Sample records for half-plane contact problems

  1. Frictionless Contact of Multilayered Composite Half Planes Containing Layers With Complex Eigenvalues

    NASA Technical Reports Server (NTRS)

    Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy

    1997-01-01

    A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.

  2. Contact problem on indentation of an elastic half-plane with an inhomogeneous coating by a flat punch in the presence of tangential stresses on a surface

    NASA Astrophysics Data System (ADS)

    Volkov, Sergei S.; Vasiliev, Andrey S.; Aizikovich, Sergei M.; Sadyrin, Evgeniy V.

    2018-05-01

    Indentation of an elastic half-space with functionally graded coating by a rigid flat punch is studied. The half-plane is additionally subjected to distributed tangential stresses. Tangential stresses are represented in a form of Fourier series. The problem is reduced to the solution of two dual integral equations over even and odd functions describing distribution of unknown normal contact stresses. The solutions of these dual integral equations are constructed by the bilateral asymptotic method. Approximated analytical expressions for contact normal stresses are provided.

  3. The crack problem for a half plane stiffened by elastic cover plates

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An elastic half plane containing a crack and stiffened by a cover plate is discussed. The asymptotic nature of the stress state in the half plane around an end point of the stiffener to determine the likely orientation of a possible fracture initiation and growth was studied. The problem is formulated for an arbitrary oriented radial crack in a system of singular integral equations. For an internal crack and for an edge crack, the problem is solved and the stress intensity factors at the crack tips and the interface stress are calculated. A cracked half plane with two symmetrically located cover plates is also considered. It is concluded that the case of two stiffeners appears to be more severe than that of a single stiffener.

  4. Nonsteady Problem for an Elastic Half-Plane with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-03-01

    An approach to studying nonstationary wave processes in an elastic half-plane with mixed boundary conditions of the fourth boundary-value problem of elasticity is proposed. The Laplace and Fourier transforms are used. The sequential inversion of these transforms or the inversion of the joint transform by the Cagniard method allows obtaining the required solution (stresses, displacements) in a closed analytic form. With this approach, the problem can be solved for various types of loads

  5. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes.

    PubMed

    Pérez-Arancibia, Carlos; Bruno, Oscar P

    2014-08-01

    This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.

  6. A solution to the problem of elastic half-plane with a cohesive edge crack

    NASA Astrophysics Data System (ADS)

    Thanh, Le Thi; Belaya, L. A.; Lavit, I. M.

    2018-03-01

    This paper considers the problem of extension of an elastic half-plane slackened by a rectilinear edge crack. The opposite edges of the crack are attracted to each other. The intensity of attracting forces – the forces of cohesion – depends on displacements of the edges; this dependence is nonlinear in the general case. External load and cohesive forces are related to each other by the condition of finite stresses at the crack tip. The authors apply Picard’s method of successive approximation. In each iteration, Irwin’s method is used to solve the problem of a half-plane with a crack, the edges of which are subjected to irregularly distributed load. The solution of the resulting integral equation is found by Galerkin’s method. The paper includes examples of calculations and their results. Some of them are compared with the data of previous studies.

  7. Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes

    NASA Astrophysics Data System (ADS)

    Pan, E.

    2004-03-01

    This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.

  8. Bonded half planes containing an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksogan, O.

    1973-01-01

    The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.

  9. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

    2013-04-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

  10. Steady sliding frictional contact problem for a 2d elastic half-space with a discontinuous friction coefficient and related stress singularities

    NASA Astrophysics Data System (ADS)

    Ballard, Patrick

    2016-12-01

    The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.

  11. A uniform GTD analysis of the EM diffraction by a thin dielectric/ferrite half-plane and related configurations

    NASA Technical Reports Server (NTRS)

    Rojas, Roberto G.

    1985-01-01

    A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.

  12. Complex space monofilar approximation of diffraction currents on a conducting half plane

    NASA Technical Reports Server (NTRS)

    Lindell, I. V.

    1987-01-01

    Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.

  13. Contact problem for a solid indenter and a viscoelastic half-space described by the spectrum of relaxation and retardation times

    NASA Astrophysics Data System (ADS)

    Stepanov, F. I.

    2018-04-01

    The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.

  14. Crack growth in bonded elastic half planes

    NASA Technical Reports Server (NTRS)

    Goree, J. G.

    1975-01-01

    Two solutions were developed for the two dimensional problem of bonded linearly elastic half-planes. For each solution, numerical results are presented for the stress intensity factors, strain energy release rate, stresses, and displacements. The behavior predicted by the studies was investigated experimentally using polymers for the material pairs. Close agreement was found for the critical stress intensity factor at fracture for the perpendicular crack near the interface. Fracture along the interface proved to be inconclusive due to difficulties in obtaining a brittle bond. Some interesting and predictable behavior regarding the potential for the crack to cross the interface was observed and is discussed.

  15. The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential

    NASA Astrophysics Data System (ADS)

    Grosche, Christian

    1988-10-01

    Rigorous path integral treatments on the Poincaré upper half-plane with a magnetic field and for the Morse potential are presented. The calculation starts with the path integral on the Poincaré upper half-plane with a magnetic field. By a Fourier expansion and a non-linear transformation this problem is reformulated in terms of the path integral for the Morse potential. This latter problem can be reduced by an appropriate space-time transformation to the path integral for the harmonic oscillator with generalised angular momentum, a technique which has been developed in recent years. The well-known solution for the last problem enables one to give explicit expressions for the Feynman kernels for the Morse potential and for the Poincaré upper half-plane with magnetic field, respectively. The wavefunctions and the energy spectrum for the bound and scattering states are given, respectively.

  16. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  17. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  18. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1974-01-01

    The plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle is discussed. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  19. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1976-01-01

    The paper deals with the plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  20. Work Dissatisfaction and Sleep Problems among Canadians in the Latter Half of Life.

    PubMed

    Brown, Kyla; Bierman, Alex

    2017-09-01

    This study examined the relationship between work dissatisfaction and sleep problems among Canadian adults in the latter half of life, as well as how gender and social contact moderate this relationship. Data were obtained from the Canadian General Social Survey, Cycle 21 (2007), which sampled adults aged 45 and older in 2007. Analyses focused on individuals with employment as their main activity. Analyses show that work dissatisfaction positively predicts trouble sleeping. There are no significant gender differences in this relationship. Social contact with friends buffers this relationship, but social contact with family does not, and buffering does not vary significantly between men and women. This research contributes to knowledge on sleep problems by showing that work dissatisfaction is adversely associated with sleep problems among Canadians in the latter half of life, but social contact with friends can weaken this deleterious relationship.

  1. Scattering of three-dimensional plane waves in a self-reinforced half-space lying over a triclinic half-space

    NASA Astrophysics Data System (ADS)

    Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy

    2018-06-01

    The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.

  2. Path Integration on the Upper Half-Plane

    NASA Astrophysics Data System (ADS)

    Kubo, R.

    1987-10-01

    Feynman's path integral is considered on the Poincaré upper half-plane. It is shown that the fundermental solution to the heat equation partial f/partial t=Delta_{H}f can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly.

  3. Wavelets and the Poincaré half-plane

    NASA Astrophysics Data System (ADS)

    Klauder, J. R.; Streater, R. F.

    1994-01-01

    A square-integrable signal of positive energy is transformed into an analytic function in the upper half-plane, on which SL(2,R) acts. It is shown that this analytic function is determined by its scalar products with the discrete family of functions obtained by acting with SL(2,Z) on a cyclic vector, provided that the spin of the representation is less than 3.

  4. Transient reaction of an elastic half-plane on a source of a concentrated boundary disturbance

    NASA Astrophysics Data System (ADS)

    Okonechnikov, A. S.; Tarlakovski, D. V.; Ul'yashina, A. N.; Fedotenkov, G. V.

    2016-11-01

    One of the key problems in studying the non-stationary processes of solid mechanics is obtaining of influence functions. These functions serve as solutions for the problems of effect of sudden concentrated loads on a body with linear elastic properties. Knowledge of the influence functions allows us to obtain the solutions for the problems with non-mixed boundary and initial conditions in the form of quadrature formulae with the help of superposition principle, as well as get the integral governing equations for the problems with mixed boundary and initial conditions. This paper offers explicit derivations for all nonstationary surface influence functions of an elastic half-plane in a plane strain condition. It is achieved with the help of combined inverse transform of a Fourier-Laplace integral transformation. The external disturbance is both dynamic and kinematic. The derived functions in xτ-domain are studied to find and describe singularities and are supplemented with graphs.

  5. Opening of an interface flaw in a layered elastic half-plane under compressive loading

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Fichter, W. B.; Goree, J. G.

    1984-01-01

    A static analysis is given of the problem of an elastic layer perfectly bonded, except for a frictionless interface crack, to a dissimilar elastic half-plane. The free surface of the layer is loaded by a finite pressure distribution directly over the crack. The problem is formulated using the two dimensional linear elasticity equations. Using Fourier transforms, the governing equations are converted to a pair of coupled singular integral equations. The integral equations are reduced to a set of simultaneous algebraic equations by expanding the unknown functions in a series of Jacobi polynomials and then evaluating the singular Cauchy-type integrals. The resulting equations are found to be ill-conditioned and, consequently, are solved in the least-squares sense. Results from the analysis show that, under a normal pressure distribution on the free surface of the layer and depending on the combination of geometric and material parameters, the ends of the crack can open. The resulting stresses at the crack-tips are singular, implying that crack growth is possible. The extent of the opening and the crack-top stress intensity factors depend on the width of the pressure distribution zone, the layer thickness, and the relative material properties of the layer and half-plane.

  6. Solution of a Plane Hydrofracture Problem with Stress Contrast

    NASA Astrophysics Data System (ADS)

    Gladkov, I. O.; Linkov, A. M.

    2018-03-01

    A plane hydrofracture problem for the Khristianovich-Geertsma-de Klerk model is extended and solved in the case where a confining stress closing a fracture is not constant in the direction of its propagation. A method is developed for solving the problem with an arbitrary stress contrast. It is stated that the transition through a contact with positive (negative) contrast occurs with fracture arresting (acceleration), whose intensity is controlled by a dimensionless parameter derived from theoretical considerations and numerical results.

  7. Simple Common Plane contact algorithm for explicit FE/FD methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, O

    2006-12-18

    Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles used in the original CP method. The new method does not require iterations even for very stiff contacts. It is very robust and easy to implement both in 2D and 3D parallel codes.

  8. Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Bassani, J. L.; Erdogan, F.

    1979-01-01

    The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks is considered. For the semi-infinite crack the problem is solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses are calculated. For finite cracks the problem is reduced to a pair of integral equations. Numerical results are obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

  9. Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Bassani, J. L.; Erdogan, F.

    1978-01-01

    The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks was considered. For the semi-infinite crack the problem was solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses were calculated. For finite cracks the problem was reduced to a pair of integral equations. Numerical results were obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

  10. Geometry, Heat Equation and Path Integrals on the Poincaré Upper Half-Plane

    NASA Astrophysics Data System (ADS)

    Kubo, R.

    1988-01-01

    Geometry, heat equation and Feynman's path integrals are studied on the Poincaré upper half-plane. The fundamental solution to the heat equation partial f/partial t = Delta_{H} f is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrödinger equation is also valid for our case.

  11. Simple Common Plane contact detection algorithm for FE/FD methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, O

    2006-07-19

    Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact detection algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles in the original CP method. The method does not require iterations. It is very robust and easy to implement both in 2D and 3D case.

  12. Stress decay in an orthotropic half-plane under self-equilibrating sinusoidal loading

    NASA Technical Reports Server (NTRS)

    Fichter, W. B.

    1984-01-01

    An elastic orthotropic half-plane subjected to sinusoidal normal loading along an entire straight edge is analyzed. Stresses are calculated for material property combinations which are representative of some unidirectional fiber reinforced composites and of (+ or - 45) (subs) laminates made from the same unidirectional materials. Plots of the stresses as functions of the distance from the loaded boundary show that they can differ greatly from their counterparts in the isotropic half-plane under the same loading. How the results impact the question of the applicability of St. Venant's principle to orthotropic materials is briefly discussed.

  13. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    PubMed

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  14. The steady-state tangential contact problem for a falling drop type of contact area on corrugated rail by simplified theory of rolling contact

    NASA Astrophysics Data System (ADS)

    Piotrowski, Jerzy

    1991-10-01

    Investigation of contact mechanical nonlinearities of a mathematical model of corrugation revealed that the typical shape of contact patch resembles a falling drop of water. A contact patch of that shape was approximated with a figure composed of two parts of ellipses with different eccentricities. The contact pressure distribution was assumed as a smoothing ensemble of two paraboloidal distributions. The description of a general case of double half elliptical contact area was given but a special case of double half elliptical contact is more interesting as it possesses some Hertzian properties. It was shown how three geometrical parameters of double half elliptical contact can be chosen when actual, non-Hertzian contact is known. A linear theory was written which indicates that the lateral vibrations of the rail may be excited only due to shape variation on corrugation even if any other cause for these vibrations does not exist. For nonlinear theory a computer program, based on FASTSIM algorithm by Kalker, was written. The aim is to calculate the creep forces and frictional power density distribution over the contact area. Also, a graphic program visualizing the solution was written. Numerical results are not provided; unattended and unsolved problems relevant for this type of contact are listed.

  15. Sensitivity of medial and lateral knee contact force predictions to frontal plane alignment and contact locations.

    PubMed

    Saliba, Christopher M; Brandon, Scott C E; Deluzio, Kevin J

    2017-05-24

    Musculoskeletal models are increasingly used to estimate medial and lateral knee contact forces, which are difficult to measure in vivo. The sensitivity of contact force predictions to modeling parameters is important to the interpretation and implication of results generated by the model. The purpose of this study was to quantify the sensitivity of knee contact force predictions to simultaneous errors in frontal plane knee alignment and contact locations under different dynamic conditions. We scaled a generic musculoskeletal model for N=23 subjects' stature and radiographic knee alignment, then perturbed frontal plane alignment and mediolateral contact locations within experimentally-possible ranges of 10° to -10° and 10 to -10mm, respectively. The sensitivity of first peak, second peak, and mean medial and lateral knee contact forces to knee adduction angle and contact locations was modeled using linear regression. Medial loads increased, and lateral loads decreased, by between 3% and 6% bodyweight for each degree of varus perturbation. Shifting the medial contact point medially increased medial loads and decreased lateral loads by between 1% and 4% bodyweight per millimeter. This study demonstrates that realistic measurement errors of 5mm (contact distance) or 5° (frontal plane alignment) could result in a combined 50% BW error in subject specific contact force estimates. We also show that model sensitivity varies between subjects as a result of differences in gait dynamics. These results demonstrate that predicted knee joint contact forces should be considered as a range of possible values determined by model uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Contact and crack problems for an elastic wedge. [stress concentration in elastic half spaces

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.

    1974-01-01

    The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex.

  17. Detecting condylar contact loss using single-plane fluoroscopy: a comparison with in vivo force data and in vitro bi-plane data.

    PubMed

    Prins, A H; Kaptein, B L; Banks, S A; Stoel, B C; Nelissen, R G H H; Valstar, E R

    2014-05-07

    Knee contact mechanics play an important role in knee implant failure and wear mechanics. Femoral condylar contact loss in total knee arthroplasty has been reported in some studies and it is considered to potentially induce excessive wear of the polyethylene insert.Measuring in vivo forces applied to the tibial plateau with an instrumented prosthesis is a possible approach to assess contact loss in vivo, but this approach is not very practical. Alternatively, single-plane fluoroscopy and pose estimation can be used to derive the relative pose of the femoral component with respect to the tibial plateau and estimate the distance from the medial and lateral parts of the femoral component towards the insert. Two measures are reported in the literature: lift-off is commonly defined as the difference in distance between the medial and lateral condyles of the femoral component with respect to the tibial plateau; separation is determined by the closest distance of each condyle towards the polyethylene insert instead of the tibia plateau.In this validation study, lift-off and separation as measured with single-plane fluoroscopy are compared to in vivo contact forces measured with an instrumented knee implant. In a phantom study, lift-off and separation were compared to measurements with a high quality bi-plane measurement.The results of the in vivo contact-force experiment demonstrate a large discrepancy between single-plane fluoroscopy and the in vivo force data: single-plane fluoroscopy measured up to 5.1mm of lift-off or separation, whereas the force data never showed actual loss of contact. The phantom study demonstrated that the single-plane setup could introduce an overestimation of 0.22mm±±0.36mm. Correcting the out-of-plane position resulted in an underestimation of medial separation by -0.20mm±±0.29mm.In conclusion, there is a discrepancy between the in vivo force data and single-plane fluoroscopic measurements. Therefore contact loss may not always be

  18. Mechanics of advancing pin-loaded contacts with friction

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.

    2010-11-01

    This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in

  19. Diffraction by a Conducting Half-Plane in a Chiroplasma

    DTIC Science & Technology

    2000-09-29

    34 Acta Physica Polonica A , vol. 83, no. 6, pp. 739-750, 1993. [5] S. Asghar and A . Lakhtakia, "Planewave diffraction by a perfectly conducting...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11647 TITLE: Diffraction by a Conducting Half-Plane in a Chiroplasma...the component should be considered within [he context of the overall compilation report and not as a stand-alone technical report. The following

  20. Rolling contact of a rigid sphere/sliding of a spherical indenter upon a viscoelastic half-space containing an ellipsoidal inhomogeneity

    NASA Astrophysics Data System (ADS)

    Koumi, Koffi Espoir; Chaise, Thibaut; Nelias, Daniel

    2015-07-01

    In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.

  1. The path integral on the Poincaré upper half plane and for Liouville quantum mechanics

    NASA Astrophysics Data System (ADS)

    Grosche, C.; Steiner, F.

    1987-08-01

    We present a rigorous path integral treatment of free motion on the Poincaré upper half plane. The Poincaré upper half plane, as a riemannian manifold, has recently become important in string theory and in the theory of quantum chaos. The calculation is done by a time-transformation and the use of the canonical method for determining quantum corrections to the classical lagrangian. Furthermore, we shall show that the same method also works for Liouville quantum mechanics. In both cases, the energy spectrum and the normalized wavefunctions are determined.

  2. A superparticle on the “super” Poincaré upper half plane

    NASA Astrophysics Data System (ADS)

    Uehara, S.; Yasui, Yukinori

    1988-03-01

    A non-relativistic superparticle moving freely on the “super” Poincaré upper half plane is investigated. The lagrangian is invariant under the super Möbius transformations SPL(2, R), so that it can be projected into the lagrangian on the super Riemann surface. The quantum hamiltonian becomes the “super” Laplace-Beltrami operator in the curved superspace.

  3. Electromagnetic plane-wave pulse transmission into a Lorentz half-space.

    PubMed

    Cartwright, Natalie A

    2011-12-01

    The propagation of an electromagnetic plane-wave signal obliquely incident upon a Lorentz half-space is studied analytically. Time-domain asymptotic expressions that increase in accuracy with propagation distance are derived by application of uniform saddle point methods on the Fourier-Laplace integral representation of the transmitted field. The results are shown to be continuous in time and comparable with numerical calculations of the field. Arrival times and angles of refraction are given for prominent transient pulse features and the steady-state signal.

  4. An experimental analysis of the real contact area between an electrical contact and a glass plane

    NASA Astrophysics Data System (ADS)

    Down, Michael; Jiang, Liudi; McBride, John W.

    2013-06-01

    The exact contact between two rough surfaces is usually estimated using statistical mathematics and surface analysis before and after contact has occurred. To date the majority of real contact and loaded surfaces has been theoretical or by numerical analyses. A method of analysing real contact area under various loads, by utilizing a con-contact laser surface profiler, allows direct measurement of contact area and deformation in terms of contact force and plane displacement between two surfaces. A laser performs a scan through a transparent flat side supported in a fixed position above the base. A test contact, mounted atop a spring and force sensor, and a screw support which moves into contact with the transparent surface. This paper presents the analysis of real contact area of various surfaces under various loads. The surfaces analysed are a pair of Au coated hemispherical contacts, one is a used Au to Au coated multi-walled carbon nanotubes surface, from a MEMS relay application, the other a new contact surface of the same configuration.

  5. Spectral properties of Pauli operators on the Poincaré upper-half plane

    NASA Astrophysics Data System (ADS)

    Inahama, Yuzuru; Shirai, Shin-ichi

    2003-06-01

    We investigate the essential spectrum of the Pauli operators (and the Dirac and the Schrödinger operators) with magnetic fields on the Poincaré upper-half plane. The magnetic fields under consideration are asymptotically constant (which may be equal to zero), or diverge at infinity. Moreover, the Aharonov-Casher type result is also considered.

  6. Quantum superalgebra slq( {2}/{1}) on the Poincaré half-plane

    NASA Astrophysics Data System (ADS)

    Jellal, A.

    2001-02-01

    We find that the symmetry algebra for the motion of a spin- {1}/{2} electron moving in the Poincaré upper half-plane ( H) under the action of a constant magnetic field (orthogonal to H) is the quantum superalgebra slq( {2}/{1}). From this, and using representation theory, we are able to determine the degree of degeneracy of the lowest Landau level when q is a root of unity.

  7. The Poincaré Half-Plane for Informationally-Complete POVMs

    NASA Astrophysics Data System (ADS)

    Planat, Michel

    2017-12-01

    It has been shown that classes of (minimal asymmetric) informationally complete POVMs in dimension d can be built using the multiparticle Pauli group acting on appropriate fiducial states [M. Planat and Z. Gedik, R. Soc. open sci. 4, 170387 (2017)]. The latter states may also be derived starting from the Poincar\\'e upper half-plane model H. For doing this, one translates the congruence (or non-congruence) subgroups of index d of the modular group into groups of permutation gates whose some of the eigenstates are the seeked fiducials. The structure of some IC-POVMs is found to be intimately related to the Kochen-Specker theorem.

  8. Bi-material plane with interface crack for the model of semi-linear material

    NASA Astrophysics Data System (ADS)

    Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.

    2018-05-01

    The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.

  9. Some boundary-value problems for anisotropic quarter plane

    NASA Astrophysics Data System (ADS)

    Arkhypenko, K. M.; Kryvyi, O. F.

    2018-04-01

    To solve the mixed boundary-value problems of the anisotropic elasticity for the anisotropic quarter plane, a method based on the use of the space of generalized functions {\\Im }{\\prime }({\\text{R}}+2) with slow growth properties was developed. The two-dimensional integral Fourier transform was used to construct the system of fundamental solutions for the anisotropic quarter plane in this space and a system of eight boundary integral relations was obtained, which allows one to reduce the mixed boundary-value problems for the anisotropic quarter plane directly to systems of singular integral equations with fixed singularities. The exact solutions of these systems were found by using the integral Mellin transform. The asymptotic behavior of solutions was investigated at the vertex of the quarter plane.

  10. Comparative analysis of methods for modeling the penetration and plane-parallel motion of conical projectiles in soil

    NASA Astrophysics Data System (ADS)

    Bazhenov, V. G.; Bragov, A. M.; Konstantinov, A. Yu.; Kotov, V. L.

    2015-05-01

    This paper presents an analysis of the accuracy of known and new modeling methods using the hypothesis of local and plane sections for solution of problems of the impact and plane-parallel motion of conical bodies at an angle to the free surface of the half-space occupied by elastoplastic soil. The parameters of the local interaction model that is quadratic in velocity are determined by solving the one-dimensional problem of the expansion of a spherical cavity. Axisymmetric problems for each of the meridional section are solved simultaneously neglecting mass and momentum transfer in the circumferential direction and using an approach based on the hypothesis of plane sections. The dynamic and kinematic parameters of oblique penetration obtained using modified models are compared with the results of computer simulation in a three-dimensional formulation. The results obtained with regard to the contact stress distribution along the generator of the pointed cone are in satisfactory agreement.

  11. Laughlin states on the Poincaré half-plane and their quantum group symmetry

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Mohseni Sadjadi, H.

    1996-09-01

    We find the Laughlin states of the electrons on the Poincaré half-plane in different representations. In each case we show that a quantum group 0305-4470/29/17/025/img5 symmetry exists such that the Laughlin states are a representation of it. We calculate the corresponding filling factor by using the plasma analogy of the fractional quantum Hall effect.

  12. Completeness relations for Maass Laplacians and heat kernels on the super Poincaré upper half-plane

    NASA Astrophysics Data System (ADS)

    Oshima, Kazuto

    1990-12-01

    Simple completeness relations are proposed for Maass Laplacians. With the help of these completeness relations, correct heat kernels of (super) Maass Laplacians are derived on the (super) Poincaré upper half-plane.

  13. The crack-contact and the free-end problem for a strip under residual stress

    NASA Technical Reports Server (NTRS)

    Bakioglu, M.; Erdogan, F.

    1977-01-01

    The plane problem for an infinite strip with two edge cracks under a given state of residual stress is considered. The residual stress is compressive near and at the surfaces and tensile in the interior of the strip. If the crack is deep enough to penetrate into the tensile zone, then the problem is one of crack-contact where the depth of the contact area is an unknown which depends on the crack depth and the residual stress profile. The problem has applications to the static fatigue of glass plates and is solved for three typical residual-stress profiles. In the limiting case of the crack's crossing the entire plate thickness, the problem becomes a stressfree end problem for a semiinfinite strip under a given residual-stress state away from the end. This is a typical stress diffusion problem in which decay behavior of the residual stress near and the nature of the normal displacement at the end of the semiinfinite strip are of special interest. For two typical residual-stress states the solution is obtained, and some numerical results are given.

  14. Anti-plane eigenstrain problem of an inclusion of arbitrary shape in an anisotropic bimaterial with a semi-infinite interface crack

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Schiavone, Peter

    2018-02-01

    We consider an Eshelby inclusion of arbitrary shape with uniform anti-plane eigenstrains embedded in one of two bonded dissimilar anisotropic half planes containing a semi-infinite interface crack situated along the negative real axis. Using two consecutive conformal mappings, the upper and lower halves of the physical plane are first mapped onto two separate quarters of the image plane. The corresponding boundary value problem is then analyzed in this image plane rather than in the original physical plane. Corresponding analytic functions in all three phases of the composite are derived via the construction of an auxiliary function and repeated application of analytic continuation across the real and imaginary axes in the image plane. As a result, the local stress intensity factor is then obtained explicitly. Perhaps most interestingly, we find that the satisfaction of a particular condition makes the inclusion (stress) invisible to the crack.

  15. The Davey-Stewartson Equation on the Half-Plane

    NASA Astrophysics Data System (ADS)

    Fokas, A. S.

    2009-08-01

    The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.

  16. Travelling Randomly on the Poincaré Half-Plane with a Pythagorean Compass

    NASA Astrophysics Data System (ADS)

    Cammarota, V.; Orsingher, E.

    2008-02-01

    A random motion on the Poincaré half-plane is studied. A particle runs on the geodesic lines changing direction at Poisson-paced times. The hyperbolic distance is analyzed, also in the case where returns to the starting point are admitted. The main results concern the mean hyperbolic distance (and also the conditional mean distance) in all versions of the motion envisaged. Also an analogous motion on orthogonal circles of the sphere is examined and the evolution of the mean distance from the starting point is investigated.

  17. Influence of meniscus shape in the cross sectional plane on the knee contact mechanics.

    PubMed

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Zarzycki, Witold

    2015-06-01

    We present a three dimensional finite element analysis of stress distribution and menisci deformation in the human knee joint. The study is based on the Open Knee model with the geometry of the lateral meniscus which shows some degenerative disorders. The nonlinear analysis of the knee joint under compressive axial load is performed. We present results for intact knee, knee with complete radial posterior meniscus root tear and knee with total meniscectomy of medial or lateral meniscus. We investigate how the meniscus shape in the cross sectional plane influences knee-joint mechanics by comparing the results for flat (degenerated) lateral and normal medial meniscus. Specifically, the deformation of the menisci in the coronal plane and the corresponding stress values in cartilages are studied. By analysing contact resultant force acting on the menisci in axial plane we have shown that restricted extrusion of the torn lateral meniscus can be attributed to small slope of its cross section in the coronal plane. Additionally, the change of the contact area and the resultant force acting on the menisci as the function of compressive load are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Crack-contact and the Free End Problem for a Strip Under Residual Stress

    NASA Technical Reports Server (NTRS)

    Bakioglu, M.; Erdogan, F.

    1976-01-01

    The plane problem for an infinite strip with two edge cracks under a given state of residual stress is considered. The residual stress is compressive near and at the surfaces and tensile in the interior of the strip. If the crack is deep enough to penetrate into the tensile zone, then the problem is one of crack-contact problem in which the depth of the contact area is an unknown which depends on the crack depth and the residual stress profile. The problem has applications to the static fatigue of glass plates and is solved for three typical residual stress profiles. In the limiting case of the crack crossing the entire plate thickness, the problem becomes a stress-free end problem for a semi-infinite strip under a given residual stress state away from the end. This is a typical stress diffusion problem in which decay behavior of the residual stress near and the nature of the normal displacement at the end of the semi-infinite strip are of special interest. For two typical residual stress states the solution is obtained, and some numerical results are given.

  19. Statistics of resonances for a class of billiards on the Poincaré half-plane

    NASA Astrophysics Data System (ADS)

    Howard, P. J.; Mota-Furtado, F.; O'Mahony, P. F.; Uski, V.

    2005-12-01

    The lower boundary of Artin's billiard on the Poincaré half-plane is continuously deformed to generate a class of billiards with classical dynamics varying from fully integrable to completely chaotic. The quantum scattering problem in these open billiards is described and the statistics of both real and imaginary parts of the resonant momenta are investigated. The evolution of the resonance positions is followed as the boundary is varied which leads to large changes in their distribution. The transition to arithmetic chaos in Artin's billiard, which is responsible for the Poissonian level-spacing statistics of the bound states in the continuum (cusp forms) at the same time as the formation of a set of resonances all with width \\frac{1}{4} and real parts determined by the zeros of Riemann's zeta function, is closely examined. Regimes are found which obey the universal predictions of random matrix theory (RMT) as well as exhibiting non-universal long-range correlations. The Brody parameter is used to describe the transitions between different regimes.

  20. Electron transport in graphene/graphene side-contact junction by plane-wave multiple-scattering method

    DOE PAGES

    Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...

    2015-05-28

    Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less

  1. Discretization and Numerical Solution of a Plane Problem in the Mechanics of Interfacial Cracks

    NASA Astrophysics Data System (ADS)

    Khoroshun, L. P.

    2017-01-01

    The Fourier transform is used to reduce the linear plane problem of the tension of a body with an interfacial crack to a system of dual equations for the transformed stresses and, then, to a system of integro-differential equations for the difference of displacements of the crack faces. After discretization, this latter system transforms into a system of algebraic equations for displacements of the crack faces. The effect of the bielastic constant and the number of discretization points on the half-length of the crack faces and the distribution of stresses at the interface is studied

  2. A contact binary asteroid evolutionary cycle driven by BYORP & the classical Laplace plane

    NASA Astrophysics Data System (ADS)

    Rieger, Samantha; Scheeres, Daniel J.

    2017-10-01

    Several contact binaries have been observed to have high obliquities distributed around 90°. With this information, we explore the possibility of these high obliquities being a key characteristic that causes an evolutionary cycle of contact binary formation and separation.The contact binary cycle begins with a single asteroid that is spinning up due to the YORP effect. For the binary cycle we assume YORP will drive the obliquity to 90°. Eventually, the asteroid will reach a critical spin frequency that will cause the asteroid to fission into a binary. We assume that the mass-ratio, q, of the system is greater than 0.2. With a high q, the secondary will not escape/impact the primary but will evolve through tides into a stable circular double-synchronous orbit. The binary being synchronous will cause the forces from BYORP to have secular effects on the system. For this cycle, BYORP will need to expand the secondary away from the primary.As the system expands, we have found that the secondary will follow the classical Laplace plane. Therefore, the secondary’s orbit will increase in inclination with respect to the equator as the secondary’s orbit expands. The Laplace plane is a stable orbit to perturbations from J2 & Sun tides except for an instability region that exists for primaries with obliquities above 68.875° & a secondary orbital radius of 13.5-19.5 primary radii. Once BYORP expands the secondary into this instability region, the eccentricity of the secondary’s orbit will increase until the orbit intersects with the primary & causes an impact. This impact will create a contact binary with a new obliquity that will randomly range from 23°-150°. The cycle will begin again with YORP driving the contact binary to an obliquity of 90°.Our contribution will discuss the proposed contact binary cycle in more detail, including the mechanics of the system that drives the events given above. We will include investigations into how losing synchronous lock will

  3. Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: incident plane SH waves

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Yin, Xiao

    2016-06-01

    A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.

  4. Solution procedure of dynamical contact problems with friction

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2017-07-01

    Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.

  5. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain

    NASA Astrophysics Data System (ADS)

    Kamran, K.; Rossi, R.; Oñate, E.

    2013-07-01

    The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.

  6. In-plane dynamic Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic half-space

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Kang, Zeqing; Liang, Jianwen

    2018-04-01

    The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green's functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic (TI) half-space. The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces, which are then applied to the total system with the opposite sign. By adding solutions restricted in the loaded layer to solutions from the reaction forces, the global solutions in the wavenumber domain are obtained, and the dynamic Green's functions in the space domain are recovered by the inverse Fourier transform. The presented formulations can be reduced to the isotropic case developed by Wolf (1985), and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI half-space subjected to horizontally distributed loads which are special cases of the more general problem addressed. The deduced Green's functions, in conjunction with boundary element methods, will lead to significant advances in the investigation of a variety of wave scattering, wave radiation and soil-structure interaction problems in a layered TI site. Selected numerical results are given to investigate the influence of material anisotropy, frequency of excitation, inclination angle and layered on the responses of displacement and stress, and some conclusions are drawn.

  7. A MEMS hardness sensor with reduced contact force dependence based on the reference plane concept aimed for medical applications

    NASA Astrophysics Data System (ADS)

    Maeda, Yusaku; Terao, Kyohei; Shimokawa, Fusao; Takao, Hidekuni

    2016-04-01

    In this study, the stable detection principle of a MEMS hardness sensor with “reference plane” structure is theoretically analyzed and demonstrated with experimental results. Hardness measurement independent of contact force instability is realized by the optimum design of the reference plane. The fabricated devices were evaluated, and a “shore A” hardness scale (JIS K 6301 A) was obtained as the reference in the range from A1 to A54 under a stable contact force. The contact force dependence on hardness sensor signals was effectively reduced by 96.6% using our reference plane design. Below 5 N contact force, the maximal signal error of hardness is suppressed to A8. This result corresponds to the detection capability for fat hardness, even when the contact force is unstable. Through experiments, stable detection of human body hardness has been demonstrated without any control of contact force.

  8. Contacts with out-of-hours primary care for nonurgent problems: patients' beliefs or deficiencies in healthcare?

    PubMed

    Keizer, Ellen; Smits, Marleen; Peters, Yvonne; Huibers, Linda; Giesen, Paul; Wensing, Michel

    2015-10-28

    In the Netherlands, about half of the patient contacts with a general practitioner (GP) cooperative are nonurgent from a medical perspective. A part of these problems can wait until office hours or can be managed by the patient himself without further professional care. However, from the patient's perspective, there may be a need to contact a physician immediately. Our objective was to determine whether contacts with out-of-hours primary care made by patients with nonurgent problems are the result of patients' beliefs or of deficiencies in the healthcare system. We performed a survey among 2000 patients with nonurgent health problems in four GP cooperatives in the Netherlands. Two GPs independently judged the medical necessity of the contacts of all patients in this study. We examined characteristics, views and motives of patients with medically necessary contacts and those without medically necessary contacts. Descriptive statistics were used to describe the characteristics, views and reasons of the patients with medically unnecessary contacts and medically necessary contacts. Differences between these groups were tested with chi-square tests. The response rate was 32.3 % (N = 646). Of the nonurgent contacts 30.4 % were judged as medically necessary (95 % CI 27.0-34.2). Compared to patients with nonurgent but medically necessary contacts, patients with medically unnecessary contacts were younger and were more often frequent attenders. They had longer-existing problems, lower self-assessed urgency, and more often believed GP cooperatives are intended for all help requests. Worry was the most frequently mentioned motive for contacting a GP cooperative for patients with a medically unnecessary contact (45.3 %) and a perceived need to see a GP for patients with a medically necessary contact (44.2 %). Perceived availability (5.8 %) and accessibility (8.3 %) of a patient's own GP played a role for some patients. Motives for contacting a GP cooperative are mostly

  9. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  10. Eigenfunctions and heat kernels of super Maass Laplacians on the super Poincaré upper half-plane

    NASA Astrophysics Data System (ADS)

    Oshima, Kazuto

    1992-03-01

    Heat kernels of ``super Maass Laplacians'' are explicitly constructed on super Poincaré upper half-plane by a serious treatment of a complete set of eigenfunctions. By component decomposition an explicit treatment can be done for arbitrary weight and a knowledge of classical Maass Laplacians becomes helpful. The result coincides with that of Aoki [Commun. Math. Phys. 117, 405 (1988)] which was obtained by solving differential equations.

  11. Numerical analysis of right-half plane zeros for a single-link manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Girvin, Douglas Lynn

    1992-01-01

    The purpose of this research is to further develop an understanding of how nonminimum phase zero location is affected by structural link design. As the demand for light-weight robots that can operate in a large workspace increases, the structural flexibility of the links become more of an issue in controls problems. When the objective is to accurately position the tip while the robot is actuated at the base, the system is nonminimum phase. One important characteristic of nonminimum phase systems is system zeros in the right half of the Laplace plane. The ability to pick the location of these nonminimum phase zeros would give the designer a new freedom similar to pole placement. The research targets a single-link manipulator operating in the horizontal plane and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer matrix theory, one can consider link designs that have variable cross-sections along the length of the beam. A FORTRAN program was developed to determine the location of poles and zeros given the system model. The program was used to confirm previous research on nonminimum phase systems, and develop a relationship for designing linearly tapered links. The method allows the designer to choose the location of the first pole and zero and then defines the appropriate taper to match the desired locations. With the pole and zero location fixes, the designer can independently change the link's moment of inertia about its axis of rotation by adjusting the height of the beam. These results can be applied to inverse dynamic algorithms currently under development at Georgia Tech.

  12. Steinhaus’ Geometric Location Problem for Random Samples in the Plane.

    DTIC Science & Technology

    1982-05-11

    NAL 411R A1, ’I 7 - I STEINHAUS ’ GEOMETRIC LOCATION PROBLEM FOR RANDOM SAMPLES IN THE PLANE By Dorit Hochbaum and J. Michael Steele TECHNICAL REPORT...DEPARTMENT OF STATISTICS -Dltrib’ytion/ STANFORD UNIVERSITY A-I.abilty Codes STANFORD, CALIFORNIA Dist Spciat ecial Steinhaus ’ Geometric Location Problem for...Random Samples in the Plane By Dorit Hochbaum and J. Michael Steele I. Introduction. The work of H. Steinhaus U wf94 as apparently the first explicit

  13. Contact problem for a composite material with nacre inspired microstructure

    NASA Astrophysics Data System (ADS)

    Berinskii, Igor; Ryvkin, Michael; Aboudi, Jacob

    2017-12-01

    Bi-material composites with nacre inspired brick and mortar microstructures, characterized by stiff elements of one phase with high aspect ratio separated by thin layers of the second one, are considered. Such microstructure is proved to provide an efficient solution for the problem of a crack arrest. However, contrary to the case of a homogeneous material, an external pressure, applied to a part of the composite boundary, can cause significant tensile stresses which increase the danger of crack nucleation. Investigation of the influence of microstructure parameters on the magnitude of tensile stresses is performed by means of the classical Flamant-like problem of an orthotropic half-plane subjected to a normal external distributed loading. Adequate analysis of this problem represents a serious computational task due to the geometry of the considered layout and the high contrast between the composite constituents. This difficulty is presently circumvented by deriving a micro-to-macro analysis in the framework of which an analytical solution of the auxiliary elasticity problem, followed by the discrete Fourier transform and the higher-order theory are employed. As a result, full scale continuum modeling of both composite constituents without employing any simplifying assumptions is presented. In the framework of the present proposed modeling, the influence of stiff elements aspect ratio on the overall stress distribution is demonstrated.

  14. Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane

    NASA Astrophysics Data System (ADS)

    Hu, Wenjie; Duan, Yueliang

    2018-04-01

    We consider a delayed reaction-diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson's blowfly equation and the diffusive Mackey-Glass equation.

  15. Chaotic motion of a harmonically bound charged particle in a magnetic field, in the presence of a half-plane barrier

    NASA Astrophysics Data System (ADS)

    Geurts, Bernard J.; Wiegel, Frederik W.; Creswick, Richard J.

    1990-05-01

    The motion in the plane of an harmonically bound charged particle interacting with a magnetic field and a half-plane barrier along the positive x-axis is studied. The magnetic field is perpendicular to the plane in which the particle moves. This motion is integrable in between collisions of the particle with the barrier. However, the overall motion of the particle is very complicated. Chaotic regions in phase space exist next to island structures associated with linearly stable periodic orbits. We study in detail periodic orbits of low period and in particular their bifurcation behavior. Independent sequences of period doubling bifurcations and resonant bifurcations are observed associated with independent fixed points in the Poincaré section. Due to the perpendicular magnetic field an orientation is induced on the plane and time-reversal symmetry is broken.

  16. Isochronous extension of the Hamiltonian describing free motion in the Poincaré half-plane: Classical and quantum treatments

    NASA Astrophysics Data System (ADS)

    Calogero, F. A.; Leyvraz, F.

    2007-09-01

    We modify (in two different manners) the Hamiltonian describing motions in the Poincaré half-plane so that the modified Hamiltonians thereby obtained are entirely isochronous: indeed, in the classical context, all the motions they entail are periodic with the same period. We then investigate suitably quantized versions of these systems and show that their spectra are equispaced.

  17. Mixed formulation for frictionless contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Kyun O.

    1989-01-01

    Simple mixed finite element models and a computational precedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large rotation theory of the structure with the effects of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The element characteristic array are obtained by using a modified form of the two-field Hellinger-Reissner mixed variational principle. The internal forces and the Lagrange multipliers are allowed to be discontinuous at interelement boundaries. The Newton-Raphson iterative scheme is used for the solution of the nonlinear algebraic equations, and the determination of the contact area and the contact pressures.

  18. The planes of satellite galaxies problem, suggested solutions, and open questions

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marcel S.

