01-01

    Highly accurate inclinometer developed. Monitors both pitch and roll simultaneously and provides printed output on demand. Includes three mutually perpendicular accelerometers and signal-conditioning circuitry converting outputs of sensors to digital values of pitch and roll. In addition to wind-tunnel applications, system useful in any application involving steady-state, precise sensing of angles, such as calibration of robotic devices and positioners.

  6. Node, Node-Link, and Node-Link-Group Diagrams: An Evaluation.

    PubMed

    Saket, Bahador; Simonetto, Paolo; Kobourov, Stephen; Börner, Katy

    2014-12-01

    Effectively showing the relationships between objects in a dataset is one of the main tasks in information visualization. Typically there is a well-defined notion of distance between pairs of objects, and traditional approaches such as principal component analysis or multi-dimensional scaling are used to place the objects as points in 2D space, so that similar objects are close to each other. In another typical setting, the dataset is visualized as a network graph, where related nodes are connected by links. More recently, datasets are also visualized as maps, where in addition to nodes and links, there is an explicit representation of groups and clusters. We consider these three Techniques, characterized by a progressive increase of the amount of encoded information: node diagrams, node-link diagrams and node-link-group diagrams. We assess these three types of diagrams with a controlled experiment that covers nine different tasks falling broadly in three categories: node-based tasks, network-based tasks and group-based tasks. Our findings indicate that adding links, or links and group representations, does not negatively impact performance (time and accuracy) of node-based tasks. Similarly, adding group representations does not negatively impact the performance of network-based tasks. Node-link-group diagrams outperform the others on group-based tasks. These conclusions contradict results in other studies, in similar but subtly different settings. Taken together, however, such results can have significant implications for the design of standard and domain snecific visualizations tools.

  7. Youth Baseball Pitching Mechanics: A Systematic Review.

    PubMed

    Thompson, Samuel F; Guess, Trent M; Plackis, Andreas C; Sherman, Seth L; Gray, Aaron D

    Pitching injuries in youth baseball are increasing in incidence. Poor pitching mechanics in young throwers have not been sufficiently evaluated due to the lack of a basic biomechanical understanding of the "normal" youth pitching motion. To provide a greater understanding of the kinetics and kinematics of the youth baseball pitching motion. PubMed, MEDLINE, and SPORTDiscus databases were searched from database inception through February 2017. A total of 10 biomechanical studies describing youth pitching mechanics were included. Systematic review. Level 3. Manual extraction and compilation of demographic, methodology, kinetic, and kinematic variables from the included studies were completed. In studies of healthy youth baseball pitchers, progressive external rotation of the shoulder occurs throughout the start of the pitching motion, reaching a maximum of 166° to 178.2°, before internally rotating throughout the remainder of the cycle, reaching a minimum of 13.2° to 17°. Elbow valgus torque reaches the highest level (18 ± 4 N·m) just prior to maximum shoulder external rotation and decreases throughout the remainder of the pitch cycle. Stride length is 66% to 85% of pitcher height. In comparison with a fastball, a curveball demonstrates less elbow varus torque (31.6 ± 15.3 vs 34.8 ± 15.4 N·m). Multiple studies show that maximum elbow valgus torque occurs just prior to maximum shoulder external rotation. Forces on the elbow and shoulder are greater for the fastball than the curveball.

  8. Auditory Deficits in Amusia Extend Beyond Poor Pitch Perception

    PubMed Central

    Whiteford, Kelly L.; Oxenham, Andrew J.

    2017-01-01

    Congenital amusia is a music perception disorder believed to reflect a deficit in fine-grained pitch perception and/or short-term or working memory for pitch. Because most measures of pitch perception include memory and segmentation components, it has been difficult to determine the true extent of pitch processing deficits in amusia. It is also unclear whether pitch deficits persist at frequencies beyond the range of musical pitch. To address these questions, experiments were conducted with amusics and matched controls, manipulating both the stimuli and the task demands. First, we assessed pitch discrimination at low (500 Hz and 2000 Hz) and high (8000 Hz) frequencies using a three-interval forced-choice task. Amusics exhibited deficits even at the highest frequency, which lies beyond the existence region of musical pitch. Next, we assessed the extent to which frequency coding deficits persist in one- and two-interval frequency-modulation (FM) and amplitude-modulation (AM) detection tasks at 500 Hz at slow (fm = 4 Hz) and fast (fm = 20 Hz) modulation rates. Amusics still exhibited deficits in one-interval FM detection tasks that should not involve memory or segmentation. Surprisingly, amusics were also impaired on AM detection, which should not involve pitch processing. Finally, direct comparisons between the detection of continuous and discrete FM demonstrated that amusics suffer deficits both in coding and segmenting pitch information. Our results reveal auditory deficits in amusia extending beyond pitch perception that are subtle when controlling for memory and segmentation, and are likely exacerbated in more complex contexts such as musical listening. PMID:28315696

  9. General requirements to implement the personal dose equivalent Hp(10) in Brazil

    NASA Astrophysics Data System (ADS)

    Gomes Lopes, Amanda; Da Silva, Francisco Cesar Augusto

    2018-03-01

    To update the dosimetry quantity with the international community, Brazil is changing the Individual Dose (Hx) to the Personal Dose Equivalent Hp(10). A bibliographical survey on the technical and administrative requirements of nine countries that use Hp(10) was carried out to obtain the most relevant ones. All of them follow IEC and ISO guidelines for technical requirements, but administrative requirements change from country to country. Based on countries experiences, this paper presents a list of important general requirements to implement Hp(10) and to prepare the Brazilian requirements according to the international scientific community.

  10. Pitch-Learning Algorithm For Speech Encoders

    NASA Technical Reports Server (NTRS)

    Bhaskar, B. R. Udaya

    1988-01-01

    Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.

  11. Correlation Between Presence of imaA (HP0289) and Inflammation in H. pylori Infected Patients through Analysis of Bacterial DNA

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Jain, S.

    2012-12-01

    The bacterium Helicobacter pylori inhabits the stomachs of nearly half of the world's human population, yet only a small fraction (20%) of those people are harmfully affected by the organism. Inflammation caused by the species often results in stomach ulcers or even cancer in these infected patients. Previous studies indicate that the uncharacterized H. pylori gene imaA (HP0289) may be responsible for suppressing this inflammation. Correlation between the intactness of the gene and inflammation levels in patients was determined through analysis of 105 DNA samples from H. pylori infected patients. Traditional PCR and gel electrophoresis techniques were used in the experimentation process. Primers including AC235, 5'imaARev, 3'imaAFor2446, 3'imaARevClinical, ureA637For, ureA637Rev, interFor1, interRev1, interFor2, and interRev2 were used to identify deletions in HP0289 in each DNA sample. The results from this analysis could allow for eventual remediation of the adverse effects of H. pylori.

  12. Effects of culture on musical pitch perception.

    PubMed

    Wong, Patrick C M; Ciocca, Valter; Chan, Alice H D; Ha, Louisa Y Y; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  13. Effects of Culture on Musical Pitch Perception

    PubMed Central

    Wong, Patrick C. M.; Ciocca, Valter; Chan, Alice H. D.; Ha, Louisa Y. Y.; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association—the influence of linguistic background on music pitch processing and disorders—remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means ‘teacher’ and ‘to try’ when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  14. Vocal perfection in yodelling--pitch stabilities and transition times.

    PubMed

    Echternach, Matthias; Richter, Bernhard

    2010-04-01

    Yodelling is a special kind of vocal performance in traditional music which consists of rapid and repeated changes in pitch. It is assumed that these pitch changes are accompanied by register changes. We analysed, using the laryngograph, yodelling on different vowels by four professional yodelling teachers (two male, two female), four professional classically trained singers, and four untrained voices. Results reveal that pitch changes in yodelling are associated with decrease of electroglottograpgic (EGG) contact quotient for the upper pitch, indicating a register shift. Furthermore, in contrast to untrained voices, for the yodellers lower and upper pitches were more stable with respect to fundamental frequency and perturbation values, and the pitch transitions were faster.

  15. Impaired short-term memory for pitch in congenital amusia.

    PubMed

    Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne

    2016-06-01

    Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Computing LORAN time differences with an HP-25 hand calculator

    NASA Technical Reports Server (NTRS)

    Jones, E. D.

    1978-01-01

    A program for an HP-25 or HP-25C hand calculator that will calculate accurate LORAN-C time differences is described and presented. The program is most useful when checking the accuracy of a LORAN-C receiver at a known latitude and longitude without the aid of an expensive computer. It can thus be used to compute time differences for known landmarks or waypoints to predict in advance the approximate readings during a navigation mission.

  17. Theoretical study on the polar hydrogen-π (Hp-π) interactions between protein side chains

    PubMed Central

    2013-01-01

    Background In the study of biomolecular structures and interactions the polar hydrogen-π bonds (Hp-π) are an extensive molecular interaction type. In proteins 11 of 20 natural amino acids and in DNA (or RNA) all four nucleic acids are involved in this type interaction. Results The Hp-π in proteins are studied using high level QM method CCSD/6-311 + G(d,p) + H-Bq (ghost hydrogen basis functions) in vacuum and in solutions (water, acetonitrile, and cyclohexane). Three quantum chemical methods (B3LYP, CCSD, and CCSD(T)) and three basis sets (6-311 + G(d,p), TZVP, and cc-pVTZ) are compared. The Hp-π donors include R2NH, RNH2, ROH, and C6H5OH; and the acceptors are aromatic amino acids, peptide bond unit, and small conjugate π-groups. The Hp-π interaction energies of four amino acid pairs (Ser-Phe, Lys-Phe, His-Phe, and Tyr-Phe) are quantitatively calculated. Conclusions Five conclusion points are abstracted from the calculation results. (1) The common DFT method B3LYP fails in describing the Hp-π interactions. On the other hand, CCSD/6-311 + G(d,p) plus ghost atom H-Bq can yield better results, very close to the state-of-the-art method CCSD(T)/cc-pVTZ. (2) The Hp-π interactions are point to π-plane interactions, possessing much more interaction conformations and broader energy range than other interaction types, such as common hydrogen bond and electrostatic interactions. (3) In proteins the Hp-π interaction energies are in the range 10 to 30 kJ/mol, comparable or even larger than common hydrogen bond interactions. (4) The bond length of Hp-π interactions are in the region from 2.30 to 3.00 Å at the perpendicular direction to the π-plane, much longer than the common hydrogen bonds (~1.9 Å). (5) Like common hydrogen bond interactions, the Hp-π interactions are less affected by solvation effects. PMID:23705926

  18. Spatial Representation of Pitch Height: The SMARC Effect

    ERIC Educational Resources Information Center

    Rusconi, Elena; Kwan, Bonnie; Giordano, Bruno L.; Umilta, Carlo; Butterworth, Brian

    2006-01-01

    Through the preferential pairing of response positions to pitch, here we show that the internal representation of pitch height is spatial in nature and affects performance, especially in musically trained participants, when response alternatives are either vertically or horizontally aligned. The finding that our cognitive system maps pitch height…

  19. Forced pitch motion of wind turbines

    NASA Astrophysics Data System (ADS)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  20. Photomask etch system and process for 10nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Chandrachood, Madhavi; Grimbergen, Michael; Yu, Keven; Leung, Toi; Tran, Jeffrey; Chen, Jeff; Bivens, Darin; Yalamanchili, Rao; Wistrom, Richard; Faure, Tom; Bartlau, Peter; Crawford, Shaun; Sakamoto, Yoshifumi

    2015-10-01

    While the industry is making progress to offer EUV lithography schemes to attain ultimate critical dimensions down to 20 nm half pitch, an interim optical lithography solution to address an immediate need for resolution is offered by various integration schemes using advanced PSM (Phase Shift Mask) materials including thin e-beam resist and hard mask. Using the 193nm wavelength to produce 10nm or 7nm patterns requires a range of optimization techniques, including immersion and multiple patterning, which place a heavy demand on photomask technologies. Mask schemes with hard mask certainly help attain better selectivity and hence better resolution but pose integration challenges and defectivity issues. This paper presents a new photomask etch solution for attenuated phase shift masks that offers high selectivity (Cr:Resist > 1.5:1), tighter control on the CD uniformity with a 3sigma value approaching 1 nm and controllable CD bias (5-20 nm) with excellent CD linearity performance (<5 nm) down to the finer resolution. The new system has successfully demonstrated capability to meet the 10 nm node photomask CD requirements without the use of more complicated hard mask phase shift blanks. Significant improvement in post wet clean recovery performance was demonstrated by the use of advanced chamber materials. Examples of CD uniformity, linearity, and minimum feature size, and etch bias performance on 10 nm test site and production mask designs will be shown.

  1. On Older Listeners' Ability to Perceive Dynamic Pitch

    ERIC Educational Resources Information Center

    Shen, Jing; Wright, Richard; Souza, Pamela E.

    2016-01-01

    Purpose: Natural speech comes with variation in pitch, which serves as an important cue for speech recognition. The present study investigated older listeners' dynamic pitch perception with a focus on interindividual variability. In particular, we asked whether some of the older listeners' inability to perceive dynamic pitch stems from the higher…

  2. Binaural Pitch Fusion in Bilateral Cochlear Implant Users.

    PubMed

    Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L; Oh, Yonghee

    Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.

  3. Analyzing pitch chroma and pitch height in the human brain.

    PubMed

    Warren, Jason D; Uppenkamp, Stefan; Patterson, Roy D; Griffiths, Timothy D

    2003-11-01

    The perceptual pitch dimensions of chroma and height have distinct representations in the human brain: chroma is represented in cortical areas anterior to primary auditory cortex, whereas height is represented posterior to primary auditory cortex.

  4. Absolute pitch in a four-year-old boy with autism.

    PubMed

    Brenton, James N; Devries, Seth P; Barton, Christine; Minnich, Heike; Sokol, Deborah K

    2008-08-01

    Absolute pitch is the ability to identify the pitch of an isolated tone. We report on a 4-year-old boy with autism and absolute pitch, one of the youngest reported in the literature. Absolute pitch is thought to be attributable to a single gene, transmitted in an autosomal-dominant fashion. The association of absolute pitch with autism raises the speculation that this talent could be linked to a genetically distinct subset of children with autism. Further, the identification of absolute pitch in even young children with autism may lead to a lifelong skill.

  5. A fundamental residue pitch perception bias for tone language speakers

    NASA Astrophysics Data System (ADS)

    Petitti, Elizabeth

    A complex tone composed of only higher-order harmonics typically elicits a pitch percept equivalent to the tone's missing fundamental frequency (f0). When judging the direction of residue pitch change between two such tones, however, listeners may have completely opposite perceptual experiences depending on whether they are biased to perceive changes based on the overall spectrum or the missing f0 (harmonic spacing). Individual differences in residue pitch change judgments are reliable and have been associated with musical experience and functional neuroanatomy. Tone languages put greater pitch processing demands on their speakers than non-tone languages, and we investigated whether these lifelong differences in linguistic pitch processing affect listeners' bias for residue pitch. We asked native tone language speakers and native English speakers to perform a pitch judgment task for two tones with missing fundamental frequencies. Given tone pairs with ambiguous pitch changes, listeners were asked to judge the direction of pitch change, where the direction of their response indicated whether they attended to the overall spectrum (exhibiting a spectral bias) or the missing f0 (exhibiting a fundamental bias). We found that tone language speakers are significantly more likely to perceive pitch changes based on the missing f0 than English speakers. These results suggest that tone-language speakers' privileged experience with linguistic pitch fundamentally tunes their basic auditory processing.

  6. Video Game Programmers Learn to "Pitch"

    ERIC Educational Resources Information Center

    Nikirk, Martin

    2007-01-01

    New video and computer game ideas reach the stage of production by a company when they are "pitched" by game developers to game publishers. Learning how to "pitch" technology products has great educational value for technology education students. In this article, the author shares his experience with helping his students master…

  7. Global and local pitch perception in children with developmental dyslexia.

    PubMed

    Ziegler, Johannes C; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M

    2012-03-01

    This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global condition). Compared to normally developing children, dyslexics showed robust pitch perception deficits in the local but not the global condition. This finding was replicated in a simple pitch direction task, which minimizes sequencing and short term memory. Results are consistent with a left-hemisphere deficit in dyslexia because local pitch changes are supposedly processed by the left hemisphere, whereas global pitch changes are processed by the right hemisphere. The present data suggest a link between impaired pitch processing and abnormal phonological development in children with dyslexia, which makes pitch pattern processing a potent tool for early diagnosis and remediation of dyslexia. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Discriminating male and female voices: differentiating pitch and gender.

    PubMed

    Latinus, Marianne; Taylor, Margot J

    2012-04-01

    Gender is salient, socially critical information obtained from faces and voices, yet the brain processes underlying gender discrimination have not been well studied. We investigated neural correlates of gender processing of voices in two ERP studies. In the first, ERP differences were seen between female and male voices starting at 87 ms, in both spatial-temporal and peak analyses, particularly the fronto-central N1 and P2. As pitch differences may drive gender differences, the second study used normal, high- and low-pitch voices. The results of these studies suggested that differences in pitch produced early effects (27-63 ms). Gender effects were seen on N1 (120 ms) with implicit pitch processing (study 1), but were not seen with manipulations of pitch (study 2), demonstrating that N1 was modulated by attention. P2 (between 170 and 230 ms) discriminated male from female voices, independent of pitch. Thus, these data show that there are two stages in voice gender processing; a very early pitch or frequency discrimination and a later more accurate determination of gender at the P2 latency.

  9. Clerget 100 hp heavy-oil engine

    NASA Technical Reports Server (NTRS)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  10. Kinematics and kinetics of elite windmill softball pitching.

    PubMed

    Werner, Sherry L; Jones, Deryk G; Guido, John A; Brunet, Michael E

    2006-04-01

    A significant number of time-loss injuries to the upper extremity in elite windmill softball pitchers has been documented. The number of outings and pitches thrown in 1 week for a softball pitcher is typically far in excess of those seen in baseball pitchers. Shoulder stress in professional baseball pitching has been reported to be high and has been linked to pitching injuries. Shoulder distraction has not been studied in an elite softball pitching population. The stresses on the throwing shoulder of elite windmill pitchers are similar to those found for professional baseball pitchers. Descriptive laboratory study. Three-dimensional, high-speed (120 Hz) video data were collected on rise balls from 24 elite softball pitchers during the 1996 Olympic Games. Kinematic parameters related to pitching mechanics and resultant kinetics on the throwing shoulder were calculated. Multiple linear regression analysis was used to relate shoulder stress and pitching mechanics. Shoulder distraction stress averaged 80% of body weight for the Olympic pitchers. Sixty-nine percent of the variability in shoulder distraction can be explained by a combination of 7 parameters related to pitching mechanics. Excessive distraction stress at the throwing shoulder is similar to that found in baseball pitchers, which suggests that windmill softball pitchers are at risk for overuse injuries. Normative information regarding upper extremity kinematics and kinetics for elite softball pitchers has been established.

  11. Reciprocal contribution of clinical studies and the HP10 antigen ELISA for the diagnosis of extraparenchymal neurocysticercosis.

    PubMed

    Parkhouse, R Michael E; Carpio, Arturo; Campoverde, Alfredo; Sastre, Patricia; Rojas, Glenda; Cortez, María Milagros

    2018-02-01

    To evaluate diagnosis of active neurocysticercosis, paired cerebral spinal fluid (CSF) and serum samples from 24 neurocysticercosis (NCC) patients and 17 control neurological patients were assayed in the HP10 Taenia antigen (Ag) ELISA. The CSF samples were also tested with an HP10 Lateral Flow Assay (LFA). The HP10 Ag was detected by ELISA in the CSF of 5/5 patients with Definitive extraparenchymal NCC, and in 4/5 of the corresponding sera. In the Definitive parenchymal group, on the other hand, the HP10 Ag was absent in 2/3 CSF (with a very low value in the one positive sample) and all the corresponding serum samples. Samples of CSF from 4/7 patients in the Probable parenchymal group, were also significantly HP10 Ag positive, suggesting the presence of extraparenchymal cysts not identified by the imaging studies. With the possible exception of one patient, the corresponding serum samples of the Probable parenchymal NCC group, were all HP10 Ag negative. Samples of CSF from 9 NCC patients diagnosed with Mixed parenchymal and extraparenchymal NCC were all significantly HP10 Ag positive, confirming the presence of extraparenchymal cysts, with only 7/9 of the corresponding serum samples being HP10 positive. Thus detection of the HP10 Ag indicates extraparenchymal and not parenchymal cyst localization and is more sensitive with CSF than serum. Three neurological patients clinically diagnosed as subarachnoid cyst, hydrocephalus and tuberculoma, respectively, were clearly positive for HP10 Ag. Of these, two were confirmed as NCC by subsequent imaging; the third died prior to further examination. Thus, a total of 8 patients had their clinical diagnosis questioned. Finally, there was good agreement between the HP10 Ag ELISA and LFA with CSF samples giving an optical density ≥0.4 in the ELISA assay. In conclusion, the HP10 Ag assay should provide a valuable and reciprocal tool in the clinical diagnosis and follow up of extraparenchymal NCC. Copyright © 2017 Elsevier B

  12. Pitch contour identification with combined place and temporal cues using cochlear implants

    PubMed Central

    Luo, Xin; Padilla, Monica; Landsberger, David M.

    2012-01-01

    This study investigated the integration of place- and temporal-pitch cues in pitch contour identification (PCI), in which cochlear implant (CI) users were asked to judge the overall pitch-change direction of stimuli. Falling and rising pitch contours were created either by continuously steering current between adjacent electrodes (place pitch), by continuously changing amplitude modulation (AM) frequency (temporal pitch), or both. The percentage of rising responses was recorded as a function of current steering or AM frequency change, with single or combined pitch cues. A significant correlation was found between subjects’ sensitivity to current steering and AM frequency change. The integration of place- and temporal-pitch cues was most effective when the two cues were similarly discriminable in isolation. Adding the other (place or temporal) pitch cues shifted the temporal- or place-pitch psychometric functions horizontally without changing the slopes. PCI was significantly better with consistent place- and temporal-pitch cues than with inconsistent cues. PCI with single cues and integration of pitch cues were similar on different electrodes. The results suggest that CI users effectively integrate place- and temporal-pitch cues in relative pitch perception tasks. Current steering and AM frequency change should be coordinated to better transmit dynamic pitch information to CI users. PMID:22352506

  13. Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task

    PubMed Central

    Plack, Christopher J.

    2010-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change. PMID:20878201

  14. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    PubMed

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  15. Pitch Counts in Youth Baseball and Softball: A Historical Review.

    PubMed

    Feeley, Brian T; Schisel, Jessica; Agel, Julie

    2018-07-01

    Pitching injuries are getting increased attention in the mass media. Many references are made to pitch counts and the role they play in injury prevention. The original purpose of regulating the pitch count in youth baseball was to reduce injury and fatigue to pitchers. This article reviews the history and development of the pitch count limit in baseball, the effect it has had on injury, and the evidence regarding injury rates on softball windmill pitching. Literature search through PubMed, mass media, and organizational Web sites through June 2015. Pitch count limits and rest recommendations were introduced in 1996 after a survey of 28 orthopedic surgeons and baseball coaches showed injuries to baseball pitchers' arms were believed to be from the number of pitches thrown. Follow-up research led to revised recommendations with more detailed guidelines in 2006. Since that time, data show a relationship between innings pitched and upper extremity injury, but pitch type has not clearly been shown to affect injury rates. Current surveys of coaches and players show that coaches, parents, and athletes often do not adhere to these guidelines. There are no pitch count guidelines currently available in softball. The increase in participation in youth baseball and softball with an emphasis on early sport specialization in youth sports activities suggests that there will continue to be a rise in injury rates to young throwers. The published pitch counts are likely to positively affect injury rates but must be adhered to by athletes, coaches, and parents.

  16. On Zwicker tones and musical pitch in the likely absence of phase locking corresponding to the pitch a)

    PubMed Central

    Gockel, Hedwig E.; Carlyon, Robert P.

    2017-01-01

    It was assessed whether Zwicker tones (ZTs) (an auditory afterimage produced by a band-stop noise) have a musical pitch. First (stage I), musically trained subjects adjusted the frequency, level, and decay time of an exponentially decaying diotic sinusoid to sound similar to the ZT they perceived following the presentation of diotic broadband noise, for various band-stop positions. Next (stage II), subjects adjusted a sinusoid in frequency and level so that its pitch was a specified musical interval below that of either a preceding ZT or a preceding sinusoid, and so that it was equally loud. For each subject the reference sinusoid corresponded to their adjusted sinusoid from stage I. Subjects selected appropriate frequency ratios for ZTs, although the standard deviations of the adjustments were larger for the ZTs than for the equally salient sinusoids by a factor of 1.0–2.2. Experiments with monaural stimuli led to similar results, although the pitch of the ZTs could differ for monaural and diotic presentation of the ZT-exciting noise. The results suggest that a weak musical pitch may exist in the absence of phase locking in the auditory nerve to the frequency corresponding to the pitch (or harmonics thereof) at the time of the percept. PMID:27794303

  17. Cost effectiveness in Canada of a multidrug prepackaged regimen (Hp-PAC)+ for Helicobacter pylori eradication.

    PubMed

    Agro, K; Blackhouse, G; Goeree, R; Willan, A R; Huang, J Q; Hunt, R H; O'Brien, B J

    2001-01-01

    To assess the cost effectiveness of a multidrug prepackaged regimen for Helicobacter pylori, the Hp-PAC (lansoprazole 30mg, clarithromycin 500 mg, amoxicillin 1 g, all twice daily), relative to alternative pharmacological strategies in the management of confirmed duodenal ulcer over a 1-year period from 2 perspectives: (i) a strict healthcare payer perspective (Ontario Ministry of Health) excluding the patient copayment; and (ii) a healthcare payer perspective including the patient copayment. A decision-analytical model was developed to estimate expected per patient costs [1998 Canadian dollars ($ Can)], weeks without ulcer and symptomatic ulcer recurrences for the Hp-PAC compared with: proton pump inhibitor (PPI)-clarithromycin-amoxicillin (PPI-CA), PPI-clarithromycin-metronidazole (PPI-CM), PPI-amoxicillin-metronidazole (PPI-AM) and ranitidine-bismuthmetronidazole-tetracycline (RAN-BMT). All PPI-based regimens had higher expected costs but better outcomes relative to RAN-BMT. From a strict healthcare payer perspective, PPI-CM ($Can 209) yielded lower expected costs than PPI-CA ($Can 221) and slightly lower costs than Hp-PAC ($Can 211). However, these 3 regimens all shared identical outcomes (51.2 weeks without ulcer). When the current Ontario, Canada, $Can 2 patient copayment was added to the dispensing fee, Hp-PAC yielded lower costs ($Can 214) than PPI-CM ($Can 216). From a strict healthcare payer perspective, Hp-PAC is weakly dominated by PPI-CM with an incremental cost effectiveness (relative to RAN-BMT) of $Can 5.77 per ulcer week averted. When the patient copayment is added to this perspective, Hp-PAC weakly dominates PPI-CM ($Can 5 per ulcer week averted). Regardless of perspective, Hp-PAC and PPI-CM differed by only $Can 2 per patient over 1 year and the expected time without ulcer was 51.2 weeks for both. More data on the clinical and statistical differences in H. pylori eradication with Hp-PAC and PPI-CM would be useful. This analysis does not in clude

  18. In vitro autoradiographic localization of angiotensin-converting enzyme in sarcoid lymph nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.K.; Chai, S.Y.; Dunbar, M.S.

    1986-09-01

    Angiotensin-converting enzyme (ACE) was localized in sarcoid lymph nodes by an in vitro autoradiographic technique using a synthetic ACE inhibitor of high affinity, /sup 125/I-labelled 351A. The lymph nodes were from seven patients with active sarcoidosis who underwent mediastinoscopy and from six control subjects who had nodes resected at either mediastinoscopy or laparotomy. Angiotensin-converting enzyme was localized in the epithelioid cells of sarcoid granulomata in markedly increased amounts compared with control nodes, where it was restricted to vessels and some histiocytes. In sarcoid lymph nodes, there was little ACE present in lymphocytes or fibrous tissue. Sarcoid nodes with considerable fibrosismore » had much less intense ACE activity than the nonfibrotic nodes. The specific activity of ACE measured by an enzymatic assay in both the control and sarcoid lymph nodes closely reflected the ACE activity demonstrated by autoradiography. Sarcoid lymph nodes with fibrosis had an ACE specific activity of half that of nonfibrotic nodes (p less than 0.05). There was a 15-fold increase in specific ACE activity in sarcoid nodes (p less than 0.05) compared to normal. Serum ACE was significantly higher in those sarcoid patients whose lymph nodes were not fibrosed compared with those with fibrosis (p less than 0.01). This technique offers many advantages over the use of polyclonal antibodies. The 351A is a highly specific ACE inhibitor, chemically defined and in limitless supply. This method enables the quantitation of results, and autoradiographs may be stored indefinitely for later comparison.« less

  19. Singing ability is rooted in vocal-motor control of pitch.

    PubMed

    Hutchins, Sean; Larrouy-Maestri, Pauline; Peretz, Isabelle

    2014-11-01

    The inability to vocally match a pitch can be caused by poor pitch perception or by poor vocal-motor control. Although previous studies have tried to examine the relationship between pitch perception and vocal production, they have failed to control for the timbre of the target to be matched. In the present study, we compare pitch-matching accuracy with an unfamiliar instrument (the slider) and with the voice, designed such that the slider plays back recordings of the participant's own voice. We also measured pitch accuracy in singing a familiar melody ("Happy Birthday") to assess the relationship between single-pitch-matching tasks and melodic singing. Our results showed that participants (all nonmusicians) were significantly better at matching recordings of their own voices with the slider than with their voice, indicating that vocal-motor control is an important limiting factor on singing ability. We also found significant correlations between the ability to sing a melody in tune and vocal pitch matching, but not pitch matching on the slider. Better melodic singers also tended to have higher quality voices (as measured by acoustic variables). These results provide important evidence about the role of vocal-motor control in poor singing ability and demonstrate that single-pitch-matching tasks can be useful in measuring general singing abilities.

  20. Kinematics and constraints associated with swashplate blade pitch control

    NASA Technical Reports Server (NTRS)

    Leyland, Jane A.

    1993-01-01

    An important class of techniques to reduce helicopter vibration is based on using a Higher Harmonic controller to optimally define the Higher Harmonic blade pitch. These techniques typically require solution of a general optimization problem requiring the determination of a control vector which minimizes a performance index where functions of the control vector are subject to inequality constraints. Six possible constraint functions associated with swashplate blade pitch control were identified and defined. These functions constrain: (1) blade pitch Fourier Coefficients expressed in the Rotating System, (2) blade pitch Fourier Coefficients expressed in the Nonrotating System, (3) stroke of the individual actuators expressed in the Nonrotating System, (4) blade pitch expressed as a function of blade azimuth and actuator stroke, (5) time rate-of-change of the aforementioned parameters, and (6) required actuator power. The aforementioned constraints and the associated kinematics of swashplate blade pitch control by means of the strokes of the individual actuators are documented.

  1. Stimulus-Dependent Flexibility in Non-Human Auditory Pitch Processing

    ERIC Educational Resources Information Center

    Bregman, Micah R.; Patel, Aniruddh D.; Gentner, Timothy Q.

    2012-01-01

    Songbirds and humans share many parallels in vocal learning and auditory sequence processing. However, the two groups differ notably in their abilities to recognize acoustic sequences shifted in absolute pitch (pitch height). Whereas humans maintain accurate recognition of words or melodies over large pitch height changes, songbirds are…

  2. Signal coupling to embedded pitch adapters in silicon sensors

    NASA Astrophysics Data System (ADS)

    Artuso, M.; Betancourt, C.; Bezshyiko, I.; Blusk, S.; Bruendler, R.; Bugiel, S.; Dasgupta, R.; Dendek, A.; Dey, B.; Ely, S.; Lionetto, F.; Petruzzo, M.; Polyakov, I.; Rudolph, M.; Schindler, H.; Steinkamp, O.; Stone, S.

    2018-01-01

    We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.

  3. New approach to calculate the true-coincidence effect of HpGe detector

    NASA Astrophysics Data System (ADS)

    Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Siong, W. B.; Elias, M. S.

    2016-01-01

    The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using 57Co, 60Co, 133Ba and 137Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGe detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.

  4. Human spatial orientation in the pitch dimension

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Larson, C. A.

    1974-01-01

    Two experiments were conducted. In Experiment I, each of eight Ss attempted to place himself at 13 different goal orientations between prone and supine. Deviations of achieved body pitch angles from goal orientations were determined. In Experiment II, each of eight Ss attempted to align a visual target with his morphological horizon while he was placed at each of the 13 goal orientations. Changes in settings of the target were examined. Results indicate that Ss underestimate body pitch when they are tilted less than 60 deg backward or forward from the vertical, overestimate body pitch when they are nearly prone, and accurately estimate body pitch when they are nearly supine. In contrast, Ss set the visual target maximally above the morphological horizon when they are tilted 30 deg forward from the vertical. The findings are discussed in terms of common and different physiological mechanism that may underlie judgments of these types.

  5. A proposal for a test method for assessment of hazard property HP 12 ("Release of an acute toxic gas") in hazardous waste classification - Experience from 49 waste.

    PubMed

    Hennebert, Pierre; Samaali, Ismahen; Molina, Pauline

    2016-12-01

    A stepwise method for assessment of the HP 12 is proposed and tested with 49 waste samples. The hazard property HP 12 is defined as "Release of an acute toxic gas": waste which releases acute toxic gases (Acute Tox. 1, 2 or 3) in contact with water or an acid. When a waste contains a substance assigned to one of the following supplemental hazards EUH029, EUH031 and EUH032, it shall be classified as hazardous by HP 12 according to test methods or guidelines (EC, 2014a, 2014b). When the substances with the cited hazard statement codes react with water or an acid, they can release HCl, Cl 2 , HF, HCN, PH 3 , H 2 S, SO 2 (and two other gases very unlikely to be emitted, hydrazoic acid HN 3 and selenium oxide SeO 2 - a solid with low vapor pressure). Hence, a method is proposed:For a set of 49 waste, water addition did not produce gas. Nearly all the solid waste produced a gas in contact with hydrochloric acid in 5 min in an automated calcimeter with a volume >0.1L of gas per kg of waste. Since a plateau of pressure is reached only for half of the samples in 5 min, 6 h trial with calorimetric bombs or glass flasks were done and confirmed the results. Identification of the gases by portable probes showed that most of the tested samples emit mainly CO 2 . Toxic gases are emitted by four waste: metallic dust from the aluminum industry (CO), two air pollution control residue of industrial waste incinerator (H 2 S) and a halogenated solvent (organic volatile(s) compound(s)). HF has not been measured in these trials started before the present definition of HP 12. According to the definition of HP 12, only the H 2 S emission of substances with hazard statement EUH031 is accounted for. In view of the calcium content of the two air pollution control residue, the presence of calcium sulphide (EUH031) can be assumed. These two waste are therefore classified potentially hazardous for HP 12, from a total of 49 waste. They are also classified as hazardous for other properties (HP 7

  6. Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging.

    PubMed

    Neuner, Sarah M; Garfinkel, Benjamin P; Wilmott, Lynda A; Ignatowska-Jankowska, Bogna M; Citri, Ami; Orly, Joseph; Lu, Lu; Overall, Rupert W; Mulligan, Megan K; Kempermann, Gerd; Williams, Robert W; O'Connell, Kristen M S; Kaczorowski, Catherine C

    2016-10-01

    An individual's genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure— (1) Safe operation...

  8. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure- (1) Safe operation...