    2018-02-01

    Satellite galaxies of the Milky Way and of the Andromeda galaxy have been found to preferentially align in significantly flattened planes of satellite galaxies, and available velocity measurements are indicative of a preference of satellites in those structures to co-orbit. There is an increasing evidence that such kinematically correlated satellite planes are also present around more distant hosts. Detailed comparisons show that similarly anisotropic phase-space distributions of sub-halos are exceedingly rare in cosmological simulations based on the ΛCDM paradigm. Analogs to the observed systems have frequencies of ≤ 0.5% in such simulations. In contrast to other small-scale problems, the satellite planes issue is not strongly affected by baryonic processes because the distribution of sub-halos on scales of hundreds of kpc is dominated by gravitational effects. This makes the satellite planes one of the most serious small-scale problems for ΛCDM. This review summarizes the observational evidence for planes of satellite galaxies in the Local Group and beyond, and provides an overview of how they compare to cosmological simulations. It also discusses scenarios which aim at explaining the coherence of satellite positions and orbits, and why they all are currently unable to satisfactorily resolve the issue.

  19. On contact problems of elasticity theory

    NASA Technical Reports Server (NTRS)

    Kalandiya, A. I.

    1986-01-01

    Certain contact problems are reviewed in the two-dimensional theory of elasticity when round bodies touch without friction along most of the boundary and, therefore, Herz' hypothesis on the smallness of the contact area cannot be used. Fundamental equations were derived coinciding externally with the equation in the theory of a finite-span wing with unkown parameter. These equations are solved using Multhopp's well-known technique, and numerical calculations are performed in specific examples.

  20. A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems

    NASA Astrophysics Data System (ADS)

    Liu, X.; Banerjee, J. R.

    2017-03-01

    A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.

  1. The essential spectrum of Schrödinger operators with asymptotically constant magnetic fields on the Poincaré upper-half plane

    NASA Astrophysics Data System (ADS)

    Inahama, Yuzuru; Shirai, Shin-ichi

    2003-01-01

    We study the essential spectrum of the magnetic Schrödinger operators on the Poincaré upper-half plane and establish a hyperbolic analog of Iwatsuka's result [J. Math. Kyoto Univ. 23(3), 475-480 (1983)] on the stability of the essential spectrum under perturbations from constant magnetic fields.

  2. Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness

    NASA Astrophysics Data System (ADS)

    Andersson, P. B. U.; Kropp, W.

    2008-11-01

    Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model

  3. A system-approach to the elastohydrodynamic lubrication point-contact problem

    NASA Technical Reports Server (NTRS)

    Lim, Sang Gyu; Brewe, David E.

    1991-01-01

    The classical EHL (elastohydrodynamic lubrication) point contact problem is solved using a new system-approach, similar to that introduced by Houpert and Hamrock for the line-contact problem. Introducing a body-fitted coordinate system, the troublesome free-boundary is transformed to a fixed domain. The Newton-Raphson method can then be used to determine the pressure distribution and the cavitation boundary subject to the Reynolds boundary condition. This method provides an efficient and rigorous way of solving the EHL point contact problem with the aid of a supercomputer and a promising method to deal with the transient EHL point contact problem. A typical pressure distribution and film thickness profile are presented and the minimum film thicknesses are compared with the solution of Hamrock and Dowson. The details of the cavitation boundaries for various operating parameters are discussed.

  4. The three-wave equation on the half-line

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Fan, Engui

    2014-01-01

    The Fokas method is used to analyze the initial-boundary value problem for the three-wave equation p-{bi-bj}/{ai-aj}p+∑k ({bk-bj}/{ak-aj}-{bi-bk}/{ai-ak})pp=0, i,j,k=1,2,3, on the half-line. Assuming that the solution p(x,t) exists, we show that it can be recovered from its initial and boundary values via the solution of a Riemann-Hilbert problem formulated in the plane of the complex spectral parameter λ.

  5. Analysis of a Generally Oriented Crack in a Functionally Graded Strip Sandwiched Between Two Homogeneous Half Planes

    NASA Technical Reports Server (NTRS)

    Shbeeb, N.; Binienda, W. K.; Kreider, K.

    1999-01-01

    The driving forces for a generally oriented crack embedded in a Functionally Graded strip sandwiched between two half planes are analyzed using singular integral equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation. Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are calculated. The Stress Intensity Factors are compared for accuracy with previously published results. Parametric studies are conducted for various nonhomogeneity ratios, crack lengths. crack orientation and thickness of the strip. It is shown that the SERR is more complete and should be used for crack propagation analysis.

  6. Microbial contamination of contact lenses after scaling and root planing using ultrasonic scalers with and without protective eyewear: A clinical and microbiological study.

    PubMed

    Afzha, Rooh; Chatterjee, Anirban; Subbaiah, Shobha Krishna; Pradeep, Avani Rangaraju

    2016-01-01

    Ultrasonic scaler is a preferential treatment modality among the clinicians. However, the aerosol/splatter generated is a concern for patients and practitioners. Therefore, the purpose of this study was to evaluate contamination of contact lenses of the dentist after scaling and root planing using ultrasonic scalers with and without protective eyewear. Thirty patients were randomly selected for scaling and root planing and divided into 2 groups of 15 each. Group A - dentist wearing contact lenses and protective eyewear. Group B - dentist wearing only contact lenses. After scaling and root planing using ultrasonic scalers, the lenses were subjected to culture and 16S rRNA (16S ribosomal RNA) gene sequencing. In Group A - 15 out of thirty samples were contaminated, in Group B - all the thirty samples were contaminated. Most of the samples showed Gram-positive bacteria and 5 samples were contaminated with fungi. 16S rRNA gene sequencing of forty contaminated samples showed that 31 were contaminated with Streptococcus mutans and 9 with Staphylococcus aureus. Keeping in mind the limitation of the study for the absence of negative control, we would like to conclude that dental practitioners should better avoid contact lenses in a dental setup because of the risk of contamination of the contact lenses from the various dental procedures which can produce aerosol/splatter and if worn, it is recommended to wear protective eyewear.

  7. C1,1 regularity for degenerate elliptic obstacle problems

    NASA Astrophysics Data System (ADS)

    Daskalopoulos, Panagiota; Feehan, Paul M. N.

    2016-03-01

    The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.

  8. Microbial contamination of contact lenses after scaling and root planing using ultrasonic scalers with and without protective eyewear: A clinical and microbiological study

    PubMed Central

    Afzha, Rooh; Chatterjee, Anirban; Subbaiah, Shobha Krishna; Pradeep, Avani Rangaraju

    2016-01-01

    Background: Ultrasonic scaler is a preferential treatment modality among the clinicians. However, the aerosol/splatter generated is a concern for patients and practitioners. Therefore, the purpose of this study was to evaluate contamination of contact lenses of the dentist after scaling and root planing using ultrasonic scalers with and without protective eyewear. Materials and Methods: Thirty patients were randomly selected for scaling and root planing and divided into 2 groups of 15 each. Group A – dentist wearing contact lenses and protective eyewear. Group B - dentist wearing only contact lenses. After scaling and root planing using ultrasonic scalers, the lenses were subjected to culture and 16S rRNA (16S ribosomal RNA) gene sequencing. Results: In Group A – 15 out of thirty samples were contaminated, in Group B – all the thirty samples were contaminated. Most of the samples showed Gram-positive bacteria and 5 samples were contaminated with fungi. 16S rRNA gene sequencing of forty contaminated samples showed that 31 were contaminated with Streptococcus mutans and 9 with Staphylococcus aureus. Conclusion: Keeping in mind the limitation of the study for the absence of negative control, we would like to conclude that dental practitioners should better avoid contact lenses in a dental setup because of the risk of contamination of the contact lenses from the various dental procedures which can produce aerosol/splatter and if worn, it is recommended to wear protective eyewear. PMID:27563200

  9. Non-steady state modelling of wheel-rail contact problem

    NASA Astrophysics Data System (ADS)

    Guiral, A.; Alonso, A.; Baeza, L.; Giménez, J. G.

    2013-01-01

    Among all the algorithms to solve the wheel-rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact.

  10. Magneto-transport Characterization of Thin Film In-plane and Cross-plane Conductivity

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Grayson, Matthew

    Thin films with highly anisotropic in-plane and cross-plane conductivities are widely used in devices, such as infrared emitters and detectors, and the proper magneto-transport characterization in both directions can reveal information about the doping density, impurities, carrier life times and band structure. This work introduces a novel method for deducing the complete anisotropic electrical conductivity tensor of such an anisotropic resistive layer atop a highly conducting bottom contact, which is a standard part of the device structure. Three strip-line contacts separated by a length scale comparable to the film thickness are applied atop the resistive thin film layer of interest, with the highly conducting back-plane as a back-contact. The potential distribution in the device is modeled, using both scaling and conformal transformation to minimize the calculated volume. As a proof of concept, triple strip-line devices for GaAs and GaAs/AlGaAs superlattice thin films are fabricated. To achieve narrow strip-line contacts with sub-micron scale widths, non-annealed Ni/Au contacts form ohmic contacts to a patterned n+-GaAs cap layer atop the anisotropic thin films. Preliminary experimental data will be presented as a validation of this method. Acknowledgment: Funded by AFOSR FA9550-15-1-0377 and AFOSR FA9550-15-1-0247.

  11. The plane elasticity problem for a crack near the curved surface

    NASA Astrophysics Data System (ADS)

    Lebedeva, M. V.

    2018-05-01

    The unconventional approach to the plane elasticity problem for a crack near the curved surface is presented. The solution of the problem is considered in the form of the sum of solutions of two auxiliary problems. The first one describes the plane with a crack, whose surfaces are loaded by some unknown self-balanced force p(x). The second problem is dealing with the semi-infinite region with the boundary conditions equal to the difference of boundary conditions of the problem to be sought and the solution of the first problem on the region border. The unknown function p(x) is supposed to be approximated with the sufficient level of accuracy by N order polynomial with complex coefficients. This paper is aimed to determine the critical loads causing the spontaneous growth of cracks. The angles of propagation of the stationary cracks located in the region with a ledge or a cut are found. The influence of length of a crack on the bearing ability of an elastic body with the curved surface is investigated. The effect of a form of the concentrator and orientation of a crack to the fracture load subject to the different combinations of forces acting both on a surface of a crack and at infinity is analysed. The results of this research can be applied for calculation of the durability of thin-walled vessels of pressure, e.g., chemical reactors, in order to ensure their ecological safety.

  12. Investigating Plane Geometry Problem-Solving Strategies of Prospective Mathematics Teachers in Technology and Paper-and-Pencil Environments

    ERIC Educational Resources Information Center

    Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc

    2015-01-01

    This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…

  13. Multimaterial topology optimization of contact problems using phase field regularization

    NASA Astrophysics Data System (ADS)

    Myśliński, Andrzej

    2018-01-01

    The numerical method to solve multimaterial topology optimization problems for elastic bodies in unilateral contact with Tresca friction is developed in the paper. The displacement of the elastic body in contact is governed by elliptic equation with inequality boundary conditions. The body is assumed to consists from more than two distinct isotropic elastic materials. The materials distribution function is chosen as the design variable. Since high contact stress appears during the contact phenomenon the aim of the structural optimization problem is to find such topology of the domain occupied by the body that the normal contact stress along the boundary of the body is minimized. The original cost functional is regularized using the multiphase volume constrained Ginzburg-Landau energy functional rather than the perimeter functional. The first order necessary optimality condition is recalled and used to formulate the generalized gradient flow equations of Allen-Cahn type. The optimal topology is obtained as the steady state of the phase transition governed by the generalized Allen-Cahn equation. As the interface width parameter tends to zero the transition of the phase field model to the level set model is studied. The optimization problem is solved numerically using the operator splitting approach combined with the projection gradient method. Numerical examples confirming the applicability of the proposed method are provided and discussed.

  14. Children Exposed to Intimate Partner Violence: Conduct Problems, Interventions, and Partner Contact With the Child.

    PubMed

    Jouriles, Ernest N; Rosenfield, David; McDonald, Renee; Vu, Nicole L; Rancher, Caitlin; Mueller, Victoria

    2018-01-01

    Children's contact with their mother's violent partner is a potentially important variable for understanding conduct problems among children exposed to intimate partner violence (IPV). Within the context of a treatment study evaluating a parenting intervention (Project Support) for families exiting a domestic violence shelter, this study tested four hypotheses regarding children's postshelter contact with their mother's violent partner: (1) participation in Project Support decreases the frequency of children's contact with their mother's violent partner; (2) postshelter contact is positively associated with children's conduct problems and is associated more strongly for girls than boys; (3) frequency of contact mediates Project Support's effects on children's conduct problems; and (4) frequency of contact is positively associated with IPV and partner-child aggression, and these latter associations help explain effects of contact on children's conduct problems. Participants were 66 women (26 White) with a child (32 girls) between 4 and 9 years. Families were assessed every 4 months for 20 months after departure from a domestic violence shelter. Project Support reduced the extent of partner-child contact. In addition, within-subject changes in contact over time were associated with girls', but not boys', conduct problems, and it partially mediated effects of Project Support on girls' conduct problems. Higher average levels of contact over time were also positively associated with further incidents of IPV and partner-child aggression, and partner-child aggression helped explain effects of contact on children's conduct problems. Children's postshelter contact with the mother's violent partner relates positively to several negative family outcomes.

  15. Split-field pupil plane determination apparatus

    DOEpatents

    Salmon, Joseph T.

    1996-01-01

    A split-field pupil plane determination apparatus (10) having a wedge assembly (16) with a first glass wedge (18) and a second glass wedge (20) positioned to divide a laser beam (12) into a first laser beam half (22) and a second laser beam half (24) which diverge away from the wedge assembly (16). A wire mask (26) is positioned immediately after the wedge assembly (16) in the path of the laser beam halves (22, 24) such that a shadow thereof is cast as a first shadow half (30) and a second shadow half (32) at the input to a relay telescope (14). The relay telescope (14) causes the laser beam halves (22, 24) to converge such that the first shadow half (30) of the wire mask (26) is aligned with the second shadow half (32) at any subsequent pupil plane (34).

  16. Quantum mechanics on the h-deformed quantum plane

    NASA Astrophysics Data System (ADS)

    Cho, Sunggoo

    1999-03-01

    We find the covariant deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended h-deformed quantum plane and solve the Schrödinger equations explicitly for some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle on the Poincaré half-plane, a surface of constant negative Gaussian curvature. We show that the bound state energy spectra for particles under specific potentials depend explicitly on the deformation parameter h. Moreover, it is shown that bound states can survive on the quantum plane in a limiting case where bound states on the Poincaré half-plane disappear.

  17. Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.

    2017-12-01

    In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.

  18. A gradient based algorithm to solve inverse plane bimodular problems of identification

    NASA Astrophysics Data System (ADS)

    Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing

    2018-02-01

    This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.

  19. Application of an enriched FEM technique in thermo-mechanical contact problems

    NASA Astrophysics Data System (ADS)

    Khoei, A. R.; Bahmani, B.

    2018-02-01

    In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.

  20. Sub-half-micron contact window design with 3D photolithography simulator

    NASA Astrophysics Data System (ADS)

    Brainerd, Steve K.; Bernard, Douglas A.; Rey, Juan C.; Li, Jiangwei; Granik, Yuri; Boksha, Victor V.

    1997-07-01

    In state of the art IC design and manufacturing certain lithography layers have unique requirements. Latitudes and tolerances that apply to contacts and polysilicon gates are tight for such critical layers. Industry experts are discussing the most cost effective ways to use feature- oriented equipment and materials already developed for these layers. Such requirements introduce new dimensions into the traditionally challenging task for the photolithography engineer when considering various combinations of multiple factors to optimize and control the process. In addition, he/she faces a rapidly increasing cost of experiments, limited time and scarce access to equipment to conduct them. All the reasons presented above support simulation as an ideal method to satisfy these demands. However lithography engineers may be easily dissatisfied with a simulation tool when discovering disagreement between the simulation and experimental data. The problem is that several parameters used in photolithography simulation are very process specific. Calibration, i.e. matching experimental and simulation data using a specific set of procedures allows one to effectively use the simulation tool. We present results of a simulation based approach to optimize photolithography processes for sub-0.5 micron contact windows. Our approach consists of: (1) 3D simulation to explore different lithographic options, (2) calibration to a range of process conditions with extensive use of specifically developed optimization techniques. The choice of a 3D simulator is essential because of 3D nature of the problem of contact window design. We use DEPICT 4.1. This program performs fast aerial image simulation as presented before. For 3D exposure the program uses an extension to three-dimensions of the high numerical aperture model combined with Fast Fourier Transforms for maximum performance and accuracy. We use Kim (U.C. Berkeley) model and the fast marching Level Set method respectively for the

  1. Promoting Health by Addressing Basic Needs: Effect of Problem Resolution on Contacting Health Referrals.

    PubMed

    Thompson, Tess; Kreuter, Matthew W; Boyum, Sonia

    2016-04-01

    Members of vulnerable populations have heightened needs for health services. One advantage of integrating health risk assessment and referrals into social service assistance systems such as 2-1-1 is that such systems help callers resolve problems in other areas (e.g., housing). Callers to 2-1-1 in Missouri (N= 1,090) with at least one behavioral risk factor or cancer screening need were randomly assigned to one of three health referral interventions: verbal referrals only, verbal referrals + a tailored mailed reminder, or verbal referrals + telephone health navigator. After 1 month, we assessed whether the nonhealth problems that prompted the 2-1-1 call had been resolved. Logistic regression estimated effects of having the problem resolved on calling a health referral. Callers were predominantly female (85%) and had a high school education or less (61%); nearly half (47%) had incomes under $10,000. The most common service requests were for utility assistance (35%), home/family problems (23%), and rent/mortgage assistance (12%). At follow-up, 38% of callers reported that all problems prompting their 2-1-1 call had been resolved, and 24% reported calling a health referral. Resolving all problems prompting the 2-1-1 call was associated with a higher odds of contacting a health referral (odds ratio = 1.44, 95% confidence interval [1.02, 2.05]) compared to people whose problems were not resolved. Multifaceted interventions that help meet non-health-related needs and provide support in reaching health-related goals may promote health in vulnerable populations. © 2015 Society for Public Health Education.

  2. Promoting Health by Addressing Basic Needs: Effect of Problem Resolution on Contacting Health Referrals

    PubMed Central

    Thompson, Tess; Kreuter, Matthew; Boyum, Sonia

    2016-01-01

    Members of vulnerable populations have heightened needs for health services. One advantage of integrating health risk assessment and referrals into social service assistance systems such as 2-1-1 is that such systems help callers resolve problems in other areas (e.g. housing). Callers to 2-1-1 in Missouri (N=1090) with at least one behavioral risk factor or cancer screening need were randomly assigned to one of three health referral interventions: verbal referrals only, verbal referrals + a tailored mailed reminder, or verbal referrals + telephone health navigator. After one month, we assessed whether the non-health problems that prompted the 2-1-1 call had been resolved. Logistic regression estimated effects of having the problem resolved on calling a health referral. Callers were predominantly female (85%) and had a high school education or less (61%); nearly half (47%) had incomes under $10,000. The most common service requests were for utility assistance (35%), home/family problems (23%), and rent/mortgage assistance (12%). At follow-up, 38% of callers reported that all problems prompting their 2-1-1 call had been resolved, and 24% reported calling a health referral. Resolving all problems prompting the 2-1-1 call was associated with a higher odds of contacting a health referral (OR = 1.44, 95% CI 1.02-2.05) compared to people whose problems were not resolved. Multifaceted interventions that help meet non-health-related needs and provide support in reaching health-related goals may promote health in vulnerable populations. PMID:26293458

  3. Wiimote Experiments: 3-D Inclined Plane Problem for Reinforcing the Vector Concept

    ERIC Educational Resources Information Center

    Kawam, Alae; Kouh, Minjoon

    2011-01-01

    In an introductory physics course where students first learn about vectors, they oftentimes struggle with the concept of vector addition and decomposition. For example, the classic physics problem involving a mass on an inclined plane requires the decomposition of the force of gravity into two directions that are parallel and perpendicular to the…

  4. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  5. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.

    1988-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip terminating at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  6. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Joseph, P. F.; Kaya, A. C.

    1991-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  7. An Interactive Artificial Cutting Plane Method for Bicriterion Integer Programming Problems

    DTIC Science & Technology

    1992-08-01

    AUTHOR(S) Diane Breivik Allen, 1st Lt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AFIT Student Attending...INTERACTIVE ARTIFICIAL CUTTING PLANE METHOD FOR BICRITERION INTEGER PROGRAMMING PROBLEMS By Diane Breivik Allen A Thesis Submitted to the Faculty of...ITfiSRA&1 DTIC TAB 0 Unannounced 0 Justirication By BY Diane Breivik Allen Distributlon/ Availability CQdes Avail and/or Dist Special Approved: DTI

  8. A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Glen, E-mail: Glen.Hansen@inl.gov

    2011-07-20

    Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear fuel rod, which consists of cylindrical pellets of uranium dioxide (UO{sub 2}) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less

  9. A Jacobian-Free Newton Krylov Method for Mortar-Discretized Thermomechanical Contact Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glen Hansen

    2011-07-01

    Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear reactor fuel rod, which consists of cylindrical pellets of uranium dioxide (UO2) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less

  10. A Bridge between Two Important Problems in Optics and Electrostatics

    ERIC Educational Resources Information Center

    Capelli, R.; Pozzi, G.

    2008-01-01

    It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…

  11. Modeling and simulation of dynamics of a planar-motion rigid body with friction and surface contact

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Lv, Jing

    2017-07-01

    The modeling and numerical method for the dynamics of a planar-motion rigid body with frictional contact between plane surfaces were presented based on the theory of contact mechanics and the algorithm of linear complementarity problem (LCP). The Coulomb’s dry friction model is adopted as the friction law, and the normal contact forces are expressed as functions of the local deformations and their speeds in contact bodies. The dynamic equations of the rigid body are obtained by the Lagrange equation. The transition problem of stick-slip motions between contact surfaces is formulated and solved as LCP through establishing the complementary conditions of the friction law. Finally, a numerical example is presented as an example to show the application.

  12. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Fan, Zhi-Qiang; Jiang, Xiang-Wei; Luo, Jun-Wei; Jiao, Li-Ying; Huang, Ru; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As Moore's law approaches its end, two-dimensional (2D) materials are intensely studied for their potentials as one of the "More than Moore' (MM) devices. However, the ultimate performance limits and the optimal design parameters for such devices are still unknown. One common problem for the 2D-material-based device is the relative weak on-current. In this study, two-dimensional Schottky-barrier field-effect transistors (SBFETs) consisting of in-plane heterojunctions of 1T metallic-phase and 2H semiconducting-phase transition-metal dichalcogenides (TMDs) are studied following the recent experimental synthesis of such devices at a much larger scale. Our ab initio simulation reveals the ultimate performance limits of such devices and offers suggestions for better TMD materials. Our study shows that the Schottky-barrier heights (SBHs) of the in-plane 1T/2H contacts are smaller than the SBHs of out-of-plane contacts, and the contact coupling is also stronger in the in-plane contact. Due to the atomic thickness of the monolayer TMD, the average subthreshold swing of the in-plane TMD-SBFETs is found to be close to the limit of 60 mV/dec, and smaller than that of the out-of-plane TMD-SBFET device. Different TMDs are considered and it is found that the in-plane WT e2-SBFET provides the best performance and can satisfy the performance requirement of the sub-10-nm high-performance transistor outlined by the International Technology Roadmap for Semiconductors, and thus could be developed into a viable sub-10-nm MM device in the future.

  13. New Results on Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    He, J.; Qian, S.; Zhu, L.; Liu, L.; Liao, W.

    2014-08-01

    Contact binary star is a kind of close binary with the strongest interaction binary system. Their formations and evolutions are unsolved problems in astrophysics. Since 2000, our groups have observed and studied more than half a hundred of contact binaries. In this report, I will summarize our new results of some contact binary stars (e.g. UZ CMi, GSC 03526-01995, FU Dra, GSC 0763-0572, V524 Mon, MR Com, etc.). They are as follow: (1) We discovered that V524 Mon and MR Com are shallow-contact binaries with their period decreasing; (2) GSC 03526-01995 is middle-contact binary without a period increasing or decreasing continuously; (3) UZ CMi, GSC 0763-0572 and FU Dra are middle-contact binaries with the period increasing continuously; (4) UZ CMi, GSC 03526-01995, FU Dra and V524 Mon show period oscillation which may imply the presence of additional components in these contact binaries.

  14. The evaluation of shear deformation for contact analysis with large displacement

    NASA Astrophysics Data System (ADS)

    Nizam, Z. M.; Obiya, H.; Ijima, K.; Azhar, A. T. S.; Hazreek, Z. A. M.; Shaylinda, M. Z. N.

    2018-04-01

    A common problem encountered in the study of contact problem is the failure to obtain stable and accurate convergence result when the contact node is close to the element edge, which is referred as “critical area”. In previous studies, the modification of the element force equation to apply it to a node-element contact problem using the Euler-Bernoulli beam theory [1]. A simple single-element consists two edges and a contact point was used to simulate contact phenomenon of a plane frame. The modification was proven to be effective by the converge-ability of the unbalanced force at the tip of element edge, which enabled the contact node to “pass-through”, resulting in precise results. However, in another recent study, we discover that, if shear deformation based on Timoshenko beam theory is taken into consideration, a basic simply supported beam coordinate afforded a much simpler and more efficient technique for avoiding the divergence of the unbalanced force in the “critical area”. Using our unique and robust Tangent Stiffness Method, the improved equation can be used to overcome any geometrically nonlinear analyses, including those involving extremely large displacements.

  15. Estimating the Contact Endurance of the AISI 321 Stainless Steel Under Contact Gigacycle Fatigue Tests

    NASA Astrophysics Data System (ADS)

    Savrai, R. A.; Makarov, A. V.; Osintseva, A. L.; Malygina, I. Yu.

    2018-02-01

    Mechanical testing of the AISI 321 corrosion resistant austenitic steel for contact gigacycle fatigue has been conducted with the application of a new method of contact fatigue testing with ultrasonic frequency of loading according to a pulsing impact "plane-to-plane" contact scheme. It has been found that the contact endurance (the ability to resist the fatigue spalling) of the AISI 321 steel under contact gigacycle fatigue loading is determined by its plasticity margin and the possibility of additional hardening under contact loading. It is demonstrated that the appearance of localized deep and long areas of spalling on a material surface can serve as a qualitative characteristic for the loss of the fatigue strength of the AISI 321 steel under impact contact fatigue loading. The value of surface microhardness measured within contact spots and the maximum depth of contact damages in the peripheral zone of contact spots can serve as quantitative criteria for that purpose.

  16. Patient problems, advanced practice nurse (APN) interventions, time and contacts among five patient groups.

    PubMed

    Brooten, Dorothy; Youngblut, JoAnne M; Deatrick, Janet; Naylor, Mary; York, Ruth

    2003-01-01

    To describe patient problems and APN interventions in each of five clinical trials and to establish links among patient problems, APN interventions, APN time and number of contacts, patient outcomes, and health care costs. Analysis of 333 interaction logs created by APNs during five randomized controlled trials: (a) very low birthweight infants (n = 39); (b) women with unplanned cesarean birth (n = 61), (c) high-risk pregnancy (n = 44), and (d) hysterectomy (n = 53); and (e) elders with cardiac medical and surgical diagnoses (n = 139). Logs containing recordings of all APN interactions with participants, APN time and type of patient contact were content analyzed with the smallest phrase or sentence representing a "unit." These units were then classified using the Omaha Classification System to determine patient problems and APN interventions. Groups were compared concerning total amount of APN time, number of contacts per patient, and mean length of time per APN contact. All studies were conducted in the United States. Groups with greater mean APN time and contacts per patient had greater improvements in patients' outcomes and greater health care cost savings. Of the 150,131 APN interventions, surveillance was the predominant APN function in all five patient groups. Health teaching, guidance, and counseling was the second most frequent category of APN intervention in four of the five groups. In all five groups, treatments and procedures accounted for < 1% of total APN interventions. Distribution of patient problems (N = 150,131) differed across groups reflecting the health care problems common to the group. Dose of APN time and contacts makes a difference in improving patient outcomes and reducing health care costs. Skills needed by APNs in providing transitional care include well-developed skills in assessing, teaching, counseling, communicating, collaborating, knowing health behaviors, negotiating systems, and having condition-specific knowledge about different

  17. From the Nano- to the Macroscale - Bridging Scales for the Moving Contact Line Problem

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Sibley, David; Goddard, Benjamin; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2016-11-01

    The moving contact line problem remains an unsolved fundamental problem in fluid mechanics. At the heart of the problem is its multiscale nature: a nanoscale region close to the solid boundary where the continuum hypothesis breaks down, must be resolved before effective macroscale parameters such as contact line friction and slip can be obtained. To capture nanoscale properties very close to the contact line and to establish a link to the macroscale behaviour, we employ classical density-functional theory (DFT), in combination with extended Navier-Stokes-like equations. Using simple models for viscosity and slip at the wall, we compare our computations with the Molecular Kinetic Theory, by extracting the contact line friction, depending on the imposed temperature of the fluid. A key fluid property captured by DFT is the fluid layering at the wall-fluid interface, which has a large effect on the shearing properties of a fluid. To capture this crucial property, we propose an anisotropic model for the viscosity, which also allows us to scrutinize the effect of fluid layering on contact line friction.

  18. History-Dependent Problems with Applications to Contact Models for Elastic Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław

    We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problemmore » which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations.« less

  19. Cutting planes for the multistage stochastic unit commitment problem

    DOE PAGES

    Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

    2016-04-20

    As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less

  20. Cutting planes for the multistage stochastic unit commitment problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul

    As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less

  1. Stiffness of frictional contact of dissimilar elastic solids

    DOE PAGES

    Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; ...

    2017-12-22

    The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less

  2. Stiffness of frictional contact of dissimilar elastic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.

    The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less

  3. Stiffness of frictional contact of dissimilar elastic solids

    NASA Astrophysics Data System (ADS)

    Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; Xu, Haitao; Pharr, George M.

    2018-03-01

    The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This paper gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the friction coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations - adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. The correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.

  4. Contact problem for an elastic reinforcement bonded to an elastic plate

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Civelek, M. B.

    1974-01-01

    The contact problem for a thin elastic reinforcement bonded to an elastic plate is considered. The stiffening layer is treated as an elastic membrane and the base plate is assumed to be an elastic continuum. The bonding between the two materials is assumed to be either one of direct adhesion or through a thin adhesive layer which is treated as a shear spring. The solution for the simple case in which both the stiffener and the base plate are treated as membranes is also given. The contact stress is obtained for a series of numerical examples. In the direct adhesion case the contact stress becomes infinite at the stiffener ends with a typical square root singularity for the continuum model and behaving as a delta function for the membrane model. In the case of bonding through an adhesive layer the contact stress becomes finite and continuous along the entire contact area.

  5. A Class of time-fractional hemivariational inequalities with application to frictional contact problem

    NASA Astrophysics Data System (ADS)

    Zeng, Shengda; Migórski, Stanisław

    2018-03-01

    In this paper a class of elliptic hemivariational inequalities involving the time-fractional order integral operator is investigated. Exploiting the Rothe method and using the surjectivity of multivalued pseudomonotone operators, a result on existence of solution to the problem is established. Then, this abstract result is applied to provide a theorem on the weak solvability of a fractional viscoelastic contact problem. The process is quasistatic and the constitutive relation is modeled with the fractional Kelvin-Voigt law. The friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals. The variational formulation of this problem leads to a fractional hemivariational inequality.

  6. Theory and application of equivalent transformation relationships between plane wave and spherical wave

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Yang, Zailin; Zhang, Jianwei; Yang, Yong

    2017-10-01

    Based on the governing equations and the equivalent models, we propose an equivalent transformation relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic issues in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent relationships between the geometry and the material properties. It indicates that the spherical wave problem in globular geometry can be transformed into the plane wave problem in the bar with variable property fields, and its inverse transformation is valid as well. Four different examples of wave motion problems in the inhomogeneous media are solved based on the presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the reflection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated problem easier.

  7. A constitutive law for finite element contact problems with unclassical friction

    NASA Technical Reports Server (NTRS)

    Plesha, M. E.; Steinetz, B. M.

    1986-01-01

    Techniques for modeling complex, unclassical contact-friction problems arising in solid and structural mechanics are discussed. A constitutive modeling concept is employed whereby analytic relations between increments of contact surface stress (i.e., traction) and contact surface deformation (i.e., relative displacement) are developed. Because of the incremental form of these relations, they are valid for arbitrary load-deformation histories. The motivation for the development of such a constitutive law is that more realistic friction idealizations can be implemented in finite element analysis software in a consistent, straightforward manner. Of particular interest is modeling of two-body (i.e., unlubricated) metal-metal, ceramic-ceramic, and metal-ceramic contact. Interfaces involving ceramics are of engineering importance and are being considered for advanced turbine engines in which higher temperature materials offer potential for higher engine fuel efficiency.

  8. Solution of the two-dimensional spectral factorization problem

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  9. Half-and-Half Palatoplasty.

    PubMed

    Han, Hyun Ho; Kang, In Sook; Rhie, Jong Won

    2014-08-01

    A 14-month-old child was diagnosed with a Veau Class II cleft palate. Von Langenbeck palatoplasty was performed for the right palate, and V-Y pushback palatoplasty was performed for the left palate. The child did not have a special problem during the surgery, and the authors were able to elongate the cleft by 10 mm. Contrary to preoperative concerns regarding the hybrid use of palatoplasties, the uvula and midline incisions remained balanced in the middle. The authors named this combination method "half-and-half palatoplasty" and plan to conduct a long-term follow up study as a potential solution that minimizes the complications of palatoplasty.

  10. Half-and-Half Palatoplasty

    PubMed Central

    Han, Hyun Ho; Kang, In Sook

    2014-01-01

    A 14-month-old child was diagnosed with a Veau Class II cleft palate. Von Langenbeck palatoplasty was performed for the right palate, and V-Y pushback palatoplasty was performed for the left palate. The child did not have a special problem during the surgery, and the authors were able to elongate the cleft by 10 mm. Contrary to preoperative concerns regarding the hybrid use of palatoplasties, the uvula and midline incisions remained balanced in the middle. The authors named this combination method "half-and-half palatoplasty" and plan to conduct a long-term follow up study as a potential solution that minimizes the complications of palatoplasty. PMID:28913201

  11. Enhanced current-perpendicular-to-plane giant magnetoresistance effect in half-metallic NiMnSb based nanojunctions with multiple Ag spacers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhenchao; Yamamoto, Tatsuya; Kubota, Takahide

    2016-06-06

    Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) heterostructure devices using half-metallic NiMnSb Heusler alloy electrodes with single, dual, and triple Ag spacers were fabricated. The NiMnSb alloy films and Ag spacers show (001) epitaxial growth in all CPP-GMR multilayer structures. The dual-spacer CPP-GMR nanojunction exhibited an enhanced CPP-GMR ratio of 11% (a change in the resistance-area product, ΔRA, of 3.9 mΩ μm{sup 2}) at room temperature, which is approximately twice (thrice) of 6% (1.3 mΩ μm{sup 2}) in the single-spacer device. The enhancement of the CPP-GMR effects in the dual-spacer devices could be attributed to improved interfacial spin asymmetry. Moreover, it was observedmore » that the CPP-GMR ratios increased monotonically as the temperatures decreased. At 4.2 K, a CPP-GMR ratio of 41% (ΔRA = 10.5 mΩ μm{sup 2}) was achieved in the dual-spacer CPP-GMR device. This work indicates that multispacer structures provide an efficient enhancement of CPP-GMR effects in half-metallic material-based CPP-GMR systems.« less

  12. From Number Lines to Graphs in the Coordinate Plane: Investigating Problem Solving across Mathematical Representations

    ERIC Educational Resources Information Center

    Earnest, Darrell

    2015-01-01

    This article reports on students' problem-solving approaches across three representations--number lines, coordinate planes, and function graphs--the axes of which conventional mathematics treats in terms of consistent geometric and numeric coordinations. I consider these representations to be a part of a "hierarchical representational…

  13. Criminal Justice Contact, Stressors, and Obesity-Related Health Problems Among Black Adults in the USA.

    PubMed

    Archibald, Paul C; Parker, Lauren; Thorpe, Roland

    2018-04-01

    Criminal justice contact-defined as lifetime arrest, parole, or incarceration, seems to exacerbate chronic conditions, and those who are most likely to have had contact with the criminal justice system, such as Black adults, often already have pre-existing disproportionately high rates of stress and chronic conditions due to the social determinants of health that affect underrepresented minorities. Findings from this study suggest that there is a mechanism that links the stressors among Black adults manifested by such factors as family, financial, neighborhood, and personal problems with criminal justice contact to obesity-related health status. Using the National Survey of American Life (NSAL), modified Poisson regression analyses were used to determine the association between criminal justice contact, stressors, and obesity-related health problems among a national sample of Black adults (n = 5008). In the full model, the odds of experiencing obesity-related health problems for Black adults who had criminal justice contact was reduced (PR, 1.23 to 1.14) and not statistically significant. Black adults who reported experiencing family stressors (PR, 1.21; 95% CI, 1.08, 1.36), financial stressors (PR, 1.30; 95% CI, 1.16, 1.47), and personal stressors (PR, 1.16; 95% CI, 1.02, 1.31) were statistically significant and higher than those who reported not experiencing any of these stressors; neighborhood stressors was not statistically significant. The evidence suggests a relationship between the stressors associated with criminal justice contact and obesity-related health status. These findings emphasize the need to further explore the family, financial, and personal stressors for Black adults with criminal justice contact in order to further our understanding of their obesity-related health problems.ᅟ.

  14. Root planing with Er:YAG laser X Gracey curette: a study in vitro using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Mello, Fabiano A. S.; Mello, Andrea M. D.; Matson, Edmir; Mattos, Adriana B.; Mello, Guilherme P. S.

    2001-04-01

    The Er:YAG laser has been studied for periodontal therapies, so much for removal of the subgingival calculus and its bactericidal effects. The proposal of this study is to evaluate the effectiveness of the Er:YAG laser in root planning in comparison to the traditional method, not surgical. Six recently extracted due top the disease periodontal, were cut longitudinally tends like this two half of the root. These half were separate in four groups. The first group is the natural tooth, the second group was accomplished to rot planing with Graceycurette. And in the third to Er:YAG laser with a contact tip, using a 45 degree angle in relation to the root; in the fourth group was scraped and planed with Er:YAG laser and complemented rot planing with Graceycurette. The used energy was of 60 to 300mJ and the frequency of 10 Hz accomplished with irrigation. The obtained results were similar in the groups 2 and 3 in comparison to the amount of smear-layer. In group 4 however, better result was obtained, because the image was much more regular and with less amount of smear-layer. The conclusion of the work is that with the association of the Er:YAG laser technique and Graceycurette the results are superior to the conventional treatment.

  15. Approximate stresses in 2-D flat elastic contact fretting problems

    NASA Astrophysics Data System (ADS)

    Urban, Michael Rene

    Fatigue results from the cyclic loading of a solid body. If the body subject to fatigue is in contact with another body and relative sliding motion occurs between these two bodies, then rubbing surface damage can accelerate fatigue failure. The acceleration of fatigue failure is especially important if the relative motion between the two bodies results in surface damage without excessive surface removal via wear. The situation just described is referred to as fretting fatigue. Understanding of fretting fatigue is greatly enhanced if the stress state associated with fretting can be characterized. For Hertzian contact, this can readily be done. Unfortunately, simple stress formulae are not available for flat body contact. The primary result of the present research is the development of a new, reasonably accurate, approximate closed form expression for 2-dimensional contact stresses which has been verified using finite element modeling. This expression is also combined with fracture mechanics to provide a simple method of determining when a crack is long enough to no longer be affected by the contact stress field. Lower bounds on fatigue life can then easily be calculated using fracture mechanics. This closed form expression can also be used to calculate crack propagation within the contact stress field. The problem of determining the cycles required to generate an initial crack and what to choose as an initial crack size is unresolved as it is in non-fretting fatigue.

  16. A Novel Face-on-Face Contact Method for Nonlinear Solid Mechanics

    NASA Astrophysics Data System (ADS)

    Wopschall, Steven Robert

    The implicit solution to contact problems in nonlinear solid mechanics poses many difficulties. Traditional node-to-segment methods may suffer from locking and experience contact force chatter in the presence of sliding. More recent developments include mortar based methods, which resolve local contact interactions over face-pairs and feature a kinematic constraint in integral form that smoothes contact behavior, especially in the presence of sliding. These methods have been shown to perform well in the presence of geometric nonlinearities and are demonstratively more robust than node-to-segment methods. These methods are typically biased, however, interpolating contact tractions and gap equations on a designated non-mortar face, which leads to an asymmetry in the formulation. Another challenge is constraint enforcement. The general selection of the active set of constraints is brought with difficulty, often leading to non-physical solutions and easily resulting in missed face-pair interactions. Details on reliable constraint enforcement methods are lacking in the greater contact literature. This work presents an unbiased contact formulation utilizing a median-plane methodology. Up to linear polynomials are used for the discrete pressure representation and integral gap constraints are enforced using a novel subcycling procedure. This procedure reliably determines the active set of contact constraints leading to physical and kinematically admissible solutions void of heuristics and user action. The contact method presented herein successfully solves difficult quasi-static contact problems in the implicit computational setting. These problems feature finite deformations, material nonlinearity, and complex interface geometries, all of which are challenging characteristics for contact implementations and constraint enforcement algorithms. The subcycling procedure is a key feature of this method, handling active constraint selection for complex interfaces and mesh

  17. Magneto-ionic effect in CoFeB thin films with in-plane and perpendicular-to-plane magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Baldrati, L.; Tan, A. J.; Mann, M.; Bertacco, R.; Beach, G. S. D.

    2017-01-01

    The magneto-ionic effect is a promising method to control the magnetic properties electrically. Charged mobile oxygen ions can easily be driven by an electric field to modify the magnetic anisotropy of a ferromagnetic layer in contact with an ionic conductor in a solid-state device. In this paper, we report on the room temperature magneto-ionic modulation of the magnetic anisotropy of ultrathin CoFeB films in contact with a GdOx layer, as probed by polar micro-Magneto Optical Kerr Effect during the application of a voltage across patterned capacitors. Both Pt/CoFeB/GdOx films with perpendicular magnetic anisotropy and Ta/CoFeB/GdOx films with uniaxial in-plane magnetic anisotropy in the as-grown state exhibit a sizable dependence of the magnetic anisotropy on the voltage (amplitude, polarity, and time) applied across the oxide. In Pt/CoFeB/GdOx multilayers, it is possible to reorient the magnetic anisotropy from perpendicular-to-plane to in-plane, with a variation of the magnetic anisotropy energy greater than 0.2 mJ m-2. As for Ta/CoFeB/GdOx multilayers, magneto-ionic effects still lead to a sizable variation of the in-plane magnetic anisotropy, but the anisotropy axis remains in-plane.

  18. Study of in-plane dynamics of tires

    NASA Astrophysics Data System (ADS)

    Gong, S.

    1993-12-01

    The in-plane dynamics of tires deals with the forces and motion in the plane of rotation of the wheel. Three aspects of tire in-plane dynamics can be identified: the rolling contact between the tire and the road surface; the transmission of forces and motion from the contact patch to the wheel axle; and the vibration of the tire treadband. The main objective of the investigation reported in this thesis is to develop a tire model which is suitable to study all three aspects of the in-plane dynamics of tires in both low and high frequency ranges. The tire model is finally validated by experimental modal analysis of a test tire. Laboratory tests are conducted to establish the modal shapes and natural frequencies of the test tire. The tests are carried out for two different configurations of the tire: one with the wheel rim fixed in space and one with the tire-wheel system suspended freely in the air. Good agreement is found between the experimental and theoretical results.

  19. A dynamic unilateral contact problem with adhesion and friction in viscoelasticity

    NASA Astrophysics Data System (ADS)

    Cocou, Marius; Schryve, Mathieu; Raous, Michel

    2010-08-01

    The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin-Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.

  20. Electric and magnetic polarization singularities of first-order Laguerre-Gaussian beams diffracted at a half-plane screen.

    PubMed

    Luo, Yamei; Gao, Zenghui; Tang, Bihua; Lü, Baida

    2013-08-01

    Based on the vector Fresnel diffraction integrals, analytical expressions for the electric and magnetic components of first-order Laguerre-Gaussian beams diffracted at a half-plane screen are derived and used to study the electric and magnetic polarization singularities in the diffraction field for both two- and three-dimensional (2D and 3D) cases. It is shown that there exist 2D and 3D electric and magnetic polarization singularities in the diffraction field, which do not coincide each other in general. By suitably varying the waist width ratio, off-axis displacement parameter, amplitude ratio, or propagation distance, the motion, pair-creation, and annihilation of circular polarization singularities, and the motion of linear polarization singularities take place in 2D and 3D electric and magnetic fields. The V point, at which two circular polarization singularities with the same topological charge but opposite handedness collide, appears in the 2D electric field under certain conditions in the diffraction field and free-space propagation. A comparison with the free-space propagation is also made.

  1. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    PubMed

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (p<0.05). However, ankle negative work was not significantly different between the two groups during the period between initial contact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Skyrmion motion induced by plane stress waves

    NASA Astrophysics Data System (ADS)

    Gungordu, Utkan; Kovalev, Alexey A.

    Skyrmions are typically driven by currents and magnetic fields. We propose an alternative method of driving skyrmions using plane stress waves in a chiral ferromagnetic nanotrack. We find that the effective force due to surface acoustic waves couples both to the helicity and the topological charge of the skyrmion. This coupling can be used to probe the helicity of the skyrmion as well as the nature of the Dzyaloshinskii-Moriya interaction. This is particularly important when a ferromagnet lacks both surface- and bulk-inversion symmetry. Plane stress waves can be generated using a pair of interdigital transducers (IDTs). As the nanowire is subject to half-open space boundary conditions, the skyrmion is driven by normal stress in this setup. We find that skyrmions get pinned at the antinodes of the stress wave, much similar to domain walls, which enables skyrmion motion by detuned IDTs. We also consider a nanotrack sandwiched between a piezoelectric layer and a substrate, with electrical contacts placed on top, which results in shear stress in addition to normal stress in nanotrack. We find that unlike domain walls, skyrmions can be driven using shear component of a standing stress wave. This work was supported primarily by the DOE Early Career Award DE-SC0014189, and in part by the NSF under Grants Nos. Phy-1415600, and DMR-1420645 (UG).

  3. Comment on "Out-of-plane equilibrium points in the restricted three-body problem with oblateness (Research Note)"

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Xuefeng; Zhou, Li-Yong

    2018-06-01

    Douskos & Markellos (2006, A&A, 446, 357) first reported the existence of the out-of-plane equilibrium points in restricted three-body problem with oblateness. This result deviates significantly from the intuitive physical point of view that there is no other force that can balance the combined gravitation in Z direction. In fact, the out-of-plane equilibrium in that model is illusory and we prove here that such equilibrium points arise from the improper application of the potential function.

  4. Use of various versions of Schwarz method for solving the problem of contact interaction of elastic bodies

    NASA Astrophysics Data System (ADS)

    Galanin, M. P.; Lukin, V. V.; Rodin, A. S.

    2018-04-01

    A definition of a sufficiently common problem of mechanical contact interaction in a system of elastic bodies is given. Various versions of realization of the Schwarz method for solving the contact problem numerically are described and the results of solution of a number of problems are presented. Special attention is paid to calculations where the grids in the bodies significantly differ in steps.

  5. Micromechanics of Ultrafine Particle Adhesion—Contact Models

    NASA Astrophysics Data System (ADS)

    Tomas, Jürgen

    2009-06-01

    Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.

  6. A model-adaptivity method for the solution of Lennard-Jones based adhesive contact problems

    NASA Astrophysics Data System (ADS)

    Ben Dhia, Hachmi; Du, Shuimiao

    2018-05-01

    The surface micro-interaction model of Lennard-Jones (LJ) is used for adhesive contact problems (ACP). To address theoretical and numerical pitfalls of this model, a sequence of partitions of contact models is adaptively constructed to both extend and approximate the LJ model. It is formed by a combination of the LJ model with a sequence of shifted-Signorini (or, alternatively, -Linearized-LJ) models, indexed by a shift parameter field. For each model of this sequence, a weak formulation of the associated local ACP is developed. To track critical localized adhesive areas, a two-step strategy is developed: firstly, a macroscopic frictionless (as first approach) linear-elastic contact problem is solved once to detect contact separation zones. Secondly, at each shift-adaptive iteration, a micro-macro ACP is re-formulated and solved within the multiscale Arlequin framework, with significant reduction of computational costs. Comparison of our results with available analytical and numerical solutions shows the effectiveness of our global strategy.

  7. Frictional contact behaviour of the tyre: the effect of tread slip on the in-plane structural deformation and stress field development

    NASA Astrophysics Data System (ADS)

    Tsotras, Achillefs; Mavros, George

    2010-08-01

    The analysis of the in-plane deformation of the tyre in relation to the frictional contact between the road and the tread is a crucial first step in the understanding of its contribution to the longitudinal dynamics of a vehicle. In this work, the physical mechanism of the generation of the two-dimensional contact pressure distribution for a non-rolling tyre is studied. Towards this aim, a physical tyre model is constructed, consisting of an analytical ring under pretension, a non-linear sidewall foundation, and a discretised foundation of viscoelastic elements representing the tread. Tread behaviour is examined first, with focus on the development of shear micro-slip. The tread simulation is enhanced with the combination of radial and tangential tread elements and the benefits of such an approach are identified. Subsequently, the contact of the complete model is examined by implementing an algorithm for transient simulations in the time domain. The effects of the imposed vertical load and sidewall non-linearity on the contact stress and strain fields are identified. The modelling approach is validated by comparison with published experimental results. The physical mechanism that couples the torsional and horizontal/vertical deformations of the carcass with the frictional forces at the tread is identified and discussed in detail. The proposed modelling approach is found appropriate for the description of the development of the two-dimensional contact pressure field as a function of the frictional potential of the contact.

  8. Emotional/Behavioral difficulties and mental health service contacts of students in special education for non-mental health problems.

    PubMed

    Pastor, Patricia N; Reuben, Cynthia A

    2009-02-01

    Emotional/behavioral difficulties and mental health (MH) service contacts of 3 groups of youth were compared: students in special education for non-MH problems, students in special education for MH problems, and youth not in special education. Parents reported the characteristics, special education placement, emotional/behavioral difficulties, and MH service contacts of 25,122 youth aged 6-17 years in the National Health Interview Survey. Two thirds of students in special education received special education services for non-MH problems. Among students in special education for non-MH problems, 17% had serious emotional/behavioral difficulties compared with 51% of students in special education for MH problems and 4% of youth not in special education. MH service contacts were examined only for youth whose difficulties significantly interfered with their ability to function in or out of school. Among youth with serious difficulties, the percentage of youth without a recent MH service contact was greater for students in special education for non-MH problems (40%) and youth not in special education (47%) compared with students in special education for MH problems (13%). Compared with youth not in special education, students in special education for non-MH problems were 4 times more likely to have serious emotional/behavioral difficulties but were just as likely as youth not in special education to lack a recent MH service contact. Study findings provide a national context for considering the MH screening/evaluation needs of students receiving special education for non-MH problems.

  9. Effect of contact stresses in four-point bend testing of graphite/epoxy and graphite/PMR-15 composite beams

    NASA Technical Reports Server (NTRS)

    Binienda, W. K.; Roberts, G. D.; Papadopoulos, D. S.

    1992-01-01

    The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.

  10. Fully epitaxial C1b-type NiMnSb half-Heusler alloy films for current-perpendicular-to-plane giant magnetoresistance devices with a Ag spacer

    PubMed Central

    Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki

    2015-01-01

    Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482

  11. Dynamic contact problem with adhesion and damage between thermo-electro-elasto-viscoplastic bodies

    NASA Astrophysics Data System (ADS)

    Hadj ammar, Tedjani; Saïdi, Abdelkader; Azeb Ahmed, Abdelaziz

    2017-05-01

    We study of a dynamic contact problem between two thermo-electro-elasto-viscoplastic bodies with damage and adhesion. The contact is frictionless and is modeled with normal compliance condition. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.

  12. Contact Allergy: A Review of Current Problems from a Clinical Perspective.

    PubMed

    Uter, Wolfgang; Werfel, Thomas; White, Ian R; Johansen, Jeanne D

    2018-05-29

    Contact allergy is common, affecting 27% of the general population in Europe. Original publications, including case reports, published since 2016 (inclusive) were identified with the aim of collating a full review of current problems in the field. To this end, a literature search employing methods of systematic reviewing was performed in the Medline ® and Web of Science™ databases on 28 January 2018, using the search terms ("contact sensitization" or "contact allergy"). Of 446 non-duplicate publications identified by above search, 147 were excluded based on scrutiny of title, abstract and key words. Of the remaining 299 examined in full text, 291 were deemed appropriate for inclusion, and main findings were summarised in topic sections. In conclusion, diverse sources of exposures to chemicals of widely-differing types and structures, continue to induce sensitisation in man and may result in allergic contact dermatitis. Many of the chemicals are "evergreen" but others are "newcomers". Vigilance and proper investigation (patch testing) are required to detect and inform of the presence of these haptens to which our populations remain exposed.

  13. Straightening of a wavy strip: An elastic-plastic contact problem including snap-through

    NASA Technical Reports Server (NTRS)

    Fischer, D. F.; Rammerstorfer, F. G.

    1980-01-01

    The nonlinear behavior of a wave like deformed metal strip during the levelling process were calculated. Elastic-plastic material behavior as well as nonlinearities due to large deformations were considered. The considered problem lead to a combined stability and contact problem. It is shown that, despite the initially concentrated loading, neglecting the change of loading conditions due to altered contact domains may lead to a significant error in the evaluation of the nonlinear behavior and particularly to an underestimation of the stability limit load. The stability was examined by considering the load deflection path and the behavior of a load-dependent current stiffness parameter in combination with the determinant of the current stiffness matrix.

  14. The effect of contact stresses in four-point bend testing of graphite/epoxy and graphite/PMR-15 composite beams

    NASA Technical Reports Server (NTRS)

    Binienda, Wieslaw K.; Roberts, Gary D.; Papadopoulos, Demetrios S.

    1992-01-01

    The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model, for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with the increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.

  15. Contact Analysis of Nominally Flat Surfaces

    DTIC Science & Technology

    2008-06-01

    to analyze the simple case of Hertz-contact (a spherical body in contact with a rigid flat plane) and determine the change in contact area with...next major area was in the Hertz Contact Theory. This area allowed the authors to develop an analytical solution. The third major area was in the... bodies came into contact with one another. This research concluded with the development and testing of the Finite Element Analysis Program (FEAP) using

  16. Application of the wavenumber jump condition to the normal and oblique interaction of a plane acoustic wave and a plane shock

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1977-01-01

    The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.

  17. Reduction technique for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1995-01-01

    A reduction technique and a computational procedure are presented for predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of the reduction technique, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface.

  18. Comparison between FEBio and Abaqus for biphasic contact problems.

    PubMed

    Meng, Qingen; Jin, Zhongmin; Fisher, John; Wilcox, Ruth

    2013-09-01

    Articular cartilage plays an important role in the function of diarthrodial joints. Computational methods have been used to study the biphasic mechanics of cartilage, and Abaqus has been one of the most widely used commercial software packages for this purpose. A newly developed open-source finite element solver, FEBio, has been developed specifically for biomechanical applications. The aim of this study was to undertake a direct comparison between FEBio and Abaqus for some practical contact problems involving cartilage. Three model types, representing a porous flat-ended indentation test, a spherical-ended indentation test, and a conceptual natural joint contact model, were compared. In addition, a parameter sensitivity study was also performed for the spherical-ended indentation test to investigate the effects of changes in the input material properties on the model outputs, using both FEBio and Abaqus. Excellent agreement was found between FEBio and Abaqus for all of the model types and across the range of material properties that were investigated.

  19. Comparison between FEBio and Abaqus for biphasic contact problems

    PubMed Central

    Jin, Zhongmin; Fisher, John; Wilcox, Ruth

    2013-01-01

    Articular cartilage plays an important role in the function of diarthrodial joints. Computational methods have been used to study the biphasic mechanics of cartilage, and Abaqus has been one of the most widely used commercial software packages for this purpose. A newly developed open-source finite element solver, FEBio, has been developed specifically for biomechanical applications. The aim of this study was to undertake a direct comparison between FEBio and Abaqus for some practical contact problems involving cartilage. Three model types, representing a porous flat-ended indentation test, a spherical-ended indentation test, and a conceptual natural joint contact model, were compared. In addition, a parameter sensitivity study was also performed for the spherical-ended indentation test to investigate the effects of changes in the input material properties on the model outputs, using both FEBio and Abaqus. Excellent agreement was found between FEBio and Abaqus for all of the model types and across the range of material properties that were investigated. PMID:23804955

  20. General framework for dynamic large deformation contact problems based on phantom-node X-FEM

    NASA Astrophysics Data System (ADS)

    Broumand, P.; Khoei, A. R.

    2018-04-01

    This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.

  1. Atomistic study of the electronic contact resistivity between the half-Heusler alloys (HfCoSb, HfZrCoSb, HfZrNiSn) and the metal Ag

    NASA Astrophysics Data System (ADS)

    He, Yuping; Léonard, François; Spataru, Catalin D.

    2018-06-01

    Half-Heusler (HH) alloys have shown promising thermoelectric properties in the medium- and high-temperature range. To harness these material properties for thermoelectric applications, it is important to realize electrical contacts with low electrical contact resistivity. However, little is known about the detailed structural and electronic properties of such contacts and the expected values of contact resistivity. Here, we employ atomistic ab initio calculations to study electrical contacts in a subclass of HH alloys consisting of the compounds HfCoSb, HfZrCoSb, and HfZrNiSn. By using Ag as a prototypical metal, we show that the termination of the HH material critically determines the presence or absence of strong deformations at the interface. Our study includes contacts to doped materials, and the results indicate that the p -type materials generally form ohmic contacts while the n -type materials have a small Schottky barrier. We calculate the temperature dependence of the contact resistivity in the low- to medium-temperature range and provide quantitative values that set lower limits for these systems.

  2. On a Free Boundary Problem for the Curvature Flow with Driving Force

    NASA Astrophysics Data System (ADS)

    Guo, Jong-Shenq; Matano, Hiroshi; Shimojo, Masahiko; Wu, Chang-Hong

    2016-03-01

    We study a free boundary problem associated with the curvature dependent motion of planar curves in the upper half plane whose two endpoints slide along the horizontal axis with prescribed fixed contact angles. Our first main result concerns the classification of solutions; every solution falls into one of the three categories, namely, area expanding, area bounded and area shrinking types. We then study in detail the asymptotic behavior of solutions in each category. Among other things we show that solutions are asymptotically self-similar both in the area expanding and the area shrinking cases, while solutions converge to either a stationary solution or a traveling wave in the area bounded case. We also prove results on the concavity properties of solutions. One of the main tools of this paper is the intersection number principle, however in order to deal with solutions with free boundaries, we introduce what we call "the extended intersection number principle", which turns out to be exceedingly useful in handling curves with moving endpoints.

  3. Half wavelength dipole antennas over stratified media

    NASA Technical Reports Server (NTRS)

    Latorraca, G. A.

    1972-01-01

    Theoretical solutions of the fields induced by half-wavelength, horizontal, electric field dipoles (HEDS) are determined based on studies of infinitesimal, horizontal, electric field dipoles over low loss plane-stratified media. To determine these solutions, an approximation to the current distribution of a half-wavelength HED is derived and experimentally verified. Traverse and antenna measurements obtained on the Athabasca Glacier in the summer of 1971 are related to the characteristics of the transmitting antenna design, and the measurement techniques and field equipment used in the glacier trials are described and evaluated.

  4. Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End

    NASA Astrophysics Data System (ADS)

    Goryk, A. V.; Koval'chuk, S. B.

    2018-05-01

    An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.

  5. Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.

    PubMed

    Cao, Le; Wei, Bing

    2014-08-25

    Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.

  6. A class of fractional differential hemivariational inequalities with application to contact problem

    NASA Astrophysics Data System (ADS)

    Zeng, Shengda; Liu, Zhenhai; Migorski, Stanislaw

    2018-04-01

    In this paper, we study a class of generalized differential hemivariational inequalities of parabolic type involving the time fractional order derivative operator in Banach spaces. We use the Rothe method combined with surjectivity of multivalued pseudomonotone operators and properties of the Clarke generalized gradient to establish existence of solution to the abstract inequality. As an illustrative application, a frictional quasistatic contact problem for viscoelastic materials with adhesion is investigated, in which the friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals, and the constitutive relation is modeled by the fractional Kelvin-Voigt law.

  7. Non-commutative geometry of the h-deformed quantum plane

    NASA Astrophysics Data System (ADS)

    Cho, S.; Madore, J.; Park, K. S.

    1998-03-01

    The h-deformed quantum plane is a counterpart of the q-deformed one in the set of quantum planes which are covariant under those quantum deformations of GL(2) which admit a central determinant. We have investigated the non-commutative geometry of the h-deformed quantum plane. There is a two-parameter family of torsion-free linear connections, a one-parameter sub-family of which are compatible with a skew-symmetric non-degenerate bilinear map. The skew-symmetric map resembles a symplectic 2-form and induces a metric. It is also shown that the extended h-deformed quantum plane is a non-commutative version of the Poincaré half-plane, a surface of constant negative Gaussian

  8. On the the Contact Lens Problem: Modeling Rigid and Elastic Beams on Thin Films

    NASA Astrophysics Data System (ADS)

    Trinh, Philippe; Wilson, Stephen; Stone, Howard

    2011-11-01

    Generally, contact lenses are prescribed by the practitioner to fit each individual patient's eye, but these fitting-philosophies are based on empirical studies and a certain degree of trial-and-error. A badly fitted lens can cause a range of afflictions, which varies from mild dry-eye-discomfort, to more serious corneal diseases. Thus, at this heart of this problem, is the question of how a rigid or elastic plate interacts with the free-surface of a thin viscous film. In this talk, we present several mathematical models for the study of these plate-and-fluid problems. Asymptotic and numerical results are described, and we explain the role of elasticity, surface tension, viscosity, and pressure in determining the equilibrium solutions. Finally, we discuss the implications of our work on the contact lens problem, as well as on other coating processes which involve elastic substrates.

  9. Radiative albedo from a linearly fibered half-space

    NASA Astrophysics Data System (ADS)

    Grzesik, J. A.

    2018-05-01

    A growing acceptance of fiber-reinforced composite materials imparts some relevance to exploring the effects which a predominantly linear scattering lattice may have upon interior radiative transport. Indeed, a central feature of electromagnetic wave propagation within such a lattice, if sufficiently dilute, is ray confinement to cones whose half-angles are set by that between lattice and the incident ray. When such propagation is subordinated to a viewpoint of an unpolarized intensity transport, one arrives at a somewhat simplified variant of the Boltzmann equation with spherical scattering demoted to its cylindrical counterpart. With a view to initiating a hopefully wider discussion of such phenomena, we follow through in detail the half-space albedo problem. This is done first along canonical lines that harness the Wiener-Hopf technique, and then once more in a discrete ordinates setting via flux decomposition along the eigenbasis of the underlying attenuation/scattering matrix. Good agreement is seen to prevail. We further suggest that the Case singular eigenfunction apparatus could likewise be evolved here in close analogy to its original, spherical scattering model. A cursory contact with related problems in the astrophysical literature suggests, in addition, that the basic physical fidelity of our scalar radiative transfer equation (RTE) remains open to improvement by passage to a (4×1) Stokes vector, (4×4) matricial setting.

  10. ELECTRIC CONTACT MEANS

    DOEpatents

    Grear, J.W. Jr.

    1959-03-10

    A switch adapted to maintain electrical connections under conditions of vibration or acceleration is described. According to the invention, thc switch includes a rotatable arm carrying a conductive bar arranged to close against two contacts spaced in the same plane. The firm and continuous engagement of the conductive bar with the contacts is acheived by utilizeing a spring located betwenn the vbar and athe a rem frzme and slidable mounting the bar in channel between two arms suspendef from the arm frame.

  11. Dynamic interaction of twin vertically overlapping lined tunnels in an elastic half space subjected to incident plane waves

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Wang, Yirui; Liang, Jianwen

    2016-06-01

    The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.

  12. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  13. An information-theoretic approach to designing the plane spacing for multifocal plane microscopy

    PubMed Central

    Tahmasbi, Amir; Ram, Sripad; Chao, Jerry; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.

    2015-01-01

    Multifocal plane microscopy (MUM) is a 3D imaging modality which enables the localization and tracking of single molecules at high spatial and temporal resolution by simultaneously imaging distinct focal planes within the sample. MUM overcomes the depth discrimination problem of conventional microscopy and allows high accuracy localization of a single molecule in 3D along the z-axis. An important question in the design of MUM experiments concerns the appropriate number of focal planes and their spacings to achieve the best possible 3D localization accuracy along the z-axis. Ideally, it is desired to obtain a 3D localization accuracy that is uniform over a large depth and has small numerical values, which guarantee that the single molecule is continuously detectable. Here, we address this concern by developing a plane spacing design strategy based on the Fisher information. In particular, we analyze the Fisher information matrix for the 3D localization problem along the z-axis and propose spacing scenarios termed the strong coupling and the weak coupling spacings, which provide appropriate 3D localization accuracies. Using these spacing scenarios, we investigate the detectability of the single molecule along the z-axis and study the effect of changing the number of focal planes on the 3D localization accuracy. We further review a software module we recently introduced, the MUMDesignTool, that helps to design the plane spacings for a MUM setup. PMID:26113764

  14. Variationally consistent discretization schemes and numerical algorithms for contact problems

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Barbara

    We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of

  15. Instabilities in dynamic anti-plane sliding of an elastic layer on a dissimilar elastic half-space

    NASA Astrophysics Data System (ADS)

    Kunnath, R.

    2012-12-01

    The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations are of the form exp(ikx+pt), where k is the wavenumber, x is the coordinate along the interface, p is the time response to the perturbation and t is time. The results of the stability analysis are shown in Figs. 1 and 2 with the velocity weakening parameter b/a=5, shear wave speed ratio cs'/cs=1.2, shear modulus ratio μ'/μ=1.2 and non-dimensional layer thickness H=100. The normalized instability growth rate and normalized phase velocity are plotted as a function of wavenumber. Fig.1 is for a non-dimensional unperturbed slip velocity ɛ=5 (rapid sliding) while Fig. 2 is for ɛ=0.05 (slow sliding). The results show the destabilization of interfacial waves. For slow sliding, destabilization of interfacial waves is still seen, indicating that the quasi-static approximation to slow sliding is not valid. This is in agreement with the result of Ranjith (Int. J. Solids and Struct., 2009, 46, 3086-3092) who predicted an instability of long-wavelength Love waves in slow sliding.

  16. Path integration on the hyperbolic plane with a magnetic field

    NASA Astrophysics Data System (ADS)

    Grosche, Christian

    1990-08-01

    In this paper I discuss the path integrals on three formulations of hyperbolic geometry, where a constant magnetic field B is included. These are: the pseudosphere Λ2, the Poincaré disc D, and the hyperbolic strip S. The corresponding path integrals can be reformulated in terms of the path integral for the modified Pöschl-Teller potential. The wave-functions and the energy spectrum for the discrete and continuous part of the spectrum are explicitly calculated in each case. First the results are compared for the limit B → 0 with previous calculations and second with the path integration on the Poincaré upper half-plane U. This work is a continuation of the path integral calculations for the free motion on the various formulations on the hyperbolic plane and for the case of constant magnetic field on the Poincaré upper half-plane U.

  17. Characterization of 3d Contact Kinematics and Prediction of Resonant Response of Structures Having 3d Frictional Constraint

    NASA Astrophysics Data System (ADS)

    Yang, B. D.; Menq, C. H.

    1998-11-01

    A 3D friction contact model has been developed for the prediction of the resonant response of structures having 3D frictional constraint. In the proposed model, a contact plane is defined and its orientation is assumed invariant. Consequently, the relative motion of the two contacting surfaces can be resolved into two components: the in-plane tangential motion on the contact plane and the normal component perpendicular to the plane. The in-plane tangential relative motion is often two-dimensional, and it can induce stick-slip friction. On the other hand, the normal relative motion can cause variation of the contact normal load and, in extreme circumstances, separation of the two contacting surfaces. In this study, the joined effect of the 2D tangential relative motion and the normal relative motion on the contact kinematics of a friction contact is examined and analytical criteria are developed to determine the transitions among stick, slip, and separation, when experiencing variable normal load. With these transition criteria, the induced friction force on the contact plane and the variable normal load perpendicular to the plane can be predicted for any given cyclic relative motions at the contact interface and hysteresis loops can be produced so as to characterize the equivalent damping and stiffness of the friction contact. These non-linear damping and stiffness along with the harmonic balance method are then used to predict the resonance of a frictionally constrained 3-DOF oscillator. The predicted results are compared with those of the time integration method and the damping effect, the resonant frequency shift, and the jump phenomenon are examined.

  18. Application of low-order potential solutions to higher-order vertical traction boundary problems in an elastic half-space

    PubMed Central

    Taylor, Adam G.

    2018-01-01

    New solutions of potential functions for the bilinear vertical traction boundary condition are derived and presented. The discretization and interpolation of higher-order tractions and the superposition of the bilinear solutions provide a method of forming approximate and continuous solutions for the equilibrium state of a homogeneous and isotropic elastic half-space subjected to arbitrary normal surface tractions. Past experimental measurements of contact pressure distributions in granular media are reviewed in conjunction with the application of the proposed solution method to analysis of elastic settlement in shallow foundations. A numerical example is presented for an empirical ‘saddle-shaped’ traction distribution at the contact interface between a rigid square footing and a supporting soil medium. Non-dimensional soil resistance is computed as the reciprocal of normalized surface displacements under this empirical traction boundary condition, and the resulting internal stresses are compared to classical solutions to uniform traction boundary conditions. PMID:29892456

  19. Capillary reference half-cell

    DOEpatents

    Hall, Stephen H.

    1996-01-01

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods.

  20. Capillary reference half-cell

    DOEpatents

    Hall, S.H.

    1996-02-13

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods. 11 figs.

  1. A finite-element model for moving contact line problems in immiscible two-phase flow

    NASA Astrophysics Data System (ADS)

    Kucala, Alec

    2017-11-01

    Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  2. When fast and slow interfaces grow together: Connection to the half-space problem of the Kardar-Parisi-Zhang class

    NASA Astrophysics Data System (ADS)

    Ito, Yasufumi; Takeuchi, Kazumasa A.

    2018-04-01

    We study height fluctuations of interfaces in the (1 +1 ) -dimensional Kardar-Parisi-Zhang (KPZ) class, growing at different speeds in the left half and the right half of space. Carrying out simulations of the discrete polynuclear growth model with two different growth rates, combined with the standard setting for the droplet, flat, and stationary geometries, we find that the fluctuation properties at and near the boundary are described by the KPZ half-space problem developed in the theoretical literature. In particular, in the droplet case, the distribution at the boundary is given by the largest-eigenvalue distribution of random matrices in the Gaussian symplectic ensemble, often called the GSE Tracy-Widom distribution. We also characterize crossover from the full-space statistics to the half-space one, which arises when the difference between the two growth speeds is small.

  3. Exact solutions for sound radiation from a moving monopole above an impedance plane.

    PubMed

    Ochmann, Martin

    2013-04-01

    The acoustic field of a monopole source moving with constant velocity at constant height above an infinite locally reacting plane can be expressed in analytical form by combining the Lorentz transformation with the method of superimposing complex or real point sources. For a plane with masslike response, the solution in Lorentz space consists of a superposition of monopoles only and therefore, does not differ in principle from the solution for the corresponding stationary boundary value problem. However, by considering a frequency independent surface impedance, e.g., with pure absorbing behavior, the half-space Green's function is now comprised of not only a line of monopoles but also of dipoles. For certain field points at a special line g, this solution can be written explicitly by using an exponential integral. For arbitrary field points, the method of stationary phase leads to an asymptotic solution for the reflection coefficient which agrees with prior results from the literature.

  4. Exact image theory for the problem of dielectric/magnetic slab

    NASA Technical Reports Server (NTRS)

    Lindell, I. V.

    1987-01-01

    Exact image method, recently introduced for the exact solution of electromagnetic field problems involving homogeneous half spaces and microstrip-like geometries, is developed for the problem of homogeneous slab of dielectric and/or magnetic material in free space. Expressions for image sources, creating the exact reflected and transmitted fields, are given and their numerical evaluation is demonstrated. Nonradiating modes, guided by the slab and responsible for the loss of convergence of the image functions, are considered and extracted. The theory allows, for example, an analysis of finite ground planes in microstrip antenna structures.

  5. Reducing Therapist Contact in Parenting Programs: Evaluation of Internet-Based Treatments for Child Conduct Problems

    PubMed Central

    Rabbitt, Sarah M.; Carrubba, Erin; Lecza, Bernadette; McWhinney, Emily; Pope, Jennifer; Kazdin, Alan E.

    2016-01-01

    This study evaluated two Internet-based versions of Parent Management Training (PMT) and the effects of greatly reducing the contact required of a mental health professional on treatment of children referred for conduct problems. We were interested whether reduced contact with a therapist influenced treatment outcome, therapeutic alliance, parent adherence to treatment prescriptions, and parent reactions to and evaluations of the treatment procedures. Sixty children and their caregivers were assigned to receive either Full Contact PMT (with the amount of weekly contact similar to traditional PMT; approximately 50 minutes of direct therapist contact each week) or Reduced Contact PMT (with most information provided through recordings; approximately 10 minutes of therapist contact each week). Children in both groups showed significant and similar reductions in antisocial behaviors specifically, internalizing and externalizing symptoms more generally, and improvements in overall adaptive functioning. Therapeutic alliance also was similar across the two treatment groups. However, parents rated Full Contact treatment as more acceptable than the reduced version. Both treatments were similar in outcomes to in-person treatment as evaluated by a nonrandomized matched sample used as a benchmark in supplementary analyses. Overall, the findings indicate that therapist contact can be reduced while positive treatment outcomes are maintained but that interventions that reduce direct time with a therapist may be viewed less positively by clients. PMID:27453678

  6. Pore-scale modeling of moving contact line problems in immiscible two-phase flow

    NASA Astrophysics Data System (ADS)

    Kucala, Alec; Noble, David; Martinez, Mario

    2016-11-01

    Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Electronic phase diagram of half-doped perovskite manganites on the plane of quenched disorder versus one-electron bandwidth

    NASA Astrophysics Data System (ADS)

    Tomioka, Y.; Ito, T.; Sawa, A.

    2018-01-01

    For half-doped manganese oxides that have a perovskite structure, R E1 -xA ExMn O3 (x =0.5 ) (RE and AE are rare-earth and alkaline-earth elements, respectively), the phase competition (stability) between the antiferromagnetic charge- or orbital-ordered insulator (CO/OO AFI), ferromagnetic metal (FM), layered (A-type) antiferromagnetic phase [AF(A)], and spin-glass-like insulator (SGI), have been studied using single crystals prepared by the floating zone method. The CO/OO AFI, FM, AF(A), and SGI are displayed on the plane of the disorder (the variance of the RE and AE cations) versus the effective one-electron bandwidth (the averaged ionic radius of the RE and AE). In the plane of the disorder versus the effective one-electron bandwidth, similar to the phase diagram of R E1 -xA ExMn O3 (x =0.45 ), the CO/OO AFI, FM, and SGI dominate at the lower-left, right, and upper regions, respectively. However, the CO/OO AFI for x =0.5 is more stable than that for x =0.45 , and it expands to the plane points that correspond to the R E0.5S r0.5Mn O3 (R E =Nd and Sm) specimens as the hole concentration is commensurate with the ordering of M n3 + /M n4 + with a ratio of 1/1. The y -dependent electronic phases for R E0.5(Sr1-yB ay ) 0.5Mn O3 (0 ≤y ≤0.5 ) (R E =Sm , N d0.5S m0.5 , Nd, and Pr) show that the AF(A) intervenes between the CO/OO AFI and FM. Besides the region around (La1-yP ry ) 0.5S r0.5Mn O3 (0 ≤y ≤1 ) that has a smaller disorder, the AF(A) also exists at the regions around R E0.5(Sr1-yB ay ) 0.5Mn O3 (0

  8. Pore-scale modeling of moving contact line problems in immiscible two-phase flow.

    NASA Astrophysics Data System (ADS)

    Kucala, A.; Noble, D.; Martinez, M. J.

    2016-12-01

    Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  9. [Allergic contact dermatitis to cosmetics].

    PubMed

    Laguna, C; de la Cuadra, J; Martín-González, B; Zaragoza, V; Martínez-Casimiro, L; Alegre, V

    2009-01-01

    Contact dermatitis to cosmetics is a common problem in the general population, although its prevalence appears to be underestimated. We reviewed cases of allergic contact dermatitis to cosmetics diagnosed in our dermatology department over a 7-year period with a view to identifying the allergens responsible, the frequency of occurrence of these allergens, and the cosmetic products implicated. Using the database of the skin allergy department, we undertook a search of all cases of allergic contact dermatitis to cosmetics diagnosed in our department from January 2000 through October 2007. In this period, patch tests were carried out on 2,485 patients, of whom 740 were diagnosed with allergic contact dermatitis and the cause was cosmetics in 202 of these patients (170 women and 32 men), who accounted for 27.3 % of all cases. A total of 315 positive results were found for 46 different allergens. Allergens most often responsible for contact dermatitis in a cosmetics user were methylisothiazolinone (19 %), paraphenylenediamine (15.2 %), and fragrance mixtures (7.8 %). Acrylates were the most common allergens in cases of occupational disease. Half of the positive results were obtained with the standard battery of the Spanish Group for Research Into Dermatitis and Skin Allergies (GEIDAC). The cosmetic products most often implicated among cosmetics users were hair dyes (18.5 %), gels/soaps (15.7 %), and moisturizers (12.7 %). Most patients affected were women. Preservatives, paraphenylenediamine, and fragrances were the most frequently detected cosmetic allergens, in line with previous reports in the literature. Finally, in order to detect new cosmetic allergens, cooperation between physicians and cosmetics producers is needed.

  10. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  11. Serious Emotional and Behavioral Problems and Mental Health Contacts in American and British Children and Adolescents

    ERIC Educational Resources Information Center

    Mojtabai, Ramin

    2006-01-01

    Objective: To compare prevalence of serious emotional and behavioral problems and mental health contacts for these problems among American and British children and adolescents. Method: Data on children and adolescents ages 5 to 16 years were drawn from the 2004 U.S. National Health Interview Survey (response rate = 79.4%) and the 2004 survey of…

  12. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  13. Dual band QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

    2005-01-01

    A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

  14. On the contact interaction of two identical stringers with an elastic semi-infinite continuous or vertically cracked plate

    NASA Astrophysics Data System (ADS)

    Grigoryan, M. S.

    2018-04-01

    This paper considers two connected contact problems on the interaction of stringers with an elastic semi-infinite plate. In the first problem, an elastic half-infinite continuous plate is reinforced on its boundary by two identical stringers exposed to a tensile external force. In the second problem, in the presence of the same stringers, the plate contains a collinear system of cracks on its vertical axis. The solution of both problems is reduced to the solution of singular integral equations (SIE) that are solved by a known numerical-analytical method.

  15. Wave Propagation Problems in Certain Elastic Anisotropic Half Spaces.

    DTIC Science & Technology

    1980-12-01

    874-882. 33. Paul , S.L., and Robinson, A.R., "Interaction of Plane Elastic Waves with a Cylindrical Cavity," Technical Documentary Report Mo. RTD...Professor Paul M. Naghdi University of California Department of Mechanical Engineering Berkeley, California 94720 Professor A. J. Durelli Oakland...Burt Paul University of Pennsylvania Towne School of Civil and Mechanical Engineering Philadelphia, Pennsylvania 19104 Professor H. W. Liu Syracuse

  16. Contact solution algorithms

    NASA Technical Reports Server (NTRS)

    Tielking, John T.

    1989-01-01

    Two algorithms for obtaining static contact solutions are described in this presentation. Although they were derived for contact problems involving specific structures (a tire and a solid rubber cylinder), they are sufficiently general to be applied to other shell-of-revolution and solid-body contact problems. The shell-of-revolution contact algorithm is a method of obtaining a point load influence coefficient matrix for the portion of shell surface that is expected to carry a contact load. If the shell is sufficiently linear with respect to contact loading, a single influence coefficient matrix can be used to obtain a good approximation of the contact pressure distribution. Otherwise, the matrix will be updated to reflect nonlinear load-deflection behavior. The solid-body contact algorithm utilizes a Lagrange multiplier to include the contact constraint in a potential energy functional. The solution is found by applying the principle of minimum potential energy. The Lagrange multiplier is identified as the contact load resultant for a specific deflection. At present, only frictionless contact solutions have been obtained with these algorithms. A sliding tread element has been developed to calculate friction shear force in the contact region of the rolling shell-of-revolution tire model.

  17. Large deformation contact mechanics of a pressurized long rectangular membrane. II. Adhesive contact

    PubMed Central

    Srivastava, Abhishek; Hui, Chung-Yuen

    2013-01-01

    In part I of this work, we presented a theory for adhesionless contact of a pressurized neo-Hookean plane-strain membrane to a rigid substrate. Here, we extend our theory to include adhesion using a fracture mechanics approach. This theory is used to study contact hysteresis commonly observed in experiments. Detailed analysis is carried out to highlight the differences between frictionless and no-slip contact. Membrane detachment is found to be strongly dependent on adhesion: for low adhesion, the membrane ‘pinches-off’, whereas for large adhesions, it detaches unstably at finite contact (‘pull-off’). Expressions are derived for the critical adhesion needed for pinch-off to pull-off transition. Above a threshold adhesion, the membrane exhibits bistability, two stable states at zero applied pressure. The condition for bistability for both frictionless and no-slip boundary conditions is obtained explicitly. PMID:24353472

  18. Method for hue plane preserving color correction.

    PubMed

    Mackiewicz, Michal; Andersen, Casper F; Finlayson, Graham

    2016-11-01

    Hue plane preserving color correction (HPPCC), introduced by Andersen and Hardeberg [Proceedings of the 13th Color and Imaging Conference (CIC) (2005), pp. 141-146], maps device-dependent color values (RGB) to colorimetric color values (XYZ) using a set of linear transforms, realized by white point preserving 3×3 matrices, where each transform is learned and applied in a subregion of color space, defined by two adjacent hue planes. The hue plane delimited subregions of camera RGB values are mapped to corresponding hue plane delimited subregions of estimated colorimetric XYZ values. Hue planes are geometrical half-planes, where each is defined by the neutral axis and a chromatic color in a linear color space. The key advantage of the HPPCC method is that, while offering an estimation accuracy of higher order methods, it maintains the linear colorimetric relations of colors in hue planes. As a significant result, it therefore also renders the colorimetric estimates invariant to exposure and shading of object reflection. In this paper, we present a new flexible and robust version of HPPCC using constrained least squares in the optimization, where the subregions can be chosen freely in number and position in order to optimize the results while constraining transform continuity at the subregion boundaries. The method is compared to a selection of other state-of-the-art characterization methods, and the results show that it outperforms the original HPPCC method.

  19. Numerical Simulations of Shock Wave Refraction at Inclined Gas Contact Discontinuity

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    When a shock wave interacts with a contact discontinuity, there may appear a reflected rarefaction wave, a deflected contact discontinuity and a refracted supersonic shock. The numerical simulation of shock wave refraction at a plane contact discontinuity separating gases with different densities is performed. Euler equations describing inviscid…

  20. Contact lines on silicone elastomers promote contamination

    NASA Astrophysics Data System (ADS)

    Hourlier-Fargette, Aurelie; Antkowiak, Arnaud; Neukirch, Sebastien

    2017-11-01

    Silicone elastomers are used in contact with aqueous liquids in a large range of applications. Due to numerous advantages such as its flexibility, optical transparency, or gas permeability, polydimethylsiloxane is widely spread in rapid prototyping for microfluidics or elastocapillarity experiments. However, silicone elastomers are known to contain a small fraction of uncrosslinked low-molecular-weight oligomers, the effects of which are not completely understood. We show that in various setups involving an air-water-silicone elastomer contact line, a capillarity-induced extraction of uncrosslinked oligomers occurs, leading to a contamination of water-air interfaces. We investigate the case of a static air-water-PDMS contact line, before focusing on moving contact lines. A water droplet sliding down on a PDMS inclined plane or an air bubble rising on an immersed PDMS plane exhibits two successive speed regimes: the second regime is reached only when a monolayer of oligomers completely covers the water-air interface. These experiments involve processes occurring at the polymer network scale that have significant macroscopic consequences, and therefore provide a simple test to evaluate the presence of uncrosslinked oligomers in an elastomer sample.

  1. [Sport injuries in full contact and semi-contact karate].

    PubMed

    Greier, K; Riechelmann, H; Ziemska, J

    2014-03-01

    Karate enjoys great popularity both in professional and recreational sports and can be classified into full, half and low contact styles. The aim of this study was the analysis of sports injuries in Kyokushinkai (full contact) and traditional Karate (semi-contact). In a retrospective study design, 215 active amateur karateka (114 full contact, 101 semi-contact) were interviewed by means of a standardised questionnaire regarding typical sport injuries during the last 36 months. Injuries were categorised into severity grade I (not requiring medical treatment), grade II (single medical treatment), grade III (several outpatient medical treatments) and grade IV (requiring hospitalisation). In total, 217 injuries were reported in detail. 125 injuries (58%) occurred in full contact and 92 (42%) in semi-contact karate. The time related injury rate of full contact karateka was 1.9/1000 h compared to 1.3/1000 h of semi-contact karateka (p < 0.05). The most common types of injuries were musculoskeletal contusions (33% full contact, 20% semi-contact), followed by articular sprains with 19% and 16%. The lower extremity was affected twice as often in full contact (40%) as in semi-contact (20%) karate. Training injuries were reported by 80% of the full contact and 77% of the semi-contact karateka. Most injuries, both in training and competition, occurred in kumite. 75% of the reported injuries of full contact and 70% of semi-contact karateka were classified as low grade (I or II). The high rate of injuries during training and kumite (sparring) points to specific prevention goals. The emphasis should be put on proprioceptive training and consistent warm-up. In the actual competition the referees play a vital role regarding prevention. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Popov, Valentin L.