  9. The Effects of Lexical Pitch Accent on Infant Word Recognition in Japanese

    PubMed Central

    Ota, Mitsuhiko; Yamane, Naoto; Mazuka, Reiko

    2018-01-01

    Learners of lexical tone languages (e.g., Mandarin) develop sensitivity to tonal contrasts and recognize pitch-matched, but not pitch-mismatched, familiar words by 11 months. Learners of non-tone languages (e.g., English) also show a tendency to treat pitch patterns as lexically contrastive up to about 18 months. In this study, we examined if this early-developing capacity to lexically encode pitch variations enables infants to acquire a pitch accent system, in which pitch-based lexical contrasts are obscured by the interaction of lexical and non-lexical (i.e., intonational) features. Eighteen 17-month-olds learning Tokyo Japanese were tested on their recognition of familiar words with the expected pitch or the lexically opposite pitch pattern. In early trials, infants were faster in shifting their eyegaze from the distractor object to the target object than in shifting from the target to distractor in the pitch-matched condition. In later trials, however, infants showed faster distractor-to-target than target-to-distractor shifts in both the pitch-matched and pitch-mismatched conditions. We interpret these results to mean that, in a pitch-accent system, the ability to use pitch variations to recognize words is still in a nascent state at 17 months. PMID:29375452

  10. Language-experience plasticity in neural representation of changes in pitch salience

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2016-01-01

    Neural representation of pitch-relevant information at the brainstem and cortical levels of processing is influenced by language experience. A well-known attribute of pitch is its salience. Brainstem frequency following responses and cortical pitch specific responses, recorded concurrently, were elicited by a pitch salience continuum spanning weak to strong pitch of a dynamic, iterated rippled noise pitch contour—homolog of a Mandarin tone. Our aims were to assess how language experience (Chinese, English) affects i) enhancement of neural activity associated with pitch salience at brainstem and cortical levels, ii) the presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude along the pitch salience continuum. Peak latency (Fz: Na, Pb, Nb) was shorter in the Chinese than the English group across the continuum. Peak-to-peak amplitude (Fz: Na-Pb, Pb-Nb) of the Chinese group grew larger with increasing pitch salience, but an experience-dependent advantage was limited to the Na-Pb component. At temporal sites (T7/T8), the larger amplitude of the Chinese group across the continuum was both limited to the Na-Pb component and the right temporal site. At the brainstem level, F0 magnitude gets larger as you increase pitch salience, and it too reveals Chinese superiority. A direct comparison of cortical and brainstem responses for the Chinese group reveals different patterns of relative changes in magnitude along the pitch salience continuum. Such differences may point to a transformation in pitch processing at the cortical level presumably mediated by local sensory and/or extrasensory influence overlaid on the brainstem output. PMID:26903418

  11. Pitch Adaptation Patterns in Bimodal Cochlear Implant Users: Over Time and After Experience

    PubMed Central

    Reiss, Lina A.J.; Ito, Rindy A.; Eggleston, Jessica L.; Liao, Selena; Becker, Jillian J.; Lakin, Carrie E.; Warren, Frank M.; McMenomey, Sean O.

    2014-01-01

    Background Pitch plasticity has been observed in Hybrid cochlear implant (CI) users. Does pitch plasticity also occur in bimodal CI users with traditional long-electrode CIs, and is pitch adaptation pattern associated with electrode discrimination or speech recognition performance? Objective Characterize pitch adaptation patterns in long-electrode CI users, correlate these patterns with electrode discrimination and speech perception outcomes, and analyze which subject factors are associated with the different patterns. Methods Electric-to-acoustic pitch matches were obtained in 19 subjects over time from CI activation to at least 12 months after activation, and in a separate group of 18 subjects in a single visit after at least 24 months of CI experience. Audiometric thresholds, electrode discrimination performance, and speech perception scores were also measured. Results Subjects measured over time had pitch adaptation patterns that fit one of the following categories: 1) “Pitch-adapting”, i.e. the mismatch between perceived electrode pitch and the corresponding frequency-to-electrode allocations decreased; 2) “Pitch-dropping”, i.e. the pitches of multiple electrodes dropped and converged to a similar low pitch; 3) “Pitch-unchanging”, i.e. electrode pitches did not change. Subjects measured after CI experience had a parallel set of adaptation patterns: 1) “Matched-pitch”, i.e. the electrode pitch was matched to the frequency allocation; 2) “Low-pitch”, i.e. the pitches of multiple electrodes were all around the lowest frequency allocation; 3) “Nonmatched-pitch”, i.e. the pitch patterns were compressed relative to the frequency allocations and did not fit either the matched-pitch or low-pitch categories. Unlike Hybrid CI users which were mostly in the pitch-adapting/matched-pitch category, the majority of bimodal CI users were in the latter two categories, pitch-dropping/low-pitch or pitch-unchanging/nonmatched-pitch. Subjects with pitch

  12. DAMT - DISTRIBUTED APPLICATION MONITOR TOOL (HP9000 VERSION)

    NASA Technical Reports Server (NTRS)

    Keith, B.

    1994-01-01

    processes. The independent processes communicate with each other via UNIX sockets through a Virtual Path router, or Switcher. The Switcher maintains a routing table showing the host of each component process of the tool, eliminating the need for each process to do so. The Central Monitor Complex provides the single application program interface (API) to the user and coordinates the activities of DAMT. The Central Monitor Complex is itself divided into independent objects that perform its functions. The component objects are the Central Monitor, the Process Locator, the Circuit Locator, and the Traffic Reporter. Each of these objects is an independent, asynchronously executing process. User requests to the tool are interpreted by the Central Monitor. The Process Locator identifies whether a named process is running on a monitored host and which host that is. The circuit between any two processes in the distributed application is identified using the Circuit Locator. The Traffic Reporter handles communication with the LAN Analyzer and accumulates traffic updates until it must send a traffic report to the user. The Remote Monitor process is replicated on each monitored host. It serves the Central Monitor Complex processes with application process information. The Remote Monitor process provides access to operating systems information about currently executing processes. It allows the Process Locator to find processes and the Circuit Locator to identify circuits between processes. It also provides lifetime information about currently monitored processes. The LAN Analyzer consists of two processes. Low-level monitoring is handled by the Sniffer. The Sniffer analyzes the raw data on a single, physical LAN. It responds to commands from the Analyzer process, which maintains the interface to the Traffic Reporter and keeps track of which circuits to monitor. DAMT is written in C-language for HP-9000 series computers running HP-UX and Sun 3 and 4 series computers running SunOS. DAMT

  13. The pitch-heave dynamics of transportation vehicles

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.; Richardson, H. H.

    1975-01-01

    The analysis and design of suspensions for vehicles of finite length using pitch-heave models is presented. Dynamic models for the finite length vehicle include the spatial distribution of the guideway input disturbance over the vehicle length, as well as both pitch and heave degrees-of-freedom. Analytical results relate the vehicle front and rear accelerations to the pitch and heave natural frequencies, which are functions of vehicle suspension geometry and mass distribution. The effects of vehicle asymmetry and suspension contact area are evaluated. Design guidelines are presented for the modification of vehicle and suspension parameters to meet alternative ride quality criteria.

  14. Pitch perception deficits in nonverbal learning disability.

    PubMed

    Fernández-Prieto, I; Caprile, C; Tinoco-González, D; Ristol-Orriols, B; López-Sala, A; Póo-Argüelles, P; Pons, F; Navarra, J

    2016-12-01

    The nonverbal learning disability (NLD) is a neurological dysfunction that affects cognitive functions predominantly related to the right hemisphere such as spatial and abstract reasoning. Previous evidence in healthy adults suggests that acoustic pitch (i.e., the relative difference in frequency between sounds) is, under certain conditions, encoded in specific areas of the right hemisphere that also encode the spatial elevation of external objects (e.g., high vs. low position). Taking this evidence into account, we explored the perception of pitch in preadolescents and adolescents with NLD and in a group of healthy participants matched by age, gender, musical knowledge and handedness. Participants performed four speeded tests: a stimulus detection test and three perceptual categorization tests based on colour, spatial position and pitch. Results revealed that both groups were equally fast at detecting visual targets and categorizing visual stimuli according to their colour. In contrast, the NLD group showed slower responses than the control group when categorizing space (direction of a visual object) and pitch (direction of a change in sound frequency). This pattern of results suggests the presence of a subtle deficit at judging pitch in NLD along with the traditionally-described difficulties in spatial processing. Copyright © 2016. Published by Elsevier Ltd.

  15. Single-nm resolution approach by applying DDRP and DDRM

    NASA Astrophysics Data System (ADS)

    Shibayama, Wataru; Shigaki, Shuhei; Takeda, Satoshi; Nakajima, Makoto; Sakamoto, Rikimaru

    2017-03-01

    EUV lithography has been desired as the leading technology for 1x or single nm half-pitch patterning. However, the source power, masks and resist materials still have critical issues for mass production. Especially in resist materials, RLS trade-off has been the key issue. To overcome this issue, we are suggesting Dry Development Rinse Process (DDRP) and Materials (DDRM) as the pattern collapse mitigation approach. This DDRM can perform not only as pattern collapse free materials for fine pitch, but also as the etching hard mask against bottom layer (spin on carbon : SOC). In this paper, we especially propose new approaches to achieve high resolution around hp1X nm L/S and single nm line patterning. Especially, semi iso 8nm line was successfully achieved with good LWR (2.5nm) and around 3 times aspect ratio. This single nm patterning technique also helped to enhance sensitivity about 33%. On the other hand, pillar patterning thorough CH pattern by applying DDRP also showed high resolution below 20nm pillar CD with good LCDU and high sensitivity. This new DDRP technology can be the promising approach not only for hp1Xnm level patterning but also single nm patterning in N7/N5 and beyond.

  16. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller speed or pitch controls, they must be grouped and arranged to allow— (1) Separate control of each...

  17. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller speed or pitch controls, they must be grouped and arranged to allow— (1) Separate control of each...

  18. Clinical assessment of pitch perception.

    PubMed

    Vaerenberg, Bart; Pascu, Alexandru; Del Bo, Luca; Schauwers, Karen; De Ceulaer, Geert; Daemers, Kristin; Coene, Martine; Govaerts, Paul J

    2011-07-01

    The perception of pitch has recently gained attention. At present, clinical audiologic tests to assess this are hardly available. This article reports on the development of a clinical test using harmonic intonation (HI) and disharmonic intonation (DI). Prospective collection of normative data and pilot study in hearing-impaired subjects. Tertiary referral center. Normative data were collected from 90 normal-hearing subjects recruited from 3 different language backgrounds. The pilot study was conducted on 18 hearing-impaired individuals who were selected into 3 pathologic groups: high-frequency hearing loss (HF), low-frequency hearing loss (LF), and cochlear implant users (CI). Normative data collection and exploratory diagnostics by means of the newly constructed HI/DI tests using intonation patterns to find the just noticeable difference (JND) for pitch discrimination in low-frequency harmonic complex sounds presented in a same-different task. JND for pitch discrimination using HI/DI tests in the hearing population and pathologic groups. Normative data are presented in 5 parameter statistics and box-and-whisker plots showing median JNDs of 2 (HI) and 3 Hz (DI). The results on both tests are statistically abnormal in LF and CI subjects, whereas they are not significantly abnormal in the HF group. The HI and DI tests allow the clinical assessment of low-frequency pitch perception. The data obtained in this study define the normal zone for both tests. Preliminary results indicate possible abnormal TFS perception in some hearing-impaired subjects.

  19. Revisiting place and temporal theories of pitch

    PubMed Central

    2014-01-01

    The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292

  20. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1) Separate...

  1. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1) Separate...

  2. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1) Separate...

  3. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... used to limit the low pitch position of the propeller blades must be set so that the engine does not... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits...

  4. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... used to limit the low pitch position of the propeller blades must be set so that the engine does not... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits...

  5. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... used to limit the low pitch position of the propeller blades must be set so that the engine does not... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits...

  6. Spatial representation of pitch height: the SMARC effect.

    PubMed

    Rusconi, Elena; Kwan, Bonnie; Giordano, Bruno L; Umiltà, Carlo; Butterworth, Brian

    2006-03-01

    Through the preferential pairing of response positions to pitch, here we show that the internal representation of pitch height is spatial in nature and affects performance, especially in musically trained participants, when response alternatives are either vertically or horizontally aligned. The finding that our cognitive system maps pitch height onto an internal representation of space, which in turn affects motor performance even when this perceptual attribute is irrelevant to the task, extends previous studies on auditory perception and suggests an interesting analogy between music perception and mathematical cognition. Both the basic elements of mathematical cognition (i.e. numbers) and the basic elements of musical cognition (i.e. pitches), appear to be mapped onto a mental spatial representation in a way that affects motor performance.

  7. A Computationally Efficient Method for Polyphonic Pitch Estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Ruohua; Reiss, Joshua D.; Mattavelli, Marco; Zoia, Giorgio

    2009-12-01

    This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI) as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.

  8. A post-processing algorithm for time domain pitch trackers

    NASA Astrophysics Data System (ADS)

    Specker, P.

    1983-01-01

    This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.

  9. [Relationships between the enrichment of ETBF, Fn, Hp in intestinal and colorectal cancer].

    PubMed

    Zhang, J; Lu, X L; Zhao, G; Shi, H T; Geng, Y; Zhong, W T; Dong, L

    2018-02-23

    Objective: To explore relationships between the enrichment of ETBF, Fn, Hp in feces, tissues and colorectal cancer. Methods: Feces, lesion tissue and adjacent tissue from 24 patients with colorectal cancer and 31 patients with adenomas were collected, and we collected Feces and tissue of 20 healthy control persons. Then the copy numbers of enterotoxigenic B. fragilis (ETBF), Fusobacterium nucleatum (Fn) and Helicobacter pylori (Hp) were determined by quantitative real-time PCR. Immunohistochemical method was used to examine the expression intensity of EGFR and p53, and the relationships between different expression intensity of EGFR, p53 and the numbers of three bacterias. Results: In the feces, copy numbers of ETBF and Fn were as follous: colorectal cancer group>adenomas group>healthy control group ( P <0.05). Copy numbers of Hp were as follous: colorectal cancer group>healthy control group ( P <0.01); adenomas group>healthy control group ( P <0.01). In the tissue, copy numbers of ETBF, Fn were as follows: colorectal cancer group>adenomas group>healthy control group ( P <0.05). Copy numbers of Hp were as follows: colorectal cancer group>healthy control group ( P <0.01); adenomas group>healthy control group ( P <0.01). Copy numbers of those three bacteria in the lesion tissue and the adjacent tissue had no significant difference. This happened both in colorectal cancer group and adenomas group. The different expression intensity of EGFR, p53 and the number of three bacteria showed no obviously statistical correlation( P >0.05). Conclusion: Adenomatous polyp and colorectal cancer patients show high enrichment of ETBF, Fn and Hp in both feces and tissues. ETBF, Fn and Hp probably contribute to the development of adenomatous polyp and colorectal cancer. Trial registration Chinese Clinical Trial Registry, ChiCTR-BOC-17012509.

  10. Optimal pitching axis location of flapping wings for efficient hovering flight.

    PubMed

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when

  11. Passive cyclic pitch control for horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Bottrell, G. W.

    1981-01-01

    A flexible rotor concept, called the balanced pitch rotor, is described. The system provides passive adjustment of cyclic pitch in response to unbalanced pitching moments across the rotor disk. Various applications are described and performance predictions are made for wind shear and cross wind operating conditions. Comparisons with the teetered hub are made and significant cost savings are predicted.

  12. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and at...

  13. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and at...

  14. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p...

  15. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p...

  16. Reconfigureable network node

    DOEpatents

    Vanderveen, Keith B [Tracy, CA; Talbot, Edward B [Livermore, CA; Mayer, Laurence E [Davis, CA

    2008-04-08

    Nodes in a network having a plurality of nodes establish communication links with other nodes using available transmission media, as the ability to establish such links becomes available and desirable. The nodes predict when existing communications links will fail, become overloaded or otherwise degrade network effectiveness and act to establish substitute or additional links before the node's ability to communicate with the other nodes on the network is adversely affected. A node stores network topology information and programmed link establishment rules and criteria. The node evaluates characteristics that predict existing links with other nodes becoming unavailable or degraded. The node then determines whether it can form a communication link with a substitute node, in order to maintain connectivity with the network. When changing its communication links, a node broadcasts that information to the network. Other nodes update their stored topology information and consider the updated topology when establishing new communications links for themselves.

  17. An investigation of spatial representation of pitch in individuals with congenital amusia.

    PubMed

    Lu, Xuejing; Sun, Yanan; Thompson, William Forde

    2017-09-01

    Spatial representation of pitch plays a central role in auditory processing. However, it is unknown whether impaired auditory processing is associated with impaired pitch-space mapping. Experiment 1 examined spatial representation of pitch in individuals with congenital amusia using a stimulus-response compatibility (SRC) task. For amusic and non-amusic participants, pitch classification was faster and more accurate when correct responses involved a physical action that was spatially congruent with the pitch height of the stimulus than when it was incongruent. However, this spatial representation of pitch was not as stable in amusic individuals, revealed by slower response times when compared with control individuals. One explanation is that the SRC effect in amusics reflects a linguistic association, requiring additional time to link pitch height and spatial location. To test this possibility, Experiment 2 employed a colour-classification task. Participants judged colour while ignoring a concurrent pitch by pressing one of two response keys positioned vertically to be congruent or incongruent with the pitch. The association between pitch and space was found in both groups, with comparable response times in the two groups, suggesting that amusic individuals are only slower to respond to tasks involving explicit judgments of pitch.

  18. Relationship between brainstem, cortical and behavioral measures relevant to pitch salience in humans.

    PubMed

    Krishnan, Ananthanarayan; Bidelman, Gavin M; Smalt, Christopher J; Ananthakrishnan, Saradha; Gandour, Jackson T

    2012-10-01

    Neural representation of pitch-relevant information at both the brainstem and cortical levels of processing is influenced by language or music experience. However, the functional roles of brainstem and cortical neural mechanisms in the hierarchical network for language processing, and how they drive and maintain experience-dependent reorganization are not known. In an effort to evaluate the possible interplay between these two levels of pitch processing, we introduce a novel electrophysiological approach to evaluate pitch-relevant neural activity at the brainstem and auditory cortex concurrently. Brainstem frequency-following responses and cortical pitch responses were recorded from participants in response to iterated rippled noise stimuli that varied in stimulus periodicity (pitch salience). A control condition using iterated rippled noise devoid of pitch was employed to ensure pitch specificity of the cortical pitch response. Neural data were compared with behavioral pitch discrimination thresholds. Results showed that magnitudes of neural responses increase systematically and that behavioral pitch discrimination improves with increasing stimulus periodicity, indicating more robust encoding for salient pitch. Absence of cortical pitch response in the control condition confirms that the cortical pitch response is specific to pitch. Behavioral pitch discrimination was better predicted by brainstem and cortical responses together as compared to each separately. The close correspondence between neural and behavioral data suggest that neural correlates of pitch salience that emerge in early, preattentive stages of processing in the brainstem may drive and maintain with high fidelity the early cortical representations of pitch. These neural representations together contain adequate information for the development of perceptual pitch salience. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Selective attention to sound location or pitch studied with fMRI.

    PubMed

    Degerman, Alexander; Rinne, Teemu; Salmi, Juha; Salonen, Oili; Alho, Kimmo

    2006-03-10

    We used 3-T functional magnetic resonance imaging to compare the brain mechanisms underlying selective attention to sound location and pitch. In different tasks, the subjects (N = 10) attended to a designated sound location or pitch or to pictures presented on the screen. In the Attend Location conditions, the sound location varied randomly (left or right), while the pitch was kept constant (high or low). In the Attend Pitch conditions, sounds of randomly varying pitch (high or low) were presented at a constant location (left or right). Both attention to location and attention to pitch produced enhanced activity (in comparison with activation caused by the same sounds when attention was focused on the pictures) in widespread areas of the superior temporal cortex. Attention to either sound feature also activated prefrontal and inferior parietal cortical regions. These activations were stronger during attention to location than during attention to pitch. Attention to location but not to pitch produced a significant increase of activation in the premotor/supplementary motor cortices of both hemispheres and in the right prefrontal cortex, while no area showed activity specifically related to attention to pitch. The present results suggest some differences in the attentional selection of sounds on the basis of their location and pitch consistent with the suggested auditory "what" and "where" processing streams.

  20. New approach to calculate the true-coincidence effect of HpGe detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnour, I. A., E-mail: aaibrahim3@live.utm.my, E-mail: ibrahim.elnour@yahoo.com; Wagiran, H.; Ibrahim, N.

    The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using {sup 57}Co, {sup 60}Co, {sup 133}Ba and {sup 137}Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGemore » detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.« less

  1. phylo-node: A molecular phylogenetic toolkit using Node.js.

    PubMed

    O'Halloran, Damien M

    2017-01-01

    Node.js is an open-source and cross-platform environment that provides a JavaScript codebase for back-end server-side applications. JavaScript has been used to develop very fast and user-friendly front-end tools for bioinformatic and phylogenetic analyses. However, no such toolkits are available using Node.js to conduct comprehensive molecular phylogenetic analysis. To address this problem, I have developed, phylo-node, which was developed using Node.js and provides a stable and scalable toolkit that allows the user to perform diverse molecular and phylogenetic tasks. phylo-node can execute the analysis and process the resulting outputs from a suite of software options that provides tools for read processing and genome alignment, sequence retrieval, multiple sequence alignment, primer design, evolutionary modeling, and phylogeny reconstruction. Furthermore, phylo-node enables the user to deploy server dependent applications, and also provides simple integration and interoperation with other Node modules and languages using Node inheritance patterns, and a customized piping module to support the production of diverse pipelines. phylo-node is open-source and freely available to all users without sign-up or login requirements. All source code and user guidelines are openly available at the GitHub repository: https://github.com/dohalloran/phylo-node.

  2. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem.

    PubMed

    Guimarães, Bruno Martini; Prati, Carlo; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Gandolfi, Maria Giovanna

    2018-04-05

    This study aimed to analyze the following physicochemical properties: radiopacity, final setting time, calcium release, pH change, solubility, water sorption, porosity, surface morphology, and apatite-forming ability of two calcium silicate-based materials. We tested MTA Repair HP and MTA Vitalcem in comparison with conventional MTA, analyzing radiopacity and final setting time. Water absorption, interconnected pores and apparent porosity were measured after 24-h immersion in deionized water at 37°C. Calcium and pH were tested up to 28 d in deionized water. We analyzed data using two-way ANOVA with Student-Newman-Keuls tests (p<0.05). We performed morphological and chemical analyses of the material surfaces using ESEM/EDX after 28 d in HBSS. MTA Repair HP showed similar radiopacity to that of conventional MTA. All materials showed a marked alkalinizing activity within 3 h, which continued for 28 d. MTA Repair HP showed the highest calcium release at 28 d (p<0.05). MTA Vitalcem showed statistically higher water sorption and solubility values (p<0.05). All materials showed the ability to nucleate calcium phosphate on their surface after 28 d in HBSS. MTA Repair HP and MTA Vitalcem had extended alkalinizing activity and calcium release that favored calcium phosphate nucleation. The presence of the plasticizer in MTA HP might increase its solubility and porosity. The radiopacifier calcium tungstate can be used to replace bismuth oxide.

  3. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem

    PubMed Central

    Guimarães, Bruno Martini; Prati, Carlo; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Gandolfi, Maria Giovanna

    2018-01-01

    Abstract Objective This study aimed to analyze the following physicochemical properties: radiopacity, final setting time, calcium release, pH change, solubility, water sorption, porosity, surface morphology, and apatite-forming ability of two calcium silicate-based materials. Material and methods We tested MTA Repair HP and MTA Vitalcem in comparison with conventional MTA, analyzing radiopacity and final setting time. Water absorption, interconnected pores and apparent porosity were measured after 24-h immersion in deionized water at 37°C. Calcium and pH were tested up to 28 d in deionized water. We analyzed data using two-way ANOVA with Student-Newman-Keuls tests (p<0.05). We performed morphological and chemical analyses of the material surfaces using ESEM/EDX after 28 d in HBSS. Results MTA Repair HP showed similar radiopacity to that of conventional MTA. All materials showed a marked alkalinizing activity within 3 h, which continued for 28 d. MTA Repair HP showed the highest calcium release at 28 d (p<0.05). MTA Vitalcem showed statistically higher water sorption and solubility values (p<0.05). All materials showed the ability to nucleate calcium phosphate on their surface after 28 d in HBSS. Conclusions MTA Repair HP and MTA Vitalcem had extended alkalinizing activity and calcium release that favored calcium phosphate nucleation. The presence of the plasticizer in MTA HP might increase its solubility and porosity. The radiopacifier calcium tungstate can be used to replace bismuth oxide. PMID:29641748

  4. Thresholds for Shifting Visually Perceived Eye Level Due to Incremental Pitches

    NASA Technical Reports Server (NTRS)

    Scott, Donald M.; Welch, Robert; Cohen, M. M.; Hill, Cyndi

    2001-01-01

    Visually perceived eye level (VPEL) was judged by subjects as they viewed a luminous grid pattern that was pitched by 2 or 5 deg increments between -20 deg and +20 deg. Subjects were dark adapted for 20 min and indicated--VPEL by directing the beam of a laser pointer to the rear wall of a 1.25 m cubic pitch box that rotated about a horizontal axis midpoint on the rear wall. Data were analyzed by ANOVA and the Tukey HSD procedure. Results showed a 10.0 deg threshold for pitches P(sub i) above the reference pitch P(sub 0), and a -10.3 deg threshold for pitches P(sub i) below-the reference-pitch P(sub 0). Threshold data for pitches P(sub i) < P(sub 0) suggest an asymmetric threshold for VPEL below and above physical eye level.

  5. Variable Pitch Darrieus Water Turbines

    NASA Astrophysics Data System (ADS)

    Kirke, Brian; Lazauskas, Leo

    In recent years the Darrieus wind turbine concept has been adapted for use in water, either as a hydrokinetic turbine converting the kinetic energy of a moving fluid in open flow like an underwater wind turbine, or in a low head or ducted arrangement where flow is confined, streamtube expansion is controlled and efficiency is not subject to the Betz limit. Conventional fixed pitch Darrieus turbines suffer from two drawbacks, (i) low starting torque and (ii) shaking due to cyclical variations in blade angle of attack. Ventilation and cavitation can also cause problems in water turbines when blade velocities are high. Shaking can be largely overcome by the use of helical blades, but these do not produce large starting torque. Variable pitch can produce high starting torque and high efficiency, and by suitable choice of pitch regime, shaking can be minimized but not entirely eliminated. Ventilation can be prevented by avoiding operation close to a free surface, and cavitation can be prevented by limiting blade velocities. This paper summarizes recent developments in Darrieus water turbines, some problems and some possible solutions.

  6. Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoids in hp1 tomato fruits.

    PubMed

    Kilambi, Himabindu Vasuki; Kumar, Rakesh; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2013-04-01

    Tomato (Solanum lycopersicum) high-pigment mutants with lesions in diverse loci such as DNA Damage-Binding Protein1 (high pigment1 [hp1]), Deetiolated1 (hp2), Zeaxanthin Epoxidase (hp3), and Intense pigment (Ip; gene product unknown) exhibit increased accumulation of fruit carotenoids coupled with an increase in chloroplast number and size. However, little is known about the underlying mechanisms exaggerating the carotenoid accumulation and the chloroplast number in these mutants. A comparison of proteome profiles from the outer pericarp of hp1 mutant and wild-type (cv Ailsa Craig) fruits at different developmental stages revealed at least 72 differentially expressed proteins during ripening. Hierarchical clustering grouped these proteins into three clusters. We found an increased abundance of chromoplast-specific carotenoid-associated protein (CHRC) in hp1 fruits at red-ripe stage that is also reflected in its transcript level. Western blotting using CHRC polyclonal antibody from bell pepper (Capsicum annuum) revealed a 2-fold increase in the abundance of CHRC protein in the red-ripe stage of hp1 fruits compared with the wild type. CHRC levels in hp2 were found to be similar to that of hp1, whereas hp3 and Ip showed intermediate levels to those in hp1, hp2, and wild-type fruits. Both CHRC and carotenoids were present in the isolated plastoglobules. Overall, our results suggest that loss of function of DDB1, DET1, Zeaxanthin Epoxidase, and Ip up-regulates CHRC levels. Increase in CHRC levels may contribute to the enhanced carotenoid content in these high-pigment fruits by assisting in the sequestration and stabilization of carotenoids.

  7. Aurora-B/AIM-1 Regulates the Dynamic Behavior of HP1α at the G2–M Transition

    PubMed Central

    2006-01-01

    Heterochromatin protein 1 (HP1) plays an important role in heterochromatin formation and undergoes large-scale, progressive dissociation from heterochromatin in prophase cells. However, the mechanisms regulating the dynamic behavior of HP1 are poorly understood. In this study, the role of Aurora-B was investigated with respect to the dynamic behavior of HP1α. Mammalian Aurora-B, AIM-1, colocalizes with HP1α to the heterochromatin in G2. Depletion of Aurora-B/AIM-1 inhibited dissociation of HP1α from the chromosome arms at the G2–M transition. In addition, depletion of INCENP led to aberrant cellular localization of Aurora-B/AIM-1, but it did not affect heterochromatin targeting of HP1α. It was proposed in the binary switch hypothesis that phosphorylation of histone H3 at Ser-10 negatively regulates the binding of HP1α to the adjacent methylated Lys-9. However, Aurora-B/AIM-1-mediated phosphorylation of H3 induced dissociation of the HP1α chromodomain but not of the intact protein in vitro, indicating that the center and/or C-terminal domain of HP1α interferes with the effect of H3 phosphorylation on HP1α dissociation. Interestingly, Lys-9 methyltransferase SUV39H1 is abnormally localized together along the metaphase chromosome arms in Aurora-B/AIM-1–depleted cells. In conclusion, these results showed that Aurora-B/AIM-1 is necessary for regulated histone modifications involved in binding of HP1α by the N terminus of histone H3 during mitosis. PMID:16687578

  8. Representations of Pitch and Timbre Variation in Human Auditory Cortex

    PubMed Central

    2017-01-01

    Pitch and timbre are two primary dimensions of auditory perception, but how they are represented in the human brain remains a matter of contention. Some animal studies of auditory cortical processing have suggested modular processing, with different brain regions preferentially coding for pitch or timbre, whereas other studies have suggested a distributed code for different attributes across the same population of neurons. This study tested whether variations in pitch and timbre elicit activity in distinct regions of the human temporal lobes. Listeners were presented with sequences of sounds that varied in either fundamental frequency (eliciting changes in pitch) or spectral centroid (eliciting changes in brightness, an important attribute of timbre), with the degree of pitch or timbre variation in each sequence parametrically manipulated. The BOLD responses from auditory cortex increased with increasing sequence variance along each perceptual dimension. The spatial extent, region, and laterality of the cortical regions most responsive to variations in pitch or timbre at the univariate level of analysis were largely overlapping. However, patterns of activation in response to pitch or timbre variations were discriminable in most subjects at an individual level using multivoxel pattern analysis, suggesting a distributed coding of the two dimensions bilaterally in human auditory cortex. SIGNIFICANCE STATEMENT Pitch and timbre are two crucial aspects of auditory perception. Pitch governs our perception of musical melodies and harmonies, and conveys both prosodic and (in tone languages) lexical information in speech. Brightness—an aspect of timbre or sound quality—allows us to distinguish different musical instruments and speech sounds. Frequency-mapping studies have revealed tonotopic organization in primary auditory cortex, but the use of pure tones or noise bands has precluded the possibility of dissociating pitch from brightness. Our results suggest a

  9. Sensitivity enhancement of chemically amplified resists and performance study using extreme ultraviolet interference lithography

    NASA Astrophysics Data System (ADS)

    Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin

    2016-07-01

    Extreme ultraviolet lithography (EUVL, λ=13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high-power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity [S or best energy (BE)], and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (line width roughness, resolution and sensitivity trade-off) among these parameters for chemically amplified resists (CARs). We present early proof-of-principle results for a multiexposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a "Photosensitized Chemically Amplified Resist™" (PSCAR™). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV-flood exposure (λ=365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR, and EL high-performance requirements with the aim of resolving line space (L/S) features for the 7- and 5-nm logic node [16- and 13-nm half-pitch (HP), respectively] for HVM. Several CARs were additionally found to be well resolved down to 12- and 11-nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated

  10. Sensitivity enhancement of chemically amplified resists and performance study using EUV interference lithography

    NASA Astrophysics Data System (ADS)

    Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin

    2016-03-01

    Extreme ultraviolet lithography (EUVL, λ = 13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity (S or best energy BE) and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (LRS trade-off) among these parameters for chemically amplified resists (CARs). Here we present early proof-of-principle results for a multi-exposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a Photosensitized Chemically Amplified Resist (PSCAR). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV flood exposure (λ = 365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR and EL high performance requirements with the aim of resolving line space (L/S) features for the 7 and 5 nm logic node (16 nm and 13 nm half-pitch HP, respectively) for HVM. Several CARs were additionally found to be well resolved down to 12 nm and 11 nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated was compared to the CAR performance at and

  11. 75 FR 11937 - EDS, HP Company, Fairfield Township, OH; Notice of Termination of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,710] EDS, HP Company, Fairfield Township, OH; Notice of Termination of Investigation Pursuant to Section 223 of the Trade Act of... the State on behalf of workers of EDS, HP Company, Fairfield Township, Ohio. The petitioners have...

  12. Learning Novel Musical Pitch via Distributional Learning

    ERIC Educational Resources Information Center

    Ong, Jia Hoong; Burnham, Denis; Stevens, Catherine J.

    2017-01-01

    Because different musical scales use different sets of intervals and, hence, different musical pitches, how do music listeners learn those that are in their native musical system? One possibility is that musical pitches are acquired in the same way as phonemes, that is, via distributional learning, in which learners infer knowledge from the…

  13. Illusory conjunctions of pitch and duration in unfamiliar tone sequences.

    PubMed

    Thompson, W F; Hall, M D; Pressing, J

    2001-02-01

    In 3 experiments, the authors examined short-term memory for pitch and duration in unfamiliar tone sequences. Participants were presented a target sequence consisting of 2 tones (Experiment 1) or 7 tones (Experiments 2 and 3) and then a probe tone. Participants indicated whether the probe tone matched 1 of the target tones in both pitch and duration. Error rates were relatively low if the probe tone matched 1 of the target tones or if it differed from target tones in pitch, duration, or both. Error rates were remarkably high, however, if the probe tone combined the pitch of 1 target tone with the duration of a different target tone. The results suggest that illusory conjunctions of these dimensions frequently occur. A mathematical model is presented that accounts for the relative contribution of pitch errors, duration errors, and illusory conjunctions of pitch and duration.

  14. Molecular dynamics simulation on HP1 protein binding by histone H3 tail methylation and phosphorylation

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Ke; Zou, Jian-Wei; Wu, Yu-Qian; Zhang, Na; Yu, Qing-Sen; Jiang, Yong-Jun

    Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3-HP1 trajectory. It is clear from the 10-ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications-a stable methylation and a dynamic phosphorylation mark-establish a regulatory mechanism of protein-protein interactions.

  15. Analysis of high-pitched phonation using three-dimensional computed tomography.

    PubMed

    Hiramatsu, Hiroyuki; Tokashiki, Ryoji; Nakamura, Hirokazu; Motohashi, Ray; Sakurai, Eriko; Nomoto, Masaki; Toyomura, Fumimasa; Suzuki, Mamoru

    2012-09-01

    Our aim was to use three-dimensional computed tomography (3DCT) to examine arytenoid cartilage movement during a high-pitched tone task. This was a prospective study. This study included 14 patients with male-to-female gender identity disorder who had undergone 3DCT imaging for surgical simulation between January 2007 and May 2008. First, to prove that the phonation condition was indeed one of the high-pitched phonation, we confirmed the rotational movement of the thyroid cartilage, horizontal gliding movement of the inferior horn, and vocal fold elongation on a high-pitched tone task. Next, we detected the arytenoid cartilage positions of the joint during a comparison of comfortable and high-pitched phonations. We measured the movement direction and movement distance of the arytenoid cartilage. In all cases, the cricothyroid space became narrower (rotation movement), and we observed anterior gliding movement of the inferior horn. In all cases, elongation of the vocal folds by the high-pitched phonation was confirmed and the arytenoid cartilages were displaced both anteriorly and caudally from the position during comfortable phonation by the high-pitched tone task. The arytenoid cartilages did not move posteriorly to elongate the vocal folds during high-pitched phonation. The arytenoid cartilages were pulled anteriorly and moved caudally because of tension associated with vocal fold elongation because of the task of high-pitched phonation. These results suggest that there are no movements at the cricoarytenoid joint that directly control the length of the vocal folds in accordance with pitch. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  16. Prospective Player-Reported Injuries in Female Youth Fast-Pitch Softball Players

    PubMed Central

    Smith, Matthew V.; Davis, Randi; Brophy, Robert H.; Prather, Heidi; Garbutt, Jane; Wright, Rick W.