    2018-03-01

    Recently proposed formulation of the boundary element method for adhesive contacts has been generalized for contacts of power-law graded materials with and without adhesion. Proceeding from the fundamental solution for single force acting on the surface of an elastic half space, first the influence matrix is obtained for a rectangular grid. The inverse problem for the calculation of required stress in the contact area from a known surface displacement is solved using the conjugate-gradient technique. For the transformation between the stresses and displacements, the Fast Fourier Transformation is used. For the adhesive contact of graded material, the detachment criterion based on the energy balance is proposed. The method is validated by comparison with known exact analytical solutions as well as by proving the independence of the mesh size and the grid orientation.

  3. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracymore » of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.« less

  4. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  5. Knee medial and lateral contact forces in a musculoskeletal model with subject-specific contact point trajectories.

    PubMed

    Zeighami, A; Aissaoui, R; Dumas, R

    2018-03-01

    Contact point (CP) trajectory is a crucial parameter in estimating medial/lateral tibio-femoral contact forces from the musculoskeletal (MSK) models. The objective of the present study was to develop a method to incorporate the subject-specific CP trajectories into the MSK model. Ten healthy subjects performed 45 s treadmill gait trials. The subject-specific CP trajectories were constructed on the tibia and femur as a function of extension-flexion using low-dose bi-plane X-ray images during a quasi-static squat. At each extension-flexion position, the tibia and femur CPs were superimposed in the three directions on the medial side, and in the anterior-posterior and proximal-distal directions on the lateral side to form the five kinematic constraints of the knee joint. The Lagrange multipliers associated to these constraints directly yielded the medial/lateral contact forces. The results from the personalized CP trajectory model were compared against the linear CP trajectory and sphere-on-plane CP trajectory models which were adapted from the commonly used MSK models. Changing the CP trajectory had a remarkable impact on the knee kinematics and changed the medial and lateral contact forces by 1.03 BW and 0.65 BW respectively, in certain subjects. The direction and magnitude of the medial/lateral contact force were highly variable among the subjects and the medial-lateral shift of the CPs alone could not determine the increase/decrease pattern of the contact forces. The suggested kinematic constraints are adaptable to the CP trajectories derived from a variety of joint models and those experimentally measured from the 3D imaging techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Coherent field propagation between tilted planes.

    PubMed

    Stock, Johannes; Worku, Norman Girma; Gross, Herbert

    2017-10-01

    Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3  log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.

  7. High-quality nonpolar a-plane GaN epitaxial films grown on r-plane sapphire substrates by the combination of pulsed laser deposition and metal–organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Zhang, Zichen; Wang, Wenliang; Zheng, Yulin; Wang, Haiyan; Li, Guoqiang

    2018-05-01

    High-quality a-plane GaN epitaxial films have been grown on r-plane sapphire substrates by the combination of pulsed laser deposition (PLD) and metal–organic chemical vapor deposition (MOCVD). PLD is employed to epitaxial growth of a-plane GaN templates on r-plane sapphire substrates, and then MOCVD is used. The nonpolar a-plane GaN epitaxial films with relatively small thickness (2.9 µm) show high quality, with the full-width at half-maximum values of GaN(11\\bar{2}0) along [1\\bar{1}00] direction and GaN(10\\bar{1}1) of 0.11 and 0.30°, and a root-mean-square surface roughness of 1.7 nm. This result is equivalent to the quality of the films grown by MOCVD with a thickness of 10 µm. This work provides a new and effective approach for achieving high-quality nonpolar a-plane GaN epitaxial films on r-plane sapphire substrates.

  8. All half-lives are wrong, but some half-lives are useful.

    PubMed

    Wright, J G; Boddy, A V

    2001-01-01

    The half-life of a drug, which expresses a change in concentration in units of time, is perhaps the most easily understood pharmacokinetic parameter and provides a succinct description of many concentration-time profiles. The calculation of a half-life implies a linear, first-order, time-invariant process. No drug perfectly obeys such assumptions, although in practise this is often a valid approximation and provides invaluable quantitative information. Nevertheless, the physiological processes underlying half-life should not be forgotten. The concept of clearance facilitates the interpretation of factors affecting drug elimination, such as enzyme inhibition or renal impairment. Relating clearance to the observed concentration-time profile is not as naturally intuitive as is the case with half-life. As such, these 2 approaches to parameterising a linear pharmacokinetic model should be viewed as complementary rather than alternatives. The interpretation of pharmacokinetic parameters when there are multiple disposition phases is more challenging. Indeed, in any pharmacokinetic model, the half-lives are only one component of the parameters required to specify the concentration-time profile. Furthermore, pharmacokinetic parameters are of little use without a dose history. Other factors influencing the relevance of each disposition phase to clinical end-points must also be considered. In summarising the pharmacokinetics of a drug, statistical aspects of the estimation of a half-life are often overlooked. Half-lives are rarely reported with confidence intervals or measures of variability in the population, and some approaches to this problem are suggested. Half-life is an important summary statistic in pharmacokinetics, but care must be taken to employ it appropriately in the context of dose history and clinically relevant pharmacodynamic end-points.

  9. Knee Joint Contact Mechanics during Downhill Gait and its Relationship with Varus/Valgus Motion and Muscle Strength in Patients with Knee Osteoarthritis

    PubMed Central

    Farrokhi, Shawn; Voycheck, Carrie A.; Gustafson, Jonathan A.; Fitzgerald, G. Kelley; Tashman, Scott

    2015-01-01

    Objective The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Methods Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Group differences in contact mechanics and frontal-plane motion excursions were compared using analysis of covariance with adjustments for body mass index. Differences in strength were compared using independent sample t-tests. Additionally, linear associations between contact mechanics with frontal-plane knee motion and muscle strength were evaluated using Pearson's correlation coefficients. Results Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p<0.02) and greater heel-strike joint contact point velocities (p<0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p=0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p<0.01) and greater quadriceps and hip abductor muscle weakness (p=0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p<0.04) but not with quadriceps or hip abductor strength. Conclusion Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with

  10. Scattering of SH wave by a semi-cylindrical salient near vertical interface in the bi-material half space

    NASA Astrophysics Data System (ADS)

    Qi, Hui; Zhang, Xi-meng

    2017-10-01

    With the aid of the Green function method and image method, the problem of scattering of SH-wave by a semi-cylindrical salient near vertical interface in bi-material half-space is considered to obtain its steady state response. Firstly, by the means of the image method, Green function which is the essential solution of displacement field is constructed to satisfy the stress-free condition on the horizontal boundary in a right-angle space including a semi-cylindrical salient and bearing a harmonic out-of-plane line source force at any point on the vertical boundary. Secondly, the bi-material is separated into two parts along the vertical interface, then unknown anti-plane forces are applied on the vertical interface, and according to the continuity condition, the first kind of Fredholm integral equations is established to determine unknown anti-plane forces by "the conjunction method", then the integral equations are reduced to the linear algebraic equations by effective truncation. Finally, the dynamic stress concentration factor (DSCF) around the edge of semi-cylindrical salient is calculated, and the influences of incident wave number, incident angle, effect of interface and different combination of material parameters, etc. on DSCF are discussed.

  11. Initial-Boundary Value Problem for Two-Component Gerdjikov-Ivanov Equation with 3 × 3 Lax Pair on Half-Line

    NASA Astrophysics Data System (ADS)

    Zhu, Qiao-Zhen; Fan, En-Gui; Xu, Jian

    2017-10-01

    The Fokas unified method is used to analyze the initial-boundary value problem of two-component Gerdjikov-Ivanonv equation on the half-line. It is shown that the solution of the initial-boundary problem can be expressed in terms of the solution of a 3 × 3 Riemann-Hilbert problem. The Dirichlet to Neumann map is obtained through the global relation. Supported by grants from the National Science Foundation of China under Grant No. 11671095, National Science Foundation of China under Grant No. 11501365, Shanghai Sailing Program supported by Science and Technology Commission of Shanghai Municipality under Grant No 15YF1408100, and the Hujiang Foundation of China (B14005)

  12. Hybrid near-optimal aeroassisted orbit transfer plane change trajectories

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Duckeman, Gregory A.

    1994-01-01

    In this paper, a hybrid methodology is used to determine optimal open loop controls for the atmospheric portion of the aeroassisted plane change problem. The method is hybrid in the sense that it combines the features of numerical collocation with the analytically tractable portions of the problem which result when the two-point boundary value problem is cast in the form of a regular perturbation problem. Various levels of approximation are introduced by eliminating particular collocation parameters and their effect upon problem complexity and required number of nodes is discussed. The results include plane changes of 10, 20, and 30 degrees for a given vehicle.

  13. Prospective monitoring of health problems among recreational runners preparing for a half marathon

    PubMed Central

    Baumann, Antje; Zech, Astrid; Verhagen, Evert

    2018-01-01

    Objectives While the health benefits of running are legitimately advocated, participation in running can also lead to health problems. There is a high range of reported prevalence rates especially of running-related overuse injuries in high-level athletes and during competition. Little consensus exists for acute injuries and illnesses especially in recreational runners. Therefore, the aim of this study was to record the prevalence of health problems in recreational long-distance runners preparing for an event. Methods Recreational runners aged 18–65 years who were registered 13 weeks prior to a half-marathon running event were invited to take part in this study. Participants were prospectively monitored weekly over 13 weeks by applying a standardised surveillance system for injuries and illnesses (Oslo Sports Trauma Research Center questionnaire). From this, prevalence and severity of acute and overuse injuries, as well as illnesses, were calculated. Results We received 3213 fully answered questionnaires from 327 participants (40.7% female, 40.9±11.7 years of age, 31.5±21.1 km weekly mileage, 8.3±7.8 years of running experience). At any point in time over the preparation phase, 37.3% of the participants had health problems. Overuse injuries were the major burden (18%). They were followed by illnesses (14.1%) and acute injuries (7.9%). The median weekly severity score was 56.5 (IQR 37.0–58.0). Conclusion The high prevalence of health problems in our cohort suggests that future efforts are needed to further specify the underlying mechanism and develop adequate prevention strategies for recreational runners. PMID:29387447

  14. Hydrodynamic Characteristics of a Low-drag, Planing-tail Flying-boat Hull

    NASA Technical Reports Server (NTRS)

    Suydam, Henry B

    1948-01-01

    The hydrodynamic characteristics of a flying-boat incorporating a low-drag, planing-tail hull were determined from model tests made in Langley tank number 2 and compared with tests of the same flying boat incorporating a conventional-type hull. The planing-tail model, with which stable take-offs were possible for a large range of elevator positions at all center-of-gravity locations tested, had more take-off stability than the conventional model. No upper-limit porpoising was encountered by the planing-tail model. The maximum changes in rise during landings were lower for the planing-tail model than for the conventional model at most contact trims, an indication of improved landing stability for the planing-tail model. The hydrodynamic resistance of the planing-tail hull was lower than the conventional hull at all speeds, and the load-resistance ratio was higher for the planing-tail hull, being especially high at the hump. The static trim of the planing-tail hull was much higher than the conventional hull, but the variation of trim with speed during take-off was smaller.

  15. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  16. Rugged Low-Resistance Contacts To High-Tc Superconductors

    NASA Technical Reports Server (NTRS)

    Caton, Randall; Selim, Raouf; Byvik, Charles E.; Buoncristiani, A. Martin

    1992-01-01

    Newly developed technique involving use of gold makes possible to fabricate low-resistance contacts with rugged connections to high-Tc superconductors. Gold diffused into specimen of superconducting material by melting gold beads onto surface of specimen, making strong mechanical contacts. Shear strength of gold bead contacts greater than epoxy or silver paste. Practical use in high-current-carrying applications of new high-Tc materials, including superconducting magnets, long-wavelength sensors, electrical ground planes at low temperatures, and efficient transmission of power.

  17. Double and multiple contacts of similar elastic materials

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan K.

    Ongoing fretting fatigue research has focussed on developing robust contact mechanics solutions for complicated load histories involving normal, shear, moment and bulk loads. For certain indenter profiles and applied loads, the contact patch separates into two disconnected regions. Existing Singular Integral Equation (SIE) techniques do not address these situations. A fast numerical tool is developed to solve such problems for similar elastic materials for a wide range of profiles and load paths including applied moments and remote bulk-stress effects. This tool is then used to investigate two problems in double contacts. The first, to determine the shear configuration space for a biquadratic punch for the generalized Cattaneo-Mindlin problem. The second, to obtain quantitative estimates of the interaction between neighboring cylindrical contacts for both the applied normal load and partial slip problems up to the limits of validity of the halfspace assumption. In double contact problems without symmetry, obtaining a unique solution requires the satisfaction of a condition relating the contact ends, rigid-body rotation and profile function. This condition has the interpretation that a rigid-rod connecting the inner contact ends of an equivalent frictionless double contact of a rigid indenter and halfspace may only undergo rigid body motions. It is also found that the ends of stick-zones, local slips and remote-applied strains in double contact problems are related by an equation expressing tangential surface-displacement continuity. This equation is essential to solve partial-slip problems without contact equivalents. Even when neighboring cylindrical contacts may be treated as non-interacting for the purpose of determining the pressure tractions, this is not generally true if a shear load is applied. The mutual influence of neighboring contacts in partial slip problems is largest at small shear load fractions. For both the pressure and partial slip problems, the

  18. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length.

  19. Glasses and Contact Lenses

    MedlinePlus

    ... vision problems; this includes prescribing eyeglasses and contact lenses, but also doing eye surgery for other eye-related problems. An optometrist ... them clean. The most important thing about contact lenses is good hygiene to prevent infections in your eye. But the really fun part of new glasses ...

  20. Processes linked to contact changes in adoptive kinship networks.

    PubMed

    Dunbar, Nora; van Dulmen, Manfred H M; Ayers-Lopez, Susan; Berge, Jerica M; Christian, Cinda; Gossman, Ginger; Henney, M Susan M; Mendenhall, Tai J; Grotevant, Harold D; McRoy, Ruth G

    2006-12-01

    The purpose of this study was to reveal underlying processes in adoptive kinship networks that experienced increases or decreases in levels of openness during the child's adolescent years. Intensive case study analyses were conducted for 8 adoptive kinship networks (each including an adoptive mother, adoptive father, adopted adolescent, and birth mother), half of whom had experienced an increase in openness from indirect (mediated) to direct (fully disclosed) contact and half of whom had ceased indirect contact between Waves 1 and 2 of a longitudinal study. Adoptive mothers tended to be more involved in contact with the birth mother than were adoptive fathers or adopted adolescents. Members of adoptive kinship networks in which a decrease in level of contact took place had incongruent perspectives about who initiated the stop in contact and why the stop took place. Birth mothers were less satisfied with their degree of contact than were adoptive parents. Adults' satisfaction with contact was related to feelings of control over type and amount of interactions and permeability of family boundaries. In all adoptive kinship networks, responsibility for contact had shifted toward the adopted adolescent regardless of whether the adolescent was aware of this change in responsibility.

  1. Contact Modelling of Large Radius Air Bending with Geometrically Exact Contact Algorithm

    NASA Astrophysics Data System (ADS)

    Vorkov, V.; Konyukhov, A.; Vandepitte, D.; Duflou, J. R.

    2016-08-01

    Usage of high-strength steels in conventional air bending is restricted due to limited bendability of these metals. Large-radius punches provide a typical approach for decreasing deformations during the bending process. However, as deflection progresses the loading scheme changes gradually. Therefore, modelling of the contact interaction is essential for an accurate description of the loading scheme. In the current contribution, the authors implemented a plane frictional contact element based on the penalty method. The geometrically exact contact algorithm is used for the penetration determination. The implementation is done using the OOFEM - open source finite element solver. In order to verify the simulation results, experiments have been conducted on a bending press brake for 4 mm Weldox 1300 with a punch radius of 30 mm and a die opening of 80 mm. The maximum error for the springback calculation is 0.87° for the bending angle of 144°. The contact interaction is a crucial part of large radius bending simulation and the implementation leads to a reliable solution for the springback angle.

  2. Serial Back-Plane Technologies in Advanced Avionics Architectures

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta

    2005-01-01

    Current back plane technologies such as VME, and current personal computer back planes such as PCI, are shared bus systems that can exhibit nondeterministic latencies. This means a card can take control of the bus and use resources indefinitely affecting the ability of other cards in the back plane to acquire the bus. This provides a real hit on the reliability of the system. Additionally, these parallel busses only have bandwidths in the 100s of megahertz range and EMI and noise effects get worse the higher the bandwidth goes. To provide scalable, fault-tolerant, advanced computing systems, more applicable to today s connected computing environment and to better meet the needs of future requirements for advanced space instruments and vehicles, serial back-plane technologies should be implemented in advanced avionics architectures. Serial backplane technologies eliminate the problem of one card getting the bus and never relinquishing it, or one minor problem on the backplane bringing the whole system down. Being serial instead of parallel improves the reliability by reducing many of the signal integrity issues associated with parallel back planes and thus significantly improves reliability. The increased speeds associated with a serial backplane are an added bonus.

  3. Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.

    PubMed

    Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Lin-Zhi; Caii, Meng-Qiu

    2016-07-20

    The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure can be tuned from p-type to n-type by the in-plane compressive strains from -2% to -4%. After analyzing the total band structure and density of states of P atom orbitals, we find that the Schottky barrier height (SBH) is determined by the P-pz orbitals. What is more, the variation of the work function of the phosphorene monolayer and the graphene electrode and the Fermi level shift are the nature of the transition of Schottky barrier from n-type Schottky contact to p-type Schottky contact in the phosphorene and graphene heterostructure under different in-plane strains. We speculate that these are general results of tuning of the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure by controlling the in-plane compressive strains to obtain a promising method to design and fabricate a phosphorene-graphene based field effect transistor.

  4. Effects of mother-infant skin-to-skin contact on severe latch-on problems in older infants: a randomized trial.

    PubMed

    Svensson, Kristin E; Velandia, Marianne I; Matthiesen, Ann-Sofi T; Welles-Nyström, Barbara L; Widström, Ann-Marie E

    2013-03-11

    Infants with latch-on problems cause stress for parents and staff, often resulting in early termination of breastfeeding. Healthy newborns experiencing skin-to-skin contact at birth are pre-programmed to find the mother's breast. This study investigates if skin-to-skin contact between mothers with older infants having severe latching on problems would resolve the problem. Mother-infant pairs with severe latch-on problems, that were not resolved during screening procedures at two maternity hospitals in Stockholm 1998-2004, were randomly assigned to skin-to-skin contact (experimental group) or not (control group) during breastfeeding. Breastfeeding counseling was given to both groups according to a standard model. Participants were unaware of their treatment group. Objectives were to compare treatment groups concerning the proportion of infants regularly latching on, the time from intervention to regular latching on and maternal emotions and pain before and during breastfeeding. On hundred and three mother-infant pairs with severe latch-on problems 1-16 weeks postpartum were randomly assigned and analyzed. There was no significant difference between the groups in the proportion of infants starting regular latching-on (75% experimental group, vs. 86% control group). Experimental group infants, who latched on, had a significantly shorter median time from start of intervention to regular latching on than control infants, 2.0 weeks (Q1 = 1.0, Q3 = 3.7) vs. 4.7 weeks (Q1 = 2.0, Q3 = 8.0), (p-value = 0.020). However, more infants in the experimental group (94%), with a history of "strong reaction" during "hands-on latch intervention", latched-on within 3 weeks compared to 33% in the control infants (Fisher Exact test p-value = 0.0001). Mothers in the experimental group (n = 53) had a more positive breastfeeding experience according to the Breastfeeding Emotional Scale during the intervention than mothers in the control group (n = 50) (p-value = 0.022). Skin-to-skin contact

  5. New approach for pattern collapse problem by increasing contact area at sub-100nm patterning

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Koo; Jung, Jae Chang; Lee, Min Suk; Lee, Sung K.; Kim, Sam Young; Hwang, Young-Sun; Bok, Cheol K.; Moon, Seung-Chan; Shin, Ki S.; Kim, Sang-Jung

    2003-06-01

    To accomplish minimizing feature size to sub 100nm, new light sources for photolithography are emerging, such as ArF(193nm), F2(157nm), and EUV(13nm). However as the pattern size decreases to sub 100nm, a new obstacle, that is pattern collapse problem, becomes most serious bottleneck to the road for the sub 100 nm lithography. The main reason for this pattern collapse problem is capillary force that is increased as the pattern size decreases. As a result there were some trials to decrease this capillary force by changing developer or rinse materials that had low surface tension. On the other hands, there were other efforts to increase adhesion between resists and sub materials (organic BARC). In this study, we will propose a novel approach to solve pattern collapse problems by increasing contact area between sub material (organic BARC) and resist pattern. The basic concept of this approach is that if nano-scale topology is made at the sub material, the contact area between sub materials and resist will be increased. The process scheme was like this. First after coating and baking of organic BARC material, the nano-scale topology (3~10nm) was made by etching at this organic BARC material. On this nano-scale topology, resist was coated and exposed. Finally after develop, the contact area between organic BARC and resist could be increased. Though nano-scale topology was made by etching technology, this 20nm topology variation induced large substrate reflectivity of 4.2% and as a result the pattern fidelity was not so good at 100nm 1:1 island pattern. So we needed a new method to improve pattern fidelity problem. This pattern fidelity problem could be solved by introducing a sacrificial BARC layer. The process scheme was like this. First organic BARC was coated of which k value was about 0.64 and then sacrificial BARC layers was coated of which k value was about 0.18 on the organic BARC. The nano-scale topology (1~4nm) was made by etching of this sacrificial BARC layer

  6. Three examples of quantum dynamics on the half-line with smooth bouncing

    NASA Astrophysics Data System (ADS)

    Almeida, C. R.; Bergeron, H.; Gazeau, J.-P.; Scardua, A. C.

    2018-05-01

    This article is an introductory presentation of the quantization of the half-plane based on affine coherent states (ACS). The half-plane carries a natural affine symmetry, i.e. it is a homogeneous space for the 1d-affine group, and it is viewed as the phase space for the dynamics of a positive physical quantity evolving with time. Its affine symmetry is preserved due to the covariance of this type of quantization. We promote the interest of such a procedure for transforming a classical model into a quantum one, since the singularity at the origin is systematically removed, and the arbitrariness of boundary conditions for the Schrödinger operator can be easily overcome. We explain some important mathematical aspects of the method. Three elementary examples of applications are presented, the quantum breathing of a massive sphere, the quantum smooth bouncing of a charged sphere, and a smooth bouncing of "dust" sphere as a simple model of quantum Newtonian cosmology.

  7. First contact diagnosis and management of contact lens-related complications.

    PubMed

    Fagan, Xavier J; Jhanji, Vishal; Constantinou, Marios; Amirul Islam, F M; Taylor, Hugh R; Vajpayee, Rasik B

    2012-08-01

    To describe the spectrum of contact lens-related problems in cases presenting to a tertiary referral eye hospital. A retrospective case record analysis of 111 eyes of 97 consecutive patients was undertaken over a period of five months at the Royal Victorian Eye and Ear Hospital, Melbourne, Australia. Contact lens-related complications (CLRC) were classified into microbial keratitis, sterile corneal infiltrates, corneal epitheliopathy and contact lens-related red eye (CLARE). Main parameters examined were nature of the first contact, clinical diagnosis, and management pattern. Forty-two percent of the initial presentations were to health care practitioners (HCPs) other than ophthalmologists. Mean duration from the onset of symptoms to presentation was 6.3 ± 10.9 days. Forty-nine percent (n = 54) of patients had an associated risk factor, most commonly overnight use of contact lenses (n = 14, 13 %). Most common diagnosis at presentation was corneal epitheliopathy (68 %) followed by sterile infiltrates (10 %), CLARE (8 %) and microbial keratitis (6 %). No significant differences were found in the pattern of treatment modalities administered by ophthalmologists and other HCPs. HCPs other than ophthalmologists are the first contact for contact lens-related problems in a significant proportion of patients. These HCPs manage the majority of CLRC by direct treatment or immediate referral.

  8. Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials.

    PubMed

    Dai, Guang-ming; Campbell, Charles E; Chen, Li; Zhao, Huawei; Chernyak, Dimitri

    2009-01-20

    In wavefront-driven vision correction, ocular aberrations are often measured on the pupil plane and the correction is applied on a different plane. The problem with this practice is that any changes undergone by the wavefront as it propagates between planes are not currently included in devising customized vision correction. With some valid approximations, we have developed an analytical foundation based on geometric optics in which Zernike polynomials are used to characterize the propagation of the wavefront from one plane to another. Both the boundary and the magnitude of the wavefront change after the propagation. Taylor monomials were used to realize the propagation because of their simple form for this purpose. The method we developed to identify changes in low-order aberrations was verified with the classical vertex correction formula. The method we developed to identify changes in high-order aberrations was verified with ZEMAX ray-tracing software. Although the method may not be valid for highly irregular wavefronts and it was only proven for wavefronts with low-order or high-order aberrations, our analysis showed that changes in the propagating wavefront are significant and should, therefore, be included in calculating vision correction. This new approach could be of major significance in calculating wavefront-driven vision correction whether by refractive surgery, contact lenses, intraocular lenses, or spectacles.

  9. Contact engineering for 2D materials and devices.

    PubMed

    Schulman, Daniel S; Arnold, Andrew J; Das, Saptarshi

    2018-05-08

    Over the past decade, the field of two-dimensional (2D) layered materials has surged, promising a new platform for studying diverse physical phenomena that are scientifically intriguing and technologically relevant. Contacts are the communication links between these 2D materials and the three-dimensional world for probing and harnessing their exquisite electronic properties. However, fundamental challenges related to contacts often limit the ultimate performance and potential of 2D materials and devices. This article provides a comprehensive overview of the basic understanding and importance of contacts to 2D materials and various strategies for engineering and improving them. In particular, we elucidate the phenomenon of Fermi level pinning at the metal/2D contact interface, the Schottky versus Ohmic nature of the contacts and various contact engineering approaches including interlayer contacts, phase engineered contacts, and basal versus edge plane contacts, among others. Finally, we also discuss some of the relatively under-addressed and unresolved issues, such as contact scaling, and conclude with a future outlook.

  10. Simplified solution for point contact deformation between two elastic solids

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.

    1976-01-01

    A linear-regression by the method of least squares is made on the geometric variables that occur in the equation for point contact deformation. The ellipticity and the complete eliptic integrals of the first and second kind are expressed as a function of the x, y-plane principal radii. The ellipticity was varied from 1 (circular contact) to 10 (a configuration approaching line contact). These simplified equations enable one to calculate easily the point-contact deformation to within 3 percent without resorting to charts or numerical methods.

  11. Trajectory optimization for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1993-01-01

    The objective of this second phase research is to investigate the optimal ascent trajectory for the National Aerospace Plane (NASP) from runway take-off to orbital insertion and address the unique problems associated with the hypersonic flight trajectory optimization. The trajectory optimization problem for an aerospace plane is a highly challenging problem because of the complexity involved. Previous work has been successful in obtaining sub-optimal trajectories by using energy-state approximation and time-scale decomposition techniques. But it is known that the energy-state approximation is not valid in certain portions of the trajectory. This research aims at employing full dynamics of the aerospace plane and emphasizing direct trajectory optimization methods. The major accomplishments of this research include the first-time development of an inverse dynamics approach in trajectory optimization which enables us to generate optimal trajectories for the aerospace plane efficiently and reliably, and general analytical solutions to constrained hypersonic trajectories that has wide application in trajectory optimization as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent augmented with rocket propulsion and thrust vectoring control were also investigated. Motivated by this study, a new global trajectory optimization tool using continuous simulated annealing and a nonlinear predictive feedback guidance law have been under investigation and some promising results have been obtained, which may well lead to more significant development and application in the near future.

  12. Analysis of a thin-walled pressurized torus in contact with a plane. [aircraft tires study

    NASA Technical Reports Server (NTRS)

    Mack, M. J., Jr.; Gassman, P. M.; Baumgarten, J. R.

    1983-01-01

    Finite element analysis is applied to study the large deflection of a standing torus loaded by a plane. The internally pressurized thin-walled structure is found to have an elliptical footprint area. Considerable bulge occurs in the sidewall in the region of the load plane. Stress distributions throughout the torus are shown for various load levels and for various modeling strategies at a given load level. In large load ranges finite element calculations show compressive circumferential stress and negative curvature in the footprint region. Results are compared with inelastic wall analysis.

  13. SART-Type Half-Threshold Filtering Approach for CT Reconstruction

    PubMed Central

    YU, HENGYONG; WANG, GE

    2014-01-01

    The ℓ1 regularization problem has been widely used to solve the sparsity constrained problems. To enhance the sparsity constraint for better imaging performance, a promising direction is to use the ℓp norm (0 < p < 1) and solve the ℓp minimization problem. Very recently, Xu et al. developed an analytic solution for the ℓ1∕2 regularization via an iterative thresholding operation, which is also referred to as half-threshold filtering. In this paper, we design a simultaneous algebraic reconstruction technique (SART)-type half-threshold filtering framework to solve the computed tomography (CT) reconstruction problem. In the medical imaging filed, the discrete gradient transform (DGT) is widely used to define the sparsity. However, the DGT is noninvertible and it cannot be applied to half-threshold filtering for CT reconstruction. To demonstrate the utility of the proposed SART-type half-threshold filtering framework, an emphasis of this paper is to construct a pseudoinverse transforms for DGT. The proposed algorithms are evaluated with numerical and physical phantom data sets. Our results show that the SART-type half-threshold filtering algorithms have great potential to improve the reconstructed image quality from few and noisy projections. They are complementary to the counterparts of the state-of-the-art soft-threshold filtering and hard-threshold filtering. PMID:25530928

  14. SART-Type Half-Threshold Filtering Approach for CT Reconstruction.

    PubMed

    Yu, Hengyong; Wang, Ge

    2014-01-01

    The [Formula: see text] regularization problem has been widely used to solve the sparsity constrained problems. To enhance the sparsity constraint for better imaging performance, a promising direction is to use the [Formula: see text] norm (0 < p < 1) and solve the [Formula: see text] minimization problem. Very recently, Xu et al. developed an analytic solution for the [Formula: see text] regularization via an iterative thresholding operation, which is also referred to as half-threshold filtering. In this paper, we design a simultaneous algebraic reconstruction technique (SART)-type half-threshold filtering framework to solve the computed tomography (CT) reconstruction problem. In the medical imaging filed, the discrete gradient transform (DGT) is widely used to define the sparsity. However, the DGT is noninvertible and it cannot be applied to half-threshold filtering for CT reconstruction. To demonstrate the utility of the proposed SART-type half-threshold filtering framework, an emphasis of this paper is to construct a pseudoinverse transforms for DGT. The proposed algorithms are evaluated with numerical and physical phantom data sets. Our results show that the SART-type half-threshold filtering algorithms have great potential to improve the reconstructed image quality from few and noisy projections. They are complementary to the counterparts of the state-of-the-art soft-threshold filtering and hard-threshold filtering.

  15. An inverse model for a free-boundary problem with a contact line: Steady case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, Oleg; Protas, Bartosz

    2009-07-20

    This paper reformulates the two-phase solidification problem (i.e., the Stefan problem) as an inverse problem in which a cost functional is minimized with respect to the position of the interface and subject to PDE constraints. An advantage of this formulation is that it allows for a thermodynamically consistent treatment of the interface conditions in the presence of a contact point involving a third phase. It is argued that such an approach in fact represents a closure model for the original system and some of its key properties are investigated. We describe an efficient iterative solution method for the Stefan problemmore » formulated in this way which uses shape differentiation and adjoint equations to determine the gradient of the cost functional. Performance of the proposed approach is illustrated with sample computations concerning 2D steady solidification phenomena.« less

  16. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length. Previously announced in STAR as N82-26707

  17. Knee joint contact mechanics during downhill gait and its relationship with varus/valgus motion and muscle strength in patients with knee osteoarthritis.

    PubMed

    Farrokhi, Shawn; Voycheck, Carrie A; Gustafson, Jonathan A; Fitzgerald, G Kelley; Tashman, Scott

    2016-01-01

    The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p < 0.02) and greater heel-strike joint contact point velocities (p < 0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p = 0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p < 0.01) and greater quadriceps and hip abductor muscle weakness (p = 0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p < 0.04) but not with quadriceps or hip abductor strength. Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength.

  18. An elastic-plastic contact model for line contact structures

    NASA Astrophysics Data System (ADS)

    Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng

    2018-06-01

    Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.

  19. Orange a-plane InGaN/GaN light-emitting diodes grown on r-plane sapphire substrates.

    PubMed

    Seo, Yong Gon; Baik, Kwang Hyeon; Song, Hooyoung; Son, Ji-Su; Oh, Kyunghwan; Hwang, Sung-Min

    2011-07-04

    We report on orange a-plane light-emitting diodes (LEDs) with InGaN single quantum well (SQW) grown on r-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). The peak wavelength and the full-width at half maximum (FWHM) at a drive current of 20mA were 612.2 nm and 72 nm, respectively. The device demonstrated a blue shift in emission wavelength from 614.6 nm at 10 mA to 607.5 nm at 100 mA, representing a net shift of 7.1 nm over a 90 mA range, which is the longest wavelength compared with reported values in nonpolar LEDs. The polarization ratio values obtained from the orange LED varied between 0.36 and 0.44 from 10 to 100mA and a weak dependence of the polarization ratio on the injection current was observed.

  20. Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. M., E-mail: smilehhm@163.com; Luo, S. J.; Yao, K. L.

    2014-01-28

    Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range ofmore » c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.« less

  1. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  2. Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading?

    PubMed

    Vendruscolo, M; Najmanovich, R; Domany, E

    2000-02-01

    We present a method to derive contact energy parameters from large sets of proteins. The basic requirement on which our method is based is that for each protein in the database the native contact map has lower energy than all its decoy conformations that are obtained by threading. Only when this condition is satisfied one can use the proposed energy function for fold identification. Such a set of parameters can be found (by perceptron learning) if Mp, the number of proteins in the database, is not too large. Other aspects that influence the existence of such a solution are the exact definition of contact and the value of the critical distance Rc, below which two residues are considered to be in contact. Another important novel feature of our approach is its ability to determine whether an energy function of some suitable proposed form can or cannot be parameterized in a way that satisfies our basic requirement. As a demonstration of this, we determine the region in the (Rc, Mp) plane in which the problem is solvable, i.e., we can find a set of contact parameters that stabilize simultaneously all the native conformations. We show that for large enough databases the contact approximation to the energy cannot stabilize all the native folds even against the decoys obtained by gapless threading.

  3. Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2017-01-01

    The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.

  4. Robust half-metallicity of hexagonal SrNiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gao-Yuan; Ma, Chun-Lan, E-mail: machunlan@126.com; Chen, Da

    In the rich panorama of the electronic and magnetic properties of 3d transition metal oxides SrMO{sub 3} (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu), one member (SrNiO{sub 3}) is missing. In this paper we use GGA+U method based on density functional theory to examine its properties. It is found that SrNiO{sub 3} is a ferromagnetic half-metal. The charge density map shows a high degree of ionic bonding between Sr and other atoms. Meanwhile, a covalent-bonding Ni–O–Ni–O–Ni chain is observed. The spin density contour of SrNiO{sub 3} further indicates that the magnetic interaction between Ni atoms mediated by O ismore » semicovalent exchange. The density of states are examined to explore the unusual indirect magnetic-exchange mechanism. Corresponding to the total energies results, a robust half-metallic character is observed, suggesting a promising giant magneto-optical Kerr property of the material. The partial density of states are further examined to explore the origin of ferromagnetic half-metallicity. The O atoms are observed to have larger contribution at fermi level than Ni atoms to the spin-polarized states, demonstrating that O atoms play a critical role in ferromagnetic half-metallicity of SrNiO{sub 3}. Hydrostatic pressure effect is examined to evaluate how robust the half-metallic ferromagnetism is. - Graphical abstract: (a) The total energy as a function of the lattice constant a for hexagonal SrNiO3 with various magnetic phases. (b) The total electronic density of states for hexagonal SrNiO{sub 3} with FM configuration from GGA+U calculations. (c) Total electron-density distribution in the (110) plane. The colors gradually change from cyan (through pink) to yellow corresponding to charge density value from 0 to 4.0. (d) The magnetization density map in the (110) plane. The colors range from blue (through green) to red corresponding to magnetization density value from −0.15 to 0.45. Black and white contours stand for positive and negative values

  5. Attitude analysis in Flatland: The plane truth

    NASA Technical Reports Server (NTRS)

    Shuster, Malcolm D.

    1993-01-01

    Many results in attitude analysis are still meaningful when the attitude is restricted to rotations about a single axis. Such a picture corresponds to attitude analysis in the Euclidean plane. The present report formalizes the representation of attitude in the plane and applies it to some well-known problems. In particular, we study the connection of the 'additive' and 'multiplicative' formulations of the differential corrector for the quaternion in its two-dimensional setting.

  6. Contact allergy in cheilitis.

    PubMed

    O'Gorman, Susan M; Torgerson, Rochelle R

    2016-07-01

    Recalcitrant non-actinic cheilitis may indicate contact allergy. This study aimed to determine the prevalence of allergic contact cheilitis (ACC) in patients with non-actinic cheilitis and to identify the most relevant allergens. We used an institutional database to identify patients with non-actinic cheilitis who underwent patch testing between January 1, 2001, and August 31, 2011, and conducted a retrospective review of patch test results in these patients. Additional data were obtained from institutional electronic medical records. Ninety-one patients (70 [77%] female; mean age: 51 years) were included in the study. Almost half (41 [45%]) had a final diagnosis of ACC. Patch testing was performed in line with universally accepted methods, with application on day 1, allergen removal and an initial reading on day 3, and the final reading on day 5. The allergens of most significance were fragrance mix, Myroxylon pereirae resin, dodecyl gallate, octyl gallate, and benzoic acid. Nickel was the most relevant metal allergen. Contact allergy is an important consideration in recalcitrant cheilitis. Fragrances, antioxidants, and preservatives dominated the list of relevant allergens in our patients. Nickel and gold were among the top 10 allergens. Almost half (45%) of these patients had a final diagnosis of ACC. Patch testing beyond the oral complete series should be undertaken in any investigation of non-actinic cheilitis. © 2015 The International Society of Dermatology.

  7. Indentation theory on a half-space of transversely isotropic multi-ferroic composite medium: sliding friction effect

    NASA Astrophysics Data System (ADS)

    Wu, F.; Wu, T.-H.; Li, X.-Y.

    2018-03-01

    This article aims to present a systematic indentation theory on a half-space of multi-ferroic composite medium with transverse isotropy. The effect of sliding friction between the indenter and substrate is taken into account. The cylindrical flat-ended indenter is assumed to be electrically/magnetically conducting or insulating, which leads to four sets of mixed boundary-value problems. The indentation forces in the normal and tangential directions are related to the Coulomb friction law. For each case, the integral equations governing the contact behavior are developed by means of the generalized method of potential theory, and the corresponding coupling field is obtained in terms of elementary functions. The effect of sliding on the contact behavior is investigated. Finite element method (FEM) in the context of magneto-electro-elasticity is developed to discuss the validity of the analytical solutions. The obtained analytical solutions may serve as benchmarks to various simplified analyses and numerical codes and as a guide for future experimental studies.

  8. Halos--a problem for all myopes? A comparison between spectacles, contact lenses, and photorefractive keratectomy.

    PubMed

    Lohmann, C P; Fitzke, F W; O'Brart, D; Muir, M K; Marshall, J

    1993-01-01

    After photorefractive keratectomy (PRK) using excimer lasers (193 nm) many patients report the presence of halos around light sources at night. However, halos are not unique to PRK patients, as they are a common observation in myopic contact lens wearers. We present an objective measurement of the halos using a computerized technique. The patient fixated on a red cross within a white circle in the center of a video monitor which served as the halo source. The screen surrounding the circle was not illuminated. The operator controlled the movement of the white spot and moved the spot toward the halo source until the subject indicated when the cursor was at the outer parameter of the halo. Measurements were made at 30 degree intervals around the halo source and expressed as square degrees. The study found that spectacles, soft contact lenses, and excimer laser surgery were superior to hard contact lenses in terms of the size of the halo. A mean value of 2.51 square degrees was obtained for spectacles wearers compared with 3.18 square degrees for soft contact lenses, 3.14 square degrees for excimer laser patients with 4-millimeter ablation zone, 2.76 square degrees for excimer laser patients with a 5-millimeter ablation zone, and 89.5 square degrees for hard contact lenses. It appears that this device is very useful for measuring the halo size after excimer laser PRK. We concluded that halos were not a problem for our patients after excimer laser photorefractive keratectomy.

  9. Plane Evanescent Waves and Interface Waves

    NASA Astrophysics Data System (ADS)

    Luppé, F.; Conoir, J. M.; El Kettani, M. Ech-Cherif; Lenoir, O.; Izbicki, J. L.; Duclos, J.; Poirée, B.

    The evanescent plane wave formalism is used to obtain the characteristic equation of the normal vibration modes of a plane elastic solid embedded in a perfect fluid. Simple drawings of the real and imaginary parts of complex wave vectors make quite clear the choice of the Riemann sheets on which the roots of the characteristic equation are to be looked for. The generalized Rayleigh wave and the Scholte - Stoneley wave are then described. The same formalism is used to describe Lamb waves on an elastic plane plate immersed in water. The damping, due to energy leaking in the fluid, is shown to be directly given by the projection of evanescence vectors on the interface. Measured values of the damping coefficient are in good agreement with those derived from calculations. The width of the angular resonances associated to Lamb waves or Rayleigh waves is also directly related to this same evanescence vectors projection, as well as the excitation coefficient of a given Lamb wave excited by a plane incident wave. This study shows clearly the strong correlation between the resonance point of view and the wave one in plane interface problems.

  10. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.