    2015-01-01

    Background: There is a scarcity of literature evaluating injuries in youth fast-pitch softball players. Purpose: To perform a descriptive analysis of player-reported injuries in youth fast-pitch softball position players and pitchers during a single select-level season. Study Design: Prospective observation cohort study. Level of Evidence: Level 3. Methods: Ninety-eight athletes (48 pitchers, 50 position players) were followed for a single select fast-pitch softball season. Study participants completed web-based surveys every 3 weeks reporting injuries related to participation in fast-pitch softball. Injury was defined as pain causing cessation of participation in the current game or practice that prevents the player’s return to that session or any pain that causes cessation of a player’s customary participation on the day after the day of onset. Results: The median age of the study participants was 14 years (range, 9-18 years). There were 49 reported injuries in 98 athletes. The average age was 13 years for those not injured and 14 years for those who were injured (P < 0.02). There were 31 injuries that were not related to pitching: 19 occurred in position players and 12 occurred in pitchers; 70% of these injuries were to the lower extremity. The proportion of injuries not related to pitching was significantly greater than the proportion of injuries related to pitching (P < 0.02). Eighteen injuries among the 48 pitchers (38%) were directly attributed to pitching. Among the 18 pitching injuries, 11 (61%) involved the shoulder. The majority (78%) of injuries related to pitching occurred in the first 6 weeks of the season. Conclusion: There was a high incidence of injury in this prospective cohort of youth select-level fast-pitch softball players. Better off-season and preseason conditioning may be a key factor for reducing pitching injuries. Clinical Relevance: Recognition of injury patterns in fast-pitch softball players is critical to developing strategies to

  17. Prospective Player-Reported Injuries in Female Youth Fast-Pitch Softball Players.

    PubMed

    Smith, Matthew V; Davis, Randi; Brophy, Robert H; Prather, Heidi; Garbutt, Jane; Wright, Rick W

    2015-01-01

    There is a scarcity of literature evaluating injuries in youth fast-pitch softball players. To perform a descriptive analysis of player-reported injuries in youth fast-pitch softball position players and pitchers during a single select-level season. Prospective observation cohort study. Level 3. Ninety-eight athletes (48 pitchers, 50 position players) were followed for a single select fast-pitch softball season. Study participants completed web-based surveys every 3 weeks reporting injuries related to participation in fast-pitch softball. Injury was defined as pain causing cessation of participation in the current game or practice that prevents the player's return to that session or any pain that causes cessation of a player's customary participation on the day after the day of onset. The median age of the study participants was 14 years (range, 9-18 years). There were 49 reported injuries in 98 athletes. The average age was 13 years for those not injured and 14 years for those who were injured (P < 0.02). There were 31 injuries that were not related to pitching: 19 occurred in position players and 12 occurred in pitchers; 70% of these injuries were to the lower extremity. The proportion of injuries not related to pitching was significantly greater than the proportion of injuries related to pitching (P < 0.02). Eighteen injuries among the 48 pitchers (38%) were directly attributed to pitching. Among the 18 pitching injuries, 11 (61%) involved the shoulder. The majority (78%) of injuries related to pitching occurred in the first 6 weeks of the season. There was a high incidence of injury in this prospective cohort of youth select-level fast-pitch softball players. Better off-season and preseason conditioning may be a key factor for reducing pitching injuries. Recognition of injury patterns in fast-pitch softball players is critical to developing strategies to keep these athletes competing safely. © 2015 The Author(s).

  18. Pitch perception and production in congenital amusia: Evidence from Cantonese speakers.

    PubMed

    Liu, Fang; Chan, Alice H D; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C M

    2016-07-01

    This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by independent listeners, and subjected to acoustic analyses. Relative to controls, amusics showed impaired discrimination of lexical tones in both speech and non-speech conditions. They also received lower ratings for singing proficiency, producing larger pitch interval deviations and making more pitch interval errors compared to controls. Demonstrating higher pitch direction identification thresholds than controls for both speech syllables and piano tones, amusics nevertheless produced native lexical tones with comparable pitch trajectories and intelligibility as controls. Significant correlations were found between pitch threshold and lexical tone perception, music perception and production, but not between lexical tone perception and production for amusics. These findings provide further evidence that congenital amusia is a domain-general language-independent pitch-processing deficit that is associated with severely impaired music perception and production, mildly impaired speech perception, and largely intact speech production.

  19. Pitch perception and production in congenital amusia: Evidence from Cantonese speakers

    PubMed Central

    Liu, Fang; Chan, Alice H. D.; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C. M.

    2016-01-01

    This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by independent listeners, and subjected to acoustic analyses. Relative to controls, amusics showed impaired discrimination of lexical tones in both speech and non-speech conditions. They also received lower ratings for singing proficiency, producing larger pitch interval deviations and making more pitch interval errors compared to controls. Demonstrating higher pitch direction identification thresholds than controls for both speech syllables and piano tones, amusics nevertheless produced native lexical tones with comparable pitch trajectories and intelligibility as controls. Significant correlations were found between pitch threshold and lexical tone perception, music perception and production, but not between lexical tone perception and production for amusics. These findings provide further evidence that congenital amusia is a domain-general language-independent pitch-processing deficit that is associated with severely impaired music perception and production, mildly impaired speech perception, and largely intact speech production. PMID:27475178

  20. Pitch and time, tonality and meter: how do musical dimensions combine?

    PubMed

    Prince, Jon B; Thompson, William F; Schmuckler, Mark A

    2009-10-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger influence than temporal position (Experiment 1), even when listeners attempted to ignore pitch (Experiment 2). Speeded classification tasks confirmed this asymmetry. Temporal classification was biased by tonal stability (Experiment 3), but pitch classification was unaffected by temporal position (Experiment 4). Experiments 5 and 6 ruled out explanations based on the presence of pitch classes and temporal positions in the context, unequal stimulus quantity, and discriminability. The authors discuss how typical Western music biases attention toward pitch and distinguish between dimensional discriminability and salience. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  1. The Effect of Timbre and Vibrato on Vocal Pitch Matching Accuracy

    NASA Astrophysics Data System (ADS)

    Duvvuru, Sirisha

    Research has shown that singers are better able to match pitch when the target stimulus has a timbre close to their own voice. This study seeks to answer the following questions: (1) Do classically trained female singers more accurately match pitch when the target stimulus is more similar to their own timbre? (2) Does the ability to match pitch vary with increasing pitch? (3) Does the ability to match pitch differ depending on whether the target stimulus is produced with or without vibrato? (4) Are mezzo sopranos less accurate than sopranos? Stimuli. Source signals were synthesized with a source slope of -12dB/octave using vibrato and without vibrato at each of the frequencies, C4, B4 and F5. These source signals were filtered using 5 formant patterns (A-E) of vowel /a/ constituting a total of 30 stimuli (5 formant patterns*3pitches*2 vibrato conditions). Procedure. Ten sopranos and 10 mezzo-sopranos with at least 3 years of individual voice training were recruited from the University Of Tennessee School Of Music and the Knoxville Opera Company. Each singer attempted to vocally match the pitch of all 30 stimuli presented twice in a random order. Analysis and results. Pitch matching accuracy was measured in terms of the difference in cents between the target and the experimental productions at two locations, (1) pre-phonatory set (2) mid-point of the vowel. Accuracy of pitch matching was compared across vibrato and non-vibrato conditions. Results indicated that there was no significant effect of formant pattern on pitch matching accuracy. With increasing pitch from C4 to F5, pitch matching accuracy increased in mid-point of the vowel condition but not in pre-phonatory set condition. Mezzo-sopranos moved towards being in tune from pre-phonatory to mid-point of the vowel. However, sopranos at C4, sang closer to being in tune at pre-phonatory, but lowered the pitch at the mid-point of the vowel. Presence or absence of

  2. The integration of nonsimultaneous frequency components into a single virtual pitch.

    PubMed

    Ciocca, V; Darwin, C J

    1999-04-01

    The integration of nonsimultaneous frequency components into a single virtual pitch was investigated by using a pitch matching task in which a mistuned 4th harmonic (mistuned component) produced pitch shifts in a harmonic series (12 equal-amplitude harmonics of a 155-Hz F0). In experiment 1, the mistuned component could either be simultaneous, stop as the target started (pre-target component), or start as the target stopped (post-target component). Pitch shifts produced by the pre-target components were significantly smaller than those obtained with simultaneous components; in the post-target condition, the size of pitch shifts did not decrease relative to the simultaneous condition. In experiment 2, a silent gap of 20, 40, 80, or 160 ms was introduced between the nonsimultaneous components and the target sound. In the pre-target condition, pitch shifts were reduced to zero for silent gaps of 80 ms or longer; by contrast, a gap of 160 ms was required to eliminate pitch shifts in the post-target condition. The third experiment tested the hypothesis that, when post-target components were presented, the processing of the pitch of the target tone started at the onset of the target, and ended at the gap duration at which pitch shifts decreased to zero. This hypothesis was confirmed by the finding that pitch shifts could not be observed when the target tone had a duration of 410 ms. Taken together, the results of these experiments show that nonsimultaneous components that occur after the onset of the target sound make a larger contribution to the virtual pitch of the target, and over a longer period, than components that precede the onset of the target sound.

  3. Investors prefer entrepreneurial ventures pitched by attractive men.

    PubMed

    Brooks, Alison Wood; Huang, Laura; Kearney, Sarah Wood; Murray, Fiona E

    2014-03-25

    Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur's business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs.

  4. Manufacture of threads with variable pitch by using noncircular gears

    NASA Astrophysics Data System (ADS)

    Slătineanu, L.; Dodun, O.; Coteață, M.; Coman, I.; Nagîț, G.; Beșliu, I.

    2016-08-01

    There are mechanical equipments in which shafts threaded with variable pitch are included. Such a shaft could be met in the case of worm specific to the double enveloping worm gearing. Over the years, the researchers investigated some possibilities to geometrically define and manufacture the shaft zones characterized by a variable pitch. One of the methods able to facilitate the manufacture of threads with variable pitch is based on the use of noncircular gears in the threading kinematic chain for threading by cutting. In order to design the noncircular gears, the mathematical law of pitch variation has to be known. An analysis of pitch variation based on geometrical considerations was developed in the case of a double enveloping globoid worm. Subsequently, on the bases of a proper situation, a numerical model was determined. In this way, an approximately law of pitch variation was determined and it could be taken into consideration when designing the noncircular gears included in the kinematic chain of the cutting machine tool.

  5. HP1α is highly expressed in glioma cells and facilitates cell proliferation and survival.

    PubMed

    Lai, Xianliang; Deng, Zhifeng; Guo, Hua; Zhu, Xingen; Tu, Wei

    2017-08-19

    Epigenetic alteration plays critical roles in gliomagenesis by regulating gene expression through modifications of Histones and DNA. Trimethylation of H3K9, an essential repressed transcription mark, and one of its methyltransferase, SUV39H1, are implicated in glioma pathogenesis and progression. We find that the protein level of HP1α, a reader of H3K9me3 is elevated in cultured glioma cell lines and glioma tissues. H3K9me3 is also upregulated. Depletion of HP1α and SUV39H1 weakens glioma cell proliferation capacity and results in apoptosis of cells. Furthermore, we find that HP1α and H3K9me3 are enriched in the FAS and PUMA promoters, which suggests that upregulated HP1α and H3K9me3 contribute to cell survival by suppressing apoptotic activators. These data suggests that up-regulated HP1α and H3K9me3 in glioma cells are functionally associated with glioma pathogenesis and progression and may serve as novel biomarkers for diagnostic and therapeutic targeting of brain tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. SEMATECH EUVL mask program status

    NASA Astrophysics Data System (ADS)

    Yun, Henry; Goodwin, Frank; Huh, Sungmin; Orvek, Kevin; Cha, Brian; Rastegar, Abbas; Kearney, Patrick

    2009-04-01

    As we approach the 22nm half-pitch (hp) technology node, the industry is rapidly running out of patterning options. Of the several lithography techniques highlighted in the International Technology Roadmap for Semiconductors (ITRS), the leading contender for the 22nm hp insertion is extreme ultraviolet lithography (EUVL). Despite recent advances with EUV resist and improvements in source power, achieving defect free EUV mask blank and enabling the EUV mask infrastructure still remain critical issues. To meet the desired EUV high volume manufacturing (HVM) insertion target date of 2013, these obstacles must be resolved on a timely bases. Many of the EUV mask related challenges remain in the pre-competitive stage and a collaborative industry based consortia, such as SEMATECH can play an important role to enable the EUVL landscape. SEMATECH based in Albany, NY is an international consortium representing several of the largest manufacturers in the semiconductor market. Full members include Intel, Samsung, AMD, IBM, Panasonic, HP, TI, UMC, CNSE (College of Nanoscience and Engineering), and Fuller Road Management. Within the SEMATECH lithography division a major thrust is centered on enabling the EUVL ecosystem from mask development, EUV resist development and addressing EUV manufacturability concerns. An important area of focus for the SEMATECH mask program has been the Mask Blank Development Center (MBDC). At the MBDC key issues in EUV blank development such as defect reduction and inspection capabilities are actively pursued together with research partners, key suppliers and member companies. In addition the mask program continues a successful track record of working with the mask community to manage and fund critical mask tools programs. This paper will highlight recent status of mask projects and longer term strategic direction at the MBDC. It is important that mask technology be ready to support pilot line development HVM by 2013. In several areas progress has been

  7. Performance and stability of mask process correction for EBM-7000

    NASA Astrophysics Data System (ADS)

    Saito, Yasuko; Chen, George; Wang, Jen-Shiang; Bai, Shufeng; Howell, Rafael; Li, Jiangwei; Tao, Jun; VanDenBroeke, Doug; Wiley, Jim; Takigawa, Tadahiro; Ohnishi, Takayuki; Kamikubo, Takashi; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi

    2010-05-01

    In order to support complex optical masks today and EUV masks in the near future, it is critical to correct mask patterning errors with a magnitude of up to 20nm over a range of 2000nm at mask scale caused by short range mask process proximity effects. A new mask process correction technology, MPC+, has been developed to achieve the target requirements for the next generation node. In this paper, the accuracy and throughput performance of MPC+ technology is evaluated using the most advanced mask writing tool, the EBM-70001), and high quality mask metrology . The accuracy of MPC+ is achieved by using a new comprehensive mask model. The results of through-pitch and through-linewidth linearity curves and error statistics for multiple pattern layouts (including both 1D and 2D patterns) are demonstrated and show post-correction accuracy of 2.34nm 3σ for through-pitch/through-linewidth linearity. Implementing faster mask model simulation and more efficient correction recipes; full mask area (100cm2) processing run time is less than 7 hours for 32nm half-pitch technology node. From these results, it can be concluded that MPC+ with its higher precision and speed is a practical technology for the 32nm node and future technology generations, including EUV, when used with advance mask writing processes like the EBM-7000.

  8. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery

    NASA Astrophysics Data System (ADS)

    Wu, Zhi Min; Ling, Li; Zhou, Li Ying; Guo, Xin Dong; Jiang, Wei; Qian, Yu; Luo, Kathy Qian; Zhang, Li Juan

    2012-06-01

    The aim of the present study was to develop the PLGA/HP55 nanoparticles with improved hypoglycemic effect for oral insulin delivery. The insulin-loaded PLGA/HP55 nanoparticles were produced by a modified multiple emulsion solvent evaporation method. The physicochemical characteristics, in vitro release of insulin, and in vivo efficacy in diabetic rats of the nanoparticles were evaluated. The insulin encapsulation efficiency was up to 94%, and insulin was released in a pH-dependent manner under simulated gastrointestinal conditions. When administered orally (50 IU/kg) to diabetic rats, the nanoparticles can decrease rapidly the blood glucose level with a maximal effect between 1 and 8 h. The relative bioavailability compared with subcutaneous injection (5 IU/kg) in diabetic rats was 11.3% ± 1.05%. This effect may be explained by the fast release of insulin in the upper intestine, where it is better absorbed by the high gradient concentration of insulin than other regions. These results show that the PLGA/HP55 nanoparticles developed in the study might be employed as a potential method for oral insulin delivery.

  9. 78 FR 48468 - Hewlett Packard Company, Hewlett Packard Enterprise Business Unit, EG HP Storage, Enterprise...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ..., Hewlett Packard Enterprise Business Unit, EG HP Storage, Enterprise Storage, Servers and Networking Storage, APP Management, Research and Development Group, Andover, Massachusetts; Notice of Investigation... Enterprise Business Unit, EG HP Storage, Enterprise Storage, Servers and Networking Storage Division, APP...

  10. Acoustic and aerodynamic testing of a scale model variable pitch fan

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Kazin, S. B.

    1974-01-01

    A fully reversible pitch scale model fan with variable pitch rotor blades was tested to determine its aerodynamic and acoustic characteristics. The single-stage fan has a design tip speed of 1160 ft/sec (353.568 m/sec) at a bypass pressure ratio of 1.5. Three operating lines were investigated. Test results show that the blade pitch for minimum noise also resulted in the highest efficiency for all three operating lines at all thrust levels. The minimum perceived noise on a 200-ft (60.96 m) sideline was obtained with the nominal nozzle. At 44% of takeoff thrust, the PNL reduction between blade pitch and minimum noise blade pitch is 1.8 PNdB for the nominal nozzle and decreases with increasing thrust. The small nozzle (6% undersized) has the highest efficiency at all part thrust conditions for the minimum noise blade pitch setting; although, the noise is about 1.0 PNdB higher for the small nozzle at the minimum noise blade pitch position.

  11. Agreement and Reliability of Tinnitus Loudness Matching and Pitch Likeness Rating

    PubMed Central

    Hoare, Derek J.; Edmondson-Jones, Mark; Gander, Phillip E.; Hall, Deborah A.

    2014-01-01

    The ability to reproducibly match tinnitus loudness and pitch is important to research and clinical management. Here we examine agreement and reliability of tinnitus loudness matching and pitch likeness ratings when using a computer-based method to measure the tinnitus spectrum and estimate a dominant tinnitus pitch, using tonal or narrowband sounds. Group level data indicated a significant effect of time between test session 1 and 2 for loudness matching, likely procedural or perceptual learning, which needs to be accounted in study design. Pitch likeness rating across multiple frequencies appeared inherently more variable and with no systematic effect of time. Dominant pitch estimates reached a level of clinical acceptability when sessions were spaced two weeks apart. However when dominant tinnitus pitch assessments were separated by three months, acceptable agreement was achieved only for group mean data, not for individual estimates. This has implications for prescription of some sound-based interventions that rely on accurate measures of individual dominant tinnitus pitch. PMID:25478690

  12. Pitch variable liquid lens array using electrowetting

    NASA Astrophysics Data System (ADS)

    Kim, YooKwang; Lee, Jin Su; Kim, Junoh; Won, Yong Hyub

    2017-02-01

    These days micro lens array is used in various fields such as fiber coupling, laser collimation, imaging and sensor system and beam homogenizer, etc. One of important thing in using micro lens array is, choice of its pitch. Especially imaging systems like integral imaging or light-field camera, pitch of micro lens array defines the system property and thus it could limit the variability of the system. There are already researches about lens array using liquid, and droplet control by electrowetting. This paper reports the result of combining them, the liquid lens array that could vary its pitch by electrowetting. Since lens array is a repeated system, realization of a small part of lens array is enough to show its property. The lens array is composed of nine (3 by 3) liquid droplets on flat surface. On substrate, 11 line electrodes are patterned along vertical and horizontal direction respectively. The width of line electrodes is 300um and interval is 200um. Each droplet is positioned to contain three electrode lines for both of vertical and horizontal direction. So there is one remaining electrode line in each of outermost side for both direction. In original state the voltage is applied to inner electrodes. When voltage of outermost electrodes are turned on, eight outermost droplets move to outer side, thereby increasing pitch of lens array. The original pitch was 1.5mm and it increased to 2.5mm after electrodes of voltage applied is changed.

  13. Impact of pitching rate on yeast fermentation performance and beer flavour.

    PubMed

    Verbelen, P J; Dekoninck, T M L; Saerens, S M G; Van Mulders, S E; Thevelein, J M; Delvaux, F R

    2009-02-01

    The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the impact of the pitching rate on crucial fermentation and beer quality parameters has never been assessed systematically. In this study, five pitching rates were applied to lab-scale fermentations to investigate its impact on the yeast physiology and beer quality. The fermentation rate increased significantly and the net yeast growth was lowered with increasing pitching rate, without affecting significantly the viability and the vitality of the yeast population. The build-up of unsaturated fatty acids in the initial phase of the fermentation was repressed when higher yeast concentrations were pitched. The expression levels of the genes HSP104 and HSP12 and the concentration of trehalose were higher with increased pitching rates, suggesting a moderate exposure to stress in case of higher cell concentrations. The influence of pitching rate on aroma compound production was rather limited, with the exception of total diacetyl levels, which strongly increased with the pitching rate. These results demonstrate that most aspects of the yeast physiology and flavour balance are not significantly or negatively affected when the pitching rate is changed. However, further research is needed to fully optimise the conditions for brewing beer with high cell density populations.

  14. Prosodic Transfer: From Chinese Lexical Tone to English Pitch Accent

    ERIC Educational Resources Information Center

    Ploquin, Marie

    2013-01-01

    Chinese tones are associated with a syllable to convey meaning, English pitch accents are prominence markers associated with stressed syllables. As both are created by pitch modulation, their pitch contours can be quite similar. The experiment reported here examines whether native speakers of Chinese produce, when speaking English, the Chinese…

  15. Politeness, emotion, and gender: A sociophonetic study of voice pitch modulation

    NASA Astrophysics Data System (ADS)

    Yuasa, Ikuko

    The present dissertation is a cross-gender and cross-cultural sociophonetic exploration of voice pitch characteristics utilizing speech data derived from Japanese and American speakers in natural conversations. The roles of voice pitch modulation in terms of the concepts of politeness and emotion as they pertain to culture and gender will be investigated herein. The research interprets the significance of my findings based on the acoustic measurements of speech data as they are presented in the ERB-rate scale (the most appropriate scale for human speech perception). The investigation reveals that pitch range modulation displayed by Japanese informants in two types of conversations is closely linked to types of politeness adopted by those informants. The degree of the informants' emotional involvement and expressions reflected in differing pitch range widths plays an important role in determining the relationship between pitch range modulation and politeness. The study further correlates the Japanese cultural concept of enryo ("self-restraint") with this phenomenon. When median values were examined, male and female pitch ranges across cultures did not conspicuously differ. However, sporadically occurring women's pitch characteristics which culturally differ in width and height of pitch ranges may create an 'emotional' perception of women's speech style. The salience of these pitch characteristics appears to be the source of the stereotypically linked sound of women's speech being identified as 'swoopy' or 'shrill' and thus 'emotional'. Such women's salient voice characteristics are interpreted in light of camaraderie/positive politeness. Women's use of conspicuous paralinguistic features helps to create an atmosphere of camaraderie. These voice pitch characteristics promote the establishment of a sense of camaraderie since they act to emphasize such feelings as concern, support, and comfort towards addressees, Moreover, men's wide pitch ranges are discussed in view

  16. Investors prefer entrepreneurial ventures pitched by attractive men

    PubMed Central

    Brooks, Alison Wood; Huang, Laura; Kearney, Sarah Wood; Murray, Fiona E.

    2014-01-01

    Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur’s business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs. PMID:24616491

  17. Spirality: A Noval Way to Measure Spiral Arm Pitch Angle

    NASA Astrophysics Data System (ADS)

    Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.

    2015-01-01

    We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.

  18. Compression in wearable sensor nodes: impacts of node topology.

    PubMed

    Imtiaz, Syed Anas; Casson, Alexander J; Rodriguez-Villegas, Esther

    2014-04-01

    Wearable sensor nodes monitoring the human body must operate autonomously for very long periods of time. Online and low-power data compression embedded within the sensor node is therefore essential to minimize data storage/transmission overheads. This paper presents a low-power MSP430 compressive sensing implementation for providing such compression, focusing particularly on the impact of the sensor node architecture on the compression performance. Compression power performance is compared for four different sensor nodes incorporating different strategies for wireless transmission/on-sensor-node local storage of data. The results demonstrate that the compressive sensing used must be designed differently depending on the underlying node topology, and that the compression strategy should not be guided only by signal processing considerations. We also provide a practical overview of state-of-the-art sensor node topologies. Wireless transmission of data is often preferred as it offers increased flexibility during use, but in general at the cost of increased power consumption. We demonstrate that wireless sensor nodes can highly benefit from the use of compressive sensing and now can achieve power consumptions comparable to, or better than, the use of local memory.

  19. dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres.

    PubMed

    Chavez, Joselyn; Murillo-Maldonado, Juan Manuel; Bahena, Vanessa; Cruz, Ana Karina; Castañeda-Sortibrán, América; Rodriguez-Arnaiz, Rosario; Zurita, Mario; Valadez-Graham, Viviana

    2017-12-01

    Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.

  20. High-pitch dual-source CT angiography without ECG-gating for imaging the whole aorta: intraindividual comparison with standard pitch single-source technique without ECG-gating

    PubMed Central

    Manna, Carmelinda; Silva, Mario; Cobelli, Rocco; Poggesi, Sara; Rossi, Cristina; Sverzellati, Nicola

    2017-01-01

    PURPOSE We aimed to perform intraindividual comparison of computed tomography (CT) parameters, image quality, and radiation exposure between standard CT angiography (CTA) and high-pitch dual source (DS)-CTA, in subjects undergoing serial CTA of thoracoabdominal aorta. METHODS Eighteen subjects with thoracoabdominal CTA by standard technique and high-pitch DS-CTA technique within 6 months of each other were retrieved for intraindividual comparison of image quality in thoracic and abdominal aorta. Quantitative analysis was performed by comparison of mean aortic attenuation, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Qualitative analysis was performed by visual assessment of motion artifacts and diagnostic confidence. Radiation exposure was quantified by effective dose. Image quality was apportioned to radiation exposure by means of figure of merit. RESULTS Mean aortic attenuation and noise were higher in high-pitch DS-CTA of thoracoabdominal aorta, whereas SNR and CNR were similar in thoracic aorta and significantly lower in high-pitch DS-CTA of abdominal aorta (P = 0.024 and P = 0.016). High-pitch DS-CTA was significantly better in the first segment of thoracic aorta. Effective dose was reduced by 72% in high-pitch DS-CTA. CONCLUSION High-pitch DS-CTA without electrocardiography-gating is an effective technique for imaging aorta with very low radiation exposure and with significant reduction of motion artifacts in ascending aorta; however, the overall quality of high-pitch DS-CTA in abdominal aorta is lower than standard CTA. PMID:28703104

  1. Electronic polarization stabilizes tertiary structure prediction of HP-36.

    PubMed

    Duan, Li L; Zhu, Tong; Zhang, Qing G; Tang, Bo; Zhang, John Z H

    2014-04-01

    Molecular dynamic (MD) simulations with both implicit and explicit solvent models have been carried out to study the folding dynamics of HP-36 protein. Starting from the extended conformation, the secondary structure of all three helices in HP-36 was formed in about 50 ns and remained stable in the remaining simulation. However, the formation of the tertiary structure was difficult. Although some intermediates were close to the native structure, the overall conformation was not stable. Further analysis revealed that the large structure fluctuation of loop and hydrophobic core regions was devoted mostly to the instability of the structure during MD simulation. The backbone root-mean-square deviation (RMSD) of the loop and hydrophobic core regions showed strong correlation with the backbone RMSD of the whole protein. The free energy landscape indicated that the distribution of main chain torsions in loop and turn regions was far away from the native state. Starting from an intermediate structure extracted from the initial AMBER simulation, HP-36 was found to generally fold to the native state under the dynamically adjusted polarized protein-specific charge (DPPC) simulation, while the peptide did not fold into the native structure when AMBER force filed was used. The two best folded structures were extracted and taken into further simulations in water employing AMBER03 charge and DPPC for 25 ns. Result showed that introducing polarization effect into interacting potential could stabilize the near-native protein structure.

  2. 75 FR 34169 - Hewlett-Packard Company, Inkjet Consumer Solutions, HP Consumer Hardware Inkjet Lab, Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ..., Inkjet Consumer Solutions, HP Consumer Hardware Inkjet Lab, Including Leased Workers From Hightower..., applicable to all workers of Hewlett-Packard Company, Inkjet Consumer Solutions, HP Consumer Hardware Inkjet... the Department's certification is to include all workers employed at Hewlett Packard Company, Inkjet...

  3. Scalable Node Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drotar, Alexander P.; Quinn, Erin E.; Sutherland, Landon D.

    2012-07-30

    Project description is: (1) Build a high performance computer; and (2) Create a tool to monitor node applications in Component Based Tool Framework (CBTF) using code from Lightweight Data Metric Service (LDMS). The importance of this project is that: (1) there is a need a scalable, parallel tool to monitor nodes on clusters; and (2) New LDMS plugins need to be able to be easily added to tool. CBTF stands for Component Based Tool Framework. It's scalable and adjusts to different topologies automatically. It uses MRNet (Multicast/Reduction Network) mechanism for information transport. CBTF is flexible and general enough to bemore » used for any tool that needs to do a task on many nodes. Its components are reusable and 'EASILY' added to a new tool. There are three levels of CBTF: (1) frontend node - interacts with users; (2) filter nodes - filters or concatenates information from backend nodes; and (3) backend nodes - where the actual work of the tool is done. LDMS stands for lightweight data metric servies. It's a tool used for monitoring nodes. Ltool is the name of the tool we derived from LDMS. It's dynamically linked and includes the following components: Vmstat, Meminfo, Procinterrupts and more. It works by: Ltool command is run on the frontend node; Ltool collects information from the backend nodes; backend nodes send information to the filter nodes; and filter nodes concatenate information and send to a database on the front end node. Ltool is a useful tool when it comes to monitoring nodes on a cluster because the overhead involved with running the tool is not particularly high and it will automatically scale to any size cluster.« less

  4. Cross-Disciplinary Analysis of Lymph Node Classification in Lung Cancer on CT Scanning.

    PubMed

    El-Sherief, Ahmed H; Lau, Charles T; Obuchowski, Nancy A; Mehta, Atul C; Rice, Thomas W; Blackstone, Eugene H

    2017-04-01

    Accurate and consistent regional lymph node classification is an important element in the staging and multidisciplinary management of lung cancer. Regional lymph node definition sets-lymph node maps-have been created to standardize regional lymph node classification. In 2009, the International Association for the Study of Lung Cancer (IASLC) introduced a lymph node map to supersede all preexisting lymph node maps. Our aim was to study if and how lung cancer specialists apply the IASLC lymph node map when classifying thoracic lymph nodes encountered on CT scans during lung cancer staging. From April 2013 through July 2013, invitations were distributed to all members of the Fleischner Society, Society of Thoracic Radiology, General Thoracic Surgical Club, and the American Association of Bronchology and Interventional Pulmonology to participate in an anonymous online image-based and text-based 20-question survey regarding lymph node classification for lung cancer staging on CT imaging. Three hundred thirty-seven people responded (approximately 25% participation). Respondents consisted of self-reported thoracic radiologists (n = 158), thoracic surgeons (n = 102), and pulmonologists who perform endobronchial ultrasonography (n = 77). Half of the respondents (50%; 95% CI, 44%-55%) reported using the IASLC lymph node map in daily practice, with no significant differences between subspecialties. A disparity was observed between the IASLC definition sets and their interpretation and application on CT scans, in particular for lymph nodes near the thoracic inlet, anterior to the trachea, anterior to the tracheal bifurcation, near the ligamentum arteriosum, between the bronchus intermedius and esophagus, in the internal mammary space, and adjacent to the heart. Use of older lymph node maps and inconsistencies in interpretation and application of definitions in the IASLC lymph node map may potentially lead to misclassification of stage and suboptimal management of lung

  5. The intensity-pitch relation revisited: monopolar versus bipolar cochlear stimulation.

    PubMed

    Arnoldner, Christoph; Riss, Dominik; Kaider, Alexandra; Mair, Alois; Wagenblast, Jens; Baumgartner, Wolf-Dieter; Gstöttner, Wolfgang; Hamzavi, Jafar-Sasan

    2008-09-01

    The very high speech perception scores now being achieved with cochlear implants have led to demands for similar levels of achievement in music perception and perception in noisy environments. One of the crucial factors in these fields is pitch perception. The aim of the present study was to investigate the extent to which pitch perception is influenced by the intensity of the stimulus, through the use of different stimulation modes (monopolar, bipolar) and different electrodes (lateral and perimodiolar). Sixteen postlingually deafened patients with an average implant use of 3.1 years were included in this study. All patients were using a Cochlear (CI24M, CI24R, CI24RE) cochlear implant. Subjects were asked to compare the pitch of an intensity-constant reference tone with the pitch of a test tone of varying intensity. The test was repeated for apical, mediocochlear, and basal channel locations, and also for monopolar and bipolar stimulation. It was found that in monopolar stimulation 87.5% and in bipolar stimulation 85.7% of the patients perceived a clear pitch change with changing intensity of the stimulus (Spearman correlation coefficients r < -0.3 or r > 0.3, respectively). A total of 73.1% of these patients perceived lower pitches with increasing intensity, 26.9% reported the opposite effect. No statistically significant difference in the intensity-pitch correlation could be found between mono- and bipolar stimulation. Neither the mean dynamic range nor the type of electrode used was found to be related to the correlation coefficient. Although the majority of today's cochlear implant recipients perform well and the intensity-pitch relation in cochlear implant recipients is still poorly understood, rising demands on speech-coding strategies may soon make a compensation of the pitch shifts desirable. Although the results of our study tend to argue against a peripheral mechanism, the exact origin of this phenomenon remains unclear.

  6. A New Approach to Model Pitch Perception Using Sparse Coding

    PubMed Central

    Furst, Miriam; Barak, Omri

    2017-01-01

    Our acoustical environment abounds with repetitive sounds, some of which are related to pitch perception. It is still unknown how the auditory system, in processing these sounds, relates a physical stimulus and its percept. Since, in mammals, all auditory stimuli are conveyed into the nervous system through the auditory nerve (AN) fibers, a model should explain the perception of pitch as a function of this particular input. However, pitch perception is invariant to certain features of the physical stimulus. For example, a missing fundamental stimulus with resolved or unresolved harmonics, or a low and high-level amplitude stimulus with the same spectral content–these all give rise to the same percept of pitch. In contrast, the AN representations for these different stimuli are not invariant to these effects. In fact, due to saturation and non-linearity of both cochlear and inner hair cells responses, these differences are enhanced by the AN fibers. Thus there is a difficulty in explaining how pitch percept arises from the activity of the AN fibers. We introduce a novel approach for extracting pitch cues from the AN population activity for a given arbitrary stimulus. The method is based on a technique known as sparse coding (SC). It is the representation of pitch cues by a few spatiotemporal atoms (templates) from among a large set of possible ones (a dictionary). The amount of activity of each atom is represented by a non-zero coefficient, analogous to an active neuron. Such a technique has been successfully applied to other modalities, particularly vision. The model is composed of a cochlear model, an SC processing unit, and a harmonic sieve. We show that the model copes with different pitch phenomena: extracting resolved and non-resolved harmonics, missing fundamental pitches, stimuli with both high and low amplitudes, iterated rippled noises, and recorded musical instruments. PMID:28099436

  7. A New Approach to Model Pitch Perception Using Sparse Coding.

    PubMed

    Barzelay, Oded; Furst, Miriam; Barak, Omri

    2017-01-01

    Our acoustical environment abounds with repetitive sounds, some of which are related to pitch perception. It is still unknown how the auditory system, in processing these sounds, relates a physical stimulus and its percept. Since, in mammals, all auditory stimuli are conveyed into the nervous system through the auditory nerve (AN) fibers, a model should explain the perception of pitch as a function of this particular input. However, pitch perception is invariant to certain features of the physical stimulus. For example, a missing fundamental stimulus with resolved or unresolved harmonics, or a low and high-level amplitude stimulus with the same spectral content-these all give rise to the same percept of pitch. In contrast, the AN representations for these different stimuli are not invariant to these effects. In fact, due to saturation and non-linearity of both cochlear and inner hair cells responses, these differences are enhanced by the AN fibers. Thus there is a difficulty in explaining how pitch percept arises from the activity of the AN fibers. We introduce a novel approach for extracting pitch cues from the AN population activity for a given arbitrary stimulus. The method is based on a technique known as sparse coding (SC). It is the representation of pitch cues by a few spatiotemporal atoms (templates) from among a large set of possible ones (a dictionary). The amount of activity of each atom is represented by a non-zero coefficient, analogous to an active neuron. Such a technique has been successfully applied to other modalities, particularly vision. The model is composed of a cochlear model, an SC processing unit, and a harmonic sieve. We show that the model copes with different pitch phenomena: extracting resolved and non-resolved harmonics, missing fundamental pitches, stimuli with both high and low amplitudes, iterated rippled noises, and recorded musical instruments.

  8. Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriyama, Tetsuji; Sangel, Percival; Yamaguchi, Hiroki

    2015-07-03

    Tripartite motif-containing 28 (TRIM28) is a transcription regulator, which forms a repressor complex containing heterochromatin protein 1 (HP1). Here, we report identification of a nuclear localization signal (NLS) within the 462-494 amino acid region of TRIM28 that overlaps with its HP1 binding site, HP1 box. GST-pulldown experiments revealed the interaction of the arginine-rich TRIM28 NLS with various importin α subtypes (α1, α2 and α4). In vitro transport assay demonstrated that nuclear localization of GFP-TRIM28 NLS is mediated by importin αs, in conjunction with importin β1 and Ran. Further, we demonstrated that HP1 and importin αs compete for binding to TRIM28. Together,more » our findings suggest that importin α has an essential role in the nuclear delivery and preferential HP1 interaction of TRIM28. - Highlights: • TRIM28 contains an NLS within the 462-494 amino acid region. • The nuclear import of TRIM28 is mediated by importin α/importin β1. • TRIM28 NLS overlaps with HP1 Box. • HP1 and importin α compete for binding to TRIM28.« less

  9. Dynamics of fluidic devices with applications to rotor pitch links

    NASA Astrophysics Data System (ADS)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  10. The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise.

    PubMed

    Shen, Jing; Souza, Pamela E

    2017-09-18

    This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for speech recognition in noise. Last, we explored the individual factors that predict the amount of dynamic-pitch benefit for speech recognition in noise. Younger listeners with normal hearing and older listeners with varying levels of hearing sensitivity participated in the study, in which speech reception thresholds were measured with sentences in nonspeech noise. The younger listeners benefited more from dynamic pitch for speech recognition in temporally modulated noise than unmodulated noise. Older listeners were able to benefit from the dynamic-pitch cues but received less benefit from noise modulation than the younger listeners. For those older listeners with hearing loss, the amount of hearing loss strongly predicted the dynamic-pitch benefit for speech recognition in noise. Dynamic-pitch cues aid speech recognition in noise, particularly when noise has temporal modulation. Hearing loss negatively affects the dynamic-pitch benefit to older listeners with significant hearing loss.

  11. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    PubMed

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  12. Lower extremity muscle activation during baseball pitching.

    PubMed

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  13. Determination of pitch rotation in a spherical birefringent microparticle

    NASA Astrophysics Data System (ADS)

    Roy, Basudev; Ramaiya, Avin; Schäffer, Erik

    2018-03-01

    Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.

  14. Technology for the production of Zero Q.I pitch from coal tar

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Kumar, K. Rajesh; Rao, C. V. Nageswara; Kumar, B. Vinod; Murty, J. V. S.

    2013-06-01

    Zero Quinoline Insolubles (Q.I) pitch is a special type of pitch obtained from pre-treatment of coal tar, which is converted into pitch. This is used for impregnation of electrodes for improving the strength, electrical properties and also used as a pre-cursor for Mesophase pitch for producing Mesophase pitch based carbon fibers, carbon foam, and Meso carbon micro beads. This paper discusses the technology of Q.I separation from Coal Tar by using decantation of Coal Tar mixed with Heavy Creosote Oil (HC Oil) at different temperatures. By this method we were able to produce the Zero Q.I pitch with a Q.I value of 0.1%.

  15. Simulation of Small-Pitch HgCdTe Photodetectors

    NASA Astrophysics Data System (ADS)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2017-09-01

    Recent studies indicate as an important technological step the development of infrared HgCdTe-based focal plane arrays (FPAs) with sub-wavelength pixel pitch, with the advantage of smaller volume, lower weight, and potentially lower cost. In order to assess the limits of pixel pitch scaling, we present combined three-dimensional optical and electrical simulations of long-wavelength infrared HgCdTe FPAs, with 3 μm, 5 μm, and 10 μm pitch. Numerical simulations predict significant cavity effects, brought by the array periodicity. The optical and electrical contributions to spectral inter-pixel crosstalk are investigated as functions of pixel pitch, by illuminating the FPAs with Gaussian beams focused on the central pixel. Despite the FPAs being planar with 100% pixel duty cycle, our calculations suggest that the total crosstalk with nearest-neighbor pixels could be kept acceptably small also with pixels only 3 μ m wide and a diffraction-limited optical system.

  16. Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells

    PubMed Central

    Kang, Jungseog; Chaudhary, Jaideep; Dong, Hui; Kim, Soonjoung; Brautigam, Chad A.; Yu, Hongtao

    2011-01-01

    Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passenger complex (CPC). Biochemical and structural studies show that both HP1–INCENP and HP1–Sgo1 interactions require the binding of the HP1 chromo shadow domain to PXVXL/I motifs in INCENP or Sgo1, suggesting that the INCENP-bound, centromeric HP1α is incapable of recruiting Sgo1. Consistently, a Sgo1 mutant deficient in HP1 binding is functional in centromeric cohesion protection and localizes normally to centromeres in mitosis. By contrast, INCENP or Sgo1 mutants deficient in HP1 binding fail to localize to centromeres in interphase. Therefore, our results suggest that HP1 binding by INCENP or Sgo1 is dispensable for centromeric cohesion protection during mitosis of human cells, but might regulate yet uncharacterized interphase functions of CPC or Sgo1 at the centromeres. PMID:21346195

  17. Mutations to essential orphan response regulator HP1043 of Helicobacter pylori result in growth-stage regulatory defects.

    PubMed

    Olekhnovich, Igor N; Vitko, Serhiy; Chertihin, Olga; Hontecillas, Raquel; Viladomiu, Monica; Bassaganya-Riera, Josep; Hoffman, Paul S

    2013-05-01

    Helicobacter pylori establishes lifelong infections of the gastric mucosa, a niche considered hostile to most microbes. While responses to gastric acidity and local inflammation are understood, little is known as to how they are integrated into homeostatic control of cell division and growth-stage gene expression. Here we investigate the essential orphan response regulator HP1043, a member of the OmpR/PhoB subfamily of transcriptional regulators that is unique to the Epsilonproteobacteria and that lacks phosphorylation domains. To test the hypothesis that conformational changes in the homodimer might lead to defects in gene expression, we sought mutations that might alter DNA-binding efficiency. Two introduced mutations (C215S, C221S) C terminal to the DNA-binding domain of HP1043 (HP1043CC11) resulted in a 2-fold higher affinity for its own promoter by footprinting. Modeling studies with the crystal structure of HP1043 suggested that C215S might affect the helix-turn-helix domain. Genomic replacement of the hp1043 allele with the hp1043CC11 mutant allele resulted in a 2-fold decrease in protein levels, despite a dramatic increase in mRNA. The mutations did not affect in vitro growth rates or colonization efficiency in a mouse model. Proteomic profiling (CC11 mutant strain versus wild type) identified many expression differences, and quantitative PCR further revealed that 11 out of 12 examined genes had lost growth-stage regulation and that 6 of the genes contained HP1043 binding consensus sequences within the promoter regions (fur, cagA, cag23, flhA, flip, and napA). Our studies show that mutations that affect DNA-binding affinity can be used to identify new members of the HP1043 regulon.

  18. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus).

    PubMed

    Cheng, Mei-Nv; Huang, Zi-Juan; Hua, Qing-Zhu; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Qin, Yong-Hua; Chen, Jian-Ye

    2017-01-01

    Red pitaya ( Hylocereus polyrhizus ) fruit is a high-value, functional food, containing a high level of betalains. Several genes potentially related to betalain biosynthesis, such as cytochrome P450-like ( CytP450-like ), have been identified in pitaya fruit, while their transcriptional regulation remains unclear. In this work, the potential involvement of a WRKY transcription factor, HpWRKY44, in regulating CytP450-like1 expression in pitaya fruit was examined. HpWRKY44, a member of the Group 1 WRKY family, contains two conserved WRKY motifs and is localized in the nucleus. HpWRKY44 also exhibits trans-activation ability. Gene expression analysis showed that the expression of HpCytP450-like1 and HpWRKY44 increased steadily during pitaya fruit coloration, which corresponded with the production of elevated betalain levels in the fruit. HpWRKY44 was also demonstrated to directly bind to and activate the HpCytP450-like1 promoter via the recognition of the W-box element present in the promoter. Collectively, our findings indicate that HpWRKY44 transcriptionally activates HpCytP450-like1 , which perhaps, at least in part, contributes to betalain biosynthesis in pitaya fruit. The information provided in the current study provides novel insights into the regulatory network associated with betalain biosynthesis during pitaya fruit coloration.

  19. EXPERIMENTAL PERFORMANCE OF A CONTROLLABLE-PITCH SUPERCAVITATING PROPELLER.

    DTIC Science & Technology

    Studies were made of cavitation performance and open-water characteristics of a controllable-pitch supercavitating propeller with two, three, and...By means of several numerical examples, the feasibility of using a controllable-pitch supercavitating propeller is demonstrated. A practical application to a hydrofoil boat is also presented. (Author)

  20. Performance Demands in Softball Pitching: A Comprehensive Muscle Fatigue Study.

    PubMed

    Corben, Jeffrey S; Cerrone, Sara A; Soviero, Julie E; Kwiecien, Susan Y; Nicholas, Stephen J; McHugh, Malachy P

    2015-08-01

    Monitoring pitch count is standard practice in minor league baseball but not in softball because of the perception that fast-pitch softball pitching is a less stressful motion. To examine muscle fatigue after fast-pitch softball performances to provide an assessment of performance demand. Descriptive laboratory study. Bilateral strength measurements (handheld dynamometer) were made on 19 female softball pitchers (mean age [±SD], 15.2 ± 1.2 years) before and after pitching a game (mean number of pitches, 99 ± 21; mean innings pitched, 5 ± 1). A total of 20 tests were performed on the dominant and nondominant sides: forearm (grip, wrist flexion/extension, pronation/supination, elbow flexion/extension), shoulder (flexion, abduction/adduction, external/internal rotation, empty can test), scapula (middle/lower trapezius, rhomboid), and hip (hip flexion/extension, abduction/adduction). Fatigue (percentage strength loss) was categorized based on bilateral versus unilateral presentation using paired t tests: bilateral symmetric (significant on dominant and nondominant and not different between sides), bilateral asymmetric (significant on dominant and nondominant but significantly greater on dominant), unilateral asymmetric (significant on dominant only and significantly greater than nondominant), or unilateral equivocal (significant on dominant only but not different from nondominant). Bilateral symmetric fatigue was evident for all hip (dominant, 19.3%; nondominant, 15.2%) and scapular tests (dominant, 19.2%; nondominant, 19.3%). In general, shoulder tests exhibited bilateral asymmetric fatigue (dominant, 16.9%; nondominant, 11.6%). Forearm tests were more variable, with bilateral symmetric fatigue in the elbow flexors (dominant, 22.5%; nondominant, 19.2%), and wrist flexors (dominant, 21.6%; nondominant, 19.0%), bilateral asymmetric fatigue in the supinators (dominant, 21.8%; nondominant, 15.5%), unilateral asymmetric fatigue in the elbow extensors (dominant, 22

  1. HpBase: A genome database of a sea urchin, Hemicentrotus pulcherrimus.

    PubMed

    Kinjo, Sonoko; Kiyomoto, Masato; Yamamoto, Takashi; Ikeo, Kazuho; Yaguchi, Shunsuke

    2018-04-01

    To understand the mystery of life, it is important to accumulate genomic information for various organisms because the whole genome encodes the commands for all the genes. Since the genome of Strongylocentrotus purpratus was sequenced in 2006 as the first sequenced genome in echinoderms, the genomic resources of other North American sea urchins have gradually been accumulated, but no sea urchin genomes are available in other areas, where many scientists have used the local species and reported important results. In this manuscript, we report a draft genome of the sea urchin Hemincentrotus pulcherrimus because this species has a long history as the target of developmental and cell biology in East Asia. The genome of H. pulcherrimus was assembled into 16,251 scaffold sequences with an N50 length of 143 kbp, and approximately 25,000 genes were identified in the genome. The size of the genome and the sequencing coverage were estimated to be approximately 800 Mbp and 100×, respectively. To provide these data and information of annotation, we constructed a database, HpBase (http://cell-innovation.nig.ac.jp/Hpul/). In HpBase, gene searches, genome browsing, and blast searches are available. In addition, HpBase includes the "recipes" for experiments from each lab using H. pulcherrimus. These recipes will continue to be updated according to the circumstances of individual scientists and can be powerful tools for experimental biologists and for the community. HpBase is a suitable dataset for evolutionary, developmental, and cell biologists to compare H. pulcherrimus genomic information with that of other species and to isolate gene information. © 2018 Japanese Society of Developmental Biologists.

  2. Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Burley, J. R., II

    1986-01-01

    A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg.

  3. DYNAMICS OF SELF-GRAVITY WAKES IN DENSE PLANETARY RINGS. I. PITCH ANGLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro; Fujii, Akihiko

    2015-10-20

    We investigate the dynamics of self-gravity wakes in dense planetary rings. In particular, we examine how the pitch angles of self-gravity wakes depend on ring parameters using N-body simulations. We calculate the pitch angles using the two-dimensional autocorrelation function of the ring surface density. We obtain the pitch angles for the inner and outer parts of the autocorrelation function separately. We confirm that the pitch angles are 15°–30° for reasonable ring parameters, which are consistent with previous studies. We find that the inner pitch angle increases with the Saturnicentric distance, while it barely depends on the optical depth and themore » restitution coefficient of ring particles. The increase of the inner pitch angle with the Saturnicentric distance is consistent with the observations of the A ring. The outer pitch angle does not have a clear dependence on any ring parameters and is about 10°–15°. This value is consistent with the pitch angle of spiral arms in collisionless systems.« less

  4. 175Hp contrarotating homopolar motor design report

    NASA Astrophysics Data System (ADS)

    Cannell, Michael J.; Drake, John L.; McConnell, Richard A.; Martino, William R.

    1994-06-01

    A normally conducting contrarotating homopolar motor has been designed and constructed. The reaction torque, in the outer rotor, from the inner rotor is utilized to produce true contrarotation. The machine utilizes liquid cooled conductors, high performance liquid metal current collectors, and ferrous conductors in the active region. The basic machine output is 175 hp at + or - 1,200 rpm with an input of 4 volts and 35,000 amps.

  5. Construction of a dictionary of laboratory tests mapped to LOINC at AP-HP.

    PubMed

    Cormont, Sylvie; Buemi, Antoine; Horeau, Thierry; Zweigenbaum, Pierre; Lepage, Eric

    2008-11-06

    We report on the ongoing process implemented at Assistance Publique-Hôpitaux de Paris (AP-HP), the largest hospital system in Europe, to build a common reference for laboratory tests in French with LOINC mappings. At the time of writing, it contained 24,000 tests, covering all fields of biology, in use in 19 AP-HP hospitals, 30% of which had a mapping to LOINC with a peak of over 60% in biochemistry.

  6. The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise

    PubMed Central

    Souza, Pamela E.

    2017-01-01

    Purpose This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for speech recognition in noise. Last, we explored the individual factors that predict the amount of dynamic-pitch benefit for speech recognition in noise. Method Younger listeners with normal hearing and older listeners with varying levels of hearing sensitivity participated in the study, in which speech reception thresholds were measured with sentences in nonspeech noise. Results The younger listeners benefited more from dynamic pitch for speech recognition in temporally modulated noise than unmodulated noise. Older listeners were able to benefit from the dynamic-pitch cues but received less benefit from noise modulation than the younger listeners. For those older listeners with hearing loss, the amount of hearing loss strongly predicted the dynamic-pitch benefit for speech recognition in noise. Conclusions Dynamic-pitch cues aid speech recognition in noise, particularly when noise has temporal modulation. Hearing loss negatively affects the dynamic-pitch benefit to older listeners with significant hearing loss. PMID:28800370

  7. Comparison of pitch rate history effects on dynamic stall

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Carr, Lawrence W.; Ahmed, S.

    1992-01-01

    Dynamic stall of an airfoil is a classic case of forced unsteady separated flow. Flow separation is brought about by large incidences introduced by the large amplitude unsteady pitching motion of an airfoil. One of the parameters that affects the dynamic stall process is the history of the unsteady motion. In addition, the problem is complicated by the effects of compressibility that rapidly appear over the airfoil even at low Mach numbers at moderately high angles of attack. Consequently, it is of interest to know the effects of pitch rate history on the dynamic stall process. This abstract compares the results of a flow visualization study of the problem with two different pitch rate histories, namely, oscillating airfoil motion and a linear change in the angle of attack due to a transient pitching motion.

  8. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    NASA Astrophysics Data System (ADS)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  9. Re-examining the upper limit of temporal pitch

    PubMed Central

    Macherey, Olivier; Carlyon, Robert P.

    2015-01-01

    Five normally-hearing listeners pitch-ranked harmonic complexes of different fundamental frequencies (F0s) filtered in three different frequency regions. Harmonics were summed either in sine, alternating sine-cosine (ALT), or pulse-spreading (PSHC) phase. The envelopes of ALT and PSHC complexes repeated at rates of 2F0 and 4F0. Pitch corresponded to those rates at low F0s, but, as F0 increased, there was a range of F0s over which pitch remained constant or dropped. Gammatone-filterbank simulations showed that, as F0 increased and the number of harmonics interacting in a filter dropped, the output of that filter switched from repeating at 2F0 or 4F0 to repeating at F0. A model incorporating this phenomenon accounted well for the data, except for complexes filtered into the highest frequency region (7800-10800 Hz). To account for the data in that region it was necessary to assume either that auditory filters at very high frequencies are sharper than traditionally believed, and/or that the auditory system applies smaller weights to filters whose outputs repeat at high rates. The results also provide new evidence on the highest pitch that can be derived from purely temporal cues, and corroborate recent reports that a complex pitch can be derived from very-high-frequency resolved harmonics. PMID:25480066

  10. Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing.

    PubMed

    Fry, Karl E; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc

    Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Prospective cohort study. Level 3. Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated ( P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs.

  11. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients.

    PubMed

    Vyshedskiy, Andrey; Murphy, Raymond

    2012-01-01

    Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory. Methods. Patients with a significant number of crackles were examined using a multichannel lung sound analyzer. These patients included 34 with pneumonia, 38 with heart failure, and 28 with interstitial fibrosis. Results. Crackle pitch progressively increased during inspirations in 79% of all patients. In these patients crackle pitch increased by approximately 40 Hz from the early to midinspiration and by another 40 Hz from mid to late-inspiration. In 10% of patients, crackle pitch did not change and in 11% of patients crackle pitch decreased. During expiration crackle pitch progressively decreased in 72% of patients and did not change in 28% of patients. Conclusion. In the majority of patients, we observed progressive crackle pitch increase during inspiration and decrease during expiration. Increased crackle pitch at larger lung volumes is likely a result of recruitment of smaller diameter airways. An alternate explanation is that crackle pitch may be influenced by airway tension that increases at greater lung volume. In any case improved understanding of the mechanism of production of these common lung sounds may help improve our understanding of pathophysiology of these disorders.

  12. Rapid area change in pitch-up manoeuvres of small perching birds.

    PubMed

    Polet, D T; Rival, D E

    2015-10-26

    Rapid pitch-up has been highlighted as a mechanism to generate large lift and drag during landing manoeuvres. However, pitching rates had not been measured previously in perching birds, and so the direct applicability of computations and experiments to observed behaviour was not known. We measure pitch rates in a small, wild bird (the black-capped chickadee; Poecile atricapillus), and show that these rates are within the parameter range used in experiments. Pitching rates were characterized by the shape change number, a metric comparing the rate of frontal area increase to acceleration. Black-capped chickadees increase the shape change number during perching in direct proportion to their total kinetic and potential energy at the start of the manoeuvre. The linear relationship between dissipated energy and shape change number is in accordance with a simple analytical model developed for two-dimensional pitching and decelerating airfoils. Black-capped chickadees use a wing pitch-up manoeuvre during perching to dissipate energy quickly while maintaining lift and drag through rapid area change. It is suggested that similar pitch-and-decelerate manoeuvres could be used to aid in the controlled, precise landings of small manoeuvrable air vehicles.

  13. OSMEAN - OSCULATING/MEAN CLASSICAL ORBIT ELEMENTS CONVERSION (HP9000/7XX VERSION)

    NASA Technical Reports Server (NTRS)

    Guinn, J. R.

    1994-01-01

    OSMEAN is a sophisticated FORTRAN algorithm that converts between osculating and mean classical orbit elements. Mean orbit elements are advantageous for trajectory design and maneuver planning since they can be propagated very quickly; however, mean elements cannot describe the exact orbit at any given time. Osculating elements will enable the engineer to give an exact description of an orbit; however, computation costs are significantly higher due to the numerical integration procedure required for propagation. By calculating accurate conversions between osculating and mean orbit elements, OSMEAN allows the engineer to exploit the advantages of each approach for the design and planning of orbital trajectories and maneuver planning. OSMEAN is capable of converting mean elements to osculating elements or vice versa. The conversion is based on modelling of all first order aspherical and lunar-solar gravitation perturbations as well as a second-order aspherical term based on the second degree central body zonal perturbation. OSMEAN is written in FORTRAN 77 for HP 9000 series computers running HP-UX (NPO-18796) and DEC VAX series computers running VMS (NPO-18741). The HP version requires 388K of RAM for execution and the DEC VAX version requires 254K of RAM for execution. Sample input and output are listed in the documentation. Sample input is also provided on the distribution medium. The standard distribution medium for the HP 9000 series version is a .25 inch streaming magnetic IOTAMAT tape cartridge in UNIX tar format. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the DEC VAX version is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. OSMEAN was developed on a VAX 6410 in 1989, and was ported to the HP 9000 series platform in 1991. It is a copyrighted work with

  14. Crew Meal in Node 1 Unity

    NASA Image and Video Library

    2010-04-09

    S131-E-008304 (9 April 2010) --- With 13 astronauts and cosmonauts onboard the station at one time, activities around the galley in the Unity node get rather busy at meal time. Over half the 13 are seen in this flight day five aggregation. NASA astronaut James P. Dutton Jr., STS-131 pilot, prepares part of his meal at left. Also pictured clockwise (from the right) are JAXA astronaut Soichi Noguchi and NASA astronaut Tracy Caldwell Dyson, both Expedition 23 flight engineers; NASA astronauts Stephanie Wilson and Clayton Anderson, both STS-131 mission specialists; along with Russian cosmonauts Oleg Kotov and Mikhail Kornienko, Expedition 23 commander and flight engineer, respectively.

  15. Dynamics of high-bypass-engine thrust reversal using a variable-pitch fan

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Sagerser, D. R.; Stakolich, E. G.

    1977-01-01

    The test program demonstrated that successful and rapid forward-to reverse-thrust transients can be performed without any significant engine operational limitations for fan blade pitch changes through either feather pitch or flat pitch. For through-feather-pitch operation with a flight inlet, fan stall problems were encountered, and a fan blade overshoot technique was used to establish reverse thrust.

  16. 33 CFR 401.17 - Pitch indicators and alarms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pitch indicators and alarms. 401... indicators and alarms. Every vessel of 1600 gross registered tons or integrated tug and barge or articulated... propeller shall be equipped with— (a) A pitch indicator in the wheelhouse and the engine room; and (b...

  17. 33 CFR 401.17 - Pitch indicators and alarms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pitch indicators and alarms. 401... indicators and alarms. Every vessel of 1600 gross registered tons or integrated tug and barge or articulated... propeller shall be equipped with— (a) A pitch indicator in the wheelhouse and the engine room; and (b...

  18. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  19. Lumbopelvic control and pitching performance of professional baseball pitchers.

    PubMed

    Chaudhari, Ajit M W; McKenzie, Christopher S; Borchers, James R; Best, Thomas M

    2011-08-01

    This study assessed the correlation between lumbopelvic control during a single-leg balancing task and in-game pitching performance in Minor-League baseball pitchers. Seventy-five healthy professional baseball pitchers performed a standing lumbopelvic control test during the last week of spring training for the 2008 and 2009 seasons while wearing a custom-designed testing apparatus, the "Level Belt." With the Level Belt secured to the waist, subjects attempted to transition from a 2-leg to a single-leg pitching stance and balance while maintaining a stable pelvic position. Subjects were graded on the maximum sagittal pelvic tilt from a neutral position during the motion. Pitching performance, number of innings pitched (IP), and injuries were compared for all subjects who pitched at least 50 innings during a season. The median Level Belt score for the study group was 7°. Two-sample t-tests with equal variances were used to determine if pitchers with a Level Belt score <7° or ≥7° were more likely to perform differently during the baseball season, and chi-square analysis was used to compare injuries between groups. Subjects scoring <7° on the Level Belt test had significantly fewer walks plus hits per inning than subjects scoring ≥7° (walks plus hits per inning pitched, 1.352 ± 0.251 vs. 1.584 ± 0.360, p = 0.013) and significantly more IP during the season (IP, 78.89 ± 38.67 vs. 53.38 ± 42.47, p = 0.043). There was no significant difference in the number of pitchers injured between groups. These data suggest that lumbopelvic control influences overall performance for baseball pitchers and that a simple test of lumbopelvic control can potentially identify individuals who have a better chance of pitching success.

  20. The oscillatory entrainment of virtual pitch perception

    PubMed Central

    Aksentijevic, Aleksandar; Northeast, Anthony; Canty, Daniel; Elliott, Mark A.

    2013-01-01

    Evidence suggests that synchronized brain oscillations in the low gamma range (around 33 Hz) are involved in the perceptual integration of harmonic complex tones. This process involves the binding of harmonic components into “harmonic templates” – neural structures responsible for pitch coding in the brain. We investigated the hypothesis that oscillatory harmonic binding promotes a change in pitch perception style from spectral (frequency) to virtual (relational). Using oscillatory priming we asked 24 participants to judge as rapidly as possible, the direction of an ambiguous target with ascending spectral and descending virtual contour. They made significantly more virtual responses when primed at 29, 31, and 33 Hz and when the first target tone was harmonically related to the prime, suggesting that neural synchronization in the low gamma range could facilitate a shift toward virtual pitch processing. PMID:23630515

  1. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    PubMed

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. LEO to GEO (and Beyond) Transfers Using High Power Solar Electric Propulsion (HP-SEP)

    NASA Technical Reports Server (NTRS)

    Loghry, Christopher S.; Oleson, Steven R.; Woytach, Jeffrey M.; Martini, Michael C.; Smith, David A.; Fittje, James E.; Gyekenyesi, John Z.; Colozza, Anthony J.; Fincannon, James; Bogner, Aimee; hide

    2017-01-01

    Rideshare, or Multi-Payload launch configurations, are becoming more and more commonplace but access to space is only one part of the overall mission needs. The ability for payloads to achieve their target orbits or destinations can still be difficult and potentially not feasible with on-board propulsion limitations. The High Power Solar Electric Propulsion (HP-SEP) Orbital Maneuvering Vehicle (OMV) provides transfer capabilities for both large and small payload in excess of what is possible with chemical propulsion. Leveraging existing secondary payload adapter technology like the ESPA provides a platform to support Multi-Payload launch and missions. When coupled with HP-SEP, meaning greater than 30 kW system power, very large delta-V maneuvers can be accomplished. The HP-SEP OMV concept is designed to perform a Low Earth Orbit to Geosynchronous Orbit (LEO-GEO) transfer of up to six payloads each with 300kg mass. The OMV has enough capability to perform this 6 kms maneuver and have residual capacity to extend an additional transfer from GEO to Lunar orbit. This high deltaV capability is achieved using state of the art 12.5kW Hall Effect Thrusters (HET) coupled with high power roll up solar arrays. The HP-SEP OMV also provides a demonstration platform for other SEP technologies such as advanced Power Processing Units (PPU), Xenon Feed Systems (XFS), and other HET technologies. The HP-SEP OMV platform can be leveraged for other missions as well such as interplanetary science missions and applications for resilient space architectures.

  3. Direction of spin axis and spin rate of the pitched baseball.

    PubMed

    Jinji, Tsutomu; Sakurai, Shinji

    2006-07-01

    In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.

  4. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch

    PubMed Central

    Remaley, D. Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M.

    2015-01-01

    Background: Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Purpose: Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Study Design: Descriptive laboratory study. Methods: Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. Results: During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o’clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. Conclusion: During the 6

  5. Pitch Ability as an Aptitude for Tone Learning

    ERIC Educational Resources Information Center

    Bowles, Anita R.; Chang, Charles B.; Karuzis, Valerie P.

    2016-01-01

    Tone languages such as Mandarin use voice pitch to signal lexical contrasts, presenting a challenge for second/foreign language (L2) learners whose native languages do not use pitch in this manner. The present study examined components of an aptitude for mastering L2 lexical tone. Native English speakers with no previous tone language experience…

  6. Once a Poor Pitch Singer, Always a Poor Pitch Singer? A Bottom up Study of Factors That May Support Singing Development

    ERIC Educational Resources Information Center

    Turøy, Anne Kristine Wallace

    2018-01-01

    Approximately 10% of students have singing difficulties appearing as poor pitch singing. During the period 2012 to 2014, I assessed 2390 recordings from 239 students. 25 students were graded below C, and thus were defined as poor pitch singers (PPS). However, these students showed varying patterns of mastery within their own portfolios of…

  7. HP3 on ExoMars - Cutting airbag cloths with the sharp tip of a mechanical mole

    NASA Astrophysics Data System (ADS)

    Krause, C.; Izzo, M.; Re, E.; Mehls, C.; Richter, L.; Coste, P.

    2009-04-01

    The HP3 - Heat Flow and Physical Properties Package - is planned to be one of the Humboldt lander-based instruments on the ESA ExoMars mission. HP3 will allow the measurement of the subsurface temperature gradient and physical as well as thermophysical properties of the subsurface regolith of Mars down to a depth of 5 meters. From these measurements, the planetary heat flux can be inferred. The HP³ instrument package consists of a mole trailing a package of thermal and electrical sensors into the regolith. Beside the payload elements Thermal Excitation and Measurement Suite and a Permittivity Probe the HP3 experiment includes sensors to detect the forward motion and the tilt of the HP3 payload compartment. The HP3 experiment will be integrated into the lander platform of the ExoMars mission. The original accommodation featured a deployment device or a robotic arm to place HP3 onto the soil outside the deflated lander airbags. To avoid adding such deployment devices, it was suggested that the HP3 mole should be capable of piercing the airbags under the lander. The ExoMars lander airbag is made of 4 Kevlar layers (2 abrasive and 2 bladders). A double fold of the airbag (a worst case) would represent a pile of 12 layers. An exploratory study has examined the possibility of piercing airbag cloths by adding sharp cutting blades on the tip of a penetrating mole. In the experimental setup representative layers were laid over a Mars soil simulant. Initial tests used a hammer-driven cutting tip and had moderate to poor results. More representative tests used a prototype of the HP3 mole and were fully successful: the default 4 layer configuration was pierced as well as the 12 layer configuration, the latter one within 3 hours and about 3000 mole strokes This improved behaviour is attributed to the use of representative test hardware where guidance and suppression of mole recoil were concerned. The presentation will provide an explanation of the technical requirements on

  8. Electrochemical Migration of Fine-Pitch Nanopaste Ag Interconnects

    NASA Astrophysics Data System (ADS)

    Tsou, Chia-Hung; Liu, Kai-Ning; Lin, Heng-Tien; Ouyang, Fan-Yi

    2016-12-01

    With the development of intelligent electronic products, usage of fine-pitch interconnects has become mainstream in high performance electronic devices. Electrochemical migration (ECM) of interconnects would be a serious reliability problem under temperature, humidity and biased voltage environments. In this study, ECM behavior of nanopaste Ag interconnects with pitch size from 20 μm to 50 μm was evaluated by thermal humidity bias (THB) and water drop (WD) tests with deionized water through in situ leakage current-versus-time (CVT) curve. The results indicate that the failure time of ECM in fine-pitch samples occurs within few seconds under WD testing and it increases with increasing pitch size. The microstructure examination indicated that intensive dendrite formation of Ag through the whole interface was found to bridge the two electrodes. In the THB test, the CVT curve exhibited two stages, incubation and ramp-up; failure time of ECM was about 173.7 min. In addition, intensive dendrite formation was observed only at the protrusion of the Ag interconnects due to the concentration of the electric field at the protrusion of the Ag interconnects.

  9. On the rotation and pitching of flat plates

    NASA Astrophysics Data System (ADS)

    Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.

    2016-11-01

    Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.

  10. Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing

    PubMed Central

    Fry, Karl E.; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc

    2016-01-01

    Background: Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. Hypotheses: The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Study Design: Prospective cohort study. Level of Evidence: Level 3. Methods: Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Results: Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated (P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. Conclusions: There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Clinical Relevance: Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs. PMID:27864504

  11. Effects of increasing time delays on pitch-matching accuracy in trained singers and untrained individuals.

    PubMed

    Estis, Julie M; Coblentz, Joana K; Moore, Robert E

    2009-07-01

    Trained singers (TS) generally demonstrate accurate pitch matching, but this ability varies within the general population. Pitch-matching accuracy, given increasing silence intervals of 5, 15, and 25 seconds between target tones and vocal matches, was investigated in TS and untrained individuals. A relationship between pitch discrimination and pitch matching was also examined. Thirty-two females (20-30 years) were grouped based on individual vocal training and performance in an immediate pitch-matching task. Participants matched target pitches following time delays, and completed a pitch discrimination task, which required the classification of two tones as same or different. TS and untrained accurate participants performed comparably on all pitch-matching tasks, while untrained inaccurate participants performed significantly less accurately than the other two groups. Performances declined across groups as intervals of silence increased, suggesting degradation of pitch matching as pitch memory was taxed. A significant relationship between pitch discrimination and pitch matching was revealed across participants.

  12. [Comparison of port needle with safety device between Huber Plus (HP) and Poly PERF Safe (PPS)].

    PubMed

    Shimono, Chigusa; Tanaka, Atsuko; Fujita, Ai; Ishimoto, Miki; Oura, Shoji; Yamaue, Hiroki; Sato, Morio

    2010-05-01

    An embedded port is frequently used for outpatients with advanced cancer in central venous chemotherapy or hepatic arterial chemoinfusion. The port needle with a safety device in an ambulatory treatment center is indispensable for medical employees and patient plus family to reduce the risk of a needle puncture accident and to prevent iatrogenic infection. The port needle with safety system has been already introduced in our chemotherapy center. There are two types of port needle with safety device; Huber Plus (HP, Medicon Co., Ltd.) and POLY PERF Safe (PPS, Pyolax Device, Co., Ltd.). The comparison of the feasibility between HP and PPS was conducted by both medical employees and patients plus family using an inquiry score method. HP was highly regarded for its stability plus fixation and PPS for its usefulness in puncture and extraction of the needle. PPS was found to be preferable to HP based on the overall evaluation.

  13. A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.

    PubMed

    Shapiro, Ari Daniel; Wang, Chao

    2009-07-01

    In this article, a pitch tracking algorithm [named discrete logarithmic Fourier transformation-pitch detection algorithm (DLFT-PDA)], originally designed for human telephone speech, was modified for killer whale vocalizations. The multiple frequency components of some of these vocalizations demand a spectral (rather than temporal) approach to pitch tracking. The DLFT-PDA algorithm derives reliable estimations of pitch and the temporal change of pitch from the harmonic structure of the vocal signal. Scores from both estimations are combined in a dynamic programming search to find a smooth pitch track. The algorithm is capable of tracking killer whale calls that contain simultaneous low and high frequency components and compares favorably across most signal to noise ratio ranges to the peak-picking and sidewinder algorithms that have been used for tracking killer whale vocalizations previously.

  14. The CompHP core competencies framework for health promotion in Europe.

    PubMed

    Barry, Margaret M; Battel-Kirk, Barbara; Dempsey, Colette

    2012-12-01

    The CompHP Project on Developing Competencies and Professional Standards for Health Promotion in Europe was developed in response to the need for new and changing health promotion competencies to address health challenges. This article presents the process of developing the CompHP Core Competencies Framework for Health Promotion across the European Union Member States and Candidate Countries. A phased, multiple-method approach was employed to facilitate a consensus-building process on the development of the core competencies. Key stakeholders in European health promotion were engaged in a layered consultation process using the Delphi technique, online consultations, workshops, and focus groups. Based on an extensive literature review, a mapping process was used to identify the core domains, which informed the first draft of the Framework. A consultation process involving two rounds of a Delphi survey with national experts in health promotion from 30 countries was carried out. In addition, feedback was received from 25 health promotion leaders who participated in two focus groups at a pan-European level and 116 health promotion practitioners who engaged in four country-specific consultations. A further 54 respondents replied to online consultations, and there were a number of followers on various social media platforms. Based on four rounds of redrafting, the final Framework document was produced, consisting of 11 core domains and 68 core competency statements. The CompHP Core Competencies Framework for Health Promotion provides a resource for workforce development in Europe, by articulating the necessary knowledge, skills, and abilities that are required for effective practice. The core domains are based on the multidisciplinary concepts, theories, and research that make health promotion distinctive. It is the combined application of all the domains, the knowledge base, and the ethical values that constitute the CompHP Core Competencies Framework for Health

  15. A study on directional resistivity logging-while-drilling based on self-adaptive hp-FEM

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Li, Hui; Zhang, Yingying; Zhu, Gengxue; Ai, Qinghui

    2014-12-01

    Numerical simulation of resistivity logging-while-drilling (LWD) tool response provides guidance for designing novel logging instruments and interpreting real-time logging data. In this paper, based on self-adaptive hp-finite element method (hp-FEM) algorithm, we analyze LWD tool response against model parameters and briefly illustrate geosteering capabilities of directional resistivity LWD. Numerical simulation results indicate that the change of source spacing is of obvious influence on the investigation depth and detecting precision of resistivity LWD tool; the change of frequency can improve the resolution of low-resistivity formation and high-resistivity formation. The simulation results also indicate that the self-adaptive hp-FEM algorithm has good convergence speed and calculation accuracy to guide the geologic steering drilling and it is suitable to simulate the response of resistivity LWD tools.