    PubMed

    Begalle, Rebecca L; Walsh, Meghan C; McGrath, Melanie L; Boling, Michelle C; Blackburn, J Troy; Padua, Darin A

    2015-08-01

    The ankle, knee, and hip joints work together in the sagittal plane to absorb landing forces. Reduced sagittal plane motion at the ankle may alter landing strategies at the knee and hip, potentially increasing injury risk; however, no studies have examined the kinematic relationships between the joints during jump landings. Healthy adults (N = 30; 15 male, 15 female) performed jump landings onto a force plate while three-dimensional kinematic data were collected. Joint displacement values were calculated during the loading phase as the difference between peak and initial contact angles. No relationship existed between ankle dorsiflexion displacement during landing and three-dimensional knee and hip displacements. However, less ankle dorsiflexion displacement was associated with landing at initial ground contact with larger hip flexion, hip internal rotation, knee flexion, knee varus, and smaller plantar flexion angles. Findings of the current study suggest that restrictions in ankle motion during landing may contribute to contacting the ground in a more flexed position but continuing through little additional motion to absorb the landing. Transverse plane hip and frontal plane knee positioning may also occur, which are known to increase the risk of lower extremity injury.

  11. The inverse problem for definition of the shape of a molten contact bridge

    NASA Astrophysics Data System (ADS)

    Kharin, Stanislav N.; Sarsengeldin, Merey M.

    2017-09-01

    The paper presents the results of investigation of bridging phenomenon occurring at opening of electrical contacts. The mathematical model describing the dynamics of metal molten bridge takes into account the Thomson effect. It is based on the system of partial differential equations for temperature and electrical fields of the bridge in the domain containing two moving unknown boundaries. One of them is an interface between liquid and solid zones of the bridge and should be found by the solution of the corresponding Stefan problem. The second free boundary corresponds to the shape of the visible part of a bridge. Its definition is an inverse problem, for which solution it is necessary to find minimum of the energy consuming for the formation of the shape of a quasi-stationary bridge. Three components of this energy, namely surface tension, pinch effect and gravitation, are defined by the functional which minimum gives the required shape of the bridge. The solution of corresponding variation problem is found by the reduction of the problem to the solution of the system of ordinary differential equations. Calculated values of the voltage of the bridge rupture for various metals are in a good agreement with the experimental data. The criteria responsible for the mechanism of molten bridge rupture are introduced in the paper.

  12. Making contact for contact dermatitis: a survey of the membership of the American Contact Dermatitis Society.

    PubMed

    Nezafati, Kaveh A; Carroll, Bryan; Storrs, Frances J; Cruz, Ponciano D

    2013-01-01

    The American Contact Dermatitis Society (ACDS) is the principal organization representing the subspecialty of contact dermatitis in the United States. The aim of this study was to characterize ACDS members with respect to demographic characteristics, patch-test practices, and sentiments regarding the Society and its journal Dermatitis. We conducted cross-sectional postal and online surveys of ACDS members. More than a third of ACDS members responded to the survey, 92% of whom practice dermatology, and most of whom are community practitioners. Responders manage patients with allergic and irritant dermatitis at a similar frequency. On average, they patch test 4 patients per week using 66 allergens per patient, which often include customized trays. Almost half of these practitioners learned patch testing from their residency programs. Most of the responders read and value the Society journal, value the Contact Allergen Management Program database, and attend society meetings. The ACDS is comprised overwhelmingly of dermatologists who are primarily community-based, young relative to the start of their practices, and use the Society's resources for continuing education.

  13. The Frictional Force with Respect to the Actual Contact Surface

    NASA Technical Reports Server (NTRS)

    Holm, Ragnar

    1944-01-01

    Hardy's statement that the frictional force is largely adhesion, and to a lesser extent, deformation energy is proved by a simple experiment. The actual contact surface of sliding contacts and hence the friction per unit of contact surface was determined in several cases. It was found for contacts in normal atmosphere to be about one-third t-one-half as high as the macroscopic tearing strength of the softest contact link, while contacts annealed in vacuum and then tested, disclosed frictional forces which are greater than the macroscopic strength.

  14. Centre-based restricted nearest feature plane with angle classifier for face recognition

    NASA Astrophysics Data System (ADS)

    Tang, Linlin; Lu, Huifen; Zhao, Liang; Li, Zuohua

    2017-10-01

    An improved classifier based on the nearest feature plane (NFP), called the centre-based restricted nearest feature plane with the angle (RNFPA) classifier, is proposed for the face recognition problems here. The famous NFP uses the geometrical information of samples to increase the number of training samples, but it increases the computation complexity and it also has an inaccuracy problem coursed by the extended feature plane. To solve the above problems, RNFPA exploits a centre-based feature plane and utilizes a threshold of angle to restrict extended feature space. By choosing the appropriate angle threshold, RNFPA can improve the performance and decrease computation complexity. Experiments in the AT&T face database, AR face database and FERET face database are used to evaluate the proposed classifier. Compared with the original NFP classifier, the nearest feature line (NFL) classifier, the nearest neighbour (NN) classifier and some other improved NFP classifiers, the proposed one achieves competitive performance.

  15. Three-dimensional collimation of in-plane-propagating light using silicon micromachined mirror

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser M.; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik

    2014-03-01

    We demonstrate light collimation of single-mode optical fibers using deeply-etched three-dimensional curved micromirror on silicon chip. The three-dimensional curvature of the mirror is controlled by a process combining deep reactive ion etching and isotropic etching of silicon. The produced surface is astigmatic with out-of-plane radius of curvature that is about one half the in-plane radius of curvature. Having a 300-μm in-plane radius and incident beam inplane inclined with an angle of 45 degrees with respect to the principal axis, the reflected beam is maintained stigmatic with about 4.25 times reduction in the beam expansion angle in free space and about 12-dB reduction in propagation losses, when received by a limited-aperture detector.

  16. Electrical characteristics of n-GaN Schottky contacts on cleaved surfaces of free-standing substrates: Metal work function dependence of Schottky barrier height

    NASA Astrophysics Data System (ADS)

    Imadate, Hiroyoshi; Mishima, Tomoyoshi; Shiojima, Kenji

    2018-04-01

    We report the electrical characteristics of Schottky contacts with nine different metals (Ag, Ti, Cr, W, Mo, Au, Pd, Ni, and Pt) formed on clean m-plane surfaces by cleaving freestanding GaN substrates, compared with these of contacts on Ga-polar c-plane n-GaN surfaces grown on GaN substrates. The n-values from the forward current–voltage (I–V) characteristics are as good as 1.02–1.18 and 1.02–1.09 for the m- and c-plane samples, respectively. We found that the reverse I–V curves of both samples can be explained by the thermionic field emission theory, and that the Schottky barrier height of the cleaved m-plane contacts shows a metal work function dependence.

  17. Occupational skin problems in construction workers.

    PubMed

    Shah, Kartik R; Tiwari, Rajnarayan R

    2010-10-01

    Construction workers handle cement which has constituents to produce both irritant contact dermatitis and corrosive effects (from alkaline ingredients, such as lime) and sensitization, leading to allergic contact dermatitis (from ingredients, such as chromium). The present study has been carried out among unorganized construction workers to find the prevalence of skin problems. The present cross-sectional study was conducted in 92 construction workers of Ahmedabad and Vadodara. All the workers were subjected to clinical examination after collection of information regarding demographic characteristics, occupational characteristics and clinical history on a predesigned proforma. Of them, 47.8% had morbid skin conditions. Frictional callosities in palm were observed in 18 (19.6%) subjects while 4 (4.3%) subjects had contact dermatitis. Other conditions included dry, fissured and scaly skin, infectious skin lesion, tinea cruris, lesion and ulcers on hands and/or soles. The skin conditions were common in the age group of 20-25 years, males, those having ≥1 year exposure and those working for longer hours. Half of the workers not using personal protective equipment had reported skin-related symptoms.

  18. Predictive Variables of Half-Marathon Performance for Male Runners.

    PubMed

    Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christoper; Rodríguez-Marroyo, José A; García-López, Juan

    2017-06-01

    The aims of this study were to establish and validate various predictive equations of half-marathon performance. Seventy-eight half-marathon male runners participated in two different phases. Phase 1 (n = 48) was used to establish the equations for estimating half-marathon performance, and Phase 2 (n = 30) to validate these equations. Apart from half-marathon performance, training-related and anthropometric variables were recorded, and an incremental test on a treadmill was performed, in which physiological (VO 2max , speed at the anaerobic threshold, peak speed) and biomechanical variables (contact and flight times, step length and step rate) were registered. In Phase 1, half-marathon performance could be predicted to 90.3% by variables related to training and anthropometry (Equation 1), 94.9% by physiological variables (Equation 2), 93.7% by biomechanical parameters (Equation 3) and 96.2% by a general equation (Equation 4). Using these equations, in Phase 2 the predicted time was significantly correlated with performance (r = 0.78, 0.92, 0.90 and 0.95, respectively). The proposed equations and their validation showed a high prediction of half-marathon performance in long distance male runners, considered from different approaches. Furthermore, they improved the prediction performance of previous studies, which makes them a highly practical application in the field of training and performance.

  19. Fast Grasp Contact Computation for a Serial Robot

    NASA Technical Reports Server (NTRS)

    Hargrave, Brian (Inventor); Shi, Jianying (Inventor); Diftler, Myron A. (Inventor)

    2015-01-01

    A system includes a controller and a serial robot having links that are interconnected by a joint, wherein the robot can grasp a three-dimensional (3D) object in response to a commanded grasp pose. The controller receives input information, including the commanded grasp pose, a first set of information describing the kinematics of the robot, and a second set of information describing the position of the object to be grasped. The controller also calculates, in a two-dimensional (2D) plane, a set of contact points between the serial robot and a surface of the 3D object needed for the serial robot to achieve the commanded grasp pose. A required joint angle is then calculated in the 2D plane between the pair of links using the set of contact points. A control action is then executed with respect to the motion of the serial robot using the required joint angle.

  20. Aerospace Plane Technology, Research and Development Efforts in Europe

    DTIC Science & Technology

    1991-07-25

    to conventional titanium alloys. Moreover, ti- aluminide has one-half the weight of the material previously used at these high temperatures. Real Gas...for the engine’s blades , turbine blisk (a turbine disk with integral blades ), Page 44 GAO/NSIAID-91-194 Aerospace Plane Technology Chapter 3 European...X-30 fuselage section from silicon carbide-reinforced titanium and manufactured an X-30 fuel tank from a graphite-polyamide composite. Although

  1. The contact sport of rough surfaces

    NASA Astrophysics Data System (ADS)

    Carpick, Robert W.

    2018-01-01

    Describing the way two surfaces touch and make contact may seem simple, but it is not. Fully describing the elastic deformation of ideally smooth contacting bodies, under even low applied pressure, involves second-order partial differential equations and fourth-rank elastic constant tensors. For more realistic rough surfaces, the problem becomes a multiscale exercise in surface-height statistics, even before including complex phenomena such as adhesion, plasticity, and fracture. A recent research competition, the “Contact Mechanics Challenge” (1), was designed to test various approximate methods for solving this problem. A hypothetical rough surface was generated, and the community was invited to model contact with this surface with competing theories for the calculation of properties, including contact area and pressure. A supercomputer-generated numerical solution was kept secret until competition entries were received. The comparison of results (2) provides insights into the relative merits of competing models and even experimental approaches to the problem.

  2. Optimal contact definition for reconstruction of contact maps.

    PubMed

    Duarte, Jose M; Sathyapriya, Rajagopal; Stehr, Henning; Filippis, Ioannis; Lappe, Michael

    2010-05-27

    Contact maps have been extensively used as a simplified representation of protein structures. They capture most important features of a protein's fold, being preferred by a number of researchers for the description and study of protein structures. Inspired by the model's simplicity many groups have dedicated a considerable amount of effort towards contact prediction as a proxy for protein structure prediction. However a contact map's biological interest is subject to the availability of reliable methods for the 3-dimensional reconstruction of the structure. We use an implementation of the well-known distance geometry protocol to build realistic protein 3-dimensional models from contact maps, performing an extensive exploration of many of the parameters involved in the reconstruction process. We try to address the questions: a) to what accuracy does a contact map represent its corresponding 3D structure, b) what is the best contact map representation with regard to reconstructability and c) what is the effect of partial or inaccurate contact information on the 3D structure recovery. Our results suggest that contact maps derived from the application of a distance cutoff of 9 to 11A around the Cbeta atoms constitute the most accurate representation of the 3D structure. The reconstruction process does not provide a single solution to the problem but rather an ensemble of conformations that are within 2A RMSD of the crystal structure and with lower values for the pairwise average ensemble RMSD. Interestingly it is still possible to recover a structure with partial contact information, although wrong contacts can lead to dramatic loss in reconstruction fidelity. Thus contact maps represent a valid approximation to the structures with an accuracy comparable to that of experimental methods. The optimal contact definitions constitute key guidelines for methods based on contact maps such as structure prediction through contacts and structural alignments based on maximum

  3. Original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank

    NASA Astrophysics Data System (ADS)

    Oanta, Emil M.; Dascalescu, Anca-Elena; Sabau, Adrian

    2016-12-01

    The paper presents an original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank. The calculus domain is defined using analytical geometry and the calculus of the local dynamic pressure is based on the radius from the center of the settling tank to the current area, i.e. the relative velocity of the fluid and the depth where the current area is located, i.e. the density of the fluid. Calculus of the local drag forces uses the discrete frontal cross sectional areas of the submerged structure in contact with the fluid. In the last stage is performed the reduction of the local drag forces in the appropriate points belonging to the main beam. This class of loads is producing the flexure of the main beam in a horizontal plane and additional twisting moments along this structure. Taking into account the hydrodynamic loads, the results of the theoretical models, i.e. the analytical model and the finite element model, may have an increased accuracy.

  4. Eshelby's problem of polygonal inclusions with polynomial eigenstrains in an anisotropic magneto-electro-elastic full plane

    PubMed Central

    Lee, Y.-G.; Zou, W.-N.; Pan, E.

    2015-01-01

    This paper presents a closed-form solution for the arbitrary polygonal inclusion problem with polynomial eigenstrains of arbitrary order in an anisotropic magneto-electro-elastic full plane. The additional displacements or eigendisplacements, instead of the eigenstrains, are assumed to be a polynomial with general terms of order M+N. By virtue of the extended Stroh formulism, the induced fields are expressed in terms of a group of basic functions which involve boundary integrals of the inclusion domain. For the special case of polygonal inclusions, the boundary integrals are carried out explicitly, and their averages over the inclusion are also obtained. The induced fields under quadratic eigenstrains are mostly analysed in terms of figures and tables, as well as those under the linear and cubic eigenstrains. The connection between the present solution and the solution via the Green's function method is established and numerically verified. The singularity at the vertices of the arbitrary polygon is further analysed via the basic functions. The general solution and the numerical results for the constant, linear, quadratic and cubic eigenstrains presented in this paper enable us to investigate the features of the inclusion and inhomogeneity problem concerning polynomial eigenstrains in semiconductors and advanced composites, while the results can further serve as benchmarks for future analyses of Eshelby's inclusion problem. PMID:26345141

  5. Multigrid contact detection method

    NASA Astrophysics Data System (ADS)

    He, Kejing; Dong, Shoubin; Zhou, Zhaoyao

    2007-03-01

    Contact detection is a general problem of many physical simulations. This work presents a O(N) multigrid method for general contact detection problems (MGCD). The multigrid idea is integrated with contact detection problems. Both the time complexity and memory consumption of the MGCD are O(N) . Unlike other methods, whose efficiencies are influenced strongly by the object size distribution, the performance of MGCD is insensitive to the object size distribution. We compare the MGCD with the no binary search (NBS) method and the multilevel boxing method in three dimensions for both time complexity and memory consumption. For objects with similar size, the MGCD is as good as the NBS method, both of which outperform the multilevel boxing method regarding memory consumption. For objects with diverse size, the MGCD outperform both the NBS method and the multilevel boxing method. We use the MGCD to solve the contact detection problem for a granular simulation system based on the discrete element method. From this granular simulation, we get the density property of monosize packing and binary packing with size ratio equal to 10. The packing density for monosize particles is 0.636. For binary packing with size ratio equal to 10, when the number of small particles is 300 times as the number of big particles, the maximal packing density 0.824 is achieved.

  6. Extended linear detection range for optical tweezers using image-plane detection scheme

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Faegheh; Masoumeh Mousavi, S.; Khaksar, Zeinab S.; Reihani, S. Nader S.

    2014-10-01

    Ability to measure pico- and femto-Newton range forces using optical tweezers (OT) strongly relies on the sensitivity of its detection system. We show that the commonly used back-focal-plane detection method provides a linear response range which is shorter than that of the restoring force of OT for large beads. This limits measurable force range of OT. We show, both theoretically and experimentally, that utilizing a second laser beam for tracking could solve the problem. We also propose a new detection scheme in which the quadrant photodiode is positioned at the plane optically conjugate to the object plane (image plane). This method solves the problem without need for a second laser beam for the bead sizes that are commonly used in force spectroscopy applications of OT, such as biopolymer stretching.

  7. Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact

    NASA Astrophysics Data System (ADS)

    Forman, Charles A.; Lee, SeungGeun; Young, Erin C.; Kearns, Jared A.; Cohen, Daniel A.; Leonard, John T.; Margalith, Tal; DenBaars, Steven P.; Nakamura, Shuji

    2018-03-01

    We have achieved continuous-wave (CW) operation of an optically polarized m-plane GaN-based vertical-cavity surface-emitting laser (VCSEL) with an ion implanted current aperture, a tunnel junction intracavity contact, and a dual dielectric distributed Bragg reflector design. The reported VCSEL has 2 quantum wells, with a 14 nm quantum well width, 1 nm barriers, a 5 nm electron-blocking layer, and a 23 λ total cavity thickness. The thermal performance was improved by increasing the cavity length and using Au-In solid-liquid interdiffusion bonding, which led to lasing under CW operation for over 20 min. Lasing wavelengths under pulsed operation were observed at 406 nm, 412 nm, and 419 nm. Only the latter two modes appeared under CW operation due to the redshifted gain at higher temperatures. The peak output powers for a 6 μm aperture VCSEL under CW and pulsed operation were 140 μW and 700 μW, respectively. The fundamental transverse mode was observed without the presence of filamentary lasing. The thermal impedance was estimated to be ˜1400 °C/W for a 6 μm aperture 23 λ VCSEL.

  8. On the numerical solution of the dynamically loaded hydrodynamic lubrication of the point contact problem

    NASA Technical Reports Server (NTRS)

    Lim, Sang G.; Brewe, David E.; Prahl, Joseph M.

    1990-01-01

    The transient analysis of hydrodynamic lubrication of a point-contact is presented. A body-fitted coordinate system is introduced to transform the physical domain to a rectangular computational domain, enabling the use of the Newton-Raphson method for determining pressures and locating the cavitation boundary, where the Reynolds boundary condition is specified. In order to obtain the transient solution, an explicit Euler method is used to effect a time march. The transient dynamic load is a sinusoidal function of time with frequency, fractional loading, and mean load as parameters. Results include the variation of the minimum film thickness and phase-lag with time as functions of excitation frequency. The results are compared with the analytic solution to the transient step bearing problem with the same dynamic loading function. The similarities of the results suggest an approximate model of the point contact minimum film thickness solution.

  9. An approximate JKR solution for a general contact, including rough contacts

    NASA Astrophysics Data System (ADS)

    Ciavarella, M.

    2018-05-01

    In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.

  10. Rapidly moving contact lines and damping contributions

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Daniel, Susan; Steen, Paul

    2017-11-01

    Contact angle varies dynamically with contact line (CL) speed when a liquid moves across a solid support, as when a liquid spreads rapidly. For sufficiently rapid spreading, inertia competes with capillarity to influence the interface shape near the support. We use resonant-mode plane-normal support oscillations of droplets to drive lateral contact-line motion. Reynolds numbers based on CL speeds are high and capillary numbers are low. These are inertial-capillary motions. By scanning the driving frequency, we locate the frequency at peak amplification (resonance), obtain the scaled peak height (amplification factor) and a measure of band-width (damping ratio). We report how a parameter for CL mobility depends on these scanning metrics, with the goal of distinguishing contributions from the bulk- and CL-dissipation to overall damping.

  11. Acceleration of planes segmentation using normals from previous frame

    NASA Astrophysics Data System (ADS)

    Gritsenko, Pavel; Gritsenko, Igor; Seidakhmet, Askar; Abduraimov, Azizbek

    2017-12-01

    One of the major problem in integration process of robots is to make them able to function in a human environment. In terms of computer vision, the major feature of human made rooms is the presence of planes [1, 2, 20, 21, 23]. In this article, we will present an algorithm dedicated to increase speed of a plane segmentation. The algorithm uses information about location of a plane and its normal vector to speed up the segmentation process in the next frame. In conjunction with it, we will address such aspects of ICP SLAM as performance and map representation.

  12. On deformation of complex continuum immersed in a plane space

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  13. A Parametric Approach to Numerical Modeling of TKR Contact Forces

    PubMed Central

    Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.

    2009-01-01

    In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015

  14. Fast half-sibling population reconstruction: theory and algorithms.

    PubMed

    Dexter, Daniel; Brown, Daniel G

    2013-07-12

    Kinship inference is the task of identifying genealogically related individuals. Kinship information is important for determining mating structures, notably in endangered populations. Although many solutions exist for reconstructing full sibling relationships, few exist for half-siblings. We consider the problem of determining whether a proposed half-sibling population reconstruction is valid under Mendelian inheritance assumptions. We show that this problem is NP-complete and provide a 0/1 integer program that identifies the minimum number of individuals that must be removed from a population in order for the reconstruction to become valid. We also present SibJoin, a heuristic-based clustering approach based on Mendelian genetics, which is strikingly fast. The software is available at http://github.com/ddexter/SibJoin.git+. Our SibJoin algorithm is reasonably accurate and thousands of times faster than existing algorithms. The heuristic is used to infer a half-sibling structure for a population which was, until recently, too large to evaluate.

  15. Three dimensional nozzle-exhaust flow field analysis by a reference plane technique.

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Del Guidice, P. D.

    1972-01-01

    A numerical method based on reference plane characteristics has been developed for the calculation of highly complex supersonic nozzle-exhaust flow fields. The difference equations have been developed for three coordinate systems. Local reference plane orientations are employed using the three coordinate systems concurrently thus catering to a wide class of flow geometries. Discontinuities such as the underexpansion shock and contact surfaces are computed explicitly for nonuniform vehicle external flows. The nozzles considered may have irregular cross-sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. Results are presented for several nozzle configurations.

  16. Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate

    PubMed Central

    Stan, Gheorghe; Adams, George G.

    2016-01-01

    In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338

  17. Mitigation of epidemics in contact networks through optimal contact adaptation.

    PubMed

    Youssef, Mina; Scoglio, Caterina

    2013-08-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.

  18. Optimal contact definition for reconstruction of Contact Maps

    PubMed Central

    2010-01-01

    Background Contact maps have been extensively used as a simplified representation of protein structures. They capture most important features of a protein's fold, being preferred by a number of researchers for the description and study of protein structures. Inspired by the model's simplicity many groups have dedicated a considerable amount of effort towards contact prediction as a proxy for protein structure prediction. However a contact map's biological interest is subject to the availability of reliable methods for the 3-dimensional reconstruction of the structure. Results We use an implementation of the well-known distance geometry protocol to build realistic protein 3-dimensional models from contact maps, performing an extensive exploration of many of the parameters involved in the reconstruction process. We try to address the questions: a) to what accuracy does a contact map represent its corresponding 3D structure, b) what is the best contact map representation with regard to reconstructability and c) what is the effect of partial or inaccurate contact information on the 3D structure recovery. Our results suggest that contact maps derived from the application of a distance cutoff of 9 to 11Å around the Cβ atoms constitute the most accurate representation of the 3D structure. The reconstruction process does not provide a single solution to the problem but rather an ensemble of conformations that are within 2Å RMSD of the crystal structure and with lower values for the pairwise average ensemble RMSD. Interestingly it is still possible to recover a structure with partial contact information, although wrong contacts can lead to dramatic loss in reconstruction fidelity. Conclusions Thus contact maps represent a valid approximation to the structures with an accuracy comparable to that of experimental methods. The optimal contact definitions constitute key guidelines for methods based on contact maps such as structure prediction through contacts and structural

  19. Method and system of measuring ultrasonic signals in the plane of a moving web

    DOEpatents

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  20. Stability of satellite planes in M31 II: effects of the dark subhalo population

    NASA Astrophysics Data System (ADS)

    Fernando, Nuwanthika; Arias, Veronica; Lewis, Geraint F.; Ibata, Rodrigo A.; Power, Chris

    2018-01-01

    The planar arrangement of nearly half the satellite galaxies of M31 has been a source of mystery and speculation since it was discovered. With a growing number of other host galaxies showing these satellite galaxy planes, their stability and longevity have become central to the debate on whether the presence of satellite planes are a natural consequence of prevailing cosmological models, or represent a challenge. Given the dependence of their stability on host halo shape, we look into how a galaxy plane's dark matter environment influences its longevity. An increased number of dark matter subhaloes results in increased interactions that hasten the deterioration of an already-formed plane of satellite galaxies in spherical dark haloes. The role of total dark matter mass fraction held in subhaloes in dispersing a plane of galaxies presents non-trivial effects on plane longevity as well. But any misalignment of plane inclines to major axes of flattened dark matter haloes lead to their lifetimes being reduced to ≤3 Gyr. Distributing ≥40 per cent of total dark mass in subhaloes in the overall dark matter distribution results in a plane of satellite galaxies which is prone to change through the 5-Gyr integration time period.

  1. Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara, A.; Aliev, F. G., E-mail: farkhad.aliev@uam.es; Dobrovolskiy, O. V.

    2014-11-03

    The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magneticmore » permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.« less

  2. Dynamics of the Molten Contact Line

    NASA Technical Reports Server (NTRS)

    Sonin, Ain A.; Schiaffino, Stefano

    1996-01-01

    In contrast to the ordinary contact line problem, virtually no information is available on the similar problem associated with a molten material spreading on a solid which is below the melt's fusion point. The latter is a more complex problem which heat transfer and solidification take place simultaneously with spreading, and requires answers not only for the hot melt's advance speed over the cold solid as a function of contact angle, but also for how one is to predict the point of the molten contact line's arrest by freezing. This issues are of importance in evolving methods of materials processing. The purpose of our work is to develop, based on both experiments and theory, an understanding of the dynamic processes that occur when a molten droplet touches a subcooled solid, spreads partly over it by capillary action, and freezes. We seek answers to the following basic questions. First, what is the relationship between the melt's contact line speed and the apparent (dynamic) contact angle? Secondly, at what point will the contact line modon be arrested by freezing? The talk will describe three components of our work: (1) deposition experiments with small molten droplets; (2) investigation of the dynamics of the molten contact line by means of a novel forced spreading method; and (3) an attempt to provide a theoretical framework for answering the basic questions posed above.

  3. Citation parameters of contact lens-related articles published in the ophthalmic literature.

    PubMed

    Cardona, Genís; Sanz, Joan P

    2014-09-01

    This study aimed at exploring the citation parameters of contact lenses articles published in the Ophthalmology thematic category of the Journal Citation Reports (JCR). The Thompson Reuters Web of Science database was accessed to record bibliometric information and citation parameters of all journals listed under the Ophthalmology area of the 2011 JCR edition, including the journals with main publication interests in the contact lens field. In addition, the same database was used to unveil all contact lens-related articles published in 2011 in the same thematic area, whereupon differences in citation parameters between those articles published in contact lens and non-contact lens-related journals were explored. Significant differences in some bibliometric indicators such as half-life and overall citation count were found between contact lens-related journals (shorter half-life and fewer citations) and the median values for the Ophthalmology thematic area of the JCR. Visual examination of all Ophthalmology journals uncovered a total of 156 contact lens-related articles, published in 28 different journals, with 27 articles each for Contact Lens & Anterior Eye, Eye & Contact Lens, and Optometry and Vision Science. Significant differences in citation parameters were encountered between those articles published in contact lens and non-contact lens source journals. These findings, which disclosed contact lenses to be a fertile area of research, may be of interest to researchers and institutions. Differences in bibliometric indicators are of relevance to avoid unwanted bias when conducting between- and within-discipline comparisons of articles, journals, and researchers.

  4. Type IIB Colliding Plane Waves

    NASA Astrophysics Data System (ADS)

    Gutperle, M.; Pioline, B.

    2003-09-01

    Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+2-dimensional Einstein gravity with a n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n = 4, our results pertain to the collision of two ten-dimensional type-IIB Blau-Figueroa o'Farrill-Hull-Papadopoulos plane waves.

  5. Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity

    NASA Astrophysics Data System (ADS)

    del Pino, Manuel; Felmer, Patricio L.; Sternberg, Peter

    We examine the asymptotic behavior of the eigenvalue μ(h) and corresponding eigenfunction associated with the variational problem in the regime h>>1. Here A is any vector field with curl equal to 1. The problem arises within the Ginzburg-Landau model for superconductivity with the function μ(h) yielding the relationship between the critical temperature vs. applied magnetic field strength in the transition from normal to superconducting state in a thin mesoscopic sample with cross-section Ω 2. We first carry out a rigorous analysis of the associated problem on a half-plane and then rigorously justify some of the formal arguments of [BS], obtaining an expansion for μ while also proving that the first eigenfunction decays to zero somewhere along the sample boundary when Ω is not a disc. For interior decay, we demonstrate that the rate is exponential.

  6. Interaction between a punch and an arbitrary crack or inclusion in a transversely isotropic half-space

    DOE PAGES

    Fabrikant, I.; Karapetian, E.; Kalinin, S. V.

    2017-12-09

    Here, we consider the problem of an arbitrary shaped rigid punch pressed against the boundary of a transversely isotropic half-space and interacting with an arbitrary flat crack or inclusion, located in the plane parallel to the boundary. The set of governing integral equations is derived for the most general conditions, namely the presence of both normal and tangential stresses under the punch, as well as general loading of the crack faces. In order to verify correctness of the derivations, two different methods were used to obtain governing integral equations: generalized method of images and utilization of the reciprocal theorem. Bothmore » methods gave the same results. Axisymmetric coaxial case of interaction between a rigid inclusion and a flat circular punch both centered along the z-axis is considered as an illustrative example. Most of the final results are presented in terms of elementary functions.« less

  7. Interaction between a punch and an arbitrary crack or inclusion in a transversely isotropic half-space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, I.; Karapetian, E.; Kalinin, S. V.

    Here, we consider the problem of an arbitrary shaped rigid punch pressed against the boundary of a transversely isotropic half-space and interacting with an arbitrary flat crack or inclusion, located in the plane parallel to the boundary. The set of governing integral equations is derived for the most general conditions, namely the presence of both normal and tangential stresses under the punch, as well as general loading of the crack faces. In order to verify correctness of the derivations, two different methods were used to obtain governing integral equations: generalized method of images and utilization of the reciprocal theorem. Bothmore » methods gave the same results. Axisymmetric coaxial case of interaction between a rigid inclusion and a flat circular punch both centered along the z-axis is considered as an illustrative example. Most of the final results are presented in terms of elementary functions.« less

  8. An improved method for determination of fumigant degradation half-life in soil

    USDA-ARS?s Scientific Manuscript database

    Using the current approach, measurement of fumigant degradation half-lives under realistic soil conditions is problematic due to the large headspace that is necessary above the soil during incubation. This results in a poor degree of contact between the fumigant and the soil’s degrading surfaces; di...

  9. Mitigation of epidemics in contact networks through optimal contact adaptation *

    PubMed Central

    Youssef, Mina; Scoglio, Caterina

    2013-01-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights. PMID:23906209

  10. Gait alterations to effectively reduce hip contact forces.

    PubMed

    Wesseling, Mariska; de Groote, Friedl; Meyer, Christophe; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2015-07-01

    Patients with hip pathology present alterations in gait which have an effect on joint moments and loading. In knee osteoarthritic patients, the relation between medial knee contact forces and the knee adduction moment are currently being exploited to define gait retraining strategies to effectively reduce pain and disease progression. However, the relation between hip contact forces and joint moments has not been clearly established. Therefore, this study aims to investigate the effect of changes in hip and pelvis kinematics during gait on internal hip moments and contact forces which is calculated using muscle driven simulations. The results showed that frontal plane kinetics have the largest effect on hip contact forces. Given the high correlation between the change in hip adduction moment and contact force at initial stance (R(2)  = 0.87), this parameter can be used to alter kinematics and predict changes in contact force. At terminal stance the hip adduction and flexion moment can be used to predict changes in contact force (R(2)  = 0.76). Therefore, gait training that focuses on decreasing hip adduction moments, a wide base gait pattern, has the largest potential to reduce hip contact forces. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. [Contact allergies in musicians].

    PubMed

    Gasenzer, E R; Neugebauer, E A M

    2012-12-01

    During the last years, the problem of allergic diseases has increased. Allergies are errant immune responses to a normally harmless substance. In musicians the allergic contact dermatitis to exotic woods is a special problem. Exotic rosewood contains new flavonoids, which trigger an allergic reaction after permanent contact with the instrument. High quality woodwind instruments such as baroque flute or clarinets are made in ebony or palisander because of its great sound. Today instruments for non-professional players are also made in these exotic materials and non-professionals may have the risk to develop contact dermatitis, too. Brass-player has the risk of an allergic reaction to the different metals contained in the metal sheets of modern flutes and brass instruments. Specially nickel and brass alloys are used to product flute tubes or brass instruments. Special problem arises in children: patients who are allergic to plants or foods have a high risk to develop contact dermatitis. Parents don't know the materials of low-priced instruments for beginners. Often unknown cheap woods from exotic areas are used. Low-priced brass instruments contain high amount of brass and other cheap metals. Physicians should advice musician-patients or parents about the risks of the different materials and look for the reason of eczema on mouth, face, or hands. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  13. Precession of a Spinning Ball Rolling down an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  14. Search for and Study of Nearly Periodic Orbits in the Plane Problem of Three Equal-Mass Bodies

    NASA Astrophysics Data System (ADS)

    Martynova, A. I.; Orlov, V. V.

    2005-09-01

    We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.

  15. Tactile recognition and localization using object models: the case of polyhedra on a plane.

    PubMed

    Gaston, P C; Lozano-Perez, T

    1984-03-01

    This paper discusses how data from multiple tactile sensors may be used to identify and locate one object, from among a set of known objects. We use only local information from sensors: 1) the position of contact points and 2) ranges of surface normals at the contact points. The recognition and localization process is structured as the development and pruning of a tree of consistent hypotheses about pairings between contact points and object surfaces. In this paper, we deal with polyhedral objects constrained to lie on a known plane, i.e., having three degrees of positioning freedom relative to the sensors. We illustrate the performance of the algorithm by simulation.

  16. A non-invasive implementation of a mixed domain decomposition method for frictional contact problems

    NASA Astrophysics Data System (ADS)

    Oumaziz, Paul; Gosselet, Pierre; Boucard, Pierre-Alain; Guinard, Stéphane

    2017-11-01

    A non-invasive implementation of the Latin domain decomposition method for frictional contact problems is described. The formulation implies to deal with mixed (Robin) conditions on the faces of the subdomains, which is not a classical feature of commercial software. Therefore we propose a new implementation of the linear stage of the Latin method with a non-local search direction built as the stiffness of a layer of elements on the interfaces. This choice enables us to implement the method within the open source software Code_Aster, and to derive 2D and 3D examples with similar performance as the standard Latin method.

  17. Generation of spiral bevel gears with conjugate tooth surfaces and tooth contact analysis

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Tsung, Wei-Jiung; Lee, Hong-Tao

    1987-01-01

    A new method for generation of spiral bevel gears is proposed. The main features of this method are as follows: (1) the gear tooth surfaces are conjugated and can transform rotation with zero transmission errors; (2) the tooth bearing contact is localized; (3) the center of the instantaneous contact ellipse moves in a plane that has a fixed orientation; (4) the contact normal performs in the process of meshing a parallel motion; (5) the motion of the contact ellipse provides improved conditions of lubrication; and (6) the gears can be manufactured by use of Gleason's equipment.

  18. Contact of a spherical probe with a stretched rubber substrate

    NASA Astrophysics Data System (ADS)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  19. Contact problem for an elastic reinforcement bonded to an elastic plate

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Civelek, M. B.

    1973-01-01

    The stiffening layer is treated as an elastic membrane and the base plate is assumed to be an elastic continuum. The bonding between the two materials is assumed to be either one of direct adhesion ro through a thin adhesive layer which is treated as a shear spring. The solution for the simple case in which both the stiffener and the base plate are treated as membranes is also given. The contact stress is obtained for a series of numerical examples. In the direct adhesion case the contact stress becomes infinite at the stiffener ends with a typical square root singularity for the continuum model, and behaving as a delta function for the membrane model. In the case of bonding through an adhesive layer the contact stress becomes finite and continuous along the entire contact area.

  20. Contact Lenses on Submarines

    DTIC Science & Technology

    1985-04-29

    speculate why no medical eye problems occurred. There are two possible reasons. One is the degree of patient education and adherence to instructions...Management of this situation can only be accomplished through continuing patient education . Contact lens wearers should also be aware of the problem

  1. A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU

    NASA Astrophysics Data System (ADS)

    Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang

    2018-04-01

    The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.

  2. Method and system of measuring ultrasonic signals in the plane of a moving web

    DOEpatents

    Hall, M.S.; Jackson, T.G.; Wink, W.A.; Knerr, C.

    1996-02-27

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like is disclosed. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefore, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  3. Contact Lens-related Complications: A Review

    PubMed Central

    Alipour, Fateme; Khaheshi, Saeed; Soleimanzadeh, Mahya; Heidarzadeh, Somayeh; Heydarzadeh, Sepideh

    2017-01-01

    Contact lens-related problems are common and can result in severe sight-threatening complications or contact lens drop out if not addressed properly. We systematically reviewed the most important and the most common contact lens-related complications and their diagnosis, epidemiology, and management according to the literature published in the last 20 years. PMID:28540012

  4. Predictive Variables of Half-Marathon Performance for Male Runners

    PubMed Central

    Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christoper; Rodríguez-Marroyo, José A.; García-López, Juan

    2017-01-01

    The aims of this study were to establish and validate various predictive equations of half-marathon performance. Seventy-eight half-marathon male runners participated in two different phases. Phase 1 (n = 48) was used to establish the equations for estimating half-marathon performance, and Phase 2 (n = 30) to validate these equations. Apart from half-marathon performance, training-related and anthropometric variables were recorded, and an incremental test on a treadmill was performed, in which physiological (VO2max, speed at the anaerobic threshold, peak speed) and biomechanical variables (contact and flight times, step length and step rate) were registered. In Phase 1, half-marathon performance could be predicted to 90.3% by variables related to training and anthropometry (Equation 1), 94.9% by physiological variables (Equation 2), 93.7% by biomechanical parameters (Equation 3) and 96.2% by a general equation (Equation 4). Using these equations, in Phase 2 the predicted time was significantly correlated with performance (r = 0.78, 0.92, 0.90 and 0.95, respectively). The proposed equations and their validation showed a high prediction of half-marathon performance in long distance male runners, considered from different approaches. Furthermore, they improved the prediction performance of previous studies, which makes them a highly practical application in the field of training and performance. Key points The present study obtained four equations involving anthropometric, training, physiological and biomechanical variables to estimate half-marathon performance. These equations were validated in a different population, demonstrating narrows ranges of prediction than previous studies and also their consistency. As a novelty, some biomechanical variables (i.e. step length and step rate at RCT, and maximal step length) have been related to half-marathon performance. PMID:28630571

  5. Bugs, Planes, and Ferris Wheels: A Problem-Centered Curriculum

    ERIC Educational Resources Information Center

    Campbell, William E.; Kemp, Joyce C.; Zia, Joan H.

    2006-01-01

    This article describes a problem-centered curriculum for grades 9-12, using problem sets developed by a mathematics department and designed to take the place of textbooks. The students discover mathematical concepts in the context of the problems and activities in the materials.

  6. Cross-layer shared protection strategy towards data plane in software defined optical networks

    NASA Astrophysics Data System (ADS)

    Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun

    2018-04-01

    In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.

  7. On a free-surface problem with moving contact line: From variational principles to stable numerical approximations

    NASA Astrophysics Data System (ADS)

    Fumagalli, Ivan; Parolini, Nicola; Verani, Marco

    2018-02-01

    We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension, capillary effects and wall friction are taken into account in the evolution of the system, influencing the motion of the contact line - where the free surface hits the wall - and of the dynamics of the contact angle. The differential equations governing the phenomenon are first derived from the variational principle of minimum reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry, and novel additional terms are introduced in the discrete formulation in order to damp the instabilities. Numerical tests assess the suitability of the approach, the influence of the parameters, and the effectiveness of the new stabilizing terms.

  8. Considering abortion: a 12-month audit of records of women contacting a Pregnancy Advisory Service.

    PubMed

    Rowe, Heather J; Kirkman, Maggie; Hardiman, E Annarella; Mallett, Shelley; Rosenthal, Doreen A

    2009-01-19

    To characterise the demographic and psychosocial circumstances of women contacting Victoria's largest public pregnancy advisory service (PAS). Audit of PAS electronic records for the 12 months from 1 October 2006 to 30 September 2007. De-identified data were extracted from a comprehensive electronic database used for recording consultations. Summary statistics and measures of association. During the 12 months, 5462 women contacted PAS; records were created for 3827 women, and data were available in more than 80% of records for 77% (13/17) of items. Over half of the women receiving pregnancy support from PAS (60%) were 18-29 years old; 12% lived outside the metropolitan area; 51% held a health care card, and smaller percentages faced housing, financial, or drug and alcohol problems; 16% reported violence, but 71% described partners as involved and supportive. Most (79%) made contact within 2 weeks of discovering pregnancy, and 72% were referred by a general practitioner. Later gestation at contact was associated with younger age (P < 0.001), having a health care card (P < 0.001), and living outside the metropolitan area (P < 0.001). The most common reasons for seeking abortion were the desire to delay pregnancy (23%) and family completion (18%); 42% already had at least one child. Twenty-three women reported that the pregnancy was the result of rape. Ten per cent had mental health problems, and smaller numbers faced access barriers and had special needs. This PAS responds to demand from women with diverse social and personal circumstances. Findings provide evidence for policy, prevention and service development.

  9. Frontal plane landing mechanics in high-arched compared with low-arched female athletes.

    PubMed

    Powell, Douglas W; Hanson, Nicholas J; Long, Benjamin; Williams, D S Blaise

    2012-09-01

    To examine ground reaction forces (GRFs); frontal plane hip, knee, and ankle joint angles; and moments in high-arched (HA) and low-arched (LA) athletes during landing. Experimental study. Controlled research laboratory. Twenty healthy female recreational athletes (10 HA and 10 LA). Athletes performed 5 barefoot drop landings from a height of 30 cm. Frontal plane ankle, knee, and hip joint angles (in degrees) at initial contact, peak vertical GRF, and peak knee flexion; peak ankle, knee, and hip joint moments in the frontal plane. Vertical GRF profiles were similar between HA and LA athletes (P = 0.78). The HA athletes exhibited significantly smaller peak ankle inversion angles than the LA athletes (P = 0.01) at initial contact. At peak vertical GRF, HA athletes had significantly greater peak knee (P = 0.01) and hip abduction angles than LA athletes (P = 0.02). There were no significant differences between HA and LA athletes in peak joint moments (hip: P = 0.68; knee: P = 0.71; ankle: P = 0.15). These findings demonstrate that foot type is associated with altered landing mechanics, which may underlie lower extremity injuries. The ankle-driven strategy previously reported in female athletes suggests that foot function may have a greater relationship with lower extremity injury than that in male athletes. Future research should address the interaction of foot type and gender during landing tasks.