  16. Early integration of vowel and pitch processing: a mismatch negativity study.

    PubMed

    Lidji, Pascale; Jolicoeur, Pierre; Kolinsky, Régine; Moreau, Patricia; Connolly, John F; Peretz, Isabelle

    2010-04-01

    Several studies have explored the processing specificity of music and speech, but only a few have addressed the processing autonomy of their fundamental components: pitch and phonemes. Here, we examined the additivity of the mismatch negativity (MMN) indexing the early interactions between vowels and pitch when sung. Event-related potentials (ERPs) were recorded while participants heard frequent sung vowels and rare stimuli deviating in pitch only, in vowel only, or in both pitch and vowel. The task was to watch a silent movie while ignoring the sounds. All three types of deviants elicited both an MMN and a P3a ERP component. The observed MMNs were of similar amplitude for the three types of deviants and the P3a was larger for double deviants. The MMNs to deviance in vowel and deviance in pitch were not additive. The underadditivity of the MMN responses suggests that vowel and pitch differences are processed by interacting neural networks. The results indicate that vowel and pitch are processed as integrated units, even at a pre-attentive level. Music-processing specificity thus rests on more complex dimensions of music and speech. 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 6 2013-07-01 2013-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  18. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  19. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 6 2011-07-01 2011-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  20. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  1. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  2. Pitch and Time, Tonality and Meter: How Do Musical Dimensions Combine?

    ERIC Educational Resources Information Center

    Prince, Jon B.; Thompson, William F.; Schmuckler, Mark A.

    2009-01-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger…

  3. When pitch Accents Encode Speaker Commitment: Evidence from French Intonation.

    PubMed

    Michelas, Amandine; Portes, Cristel; Champagne-Lavau, Maud

    2016-06-01

    Recent studies on a variety of languages have shown that a speaker's commitment to the propositional content of his or her utterance can be encoded, among other strategies, by pitch accent types. Since prior research mainly relied on lexical-stress languages, our understanding of how speakers of a non-lexical-stress language encode speaker commitment is limited. This paper explores the contribution of the last pitch accent of an intonation phrase to convey speaker commitment in French, a language that has stress at the phrasal level as well as a restricted set of pitch accents. In a production experiment, participants had to produce sentences in two pragmatic contexts: unbiased questions (the speaker had no particular belief with respect to the expected answer) and negatively biased questions (the speaker believed the proposition to be false). Results revealed that negatively biased questions consistently exhibited an additional unaccented F0 peak in the preaccentual syllable (an H+!H* pitch accent) while unbiased questions were often realized with a rising pattern across the accented syllable (an H* pitch accent). These results provide evidence that pitch accent types in French can signal the speaker's belief about the certainty of the proposition expressed in French. It also has implications for the phonological model of French intonation.

  4. Theoretical study of fabrication of line-and-space patterns with 7 nm quarter-pitch using electron beam lithography with chemically amplified resist process: III. Post exposure baking on quartz substrates

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro

    2015-09-01

    Electron beam (EB) lithography is a key technology for the fabrication of photomasks for ArF immersion and extreme ultraviolet (EUV) lithography and molds for nanoimprint lithography. In this study, the temporal change in the chemical gradient of line-and-space patterns with a 7 nm quarter-pitch (7 nm space width and 21 nm line width) was calculated until it became constant, independently of postexposure baking (PEB) time, to clarify the feasibility of single nano patterning on quartz substrates using EB lithography with chemically amplified resist processes. When the quencher diffusion constant is the same as the acid diffusion constant, the maximum chemical gradient of the line-and-space pattern with a 7 nm quarter-pitch did not differ much from that with a 14 nm half-pitch under the condition described above. Also, from the viewpoint of process control, a low quencher diffusion constant is considered to be preferable for the fabrication of line-and-space patterns with a 7 nm quarter-pitch on quartz substrates.

  5. Long-term pitch memory for music recordings is related to auditory working memory precision.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  6. Changes in pitching mechanics after ulnar collateral ligament reconstruction in major league baseball pitchers.

    PubMed

    Portney, Daniel A; Lazaroff, Jake M; Buchler, Lucas T; Gryzlo, Stephen M; Saltzman, Matthew D

    2017-08-01

    Medial ulnar collateral ligament (UCL) reconstruction is a common procedure performed on Major League Baseball pitchers. Variations in pitching mechanics before and after UCL reconstructive surgery are not well understood. Publicly available pitch tracking data (PITCHf/x) were compared for all Major League Baseball pitchers who underwent UCL reconstruction between 2008 and 2013. Specific parameters analyzed were fastball percentage, release location, velocity, and movement of each pitch type. These data were compared before and after UCL reconstructive surgery and compared with a randomly selected control cohort. There were no statistically significant changes in pitch selection or pitch accuracy after UCL reconstruction, nor was there a decrease in pitch velocity. The average pitch release location for 4-seam and 2-seam fastballs, curveballs, and changeups is more medial after UCL reconstruction (P < .01). Four-seam fastballs and sliders showed decreased horizontal breaking movement after surgery (P < .05), whereas curveballs showed increased downward breaking movement after surgery (P < .05). Pitch selection, pitch velocity, and pitch accuracy do not significantly change after UCL reconstruction, nor do players who require UCL reconstruction have significantly different pitch selection, velocity, or accuracy than a randomly selected control cohort. Pitch release location is more medial after UCL reconstruction for all pitch types except sliders. Breaking movement of fastballs, sliders, and curveballs changes after UCL reconstruction. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Unaccounted Workload Factor: Game-Day Pitch Counts in High School Baseball Pitchers—An Observational Study

    PubMed Central

    Zaremski, Jason L.; Zeppieri, Giorgio; Jones, Deborah L.; Tripp, Brady L.; Bruner, Michelle; Vincent, Heather K.; Horodyski, MaryBeth

    2018-01-01

    Background: Throwing injuries are common in high school baseball. Known risk factors include excessive pitch counts, year-round pitching, and pitching with arm pain and fatigue. Despite the evidence, the prevalence of pitching injuries among high school players has not decreased. One possibility to explain this pattern is that players accumulate unaccounted pitch volume during warm-up and bullpen activity, but this has not yet been examined. Hypotheses: Our primary hypothesis was that approximately 30% to 40% of pitches thrown off a mound by high school pitchers during a game-day outing are unaccounted for in current data but will be revealed when bullpen sessions and warm-up pitches are included. Our secondary hypothesis was that there is wide variability among players in the number of bullpen pitches thrown per outing. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Researchers counted all pitches thrown off a mound during varsity high school baseball games played by 34 high schools in North Central Florida during the 2017 season. Results: We recorded 13,769 total pitches during 115 varsity high school baseball starting pitcher outings. The mean ± SD pitch numbers per game were calculated for bullpen activity (27.2 ± 9.4), warm-up (23.6 ±8.0), live games (68.9 ±19.7), and total pitches per game (119.7 ± 27.8). Thus, 42.4% of the pitches performed were not accounted for in the pitch count monitoring of these players. The number of bullpen pitches thrown varied widely among players, with 25% of participants in our data set throwing fewer than 22 pitches and 25% throwing more than 33 pitches per outing. Conclusion: In high school baseball players, pitch count monitoring does not account for the substantial volume of pitching that occurs during warm-up and bullpen activity during the playing season. These extra pitches should be closely monitored to help mitigate the risk of overuse injury. PMID:29662911

  8. Development and validation of sensitive LC-MS/MS assays for quantification of HP-β-CD in human plasma and CSF

    PubMed Central

    Jiang, Hui; Sidhu, Rohini; Fujiwara, Hideji; De Meulder, Marc; de Vries, Ronald; Gong, Yong; Kao, Mark; Porter, Forbes D.; Yanjanin, Nicole M.; Carillo-Carasco, Nuria; Xu, Xin; Ottinger, Elizabeth; Woolery, Myra; Ory, Daniel S.; Jiang, Xuntian

    2014-01-01

    2-Hydroxypropyl-β-cyclodextrin (HP-β-CD), a widely used excipient for drug formulation, has emerged as an investigational new drug for the treatment of Niemann-Pick type C1 (NPC1) disease, a neurodegenerative cholesterol storage disorder. Development of a sensitive quantitative LC-MS/MS assay to monitor the pharmacokinetics (PKs) of HP-β-CD required for clinical trials has been challenging owing to the dispersity of the HP-β-CD. To support a phase 1 clinical trial for ICV delivery of HP-β-CD in NPC1 patients, novel methods for quantification of HP-β-CD in human plasma and cerebrospinal fluid (CSF) using LC-MS/MS were developed and validated: a 2D-LC-in-source fragmentation-MS/MS (2D-LC-IF-MS/MS) assay and a reversed phase ultra performance LC-MS/MS (RP-UPLC-MS/MS) assay. In both assays, protein precipitation and “dilute and shoot” procedures were used to process plasma and CSF, respectively. The assays were fully validated and in close agreement, and allowed determination of PK parameters for HP-β-CD. The LC-MS/MS methods are ∼100-fold more sensitive than the current HPLC assay, and were successfully employed to analyze HP-β-CD in human plasma and CSF samples to support the phase 1 clinical trial of HP-β-CD in NPC1 patients. PMID:24868096

  9. Context-dependent plasticity in the subcortical encoding of linguistic pitch patterns

    PubMed Central

    Lau, Joseph C. Y.; Wong, Patrick C. M.

    2016-01-01

    We examined the mechanics of online experience-dependent auditory plasticity by assessing the influence of prior context on the frequency-following responses (FFRs), which reflect phase-locked responses from neural ensembles within the subcortical auditory system. FFRs were elicited to a Cantonese falling lexical pitch pattern from 24 native speakers of Cantonese in a variable context, wherein the falling pitch pattern randomly occurred in the context of two other linguistic pitch patterns; in a patterned context, wherein, the falling pitch pattern was presented in a predictable sequence along with two other pitch patterns, and in a repetitive context, wherein the falling pitch pattern was presented with 100% probability. We found that neural tracking of the stimulus pitch contour was most faithful and accurate when listening context was patterned and least faithful when the listening context was variable. The patterned context elicited more robust pitch tracking relative to the repetitive context, suggesting that context-dependent plasticity is most robust when the context is predictable but not repetitive. Our study demonstrates a robust influence of prior listening context that works to enhance online neural encoding of linguistic pitch patterns. We interpret these results as indicative of an interplay between contextual processes that are responsive to predictability as well as novelty in the presentation context. NEW & NOTEWORTHY Human auditory perception in dynamic listening environments requires fine-tuning of sensory signal based on behaviorally relevant regularities in listening context, i.e., online experience-dependent plasticity. Our finding suggests what partly underlie online experience-dependent plasticity are interplaying contextual processes in the subcortical auditory system that are responsive to predictability as well as novelty in listening context. These findings add to the literature that looks to establish the neurophysiological bases of

  10. Context-dependent plasticity in the subcortical encoding of linguistic pitch patterns.

    PubMed

    Lau, Joseph C Y; Wong, Patrick C M; Chandrasekaran, Bharath

    2017-02-01

    We examined the mechanics of online experience-dependent auditory plasticity by assessing the influence of prior context on the frequency-following responses (FFRs), which reflect phase-locked responses from neural ensembles within the subcortical auditory system. FFRs were elicited to a Cantonese falling lexical pitch pattern from 24 native speakers of Cantonese in a variable context, wherein the falling pitch pattern randomly occurred in the context of two other linguistic pitch patterns; in a patterned context, wherein, the falling pitch pattern was presented in a predictable sequence along with two other pitch patterns, and in a repetitive context, wherein the falling pitch pattern was presented with 100% probability. We found that neural tracking of the stimulus pitch contour was most faithful and accurate when listening context was patterned and least faithful when the listening context was variable. The patterned context elicited more robust pitch tracking relative to the repetitive context, suggesting that context-dependent plasticity is most robust when the context is predictable but not repetitive. Our study demonstrates a robust influence of prior listening context that works to enhance online neural encoding of linguistic pitch patterns. We interpret these results as indicative of an interplay between contextual processes that are responsive to predictability as well as novelty in the presentation context. Human auditory perception in dynamic listening environments requires fine-tuning of sensory signal based on behaviorally relevant regularities in listening context, i.e., online experience-dependent plasticity. Our finding suggests what partly underlie online experience-dependent plasticity are interplaying contextual processes in the subcortical auditory system that are responsive to predictability as well as novelty in listening context. These findings add to the literature that looks to establish the neurophysiological bases of auditory system

  11. Pitch Discrimination and Melodic Memory in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Stanutz, Sandy; Wapnick, Joel; Burack, Jacob A.

    2014-01-01

    Background: Pitch perception is enhanced among persons with autism. We extended this finding to memory for pitch and melody among school-aged children. Objective: The purpose of this study was to investigate pitch memory in musically untrained children with autism spectrum disorders, aged 7-13 years, and to compare it to that of age- and…

  12. Human vertical eye movement responses to earth horizontal pitch

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  13. Development in children's interpretation of pitch cues to emotions.

    PubMed

    Quam, Carolyn; Swingley, Daniel

    2012-01-01

    Young infants respond to positive and negative speech prosody (A. Fernald, 1993), yet 4-year-olds rely on lexical information when it conflicts with paralinguistic cues to approval or disapproval (M. Friend, 2003). This article explores this surprising phenomenon, testing one hundred eighteen 2- to 5-year-olds' use of isolated pitch cues to emotions in interactive tasks. Only 4- to 5-year-olds consistently interpreted exaggerated, stereotypically happy or sad pitch contours as evidence that a puppet had succeeded or failed to find his toy (Experiment 1) or was happy or sad (Experiments 2, 3). Two- and 3-year-olds exploited facial and body-language cues in the same task. The authors discuss the implications of this late-developing use of pitch cues to emotions, relating them to other functions of pitch. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  14. Music training improves pitch perception in prelingually deafened children with cochlear implants.

    PubMed

    Chen, Joshua Kuang-Chao; Chuang, Ann Yi Chiun; McMahon, Catherine; Hsieh, Jen-Chuen; Tung, Tao-Hsin; Li, Lieber Po-Hung

    2010-04-01

    The comparatively poor music appreciation in patients with cochlear implants might be ascribed to an inadequate exposure to music; however, the effect of training on music perception in prelingually deafened children with cochlear implants remains unknown. This study aimed to investigate whether previous musical education improves pitch perception ability in these children. Twenty-seven children with congenital/prelingual deafness of profound degree were studied. Test stimuli consisted of 2 sequential piano tones, ranging from C (256 Hz) to B (495 Hz). Children were asked to identify the pitch relationship between the 2 tones (same, higher, or lower). Effects of musical training duration, pitch-interval size, current age, age of implantation, gender, and type of cochlear implant on accuracy of pitch perception were evaluated. The duration of musical training positively correlated with the correct rate of pitch perception. Pitch perception performance was better in children who had a cochlear implant and were older than 6 years than in those who were aged < or =6 years (ie, preschool). Effect of pitch-interval size was insignificant on pitch perception, and there was no correlation between pitch perception and the age of implantation, gender, or type of cochlear implant. Musical training seems to improve pitch perception ability in prelingually deafened children with a cochlear implant. Auditory plasticity might play an important role in such enhancement. This suggests that incorporation of a structured training program on music perception early in life and as part of the postoperative rehabilitation program for prelingually deafened children with cochlear implants would be beneficial. A longitudinal study is needed to show whether improvement of music performance in these children is measurable by use of auditory evoked potentials.

  15. Comparison of individual pitch and smart rotor control strategies for load reduction

    NASA Astrophysics Data System (ADS)

    Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.

    2014-06-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.

  16. From powerful research platform for industrial EUV photoresist development, to world record resolution by photolithography: EUV interference lithography at the Paul Scherrer Institute

    NASA Astrophysics Data System (ADS)

    Buitrago, Elizabeth; Fallica, Roberto; Fan, Daniel; Karim, Waiz; Vockenhuber, Michaela; van Bokhoven, Jeroen A.; Ekinci, Yasin

    2016-09-01

    Extreme ultraviolet interference lithography (EUV-IL, λ = 13.5 nm) has been shown to be a powerful technique not only for academic, but also for industrial research and development of EUV materials due to its relative simplicity yet record high-resolution patterning capabilities. With EUV-IL, it is possible to pattern high-resolution periodic images to create highly ordered nanostructures that are difficult or time consuming to pattern by electron beam lithography (EBL) yet interesting for a wide range of applications such as catalysis, electronic and photonic devices, and fundamental materials analysis, among others. Here, we will show state-of the-art research performed using the EUV-IL tool at the Swiss Light Source (SLS) synchrotron facility in the Paul Scherrer Institute (PSI). For example, using a grating period doubling method, a diffraction mask capable of patterning a world record in photolithography of 6 nm half-pitch (HP), was produced. In addition to the description of the method, we will give a few examples of applications of the technique. Well-ordered arrays of suspended silicon nanowires down to 6.5 nm linewidths have been fabricated and are to be studied as field effect transistors (FETs) or biosensors, for instance. EUV achromatic Talbot lithography (ATL), another interference scheme that utilizes a single grating, was shown to yield well-defined nanoparticles over large-areas with high uniformity presenting great opportunities in the field of nanocatalysis. EUV-IL is in addition, playing a key role in the future introduction of EUV lithography into high volume manufacturing (HVM) of semiconductor devices for the 7 and 5 nm logic node (16 nm and 13 nm HP, respectively) and beyond while the availability of commercial EUV-tools is still very much limited for research.

  17. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications including Developmental Dyselxia

    PubMed Central

    Yuskaitis, Christopher J.; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y.; Pearl, Phillip L.

    2017-01-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensory-motor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing, behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia. PMID:26092314

  18. Contributions of pitch contour, tonality, rhythm, and meter to melodic similarity.

    PubMed

    Prince, Jon B

    2014-12-01

    The identity of a melody resides in its sequence of pitches and durations, both of which exhibit surface details as well as structural properties. In this study, pitch contour (pattern of ups and downs) served as pitch surface information, and tonality (musical key) as pitch structure; in the temporal dimension, surface information was the ordinal duration ratios of adjacent notes (rhythm), and meter (beat, or pulse) comprised the structure. Factorially manipulating the preservation or alteration of all of these forms of information in 17 novel melodies (typifying Western music) enabled measuring their effect on perceived melodic similarity. In Experiment 1, 34 participants (varied musical training) rated the perceived similarity of melody pairs transposed to new starting pitches. Rhythm was the largest contributor to perceived similarity, then contour, meter, and tonality. Experiment 2 used the same melodies but varied the tempo within a pair, and added a prefix of 3 chords, which oriented the listener to the starting pitch and tempo before the melody began. Now contour was the strongest influence on similarity ratings, followed by tonality, and then rhythm; meter was not significant. Overall, surface features influenced perceived similarity more than structural, but both had observable effects. The primary theoretical advances in melodic similarity research are that (a) the relative emphasis on pitch and temporal factors is flexible; (b) pitch and time functioned independently when factorially manipulated, regardless of which dimension is more influential; and (c) interactions between surface and structural information were unreliable and never occurred between dimensions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. Learning of pitch and time structures in an artificial grammar setting.

    PubMed

    Prince, Jon B; Stevens, Catherine J; Jones, Mari Riess; Tillmann, Barbara

    2018-04-12

    Despite the empirical evidence for the power of the cognitive capacity of implicit learning of structures and regularities in several modalities and materials, it remains controversial whether implicit learning extends to the learning of temporal structures and regularities. We investigated whether (a) an artificial grammar can be learned equally well when expressed in duration sequences as when expressed in pitch sequences, (b) learning of the artificial grammar in either duration or pitch (as the primary dimension) sequences can be influenced by the properties of the secondary dimension (invariant vs. randomized), and (c) learning can be boosted when the artificial grammar is expressed in both pitch and duration. After an exposure phase with grammatical sequences, learning in a subsequent test phase was assessed in a grammaticality judgment task. Participants in both the pitch and duration conditions showed incidental (not fully implicit) learning of the artificial grammar when the secondary dimension was invariant, but randomizing the pitch sequence prevented learning of the artificial grammar in duration sequences. Expressing the artificial grammar in both pitch and duration resulted in disproportionately better performance, suggesting an interaction between the learning of pitch and temporal structure. The findings are relevant to research investigating the learning of temporal structures and the learning of structures presented simultaneously in 2 dimensions (e.g., space and time, space and objects). By investigating learning, the findings provide further insight into the potential specificity of pitch and time processing, and their integrated versus independent processing, as previously debated in music cognition research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Uncovering phenotypes of poor-pitch singing: the Sung Performance Battery (SPB)

    PubMed Central

    Berkowska, Magdalena; Dalla Bella, Simone

    2013-01-01

    Singing is as natural as speaking for humans. Increasing evidence shows that the layman can carry a tune (e.g., when asked to sing a well-known song or to imitate single pitches, intervals and short melodies). Yet, important individual differences exist in the general population with regard to singing proficiency. Some individuals are particularly inaccurate or imprecise in producing or imitating pitch information (poor-pitch singers), thus showing a variety of singing phenotypes. Unfortunately, so far there is not a standard set of tasks for assessing singing proficiency in the general population, allowing to uncover and characterize individual profiles of poor-pitch singing. Different tasks and analysis methods are typically used in various experiments, making the comparison of the results across studies arduous. To fill this gap we propose here a new tool for assessing singing proficiency (the Sung Performance Battery, SPB). The SPB starts from the assessment of participants' vocal range followed by five tasks: (1) single-pitch matching, (2) pitch-interval matching, (3) novel-melody matching, (4) singing from memory of familiar melodies (with lyrics and on a syllable), and (5) singing of familiar melodies (with lyrics and on a syllable) at a slow tempo indicated by a metronome. Data analysis via acoustical methods provides objective measures of pitch accuracy and precision in terms of absolute and relative pitch. The SPB has been tested in a group of 50 occasional singers. The results indicate that the battery is useful for characterizing proficient singing and for detecting cases of inaccurate and/or imprecise singing. PMID:24151475

  1. Effect of Pitch Tilt on Vertical Optokinetic Nystagmus,

    DTIC Science & Technology

    1996-09-23

    Naval Aerospace Medical Research Laboratory NAMRL-1394 EFFECT OF PITCH TILT ON VERTICAL OPTOKINETIC NYSTAGMUS M. J. Correia, O. I. Kolev, A...MEDICAL RESEARCH LABORATORY 51 HOVEY ROAD, PENSACOLA, FL 32508-1046 NAMRL-1394 EFFECT OF PITCH TILT ON VERTICAL OPTOKINETIC NYSTAGMUS M. J...Florida Pensacola, Florida Approved for public release; distribution unlimited. ABSTRACT Vertical optokinetic nystagmus (VOKN) and VOKN after

  2. High-Field Functional Imaging of Pitch Processing in Auditory Cortex of the Cat

    PubMed Central

    Butler, Blake E.; Hall, Amee J.; Lomber, Stephen G.

    2015-01-01

    The perception of pitch is a widely studied and hotly debated topic in human hearing. Many of these studies combine functional imaging techniques with stimuli designed to disambiguate the percept of pitch from frequency information present in the stimulus. While useful in identifying potential “pitch centres” in cortex, the existence of truly pitch-responsive neurons requires single neuron-level measures that can only be undertaken in animal models. While a number of animals have been shown to be sensitive to pitch, few studies have addressed the location of cortical generators of pitch percepts in non-human models. The current study uses high-field functional magnetic resonance imaging (fMRI) of the feline brain in an attempt to identify regions of cortex that show increased activity in response to pitch-evoking stimuli. Cats were presented with iterated rippled noise (IRN) stimuli, narrowband noise stimuli with the same spectral profile but no perceivable pitch, and a processed IRN stimulus in which phase components were randomized to preserve slowly changing modulations in the absence of pitch (IRNo). Pitch-related activity was not observed to occur in either primary auditory cortex (A1) or the anterior auditory field (AAF) which comprise the core auditory cortex in cats. Rather, cortical areas surrounding the posterior ectosylvian sulcus responded preferentially to the IRN stimulus when compared to narrowband noise, with group analyses revealing bilateral activity centred in the posterior auditory field (PAF). This study demonstrates that fMRI is useful for identifying pitch-related processing in cat cortex, and identifies cortical areas that warrant further investigation. Moreover, we have taken the first steps in identifying a useful animal model for the study of pitch perception. PMID:26225563

  3. Hierarchical folding free energy landscape of HP35 revealed by most probable path clustering.

    PubMed

    Jain, Abhinav; Stock, Gerhard

    2014-07-17

    Adopting extensive molecular dynamics simulations of villin headpiece protein (HP35) by Shaw and co-workers, a detailed theoretical analysis of the folding of HP35 is presented. The approach is based on the recently proposed most probable path algorithm which identifies the metastable states of the system, combined with dynamical coring of these states in order to obtain a consistent Markov state model. The method facilitates the construction of a dendrogram associated with the folding free-energy landscape of HP35, which reveals a hierarchical funnel structure and shows that the native state is rather a kinetic trap than a network hub. The energy landscape of HP35 consists of the entropic unfolded basin U, where the prestructuring of the protein takes place, the intermediate basin I, which is connected to U via the rate-limiting U → I transition state reflecting the formation of helix-1, and the native basin N, containing a state close to the NMR structure and a native-like state that exhibits enhanced fluctuations of helix-3. The model is in line with recent experimental observations that the intermediate and native states differ mostly in their dynamics (locked vs unlocked states). Employing dihedral angle principal component analysis, subdiffusive motion on a multidimensional free-energy surface is found.

  4. Complex pitch perception mechanisms are shared by humans and a New World monkey.

    PubMed

    Song, Xindong; Osmanski, Michael S; Guo, Yueqi; Wang, Xiaoqin

    2016-01-19

    The perception of the pitch of harmonic complex sounds is a crucial function of human audition, especially in music and speech processing. Whether the underlying mechanisms of pitch perception are unique to humans, however, is unknown. Based on estimates of frequency resolution at the level of the auditory periphery, psychoacoustic studies in humans have revealed several primary features of central pitch mechanisms. It has been shown that (i) pitch strength of a harmonic tone is dominated by resolved harmonics; (ii) pitch of resolved harmonics is sensitive to the quality of spectral harmonicity; and (iii) pitch of unresolved harmonics is sensitive to the salience of temporal envelope cues. Here we show, for a standard musical tuning fundamental frequency of 440 Hz, that the common marmoset (Callithrix jacchus), a New World monkey with a hearing range similar to that of humans, exhibits all of the primary features of central pitch mechanisms demonstrated in humans. Thus, marmosets and humans may share similar pitch perception mechanisms, suggesting that these mechanisms may have emerged early in primate evolution.

  5. Morphological study on permeating efficiency and localization of FCLA and HpD through membrane of lung cancer cell

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Xing, Da; Tang, Yonghong

    2004-07-01

    It is reported that apoptosis of cancer cells in photodynamic therapy (PDT) is caused by 1O2 generated in photosensitization. In order to study the mechanism of this kind of 1O2-induced apoptosis, it is necessary to establish a special technique to dynamically detect intracellular production and localization of 1O2. FCLA, as a chemiluminescence probe to detect singlet oxygen (1O2) and superoxide (O2-.), has been used successfully in photodynamic and sonodynamic diagnosis in tissue level, recently. This paper reported a preliminary result of morphological study on permeating efficiency and localization of FCLA and hematoporphyrin derivative (HpD) through cellular membrane. Human lung cancer cell line (ASTC-a-1) was used in the experiment. The result of this research showed that both HpD and FCLA could permeate through cellular membrane and localize to prinuclear area, when HpD or FCLA was incubated with cells. Although the molecular weight of HpD is close to FCLA's, the permeating efficiency of HpD through membrane was different from that of FCLA. Intracellular FCLA concentration reached a peak after incubation for only 30 - 45 minutes, but amount of HpD in cells approached the equilibrium after incubation for near 22 h. In the experiment, we did not observe the evidence of FCLA or HpD penetrating into nucleolus. This study suggests that it is possibly to use a specific chemiluminescence probe to dynamcially detect the production and localization of 1O2 or 02-. in cell.

  6. Songbirds use spectral shape, not pitch, for sound pattern recognition

    PubMed Central

    Bregman, Micah R.; Patel, Aniruddh D.; Gentner, Timothy Q.

    2016-01-01

    Humans easily recognize “transposed” musical melodies shifted up or down in log frequency. Surprisingly, songbirds seem to lack this capacity, although they can learn to recognize human melodies and use complex acoustic sequences for communication. Decades of research have led to the widespread belief that songbirds, unlike humans, are strongly biased to use absolute pitch (AP) in melody recognition. This work relies almost exclusively on acoustically simple stimuli that may belie sensitivities to more complex spectral features. Here, we investigate melody recognition in a species of songbird, the European Starling (Sturnus vulgaris), using tone sequences that vary in both pitch and timbre. We find that small manipulations altering either pitch or timbre independently can drive melody recognition to chance, suggesting that both percepts are poor descriptors of the perceptual cues used by birds for this task. Instead we show that melody recognition can generalize even in the absence of pitch, as long as the spectral shapes of the constituent tones are preserved. These results challenge conventional views regarding the use of pitch cues in nonhuman auditory sequence recognition. PMID:26811447

  7. A Novel Degradation Identification Method for Wind Turbine Pitch System

    NASA Astrophysics Data System (ADS)

    Guo, Hui-Dong

    2018-04-01

    It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.

  8. Toward a quantitative account of pitch distribution in spontaneous narrative: Method and validation

    PubMed Central

    Matteson, Samuel E.; Streit Olness, Gloria; Caplow, Nancy J.

    2013-01-01

    Pitch is well-known both to animate human discourse and to convey meaning in communication. The study of the statistical population distributions of pitch in discourse will undoubtedly benefit from methodological improvements. The current investigation examines a method that parameterizes pitch in discourse as musical pitch interval H measured in units of cents and that disaggregates the sequence of peak word-pitches using tools employed in time-series analysis and digital signal processing. The investigators test the proposed methodology by its application to distributions in pitch interval of the peak word-pitch (collectively called the discourse gamut) that occur in simulated and actual spontaneous emotive narratives obtained from 17 middle-aged African-American adults. The analysis, in rigorous tests, not only faithfully reproduced simulated distributions imbedded in realistic time series that drift and include pitch breaks, but the protocol also reveals that the empirical distributions exhibit a common hidden structure when normalized to a slowly varying mode (called the gamut root) of their respective probability density functions. Quantitative differences between narratives reveal the speakers' relative propensity for the use of pitch levels corresponding to elevated degrees of a discourse gamut (the “e-la”) superimposed upon a continuum that conforms systematically to an asymmetric Laplace distribution. PMID:23654400

  9. Singing with yourself: evidence for an inverse modeling account of poor-pitch singing.

    PubMed

    Pfordresher, Peter Q; Mantell, James T

    2014-05-01

    Singing is a ubiquitous and culturally significant activity that humans engage in from an early age. Nevertheless, some individuals - termed poor-pitch singers - are unable to match target pitches within a musical semitone while singing. In the experiments reported here, we tested whether poor-pitch singing deficits would be reduced when individuals imitate recordings of themselves as opposed to recordings of other individuals. This prediction was based on the hypothesis that poor-pitch singers have not developed an abstract "inverse model" of the auditory-vocal system and instead must rely on sensorimotor associations that they have experienced directly, which is true for sequences an individual has already produced. In three experiments, participants, both accurate and poor-pitch singers, were better able to imitate sung recordings of themselves than sung recordings of other singers. However, this self-advantage was enhanced for poor-pitch singers. These effects were not a byproduct of self-recognition (Experiment 1), vocal timbre (Experiment 2), or the absolute pitch of target recordings (i.e., the advantage remains when recordings are transposed, Experiment 3). Results support the conceptualization of poor-pitch singing as an imitative deficit resulting from a deficient inverse model of the auditory-vocal system with respect to pitch. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Ethnicity/culture modulates the relationships of the haptoglobin (Hp) 1-1 phenotype with cognitive function in older individuals with type 2 diabetes.

    PubMed

    Guerrero-Berroa, Elizabeth; Ravona-Springer, Ramit; Heymann, Anthony; Schmeidler, James; Hoffman, Hadas; Preiss, Rachel; Koifmann, Keren; Greenbaum, Lior; Levy, Andrew; Silverman, Jeremy M; Leroith, Derek; Sano, Mary; Schnaider-Beeri, Michal

    2016-05-01

    The haptoglobin (Hp) genotype has been associated with cognitive function in type 2 diabetes. Because ethnicity/culture has been associated with both cognitive function and Hp genotype frequencies, we examined whether it modulates the association of Hp with cognitive function. This cross-sectional study evaluated 787 cognitively normal older individuals (>65 years of age) with type 2 diabetes participating in the Israel Diabetes and Cognitive Decline study. Interactions in two-way analyses of covariance compared Group (Non-Ashkenazi versus Ashkenazi Jews) on the associations of Hp phenotype (Hp 1-1 versus non- Hp 1-1) with five cognitive outcome measures. The primary control variables were age, gender, and education. Compared with Ashkenazi Jews, non-Ashkenazi Jews with the Hp 1-1 phenotype had significantly poorer cognitive function than non-Hp 1-1 in the domains of Attention/Working Memory (p = 0.035) and Executive Function (p = 0.023), but not in Language/Semantic Categorization (p = 0.432), Episodic Memory (p = 0.268), or Overall Cognition (p = 0.082). After controlling for additional covariates (type 2 diabetes-related characteristics, cardiovascular risk factors, Mini-mental State Examination, and extent of depressive symptoms), Attention/Working Memory (p = 0.038) and Executive Function (p = 0.013) remained significant. Older individuals from specific ethnic/cultural backgrounds with the Hp 1-1 phenotype may benefit more from treatment targeted at decreasing or halting the detrimental effects of Hp 1-1 on the brain. Future studies should examine differential associations of Hp 1-1 and cognitive impairment, especially for groups with high prevalence of both, such as African-Americans and Hispanics. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Development and validation of sensitive LC-MS/MS assays for quantification of HP-β-CD in human plasma and CSF.

    PubMed

    Jiang, Hui; Sidhu, Rohini; Fujiwara, Hideji; De Meulder, Marc; de Vries, Ronald; Gong, Yong; Kao, Mark; Porter, Forbes D; Yanjanin, Nicole M; Carillo-Carasco, Nuria; Xu, Xin; Ottinger, Elizabeth; Woolery, Myra; Ory, Daniel S; Jiang, Xuntian

    2014-07-01

    2-Hydroxypropyl-β-cyclodextrin (HP-β-CD), a widely used excipient for drug formulation, has emerged as an investigational new drug for the treatment of Niemann-Pick type C1 (NPC1) disease, a neurodegenerative cholesterol storage disorder. Development of a sensitive quantitative LC-MS/MS assay to monitor the pharmacokinetics (PKs) of HP-β-CD required for clinical trials has been challenging owing to the dispersity of the HP-β-CD. To support a phase 1 clinical trial for ICV delivery of HP-β-CD in NPC1 patients, novel methods for quantification of HP-β-CD in human plasma and cerebrospinal fluid (CSF) using LC-MS/MS were developed and validated: a 2D-LC-in-source fragmentation-MS/MS (2D-LC-IF-MS/MS) assay and a reversed phase ultra performance LC-MS/MS (RP-UPLC-MS/MS) assay. In both assays, protein precipitation and "dilute and shoot" procedures were used to process plasma and CSF, respectively. The assays were fully validated and in close agreement, and allowed determination of PK parameters for HP-β-CD. The LC-MS/MS methods are ∼100-fold more sensitive than the current HPLC assay, and were successfully employed to analyze HP-β-CD in human plasma and CSF samples to support the phase 1 clinical trial of HP-β-CD in NPC1 patients. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Effective connectivity associated with auditory error detection in musicians with absolute pitch

    PubMed Central

    Parkinson, Amy L.; Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Larson, Charles R.; Robin, Donald A.

    2014-01-01

    It is advantageous to study a wide range of vocal abilities in order to fully understand how vocal control measures vary across the full spectrum. Individuals with absolute pitch (AP) are able to assign a verbal label to musical notes and have enhanced abilities in pitch identification without reliance on an external referent. In this study we used dynamic causal modeling (DCM) to model effective connectivity of ERP responses to pitch perturbation in voice auditory feedback in musicians with relative pitch (RP), AP, and non-musician controls. We identified a network compromising left and right hemisphere superior temporal gyrus (STG), primary motor cortex (M1), and premotor cortex (PM). We specified nine models and compared two main factors examining various combinations of STG involvement in feedback pitch error detection/correction process. Our results suggest that modulation of left to right STG connections are important in the identification of self-voice error and sensory motor integration in AP musicians. We also identify reduced connectivity of left hemisphere PM to STG connections in AP and RP groups during the error detection and corrections process relative to non-musicians. We suggest that this suppression may allow for enhanced connectivity relating to pitch identification in the right hemisphere in those with more precise pitch matching abilities. Musicians with enhanced pitch identification abilities likely have an improved auditory error detection and correction system involving connectivity of STG regions. Our findings here also suggest that individuals with AP are more adept at using feedback related to pitch from the right hemisphere. PMID:24634644

  13. Learning for pitch and melody discrimination in congenital amusia.

    PubMed

    Whiteford, Kelly L; Oxenham, Andrew J

    2018-06-01

    Congenital amusia is currently thought to be a life-long neurogenetic disorder in music perception, impervious to training in pitch or melody discrimination. This study provides an explicit test of whether amusic deficits can be reduced with training. Twenty amusics and 20 matched controls participated in four sessions of psychophysical training involving either pure-tone (500 Hz) pitch discrimination or a control task of lateralization (interaural level differences for bandpass white noise). Pure-tone pitch discrimination at low, medium, and high frequencies (500, 2000, and 8000 Hz) was measured before and after training (pretest and posttest) to determine the specificity of learning. Melody discrimination was also assessed before and after training using the full Montreal Battery of Evaluation of Amusia, the most widely used standardized test to diagnose amusia. Amusics performed more poorly than controls in pitch but not localization discrimination, but both groups improved with practice on the trained stimuli. Learning was broad, occurring across all three frequencies and melody discrimination for all groups, including those who trained on the non-pitch control task. Following training, 11 of 20 amusics no longer met the global diagnostic criteria for amusia. A separate group of untrained controls (n = 20), who also completed melody discrimination and pretest, improved by an equal amount as trained controls on all measures, suggesting that the bulk of learning for the control group occurred very rapidly from the pretest. Thirty-one trained participants (13 amusics) returned one year later to assess long-term maintenance of pitch and melody discrimination. On average, there was no change in performance between posttest and one-year follow-up, demonstrating that improvements on pitch- and melody-related tasks in amusics and controls can be maintained. The findings indicate that amusia is not always a life-long deficit when using the current standard

  14. 40 CFR Table 1 to Subpart Jjjj of... - NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP HP 25 HP Table 1 to Subpart JJJJ of...

  15. Place-pitch manipulations with cochlear implants

    PubMed Central

    Macherey, Olivier; Carlyon, Robert P.

    2012-01-01

    Pitch can be conveyed to cochlear implant (CI) listeners via both place of excitation and temporal cues. The transmission of place cues may be hampered by several factors including limitations on the insertion depth and number of implanted electrodes, and the broad current spread produced by monopolar stimulation. The following series of experiments investigate several methods to partially overcome these limitations. Experiment 1 compares two recently published techniques that aim to activate more apical fibers than produced by monopolar or bipolar stimulation of the most apical contacts. The first technique (phantom stimulation) manipulates the current spread by simultaneously stimulating two electrodes with opposite-polarity pulses of different amplitudes. The second technique manipulates the neural spread of excitation by using asymmetric pulses and exploiting the polarity-sensitive properties of auditory nerve fibers. The two techniques yielded similar results and were shown to produce lower place pitch percepts than stimulation of monopolar and bipolar symmetric pulses. Furthermore, combining these two techniques may be advantageous in a clinical setting. Experiment 2 proposes a novel method to create place pitches intermediate to those produced by physical electrodes by using charge-balanced asymmetric pulses in bipolar mode with different degrees of asymmetry. PMID:22423718

  16. Auditory processing in absolute pitch possessors

    NASA Astrophysics Data System (ADS)

    McKetton, Larissa; Schneider, Keith A.

    2018-05-01

    Absolute pitch (AP) is a rare ability in classifying a musical pitch without a reference standard. It has been of great interest to researchers studying auditory processing and music cognition since it is seldom expressed and sheds light on influences pertaining to neurodevelopmental biological predispositions and the onset of musical training. We investigated the smallest frequency that could be detected or just noticeable difference (JND) between two pitches. Here, we report significant differences in JND thresholds in AP musicians and non-AP musicians compared to non-musician control groups at both 1000 Hz and 987.76 Hz testing frequencies. Although the AP-musicians did better than non-AP musicians, the difference was not significant. In addition, we looked at neuro-anatomical correlates of musicianship and AP using structural MRI. We report increased cortical thickness of the left Heschl's Gyrus (HG) and decreased cortical thickness of the inferior frontal opercular gyrus (IFO) and circular insular sulcus volume (CIS) in AP compared to non-AP musicians and controls. These structures may therefore be optimally enhanced and reduced to form the most efficient network for AP to emerge.

  17. Local opiate receptors in the sinoatrial node moderate vagal bradycardia.

    PubMed

    Farias, M; Jackson, K; Stanfill, A; Caffrey, J L

    2001-02-20

    Met-enkephalin-arg-phe (MEAP) interrupts vagal bradycardia when infused into the systemic circulation. This study was designed to locate the opiate receptors functionally responsible for this inhibition. Previous observations suggested that the receptors were most likely located in either intracardiac parasympathetic ganglia or the pre-junctional nerve terminals innervating the sinoatrial node. In this study 10 dogs were instrumented with a microdialysis probe inserted into the sinoatrial node. The functional position of the probe was tested by briefly introducing norepinephrine into the probe producing an increase in heart rate of more than 30 beats/min. Vagal stimulations were conducted at 0.5, 1.2 and 4 Hz during vehicle infusion (saline ascorbate). Cardiovascular responses during vagal stimulation were recorded on-line. MEAP was infused directly into the sinoatrial node via the microdialysis probe. The evaluation of vagal bradycardia was repeated during the nodal application of MEAP, diprenorphine (opiate antagonist), and diprenorphine co-infused with MEAP. MEAP introduced into the sinoatrial node via the microdialysis probe reduced vagal bradycardia by more than half. Simultaneous local nodal blockade of these receptors with the opiate antagonist, diprenorphine, eliminated the effect of MEAP demonstrating the participation by opiate receptors. Systemic infusions of MEAP produced a reduction in vagal bradycardia nearly identical to that observed during nodal administration. When local nodal opiate receptors were blocked with diprenorphine, the systemic effect of MEAP was eliminated. These data lead us to suggest that the opiate receptors responsible for the inhibition of vagal bradycardia are located within the sinoatrial node with few, if any, participating extra-nodal or ganglionic receptors.

  18. The effects of medial ulnar collateral ligament reconstruction on Major League pitching performance.

    PubMed

    Keller, Robert A; Steffes, Matthew J; Zhuo, David; Bey, Michael J; Moutzouros, Vasilios

    2014-11-01

    Medial ulnar collateral ligament (MUCL) reconstruction is commonly performed on Major League Baseball (MLB) pitchers. Previous studies have reported that most pitchers return to presurgical statistical performance levels after MUCL reconstruction. Pitching performance data--specifically, earned run average (ERA), walks and hits per inning pitched (WHIP), winning percentage, and innings pitched--were acquired for 168 MLB pitchers who had undergone MUCL reconstruction. These data were averaged over the 3 years before surgery and the 3 years after surgery and also acquired from 178 age-matched, uninjured MLB pitchers. Of the pitchers who had MUCL reconstruction surgery, 87% returned to MLB pitching. However, compared with presurgical data, pitching performance declined in terms of ERA (P = .001), WHIP (P = .011), and innings pitched (P = .026). Pitching performance also declined in the season before the surgery compared with previous years (ERA, P = .014; WHIP, P = .036; innings pitched, P < .001; winning percentage, P = .004). Compared with age-matched control pitchers, the MUCL reconstruction pitchers had significantly more major league experience at the same age (P < .001). MUCL reconstruction allows most players to return to pitching at the major league level. However, after MUCL reconstruction, there is a statistically significant decline in pitching performance. There appears to be a statistically significant decline in pitching performance the year before reconstructive surgery, and this decline is also a risk factor for requiring surgery. In addition, there is an increased risk of MUCL reconstruction for pitchers who enter the major leagues at a younger age. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Full field image reconstruction is suitable for high-pitch dual-source computed tomography.

    PubMed

    Mahnken, Andreas H; Allmendinger, Thomas; Sedlmair, Martin; Tamm, Miriam; Reinartz, Sebastian D; Flohr, Thomas

    2012-11-01

    The field of view (FOV) in high-pitch dual-source computed tomography (DSCT) is limited by the size of the second detector. The goal of this study was to develop and evaluate a full FOV image reconstruction technique for high-pitch DSCT. For reconstruction beyond the FOV of the second detector, raw data of the second system were extended to the full dimensions of the first system, using the partly existing data of the first system in combination with a very smooth transition weight function. During the weighted filtered backprojection, the data of the second system were applied with an additional weighting factor. This method was tested for different pitch values from 1.5 to 3.5 on a simulated phantom and on 25 high-pitch DSCT data sets acquired at pitch values of 1.6, 2.0, 2.5, 2.8, and 3.0. Images were reconstructed with FOV sizes of 260 × 260 and 500 × 500 mm. Image quality was assessed by 2 radiologists using a 5-point Likert scale and analyzed with repeated-measure analysis of variance. In phantom and patient data, full FOV image quality depended on pitch. Where complete projection data from both tube-detector systems were available, image quality was unaffected by pitch changes. Full FOV image quality was not compromised at pitch values of 1.6 and remained fully diagnostic up to a pitch of 2.0. At higher pitch values, there was an increasing difference in image quality between limited and full FOV images (P = 0.0097). With this new image reconstruction technique, full FOV image reconstruction can be used up to a pitch of 2.0.

  20. Development of advanced blade pitching kinematics for cycloturbines and cyclorotors

    NASA Astrophysics Data System (ADS)

    Adams, Zachary Howard

    Cycloturbines and cyclorotors are established concepts for extracting freesteam fluid energy and producing thrust which promise to exceed the performance of traditional horizontal axis turbines and rotors while maintaining unique operational advantages. However, their potential is not yet realized in widespread applications. A central barrier to their proliferation is the lack of fundamental understanding of the aerodynamic interaction between the turbine and the freestream flow. In particular, blade pitch must be precisely actuated throughout the revolution to achieve the proper blade angle of attack and maximize performance. So far, there is no adequate method for determining or implementing the optimal blade pitching kinematics for cyclorotors or cycloturbines. This dissertation bridges the pitching deficiency by introducing a novel low order model to predict improved pitch kinematics, experimentally demonstrating improved performance, and evaluating flow physics with a high order Navier-Stokes computational code. The foundation for developing advanced blade pitch motions is a low order model named Fluxline Theory. Fluid calculations are performed in a coordinate system fixed to streamlines whose spatial locations are not pre-described in order to capture the flow expansion/contraction and bending through the turbine. A transformation then determines the spatial location of streamlines through the rotor disk and finally blade element method integrations determine the power and forces produced. Validation against three sets of extant cycloturbine experimental data demonstrates improvement over other existing streamtube models. Fluxline Theory was extended by removing dependence on a blade element model to better understand how turbine-fluid interaction impacts thrust and power production. This pure momentum variation establishes a cycloturbine performance limit similar to the Betz Limit for horizontal axis wind turbines, as well as the fluid deceleration required

  1. Swollen lymph nodes

    MedlinePlus

    ... lymph nodes, including: Seizure medicines such as phenytoin Typhoid immunization Which lymph nodes are swollen depends on ... hard, irregular, or fixed in place. You have fever, night sweats, or unexplained weight loss. Any node ...

  2. Insertion torque in different bone models with different screw pitch: an in vitro study.

    PubMed

    Orlando, Bruno; Barone, Antonio; Giorno, Thierry M; Giacomelli, Luca; Tonelli, Paolo; Covani, Ugo

    2010-01-01

    Orthopedic surgeons use different types of screws for bone fixation. Whereas hard cortical bone requires a screw with a fine pitch, in softer cancellous bone a wider pitch might help prevent micromotion and eventually lead to greater implant stability. The aim of this study was to validate the assumption that fine-pitch implants are appropriate for cortical bone and wide-pitch implants are appropriate for cancellous bone. Wide-pitch and fine-pitch implants were inserted in both hard (D1 and D2) bone and soft (D3 and D4) bone, which was simulated by separate experimental blocks of cellular rigid polyurethane foam. A series of insertion sites in D1-D2 and D3-D4 experimental blocks were prepared using 1.5-mm and 2.5-mm drills. The final torque required to insert each implant was recorded. Wide-pitch implants displayed greater insertion torque (20% more than the fine-pitch implants) in cancellous bone and were therefore more suitable than fine-pitch implants. It is more appropriate to use a fine pitch design for implants, in conjunction with a 2.5-mm osteotomy site, in dense cortical bone (D1 or D2), whereas it is recommended to choose a wide-pitch design for implants, in conjunction with a 1.5-mm osteotomy site, in softer bone (D3 or D4).

  3. Investigation of habitual pitch during free play activities for preschool-aged children.

    PubMed

    Chen, Yang; Kimelman, Mikael D Z; Micco, Katie

    2009-01-01

    This study is designed to compare the habitual pitch measured in two different speech activities (free play activity and traditionally used structured speech activity) for normally developing preschool-aged children to explore to what extent preschoolers vary their vocal pitch among different speech environments. Habitual pitch measurements were conducted for 10 normally developing children (2 boys, 8 girls) between the ages of 31 months and 71 months during two different activities: (1) free play; and (2) structured speech. Speech samples were recorded using a throat microphone connected with a wireless transmitter in both activities. The habitual pitch (in Hz) was measured for all collected speech samples by using voice analysis software (Real-Time Pitch). Significantly higher habitual pitch is found during free play in contrast to structured speech activities. In addition, there is no showing of significant difference of habitual pitch elicited across a variety of structured speech activities. Findings suggest that the vocal usage of preschoolers appears to be more effortful during free play than during structured activities. It is recommended that a comprehensive evaluation for young children's voice needs to be based on the speech/voice samples collected from both free play and structured activities.

  4. Development in Children’s Interpretation of Pitch Cues to Emotions

    PubMed Central

    Quam, Carolyn; Swingley, Daniel

    2012-01-01

    Young infants respond to positive and negative speech prosody (Fernald, 1993), yet 4-year-olds rely on lexical information when it conflicts with paralinguistic cues to approval or disapproval (Friend, 2003). This article explores this surprising phenomenon, testing 118 2- to 5-year-olds’ use of isolated pitch cues to emotions in interactive tasks. Only 4- to 5-year-olds consistently interpreted exaggerated, stereotypically happy or sad pitch contours as evidence that a puppet had succeeded or failed to find his toy (Experiment 1) or was happy or sad (Experiments 2, 3). Two- and three-year-olds exploited facial and body-language cues in the same task. The authors discuss the implications of this late-developing use of pitch cues to emotions, relating them to other functions of pitch. PMID:22181680

  5. Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2017-11-01

    Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  6. A Pitch Extraction Method with High Frequency Resolution for Singing Evaluation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideyo; Hoguro, Masahiro; Umezaki, Taizo

    This paper proposes a pitch estimation method suitable for singing evaluation incorporable in KARAOKE machines. Professional singers and musicians have sharp hearing for music and singing voice. They recognize that singer's voice pitch is “a little off key” or “be in tune”. In the same way, the pitch estimation method that has high frequency resolution is necessary in order to evaluate singing. This paper proposes a pitch estimation method with high frequency resolution utilizing harmonic characteristic of autocorrelation function. The proposed method can estimate a fundamental frequency in the range 50 ∼ 1700[Hz] with resolution less than 3.6 cents in light processing.

  7. Incongruent pitch cues are associated with increased activation and functional connectivity in the frontal areas.

    PubMed

    Lin, Jo-Fu Lotus; Imada, Toshiaki; Kuhl, Patricia K; Lin, Fa-Hsuan

    2018-03-26

    Pitch plays a crucial role in music and speech perception. Pitch perception is characterized by multiple perceptual dimensions, such as pitch height and chroma. Information provided by auditory signals that are related to these perceptual dimensions can be either congruent or incongruent. To create conflicting cues for pitch perception, we modified Shepard tones by varying the pitch height and pitch chroma dimensions in either the same or opposite directions. Our behavioral data showed that most listeners judged pitch changes based on pitch chroma, instead of pitch height, when incongruent information was provided. The reliance on pitch chroma resulted in a stable percept of upward or downward pitch shift, rather than alternating between two different percepts. Across the incongruent and congruent conditions, consistent activation was found in the bilateral superior temporal and inferior frontal areas. In addition, significantly stronger activation was observed in the inferior frontal areas during the incongruent compared to congruent conditions. Enhanced functional connectivity was found between the left temporal and bilateral frontal areas in the incongruent than congruent conditions. Increased intra-hemispheric and inter-hemispheric connectivity was also observed in the frontal areas. Our results suggest the involvement of the frontal lobe in top-down and bottom-up processes to generate a stable percept of pitch change with conflicting perceptual cues.

  8. Pitch Perception, Working Memory, and Second-Language Phonological Production

    ERIC Educational Resources Information Center

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  9. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready synchronization...

  10. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready synchronization...

  11. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready synchronization...

  12. Modular sensor network node

    DOEpatents

    Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  13. Normal-Hearing Listeners’ and Cochlear Implant Users’ Perception of Pitch Cues in Emotional Speech

    PubMed Central

    Fuller, Christina; Gilbers, Dicky; Broersma, Mirjam; Goudbeek, Martijn; Free, Rolien; Başkent, Deniz

    2015-01-01

    In cochlear implants (CIs), acoustic speech cues, especially for pitch, are delivered in a degraded form. This study’s aim is to assess whether due to degraded pitch cues, normal-hearing listeners and CI users employ different perceptual strategies to recognize vocal emotions, and, if so, how these differ. Voice actors were recorded pronouncing a nonce word in four different emotions: anger, sadness, joy, and relief. These recordings’ pitch cues were phonetically analyzed. The recordings were used to test 20 normal-hearing listeners’ and 20 CI users’ emotion recognition. In congruence with previous studies, high-arousal emotions had a higher mean pitch, wider pitch range, and more dominant pitches than low-arousal emotions. Regarding pitch, speakers did not differentiate emotions based on valence but on arousal. Normal-hearing listeners outperformed CI users in emotion recognition, even when presented with CI simulated stimuli. However, only normal-hearing listeners recognized one particular actor’s emotions worse than the other actors’. The groups behaved differently when presented with similar input, showing that they had to employ differing strategies. Considering the respective speaker’s deviating pronunciation, it appears that for normal-hearing listeners, mean pitch is a more salient cue than pitch range, whereas CI users are biased toward pitch range cues. PMID:27648210

  14. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING.

    PubMed

    Plummer, Hillary A; Oliver, Gretchen D; Powers, Christopher M; Michener, Lori A

    2018-02-01

    Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Controlled Laboratory Study; Cross-sectional. Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; p<0.001). Lateral trunk lean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R 2 = 0.28; p < 0.001). A moderate positive correlation was observed between trunk lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Diagnosis, level 3.

  15. Classification between Failed Nodes and Left Nodes in Mobile Asset Tracking Systems †

    PubMed Central

    Kim, Kwangsoo; Jin, Jae-Yeon; Jin, Seong-il

    2016-01-01

    Medical asset tracking systems track a medical device with a mobile node and determine its status as either in or out, because it can leave a monitoring area. Due to a failed node, this system may decide that a mobile asset is outside the area, even though it is within the area. In this paper, an efficient classification method is proposed to separate mobile nodes disconnected from a wireless sensor network between nodes with faults and a node that actually has left the monitoring region. The proposed scheme uses two trends extracted from the neighboring nodes of a disconnected mobile node. First is the trend in a series of the neighbor counts; the second is that of the ratios of the boundary nodes included in the neighbors. Based on such trends, the proposed method separates failed nodes from mobile nodes that are disconnected from a wireless sensor network without failures. The proposed method is evaluated using both real data generated from a medical asset tracking system and also using simulations with the network simulator (ns-2). The experimental results show that the proposed method correctly differentiates between failed nodes and nodes that are no longer in the monitoring region, including the cases that the conventional methods fail to detect. PMID:26901200

  16. Helicobacter pylori antigen HP0986 (TieA) interacts with cultured gastric epithelial cells and induces IL8 secretion via NF-κB mediated pathway.

    PubMed

    Devi, Savita; Ansari, Suhail A; Vadivelu, Jamuna; Mégraud, Francis; Tenguria, Shivendra; Ahmed, Niyaz

    2014-02-01

    The envisaged roles and partly understood functional properties of Helicobacter pylori protein HP0986 are significant in the context of proinflammatory and or proapoptotic activities, the two important facilitators of pathogen survival and persistence. In addition, sequence analysis of this gene predicts a restriction endonuclease function which remained unknown thus far. To evaluate the role of HP0986 in gastric inflammation, we studied its expression profile using a large number of clinical isolates but a limited number of biopsies and patient sera. Also, we studied antigenic role of HP0986 in altering cytokine responses of human gastric epithelial (AGS) cells including its interaction with and localization within the AGS cells. For in vitro expression study of HP0986, 110 H. pylori clinical isolates were cultured from patients with functional dyspepsia. For expression analysis by qRT PCR of HP0986, 10 gastric biopsy specimens were studied. HP0986 was also used to detect antibodies in patient sera. AGS cells were incubated with recombinant HP0986 to determine cytokine response and NF-κB activation. Transient transfection with HP0986 cloned in pEGFPN1 was used to study its subcellular localization or homing in AGS cells. Out of 110 cultured H. pylori strains, 34 (31%) were positive for HP0986 and this observation was correlated with in vitro expression profiles. HP0986 mRNA was detected in 7 of the 10 biopsy specimens. Further, HP0986 induced IL-8 secretion in gastric epithelial cells in a dose and time-dependent manner via NF-κB pathway. Serum antibodies against HP0986 were positively associated with H. pylori positive patients. Transient transfection of AGS cells revealed both cytoplasmic and nuclear localization of HP0986. HP0986 was moderately prevalent in clinical isolates and its expression profile in cultures and gastric biopsies points to its being naturally expressed. Collective observations including the induction of IL-8 via TNFR1 and NF

  17. Periodic trim solutions with hp-version finite elements in time

    NASA Technical Reports Server (NTRS)

    Peters, David A.; Hou, Lin-Jun

    1990-01-01

    Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.

  18. An hp-adaptivity and error estimation for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1995-01-01

    This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.

  19. The application of phase grating to CLM technology for the sub-65nm node optical lithography

    NASA Astrophysics Data System (ADS)

    Yoon, Gi-Sung; Kim, Sung-Hyuck; Park, Ji-Soong; Choi, Sun-Young; Jeon, Chan-Uk; Shin, In-Kyun; Choi, Sung-Woon; Han, Woo-Sung

    2005-06-01

    As a promising technology for sub-65nm node optical lithography, CLM(Chrome-Less Mask) technology among RETs(Resolution Enhancement Techniques) for low k1 has been researched worldwide in recent years. CLM has several advantages, such as relatively simple manufacturing process and competitive performance compared to phase-edge PSM's. For the low-k1 lithography, we have researched CLM technique as a good solution especially for sub-65nm node. As a step for developing the sub-65nm node optical lithography, we have applied CLM technology in 80nm-node lithography with mesa and trench method. From the analysis of the CLM technology in the 80nm lithography, we found that there is the optimal shutter size for best performance in the technique, the increment of wafer ADI CD varied with pattern's pitch, and a limitation in patterning various shapes and size by OPC dead-zone - OPC dead-zone in CLM technique is the specific region of shutter size that dose not make the wafer CD increased more than a specific size. And also small patterns are easily broken, while fabricating the CLM mask in mesa method. Generally, trench method has better optical performance than mesa. These issues have so far restricted the application of CLM technology to a small field. We approached these issues with 3-D topographic simulation tool and found that the issues could be overcome by applying phase grating in trench-type CLM. With the simulation data, we made some test masks which had many kinds of patterns with many different conditions and analyzed their performance through AIMS fab 193 and exposure on wafer. Finally, we have developed the CLM technology which is free of OPC dead-zone and pattern broken in fabrication process. Therefore, we can apply the CLM technique into sub-65nm node optical lithography including logic devices.

  20. Contamination of Pine Seeds by the Pitch Canker Fungus

    Treesearch

    L. David Dwinell; S.W. Fraedrich

    1999-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, has been identified as a significant problem in man pine seed orchards and nursuries in the South. THe fungus causes strobilus mortality, seed deterioation, and cankers on the main stem, branches, and shoots of pines Dwinell and others 1985). The pitche canker fungus...

  1. The Effect of Pitch and Rhythm Difficulty on Vocal Sight-Reading Performance

    ERIC Educational Resources Information Center

    Henry, Michele L.

    2011-01-01

    Singing music at sight is a complex skill, requiring the singer to perform pitch and rhythm simultaneously. Previous research has identified difficulty levels for pitch and rhythm skills individually but not in combination. In this study, the author sought to determine the relationship between pitch and rhythm tasks occurring concurrently. High…

  2. Evidence for shared cognitive processing of pitch in music and language.

    PubMed

    Perrachione, Tyler K; Fedorenko, Evelina G; Vinke, Louis; Gibson, Edward; Dilley, Laura C

    2013-01-01

    Language and music epitomize the complex representational and computational capacities of the human mind. Strikingly similar in their structural and expressive features, a longstanding question is whether the perceptual and cognitive mechanisms underlying these abilities are shared or distinct--either from each other or from other mental processes. One prominent feature shared between language and music is signal encoding using pitch, conveying pragmatics and semantics in language and melody in music. We investigated how pitch processing is shared between language and music by measuring consistency in individual differences in pitch perception across language, music, and three control conditions intended to assess basic sensory and domain-general cognitive processes. Individuals' pitch perception abilities in language and music were most strongly related, even after accounting for performance in all control conditions. These results provide behavioral evidence, based on patterns of individual differences, that is consistent with the hypothesis that cognitive mechanisms for pitch processing may be shared between language and music.

  3. Manufacturability of the X Architecture at the 90-nm technology node

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Sarma, Robin C.; Nagata, Toshiyuki; Arora, Narain; Duane, Michael P.; Oemardani, Shiany; Shah, Santosh

    2004-05-01

    In this paper, we discuss the results from a test chip that demonstrate the manufacturability and integration-worthiness of the X Architecture at the 90-nm technology node. We discuss how a collaborative effort between the design and chip making communities used the current generation of mask, lithography, wafer processing, inspection and metrology equipment to create 45 degree wires in typical metal pitches for the upper layers on a 90-nm device in a production environment. Cadence Design Systems created the test structure design and chip validation tools for the project. Canon"s KrF ES3 and ArF AS2 scanners were used for the lithography. Applied Materials used its interconnect fabrication technologies to produce the multilayer copper, low-k interconnect on 300-mm wafers. The results were confirmed for critical dimension and defect levels using Applied Materials" wafer inspection and metrology systems.

  4. Pitch structure, but not selective attention, affects accent weightings in metrical grouping.

    PubMed

    Prince, Jon B

    2014-10-01

    Among other cues, pitch and temporal accents contribute to grouping in musical sequences. However, exactly how they combine remains unclear, possibly because of the role of structural organization. In 3 experiments, participants rated the perceived metrical grouping of sequences that either adhered to the rules of tonal Western musical pitch structure (musical key) or did not (atonal). The tonal status of sequences did not provide any grouping cues and was irrelevant to the task. Experiment 1 established equally strong levels of pitch leap accents and duration accents in baseline conditions, which were then recombined in subsequent experiments. Neither accent type was stronger or weaker for tonal and atonal contexts. In Experiment 2, pitch leap accents dominated over duration accents, but the extent of this advantage was greater when sequences were tonal. Experiment 3 ruled out an attentional origin of this effect by replicating this finding while explicitly manipulating attention to pitch or duration accents between participant groups. Overall, the presence of tonal pitch structure made the dimension of pitch more salient at the expense of time. These findings support a dimensional salience framework in which the presence of organizational structure prioritizes the processing of the more structured dimension regardless of task relevance, independent from psychophysical difficulty, and impervious to attentional allocation.

  5. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures.

    PubMed

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P; Alamdari, Houshang

    2016-05-04

    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger's model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger's model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297-0.595 mm (-30 + 50 mesh) to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  6. Voice responses to changes in pitch of voice or tone auditory feedback

    NASA Astrophysics Data System (ADS)

    Sivasankar, Mahalakshmi; Bauer, Jay J.; Babu, Tara; Larson, Charles R.

    2005-02-01

    The present study was undertaken to examine if a subject's voice F0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F0 rather than harmonic frequencies of auditory feedback because voice F0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or pure-tone feedback. Results indicate the audio-vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject's voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio-vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present. .

  7. The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise

    ERIC Educational Resources Information Center

    Shen, Jung; Souza, Pamela E.

    2017-01-01

    Purpose: This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for…

  8. Boosting pitch encoding with audiovisual interactions in congenital amusia.

    PubMed

    Albouy, Philippe; Lévêque, Yohana; Hyde, Krista L; Bouchet, Patrick; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    The combination of information across senses can enhance perception, as revealed for example by decreased reaction times or improved stimulus detection. Interestingly, these facilitatory effects have been shown to be maximal when responses to unisensory modalities are weak. The present study investigated whether audiovisual facilitation can be observed in congenital amusia, a music-specific disorder primarily ascribed to impairments of pitch processing. Amusic individuals and their matched controls performed two tasks. In Task 1, they were required to detect auditory, visual, or audiovisual stimuli as rapidly as possible. In Task 2, they were required to detect as accurately and as rapidly as possible a pitch change within an otherwise monotonic 5-tone sequence that was presented either only auditorily (A condition), or simultaneously with a temporally congruent, but otherwise uninformative visual stimulus (AV condition). Results of Task 1 showed that amusics exhibit typical auditory and visual detection, and typical audiovisual integration capacities: both amusics and controls exhibited shorter response times for audiovisual stimuli than for either auditory stimuli or visual stimuli. Results of Task 2 revealed that both groups benefited from simultaneous uninformative visual stimuli to detect pitch changes: accuracy was higher and response times shorter in the AV condition than in the A condition. The audiovisual improvements of response times were observed for different pitch interval sizes depending on the group. These results suggest that both typical listeners and amusic individuals can benefit from multisensory integration to improve their pitch processing abilities and that this benefit varies as a function of task difficulty. These findings constitute the first step towards the perspective to exploit multisensory paradigms to reduce pitch-related deficits in congenital amusia, notably by suggesting that audiovisual paradigms are effective in an appropriate

  9. Strategic Architecture for E-Learning at H.P. University

    ERIC Educational Resources Information Center

    Sharma, Kunal; Sood, Deepak; Singh, Amarjeet; Pandit, Pallvi

    2010-01-01

    Purpose: The purpose of the paper is to unravel a strategic architecture for e-learning for a traditional university like Himachal Pradesh University (H.P. University) and provide guidelines as to how to carry the implementation of e-learning for the university of the future. Design/methodology/approach: Getting to the future first is not just…

  10. Controlling data transfers from an origin compute node to a target compute node

    DOEpatents

    Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN

    2011-06-21

    Methods, apparatus, and products are disclosed for controlling data transfers from an origin compute node to a target compute node that include: receiving, by an application messaging module on the target compute node, an indication of a data transfer from an origin compute node to the target compute node; and administering, by the application messaging module on the target compute node, the data transfer using one or more messaging primitives of a system messaging module in dependence upon the indication.

  11. Multiple node remote messaging

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos

    2010-08-31

    A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).

  12. Effect of antiparkinson drug HP-200 (Mucuna pruriens) on the central monoaminergic neurotransmitters.

    PubMed

    Manyam, Bala V; Dhanasekaran, Muralikrishnan; Hare, Theodore A

    2004-02-01

    HP-200, which contains Mucuna pruriens endocarp, has been shown to be effective in the treatment of Parkinson's disease. Mucuna pruriens endocarp has also been shown to be more effective compared to synthetic levodopa in an animal model of Parkinson's disease. The present study was designed to elucidate the long-term effect of Mucuna pruriens endocarp in HP-200 on monoaminergic neurotransmitters and its metabolite in various regions of the rat brain. HP-200 at a dose of 2.5, 5.0 or 10.0 g/kg/day was mixed with rat chow and fed daily ad lib to Sprague-Dawley rats (n = 6 for each group) for 52 weeks. Controls (n = 6) received no drug. Random assignment was made for doses and control. The rats were sacrificed at the end of 52 weeks and the neurotransmitters were analyzed in the cortex, hippocampus, substantia nigra and striatum. Oral administration of Mucuna pruriens endocarp in the form of HP-200 had a significant effect on dopamine content in the cortex with no significant effect on levodopa, norepinephrine or dopamine, serotonin, and their metabolites- HVA, DOPAC and 5-HIAA in the nigrostriatal tract. The failure of Mucuna pruriens endocarp to significantly affect dopamine metabolism in the striatonigral tract along with its ability to improve Parkinsonian symptoms in the 6-hydorxydopamine animal model and humans may suggest that its antiparkinson effect may be due to components other than levodopa or that it has an levodopa enhancing effect. Copyright 2004 John Wiley & Sons, Ltd. Copyright 2004 John Wiley & Sons, Ltd.

  13. Chromoplast-Specific Carotenoid-Associated Protein Appears to Be Important for Enhanced Accumulation of Carotenoids in hp1 Tomato Fruits1[C][W][OA

    PubMed Central

    Kilambi, Himabindu Vasuki; Kumar, Rakesh; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2013-01-01

    Tomato (Solanum lycopersicum) high-pigment mutants with lesions in diverse loci such as DNA Damage-Binding Protein1 (high pigment1 [hp1]), Deetiolated1 (hp2), Zeaxanthin Epoxidase (hp3), and Intense pigment (Ip; gene product unknown) exhibit increased accumulation of fruit carotenoids coupled with an increase in chloroplast number and size. However, little is known about the underlying mechanisms exaggerating the carotenoid accumulation and the chloroplast number in these mutants. A comparison of proteome profiles from the outer pericarp of hp1 mutant and wild-type (cv Ailsa Craig) fruits at different developmental stages revealed at least 72 differentially expressed proteins during ripening. Hierarchical clustering grouped these proteins into three clusters. We found an increased abundance of chromoplast-specific carotenoid-associated protein (CHRC) in hp1 fruits at red-ripe stage that is also reflected in its transcript level. Western blotting using CHRC polyclonal antibody from bell pepper (Capsicum annuum) revealed a 2-fold increase in the abundance of CHRC protein in the red-ripe stage of hp1 fruits compared with the wild type. CHRC levels in hp2 were found to be similar to that of hp1, whereas hp3 and Ip showed intermediate levels to those in hp1, hp2, and wild-type fruits. Both CHRC and carotenoids were present in the isolated plastoglobules. Overall, our results suggest that loss of function of DDB1, DET1, Zeaxanthin Epoxidase, and Ip up-regulates CHRC levels. Increase in CHRC levels may contribute to the enhanced carotenoid content in these high-pigment fruits by assisting in the sequestration and stabilization of carotenoids. PMID:23400702

  14. Hydrodynamics of a flexible plate between pitching rigid plates

    NASA Astrophysics Data System (ADS)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  15. Pitch jnd and the tritone paradox: The linguistic nexus

    NASA Astrophysics Data System (ADS)

    Safari, Kourosh

    2002-11-01

    Previous research has shown a connection between absolute pitch (the ability to name a specific pitch in the absence of any reference) and native competence in a tone language (Deutsch, 1990). In tone languages, tone is one of the features which determines the lexical meaning of a word. This study investigates the relationship between native competence in a tone language and the just noticeable difference of pitch. Furthermore, the tritone paradox studies have shown that subjects hear two tritones (with bell-shaped spectral envelopes) as either ascending or descending depending on their linguistic backgrounds (Deutsch, 1987). It is hypothesized that the native speakers of tone languages have a higher JND for pitch, and hear the two tones of the tritone paradox as ascending, whereas, native speakers of nontone languages hear them as descending. This study will indicate the importance of early musical training for the development of acute tone sensitivity. It will also underline the importance of language and culture in the way it shapes our musical understanding. The significance of this study will be in the areas of music education and pedagogy.