  10. Finite Element Analysis for Turbine Blades with Contact Problems

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Jian; Yang, Liang; Wang, Hai-Kun; Zhu, Shun-Peng; Huang, Hong-Zhong

    2016-12-01

    Turbine blades are one of the key components in a typical turbofan engine, which plays an important role in flight safety. In this paper, we establish a establishes a three-dimensional finite element model of the turbine blades, then analyses the strength of the blade in complicated conditions under the joint function of temperature load, centrifugal load, and aerodynamic load. Furthermore, contact analysis of blade tenon and dovetail slot is also carried out to study the stress based on the contact elements. Finally, the Von Mises stress-strain distributions are obtained to acquire the several dangerous points and maximum Von Mises stress, which provide the basis for life prediction of turbine blade.

  11. Plane Smoothers for Multiblock Grids: Computational Aspects

    NASA Technical Reports Server (NTRS)

    Llorente, Ignacio M.; Diskin, Boris; Melson, N. Duane

    1999-01-01

    Standard multigrid methods are not well suited for problems with anisotropic discrete operators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One of the most efficient approaches to yield robust methods is the combination of standard coarsening with alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to implement in codes with multiblock structured grids because there may be no natural definition of global lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the computational domain in the current block. This report studies in detail, both numerically and analytically, the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence rates can be obtained with a small overlap of cells between neighboring blocks.

  12. General image method in a plane-layered elastostatic medium

    NASA Technical Reports Server (NTRS)

    Fares, N.; Li, V. C.

    1988-01-01

    The general-image method presently used to obtain the elastostatic fields in plane-layered media relies on the use of potentials in order to represent elastic fields. For the case of a single interface, this method yields the displacement field in closed form, and is applicable to antiplane, plane, and three-dimensional problems. In the case of multiplane interfaces, the image method generates the displacement fields in terms of infinite series whose convergences can be accelerated to improve method efficiency.

  13. Non-contact measurements of ultrasonic waves on paper webs using a photorefractive interferometer

    DOEpatents

    Brodeur, Pierre H.; Lafond, Emmanuel F.

    2000-01-01

    An apparatus and method for non-contact measurement of ultrasonic waves on moving paper webs employs a photorefractive interferometer. The photorefractive interferometer employs an optical head in which the incident beam and reflected beam are coaxial, thus enabling detection of both in-plane and out-of-plane waves with a single apparatus. The incident beam and reference beams are focused into a line enabling greater power to be used without damaging the paper.

  14. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration

  15. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  16. Stretching single atom contacts at multiple subatomic step-length.

    PubMed

    Wei, Yi-Min; Liang, Jing-Hong; Chen, Zhao-Bin; Zhou, Xiao-Shun; Mao, Bing-Wei; Oviedo, Oscar A; Leiva, Ezequiel P M

    2013-08-14

    This work describes jump-to-contact STM-break junction experiments leading to novel statistical distribution of last-step length associated with conductance of a single atom contact. Last-step length histograms are observed with up to five for Fe and three for Cu peaks at integral multiples close to 0.075 nm, a subatomic distance. A model is proposed in terms of gliding from a fcc hollow-site to a hcp hollow-site of adjacent atomic planes at 1/3 regular layer spacing along with tip stretching to account for the multiple subatomic step-length behavior.

  17. Database of amino acid-nucleotide contacts in contacts in DNA-homeodomain protein

    NASA Astrophysics Data System (ADS)

    Grokhlina, T. I.; Zrelov, P. V.; Ivanov, V. V.; Polozov, R. V.; Chirgadze, Yu. N.; Sivozhelezov, V. S.

    2013-09-01

    The analysis of amino acid-nucleotide contacts in interfaces of the protein-DNA complexes, intended to find consistencies in the protein-DNA recognition, is a complex problem that requires an analysis of the physicochemical characteristics of these contacts and the positions of the participating amino acids and nucleotides in the chains of the protein and the DNA, respectively, as well as conservatism of these contacts. Thus, those heterogeneous data should be systematized. For this purpose we have developed a database of amino acid-nucleotide contacts ANTPC (Amino acid Nucleotide Type Position Conservation) following the archetypal example of the proteins in the homeodomain family. We show that it can be used to compare and classify the interfaces of the protein-DNA complexes.

  18. SAM Technical Contacts

    EPA Pesticide Factsheets

    These technical contacts are available to help with questions regarding method deviations, modifications, sample problems or interferences, quality control requirements, the use of alternative methods, or the need to address analytes or sample types.

  19. STICK-SLIP-SEPARATION Analysis and Non-Linear Stiffness and Damping Characterization of Friction Contacts Having Variable Normal Load

    NASA Astrophysics Data System (ADS)

    Yang, B. D.; Chu, M. L.; Menq, C. H.

    1998-03-01

    Mechanical systems in which moving components are mutually constrained through contacts often lead to complex contact kinematics involving tangential and normal relative motions. A friction contact model is proposed to characterize this type of contact kinematics that imposes both friction non-linearity and intermittent separation non-linearity on the system. The stick-slip friction phenomenon is analyzed by establishing analytical criteria that predict the transition between stick, slip, and separation of the interface. The established analytical transition criteria are particularly important to the proposed friction contact model for the transition conditions of the contact kinematics are complicated by the effect of normal load variation and possible interface separation. With these transition criteria, the induced friction force on the contact plane and the variable normal load perpendicular to the contact plane, can be predicted for any given cyclic relative motions at the contact interface and hysteresis loops can be produced so as to characterize the equivalent damping and stiffness of the friction contact. These-non-linear damping and stiffness methods along with the harmonic balance method are then used to predict the resonant response of a frictionally constrained two-degree-of-freedom oscillator. The predicted results are compared with those of the time integration method and the damping effect, the resonant frequency shift, and the jump phenomenon are examined.

  20. 2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  1. Study on observation planning of LAMOST focal plane positioning system and its simulation

    NASA Astrophysics Data System (ADS)

    Zhai, Chao; Jin, Yi; Peng, Xiaobo; Xing, Xiaozheng

    2006-06-01

    Fiber Positioning System of LAMOST focal plane based on subarea thinking, adopts a parallel controllable positioning plan, the structure is designed as a round area and overlapped each other in order to eliminate the un-observation region. But it also makes the observation efficiency of the system become an important problem. In this paper According to the system, the model of LAMOST focal plane Observation Planning including 4000 fiber positioning units is built, Stars are allocated using netflow algorithm and mechanical collisions are diminished through the retreat algorithm, then the simulation of the system's observation efficiency is carried out. The problem of observation efficiency of LAMOST focal plane is analysed systemic and all-sided from the aspect of overlapped region, fiber positioning units, observation radius, collisions and so on. The observation efficiency of the system in theory is describes and the simulation indicates that the system's observation efficiency is acceptable. The analyses play an indicative role on the design of the LAMOST focal plane structure.

  2. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    PubMed

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  3. Recognition of isotropic plane target from RCS diagram

    NASA Astrophysics Data System (ADS)

    Saillard, J.; Chassay, G.

    1981-06-01

    The use of electromagnetic waves for the recognition of a structure represented by point scatterers is seen as posing a fundamental problem. It is noted that much research has been done on this subject and that the study of aircraft observed in the yaw plane gives interesting results. To apply these methods, however, it is necessary to use many sophisticated acquisition systems. A method is proposed which can be applied to plane structures composed of isotropic scatterers. The method is considered to be of interest because it uses only power measurements and requires only a classical tracking radar.

  4. Application of boundary integral equations to elastoplastic problems

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Albers, L. U.

    1975-01-01

    The application of boundary integral equations to elastoplastic problems is reviewed. Details of the analysis as applied to torsion problems and to plane problems is discussed. Results are presented for the elastoplastic torsion of a square cross section bar and for the plane problem of notched beams. A comparison of different formulations as well as comparisons with experimental results are presented.

  5. Tool Indicates Contact Angles In Bearing Raceways

    NASA Technical Reports Server (NTRS)

    Akian, Richard A.; Butner, Myles F.

    1995-01-01

    Tool devised for use in measuring contact angles between balls and races in previously operated ball bearings. Used on both inner and outer raceways of bearings having cross-sectional widths between approximately 0.5 and 2.0 in. Consists of integral protractor mounted in vertical plane on bracket equipped with leveling screws and circular level indicator. Protractor includes rotatable indicator needle and set of disks of various sizes to fit various raceway curvatures.

  6. Analysis of edge impact stresses in composite plates

    NASA Technical Reports Server (NTRS)

    Moon, F. C.; Kang, C. K.

    1974-01-01

    The in-plane edge impact of composite plates, with or without a protection strip, is investigated. A computational analysis based on the Fast Fourier Transform technique is presented. The particular application of the present method is in the understanding of the foreign object damage problem of composite fan blades. The method is completely general and may be applied to the study of other stress wave propagation problems in a half space. Results indicate that for the protective strip to be effective in reducing impact stresses in the composite the thickness must be equal or greater than the impact contact dimension. Large interface shear stresses at the strip - composite boundary can be induced under impact.

  7. Deformations resulting from the movements of a shear or tensile fault in an anisotropic half space

    NASA Astrophysics Data System (ADS)

    Sheu, Guang Y.

    2004-04-01

    Earlier solutions (Bull. Seismol. Soc. Amer. 1985; 75:1135-1154; Bull. Seismol. Soc. Amer. 1992; 82:1018-1040) of deformations caused by the movements of a shear or tensile fault in an isotropic half-space for finite rectangular sources of strain nucleus have been extended for a transversely isotropic half-space. Results of integrating previous solutions (Int. J. Numer. Anal. Meth. Geomech. 2001; 25(10): 1175-1193) of deformations due to a shear or tensile fault in a transversely isotropic half-space for point sources of strain nucleus over the fault plane are presented. In addition, a boundary element (BEM) model (POLY3D:A three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the Earth's crust. M.S. Thesis, Stanford University, Department of Geology, 1993; 62) is given. Different from similar researches (e.g. Thomas), the Akaike's view on Bayesian statistics (Akaike Information Criterion Statistics. D. Reidel Publication: Dordrecht, 1986) is applied for inverting deformations due to a fault to obtain displacement discontinuities on the fault plane.An example is given for checking displacements predicted by proposed analytical expressions. Another example is generated for the use of proposed BEM model. It demonstrates the effectiveness of this model in exploring displacement behaviours of a fault. Copyright

  8. Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles

    DOE PAGES

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.; ...

    2017-09-19

    Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less

  9. Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.

    Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less

  10. A numerical analysis of contact and limit-point behavior in a class of problems of finite elastic deformation

    NASA Technical Reports Server (NTRS)

    Endo, T.; Oden, J. T.; Becker, E. B.; Miller, T.

    1984-01-01

    Finite element methods for the analysis of bifurcations, limit-point behavior, and unilateral frictionless contact of elastic bodies undergoing finite deformation are presented. Particular attention is given to the development and application of Riks-type algorithms for the analysis of limit points and exterior penalty methods for handling the unilateral constraints. Applications focus on the problem of finite axisymmetric deformations, snap-through, and inflation of thick rubber spherical shells.

  11. Finite element analysis of fretting contact for nonhomogenous materials

    NASA Astrophysics Data System (ADS)

    Korkmaz, Y. M.; Coker, D.

    2018-01-01

    Fretting problem arises in the case of relatively small sliding motion between contacting surfaces. Fatigue life of the components that are in contact with each other, especially in rotorcraft may be significantly reduced due to fretting. The purpose of this study is to investigate material inhomogeneity near the contact region on the fretting problem in a cylindrical on flat contact configuration. A finite element (FE) model was constructed by using commercial finite element package ABAQUSTMto study partial sliding and stress concentrations. In order to investigate the effect of material inhomogeneity, the fretting contact is analyzed by introducing voids near the contact region. The void size and an array of voids is introduced into the substrate. The results are compared in terms of pressure, shear traction, tangential stress magnitudes and relative slip between the contacting materials.

  12. Influence of Thermal Contact Resistance of Aluminum Foams in Forced Convection: Experimental Analysis

    PubMed Central

    Venettacci, Simone

    2017-01-01

    In this paper, the heat transfer performances of aluminum metal foams, placed on horizontal plane surface, was evaluated in forced convection conditions. Three different types of contacts between the sample and the heated base plate have been investigated: simple contact, brazed contact and grease paste contact. First, in order to perform the study, an ad hoc experimental set-up was built. Second, the value of thermal contact resistance was estimated. The results show that both the use of a conductive paste and the brazing contact, realized by means of a copper electro-deposition, allows a great reduction of the global thermal resistance, increasing de facto the global heat transfer coefficient of almost 80%, compared to the simple contact case. Finally, it was shown that, while the contribution of thermal resistance is negligible for the cases of brazed and grease paste contact, it is significantly high for the case of simple contact. PMID:28783052

  13. The COBAIN (COntact Binary Atmospheres with INterpolation) Code for Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Kochoska, Angela; Prša, Andrej; Horvat, Martin

    2018-01-01

    Standard binary star modeling codes make use of pre-existing solutions of the radiative transfer equation in stellar atmospheres. The various model atmospheres available today are consistently computed for single stars, under different assumptions - plane-parallel or spherical atmosphere approximation, local thermodynamical equilibrium (LTE) or non-LTE (NLTE), etc. However, they are nonetheless being applied to contact binary atmospheres by populating the surface corresponding to each component separately and neglecting any mixing that would typically occur at the contact boundary. In addition, single stellar atmosphere models do not take into account irradiance from a companion star, which can pose a serious problem when modeling close binaries. 1D atmosphere models are also solved under the assumption of an atmosphere in hydrodynamical equilibrium, which is not necessarily the case for contact atmospheres, as the potentially different densities and temperatures can give rise to flows that play a key role in the heat and radiation transfer.To resolve the issue of erroneous modeling of contact binary atmospheres using single star atmosphere tables, we have developed a generalized radiative transfer code for computation of the normal emergent intensity of a stellar surface, given its geometry and internal structure. The code uses a regular mesh of equipotential surfaces in a discrete set of spherical coordinates, which are then used to interpolate the values of the structural quantites (density, temperature, opacity) in any given point inside the mesh. The radiaitive transfer equation is numerically integrated in a set of directions spanning the unit sphere around each point and iterated until the intensity values for all directions and all mesh points converge within a given tolerance. We have found that this approach, albeit computationally expensive, is the only one that can reproduce the intensity distribution of the non-symmetric contact binary atmosphere and

  14. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  15. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  16. A classical Perron method for existence of smooth solutions to boundary value and obstacle problems for degenerate-elliptic operators via holomorphic maps

    NASA Astrophysics Data System (ADS)

    Feehan, Paul M. N.

    2017-09-01

    We prove existence of solutions to boundary value problems and obstacle problems for degenerate-elliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using a new version of the Perron method. The elliptic operators considered have a degeneracy along a portion of the domain boundary which is similar to the degeneracy of a model linear operator identified by Daskalopoulos and Hamilton [9] in their study of the porous medium equation or the degeneracy of the Heston operator [21] in mathematical finance. Existence of a solution to the partial Dirichlet problem on a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only imposed on the spherical boundary, provides the key additional ingredient required for our Perron method. Surprisingly, proving existence of a solution to this partial Dirichlet problem with ;mixed; boundary conditions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global Schauder estimate and due to compatibility conditions arising where the ;degenerate; and ;non-degenerate boundaries; touch, one cannot directly apply the continuity or approximate solution methods. However, in dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the infinite ;slab;. The solution to the partial Dirichlet problem on the half-ball can thus be converted to a partial Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The required Schauder regularity theory and existence of a solution to the partial Dirichlet problem on the slab can nevertheless be obtained using previous work of the author and C. Pop [16]. Our Perron method relies on weak and strong maximum principles for degenerate-elliptic operators, concepts of

  17. Implicit Multibody Penalty-BasedDistributed Contact.

    PubMed

    Xu, Hongyi; Zhao, Yili; Barbic, Jernej

    2014-09-01

    The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, exact analytical contact gradients, symbolic Gaussian elimination and a SVD solver to simulate stable penalty-based frictional contact with large, time-varying contact areas, involving many rigid objects and articulated rigid objects in complex conforming contact and self-contact. We also derive implicit proportional-derivative control forces for real-time control of articulated structures with loops. We present challenging contact scenarios such as screwing a hexbolt into a hole, bowls stacked in perfectly conforming configurations, and manipulating many objects using actively controlled articulated mechanisms in real time.

  18. Scattering by a groove in an impedance plane

    NASA Technical Reports Server (NTRS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-01-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  19. A novel plane mirror interferometer without using corner cube reflectors

    NASA Astrophysics Data System (ADS)

    Büchner, H.-J.; Jäger, G.

    2006-04-01

    The conception and properties will be introduced of an interferometer that exclusively uses plane mirrors as reflectors; thus, these interferometers correspond well to the original Michelson interferometer. First, the relationship between the interference conditions and the detection with photodiodes will be discussed using the example of known interferometers as well as reasons given for primarily using corner cube reflectors in these devices. Next, the conceptual design of the plane mirror interferometer will be presented. This type of interferometer possesses new properties which are significant for metrological and technical applications. Only one measuring beam exists between the polarizing beam splitter and the measuring mirror and this beam alone represents the Abbe axis. This property allows the significant reduction of the Abbe error. The interferometer is able to tolerate tilting on the order of about 1'. This ensures the orthogonality between the measuring beam and the measuring mirror during the measurement. This property can be used in three-dimensional measurements to erect the three measuring beams as a x-y-z Cartesian coordinate system on the basis of three orthogonal mirrors. The plane-mirror interferometer also allows non-contact measurements of planar and curved surfaces, e.g. silicon wafers.

  20. ZnO Schottky barriers and Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Brillson, Leonard J.; Lu, Yicheng

    2011-06-01

    ZnO has emerged as a promising candidate for optoelectronic and microelectronic applications, whose development requires greater understanding and control of their electronic contacts. The rapid pace of ZnO research over the past decade has yielded considerable new information on the nature of ZnO interfaces with metals. Work on ZnO contacts over the past decade has now been carried out on high quality material, nearly free from complicating factors such as impurities, morphological and native point defects. Based on the high quality bulk and thin film crystals now available, ZnO exhibits a range of systematic interface electronic structure that can be understood at the atomic scale. Here we provide a comprehensive review of Schottky barrier and ohmic contacts including work extending over the past half century. For Schottky barriers, these results span the nature of ZnO surface charge transfer, the roles of surface cleaning, crystal quality, chemical interactions, and defect formation. For ohmic contacts, these studies encompass the nature of metal-specific interactions, the role of annealing, multilayered contacts, alloyed contacts, metallization schemes for state-of-the-art contacts, and their application to n-type versus p-type ZnO. Both ZnO Schottky barriers and ohmic contacts show a wide range of phenomena and electronic behavior, which can all be directly tied to chemical and structural changes on an atomic scale.

  1. High internal quantum efficiency ultraviolet to green luminescence peaks from pseudomorphic m-plane Al{sub 1−x}In{sub x}N epilayers grown on a low defect density m-plane freestanding GaN substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chichibu, S. F., E-mail: chichibulab@yahoo.co.jp; Hazu, K.; Furusawa, K.

    2014-12-07

    Structural and optical qualities of half-a-μm-thick m-plane Al{sub 1−x}In{sub x}N epilayers grown by metalorganic vapor phase epitaxy were remarkably improved via coherent growth on a low defect density m-plane freestanding GaN substrate prepared by hydride vapor phase epitaxy. All the epilayers unexceptionally suffer from uniaxial or biaxial anisotropic in-plane stress. However, full-width at half-maximum values of the x-ray ω-rocking curves were nearly unchanged as the underlayer values being 80 ∼ 150 arc sec for (101{sup ¯}0) and (101{sup ¯}2) diffractions with both 〈0001〉 and 〈112{sup ¯}0〉 azimuths, as long as pseudomorphic structure was maintained. Such Al{sub 1−x}In{sub x}N epilayers commonly exhibited a broadmore » but predominant luminescence peak in ultraviolet (x ≤ 0.14) to green (x = 0.30) wavelengths. Its equivalent value of the internal quantum efficiency at room temperature was as high as 67% for x = 0.14 and 44% for x = 0.30. Because its high-energy cutoff commonly converged with the bandgap energy, the emission peak is assigned to originate from the extended near-band-edge states with strong carrier localization.« less

  2. High contrast imaging through adaptive transmittance control in the focal plane

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake

    2016-05-01

    High contrast imaging, in the presence of a bright background, is a challenging problem encountered in diverse applications ranging from the daily chore of driving into a sun-drenched scene to in vivo use of biomedical imaging in various types of keyhole surgeries. Imaging in the presence of bright sources saturates the vision system, resulting in loss of scene fidelity, corresponding to low image contrast and reduced resolution. The problem is exacerbated in retro-reflective imaging systems where the light sources illuminating the object are unavoidably strong, typically masking the object features. This manuscript presents a novel theoretical framework, based on nonlinear analysis and adaptive focal plane transmittance, to selectively remove object domain sources of background light from the image plane, resulting in local and global increases in image contrast. The background signal can either be of a global specular nature, giving rise to parallel illumination from the entire object surface or can be represented by a mosaic of randomly orientated, small specular surfaces. The latter is more representative of real world practical imaging systems. Thus, the background signal comprises of groups of oblique rays corresponding to distributions of the mosaic surfaces. Through the imaging system, light from group of like surfaces, converges to a localized spot in the focal plane of the lens and then diverges to cast a localized bright spot in the image plane. Thus, transmittance of a spatial light modulator, positioned in the focal plane, can be adaptively controlled to block a particular source of background light. Consequently, the image plane intensity is entirely due to the object features. Experimental image data is presented to verify the efficacy of the methodology.

  3. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  4. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density.

    PubMed

    Populoh, Sascha; Brunko, Oliver C; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-03-27

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm² and a maximum volumetric power density of 700 mW/cm³. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected.

  5. The influence of a foot orthotic on lower extremity transverse plane kinematics in collegiate female athletes with pes planus.

    PubMed

    Christopher, R Carcia; Drouin, Joshua M; Houglum, Peggy A

    2006-01-01

    Non-contact anterior cruciate ligament (ACL) injuries in female athletes remain prevalent. Athletes with excessive foot pronation have been identified to be at greater risk for non-contact ACL injury. Excessive foot pronation has been linked to increased medial tibial rotation. Increased medial tibial rotation heightens ACL strain and has been observed at or near the time of ACL injury. Foot orthotics have been shown to decrease medial tibial rotation during walking and running tasks. The effect of a foot orthotic on activities that simulate a non-contact ACL injury mechanism (i.e. landing) however is unknown. Therefore, the objective of this study was to determine whether a foot orthotic was capable of altering transverse plane lower extremity kinematics in female athletes during landing. Twenty uninjured collegiate female athletes participating in the sports of basketball, soccer or volleyball with pes planus volunteered. Utilizing a repeated measures counterbalanced design, subjects completed two landing tasks with and without a foot orthotic using standardized footwear. The prefabricated orthotic had a rigid shell and a 6 extrinsic rear-foot varus post. Dependent measures included initial contact angle, peak angle, excursion and time to peak angle for both the tibia and femur. Statistical analysis suggested that the selected foot orthosis had little influence over lower extremity transverse plane kinematics. Several factors including: the limitation of a static measure to predict dynamic movement, inter-subject variability and the physical characteristics of the orthotic device likely account for the results. Future research should examine the influence of different types of foot orthotics not only on lower extremity kinematics but also tibiofemoral kinetics. Key PointsLower extremity transverse plane kinematics in female athletes during a landing task exhibit substantial variability.A rigid prefabricated foot orthotic does not significantly alter transverse

  6. Effects of nanoscale coatings on reliability of MEMS ohmic contact switches

    NASA Astrophysics Data System (ADS)

    Tremper, Amber Leigh

    This thesis examines how the electrical and mechanical behavior of Au thin films is altered by the presence of ultra-thin metallic coatings. To examine the mechanical behavior, nanoindentation, nano-scratch, and atomic force microscopy (AFM) testing was performed. The electrical behavior was evaluated through Kelvin probe contact resistance measurements. This thesis shows that ultra-thin, hard, ductile coatings on a softer, ductile underlying layer (such as Ru or Pt on Au) had a significant effect on mechanical behavior of the system, and can be tailored to control the deformation resistance of the thin film system. Despite Ru and Pt having a higher hardness and plane strain modulus than Au, the Ru and Pt coatings decreased both the hardness and plane strain modulus of the layered system when the indentation depth was on the order of the coating thickness. Alternately, when the indentation depth was several times the coating thickness, the ductile, plastically hard, elastically stiff layer significantly hardened the contact response. These results correlate well with membrane stress theoretical predictions, and demonstrate that membrane theory can be applied even when the ratio of indentation depth, h, to coating thickness, t, is very large ( h/t<10). The transition from film-substrate models to membrane models occurs when the indent penetration depth to coating thickness ratio is less than ˜0.5. When the electrical behavior of the Ru-coated Au films was examined, it was found that all the measured resistances of the Au-only film and Ru-coated systems were several orders of magnitude larger than those predicted by Holm's law, but were still in good agreement with previously reported values in the literature. Previous studies attributed the high contact resistances to a variety of causes, including the buildup of an insulating contamination layer. This thesis determined the cause of the deviations to be large sheet resistance contributions to the total measured

  7. On the structure of contact binaries. I - The contact discontinuity

    NASA Technical Reports Server (NTRS)

    Shu, F. H.; Lubow, S. H.; Anderson, L.

    1976-01-01

    The problem of the interior structure of contact binaries is reviewed, and a simple resolution of the difficulties which plague the theory is suggested. It is proposed that contact binaries contain a contact discontinuity between the lower surface of the common envelope and the Roche lobe of the cooler star. This discontinuity is maintained against thermal diffusion by fluid flow, and the transition layer is thin to the extent that the dynamical time scale is short in comparison with the thermal time scale. The idealization that the transition layer has infinitesimal thickness allows a simple formulation of the structure equations which are closed by appropriate jump conditions across the discontinuity. The further imposition of the standard boundary conditions suffices to define a unique model for the system once the chemical composition, the masses of the two stars, and the orbital separation are specified.

  8. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  9. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  10. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  11. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  12. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  13. Construction of adhesion maps for contacts between a sphere and a half-space: Considering size effects of the sphere.

    PubMed

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Yang, Weixu

    2015-11-15

    Previous adhesion maps, such as the JG (Johnson-Greenwood) and YCG (Yao-Ciavarella-Gao) maps, are used to guide the selection of Bradley, DMT, M-D, JKR and Hertz models. However, when the size of the contact sphere decreases to the small scale, the applicability of JG and YCG maps is limited because the assumptions regarding the contact region profile, interaction between contact bodies and sphere shape in the classical models constituting these two maps are no longer valid. To avoid this limitation, in this paper, a new numerical model considering size effects of the sphere is established first and then introduced into the new adhesion maps together with the YGG (Yao-Guduru-Gao) model and Hertz model. Regimes of these models in the new map under a certain sphere radius are demarcated by the criteria related to the relative force differences and the ratio of contact radius to sphere radius. In addition, the approaches at pull-off, jump-in and jump-out for different Tabor parameters and sphere radii are provided in the new maps. Finally, to make the new maps more feasible, the numerical results of approaches, force and contact radius involved in the maps are formularized by using the piecewise fitting. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Theory of point contact spectroscopy in correlated materials

    DOE PAGES

    Lee, Wei-Cheng; Park, Wan Kyu; Arham, Hamood Z.; ...

    2015-01-05

    Here, we developed a microscopic theory for the point-contact conductance between a metallic electrode and a strongly correlated material using the nonequilibrium Schwinger-Kadanoff-Baym-Keldysh formalism. We explicitly show that, in the classical limit, contact size shorter than the scattering length of the system, the microscopic model can be reduced to an effective model with transfer matrix elements that conserve in-plane momentum. We found that the conductance dI/dV is proportional to the effective density of states, that is, the integrated single-particle spectral function A(ω = eV) over the whole Brillouin zone. From this conclusion, we are able to establish the conditions undermore » which a non-Fermi liquid metal exhibits a zero-bias peak in the conductance. Lastly, this finding is discussed in the context of recent point-contact spectroscopy on the iron pnictides and chalcogenides, which has exhibited a zero-bias conductance peak.« less

  15. The computation of all plane/surface intersections for CAD/CAM applications

    NASA Technical Reports Server (NTRS)

    Hoitsma, D. H., Jr.; Roche, M.

    1984-01-01

    The problem of the computation and display of all intersections of a given plane with a rational bicubic surface patch for use on an interactive CAD/CAM system is examined. The general problem of calculating all intersections of a plane and a surface consisting of rational bicubic patches is reduced to the case of a single generic patch by applying a rejection algorithm which excludes all patches that do not intersect the plane. For each pertinent patch the algorithm presented computed the intersection curves by locating an initial point on each curve, and computes successive points on the curve using a tolerance step equation. A single cubic equation solver is used to compute the initial curve points lying on the boundary of a surface patch, and the method of resultants as applied to curve theory is used to determine critical points which, in turn, are used to locate initial points that lie on intersection curves which are in the interior of the patch. Examples are given to illustrate the ability of this algorithm to produce all intersection curves.

  16. Computing an upper bound on contact stress with surrogate duality

    NASA Astrophysics Data System (ADS)

    Xuan, Zhaocheng; Papadopoulos, Panayiotis

    2016-07-01

    We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.

  17. An analogue contact probe using a compact 3D optical sensor for micro/nano coordinate measuring machines

    NASA Astrophysics Data System (ADS)

    Li, Rui-Jun; Fan, Kuang-Chao; Miao, Jin-Wei; Huang, Qiang-Xian; Tao, Sheng; Gong, Er-min

    2014-09-01

    This paper presents a new analogue contact probe based on a compact 3D optical sensor with high precision. The sensor comprises an autocollimator and a polarizing Michelson interferometer, which can detect two angles and one displacement of the plane mirror at the same time. In this probe system, a tungsten stylus with a ruby tip-ball is attached to a floating plate, which is supported by four V-shape leaf springs fixed to the outer case. When a contact force is applied to the tip, the leaf springs will experience elastic deformation and the plane mirror mounted on the floating plate will be displaced. The force-motion characteristics of this probe were investigated and optimum parameters were obtained with the constraint of allowable physical size of the probe. Simulation results show that the probe is uniform in 3D and its contacting force gradient is within 1 mN µm - 1. Experimental results indicate that the probe has 1 nm resolution,  ± 10 µm measuring range in X - Y plane, 10 µm measuring range in Z direction and within 30 nm measuring standard deviation. The feasibility of the probe has been preliminarily verified by testing the flatness and step height of high precision gauge blocks.

  18. Effect of Tabor parameter on hysteresis losses during adhesive contact

    NASA Astrophysics Data System (ADS)

    Ciavarella, M.; Greenwood, J. A.; Barber, J. R.

    2017-01-01

    The Tabor parameter μ is conventionally assumed to determine the range of applicability of the classical 'JKR' solution for adhesive elastic contact of a sphere and a plane, with the variation of the contact area and approach with load, and in particular the maximum tensile force (the pull-off force) being well predicted for μ > 5 . Here we show that the hysteretic energy loss during a contact separation cycle is significantly overestimated by the JKR theory, even at quite large values of μ. This stems from the absence of long-range tensile forces in the JKR theory, which implies that jump into contact is delayed until the separation α = 0 . We develop an approximate solution based on the use of Wu's solution with van der Waals interactions for jump-in, and the JKR theory for jump out of contact, and show that for μ > 5 , the predicted hysteresis loss is then close to that found by direct numerical solutions using the Lennard-Jones force law. We also show how the same method can be adapted to allow for contact between bodies with finite support stiffness.

  19. A theoretical study of optical contact of vitreous silica

    NASA Technical Reports Server (NTRS)

    Barber, T. D.

    1972-01-01

    Optical contact has been proposed as a method of bonding quartz parts of the Stanford relativity satellite. The theory of the van der Waals force is outlined and applied to the problem of optical contact. The effect of various contaminations is discussed and a program of experimentation for further study of the problem is presented.

  20. Anisotropic frictional heating and defect generation in cyclotrimethylene-trinitramine molecular crystals

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2018-05-01

    Anisotropic frictional response and corresponding heating in cyclotrimethylene-trinitramine molecular crystals are studied using molecular dynamics simulations. The nature of damage and temperature rise due to frictional forces is monitored along different sliding directions on the primary slip plane, (010), and on non-slip planes, (100) and (001). Correlations between the friction coefficient, deformation, and frictional heating are established. We find that the friction coefficients on slip planes are smaller than those on non-slip planes. In response to sliding on a slip plane, the crystal deforms easily via dislocation generation and shows less heating. On non-slip planes, due to the inability of the crystal to deform via dislocation generation, a large damage zone is formed just below the contact area, accompanied by the change in the molecular ring conformation from chair to boat/half-boat. This in turn leads to a large temperature rise below the contact area.

  1. VAST PLANES OF SATELLITES IN A HIGH-RESOLUTION SIMULATION OF THE LOCAL GROUP: COMPARISON TO ANDROMEDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillet, N.; Ocvirk, P.; Aubert, D.

    2015-02-10

    We search for vast planes of satellites (VPoS) in a high-resolution simulation of the Local Group performed by the CLUES project, which improves significantly the resolution of previous similar studies. We use a simple method for detecting planar configurations of satellites, and validate it on the known plane of M31. We implement a range of prescriptions for modeling the satellite populations, roughly reproducing the variety of recipes used in the literature, and investigate the occurrence and properties of planar structures in these populations. The structure of the simulated satellite systems is strongly non-random and contains planes of satellites, predominantly co-rotating,more » with, in some cases, sizes comparable to the plane observed in M31 by Ibata et al. However, the latter is slightly richer in satellites, slightly thinner, and has stronger co-rotation, which makes it stand out as overall more exceptional than the simulated planes, when compared to a random population. Although the simulated planes we find are generally dominated by one real structure forming its backbone, they are also partly fortuitous and are thus not kinematically coherent structures as a whole. Provided that the simulated and observed planes of satellites are indeed of the same nature, our results suggest that the VPoS of M31 is not a coherent disk and that one-third to one-half of its satellites must have large proper motions perpendicular to the plane.« less

  2. Focal plane AIT sequence: evolution from HRG-Spot 5 to Pleiades HR

    NASA Astrophysics Data System (ADS)

    Le Goff, Roland; Pranyies, Pascal; Toubhans, Isabelle

    2017-11-01

    Optical and geometrical image qualities of Focal Planes, for "push-broom" high resolution remote sensing satellites, require the implementation of specific means and methods for the AIT sequence. Indeed the geometric performances of the focal plane mainly axial focusing and transverse registration, are duly obtained on the basis of adjustment, setting and measurement of optical and CCD components with an accuracy of a few microns. Since the end of the 1970s, EADS-SODERN has developed a series of detection units for earth observation instruments like SPOT and Helios. And EADS-SODERN is now responsible for the development of the Pleiades High Resolution Focal Plane assembly. This paper presents the AIT sequences. We introduce all the efforts, innovative solutions and improvements made on the assembly facilities to match the technical evolutions and breakthrough of the Pleiades HR FP concept in comparison with the previous High Resolution Geometric SPOT 5 Focal Plane. The main evolution drivers are the implementation of strip filters and the realization of 400 mm continuous retinas. For Pleiades HR AIT sequence, three specific integration and measuring benches, corresponding with the different assembly stages, are used: a 3-D non-contact measurement machine for the assembly of detection module, a 3-D measurement machine for mirror integration on the main Focal Plane SiC structure, and a 3-D geometric coordinates control bench to focus detection module lines and to ensure they are well registered together.

  3. Trajectory optimization for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The primary objective of this research is to develop an efficient and robust trajectory optimization tool for the optimal ascent problem of the National Aerospace Plane (NASP). This report is organized in the following order to summarize the complete work: Section two states the formulation and models of the trajectory optimization problem. An inverse dynamics approach to the problem is introduced in Section three. Optimal trajectories corresponding to various conditions and performance parameters are presented in Section four. A midcourse nonlinear feedback controller is developed in Section five. Section six demonstrates the performance of the inverse dynamics approach and midcourse controller during disturbances. Section seven discusses rocket assisted ascent which may be beneficial when orbital altitude is high. Finally, Section eight recommends areas of future research.

  4. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  5. Numerical analysis of some problems related to the mechanics of pneumatic tires: Finite deformation/rolling contact of a viscoelastic cylinder and finite deformation of cord-reinforced rubber composites

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.

    1984-01-01

    The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.

  6. Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density

    PubMed Central

    Populoh, Sascha; Brunko, Oliver C.; Gałązka, Krzysztof; Xie, Wenjie; Weidenkaff, Anke

    2013-01-01

    (TiZrHf)NiSn half-Heusler compounds were prepared by arc melting and their thermoelectric properties characterized in the temperature range between 325 K and 857 K, resulting in a Figure of Merit ZT ≈ 0.45. Furthermore, the prepared samples were used to construct a unileg module. This module was characterized in a homemade thermoelectric module measurement stand and yielded 275 mW/cm2 and a maximum volumetric power density of 700 mW/cm3. This was reached using normal silver paint as a contacting material; from an improved contacting, much higher power yields are to be expected. PMID:28809212

  7. Automated contact angle estimation for three-dimensional X-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu

    2015-11-10

    Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less

  8. Evaluation of Contact Separation Force Testing as a Screening Methodology for Electrical Socket Contacts

    NASA Technical Reports Server (NTRS)

    Green, Chris; Greenwell, Chris; Brusse, jay; Krus, Dennis; Leidecker, Henning

    2009-01-01

    During system level testing intermittent and permanent open circuit failures of mated, crimp removable, electrical contact pairs were experienced. The root cause of the failures was determined to be low (but not zero) contact forces applied by the socket contact tines against the engaging pin. The low contact force reduces the effectiveness of the wiping action of the socket tines against the pin. The observed failure mode may be produced when insufficient wiping during mate, demate and small relative movement in use allows for the accumulation of debris or insulating films that electrically separate the contact pair. The investigation identified at least three manufacturing process control problems associated with the socket contacts that enabled shipment of contacts susceptible to developing low contact forces: (1) Improper heat treatment of the socket tines resulting in plastic rather than elastic behavior; (2) Overly thinned socket tines at their base resulting in reduced pin retention forces; (3) insufficient screening tests to identify parts susceptible to the aforementioned failure mechanisms. The results from an extensive screening program of socket contacts utilizing the industry standard contact separation force test procedures are described herein. The investigation shows this method to be capable of identifying initially weak sockets. However, sockets whose contact retention forces may degrade during use may not be screened out by pin retention testing alone. Further investigations are required to correlate low contact retention forces with increased electrical contact resistance in the presence of insulating films that may accumulate in the use environment.

  9. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes.

    PubMed

    Frazin, Richard A

    2016-04-01

    A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.

  10. Similarities and differences among half-marathon runners according to their performance level

    PubMed Central

    Morante, Juan Carlos; Gómez-Molina, Josué; García-López, Juan

    2018-01-01

    This study aimed to identify the similarities and differences among half-marathon runners in relation to their performance level. Forty-eight male runners were classified into 4 groups according to their performance level in a half-marathon (min): Group 1 (n = 11, < 70 min), Group 2 (n = 13, < 80 min), Group 3 (n = 13, < 90 min), Group 4 (n = 11, < 105 min). In two separate sessions, training-related, anthropometric, physiological, foot strike pattern and spatio-temporal variables were recorded. Significant differences (p<0.05) between groups (ES = 0.55–3.16) and correlations with performance were obtained (r = 0.34–0.92) in training-related (experience and running distance per week), anthropometric (mass, body mass index and sum of 6 skinfolds), physiological (VO2max, RCT and running economy), foot strike pattern and spatio-temporal variables (contact time, step rate and length). At standardized submaximal speeds (11, 13 and 15 km·h-1), no significant differences between groups were observed in step rate and length, neither in contact time when foot strike pattern was taken into account. In conclusion, apart from training-related, anthropometric and physiological variables, foot strike pattern and step length were the only biomechanical variables sensitive to half-marathon performance, which are essential to achieve high running speeds. However, when foot strike pattern and running speeds were controlled (submaximal test), the spatio-temporal variables were similar. This indicates that foot strike pattern and running speed are responsible for spatio-temporal differences among runners of different performance level. PMID:29364940

  11. Rapid near-optimal aerospace plane trajectory generation and guidance

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Corban, J. E.; Markopoulos, N.

    1991-01-01

    Effort was directed toward the problems of the real time trajectory optimization and guidance law development for the National Aerospace Plane (NASP) applications. In particular, singular perturbation methods were used to develop guidance algorithms suitable for onboard, real time implementation. The progress made in this research effort is reported.

  12. A method of plane geometry primitive presentation

    NASA Astrophysics Data System (ADS)

    Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.

  13. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, M.S.; Jackson, T.G.; Knerr, C.

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  14. An audit of chronic hepatitis B contact tracing in metropolitan Western Australia.

    PubMed

    Mascarenhas, Lester; Mak, Donna B

    2014-03-01

    People with chronic hepatitis B (CHB) are a source of transmission and those in contact with them are a national priority population for hepatitis B testing and vaccination. This audit examined contact tracing success rate and barriers. Success was defined as contacts tested and vaccinated if required. An online survey of 26 general practitioners (GPs), and computer-assisted telephone interviews of 40 patients with CHB notified between 1 September 2011 and 1 September 2012. Half of the patients with CHB (16/31) were asked to take responsibility for informing contacts; contacts of five patients were traced by doctors and those of three patients were traced by nurses. The overall success rate was 75%. Contact tracing by nurses was 100% successful; after excluding nurse contact tracing from the analysis, the success rate was 57%. GPs reported 'insufficient resources' as the most frequent doctor-related barrier to contact tracing and 58% of doctors reported that public health units should be responsible for contact tracing. Increasing contact tracing by nurses could improve success rates. Public health unit assistance for contact tracing of complex cases should continue.

  15. Mathematical models for the reflection coefficients of dielectric half-spaces

    NASA Technical Reports Server (NTRS)

    Evans, D. D.

    1973-01-01

    The reflection coefficients at normal incidence are found for a large class of one-dimensionally inhomogeneous or stratified half-spaces, which contain a homogeneous half-space. The formulation of the problem involves a combination of the classical boundary value technique, and the nonclassical principle of invariant imbedding. Solutions are in closed form and expressible in terms of Bessel functions. All results are given in terms of the ratio of the distance between free space and the homogeneous half-space to the wavelength in vacuo. One special case is that of an arbitrary number of layers lying on a homogeneous half-space where the dielectric constant of each layer has a constant gradient. A number of other special cases, limiting cases, and generalizations are developed including one in which the thickness of the top layer obeys a probability distribution.