  16. Unattended processing of hierarchical pitch variations in spoken sentences.

    PubMed

    Li, Xiaoqing; Chen, Yiya

    2018-05-16

    An auditory oddball paradigm was employed to examine the unattended processing of pitch variation which functions to signal hierarchically different levels of meaning contrasts. Four oddball conditions were constructed by varying the pitch contour of critical words embedded in a Mandarin Chinese sentence. Two conditions included lexical-level word meaning contrasts (i.e. TONE condition) and the other two sentence-level information-status contrasts (i.e. ACCENTUATION condition). Both included stimuli with early vs. late acoustic cue divergence points. Results showed that the two early-cue conditions elicited earlier Mismatch Negativities, regardless of their functional hierarchy. The deviant stimuli induced theta-band power increases in the TONE condition but beta-band power decreases in the ACCENTUATIION condition, regardless of the timing of their acoustic cues. These results suggest that, in an unattentive state, the human brain can functionally disentangle hierarchically different levels of pitch variation, and the brain responses to these pitch variations are time-locked to the presence of the acoustic cues. Copyright © 2018. Published by Elsevier Inc.

  17. Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation

    PubMed Central

    Balaguer-Ballester, Emili; Clark, Nicholas R.; Coath, Martin; Krumbholz, Katrin; Denham, Susan L.

    2009-01-01

    Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing. PMID:19266015

  18. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  19. Lymph nodes

    MedlinePlus Videos and Cool Tools

    ... and conveying lymph and by producing various blood cells. Lymph nodes play an important part in the ... the microorganisms being trapped inside collections of lymph cells or nodes. Eventually, these organisms are destroyed and ...

  20. Microspectroscopic Analysis Of HpD Fluorescence In Bioptic Samples From Human Pre-Malignant And Malignant Lesions Of The Skin

    NASA Astrophysics Data System (ADS)

    Bottiroli, G.; Dell'Acqua, R.; Jucci, A.; Ricevuti, G.; Sacchi, A. S.

    1987-07-01

    Microfluorometric analysis was performed on bioptic samples of pre-malignant and malignant cutanous lesions present in the same patients, 48 h after i.v. injection of HpD. Data obtained indicate that actinic keratosis and squamous celle carcinoma show a preferential accumulation if compared to normal skin. The two lesions differ for both intensity and spectral shape of HpD fluorescence. This difference is correlated with a different clinical response to HpD laser phototherapy.

  1. Do Older Listeners With Hearing Loss Benefit From Dynamic Pitch for Speech Recognition in Noise?

    PubMed

    Shen, Jing; Souza, Pamela E

    2017-10-12

    Dynamic pitch, the variation in the fundamental frequency of speech, aids older listeners' speech perception in noise. It is unclear, however, whether some older listeners with hearing loss benefit from strengthened dynamic pitch cues for recognizing speech in certain noise scenarios and how this relative benefit may be associated with individual factors. We first examined older individuals' relative benefit between natural and strong dynamic pitches for better speech recognition in noise. Further, we reported the individual factors of the 2 groups of listeners who benefit differently from natural and strong dynamic pitches. Speech reception thresholds of 13 older listeners with mild-moderate hearing loss were measured using target speech with 3 levels of dynamic pitch strength. Individuals' ability to benefit from dynamic pitch was defined as the speech reception threshold difference between speeches with and without dynamic pitch cues. The relative benefit of natural versus strong dynamic pitch varied across individuals. However, this relative benefit remained consistent for the same individuals across those background noises with temporal modulation. Those listeners who benefited more from strong dynamic pitch reported better subjective speech perception abilities. Strong dynamic pitch may be more beneficial than natural dynamic pitch for some older listeners to recognize speech better in noise, particularly when the noise has temporal modulation.

  2. Nektar++: An open-source spectral/ hp element framework

    NASA Astrophysics Data System (ADS)

    Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R. M.; Sherwin, S. J.

    2015-07-01

    Nektar++ is an open-source software framework designed to support the development of high-performance scalable solvers for partial differential equations using the spectral/ hp element method. High-order methods are gaining prominence in several engineering and biomedical applications due to their improved accuracy over low-order techniques at reduced computational cost for a given number of degrees of freedom. However, their proliferation is often limited by their complexity, which makes these methods challenging to implement and use. Nektar++ is an initiative to overcome this limitation by encapsulating the mathematical complexities of the underlying method within an efficient C++ framework, making the techniques more accessible to the broader scientific and industrial communities. The software supports a variety of discretisation techniques and implementation strategies, supporting methods research as well as application-focused computation, and the multi-layered structure of the framework allows the user to embrace as much or as little of the complexity as they need. The libraries capture the mathematical constructs of spectral/ hp element methods, while the associated collection of pre-written PDE solvers provides out-of-the-box application-level functionality and a template for users who wish to develop solutions for addressing questions in their own scientific domains.

  3. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  4. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1994-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  5. Sentinel node biopsy before neoadjuvant chemotherapy spares breast cancer patients axillary lymph node dissection.

    PubMed

    van Rijk, Maartje C; Nieweg, Omgo E; Rutgers, Emiel J T; Oldenburg, Hester S A; Olmos, Renato Valdés; Hoefnagel, Cornelis A; Kroon, Bin B R

    2006-04-01

    Neoadjuvant chemotherapy in breast cancer patients is a valuable method to determine the efficacy of chemotherapy and potentially downsize the primary tumor, which facilitates breast-conserving therapy. In 18 studies published about sentinel node biopsy after neoadjuvant chemotherapy, the sentinel node was identified in on average 89%, and the false-negative rate was on average 10%. Because of these mediocre results, no author dares to omit axillary clearance just yet. In our institute, sentinel lymph node biopsy is performed before neoadjuvant chemotherapy. The aim of this study was to evaluate our experience with this approach. Sentinel node biopsy was performed before neoadjuvant chemotherapy in 25 T2N0 patients by using lymphoscintigraphy, a gamma ray detection probe, and patent blue dye. Axillary lymph node dissection was performed after chemotherapy if the sentinel node contained metastases. Ten patients had a tumor-positive axillary sentinel node, and one patient had an involved lateral intramammary node. Four patients had additional involved nodes in the completion lymph node dissection specimen. The other 14 patients (56%) had a tumor-negative sentinel node and did not undergo axillary lymph node dissection. No recurrences have been observed after a median follow-up of 18 months. Fourteen (56%) of the 25 patients were spared axillary lymph node dissection when the sentinel node was found to be disease free. Performing sentinel node biopsy before neoadjuvant chemotherapy seems successful and reliable in patients with T2N0 breast cancer.

  6. Biomechanics of youth windmill softball pitching.

    PubMed

    Werner, Sherry L; Guido, John A; McNeice, Ryan P; Richardson, Jasper L; Delude, Neil A; Stewart, Gregory W

    2005-04-01

    Limited research attention has been paid to the potentially harmful windmill softball pitch. No information is available regarding lower extremity kinetics in softball pitching. The stresses on the throwing arm of youth windmill pitchers are clinically significant and similar to those found for college softball pitchers. Descriptive laboratory study. Three-dimensional, high-speed (240-Hz) video and stride foot force plate (1200 Hz) data were collected on fastballs from 53 youth softball pitchers. Kinematic parameters related to pitching mechanics and resultant kinetics on the throwing-arm elbow and shoulder joints were calculated. Kinetic parameters were compared to those reported for baseball pitchers. Elbow and shoulder joint loads were similar to those found for baseball pitchers and college softball pitchers. Shoulder distraction stress averaged 94% body weight for the youth pitchers. Stride foot ground reaction force patterns were not similar to those reported for baseball pitchers. Vertical and braking force components under the stride foot were in excess of body weight. Excessive distraction stress and joint torques at the throwing-arm elbow and shoulder are similar to those found in baseball pitchers, which suggests that windmill softball pitchers are at risk for overuse injuries. Normative information regarding upper and lower extremity kinematics and kinetics for 12- to 19-year-old softball pitchers has been established.

  7. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort is to develop a means to use, and to ultimately implement, hp-version finite elements in the numerical solution of optimal control problems. The hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element.

  8. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING

    PubMed Central

    Oliver, Gretchen D.; Powers, Christopher M.; Michener, Lori A.

    2018-01-01

    Background Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. Hypothesis/Purpose The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Study Design Controlled Laboratory Study; Cross-sectional. Methods Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. Results There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; p<0.001). Lateral trunk lean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R2 = 0.28; p < 0.001). Conclusions A moderate positive correlation was observed between trunk lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Level of Evidence Diagnosis, level 3 PMID:29484242

  9. Application of the matching law to pitch selection in professional baseball.

    PubMed

    Cox, David J; Sosine, Jacob; Dallery, Jesse

    2017-04-01

    This study applied the generalized matching equation (GME) to pitch selection in professional baseball. The GME was fitted to the relation between pitch selection and hitter outcomes for five professional baseball pitchers during the 2014 Major League Baseball season. The GME described pitch selection well. Pitch allocation varied across different game contexts such as inning, count, and number of outs in a manner consistent with the GME. Finally, within games, bias decreased for four of the five pitchers and the sensitivity parameter increased for three of the five pitchers. The results extend the generality of the GME to multialternative natural sporting contexts, and demonstrate the influence of context on behavior in natural environments. © 2017 Society for the Experimental Analysis of Behavior.

  10. Developmental trajectories of pitch-related music skills in children with Williams syndrome.

    PubMed

    Martínez-Castilla, Pastora; Rodríguez, Manuel; Campos, Ruth

    2016-01-01

    The study of music cognition in Williams syndrome (WS) has resulted in theoretical debates regarding cognitive modularity and development. However, no research has previously investigated the development of music skills in this population. In this study, we used the cross-sectional developmental trajectories approach to assess the development of pitch-related music skills in children with WS compared with typically developing (TD) peers. Thus, we evaluated the role of change over time on pitch-related music skills and the developmental relationships between music skills and different cognitive areas. In the TD children, the pitch-related music skills improved with chronological age and cognitive development. In the children with WS, developmental relationships were only found between several pitch-related music skills and specific cognitive processes. We also found non-systematic relationships between chronological age and the pitch-related music skills, stabilization in the level reached in music when cognitive development was considered, and uneven associations between cognitive and music skills. In addition, the TD and WS groups differed in their patterns of pitch-related music skill development. These results suggest that the development of pitch-related music skills in children with WS is atypical. Our findings stand in contrast with the views that claim innate modularity for music in WS; rather, they are consistent with neuroconstructivist accounts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures

    PubMed Central

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P.; Alamdari, Houshang

    2016-01-01

    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger’s model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger’s model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297–0.595 mm (−30 + 50 mesh) to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch. PMID:28773459

  12. Effect of a 6-Week Weighted Baseball Throwing Program on Pitch Velocity, Pitching Arm Biomechanics, Passive Range of Motion, and Injury Rates.

    PubMed

    Reinold, Michael M; Macrina, Leonard C; Fleisig, Glenn S; Aune, Kyle; Andrews, James R

    Emphasis on enhancing baseball pitch velocity has become popular, especially through weighted-ball throwing. However, little is known about the physical effects or safety of these programs. The purpose of this study was to examine the effects of training with weighted baseballs on pitch velocity, passive range of motion (PROM), muscle strength, elbow torque, and injury rates. A 6-week weighted ball training program would result in a change in pitching biomechanical and physical characteristics. Randomized controlled trial. Level 1. During the baseball offseason, 38 healthy baseball pitchers were randomized into a control group and an experimental group. Pitch velocity, shoulder and elbow PROM, shoulder strength, elbow varus torque, and shoulder internal rotation velocity were measured in both groups. The experimental group then performed a 6-week weighted ball throwing program 3 times per week using balls ranging from 2 to 32 ounces while the control group only used a 5-ounce regulation baseball. Both groups performed a strength training program. Measurements were then repeated after the 6-week period. Injuries were tracked over the 6-week training program and the subsequent baseball season. The effect of training with a weighted ball program was assessed using 2-way repeated-measures analysis of variance at an a priori significance level of P < 0.05. Mean age, height, mass, and pretesting throwing velocity were 15.3 ± 1.2 years (range, 13-18 years), 1.73 ± 0.28 m, 68.3 ± 11 kg, and 30.3 ± 0.7 m/s, respectively. Pitch velocity showed a statistically significant increase (3.3%) in the experimental group ( P < 0.001). There was a statistically significant increase of 4.3° of shoulder external rotation in the experimental group. The overall injury rate was 24% in the experimental group. Four participants in the experimental group suffered elbow injuries, 2 during the training program and 2 in the season after training. No pitchers in the control group were

  13. Variable gain for a wind turbine pitch control

    NASA Technical Reports Server (NTRS)

    Seidel, R. C.; Birchenough, A. G.

    1981-01-01

    The gain variation is made in the software logic of the pitch angle controller. The gain level is changed depending upon the level of power error. The control uses low gain for low pitch activity the majority of the time. If the power exceeds ten percent offset above rated, the gain is increased to a higher gain to more effectively limit power. A variable gain control functioned well in tests on the Mod-0 wind turbine.

  14. Protection efficiency of a standard compliant EUV reticle handling solution

    NASA Astrophysics Data System (ADS)

    He, Long; Lystad, John; Wurm, Stefan; Orvek, Kevin; Sohn, Jaewoong; Ma, Andy; Kearney, Patrick; Kolbow, Steve; Halbmaier, David

    2009-03-01

    For successful implementation of extreme ultraviolet lithography (EUVL) technology for late cycle insertion at 32 nm half-pitch (hp) and full introduction for 22 nm hp high volume production, the mask development infrastructure must be in place by 2010. The central element of the mask infrastructure is contamination-free reticle handling and protection. Today, the industry has already developed and balloted an EUV pod standard for shipping, transporting, transferring, and storing EUV masks. We have previously demonstrated that the EUV pod reticle handling method represents the best approach in meeting EUVL high volume production requirements, based on then state-of-the-art inspection capability at ~53nm polystyrene latex (PSL) equivalent sensitivity. In this paper, we will present our latest data to show defect-free reticle handling is achievable down to 40 nm particle sizes, using the same EUV pod carriers as in the previous study and the recently established world's most advanced defect inspection capability of ~40 nm SiO2 equivalent sensitivity. The EUV pod is a worthy solution to meet EUVL pilot line and pre-production exposure tool development requirements. We will also discuss the technical challenges facing the industry in refining the EUV pod solution to meet 22 nm hp EUVL production requirements and beyond.

  15. Effect of Configuration Pitching Motion on Twin Tail Buffet Response

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Kandil, Osama A.

    1998-01-01

    The effect of dynamic pitch-up motion of delta wing on twin-tail buffet response is investigated. The computational model consists of a delta wing-twin tail configuration. The computations are carried out on a dynamic multi-block grid structure. This multidisciplinary problem is solved using three sets of equations which consists of the unsteady Navier-Stokes equations, the aeroelastic equations, and the grid displacement equations. The configuration is pitched-up from zero up to 60 deg. angle of attack, and the freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. With the twin tail fixed as rigid surfaces and with no-forced pitch-up motion, the problem is solved for the initial flow conditions. Next, the problem is solved for the twin-tail response for uncoupled bending and torsional vibrations due to the unsteady loads on the twin tail and due to the forced pitch-up motion. The dynamic pitch-up problem is also solved for the flow response with the twin tail kept rigid. The configuration is investigated for inboard position of the twin tail which corresponds to a separation distance between the twin tail of 33% wing chord. The computed results are compared with the available experimental data.

  16. Binaural fusion and the representation of virtual pitch in the human auditory cortex.

    PubMed

    Pantev, C; Elbert, T; Ross, B; Eulitz, C; Terhardt, E

    1996-10-01

    The auditory system derives the pitch of complex tones from the tone's harmonics. Research in psychoacoustics predicted that binaural fusion was an important feature of pitch processing. Based on neuromagnetic human data, the first neurophysiological confirmation of binaural fusion in hearing is presented. The centre of activation within the cortical tonotopic map corresponds to the location of the perceived pitch and not to the locations that are activated when the single frequency constituents are presented. This is also true when the different harmonics of a complex tone are presented dichotically. We conclude that the pitch processor includes binaural fusion to determine the particular pitch location which is activated in the auditory cortex.

  17. Fracture Gap Reduction With Variable-Pitch Headless Screws.

    PubMed

    Roebke, Austin J; Roebke, Logan J; Goyal, Kanu S

    2018-04-01

    Fully threaded, variable-pitch, headless screws are used in many settings in surgery and have been extensively studied in this context, especially in regard to scaphoid fractures. However, it is not well understood how screw parameters such as diameter, length, and pitch variation, as well as technique parameters such as depth of drilling, affect gap closure. Acutrak 2 fully threaded variable-pitch headless screws of various diameters (Standard, Mini, and Micro) and lengths (16-28 mm) were inserted into polyurethane blocks of "normal" and "osteoporotic" bone model densities using a custom jig. Three drilling techniques (drill only through first block, 4 mm into second block, or completely through both blocks) were used. During screw insertion, fluoroscopic images were taken and later analyzed to measure gap reduction. The effect of backing the screw out after compression was evaluated. Drilling at least 4 mm past the fracture site reduces distal fragment push-off compared with drilling only through the proximal fragment. There were no significant differences in gap closure in the normal versus the osteoporotic model. The Micro screw had a smaller gap closure than both the Standard and the Mini screws. After block contact and compression with 2 subsequent full forward turns, backing the screw out by only 1 full turn resulted in gapping between the blocks. Intuitively, fully threaded headless variable-pitch screws can obtain compression between bone fragments only if the initial gap is less than the gap closed. Gap closure may be affected by drilling technique, screw size, and screw length. Fragment compression may be immediately lost if the screw is reversed. We describe characteristics of variable-pitch headless screws that may assist the surgeon in screw choice and method of use. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Cubature versus Fekete-Gauss nodes for spectral element methods on simplicial meshes

    NASA Astrophysics Data System (ADS)

    Pasquetti, Richard; Rapetti, Francesca

    2017-10-01

    In a recent JCP paper [9], a higher order triangular spectral element method (TSEM) is proposed to address seismic wave field modeling. The main interest of this TSEM is that the mass matrix is diagonal, so that an explicit time marching becomes very cheap. This property results from the fact that, similarly to the usual SEM (say QSEM), the basis functions are Lagrange polynomials based on a set of points that shows both nice interpolation and quadrature properties. In the quadrangle, i.e. for the QSEM, the set of points is simply obtained by tensorial product of Gauss-Lobatto-Legendre (GLL) points. In the triangle, finding such an appropriate set of points is however not trivial. Thus, the work of [9] follows anterior works that started in 2000's [2,6,11] and now provides cubature nodes and weights up to N = 9, where N is the total degree of the polynomial approximation. Here we wish to evaluate the accuracy of this cubature nodes TSEM with respect to the Fekete-Gauss one, see e.g.[12], that makes use of two sets of points, namely the Fekete points and the Gauss points of the triangle for interpolation and quadrature, respectively. Because the Fekete-Gauss TSEM is in the spirit of any nodal hp-finite element methods, one may expect that the conclusions of this Note will remain relevant if using other sets of carefully defined interpolation points.

  19. Ball flight kinematics, release variability and in-season performance in elite baseball pitching.

    PubMed

    Whiteside, D; McGinnis, R S; Deneweth, J M; Zernicke, R F; Goulet, G C

    2016-03-01

    The purpose of this study was to quantify ball flight kinematics (ball speed, spin rate, spin axis orientation, seam orientation) and release location variability in the four most common pitch types in baseball and relate them to in-season pitching performance. Nine NCAA Division I pitchers threw four pitching variations (fastball, changeup, curveball, and slider) while a radar gun measured ball speed and a 600-Hz video camera recorded the ball trajectory. Marks on the ball were digitized to measure ball flight kinematics and release location. Ball speed was highest in the fastball, though spin rate was similar in the fastball and breaking pitches. Two distinct spin axis orientations were noted: one characterizing the fastball and changeup, and another, the curveball and slider. The horizontal release location was significantly more variable than the vertical release location. In-season pitching success was not correlated to any of the measured variables. These findings are instructive for inferring appropriate hand mechanics and spin types in each of the four pitches. Coaches should also be aware that ball flight kinematics might not directly relate to pitching success at the collegiate level. Therefore, talent identification and pitching evaluations should encompass other (e.g., cognitive, psychological, and physiological) factors. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Automatic Detection of Pitching and Throwing Events in Baseball With Inertial Measurement Sensors.

    PubMed

    Murray, Nick B; Black, Georgia M; Whiteley, Rod J; Gahan, Peter; Cole, Michael H; Utting, Andy; Gabbett, Tim J

    2017-04-01

    Throwing loads are known to be closely related to injury risk. However, for logistic reasons, typically only pitchers have their throws counted, and then only during innings. Accordingly, all other throws made are not counted, so estimates of throws made by players may be inaccurately recorded and underreported. A potential solution to this is the use of wearable microtechnology to automatically detect, quantify, and report pitch counts in baseball. This study investigated the accuracy of detection of baseball pitching and throwing in both practice and competition using a commercially available wearable microtechnology unit. Seventeen elite youth baseball players (mean ± SD age 16.5 ± 0.8 y, height 184.1 ± 5.5 cm, mass 78.3 ± 7.7 kg) participated in this study. Participants performed pitching, fielding, and throwing during practice and competition while wearing a microtechnology unit. Sensitivity and specificity of a pitching and throwing algorithm were determined by comparing automatic measures (ie, microtechnology unit) with direct measures (ie, manually recorded pitching counts). The pitching and throwing algorithm was sensitive during both practice (100%) and competition (100%). Specificity was poorer during both practice (79.8%) and competition (74.4%). These findings demonstrate that the microtechnology unit is sensitive to detect pitching and throwing events, but further development of the pitching algorithm is required to accurately and consistently quantify throwing loads using microtechnology.

  1. The antitumor agent 3-bromopyruvate has a short half-life at physiological conditions.

    PubMed

    Glick, Matthew; Biddle, Perry; Jantzi, Josh; Weaver, Samantha; Schirch, Doug

    2014-09-12

    Clinical research is currently exploring the validity of the anti-tumor candidate 3-bromopyruvate (3-BP) as a novel treatment for several types of cancer. However, recent publications have overlooked rarely-cited earlier work about the instability of 3-BP and its decay to 3-hydroxypyruvate (3-HP) which have obvious implications for its mechanism of action against tumors, how it is administered, and for precautions when preparing solutions of 3-BP. This study found the first-order decay rate of 3-BP at physiological temperature and pH has a half-life of only 77 min. Lower buffer pH decreases the decay rate, while choice of buffer and concentration do not affect it. A method for preparing more stable solutions is also reported. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The effect of transfer factor on lymph node morphology in murine toxoplasmosis.

    PubMed Central

    Dundas, S. A.; Clark, A.

    1986-01-01

    Mice were infected intraperitoneally with a low virulence strain of Toxoplasma gondii (TO) and transfer factor (TF) was prepared from the spleens of infected (TFT) and uninfected control mice (TFC). Three experimental groups of 12 mice were given either saline, TFC or TFT, by intraperitoneal injection. After 24 h half of each group of these animals were infected by intraperitoneal injection of TO cysts. In three separate experiments animals were killed at 11, 28 and 35 days and the flank and axillary nodes removed for histological examination. There was generalized lymph node enlargement with cortical and paracortical expansion. In most animals there was diffuse infiltration of the nodes by clusters of histiocytes. Administration of TFC alone led to a mild increase in node size at 11 and 28 days. Administration of TFT alone had a moderate stimulatory effect on the mouse lymph nodes with a significant increase in size at 11 days due predominantly to expansion of the paracortex. Administration of TFT and TFC followed by inoculation of TO led to an increased and more consistent histiocyte response and an increased number of paracortical T blasts compared with animals given TO alone. TFT and TFC had no demonstrable protective effect in experimental murine toxoplasmosis as assessed by quantitation of toxoplasma brain cysts. The effect of transfer factor was not antigen specific in this system. Images Fig. 4 Fig. 5 Fig. 2 Fig. 3 Fig. 1 Fig. 6 PMID:2423107

  3. Sentinel lymph node detection in gynecologic malignancies by a handheld fluorescence camera

    NASA Astrophysics Data System (ADS)

    Hirsch, Ole; Szyc, Lukasz; Muallem, Mustafa Zelal; Ignat, Iulia; Chekerov, Radoslav; Macdonald, Rainer; Sehouli, Jalid; Braicu, Ioana; Grosenick, Dirk

    2017-02-01

    Near-infrared fluorescence imaging using indocyanine green (ICG) as a tracer is a promising technique for mapping the lymphatic system and for detecting sentinel lymph nodes (SLN) during cancer surgery. In our feasibility study we have investigated the application of a custom-made handheld fluorescence camera system for the detection of lymph nodes in gynecological malignancies. It comprises a low cost CCD camera with enhanced NIR sensitivity and two groups of LEDs emitting at wavelengths of 735 nm and 830 nm for interlaced recording of fluorescence and reflectance images of the tissue, respectively. With the help of our system, surgeons can observe fluorescent tissue structures overlaid onto the anatomical image on a monitor in real-time. We applied the camera system for intraoperative lymphatic mapping in 5 patients with vulvar cancer, 5 patients with ovarian cancer, 3 patients with cervical cancer, and 3 patients with endometrial cancer. ICG was injected at four loci around the primary malignant tumor during surgery. After a residence time of typically 15 min fluorescence images were taken in order to visualize the lymph nodes closest to the carcinomas. In cases with vulvar cancer about half of the lymph nodes detected by routinely performed radioactive SLN mapping have shown fluorescence in vivo as well. In the other types of carcinomas several lymph nodes could be detected by fluorescence during laparotomy. We conclude that our low cost camera system has sufficient sensitivity for lymphatic mapping during surgery.

  4. Rapid pitch correction in choir singers.

    PubMed

    Grell, Anke; Sundberg, Johan; Ternström, Sten; Ptok, Martin; Altenmüller, Eckart

    2009-07-01

    Highly and moderately skilled choral singers listened to a perfect fifth reference, with the instruction to complement the fifth such that a major triad resulted. The fifth was suddenly and unexpectedly shifted in pitch, and the singers' task was to shift the fundamental frequency of the sung tone accordingly. The F0 curves during the transitions often showed two phases, an initial quick and large change followed by a slower and smaller change, apparently intended to fine-tune voice F0 to complement the fifth. Anesthetizing the vocal folds of moderately skilled singers tended to delay the reaction. The means of the response times varied in the range 197- 259 ms depending on direction and size of the pitch shifts, as well as on skill and anesthetization.

  5. Pitch discrimination and melodic memory in children with autism spectrum disorders.

    PubMed

    Stanutz, Sandy; Wapnick, Joel; Burack, Jacob A

    2014-02-01

    Pitch perception is enhanced among persons with autism. We extended this finding to memory for pitch and melody among school-aged children. The purpose of this study was to investigate pitch memory in musically untrained children with autism spectrum disorders, aged 7-13 years, and to compare it to that of age- and IQ-matched typically developing children. The children were required to discriminate isolated tones in two differing contexts as well to remember melodies after a period of 1 week. The tasks were designed to employ both short- and long-term memory for music. For the pitch discrimination task, the children first had to indicate whether two isolated tones were the same or different when the second was the same or had been altered to be 25, 35, or 45 cents sharp or flat. Second, the children discriminated the tones within the context of melody. They were asked whether two melodies were the same or different when the leading tone of the second melody was the same or had been altered to be 25, 35, or 45 cents sharp or flat. Long-term memory for melody was also investigated, as the children attempted to recall four different two-bar melodies after 1 week. The children with autism spectrum disorders demonstrated elevated pitch discrimination ability in the single-tone and melodic context as well as superior long-term memory for melody. Pitch memory correlated positively with scores on measures of nonverbal fluid reasoning ability. Superior short- and long-term pitch memory was found among children with autism spectrum disorders. The results indicate an aspect to cognitive functioning that may predict both enhanced nonverbal reasoning ability and atypical language development.

  6. The Role of the Auditory Brainstem in Processing Musically Relevant Pitch

    PubMed Central

    Bidelman, Gavin M.

    2013-01-01

    Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294

  7. A bilateral cortical network responds to pitch perturbations in speech feedback

    PubMed Central

    Kort, Naomi S.; Nagarajan, Srikantan S.; Houde, John F.

    2014-01-01

    Auditory feedback is used to monitor and correct for errors in speech production, and one of the clearest demonstrations of this is the pitch perturbation reflex. During ongoing phonation, speakers respond rapidly to shifts of the pitch of their auditory feedback, altering their pitch production to oppose the direction of the applied pitch shift. In this study, we examine the timing of activity within a network of brain regions thought to be involved in mediating this behavior. To isolate auditory feedback processing relevant for motor control of speech, we used magnetoencephalography (MEG) to compare neural responses to speech onset and to transient (400ms) pitch feedback perturbations during speaking with responses to identical acoustic stimuli during passive listening. We found overlapping, but distinct bilateral cortical networks involved in monitoring speech onset and feedback alterations in ongoing speech. Responses to speech onset during speaking were suppressed in bilateral auditory and left ventral supramarginal gyrus/posterior superior temporal sulcus (vSMG/pSTS). In contrast, during pitch perturbations, activity was enhanced in bilateral vSMG/pSTS, bilateral premotor cortex, right primary auditory cortex, and left higher order auditory cortex. We also found speaking-induced delays in responses to both unaltered and altered speech in bilateral primary and secondary auditory regions, the left vSMG/pSTS and right premotor cortex. The network dynamics reveal the cortical processing involved in both detecting the speech error and updating the motor plan to create the new pitch output. These results implicate vSMG/pSTS as critical in both monitoring auditory feedback and initiating rapid compensation to feedback errors. PMID:24076223

  8. Analysis of rotor vibratory loads using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.

    1992-01-01

    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.

  9. Predicting Node Degree Centrality with the Node Prominence Profile

    PubMed Central

    Yang, Yang; Dong, Yuxiao; Chawla, Nitesh V.

    2014-01-01

    Centrality of a node measures its relative importance within a network. There are a number of applications of centrality, including inferring the influence or success of an individual in a social network, and the resulting social network dynamics. While we can compute the centrality of any node in a given network snapshot, a number of applications are also interested in knowing the potential importance of an individual in the future. However, current centrality is not necessarily an effective predictor of future centrality. While there are different measures of centrality, we focus on degree centrality in this paper. We develop a method that reconciles preferential attachment and triadic closure to capture a node's prominence profile. We show that the proposed node prominence profile method is an effective predictor of degree centrality. Notably, our analysis reveals that individuals in the early stage of evolution display a distinctive and robust signature in degree centrality trend, adequately predicted by their prominence profile. We evaluate our work across four real-world social networks. Our findings have important implications for the applications that require prediction of a node's future degree centrality, as well as the study of social network dynamics. PMID:25429797

  10. High pitch third generation dual-source CT: Coronary and Cardiac Visualization on Routine Chest CT

    PubMed Central

    Sandfort, Veit; Ahlman, Mark; Jones, Elizabeth; Selwaness, Mariana; Chen, Marcus; Folio, Les; Bluemke, David A.

    2016-01-01

    Background Chest CT scans are frequently performed in radiology departments but have not previously contained detailed depiction of cardiac structures. Objectives To evaluate myocardial and coronary visualization on high-pitch non-gated CT of the chest using 3rd generation dual-source computed tomography (CT). Methods Cardiac anatomy of patients who had 3rd generation, non-gated high pitch contrast enhanced chest CT and who also had prior conventional (low pitch) chest CT as part of a chest abdomen pelvis exam was evaluated. Cardiac image features were scored by reviewers blinded to diagnosis and pitch. Paired analysis was performed. Results 3862 coronary segments and 2220 cardiac structures were evaluated by two readers in 222 CT scans. Most patients (97.2%) had chest CT for oncologic evaluation. The median pitch was 2.34 (IQR 2.05, 2.65) in high pitch and 0.8 (IQR 0.8, 0.8) in low pitch scans (p<0.001). High pitch CT showed higher image visualization scores for all cardiovascular structures compared with conventional pitch scans (p<0.0001). Coronary arteries were visualized in 9 coronary segments per exam in high pitch scans versus 2 segments for conventional pitch (p<0.0001). Radiation exposure was lower in the high pitch group compared with the conventional pitch group (median CTDIvol 10.83 vs. 12.36 mGy and DLP 790 vs. 827 mGycm respectively, p <0.01 for both) with comparable image noise (p=0.43). Conclusion Myocardial structure and coronary arteries are frequently visualized on non-gated 3rd generation chest CT. These results raise the question of whether the heart and coronary arteries should be routinely interpreted on routine chest CT that is otherwise obtained for non-cardiac indications. PMID:27133589

  11. Connecting node and method for constructing a connecting node

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)

    2011-01-01

    A connecting node comprises a polyhedral structure comprising a plurality of panels joined together at its side edges to form a spherical approximation, wherein at least one of the plurality of panels comprises a faceted surface being constructed with a passage for integrating with one of a plurality of elements comprising a docking port, a hatch, and a window that is attached to the connecting node. A method for manufacturing a connecting node comprises the steps of providing a plurality of panels, connecting the plurality of panels to form a spherical approximation, wherein each edge of each panel of the plurality is joined to another edge of another panel, and constructing at least one of the plurality of panels to include a passage for integrating at least one of a plurality of elements that may be attached to the connecting node.

  12. Supersonic Pitch Damping Predictions of Blunt Entry Vehicles from Static CFD Solutions

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark

    2013-01-01

    A technique for predicting supersonic pitch damping of blunt axisymmetric bodies from static CFD data is presented. The contributions to static pitching moment due to forebody and aftbody pressure distributions are broken out and considered separately. The one-dimension moment equation is cast to model the separate contributions from forebody and aftbody pressures with no traditional damping term included. The aftbody contribution to pitching moment is lagged by a phase angle of the natural oscillation period. This lag represents the time for aftbody wake structures to equilibrate while the body is oscillation. The characteristic equation of this formulation indicates that the lagged backshell moment adds a damping moment equivalent in form to a constant pitch damping term. CFD calculations of the backshell's contribution to the static pitching moment for a range of angles-of-attack is used to predict pitch damping coefficients. These predictions are compared with ballistic range data taken of the Mars Exploration Rover (MER) capsule and forced oscillation data of the Mars Viking capsule. The lag model appears to capture dynamic stability variation due to backshell geometry as well as Mach number.

  13. Characterization of pitch prepared from pyrolysis fuel oil via electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Hong Gun; Park, Mira; Kim, Hak-Yong; Kwac, Lee Ku; Shin, Hye Kyoung

    2017-06-01

    Pitch samples were obtained from pyrolysis fuel oil by thermal treatment for 2 h at 300 °C after electron beam irradiation (EBI) treatment and by thermal treatment alone for different temperature of 250 °C, 300 °C, and 350 °C. EBI treatment was found to be an effective treatment for preparing pitch compare to the pitch obtained without EBI treatment. These results were confirmed by Fourier transform infrared spectroscopy (FT-IR) and Carbon-13 nuclear magnetic resonance (13C NMR) analyses, which showed the increase in the intensities of peaks corresponding to aromatic compounds. In the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectra, the amount of components with medium molecular weights in the pitch was found to increase with the temperature; likewise, in the case of the pitch obtained via EBI treatment, we found that the amount of components with higher molecular weight over 1000 (m/v) similarly increased. Further, the thermal stability and carbon yield at 850 °C of the pitch obtained by EBI were greater than those of samples subjected to thermal treatment at 250 and 300 °C.

  14. HpQTL: a geometric morphometric platform to compute the genetic architecture of heterophylly.

    PubMed

    Sun, Lidan; Wang, Jing; Zhu, Xuli; Jiang, Libo; Gosik, Kirk; Sang, Mengmeng; Sun, Fengsuo; Cheng, Tangren; Zhang, Qixiang; Wu, Rongling

    2017-02-15

    Heterophylly, i.e. morphological changes in leaves along the axis of an individual plant, is regarded as a strategy used by plants to cope with environmental change. However, little is known of the extent to which heterophylly is controlled by genes and how each underlying gene exerts its effect on heterophyllous variation. We described a geometric morphometric model that can quantify heterophylly in plants and further constructed an R-based computing platform by integrating this model into a genetic mapping and association setting. The platform, named HpQTL, allows specific quantitative trait loci mediating heterophyllous variation to be mapped throughout the genome. The statistical properties of HpQTL were examined and validated via computer simulation. Its biological relevance was demonstrated by results from a real data analysis of heterophylly in a wood plant, mei (Prunus mume). HpQTL provides a powerful tool to analyze heterophylly and its underlying genetic architecture in a quantitative manner. It also contributes a new approach for genome-wide association studies aimed to dissect the programmed regulation of plant development and evolution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Cross-Sensory Correspondences: Heaviness is Dark and Low-Pitched.

    PubMed

    Walker, Peter; Scallon, Gabrielle; Francis, Brian

    2017-07-01

    Everyday language reveals how stimuli encoded in one sensory feature domain can possess qualities normally associated with a different domain (e.g., higher pitch sounds are bright, light in weight, sharp, and thin). Such cross-sensory associations appear to reflect crosstalk among aligned (corresponding) feature dimensions, including brightness, heaviness, and sharpness. Evidence for heaviness being one such dimension is very limited, with heaviness appearing primarily as a verbal associate of other feature contrasts (e.g., darker objects and lower pitch sounds are heavier than their opposites). Given the presumed bidirectionality of the crosstalk between corresponding dimensions, heaviness should itself induce the cross-sensory associations observed elsewhere, including with brightness and pitch. Taking care to dissociate effects arising from the size and mass of an object, this is confirmed. When hidden objects varying independently in size and mass are lifted, objects that feel heavier are judged to be darker and to make lower pitch sounds than objects feeling less heavy. These judgements track the changes in perceived heaviness induced by the size-weight illusion. The potential involvement of language, natural scene statistics, and Bayesian processes in correspondences, and the effects they induce, is considered.

  16. Music therapy for chronic tinnitus: variability of tinnitus pitch in the course of therapy.

    PubMed

    Hutter, Elisabeth; Grapp, Miriam; Argstatter, Heike; Bolay, Hans Volker

    2014-04-01

    In general, tinnitus pitch has been observed to be variable across time for most patients experiencing tinnitus. Some tinnitus therapies relate to the dominant tinnitus pitch in order to adjust therapeutic interventions. As studies focusing on tinnitus pitch rarely conduct consecutive pitch matching in therapeutic settings, little is known about the course and variability of tinnitus pitch during therapeutic interventions. The purpose of this study was to investigate the variability and development of tinnitus pitch in the course of therapeutic interventions. Tinnitus pitch was suspected to be highly variable. The researchers conducted a descriptive, retrospective analysis of data. A total of 175 adult patients experiencing chronic tinnitus served as participants. All patients had received a neuro-music therapy according to the "Heidelberg Model of Music Therapy for Chronic Tinnitus." During therapeutic interventions lasting for 5 consecutive days, the individual tinnitus frequency was assessed daily by means of a tinnitus pitch-matching procedure. The extent of variability in tinnitus pitch was calculated by mean ratios of frequencies between subsequent tinnitus measurements. Analysis of variance of repeated measures and post hoc paired samples t-tests were used for comparison of means in tinnitus frequencies, and the test-retest reliability of measurements was obtained by the Pearson product-moment correlation coefficient. Tinnitus pitch displayed a variability of approximately 3/5 to 4/5 octaves per day. Overall, the mean frequency declined in the course of the therapy. Detailed analysis revealed three groups of patients with diverging tinnitus progression. The test-retest reliability between assessments turned out to be robust (r = 0.74 or higher). Considerable variation in tinnitus pitch was found. Consequently, a frequent rechecking of tinnitus frequency is suggested during frequency-specific acoustic stimulation in order to train appropriate frequency bands

  17. Processing of pitch and location in human auditory cortex during visual and auditory tasks.

    PubMed

    Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu

    2015-01-01

    The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed

  18. Processing of pitch and location in human auditory cortex during visual and auditory tasks

    PubMed Central

    Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu

    2015-01-01

    The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed

  19. Autistic Traits and Enhanced Perceptual Representation of Pitch and Time

    ERIC Educational Resources Information Center

    Stewart, Mary E.; Griffiths, Timothy D.; Grube, Manon

    2018-01-01

    Enhanced basic perceptual discrimination has been reported for pitch in individuals with autism spectrum conditions. We test whether there is a correlational pattern of enhancement across the broader autism phenotype and whether this correlation occurs for the discrimination of pitch, time and loudness. Scores on the Autism-Spectrum Quotient…

  20. Event-related potential evidence of processing lexical pitch-accent in auditory Japanese sentences.

    PubMed

    Koso, Ayumi; Hagiwara, Hiroko

    2009-09-23

    Neural mechanisms that underlie the processing of lexical pitch-accent in auditory Japanese were investigated by using event-related potentials. Native speakers of Japanese listened to two types of short sentences, both consisting of a noun and a verb. The sentences ended with a verb with either congruous or incongruous pitch-accent pattern, where pitch-accent violations occur at the verb in the incongruent condition. The event-related potentials of the incongruent condition showed an increased widespread negativity that started 400 ms after the onset of the deviant lexical item and lasted for about 400 ms. These results suggest that the negativity evoked by violations in lexical-pitch accent indicates electrophysiological evidence for the online processing of lexical-pitch accent in auditory Japanese.

  1. [Preparation of coated tablets of glycyrrhetic acid-HP-beta-cyclodextrin tablets for colon-specific release].

    PubMed

    Cui, Qi-Hua; Cui, Jing-Hao; Zhang, Jin-Jin

    2008-10-01

    To prepare coated tablets of glycyrrhetinic acid and hydroxypropyl-beta-cyclodextrin (GTA-HP-beta-CYD) inclusion complex tablets for colon-specific release. In order to improve the solubility of GTA, the GTA-HP-beta-CYD inclusion complex was prepared by ultrasonic-lyophilization technique and its formation were characterized by X-ray powder diffraction profiles and infrared spectrometry. The effects of inclusion condition on the inclusion efficiency and stability coefficient of inclusion complex were investigated, respectively. After prepared GTA-HP-beta-CYD tablets by powder direct compression, the pH dependant polymer Eudragit III and/or mixed with Eudragit II were used for further coating materials in fluid-bed coater. The influences of coating weight on the GTA release in different pH conditions were evaluated to establish the method for prepering colon specific delivery tablets with pulsed release properties. The formation of inclusion complexes were proved by X-ray powder diffraction profile and phase solubility curve. The effect of pH value of solvent was played critical role on the preparation of GTA- HP-beta-CYD inclusion complex. And the inclusion efficiency of GTA was 9. 3% and the solubility was increased to 54. 6 times at optimized method. The Eudragit III coated GTA- HP-beta-CYD tablets with coating weight 10% and 16% were showed pH dependant colon specific release profiles with slow release rate. The release profile of tablets coated with the mixture of Eudragit II and Eudragit III (1:2) were indicated typical pH dependant colon specific and pulsed release properties while the coating weight was 17%. The preliminary method for preparation of colon specific release tablets containing glycyrrhetinic acid with improved solubility was established for further in vivo therapeutic experiment.

  2. The Effect of Intermittent Arm and Shoulder Cooling on Baseball Pitching Velocity.

    PubMed

    Bishop, Stacy H; Herron, Robert L; Ryan, Gregory A; Katica, Charles P; Bishop, Phillip A

    2016-04-01

    The throwing arm of a baseball pitcher is subjected to high stress as a result of the repetitive activity of pitching. Intermittent cryotherapy may facilitate recovery from this repeated high stress, but few researchers have investigated cryotherapy's efficacy in an ecologically valid setting. This study investigated the effects of intermittent cryotherapy on pitching velocity and subjective measures of recovery and exertion in a simulated baseball game. Trained college-aged male baseball pitchers (n = 8) threw 12 pitches (1 pitch every 20 seconds) per inning for 5 total innings during a simulated pitching start. Between each inning, pitchers received shoulder and arm cooling (AC) or, on a separate occasion, no cooling (NC). All sessions took place in a temperate environment (18.3 ± 2.8° C; 49 ± 4% relative humidity). Pitch speeds were averaged for each participant each inning and overall for 5 innings. Perceived exertion (rating of perceived exertion [RPE]) was recorded at the end of each simulated inning. Perceived recovery (perceived recovery scale [PRS]) was recorded after treatment between each inning. Mean pitching velocity for all-innings combined was higher (p = 0.04) for shoulder and elbow cooling (AC) (31.2 ± 2.1 m·s) than for no cooling (NC) (30.6 ± 2.1 m·s). Average pitch speed was significantly higher in the fourth (p = <0.01) and fifth (p = 0.02) innings in AC trial (31.3 ± 2 m·s for both innings) compared with NC trial (30.0 ± 2.22 m·s and 30.4 ± 1.99 m·s, for the fourth and fifth innings, respectively. AC resulted in a significantly lower RPE (p ≤ 0.01) and improved PRS (p ≤ 0.01) compared with NC. Intermittent cryotherapy attenuated velocity loss in baseball pitching, decreased RPE, and facilitated subjective recovery during a 5-inning simulated game.

  3. Changes in baseball batters' brain activity with increased pitch choice.

    PubMed

    Ryu, Kwangmin; Kim, Jingu; Ali, Asif; Kim, Woojong; Radlo, Steven J

    2015-09-01

    In baseball, one factor necessary for batters to decide whether to swing or not depends on what type of pitch is thrown. Oftentimes batters will look for their pitch (i.e., waiting for a fastball). In general, when a pitcher has many types of pitches in his arsenal, batters will have greater difficulty deciding upon the pitch thrown. Little research has been investigated the psychophysiology of a batters decision-making processes. Therefore, the primary purpose of this study was to determine how brain activation changes according to an increase in the number of alternatives (NA) available. A total of 15 male college baseball players participated in this study. The stimuli used in this experiment were video clips of a right-handed pitcher throwing fastball, curve, and slider pitches. The task was to press a button after selecting the fastball as the target stimulus from two pitch choices (fastball and curve), and then from three possibilities (fastball, curve, and slider). Functional and anatomic image scanning magnetic resonance imaging (MRI) runs took 4 and 5[Formula: see text]min, respectively. According to our analysis, the right precentral gyrus, left medial frontal gyrus, and right fusiform gyrus were activated when the NA was one. The supplementary motor areas (SMA) and primary motor cortex were activated when there were two alternatives to choose from and the inferior orbitofrontal gyrus was specifically activated with three alternatives. Contrary to our expectations, the NA was not a critical factor influencing the activation of related decision making areas when the NA was compared against one another. These findings highlight that specific brain areas related to decision making were activated as the NA increased.

  4. Jet meandering by a foil pitching in quiescent fluid

    NASA Astrophysics Data System (ADS)

    Shinde, Sachin Y.; Arakeri, Jaywant H.

    2013-04-01

    The flow produced by a rigid symmetric NACA0015 airfoil purely pitching at a fixed location in quiescent fluid (the limiting case of infinite Strouhal number) is studied using visualizations and particle image velocimetry. A weak jet is generated whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions, over a wide range of pitching parameters.

  5. Pitch effects on vowel roughness and spectral noise for subjects in four musical voice classifications.

    PubMed

    Newman, R A; Emanuel, F W

    1991-08-01

    This study was designed to investigate the effects of vocal fo on vowel spectral noise level (SNL) and perceived vowel roughness for subjects in high- and low-pitch voice categories. The subjects were 40 adult singers (10 each sopranos, altos, tenors, and basses). Each produced the vowel /a/ in isolation at a comfortable speaking pitch, and at each of seven assigned pitches spaced at whole-tone intervals over a musical octave within his or her singing pitch range. The eight /a/ productions were repeated by each subject on a second test day. The SNL differences between repeated test samples (different days) were not statistically significant for any subject group. For the vowel samples produced at a comfortable pitch, a relatively large SNL was associated with samples phonated by the subjects of each sex who manifested the relatively low singing pitch range. Regarding the vowel samples produced at the assigned-pitch levels, it was found that both vowel SNL and perceived vowel roughness decreased as test-pitch level was raised over a range of one octave. The relationship between vocal pitch and either vowel roughness or SNL approached linearity for each of the four subject groups.

  6. Trunk axial rotation in baseball pitching and batting.

    PubMed

    Fleisig, Glenn S; Hsu, Wellington K; Fortenbaugh, Dave; Cordover, Andrew; Press, Joel M

    2013-11-01

    The purpose of this study was to quantify trunk axial rotation and angular acceleration in pitching and batting of elite baseball players. Healthy professional baseball pitchers (n = 40) and batters (n = 40) were studied. Reflective markers attached to each athlete were tracked at 240 Hz with an eight-camera automated digitizing system. Trunk axial rotation was computed as the angle between the pelvis and the upper trunk in the transverse plane. Trunk angular acceleration was the second derivative of axial rotation. Maximum trunk axial rotation (55 +/- 6 degrees) and angular acceleration (11,600 +/- 3,100 degrees/s2) in pitching occurred before ball release, approximately at the instant the front foot landed. Maximum trunk axial rotation (46 +/- 9 degrees) and angular acceleration (7,200 +/- 2,800 degrees/s2) in batting occurred in the follow-through after ball contact. Thus, the most demanding instant for the trunk and spine was near front foot contact for pitching and after ball contact for batting.

  7. Global and Local Pitch Perception in Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Ziegler, Johannes C.; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M.

    2012-01-01

    This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global…

  8. SOLARMAX/Electron Pitch Angle Anisotropy Distributions

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This final research report summarizes the scientific work performed by The Aerospace Corporation on SOLARMAX/Electron Pitch Angle Anisotropy Distributions. The period of performance was from June 1, 2000 to December 31, 2001.

  9. Pitch-matching accuracy in trained singers and untrained individuals: the impact of musical interference and noise.

    PubMed

    Estis, Julie M; Dean-Claytor, Ashli; Moore, Robert E; Rowell, Thomas L

    2011-03-01

    The effects of musical interference and noise on pitch-matching accuracy were examined. Vocal training was explored as a factor influencing pitch-matching accuracy, and the relationship between pitch matching and pitch discrimination was examined. Twenty trained singers (TS) and 20 untrained individuals (UT) vocally matched tones in six conditions (immediate, four types of chords, noise). Fundamental frequencies were calculated, compared with the frequency of the target tone, and converted to semitone difference scores. A pitch discrimination task was also completed. TS showed significantly better pitch matching than UT across all conditions. Individual performances for UT were highly variable. Therefore, untrained participants were divided into two groups: 10 untrained accurate and 10 untrained inaccurate. Comparison of TS with untrained accurate individuals revealed significant differences between groups and across conditions. Compared with immediate vocal matching of target tones, pitch-matching accuracy was significantly reduced, given musical chord and noise interference unless the target tone was presented in the musical chord. A direct relationship between pitch matching and pitch discrimination was revealed. Across pitch-matching conditions, TS were consistently more accurate than UT. Pitch-matching accuracy diminished when auditory interference consisted of chords that did not contain the target tone and noise. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  10. Self-optimizing Pitch Control for Large Scale Wind Turbine Based on ADRC

    NASA Astrophysics Data System (ADS)

    Xia, Anjun; Hu, Guoqing; Li, Zheng; Huang, Dongxiao; Wang, Fengxiang

    2018-01-01

    Since wind turbine is a complex nonlinear and strong coupling system, traditional PI control method can hardly achieve good control performance. A self-optimizing pitch control method based on the active-disturbance-rejection control theory is proposed in this paper. A linear model of the wind turbine is derived by linearizing the aerodynamic torque equation and the dynamic response of wind turbine is transformed into a first-order linear system. An expert system is designed to optimize the amplification coefficient according to the pitch rate and the speed deviation. The purpose of the proposed control method is to regulate the amplification coefficient automatically and keep the variations of pitch rate and rotor speed in proper ranges. Simulation results show that the proposed pitch control method has the ability to modify the amplification coefficient effectively, when it is not suitable, and keep the variations of pitch rate and rotor speed in proper ranges

  11. Switching the JLab Accelerator Operations Environment from an HP-UX Unix-based to a PC/Linux-based environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcguckin, Theodore

    2008-10-01

    The Jefferson Lab Accelerator Controls Environment (ACE) was predominantly based on the HP-UX Unix platform from 1987 through the summer of 2004. During this period the Accelerator Machine Control Center (MCC) underwent a major renovation which included introducing Redhat Enterprise Linux machines, first as specialized process servers and then gradually as general login servers. As computer programs and scripts required to run the accelerator were modified, and inherent problems with the HP-UX platform compounded, more development tools became available for use with Linux and the MCC began to be converted over. In May 2008 the last HP-UX Unix login machinemore » was removed from the MCC, leaving only a few Unix-based remote-login servers still available. This presentation will explore the process of converting an operational Control Room environment from the HP-UX to Linux platform as well as the many hurdles that had to be overcome throughout the transition period (including a discussion of« less

  12. Cholesteric pitch transitions induced by mechanical strain.

    PubMed

    Lelidis, I; Barbero, G; Alexe-Ionescu, A L

    2013-02-01

    We investigate thickness and surface anchoring strength influence on pitch transitions in a planar cholesteric liquid crystal layer. The cholesteric-nematic transition is also investigated. We assume planar boundary conditions, with strong anchoring strength at one interface and weak anchoring strength at the other. The surface anchoring energy we consider to describe the deviation of the surface twist angle from the easy axis induced by a bulk deformation is a parabolic potential or Rapini and Papoular periodic potential, respectively. We show that under strain, all pitch transitions take place at a critical thickness that is equal to the quarter of the natural cholesteric pitch. The latter result does not depend on the anchoring strength, the particular surface potential, or material properties. The twist angle on the limiting surface characterized by weak anchoring varies with strain either by slipping and or in a discontinuous manner according to the thickness of the sample. The position of the bifurcation point depends only on the ratio of the extrapolation length over the layer thickness, but its value is model dependent. Multistability and multiplicity of the transition are discussed.

  13. Interplay of Coil–Globule Transition and Surface Adsorption of a Lattice HP Protein Model

    PubMed Central

    2015-01-01

    An end-grafted hydrophobic-polar (HP) model protein chain with alternating H and P monomers is studied to examine interactions between the critical adsorption transition due to surface attraction and the collapse transition due to pairwise attractive H–H interactions. We find that the critical adsorption phenomenon can always be observed; however, the critical adsorption temperature TCAP is influenced by the attractive H–H interactions in some cases. When the collapse temperature Tc is lower than TCAP, the critical adsorption of the HP chain is similar to that of a homopolymer without intrachain attractions and TCAP remains unchanged, whereas the collapse transition is suppressed by the adsorption. In contrast, for cases where Tc is close to or higher than TCAP, TCAP of the HP chain is increased, indicating that a collapsed chain is more easily adsorbed on the surface. The strength of the H–H attraction also influences the statistical size and shape of the polymer, with strong H–H attractions resulting in adsorbed and collapsed chains adopting two-dimensional, circular conformations. PMID:25458556

  14. Chromatin Protein HP1α Interacts with the Mitotic Regulator Borealin Protein and Specifies the Centromere Localization of the Chromosomal Passenger Complex*

    PubMed Central

    Liu, Xing; Song, Zhenwei; Huo, Yuda; Zhang, Jiahai; Zhu, Tongge; Wang, Jianyu; Zhao, Xuannv; Aikhionbare, Felix; Zhang, Jiancun; Duan, Hequan; Wu, Jihui; Dou, Zhen; Shi, Yunyu; Yao, Xuebiao

    2014-01-01

    Accurate mitosis requires the chromosomal passenger protein complex (CPC) containing Aurora B kinase, borealin, INCENP, and survivin, which orchestrates chromosome dynamics. However, the chromatin factors that specify the CPC to the centromere remain elusive. Here we show that borealin interacts directly with heterochromatin protein 1α (HP1α) and that this interaction is mediated by an evolutionarily conserved PXVXL motif in the C-terminal borealin with the chromo shadow domain of HP1α. This borealin-HP1α interaction recruits the CPC to the centromere and governs an activation of Aurora B kinase judged by phosphorylation of Ser-7 in CENP-A, a substrate of Aurora B. Consistently, modulation of the motif PXVXL leads to defects in CPC centromere targeting and aberrant Aurora B activity. On the other hand, the localization of the CPC in the midzone is independent of the borealin-HP1α interaction, demonstrating the spatial requirement of HP1α in CPC localization to the centromere. These findings reveal a previously unrecognized but direct link between HP1α and CPC localization in the centromere and illustrate the critical role of borealin-HP1α interaction in orchestrating an accurate cell division. PMID:24917673

  15. Absence of modulatory action on haptic height perception with musical pitch

    PubMed Central

    Geronazzo, Michele; Avanzini, Federico; Grassi, Massimo

    2015-01-01

    Although acoustic frequency is not a spatial property of physical objects, in common language, pitch, i.e., the psychological correlated of frequency, is often labeled spatially (i.e., “high in pitch” or “low in pitch”). Pitch-height is known to modulate (and interact with) the response of participants when they are asked to judge spatial properties of non-auditory stimuli (e.g., visual) in a variety of behavioral tasks. In the current study we investigated whether the modulatory action of pitch-height extended to the haptic estimation of height of a virtual step. We implemented a HW/SW setup which is able to render virtual 3D objects (stair-steps) haptically through a PHANTOM device, and to provide real-time continuous auditory feedback depending on the user interaction with the object. The haptic exploration was associated with a sinusoidal tone whose pitch varied as a function of the interaction point's height within (i) a narrower and (ii) a wider pitch range, or (iii) a random pitch variation acting as a control audio condition. Explorations were also performed with no sound (haptic only). Participants were instructed to explore the virtual step freely, and to communicate height estimation by opening their thumb and index finger to mimic the step riser height, or verbally by reporting the height in centimeters of the step riser. We analyzed the role of musical expertise by dividing participants into non-musicians and musicians. Results showed no effects of musical pitch on high-realistic haptic feedback. Overall there is no difference between the two groups in the proposed multimodal conditions. Additionally, we observed a different haptic response distribution between musicians and non-musicians when estimations of the auditory conditions are matched with estimations in the no sound condition. PMID:26441745

  16. Low is large: spatial location and pitch interact in voice-based body size estimation.

    PubMed

    Pisanski, Katarzyna; Isenstein, Sari G E; Montano, Kelyn J; O'Connor, Jillian J M; Feinberg, David R

    2017-05-01

    The binding of incongruent cues poses a challenge for multimodal perception. Indeed, although taller objects emit sounds from higher elevations, low-pitched sounds are perceptually mapped both to large size and to low elevation. In the present study, we examined how these incongruent vertical spatial cues (up is more) and pitch cues (low is large) to size interact, and whether similar biases influence size perception along the horizontal axis. In Experiment 1, we measured listeners' voice-based judgments of human body size using pitch-manipulated voices projected from a high versus a low, and a right versus a left, spatial location. Listeners associated low spatial locations with largeness for lowered-pitch but not for raised-pitch voices, demonstrating that pitch overrode vertical-elevation cues. Listeners associated rightward spatial locations with largeness, regardless of voice pitch. In Experiment 2, listeners performed the task while sitting or standing, allowing us to examine self-referential cues to elevation in size estimation. Listeners associated vertically low and rightward spatial cues with largeness more for lowered- than for raised-pitch voices. These correspondences were robust to sex (of both the voice and the listener) and head elevation (standing or sitting); however, horizontal correspondences were amplified when participants stood. Moreover, when participants were standing, their judgments of how much larger men's voices sounded than women's increased when the voices were projected from the low speaker. Our results provide novel evidence for a multidimensional spatial mapping of pitch that is generalizable to human voices and that affects performance in an indirect, ecologically relevant spatial task (body size estimation). These findings suggest that crossmodal pitch correspondences evoke both low-level and higher-level cognitive processes.

  17. Magnetic resonance imaging of the rotator cuff muscles after baseball pitching.

    PubMed

    Yanagisawa, O; Niitsu, M; Takahashi, H; Itai, Y

    2003-12-01

    The purposes of present study were to investigate quantitatively using functional MR imaging the effect of a series of throwing activities on rotator cuff muscles and to compare the effect of pitching with that of all-out shoulder external rotator exercise as the targeted external rotator muscle group (the infraspinatus and the teres minor). MRI measurements after 135 baseball pitches or all-out shoulder external rotator exercise (concentric mode) in each subject's nondominant shoulder. 6 amateur baseball pitchers. serial T2-weighted images of rotator cuff muscles were obtained before pitching (or shoulder exercise) and immediately, 30, 60 min, 24, 48, 96 hrs after pitching (or shoulder exercise). T2 relaxation times (T2) at each measurement time were calculated for the rotator cuff muscles. Both the supraspinatus and the external rotator muscle group showed significant T2 elevations until 96 hrs after pitching. The subscapularis also showed significantly increased T2 until postpitching 48 hrs. On the other hand, a significant T2 elevation continued until 60 min after shoulder exercise, but thereafter returned towards the value at rest over the next 24 hrs. Long lasting T2 elevations in rotator cuff muscles would be associated with an increase in each intramuscular water content, and may be attributed to the muscle damage that resulted from eccentric contraction during pitching. This information should serve as a useful complement to shoulder injury prevention for baseball pitchers.

  18. Completed Ulnar Shaft Stress Fracture in a Fast-Pitch Softball Pitcher.

    PubMed

    Wiltfong, Roger E; Carruthers, Katherine H; Popp, James E

    2017-03-01

    Stress fractures of the upper extremity have been previously described in the literature, yet reports of isolated injury to the ulna diaphysis or olecranon are rare. The authors describe a case involving an 18-year-old fast-pitch softball pitcher. She presented with a long history of elbow and forearm pain, which was exacerbated during a long weekend of pitching. Her initial physician diagnosed her as having forearm tendinitis. She was treated with nonsurgical means including rest, anti-inflammatory medications, therapy, and kinesiology taping. She resumed pitching when allowed and subsequently had an acute event immediately ceasing pitching. She presented to an urgent care clinic that evening and was diagnosed as having a complete ulnar shaft fracture subsequently needing surgical management. This case illustrates the need for a high degree of suspicion for ulnar stress fractures in fast-pitch soft-ball pitchers with an insidious onset of unilateral forearm pain. Through early identification and intervention, physicians may be able to reduce the risk of injury progression and possibly eliminate the need for surgical management. [Orthopedics. 2017; 40(2):e360-e362.]. Copyright 2016, SLACK Incorporated.

  19. An Experimental Investigation of Compressible Dynamic Stall on a Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Thorne, Katie; Bowles, Patrick

    2009-11-01

    A new facility has been designed and constructed at the University of Notre Dame to investigate dynamic stall on a 2-D pitching airfoil at high subsonic Mach numbers. This work is motivated by the need to investigate dynamic stall at conditions relevant to military helicopters. One focus of the experiments is to characterize the role of shock/boundary layer interactions during the pitching cycle. The new dynamic stall facility is integrated into a closed-loop, low turbulence wind tunnel capable of achieving test section Mach numbers in excess of M = 0.6. The design of the dynamic stall test section was focused on achieving reduced pitching frequencies of up to k = 0.2 and chord Reynolds numbers up to 5 x10^6. The facility has the unique ability to execute non-harmonic pitching motions through the use of an actuated pitch link mechanism. Optical access is provided to allow the use of high-speed and Schlieren imaging. Thirty-one flush mounted Kulite dynamic pressure transducers provide the instantaneous unsteady surface pressure distribution over the airfoil. Initial dynamic stall measurements obtained in the new facility will be described.

  20. PULSION® HP: Tunable, High Productivity Plasma Doping

    NASA Astrophysics Data System (ADS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism—deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  1. The 300 H.P. Benz Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Heller, A

    1921-01-01

    A description is given of the Benz 12-cylinder aircraft engine. The 300 H.P. engine, with the cylinders placed at an angle of 60 degrees not only realizes a long-cherished conception, but has received refinement in detail. It may be described as a perfect example of modern German aircraft engine construction. Here, a detailed description is given of the construction of this engine. Emphasis is placed on the design and construction of the cylinders, pistons, and connecting rods. Also discussed are engine fitting, lubrication, oil pumps, bearings, the oil tank, fuel pump, carburetors, and cooling system.

  2. Detail, unit 4, 3,000 hp synchronous pump motor. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, unit 4, 3,000 hp synchronous pump motor. Manufactured by The Electric Products Company, Cleveland, Ohio. Unit 5 is identical to this unit - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  3. 92. DETAIL OF GENERAL ELECTRIC 250HP SYNCHRONOUS MOTOR FROM SLIP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. DETAIL OF GENERAL ELECTRIC 250-HP SYNCHRONOUS MOTOR FROM SLIP RING END. NOTE BOLTS AND SPRINGS OF BRAKE BAND, HEAVY-WIRE ARMATURE WINDINGS, AND TIGHTLY WOUND STATOR (FIELD) COILS. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  4. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, A.L.

    1985-11-19

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

  5. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, Albert L.

    1985-01-01

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.

  6. Pitch Systems and Curwen Hand Signs: A Review of Literature

    ERIC Educational Resources Information Center

    Frey-Clark, Marta

    2017-01-01

    Learning to sing from notation is a complex task, and accurately performing pitches without an external reference can be particularly challenging. As such, the use of mnemonic devices to reinforce tonal relationships is a long-standing practice among musicians. Chief among these mnemonic devices are pitch syllable systems and Curwen hand signs.…

  7. Nodes

    NASA Technical Reports Server (NTRS)

    Hanson, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    Nodes is a technology demonstration mission that is scheduled for launch to the International SpaceStation no earlier than Nov.19, 2015. The two Nodes satellites will be deployed from the Station in early 2016 todemonstrate new network capabilities critical to the operation of swarms of spacecraft. They will demonstrate the ability ofmulti spacecraft swarms to receive and distribute ground commands, exchange information periodically, andautonomously configure the network by determining which spacecraft should communicate with the ground each day ofthe mission.

  8. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain

    PubMed Central

    Bocian-Ostrzycka, Katarzyna M.; Łasica, Anna M.; Dunin-Horkawicz, Stanisław; Grzeszczuk, Magdalena J.; Drabik, Karolina; Dobosz, Aneta M.; Godlewska, Renata; Nowak, Elżbieta; Collet, Jean-Francois; Jagusztyn-Krynicka, Elżbieta K.

    2015-01-01

    Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity. PMID:26500620

  9. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain.

    PubMed

    Bocian-Ostrzycka, Katarzyna M; Łasica, Anna M; Dunin-Horkawicz, Stanisław; Grzeszczuk, Magdalena J; Drabik, Karolina; Dobosz, Aneta M; Godlewska, Renata; Nowak, Elżbieta; Collet, Jean-Francois; Jagusztyn-Krynicka, Elżbieta K

    2015-01-01

    Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation - periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.

  10. Emotions in freely varying and mono-pitched vowels, acoustic and EGG analyses.

    PubMed

    Waaramaa, Teija; Palo, Pertti; Kankare, Elina

    2015-12-01

    Vocal emotions are expressed either by speech or singing. The difference is that in singing the pitch is predetermined while in speech it may vary freely. It was of interest to study whether there were voice quality differences between freely varying and mono-pitched vowels expressed by professional actors. Given their profession, actors have to be able to express emotions both by speech and singing. Electroglottogram and acoustic analyses of emotional utterances embedded in expressions of freely varying vowels [a:], [i:], [u:] (96 samples) and mono-pitched protracted vowels (96 samples) were studied. Contact quotient (CQEGG) was calculated using 35%, 55%, and 80% threshold levels. Three different threshold levels were used in order to evaluate their effects on emotions. Genders were studied separately. The results suggested significant gender differences for CQEGG 80% threshold level. SPL, CQEGG, and F4 were used to convey emotions, but to a lesser degree, when F0 was predetermined. Moreover, females showed fewer significant variations than males. Both genders used more hypofunctional phonation type in mono-pitched utterances than in the expressions with freely varying pitch. The present material warrants further study of the interplay between CQEGG threshold levels and formant frequencies, and listening tests to investigate the perceptual value of the mono-pitched vowels in the communication of emotions.

  11. Partial axillary lymph node dissection inferior to the intercostobrachial nerves complements sentinel node biopsy in patients with clinically node-negative breast cancer.

    PubMed

    Li, Jianyi; Jia, Shi; Zhang, Wenhai; Qiu, Fang; Zhang, Yang; Gu, Xi; Xue, Jinqi

    2015-06-30

    The practice of breast cancer diagnosis and treatment in China varies to that in western developed countries. With the unavailability of radioactive tracer technique for sentinel lymph nodes biopsy (SLNB), using blue dye alone has been the only option in China. Also, the diagnosis of breast malignant tumor in most Chinese centres heavily relies on intraoperative instant frozen histology which is normally followed by sentinel lymph nodes mapping, SLNB and the potential breast and axillary operations in one consecutive session. This practice appears to cause a high false negative rate (FNR) for SLNB. The present study aimed to investigate the impact of the current practice in China on the accuracy of SLNB, and whether partial axillary lymph node dissection (PALND), dissection of lymph nodes inferior to the intercostobrachial nerve (ICBN), was a good complementary procedure following SLNB using blue dye. 289 patients with clinically node-negative breast cancer were identified and recruited. Tumorectomy, intraoperative instant frozen histological diagnosis, SLNB using methylene blue dye, and PALND or complete axillary node dissection (ALND) were performed in one consecutive operative session. The choice of SLNB only, SLNB followed by PALND or by ALND was based on the pre-determined protocol and preoperative choice by the patient. Clinical parameters were analyzed and survival analysis was performed. 37% patients with clinically negative nodes were found nodes positive. 59 patients with positive SLN underwent ALND, including 47 patients with up to two positive nodes which were all located inferior to the ICBN. 9 patients had failed SLNB and underwent PALND. Among them, 3 (33.3%) patients were found to have one metastatic node. 149 patients showed negative SLNB but chose PALND. Among them, 30 (20.1%), 14 (9.4) and 1 (0.7%) patients were found to have one, two and three metastatic node(s), respectively. PALND detected 48 (30.4%) patients who had either failed SLNB or

  12. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  13. From amusic to musical?--Improving pitch memory in congenital amusia with transcranial alternating current stimulation.

    PubMed

    Schaal, Nora K; Pfeifer, Jasmin; Krause, Vanessa; Pollok, Bettina

    2015-11-01

    Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 22. ASSEMBLY OF 9700 H.P. ALLIS CHALMERS TURBINE, CENTERVILLE P.H. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. ASSEMBLY OF 9700 H.P. ALLIS CHALMERS TURBINE, CENTERVILLE P.H. Drawing no. 50153, traced from Allis Chalmers drawing #699, April 24, 1906. - Centerville Hydroelectric System, Powerhouse, Butte Creek, Centerville, Butte County, CA

  15. STEREO/LET Observations of Solar Energetic Particle Pitch Angle Distributions

    NASA Astrophysics Data System (ADS)

    Leske, Richard; Cummings, Alan; Cohen, Christina; Mewaldt, Richard; Labrador, Allan; Stone, Edward; Wiedenbeck, Mark; Christian, Eric; von Rosenvinge, Tycho

    2015-04-01

    As solar energetic particles (SEPs) travel through interplanetary space, the shape of their pitch angle distributions is determined by magnetic focusing and scattering. Measurements of SEP anisotropies therefore probe interplanetary conditions far from the observer and can provide insight into particle transport. Bidirectional flows of SEPs are often seen within interplanetary coronal mass ejections (ICMEs), resulting from injection of particles at both footpoints of the CME or from mirroring of a unidirectional beam. Mirroring is clearly implicated in those cases that show a loss cone distribution, in which particles with large pitch angles are reflected but the magnetic field enhancement at the mirror point is too weak to turn around particles with the smallest pitch angles. The width of the loss cone indicates the magnetic field strength at the mirror point far from the spacecraft, while if timing differences are detectable between outgoing and mirrored particles they may help constrain the location of the reflecting boundary.The Low Energy Telescopes (LETs) onboard both STEREO spacecraft measure energetic particle anisotropies for protons through iron at energies of about 2-12 MeV/nucleon. With these instruments we have observed loss cone distributions in several SEP events, as well as other interesting anisotropies, such as unusual oscillations in the widths of the pitch angle distributions on a timescale of several minutes during the 23 July 2012 SEP event and sunward-flowing particles when the spacecraft was magnetically connected to the back side of a distant shock well beyond 1 AU. We present the STEREO/LET anisotropy observations and discuss their implications for SEP transport. In particular, we find that the shapes of the pitch angle distributions generally vary with energy and particle species, possibly providing a signature of the rigidity dependence of the pitch angle diffusion coefficient.

  16. 14 CFR 27.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor speed and pitch limits. 27.33... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.33 Main rotor speed and pitch limits. (a) Main rotor speed limits. A range of main rotor speeds must be established that— (1) With power on...

  17. 14 CFR 29.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Main rotor speed and pitch limits. 29.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.33 Main rotor speed and pitch limits. (a) Main rotor speed limits. A range of main rotor speeds must be established that— (1) With power on...

  18. 14 CFR 29.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor speed and pitch limits. 29.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.33 Main rotor speed and pitch limits. (a) Main rotor speed limits. A range of main rotor speeds must be established that— (1) With power on...

  19. 14 CFR 27.33 - Main rotor speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Main rotor speed and pitch limits. 27.33... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.33 Main rotor speed and pitch limits. (a) Main rotor speed limits. A range of main rotor speeds must be established that— (1) With power on...

  20. Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities.

    PubMed

    Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter

    2018-05-01

    Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.