  16. Motion estimation in the frequency domain using fuzzy c-planes clustering.

    PubMed

    Erdem, C E; Karabulut, G Z; Yanmaz, E; Anarim, E

    2001-01-01

    A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.

  17. Plane Poiseuille Flow of a Rarefied Gas in the Presence of a Strong Gravitation

    NASA Astrophysics Data System (ADS)

    Doi, Toshiyuki

    2010-11-01

    Poiseuille flow of a rarefied gas between two horizontal planes in the presence of a strong gravitation is considered, where the gravity is so strong that the path of a molecule is curved considerably as it ascends or descends the distance of the planes. The gas behavior is studied based on the Boltzmann equation. An asymptotic analysis for a slow variation in the longitudinal direction is carried out and the problem is reduced to a spatially one dimensional problem, as was in the Poiseuille flow problem in the absence of the gravitation. The mass flow rate as well as the macroscopic variables is obtained for a wide range of the mean free path of the gas and the gravity. A numerical analysis of a two dimensional problem is also carried out and the result of the asymptotic analysis is verified.

  18. Utilization of health services in relation to mental health problems in adolescents: A population based survey

    PubMed Central

    Zachrisson, Henrik D; Rödje, Kjetil; Mykletun, Arnstein

    2006-01-01

    Background Only a minority of adolescents reporting symptoms above case-levels on screenings for mental health seeks and receives help from specialist health services. The objective of this study was to a) examine help-seeking for symptoms of anxiety and depression in relation to symptom load dimensionally, b) identify the level of specialization in mental health among service-providers, and c) identify associations between mental health problems and contact with different types of health services. Methods This cross-sectional school-based study (response-rate 88%, n = 11154) is based on Norwegian health surveys among 15 and 16 year olds. Results We found a dose-response association between symptom-load and help seeking. Only 34% of individuals with mental symptom-load above 99th percentile reported help-seeking in the last 12 months. Forty percent of help seekers were in contact with specialists (psychiatrists or psychologists), the remaining were mainly in contact with GPs. Mental health problems increased help seeking to all twelve service providers examined. Conclusion It might not be reasonable to argue that all adolescents with case-level mental health problems are in need of treatment. However, concerning the 99th percentile, claiming treatment need is less controversial. Even in the Norwegian context where mental health services are relatively available and free of charge, help-seeking in individuals with the highest symptom-loads is still low. Most help seekers achieved contact with health care providers, half of them at a non specialized level. Our results suggest that adolescents' recognition of mental health problems or intention to seek help for these are the major "filters" restricting treatment. PMID:16480522

  19. Benchmark solution for vibrations from a moving point source in a tunnel embedded in a half-space

    NASA Astrophysics Data System (ADS)

    Yuan, Zonghao; Boström, Anders; Cai, Yuanqiang

    2017-01-01

    A closed-form semi-analytical solution for the vibrations due to a moving point load in a tunnel embedded in a half-space is given in this paper. The tunnel is modelled as an elastic hollow cylinder and the ground surrounding the tunnel as a linear viscoelastic material. The total wave field in the half-space with a cylindrical hole is represented by outgoing cylindrical waves and down-going plane waves. To apply the boundary conditions on the ground surface and at the tunnel-soil interface, the transformation properties between the plane and cylindrical wave functions are employed. The proposed solution can predict the ground vibration from an underground railway tunnel of circular cross-section with a reasonable computational effort and can serve as a benchmark solution for other computational methods. Numerical results for the ground vibrations on the free surface due to a moving constant load and a moving harmonic load applied at the tunnel invert are presented for different load velocities and excitation frequencies. It is found that Rayleigh waves play an important role in the ground vibrations from a shallow tunnel.

  20. Development of method for experimental determination of wheel-rail contact forces and contact point position by using instrumented wheelset

    NASA Astrophysics Data System (ADS)

    Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.

    2017-07-01

    This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.

  1. Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging.

    PubMed

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jorgen Arendt

    2016-11-01

    This paper presents a method for optimizing parameters affecting the image quality in plane wave imaging. More specifically, the number of emissions and steering angles is optimized to attain the best images with the highest frame rate possible. The method is applied to a specific problem, where image quality for a λ -pitch transducer is compared with a λ /2-pitch transducer. Grating lobe artifacts for λ -pitch transducers degrade the contrast in plane wave images, and the impact on frame rate is studied. Field II simulations of plane wave images are made for all combinations of the parameters, and the optimal setup is selected based on Pareto optimality. The optimal setup for a simulated 4.1-MHz λ -pitch transducer uses 61 emissions and a maximum steering angle of 20° for depths from 0 to 60 mm. The achieved lateral full-width at half-maximum (FWHM) is 1.5λ and the contrast is -29 dB for a scatterer at 9 mm ( 24λ ). Using a λ /2-pitch transducer and only 21 emissions within the same angle range, the image quality is improved in terms of contrast, which is -37 dB. For imaging in regions deeper than 25 mm ( 66λ ), only 21 emissions are optimal for both the transducers, resulting in a -36 dB contrast at 34 mm ( 90λ ). Measurements are performed using the experimental SARUS scanner connected to a λ -pitch and λ /2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned and show the performance using the optimized sequences for the transducers. FWHM is 1.6λ and contrast is -25 dB for a wire at 9 mm using the λ -pitch transducer. For the λ /2-pitch transducer, contrast is -29 dB. In vivo scans of the carotid artery of a healthy volunteer show improved contrast and present fewer artifacts, when using the λ /2-pitch transducer compared with the λ -pitch. It is demonstrated with a frame rate, which is three times higher for the λ /2-pitch transducer.

  2. Stress intensity factors in a cracked infinite elastic wedge loaded by a rigid punch

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Civelek, M. B.

    1978-01-01

    A plane elastic wedge-shaped solid was split through the application of a rigid punch. It was assumed that the coefficient of friction on the the contact area was constant, and the problem had a plane of symmetry with respect to loading and geometry, with the crack in the plane of symmetry. The problem was formulated in terms of a system of integral equations with the contact stress and the derivative of the crack surface displacement as the unknown functions. The solution was obtained for an internal crack and for an edge crack. The results include primarily the stress intensity factors at the crack tips, and the measure of the stress singularity at the wedge apex, and at the end points of the contact area.

  3. Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study.

    PubMed

    Schwenk, Eric S; Gandhi, Kishor; Baratta, Jaime L; Torjman, Marc; Epstein, Richard H; Chung, Jaeyoon; Vaghari, Benjamin A; Beausang, David; Bojaxhi, Elird; Grady, Bernadette

    2015-12-01

    Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. To compare an out-of-plane interscalene catheter technique to the in-plane technique in a randomized clinical trial. Eighty-four patients undergoing open shoulder surgery were randomized to either the in-plane or out-of-plane ultrasound-guided continuous interscalene technique. The primary outcome was VAS pain rating at 24 hours. Secondary outcomes included pain ratings in the recovery room and at 48 hours, morphine consumption, the incidence of catheter dislodgments, procedure time, and block difficulty. Procedural data and all pain ratings were collected by blinded observers. There were no differences in the primary outcome of median VAS pain rating at 24 hours between the out-of-plane and in-plane groups (1.50; IQR, [0 - 4.38] vs. 1.25; IQR, [0 - 3.75]; P = 0.57). There were also no differences, respectively, between out-of-plane and in-plane median PACU pain ratings (1.0; IQR, [0 - 3.5] vs. 0.25; IQR, [0 - 2.5]; P = 0.08) and median 48-hour pain ratings (1.25; IQR, [1.25 - 2.63] vs. 0.50; IQR, [0 - 1.88]; P = 0.30). There were no differences in any other secondary endpoint. Our out-of-plane technique did not provide superior analgesia to the in-plane technique. It did not increase the number of complications. Our technique is an acceptable alternative in situations where the in-plane technique is difficult to perform.

  4. Investigation of half-quantized fluxoid states in strontium ruthenate mesoscopic superconducting rings

    NASA Astrophysics Data System (ADS)

    Jang, Joonho

    Spin-triplet superconductors can support exotic objects, such as chiral edge currents and half-quantum vortices (HQVs) characterized by the nontrivial winding of the spin structure. In this dissertation, we present cantilever magnetometry measurements performed on mesoscopic samples of Sr2RuO 4, a spin-triplet superconductor. Satisfying the total anti-symmetric property of the Cooper pair wave function, Sr2RuO4 is theoretically suggested to have angular momentum L = 1 and form domain structure with px +/- ipy order parameter that corresponds to Lz = +/-1. For micron-size samples, only a few number of domains would exist and signatures of domain walls and edge currents are expected to be measurable with current sensitivity. From the measurements of fluctuations of magnetic signal and the signatures of vortex entries, we found no evidence to support broken time-reversal symmetry (TRS) in these crystals. We argue that various scenarios exist to explain the negative result while still assuming the TRS breaking chiral order parameter. Also, micron-size annular-shaped Sr2RuO4 crystals were used to observe transitions between fluxoid states. Our observation of half-integer transitions is consistent with the existence of HQVs in a spin-triplet superconductor. Stability of the half states with an in-plane magnetic field is explained by the spin polarization in consequence of a differential phase winding of up and down spin components. These spin and charge dynamics can also be revealed in the current response to phase winding across a weak-link junction. The junctions were fabricated within ring geometry. The phase is varied by the external magnetic field and the current is calculated by measuring the magnetic moments of the ring. The current response shows second harmonics when the in-plane magnetic field is applied, and the data are successfully fitted when Gibbs free energy is expressed with additional spin degree of freedom. Our observations are consistent with spin

  5. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  6. Topological analysis of the motion of an ellipsoid on a smooth plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivochkin, M Yu

    2008-06-30

    The problem of the motion of a dynamically and geometrically symmetric heavy ellipsoid on a smooth horizontal plane is investigated. The problem is integrable and can be considered a generalization of the problem of motion of a heavy rigid body with fixed point in the Lagrangian case. The Smale bifurcation diagrams are constructed. Surgeries of tori are investigated using methods developed by Fomenko and his students. Bibliography: 9 titles.

  7. Longer Eye Contact Improves ADHD Children's Compliance with Parents' Commands

    ERIC Educational Resources Information Center

    Kapalka, G. M.

    2004-01-01

    This study evaluated the effectiveness of eye contact in reducing ADHD children's problems with compliance. Seventy-six parents of ADHD boys between ages 5 and 10 were randomized into two treatment groups and a control group. Repeated-measures ANOVA revealed that, as hypothesized, eye contact was effective in reducing ADHD children's problems with…

  8. Cutting solid figures by plane - analytical solution and spreadsheet implementation

    NASA Astrophysics Data System (ADS)

    Benacka, Jan

    2012-07-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.

  9. Generation of uniformly oriented in-plane magnetization with near-unity purity in 4π microscopy.

    PubMed

    Wang, Sicong; Cao, Yaoyu; Li, Xiangping

    2017-12-01

    In this Letter, we numerically demonstrate the all-optical generation of uniformly oriented in-plane magnetization with near-unity purity (more than 99%) under a 4π microscopic configuration. This is achieved through focusing two counter-propagating vector beams consisting of coherently configured linear and radial components. Based on the Debye diffraction theory, constructive and destructive interferences of the focal field components can be tailored under the 4π configuration to generate high-purity uniformly polarized transverse and longitudinal electric-field components in the center of the focal region. Consequently, near-unity purity in-plane magnetization with a uniform orientation within the focal volume defined by the full width at half-maximum can be created through the inverse Faraday effect. In addition, it reveals that the purity of the in-plane magnetization is robust against the numerical aperture of the focal lens. This result expands the flexibility of magnetization manipulations through light and holds great potential in all-optical magnetic recording and spintronics.

  10. Evolution of real contact area under shear and the value of static friction of soft materials.

    PubMed

    Sahli, R; Pallares, G; Ducottet, C; Ben Ali, I E; Al Akhrass, S; Guibert, M; Scheibert, J

    2018-01-16

    The frictional properties of a rough contact interface are controlled by its area of real contact, the dynamical variations of which underlie our modern understanding of the ubiquitous rate-and-state friction law. In particular, the real contact area is proportional to the normal load, slowly increases at rest through aging, and drops at slip inception. Here, through direct measurements on various contacts involving elastomers or human fingertips, we show that the real contact area also decreases under shear, with reductions as large as 30[Formula: see text], starting well before macroscopic sliding. All data are captured by a single reduction law enabling excellent predictions of the static friction force. In elastomers, the area-reduction rate of individual contacts obeys a scaling law valid from micrometer-sized junctions in rough contacts to millimeter-sized smooth sphere/plane contacts. For the class of soft materials used here, our results should motivate first-order improvements of current contact mechanics models and prompt reinterpretation of the rate-and-state parameters.

  11. Optimal Chebyshev polynomials on ellipses in the complex plane

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland

    1989-01-01

    The design of iterative schemes for sparse matrix computations often leads to constrained polynomial approximation problems on sets in the complex plane. For the case of ellipses, we introduce a new class of complex polynomials which are in general very good approximations to the best polynomials and even optimal in most cases.

  12. Microscopy as a statistical, Rényi-Ulam, half-lie game: a new heuristic search strategy to accelerate imaging.

    PubMed

    Drumm, Daniel W; Greentree, Andrew D

    2017-11-07

    Finding a fluorescent target in a biological environment is a common and pressing microscopy problem. This task is formally analogous to the canonical search problem. In ideal (noise-free, truthful) search problems, the well-known binary search is optimal. The case of half-lies, where one of two responses to a search query may be deceptive, introduces a richer, Rényi-Ulam problem and is particularly relevant to practical microscopy. We analyse microscopy in the contexts of Rényi-Ulam games and half-lies, developing a new family of heuristics. We show the cost of insisting on verification by positive result in search algorithms; for the zero-half-lie case bisectioning with verification incurs a 50% penalty in the average number of queries required. The optimal partitioning of search spaces directly following verification in the presence of random half-lies is determined. Trisectioning with verification is shown to be the most efficient heuristic of the family in a majority of cases.

  13. Stress-free end problem in layered materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1977-01-01

    In this paper the plane elastostatic problem for a medium which consists of periodically arranged two sets of bonded dissimilar layers or strips is considered. First it is assumed that one set of strips contains a crack which crosses the bimaterial interfaces. Then, by letting the collinear cracks join, the stress-free end problem is formulated. The singular behavior of the solutions at the point on intersection of the stress-free boundary and the interfaces is examined and appropriate stress intensity factors are defined. The results of some numerical examples are then presented which include the cases of both plane stress and plane strain.

  14. Automatic extraction of the mid-sagittal plane using an ICP variant

    NASA Astrophysics Data System (ADS)

    Fieten, Lorenz; Eschweiler, Jörg; de la Fuente, Matías; Gravius, Sascha; Radermacher, Klaus

    2008-03-01

    Precise knowledge of the mid-sagittal plane is important for the assessment and correction of several deformities. Furthermore, the mid-sagittal plane can be used for the definition of standardized coordinate systems such as pelvis or skull coordinate systems. A popular approach for mid-sagittal plane computation is based on the selection of anatomical landmarks located either directly on the plane or symmetrically to it. However, the manual selection of landmarks is a tedious, time-consuming and error-prone task, which requires great care. In order to overcome this drawback, previously it was suggested to use the iterative closest point (ICP) algorithm: After an initial mirroring of the data points on a default mirror plane, the mirrored data points should be registered iteratively to the model points using rigid transforms. Finally, a reflection transform approximating the cumulative transform could be extracted. In this work, we present an ICP variant for the iterative optimization of the reflection parameters. It is based on a closed-form solution to the least-squares problem of matching data points to model points using a reflection. In experiments on CT pelvis and skull datasets our method showed a better ability to match homologous areas.

  15. Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.

    PubMed

    Nairn, John A

    2016-06-06

    A numerical model for orthogonal cutting using the material point method was applied to woodcutting using a bench plane. The cutting process was modelled by accounting for surface energy associated with wood fracture toughness for crack growth parallel to the grain. By using damping to deal with dynamic crack propagation and modelling all contact between wood and the plane, simulations could initiate chip formation and proceed into steady-state chip propagation including chip curling. Once steady-state conditions were achieved, the cutting forces became constant and could be determined as a function of various simulation variables. The modelling details included a cutting tool, the tool's rake and grinding angles, a chip breaker, a base plate and a mouth opening between the base plate and the tool. The wood was modelled as an anisotropic elastic-plastic material. The simulations were verified by comparison to an analytical model and then used to conduct virtual experiments on wood planing. The virtual experiments showed interactions between depth of cut, chip breaker location and mouth opening. Additional simulations investigated the role of tool grinding angle, tool sharpness and friction.

  16. In-plane and out-of-plane motions of the human tympanic membrane

    PubMed Central

    Khaleghi, Morteza; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.

    2016-01-01

    Computer-controlled digital holographic techniques are developed and used to measure shape and four-dimensional nano-scale displacements of the surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The combination of these measurements (shape and sound-induced motions) allows the calculation of the out-of-plane (perpendicular to the surface) and in-plane (tangential) motion components at over 1 000 000 points on the TM surface with a high-degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are 10–20 dB smaller than the out-of-plane motions. These conditions are most often compromised with higher-frequency sound stimuli where the overall displacements are smaller, or the spatial density of holographic fringes is higher, both of which increase the uncertainty of the measurements. The results are consistent with the TM acting as a Kirchhoff–Love's thin shell dominated by out-of-plane motion with little in-plane motion, at least with stimulus frequencies up to 8 kHz. PMID:26827009

  17. Analysis of contact zones from whole field isochromatics using reflection photoelasticity

    NASA Astrophysics Data System (ADS)

    Hariprasad, M. P.; Ramesh, K.

    2018-06-01

    This paper discusses the method for evaluating the unknown contact parameters by post processing the whole field fringe order data obtained from reflection photoelasticity in a nonlinear least squares sense. Recent developments in Twelve Fringe Photoelasticity (TFP) for fringe order evaluation from single isochromatics is utilized for the whole field fringe order evaluation. One of the issues in using TFP for reflection photoelasticity is the smudging of isochromatic data at the contact zone. This leads to error in identifying the origin of contact, which is successfully addressed by implementing a semi-automatic contact point refinement algorithm. The methodologies are initially verified for benchmark problems and demonstrated for two application problems of turbine blade and sheet pile contacting interfaces.

  18. Relaxation of contact-line singularities solely by the Kelvin effect and apparent contact angles for isothermal volatile liquids in contact with air

    NASA Astrophysics Data System (ADS)

    Rednikov, Alexey; Colinet, Pierre

    2013-11-01

    The contact (triple) line of a volatile liquid on a flat solid is studied theoretically. Like with a pure-vapor atmosphere [Phys. Rev. E 87, 010401, 2013], but here for isothermal diffusion-limited evaporation/condensation in the presence of an inert gas, we rigorously show that the notorious contact-line singularities (related to motion or phase change itself) can be regularized solely on account of the Kelvin effect (curvature dependence of the saturation conditions). No disjoining pressure, precursor films or Navier slip are in fact needed to this purpose, and nor are they taken into consideration here (``minimalist'' approach). The model applies to both perfect (zero Young's angle) and partial wetting, and is in particular used to study the related issue of evaporation-induced contact angles. Their modification by the contact-line motion (either advancing or receding) is assessed. The formulation is posed for a distinguished immediate vicinity of the contact line (the ``microregion''), the corresponding problem decoupling to leading order, here up to one unknown coefficient, from what actually happens at the macroscale. The lubrication approximation (implying sufficiently small contact angles) is used in the liquid, coupled with the diffusion equation in the gaz phase. Supported by ESA and BELSPO PRODEX and F.R.S.-FNRS.

  19. Generalized contact and improved frictional heating in the material point method

    NASA Astrophysics Data System (ADS)

    Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.

    2017-09-01

    The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.

  20. Generalized contact and improved frictional heating in the material point method

    NASA Astrophysics Data System (ADS)

    Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.

    2018-07-01

    The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.

  1. Structural, Functional, and Metabolic Brain Markers Differentiate Collision versus Contact and Non-Contact Athletes

    PubMed Central

    Churchill, Nathan W.; Hutchison, Michael G.; Di Battista, Alex P.; Graham, Simon J.; Schweizer, Tom A.

    2017-01-01

    There is growing concern about how participation in contact sports affects the brain. Retrospective evidence suggests that contact sports are associated with long-term negative health outcomes. However, much of the research to date has focused on former athletes with significant health problems. Less is known about the health of current athletes in contact and collision sports who have not reported significant medical issues. In this cross-sectional study, advanced magnetic resonance imaging (MRI) was used to evaluate multiple aspects of brain physiology in three groups of athletes participating in non-contact sports (N = 20), contact sports (N = 22), and collision sports (N = 23). Diffusion tensor imaging was used to assess white matter microstructure based on measures of fractional anisotropy (FA) and mean diffusivity (MD); resting-state functional MRI was used to evaluate global functional connectivity; single-voxel spectroscopy was used to compare ratios of neural metabolites, including N-acetyl aspartate (NAA), creatine (Cr), choline, and myo-inositol. Multivariate analysis revealed structural, functional, and metabolic measures that reliably differentiated between sport groups. The collision group had significantly elevated FA and reduced MD in white matter, compared to both contact and non-contact groups. In contrast, the collision group showed significant reductions in functional connectivity and the NAA/Cr metabolite ratio, relative to only the non-contact group, while the contact group overlapped with both non-contact and collision groups. For brain regions associated with contact sport participation, athletes with a history of concussion also showed greater alterations in FA and functional connectivity, indicating a potential cumulative effect of both contact exposure and concussion history on brain physiology. These findings indicate persistent differences in brain physiology for athletes participating in contact and collision sports, which

  2. Isogeometric frictionless contact analysis with the third medium method

    NASA Astrophysics Data System (ADS)

    Kruse, R.; Nguyen-Thanh, N.; Wriggers, P.; De Lorenzis, L.

    2018-01-01

    This paper presents an isogeometric formulation for frictionless contact between deformable bodies, based on the recently proposed concept of the third medium. This concept relies on continuum formulations not only for the contacting bodies but also for a fictitious intermediate medium in which the bodies can move and interact. Key to the formulation is a suitable definition of the constitutive behavior of the third medium. In this work, based on a number of numerical tests, the role of the material parameters of the third medium is systematically assessed. We also assess the rate of spatial convergence for higher-order discretizations, stemming from the regularization of the non-smooth contact problem inherent to the third medium approach. Finally, problems with self contact are considered and turn out to be an attractive application of the method.

  3. Frontal plane ankle proprioceptive thresholds and unipedal balance

    PubMed Central

    Son, Jaebum; Ashton-Miller, James A.; Richardson, James K.

    2012-01-01

    Reliable unipedal balance is fundamental to safe ambulation. Accordingly, older persons with peripheral neuropathy (PN), who are at increased risk for falls, demonstrate impaired unipedal balance. To explore the relationship between afferent function and unipedal balance, frontal plane proprioceptive thresholds at the ankle were quantified in 22 subjects (72.5 ± 6.3 years; 11 with PN and 11 matched controls) while they were standing using a foot cradle system and a staircase series of 100 rotational stimuli. PN subjects, as compared to controls, demonstrated shorter median unipedal balance times (3.4 ± 2.7 versus 14.3 ± 8.9 seconds; p = 0.0017) and greater (less precise) combined ankle inversion/eversion proprioceptive thresholds (1.17 ± 0.36 versus 0.65 ± 0.37 degrees; p = 0.0055). Combined ankle inversion/eversion proprioceptive thresholds explained approximately half the variance in unipedal balance time (R2 = 0.5138; p = 0.0004). Given prior work demonstrating a similarly strong relationship between ankle torque generation and unipedal balance, neuropathy-associated impairments in ankle frontal plane afferent and efferent function appear to be equally responsible for the inability of older persons with PN to reliably balance on one foot. They therefore provide distinct targets for intervention. PMID:19145650

  4. Verification of the Sentinel-4 focal plane subsystem

    NASA Astrophysics Data System (ADS)

    Williges, Christian; Uhlig, Mathias; Hilbert, Stefan; Rossmann, Hannes; Buchwinkler, Kevin; Babben, Steffen; Sebastian, Ilse; Hohn, Rüdiger; Reulke, Ralf

    2017-09-01

    The Sentinel-4 payload is a multi-spectral camera system, designed to monitor atmospheric conditions over Europe from a geostationary orbit. The German Aerospace Center, DLR Berlin, conducted the verification campaign of the Focal Plane Subsystem (FPS) during the second half of 2016. The FPS consists, of two Focal Plane Assemblies (FPAs), two Front End Electronics (FEEs), one Front End Support Electronic (FSE) and one Instrument Control Unit (ICU). The FPAs are designed for two spectral ranges: UV-VIS (305 nm - 500 nm) and NIR (750 nm - 775 nm). In this publication, we will present in detail the set-up of the verification campaign of the Sentinel-4 Qualification Model (QM). This set up will also be used for the upcoming Flight Model (FM) verification, planned for early 2018. The FPAs have to be operated at 215 K +/- 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. The test campaign consists mainly of radiometric tests. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Selected test analyses and results will be presented.

  5. Anomalies in the prescribing of soft contact lens power.

    PubMed

    Young, Graeme; Moody, Kurt; Sulley, Anna

    2009-01-01

    To determine the proportion of prescribed soft lenses rounded to the nearest half diopter and any variations from country to country and between lens types. Marketing data were obtained for soft lenses supplied during a 1-year period for lenses representing each of the following categories: mid-water hydrogel (MWH), silicone hydrogel, daily disposable, and toric silicone hydrogel (TSH). The data were analyzed for several countries/regions. Spherical lenses were analyzed in the range 1.00 to 5.75 D for plus and minus powers, and toric lenses in the range 0.50 to 5.75 D. This ensured a similar number of lenses in full or half diopter powers were compared with quarter and three-quarter diopter powers, and that there was no enforced rounding due to nonavailability of powers. By comparing the proportion of lenses from the 2 power groups, the proportion of lenses rounded to the nearest half diopter was estimated. It was assumed that half the difference between the totals of the 2 power groups represented those lenses dispensed to the nearest half diopter and, therefore, dispensed inaccurately; this was termed the "rounding rate" (RR). The power distribution curve for the sphere powers spiked in half diopter steps, illustrated a bias toward prescribing full and half diopter powers. With all lenses, the RR varied widely between countries. For the MWH, this ranged from 1.7% (Canada) to 11.6% (Iberia). The RRs were 2 to 3 times higher for plus than minus power lenses, however, this also varied by country. Overall, the RRs were lower for the silicone hydrogel and daily disposable contact lenses compared with the MWH, in particular for France and Iberia. The TSH results showed the greatest consistency between countries, with RRs ranging from 3.9% (Germany) to 9.5% (Rest of Europe). Most countries showed similar or lower RRs for TSH compared with MWH although, for some countries (e.g., United Kingdom, Nordic), these were higher. There was less difference in RRs for TSH lenses

  6. Aurelia aurita (Cnidaria) Oocytes' Contact Plate Structure and Development

    PubMed Central

    Adonin, Leonid S.; Shaposhnikova, Tatyana G.; Podgornaya, Olga

    2012-01-01

    One of the A. aurita medusa main mesoglea polypeptides, mesoglein, has been described previously. Mesoglein belongs to ZP-domain protein family and therefore we focused on A.aurita oogenesis. Antibodies against mesoglein (AB RA47) stain the plate in the place where germinal epithelium contacts oocyte on the paraffin sections. According to its position, we named the structure found the “contact plate”. Our main instrument was AB against mesoglein. ZP-domain occupies about half of the whole amino acid sequence of the mesoglein. Immunoblot after SDS-PAGE and AU-PAGE reveals two charged and high Mr bands among the female gonad germinal epithelium polypeptides. One of the gonads' polypeptides Mr corresponds to that of mesogleal cells, the other ones' Mr is higher. The morphological description of contact plate formation is the subject of the current work. Two types of AB RA47 positive granules were observed during progressive oogenesis stages. Granules form the contact plate in mature oocyte. Contact plate of A.aurita oocyte marks its animal pole and resembles Zona Pellucida by the following features: (1) it attracts spermatozoids; (2) the material of the contact plate is synthesized by oocyte and stored in granules; (3) these granules and the contact plate itself contain ZP domain protein(s); (4) contact plate is an extracellular structure made up of fiber bundles similar to those of conventional Zona Pellucida. PMID:23185235

  7. Contact stresses in pin-loaded orthotropic plates

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Klang, E. C.

    1984-01-01

    The effects of pin elasticity, friction, and clearance on the stresses near the hole in a pin-loaded orthotropic plate are described. The problem is modeled as a contact elasticity problem using complex variable theory, the pin and the plate being two elastic bodies interacting through contact. This modeling is in contrast to previous works which assumed that the pin is rigid or that it exerts a known cosinusoidal radial traction on the hole boundary. Neither of these approaches explicitly involves a pin. A collocation procedure and iteration were used to obtain numerical results for a variety of plate and pin elastic properties and various levels of friction and clearance. Collocation was used to enforce the boundary and iteration was used to find the contact and no-slip regions on the boundary. Details of the numerical scheme are discussed.

  8. Simultaneous prediction of muscle and contact forces in the knee during gait.

    PubMed

    Lin, Yi-Chung; Walter, Jonathan P; Banks, Scott A; Pandy, Marcus G; Fregly, Benjamin J

    2010-03-22

    Musculoskeletal models are currently the primary means for estimating in vivo muscle and contact forces in the knee during gait. These models typically couple a dynamic skeletal model with individual muscle models but rarely include articular contact models due to their high computational cost. This study evaluates a novel method for predicting muscle and contact forces simultaneously in the knee during gait. The method utilizes a 12 degree-of-freedom knee model (femur, tibia, and patella) combining muscle, articular contact, and dynamic skeletal models. Eight static optimization problems were formulated using two cost functions (one based on muscle activations and one based on contact forces) and four constraints sets (each composed of different combinations of inverse dynamic loads). The estimated muscle and contact forces were evaluated using in vivo tibial contact force data collected from a patient with a force-measuring knee implant. When the eight optimization problems were solved with added constraints to match the in vivo contact force measurements, root-mean-square errors in predicted contact forces were less than 10 N. Furthermore, muscle and patellar contact forces predicted by the two cost functions became more similar as more inverse dynamic loads were used as constraints. When the contact force constraints were removed, estimated medial contact forces were similar and lateral contact forces lower in magnitude compared to measured contact forces, with estimated muscle forces being sensitive and estimated patellar contact forces relatively insensitive to the choice of cost function and constraint set. These results suggest that optimization problem formulation coupled with knee model complexity can significantly affect predicted muscle and contact forces in the knee during gait. Further research using a complete lower limb model is needed to assess the importance of this finding to the muscle and contact force estimation process. Copyright (c) 2009

  9. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  10. Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 -2 2) plane p-type GaN

    NASA Astrophysics Data System (ADS)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2014-11-01

    Low-resistance Ag ohmic contacts to semi-polar (1 1 -2 2) p-GaN were developed by controlling interfacial oxide using a Zn layer. The 300 °C-annealed Zn/Ag samples showed ohmic behavior with a contact resistivity of 6.0 × 10-4 Ω cm2 better than that of Ag-only contacts (1.0 × 10-3 Ω cm2). The X-ray photoemission spectroscopy (XPS) results showed that annealing caused the indiffusion of oxygen at the contact/GaN interface, resulting in the formation of different types of interfacial oxides, viz. Ga-oxide and Ga-doped ZnO. Based on the XPS and electrical results, the possible mechanisms underlying the improved electrical properties of the Zn/Ag samples are discussed.

  11. Making planes plain.

    PubMed

    O'Rahilly, R

    1997-01-01

    The major anatomical planes (horizontal, coronal, and sagittal, including the median plane) are discussed from a historical perspective, and their correct usage is clarified. Unofficial and unnecessary terms to be avoided (for reasons explained) include midsagittal, parasagittal, and midline.

  12. Focusing on Contact Lens Safety

    MedlinePlus

    ... lenses to FDA’s MedWatch reporting program . How to Report Problems Here’s how you can help: If you ... selling contact lenses over the Web, you should report it to the FDA . If you don’t ...

  13. Coherent electromagnetic waves in the presence of a half space of randomly distributed scatterers

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1988-01-01

    The present investigation of coherent field propagation notes, upon solving the Foldy-Twersky integral equation for a half-space of small spherical scatterers illuminated by a plane wave at oblique incidence, that the coherent field for a horizontally-polarized incident wave exhibits reflectivity and transmissivity consistent with the Fresnel formula for an equivalent continuous effective medium. In the case of a vertically polarized incident wave, both the vertical and longitudinal waves obtained for the coherent field have reflectivities and transmissivities that do not agree with the Fresnel formula.

  14. An intrinsic approach in the curved n-body problem: The negative curvature case

    NASA Astrophysics Data System (ADS)

    Diacu, Florin; Pérez-Chavela, Ernesto; Reyes Victoria, J. Guadalupe

    We consider the motion of n point particles of positive masses that interact gravitationally on the 2-dimensional hyperbolic sphere, which has negative constant Gaussian curvature. Using the stereographic projection, we derive the equations of motion of this curved n-body problem in the Poincaré disk, where we study the elliptic relative equilibria. Then we obtain the equations of motion in the Poincaré upper half plane in order to analyze the hyperbolic and parabolic relative equilibria. Using techniques of Riemannian geometry, we characterize each of the above classes of periodic orbits. For n=2 and n=3 we recover some previously known results and find new qualitative results about relative equilibria that were not apparent in an extrinsic setting.

  15. An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading

    NASA Astrophysics Data System (ADS)

    Jin, Zhi-He; Noda, Naotake

    1993-05-01

    This paper considers the crack problem for a semi-infinite nonhomogeneous thermoelastic solid subjected to steady heat flux over the boundary. The crack faces are assumed to be insulated. The research is aimed at understanding the effect of nonhomogeneities of materials on stress intensity factors. By using the Fourier transform, the problem is reduced to a system of singular integral equations which are solved numerically. Results are presented illustrating the influence of the nonhomogeneity of the material on the stress intensity factors. Zero Mode I stress intensity factors are found for some groups of the material constants, which may be interesting for the understanding of compositions of advanced Functionally Gradient Materials.

  16. The mode 3 crack problem in bonded materials with a nonhomogeneous interfacial zone

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.

    1988-01-01

    The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.

  17. The mode III crack problem in bonded materials with a nonhomogeneous interfacial zone

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Joseph, P. F.; Kaya, A. C.

    1991-01-01

    The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations.

  18. The lateral plane delivers higher dose than the frontal plane in biplane cardiac catheterization systems.

    PubMed

    Aldoss, Osamah; Patel, Sonali; Harris, Kyle; Divekar, Abhay

    2015-06-01

    The objective of the study is to compare radiation dose between the frontal and lateral planes in a biplane cardiac catheterization laboratory. Tube angulation progressively increases patient and operator radiation dose in single-plane cardiac catheterization laboratories. This retrospective study captured biplane radiation dose in a pediatric cardiac catheterization laboratory between April 2010 and January 2014. Raw and time-indexed fluoroscopic, cineangiographic and total (fluoroscopic + cineangiographic) air kerma (AK, mGy) and kerma area product (PKA, µGym(2)/Kg) for each plane were compared. Data for 716 patients were analyzed: 408 (56.98 %) were male, the median age was 4.86 years, and the median weight was 17.35 kg. Although median beam-on time (minutes) was 4.2 times greater in the frontal plane, there was no difference in raw median total PKA between the two planes. However, when indexed to beam-on time, the lateral plane had a higher median-indexed fluoroscopic (0.75 vs. 1.70), cineangiographic (16.03 vs. 24.92), and total (1.43 vs. 5.15) PKA (p < 0.0001). The median time-indexed total PKA in the lateral plane is 3.6 times the frontal plane. This is the first report showing that the lateral plane delivers a higher dose than the frontal plane per unit time. Operators should consciously reduce the lateral plane beam-on time and incorporate this practice in radiation reduction protocols.

  19. Imaging electron flow from collimating contacts in graphene

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2018-04-01

    The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B  =  0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B  =  0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ  =  9° for electron flow from the collimating contact, compared with Δθ  =  54° for the non-collimating case.

  20. Finite Element Modeling of a Cylindrical Contact Using Hertzian Assumptions

    NASA Technical Reports Server (NTRS)

    Knudsen, Erik

    2003-01-01

    The turbine blades in the high-pressure fuel turbopump/alternate turbopump (HPFTP/AT) are subjected to hot gases rapidly flowing around them. This flow excites vibrations in the blades. Naturally, one has to worry about resonance, so a damping device was added to dissipate some energy from the system. The foundation is now laid for a very complex problem. The damper is in contact with the blade, so now there are contact stresses (both normal and tangential) to contend with. Since these stresses can be very high, it is not all that difficult to yield the material. Friction is another non-linearity and the blade is made out of a Nickel-based single-crystal superalloy that is orthotropic. A few approaches exist to solve such a problem and computer models, using contact elements, have been built with friction, plasticity, etc. These models are quite cumbersome and require many hours to solve just one load case and material orientation. A simpler approach is required. Ideally, the model should be simplified so the analysis can be conducted faster. When working with contact problems determining the contact patch and the stresses in the material are the main concerns. Closed-form solutions for non-conforming bodies, developed by Hertz, made out of isotropic materials are readily available. More involved solutions for 3-D cases using different materials are also available. The question is this: can Hertzian1 solutions be applied, or superimposed, to more complicated problems-like those involving anisotropic materials? That is the point of the investigation here. If these results agree with the more complicated computer models, then the analytical solutions can be used in lieu of the numerical solutions that take a very long time to process. As time goes on, the analytical solution will eventually have to include things like friction and plasticity. The models in this report use no contact elements and are essentially an applied load problem using Hertzian assumptions to

  1. Parallax handling of image stitching using dominant-plane homography

    NASA Astrophysics Data System (ADS)

    Pang, Zhaofeng; Li, Cheng; Zhao, Baojun; Tang, Linbo

    2015-10-01

    In this paper, we present a novel image stitching method to handle parallax in practical application. For images with significant amount of parallax, the more effective approach is to align roughly and globally the overlapping regions and then apply a seam-cutting method to composite naturally stitched images. It is well known that images can be modeled by various planes result from the projective parallax under non-ideal imaging condition. The dominant-plane homography has important advantages of warping an image globally and avoiding some local distortions. The proposed method primarily addresses large parallax problem through two steps: (1) selecting matching point pairs located on the dominant plane, by clustering matching correspondences and then measuring the cost of each cluster; and (2) in order to obtain a plausible seam, edge maps of overlapped area incorporation arithmetic is adopted to modify the standard seam-cutting method. Furthermore, our approach is demonstrated to achieve reliable performance of handling parallax through a mass of experimental comparisons with state-of-the-art methods.

  2. Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in Rn

    PubMed Central

    Donoho, David L.

    1999-01-01

    For each pair (n, k) with 1 ≤ k < n, we construct a tight frame (ρλ : λ ∈ Λ) for L2 (Rn), which we call a frame of k-plane ridgelets. The intent is to efficiently represent functions that are smooth away from singularities along k-planes in Rn. We also develop tools to help decide whether k-plane ridgelets provide the desired efficient representation. We first construct a wavelet-like tight frame on the X-ray bundle χn,k—the fiber bundle having the Grassman manifold Gn,k of k-planes in Rn for base space, and for fibers the orthocomplements of those planes. This wavelet-like tight frame is the pushout to χn,k, via the smooth local coordinates of Gn,k, of an orthonormal basis of tensor Meyer wavelets on Euclidean space Rk(n−k) × Rn−k. We then use the X-ray isometry [Solmon, D. C. (1976) J. Math. Anal. Appl. 56, 61–83] to map this tight frame isometrically to a tight frame for L2(Rn)—the k-plane ridgelets. This construction makes analysis of a function f ∈ L2(Rn) by k-plane ridgelets identical to the analysis of the k-plane X-ray transform of f by an appropriate wavelet-like system for χn,k. As wavelets are typically effective at representing point singularities, it may be expected that these new systems will be effective at representing objects whose k-plane X-ray transform has a point singularity. Objects with discontinuities across hyperplanes are of this form, for k = n − 1. PMID:10051554

  3. An exact plane-stress solution for a class of problems in orthotropic elasticity

    NASA Technical Reports Server (NTRS)

    Erb, D. A.; Cooper, P. A.; Weisshaar, T. A.

    1982-01-01

    An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures.

  4. Crack problems for a rectangular plate and an infinite strip

    NASA Technical Reports Server (NTRS)

    Civelek, M. B.; Erdogan, F.

    1980-01-01

    The general plane problem for an infinite strip containing multiple cracks perpendicular to its boundaries is considered. The problem is reduced to a system of singular integral equations. Two specific problems of practical interest are then studied in detail. The first problem explores the interaction effect of multiple edge cracks in a plate or beam under tension or bending. The second problem is that of a rectangular plate containing an arbitrarily oriented crack in the plane of symmetry. Particular emphasis is placed on the problem of a plate containing an edge crack and subjected to concentrated forces.

  5. Military veterans with mental health problems: a protocol for a systematic review to identify whether they have an additional risk of contact with criminal justice systems compared with other veterans groups.

    PubMed

    Taylor, James; Parkes, Tessa; Haw, Sally; Jepson, Ruth

    2012-11-06

    There is concern that some veterans of armed forces, in particular those with mental health, drug or alcohol problems, experience difficulty returning to a civilian way of life and may subsequently come into contact with criminal justice services and imprisonment. The aim of this review is to examine whether military veterans with mental health problems, including substance use, have an additional risk of contact with criminal justice systems when compared with veterans who do not have such problems. The review will also seek to identify veterans' views and experiences on their contact with criminal justice services, what contributed to or influenced their contact and whether there are any differences, including international and temporal, in incidence, contact type, veteran type, their presenting health needs and reported experiences. In this review we will adopt a methodological model similar to that previously used by other researchers when reviewing intervention studies. The model, which we will use as a framework for conducting a review of observational and qualitative studies, consists of two parallel synthesis stages within the review process; one for quantitative research and the other for qualitative research. The third stage involves a cross study synthesis, enabling a deeper understanding of the results of the quantitative synthesis. A range of electronic databases, including MEDLINE, PsychINFO, CINAHL, will be systematically searched, from 1939 to present day, using a broad range of search terms that cover four key concepts: mental health, military veterans, substance misuse, and criminal justice. Studies will be screened against topic specific inclusion/exclusion criteria and then against a smaller subset of design specific inclusion/exclusion criteria. Data will be extracted for those studies that meet the inclusion criteria, and all eligible studies will be critically appraised. Included studies, both quantitative and qualitative, will then undergo

  6. Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures.

    PubMed

    Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, SenPo; Xiu, Fei; Ho, Johnny C

    2016-09-27

    Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices.

  7. Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures

    PubMed Central

    Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, SenPo; Xiu, Fei; Ho, Johnny C.

    2016-01-01

    Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices. PMID:27671709

  8. Some Half-Row Sums from Pascal's Triangle via Laplace Transforms

    ERIC Educational Resources Information Center

    Dence, Thomas P.

    2007-01-01

    This article presents some identities on the sum of the entries in the first half of a row in Pascal's triangle. The results were discovered while the author was working on a problem involving Laplace transforms, which are used in proving of the identities.

  9. Communication: Recovering the flat-plane condition in electronic structure theory at semi-local DFT cost

    NASA Astrophysics Data System (ADS)

    Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.

    2017-11-01

    The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.

  10. Mass social contact interventions and their effect on mental health related stigma and intended discrimination.

    PubMed

    Evans-Lacko, Sara; London, Jillian; Japhet, Sarah; Rüsch, Nicolas; Flach, Clare; Corker, Elizabeth; Henderson, Claire; Thornicroft, Graham

    2012-06-28

    Stigma and discrimination associated with mental health problems is an important public health issue, and interventions aimed at reducing exposure to stigma and discrimination can improve the lives of people with mental health problems. Social contact has long been considered to be one of the most effective strategies for improving inter-group relations. For this study, we assess the impact of a population level social contact intervention among people with and without mental health problems. This study investigated the impact of social contact and whether presence of specific facilitating factors (equal status, common goals, cooperation and friendship potential): (1) improves intended stigmatising behaviour; (2) increases future willingness to disclose a mental health problem; and (3) promotes behaviours associated with anti-stigma campaign engagement. Two mass participation social contact programmes within England's Time to Change campaign were evaluated via a 2-part questionnaire. 403 participants completed initial questionnaires (70% paper, 30% online) and 83 completed follow-up questionnaires online 4-6 weeks later. This study investigated the impact of social contact and whether presence of specific facilitating factors (equal status, common goals, cooperation and friendship potential): (1) improves intended stigmatising behaviour; (2) increases future willingness to disclose a mental health problem; and (3) promotes behaviours associated with anti-stigma campaign engagement. Two mass participation social contact programmes within England's Time to Change campaign were evaluated via a 2-part questionnaire. 403 participants completed initial questionnaires (70% paper, 30% online) and 83 completed follow-up questionnaires online 4-6 weeks later. Campaign events facilitated meaningful intergroup social contact between individuals with and without mental health problems. Presence of facilitating conditions predicted improved stigma-related behavioural intentions

  11. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.

    PubMed

    Smith, Colin R; Vignos, Michael F; Lenhart, Rachel L; Kaiser, Jarred; Thelen, Darryl G

    2016-02-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.

  12. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement

    PubMed Central

    Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.

    2016-01-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446

  13. Single Parenting and Child Behavior Problems in Kindergarten.

    PubMed

    Jackson, Aurora P; Preston, Kathleen S J; Franke, Todd M

    2010-03-01

    Two waves of data from a sample of 89 poor and near-poor single black mothers and their preschool children were used to study the influences of parenting stress, physical discipline practices, and nonresident fathers' relations with their children on behavior problems in kindergarten. The results indicate that higher levels of parent stress, more frequent spanking, and less frequent father-child contact at time 1 were associated with increased teacher-reported behavior problems at time 2. In addition, more frequent contact between nonresident biological fathers and their children moderated the negative effect of harsh discipline by mothers on subsequent child behavior problems. Specifically, when contact with the father was low, maternal spanking resulted in elevated levels of behavior problems; with average contact, this negative effect of spanking was muted; and with high contact, spanking was not associated with increased behavior problems in kindergarten. The implications of these findings for future research and policy are discussed.

  14. Study of the Half-Day/Full-Day Kindergarten Model

    ERIC Educational Resources Information Center

    McInroy, Thomas R.

    2012-01-01

    This case study and problem analysis was an in-depth investigation of the half-day/full-day kindergarten model by utilizing interviews and focus groups to provide insight from parents, teachers, and other district personnel as to how the model has impacted the social, emotional, and academic development of the participating students. This study…

  15. Large deformation frictional contact analysis with immersed boundary method

    NASA Astrophysics Data System (ADS)

    Navarro-Jiménez, José Manuel; Tur, Manuel; Albelda, José; Ródenas, Juan José

    2018-01-01

    This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth stress field as stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery. The parametric definition of the CAD surfaces (usually NURBS) is considered in the definition of the contact kinematics in order to obtain an enhanced measure of the contact gap. The numerical examples show the performance of the method.

  16. Shoe allergic contact dermatitis.

    PubMed

    Matthys, Erin; Zahir, Amir; Ehrlich, Alison

    2014-01-01

    Foot dermatitis is a widespread condition, affecting men and women of all ages. Because of the location, this condition may present as a debilitating problem to those who have it. Allergic contact dermatitis involving the feet is frequently due to shoes or socks. The allergens that cause shoe dermatitis can be found in any constituent of footwear, including rubber, adhesives, leather, dyes, metals, and medicaments. The goal of treatment is to identify and minimize contact with the offending allergen(s). The lack of product information released from shoe manufacturers and the continually changing trends in footwear present a challenge in treating this condition. The aim of this study is to review the current literature on allergic contact shoe dermatitis; clinical presentation, allergens, patch testing, and management will be discussed. PubMed and MEDLINE databases were used for the search, with a focus on literature updates from the last 15 years.

  17. Analysis of deep learning methods for blind protein contact prediction in CASP12.

    PubMed

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2018-03-01

    Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method. © 2017 Wiley Periodicals, Inc.

  18. Scaling of plane-wave functions in statistically optimized near-field acoustic holography.

    PubMed

    Hald, Jørgen

    2014-11-01

    Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements.

  19. Computer simulation of solutions of polyharmonic equations in plane domain

    NASA Astrophysics Data System (ADS)

    Kazakova, A. O.

    2018-05-01

    A systematic study of plane problems of the theory of polyharmonic functions is presented. A method of reducing boundary problems for polyharmonic functions to the system of integral equations on the boundary of the domain is given and a numerical algorithm for simulation of solutions of this system is suggested. Particular attention is paid to the numerical solution of the main tasks when the values of the function and its derivatives are given. Test examples are considered that confirm the effectiveness and accuracy of the suggested algorithm.

  20. Derivation of the out-of-plane behaviour of an English bond masonry wall through homogenization strategies

    NASA Astrophysics Data System (ADS)

    Silva, Luís Carlos; Milani, Gabriele; Lourenço, Paulo B.

    2017-11-01

    Two finite element homogenized-based strategies are presented for the out-of-plane behaviour characterization of an English bond masonry wall. A finite element micro-modelling approach using Cauchy stresses and first order movements are assumed for both strategies. The material nonlinearity is lumped on joints interfaces and bricks are considered elastic. Nevertheless, the first model is based on a Plane-stress assumption, in which the out-of-plane quantities are derived through on-thickness wall integration considering a Kirchhoff-plate theory. The second model is a tridimensional one, in which the homogenized out-of-plane quantities can be directly derived after solving the boundary value problem. The comparison is conducted by assessing the obtained out-of-plane bending- and torsion-curvature diagrams. A good agreement is found for the present study case.

  1. Toward patient-specific articular contact mechanics

    PubMed Central

    Ateshian, Gerard A.; Henak, Corinne R.; Weiss, Jeffrey A.

    2015-01-01

    The mechanics of contacting cartilage layers is fundamentally important to understanding the development, homeostasis and pathology of diarthrodial joints. Because of the highly nonlinear nature of both the materials and the contact problem itself, numerical methods such as the finite element method are typically incorporated to obtain solutions. Over the course of five decades, we have moved from an initial qualitative understanding of articular cartilage material behavior to the ability to perform complex, three-dimensional contact analysis, including multiphasic material representations. This history includes the development of analytical and computational contact analysis methods that now provide the ability to perform highly nonlinear analyses. Numerical implementations of contact analysis based on the finite element method are rapidly advancing and will soon enable patient-specific analysis of joint contact mechanics using models based on medical image data. In addition to contact stress on the articular surfaces, these techniques can predict variations in strain and strain through the cartilage layers, providing the basis to predict damage and failure. This opens up exciting areas for future research and application to patient-specific diagnosis and treatment planning applied to a variety of pathologies that affect joint function and cartilage homeostasis. PMID:25698236

  2. Two Studies of the Long-Term Follow-up of Minimal Therapist Contact Treatments of Vascular and Tension Headache.

    ERIC Educational Resources Information Center

    Blanchard, Edward B.; And Others

    1988-01-01

    Followed up on tension and vascular headache patients, intially treated with biofeedback and/or relaxation training in either a minimal therapist contact or an intensive individual protocol, where one-half of patients continued keeping headache diaries and were seen monthly; others had minimal contact. Demonstrated equally good maintenance from…

  3. Dynamic history-dependent variational-hemivariational inequalities with applications to contact mechanics

    NASA Astrophysics Data System (ADS)

    Migórski, Stanislaw; Ogorzaly, Justyna

    2017-02-01

    In the paper we deliver a new existence and uniqueness result for a class of abstract nonlinear variational-hemivariational inequalities which are governed by two operators depending on the history of the solution, and include two nondifferentiable functionals, a convex and a nonconvex one. Then, we consider an initial boundary value problem which describes a model of evolution of a viscoelastic body in contact with a foundation. The contact process is assumed to be dynamic, and the friction is described by subdifferential boundary conditions. Both the constitutive law and the contact condition involve memory operators. As an application of the abstract theory, we provide a result on the unique weak solvability of the contact problem.

  4. A high frequency analysis of electromagnetic plane wave scattering by perfectly-conducting semi-infinite parallel plate and rectangular waveguides with absorber coated inner walls

    NASA Technical Reports Server (NTRS)

    Noh, H. M.; Pathak, P. H.

    1986-01-01

    An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with a absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space tht exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.

  5. Unusual Contact-Line Dynamics of Thick Films and Drops

    NASA Technical Reports Server (NTRS)

    Veretennikov, Igor; Agarwal, Abhishek; Indeikina, Alexandra; Chang, Hsueh-Chia

    1999-01-01

    We report several novel phenomena In contact-line and fingering dynamics of macroscopic spinning drops and gravity-driven films with dimensions larger than the capillary length. It is shown through experimental and theoretical analysis that such macroscopic films can exhibit various interfacial shapes, including multi valued ones, near the contact line due to a balance between the external body forces with capillarity. This rich variety of front shapes couples with the usual capillary, viscous, and intermolecular forces at the contact line to produce a rich and unexpected spectrum of contact-line dynamics. A single finger develops when part of the front becomes multivalued on a partially wetting macroscopic spinning drop in contrast to a different mechanism for microscopic drops of completely wetting fluids. Contrary to general expectation, we observe that, at high viscosity and low frequencies of rotation, the speed of a glycerine finger increases with increasing viscosity. Completely wetting Dow Corning 200 Fluid spreads faster over a dry inclined plane than a prewetted one. The presence of a thin prewetted film suppresses fingering both for gravity-driven flow and for spin coating. We analyze some of these unique phenomena in detail and offer qualitative physical explanations for the others.

  6. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  7. Military aviation: a contact lens review.

    PubMed

    Lattimore, M R

    1990-10-01

    The military aviation communities have benefitted from the development of advanced electro-optical avionics systems. One drawback that has emerged is an increasing system incompatibility with traditional spectacle visual corrections. An alternative solution to the refractive error correction problem that some services have been investigating is that of contact lens wear. Since this much-debated topic is currently of command interest, a general overview of contact lens issues is presented as a framework for future discussions.

  8. Plane wave diffraction by a finite plate with impedance boundary conditions.

    PubMed

    Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

    2014-01-01

    In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  9. Contact dermatitis is an unrecognized problem in the construction industry: Comparison of four different assessment methods.

    PubMed

    Timmerman, Johan G; Heederik, Dick; Spee, Ton; van Rooy, Frits G; Krop, Esmeralda J M; Rustemeyer, Thomas; Smit, Lidwien A M

    2017-10-01

    A high contact dermatitis symptoms prevalence has been observed in Dutch construction workers. Contact dermatitis was diagnosed by an expert panel using questionnaire data and photographs of 751 subjects' hands. A subset was evaluated by two occupational physicians. Their diagnoses were compared to those of the expert panel. In addition, two self-reported questionnaire-based assessment methods were compared to the expert panel evaluation. Associations between contact dermatitis and determinants were assessed using log-binomial regression analysis. Contact dermatitis prevalence was high: 61.4% (expert panel's diagnosis) and 32.9% (self-reported). Agreement between occupational physicians and the expert panel was low but increased after training. Washing hands with solvents and performing job-related tasks at home were related to contact dermatitis. Contact dermatitis prevalence among construction workers is high. Recognition of contact dermatitis by occupational physicians is poor but can be improved by training. Awareness of skin disorders should be raised. © 2017 Wiley Periodicals, Inc.

  10. Relationship between first treatment contact and supernatural beliefs in caregivers of patients with schizophrenia.

    PubMed

    Grover, S; Nebhinani, N; Chakrabarti, S; Shah, R; Avasthi, A

    2014-06-01

    OBJECTIVE. To explore the relationship between attribution of symptoms to supernatural beliefs and first treatment contact in caregivers of patients with schizophrenia attending a tertiary care hospital located in North India. METHODS. A total of 122 caregivers (aged ≥ 18 years, staying with patient ≥ 1 year and involved in patients' care) of consecutive patients with diagnosis of schizophrenia (according to the ICD-10) were evaluated for their supernatural beliefs and first treatment contact. RESULTS. The first treatment contact was a government or private psychiatrist in slightly more than half (53.3%) of the patients, while it was faith healers in 23.8% of the patients. Around three quarters (74.6%) of the caregivers attributed patients' symptoms to ≥ 1 supernatural belief (like sorcery / witchcraft, ghosts, spirit intrusion, divine wrath, planetary influences, evil spirits, and bad deeds in previous life) and more than half (57.4%) of the caregivers attributed patients' symptoms to > 1 supernatural belief. It was observed that those who contacted faith healers for their patients' treatment had significantly higher attribution of the symptoms to supernatural causes. CONCLUSIONS. Supernatural beliefs were common in caregivers of patients with schizophrenia and the majority attributed their patients' symptoms to these beliefs. It signifies an urgent need for mental health literacy in India.

  11. Learning-based scan plane identification from fetal head ultrasound images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Annangi, Pavan; Gupta, Mithun; Yu, Bing; Padfield, Dirk; Banerjee, Jyotirmoy; Krishnan, Kajoli

    2012-03-01

    Acquisition of a clinically acceptable scan plane is a pre-requisite for ultrasonic measurement of anatomical features from B-mode images. In obstetric ultrasound, measurement of gestational age predictors, such as biparietal diameter and head circumference, is performed at the level of the thalami and cavum septum pelucidi. In an accurate scan plane, the head can be modeled as an ellipse, the thalami looks like a butterfly, the cavum appears like an empty box and the falx is a straight line along the major axis of a symmetric ellipse inclined either parallel to or at small angles to the probe surface. Arriving at the correct probe placement on the mother's belly to obtain an accurate scan plane is a task of considerable challenge especially for a new user of ultrasound. In this work, we present a novel automated learning-based algorithm to identify an acceptable fetal head scan plane. We divide the problem into cranium detection and a template matching to capture the composite "butterfly" structure present inside the head, which mimics the visual cues used by an expert. The algorithm uses the stateof- the-art Active Appearance Models techniques from the image processing and computer vision literature and tie them to presence or absence of the inclusions within the head to automatically compute a score to represent the goodness of a scan plane. This automated technique can be potentially used to train and aid new users of ultrasound.

  12. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    PubMed

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  13. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-05-08

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  14. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    PubMed Central

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-01-01

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models. PMID:28772873

  15. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-11-01

    Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  16. Anisotropic frictional heat dissipation in cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    Anisotropic frictional response and corresponding heat dissipation from different crystallographic planes of RDX crystal is studied using molecular dynamics simulations. The effect of frictional force on the nature of damage and system temperature is monitored along different directions on primary slip plane, (010), of RDX and on non-slip planes, (100) and (001). The correlation between the friction coefficient, deformation and the frictional heating in these system is determined. It is observed that friction coefficients on slip planes are smaller than those of non-slip planes. In response to friction on slip plane, RDX crystal deforms via dislocation formation and shows less heating. On non-slip planes due to the inability of the system to deform by dislocation formation, large temperature rise is observed in the system just below the contact area of two surfaces. Frictional sliding on non-slip planes also lead to the formation of damage zone just below the contact area of two surfaces due to the change in RDX ring conformation from chair to boat/half-boat. This research is supported by the AFOSR Grant: FA9550-16- 1-0042.

  17. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves.

    PubMed

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-11

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  18. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves

    NASA Astrophysics Data System (ADS)

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-01

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  19. Risk factors and common contact allergens in facial allergic contact dermatitis patients.

    PubMed

    Kasemsarn, Pranee; Iamphonrat, Thanawan; Boonchai, Waranya

    2016-04-01

    Facial dermatitis is commonly encountered in dermatologic practice. It is sometimes difficult to manage because its causative factors may be multiple and difficult to diagnose. This study was designed to identify the characteristics, patch test results, and final diagnoses of facial dermatitis patients who were referred to a contact dermatitis clinic and to identify factors associated with facial allergic contact dermatitis (ACD). We retrospectively reviewed case records of facial dermatitis patients who underwent patch testing at the clinic during the period from July 2006 to June 2011. Of the 891 patients patch-tested, 244 (27.4%) had facial dermatitis. Female patients were 9.1 times more predominant than male patients. The mean ± standard deviation age of patients was 37.3 ± 14.8 years. A total of 199 (81.6%) patients demonstrated at least one positive reaction to a patch test, 66.7% of which were clinically relevant. Allergic contact dermatitis was diagnosed in 45.5% of patients. Independent factors predisposing towards facial dermatitis were female sex, having a previous history of cosmetic allergy, a positive patch test reaction to hairdressing product-related allergens, and a positive allergic reaction to preservative allergens. The prevalence of facial dermatitis was 27.4%. Almost half of all patients with facial dermatitis demonstrated ACD. Factors associated with facial ACD were female gender, a history of cosmetic allergy, and positive patch test reactions to hairdressing product-related allergens and preservatives. © 2015 The International Society of Dermatology.

  20. The Sierpinski Triangle Plane

    NASA Astrophysics Data System (ADS)

    Ettestad, David; Carbonara, Joaquin

    The Sierpinski Triangle (ST) is a fractal which has Haussdorf dimension log23 ≈ 1.585 that has been studied extensively. In this paper, we introduce the Sierpinski Triangle Plane (STP), an infinite extension of the ST that spans the entire real plane but is not a vector subspace or a tiling of the plane with a finite set of STs. STP is shown to be a radial fractal with many interesting and surprising properties.

  1. Mass social contact interventions and their effect on mental health related stigma and intended discrimination

    PubMed Central

    2012-01-01

    Background Stigma and discrimination associated with mental health problems is an important public health issue, and interventions aimed at reducing exposure to stigma and discrimination can improve the lives of people with mental health problems. Social contact has long been considered to be one of the most effective strategies for improving inter-group relations. For this study, we assess the impact of a population level social contact intervention among people with and without mental health problems. Methods This study investigated the impact of social contact and whether presence of specific facilitating factors (equal status, common goals, cooperation and friendship potential): (1) improves intended stigmatising behaviour; (2) increases future willingness to disclose a mental health problem; and (3) promotes behaviours associated with anti-stigma campaign engagement. Two mass participation social contact programmes within England’s Time to Change campaign were evaluated via a 2-part questionnaire. 403 participants completed initial questionnaires (70% paper, 30% online) and 83 completed follow-up questionnaires online 4–6 weeks later. Results This study investigated the impact of social contact and whether presence of specific facilitating factors (equal status, common goals, cooperation and friendship potential): (1) improves intended stigmatising behaviour; (2) increases future willingness to disclose a mental health problem; and (3) promotes behaviours associated with anti-stigma campaign engagement. Two mass participation social contact programmes within England’s Time to Change campaign were evaluated via a 2-part questionnaire. 403 participants completed initial questionnaires (70% paper, 30% online) and 83 completed follow-up questionnaires online 4–6 weeks later. Campaign events facilitated meaningful intergroup social contact between individuals with and without mental health problems. Presence of facilitating conditions predicted improved

  2. Acoustic plane wave diffraction from a truncated semi-infinite cone in axial irradiation

    NASA Astrophysics Data System (ADS)

    Kuryliak, Dozyslav; Lysechko, Victor

    2017-11-01

    The diffraction problem of the plane acoustic wave on the semi-infinite truncated soft and rigid cones in the case of axial incidence is solved. The problem is formulated as a boundary-value problem in terms of Helmholtz equation, with Dirichlet and Neumann boundary conditions, for scattered velocity potential. The incident field is taken to be the total field of semi-infinite cone, the expression of which is obtained by solving the auxiliary diffraction problem by the use of Kontorovich-Lebedev integral transformation. The diffracted field is sought via the expansion in series of the eigenfunctions for subdomains of the Helmholtz equation taking into account the edge condition. The corresponding diffraction problem is reduced to infinite system of linear algebraic equations (ISLAE) making use of mode matching technique and orthogonality properties of the Legendre functions. The method of analytical regularization is applied in order to extract the singular part in ISLAE, invert it exactly and reduce the problem to ISLAE of the second kind, which is readily amenable to calculation. The numerical solution of this system relies on the reduction method; and its accuracy depends on the truncation order. The case of degeneration of the truncated semi-infinite cone into an aperture in infinite plane is considered. Characteristic features of diffracted field in near and far fields as functions of cone's parameters are examined.

  3. Experiences of offspring searching for and contacting their donor siblings and donor.

    PubMed

    Jadva, Vasanti; Freeman, Tabitha; Kramer, Wendy; Golombok, Susan

    2010-04-01

    This study investigates a new phenomenon whereby individuals conceived by donor insemination are searching for and contacting their donor and/or 'donor siblings' (i.e. donor offspring conceived by the same donor who are their genetic half siblings). On-line questionnaires were completed by members of the Donor Sibling Registry (DSR), a US-based registry that facilitates contact between donor conception families who share the same donor. Of the 165 donor offspring who completed the survey, 15% were searching for their donor siblings, 13% were searching for their donor, and 64% were searching for both. Differences were found according to family type and age of disclosure. Fewer offspring from heterosexual couple families had told their father about their search when compared with offspring from lesbian couple families who had told their co-parent. Offspring who had found out about their conception after age 18 were more likely to be searching for medical reasons, whereas those who had found out before age 18 tended to be searching out of curiosity. Some offspring had discovered large numbers of half siblings (maximum=13). The majority of offspring who had found their donor relations reported positive experiences and remained in regular contact with them. Copyright (c) 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces

    NASA Astrophysics Data System (ADS)

    Alesemi, Meshari

    2018-04-01

    The objective of this research is to illustrate the effectiveness of the thermal relaxation time based on the theory of Lord-Shulman (L-S), Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic magneto-thermoelastic medium. Assuming the elastic medium is rotating with stable angular velocity and the imposed magnetic field is parallel to the boundary of the half-space. The basic equations of a transversely isotropic rotating magneto-thermoelastic medium are formulated according to thermoelasticity theory of Lord-Shulman (L-S). Next to that, getting the velocity equation which is illustrated to show existence of three quasi-plane waves propagating in the medium. The amplitude ratios coefficients of these plane waves have been given and then computed numerically and plotted graphically to demonstrate the influences of the rotation on the Zinc material.

  5. Wound-Related Allergic/Irritant Contact Dermatitis.

    PubMed

    Alavi, Afsaneh; Sibbald, R Gary; Ladizinski, Barry; Saraiya, Ami; Lee, Kachiu C; Skotnicki-Grant, Sandy; Maibach, Howard

    2016-06-01

    To provide information from a literature review about the prevention, recognition, and treatment for contact dermatitis. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Identify signs and symptoms of and diagnostic measures for contact dermatitis.2. Identify causes and risks for contact dermatitis.3. Select appropriate treatment for contact dermatitis and its prevention. Contact dermatitis to wound care products is a common, often neglected problem. A review was conducted to identify articles relevant to contact dermatitis.A PubMed English-language literature review was conducted for appropriate articles published between January 2000 and December 2015.Contact dermatitis is both irritant (80% of cases) or allergic (20% of cases). Frequent use of potential contact allergens and impaired barrier function of the skin can lead to rising sensitization in patients with chronic wounds. Common known allergens to avoid in wound care patients include fragrances, colophony, lanolin, and topical antibiotics.Clinicians should be cognizant of the allergens in wound care products and the potential for sensitization. All medical devices, including wound dressings, adhesives, and bandages, should be labeled with their complete ingredients, and manufacturers should be encouraged to remove common allergens from wound care products, including topical creams, ointments, and dressings.

  6. Extreme-scale motions in turbulent plane Couette flows

    NASA Astrophysics Data System (ADS)

    Lee, Myoungkyu; Moser, Robert D.

    2018-05-01

    We study the size of large-scale motions in turbulent plane Couette flows at moderate Reynolds number up to $Re_\\tau$ = 500. Direct numerical simulation domains were as large as $100\\pi\\delta\\times2\\delta\\times5\\pi\\delta$, where $\\delta$ is half the distance between the walls. The results indicate that there are structures with streamwise extent, as measured by the wavelength, as long as 78$\\delta$ and at least 310$\\delta$ at $Re_\\tau$ = 220 and 500, respectively. The presence of these very long structures is apparent in the spectra of all three velocity components and the Reynolds stress. In DNS using a smaller domain, the large structures are constrained, eliminating the streamwise variations present in the larger domain. Effects of a smaller domain are also present in the mean velocity and the streamwise velocity variance in the outer flow.

  7. Conjugate gradient based projection - A new explicit methodology for frictional contact

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Li, Maocheng; Sha, Desong

    1993-01-01

    With special attention towards the applicability to parallel computation or vectorization, a new and effective explicit approach for linear complementary formulations involving a conjugate gradient based projection methodology is proposed in this study for contact problems with Coulomb friction. The overall objectives are focussed towards providing an explicit methodology of computation for the complete contact problem with friction. In this regard, the primary idea for solving the linear complementary formulations stems from an established search direction which is projected to a feasible region determined by the non-negative constraint condition; this direction is then applied to the Fletcher-Reeves conjugate gradient method resulting in a powerful explicit methodology which possesses high accuracy, excellent convergence characteristics, fast computational speed and is relatively simple to implement for contact problems involving Coulomb friction.

  8. Contact network and satisfaction with contacts in children whose parents have post traumatic stress disorder.

    PubMed

    Selimbasic, Zihnet; Sinanovic, Osman; Avdibegovic, Esmina; Kravic, Nemina

    2009-01-01

    The aim was to analyse contacts network and satisfaction with contacts among children of parents with post traumatic stress disorder (PTSD). The sample consisted of 100 pupils (age 10 to 15) from two randomly chosen schools. Children were selected from general population, lived with both parents who have had war traumatic experiences. They agreed to participate in psychometric research. We divided them in two groups: observed (0) group of children (N=50) whose parents were showing symptoms of post traumatic stress disorder (PTSD) and control (C) group of children (N=50) whose parents did not show symptoms of PTSD (evaluated by Harvard trauma questionnaire-BiH version). Contact network was examined by a Map of Contact Network which includes contact and satisfaction with persons in close environment. In relation to gender representatives of fathers and mothers, sample was homogenous. The most important persons in children whose parents are showing symptoms of PTSD were schoolmates (88.0%), home mate (86.0%), mother (72.0%), and father (2.0%). At children whose parents did not show symptoms of PTSD, most important persons were schoolmate (94.0%), mother (80.0%), brother (6.0%), grandfather (8.0%), and father (14.0%). The most distinct disappointment in contacts in children with parents with PTSD symptoms were family, relatives and friends, in school and formal contacts (p < 0.001). Children of parents who have had symptoms of post traumatic stress disorder (PTSD), the most important persons that they communicate were schoolmates and they had problem in communicating with fathers and males. According to satisfaction children whose parents suffered from PTSD were showing distinction in contacts with their families, relatives, schoolmates and formal contacts.

  9. Galois groups of Schubert problems via homotopy computation

    NASA Astrophysics Data System (ADS)

    Leykin, Anton; Sottile, Frank

    2009-09-01

    Numerical homotopy continuation of solutions to polynomial equations is the foundation for numerical algebraic geometry, whose development has been driven by applications of mathematics. We use numerical homotopy continuation to investigate the problem in pure mathematics of determining Galois groups in the Schubert calculus. For example, we show by direct computation that the Galois group of the Schubert problem of 3-planes in mathbb{C}^8 meeting 15 fixed 5-planes non-trivially is the full symmetric group S_{6006} .

  10. Time Investment in Drug Supply Problems by Flemish Community Pharmacies.

    PubMed

    De Weerdt, Elfi; Simoens, Steven; Casteels, Minne; Huys, Isabelle

    2017-01-01

    Introduction: Drug supply problems are a known problem for pharmacies. Community and hospital pharmacies do everything they can to minimize impact on patients. This study aims to quantify the time spent by Flemish community pharmacies on drug supply problems. Materials and Methods: During 18 weeks, employees of 25 community pharmacies filled in a template with the total time spent on drug supply problems. The template stated all the steps community pharmacies could undertake to manage drug supply problems. Results: Considering the median over the study period, the median time spent on drug supply problems was 25 min per week, with a minimum of 14 min per week and a maximum of 38 min per week. After calculating the median of each pharmacy, large differences were observed between pharmacies: about 25% spent less than 15 min per week and one-fifth spent more than 1 h per week. The steps on which community pharmacists spent most time are: (i) "check missing products from orders," (ii) "contact wholesaler/manufacturers regarding potential drug shortages," and (iii) "communicating to patients." These three steps account for about 50% of the total time spent on drug supply problems during the study period. Conclusion: Community pharmacies spend about half an hour per week on drug supply problems. Although 25 min per week does not seem that much, the time spent is not delineated and community pharmacists are constantly confronted with drug supply problems.

  11. Time Investment in Drug Supply Problems by Flemish Community Pharmacies

    PubMed Central

    De Weerdt, Elfi; Simoens, Steven; Casteels, Minne; Huys, Isabelle

    2017-01-01

    Introduction: Drug supply problems are a known problem for pharmacies. Community and hospital pharmacies do everything they can to minimize impact on patients. This study aims to quantify the time spent by Flemish community pharmacies on drug supply problems. Materials and Methods: During 18 weeks, employees of 25 community pharmacies filled in a template with the total time spent on drug supply problems. The template stated all the steps community pharmacies could undertake to manage drug supply problems. Results: Considering the median over the study period, the median time spent on drug supply problems was 25 min per week, with a minimum of 14 min per week and a maximum of 38 min per week. After calculating the median of each pharmacy, large differences were observed between pharmacies: about 25% spent less than 15 min per week and one-fifth spent more than 1 h per week. The steps on which community pharmacists spent most time are: (i) “check missing products from orders,” (ii) “contact wholesaler/manufacturers regarding potential drug shortages,” and (iii) “communicating to patients.” These three steps account for about 50% of the total time spent on drug supply problems during the study period. Conclusion: Community pharmacies spend about half an hour per week on drug supply problems. Although 25 min per week does not seem that much, the time spent is not delineated and community pharmacists are constantly confronted with drug supply problems. PMID:28878679

  12. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.

    PubMed

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Descriptive laboratory study. Research laboratory. Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. The high-INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low-INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate- (P < .05) and low- (P < .05) INI EA groups. Women were more likely than men to be in the high-INI EA group (χ(2) = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were associated (r = 0.224, P = .04). No other interplanar INI EA relationships were found (P > .05). Greater frontal-plane INI EA was

  13. Lower Extremity Energy Absorption and Biomechanics During Landing, Part II: Frontal-Plane Energy Analyses and Interplanar Relationships

    PubMed Central

    Norcross, Marc F.; Lewek, Michael D.; Padua, Darin A.; Shultz, Sandra J.; Weinhold, Paul S.; Blackburn, J. Troy

    2013-01-01

    Context: Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. Objective: To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. Intervention(s): We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. Main Outcome Measure(s): We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ2 analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. Results: The high–INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low–INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate– (P < .05) and low– (P < .05) INI EA groups. Women were more likely than men to be in the high–INI EA group (χ2 = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were

  14. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    PubMed

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  15. Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

    PubMed Central

    Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-01

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629

  16. Contact-aware simulations of particulate Stokesian suspensions

    NASA Astrophysics Data System (ADS)

    Lu, Libin; Rahimian, Abtin; Zorin, Denis

    2017-10-01

    We present an efficient, accurate, and robust method for simulation of dense suspensions of deformable and rigid particles immersed in Stokesian fluid in two dimensions. We use a well-established boundary integral formulation for the problem as the foundation of our approach. This type of formulation, with a high-order spatial discretization and an implicit and adaptive time discretization, have been shown to be able to handle complex interactions between particles with high accuracy. Yet, for dense suspensions, very small time-steps or expensive implicit solves as well as a large number of discretization points are required to avoid non-physical contact and intersections between particles, leading to infinite forces and numerical instability. Our method maintains the accuracy of previous methods at a significantly lower cost for dense suspensions. The key idea is to ensure interference-free configuration by introducing explicit contact constraints into the system. While such constraints are unnecessary in the formulation, in the discrete form of the problem, they make it possible to eliminate catastrophic loss of accuracy by preventing contact explicitly. Introducing contact constraints results in a significant increase in stable time-step size for explicit time-stepping, and a reduction in the number of points adequate for stability.

  17. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes.

    PubMed

    Wang, Sihong; Xie, Yannan; Niu, Simiao; Lin, Long; Wang, Zhong Lin

    2014-05-01

    For versatile mechanical energy harvesting from arbitrary moving objects such as humans, a new mode of triboelectric nanogenerator is developed based on the sliding of a freestanding triboelectric-layer between two stationary electrodes on the same plane. With two electrodes alternatively approached by the tribo-charges on the sliding layer, electricity is effectively generated due to electrostatic induction. A unique feature of this nanogenerator is that it can operate in non-contact sliding mode, which greatly increases the lifetime and the efficiency of such devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Three Planes of Language.

    ERIC Educational Resources Information Center

    Sampson, Gloria

    1999-01-01

    Currently, the language sciences place together four different forms of mental activity on one plane of language, which results in confusion. This paper presents arguments from metaphysics, hermeneutics, and semiotics to demonstrate that there are actually three planes of language (a biologically-based information processing plane, a literal…

  19. Round-off errors in cutting plane algorithms based on the revised simplex procedure

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1973-01-01

    This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.

  20. Squeezing and de-wetting of a shear thinning fluid drop between plane parallel surfaces: capillary adhesion phenomenon

    NASA Astrophysics Data System (ADS)

    Ward, Thomas

    2017-11-01

    The radial squeezing and de-wetting of a thin film of viscous shear thinning fluid filling the gap between parallel plane walls is examined both experimentally and theoretically for gap spacing much smaller than the capillary length. The interaction between motion of fluid in the gap driven by squeezing or de-wetting and surface tension is parameterized by a dimensionless variable, F, that is the ratio of the constant force supplied by the top plate (either positive or negative) to surface tension at the drop's circumference. Furthermore, the dimensionless form of the rate equation for the gap's motion reveals a time scale that is dependent on the drop volume when analyzed for a power law shear thinning fluid. In the de-wetting problem the analytical solution reveals the formation of a singularity, leading to capillary adhesion, as the gap spacing approaches a critical value that depends on F and the contact angle. Experiments are performed to test the analytical predictions for both squeezing, and de-wetting in the vicinity of the singularity.

  1. Reliability of measuring half-cycle cervical range of motion may be increased using a spirit level for calibration.

    PubMed

    Wilke, Jan; Niederer, Daniel; Vogt, Lutz; Banzer, Winfried

    2018-02-01

    Assessments of range of motion (ROM) represent an essential part of clinical diagnostics. Ultrasonic movement analyses have been demonstrated to provide reliable results when analyzing complete amplitudes (e.g., flexion-extension). However, due to subjective determination of the starting position, the assessment of half-cycle movements (e.g, flexion only) is less reproducible. The present study aimed to examine the reliability of measuring half-cycle cervical ROM using a spirit level for calibration. 20 healthy subjects (30 ± 12yrs, 7♂, 13♀) participated in the randomized, controlled, cross-over trial. In two testing sessions with one week of wash-out in between, cervical ROM was measured by means of an ultrasonic 3D movement analysis system using a test-retest design (baseline and 5 min post baseline). The sessions differed with reference to the mask carrying the ultrasound markers. It was removed during the 5 min break (mask off) or not (mask on). To determine the resting position, a bull's eye spirit level was used in each measurement. With ICC values of 0.90-0.98 (mask on, p < 0.001) and 0.90 to 0.97 (mask off, p < 0.001), both examined conditions demonstrated excellent test-retest reliability for separating the cycles regarding all movement planes. Cervical ROM during half-cycle movements can be assessed with excellent reliability using a spirit level. In contrast to subjective determination of the starting position, analyzing complete movement planes does not increase reliability. Using a defined and objective zero positioning allows the evaluation of repositioning tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Multigrid Methods for EHL Problems

    NASA Technical Reports Server (NTRS)

    Nurgat, Elyas; Berzins, Martin

    1996-01-01

    In many bearings and contacts, forces are transmitted through thin continuous fluid films which separate two contacting elements. Objects in contact are normally subjected to friction and wear which can be reduced effectively by using lubricants. If the lubricant film is sufficiently thin to prevent the opposing solids from coming into contact and carries the entire load, then we have hydrodynamic lubrication, where the lubricant film is determined by the motion and geometry of the solids. However, for loaded contacts of low geometrical conformity, such as gears, rolling contact bearings and cams, this is not the case due to high pressures and this is referred to as Elasto-Hydrodynamic Lubrication (EHL) In EHL, elastic deformation of the contacting elements and the increase in fluid viscosity with pressure are very significant and cannot be ignored. Since the deformation results in changing the geometry of the lubricating film, which in turn determines the pressure distribution, an EHL mathematical model must simultaneously satisfy the complex elasticity (integral) and the Reynolds lubrication (differential) equations. The nonlinear and coupled nature of the two equations makes numerical calculations computationally intensive. This is especially true for highly loaded problems found in practice. One novel feature of these problems is that the solution may exhibit sharp pressure spikes in the outlet region. To this date both finite element and finite difference methods have been used to solve EHL problems with perhaps greater emphasis on the use of the finite difference approach. In both cases, a major computational difficulty is ensuring convergence of the nonlinear equations solver to a steady state solution. Two successful methods for achieving this are direct iteration and multigrid methods. Direct iteration methods (e.g Gauss Seidel) have long been used in conjunction with finite difference discretizations on regular meshes. Perhaps one of the best examples of

  3. "A Tale of Two Planes": Deep Versus Superficial Serratus Plane Block for Postmastectomy Pain Syndrome.

    PubMed

    Piracha, Mohammad M; Thorp, Stephen L; Puttanniah, Vinay; Gulati, Amitabh

    Postmastectomy pain syndrome (PMPS) is a significant burden for breast cancer survivors. Although multiple therapies have been described, an evolving field of serratus anterior plane blocks has been described in this population. We describe the addition of the deep serratus anterior plane block (DSPB) for PMPS. Four patients with history of PMPS underwent DSPB for anterior chest wall pain. A retrospective review of these patients' outcomes was obtained through postprocedure interviews. Three of the patients previously had a superficial serratus anterior plane block, which was not as efficacious as the DSPB. The fourth patient had a superficial serratus anterior plane that was difficult to separate with hydrodissection but had improved pain control with a DSPB. We illustrate 4 patients who have benefitted from a DSPB and describe indications that this block may be more efficacious than a superficial serratus plane block. Further study is recommended to understand the intercostal nerve branches within the lateral and anterior muscular chest wall planes.

  4. Learning Grasp Strategies Composed of Contact Relative Motions

    NASA Technical Reports Server (NTRS)

    Platt, Robert, Jr.

    2007-01-01

    Of central importance to grasp synthesis algorithms are the assumptions made about the object to be grasped and the sensory information that is available. Many approaches avoid the issue of sensing entirely by assuming that complete information is available. In contrast, this paper proposes an approach to grasp synthesis expressed in terms of units of control that simultaneously change the contact configuration and sense information about the object and the relative manipulator-object pose. These units of control, known as contact relative motions (CRMs), allow the grasp synthesis problem to be recast as an optimal control problem where the goal is to find a strategy for executing CRMs that leads to a grasp in the shortest number of steps. An experiment is described that uses Robonaut, the NASA-JSC space humanoid, to show that CRMs are a viable means of synthesizing grasps. However, because of the limited amount of information that a single CRM can sense, the optimal control problem may be partially observable. This paper proposes expressing the problem as a k-order Markov Decision Process (MDP) and solving it using Reinforcement Learning. This approach is tested in a simulation of a two-contact manipulator that learns to grasp an object. Grasp strategies learned in simulation are tested on the physical Robonaut platform and found to lead to grasp configurations consistently.

  5. Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.

  6. Adhesive contact of a rigid circular cylinder to a soft elastic substrate--the role of surface tension.

    PubMed

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2015-05-21

    This article studies the effects of surface tension on the adhesive contact mechanics of a long rigid cylinder on an infinite half space comprising an incompressible elastic material. We present an exact solution based on small strain theory. The relationship between the indentation force and contact width was found to depend on a single dimensionless parameter ω = σ/[4(μR)(2/3)(W(ad)/2π)(1/3'), where R is the cylinder radius, Wad is the interfacial work of adhesion, and σ and μ are the surface tension and shear modulus of the half space, respectively. For small ω the solution reduces to the classical Johnson-Kendall-Roberts (JKR) theory, whereas for large ω the solution reduces to the small slope version of the Young-Dupre equation. The pull-off phenomenon was carefully examined and it was found that the contact width at pull-off reduces to zero when surface tension is larger than a critical value.

  7. Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling.

    PubMed

    Wu, Dong; Yang, Liu; Liu, Chang; Xu, Zenghui; Liu, Yumin; Yu, Zhongyuan; Yu, Li; Chen, Lei; Ma, Rui; Ye, Han

    2018-05-10

    Plasmonic metasurfaces have attracted much attention in recent years owing to many promising prospects of applications such as polarization switching, local electric field enhancement (FE), near-perfect absorption, sensing, slow-light devices, and nanoantennas. However, many problems in these applications, like only gigahertz switching speeds of electro-optical switches, low-quality factor (Q) of plasmonic resonances, and relatively low figure of merit (FOM) of sensing, severely limit the further development of plasmonic metasurface. Besides, working as nanoantennas, it is also challenging to realize both local electric FE exceeding 100 and near-perfect absorption above 99%. Here, using finite element method and finite difference time domain methods respectively, we firstly report a novel optically tunable plasmonic metasurface based on the hybridization of in-plane near-field coupling and out-of-plane near-field coupling, which provides a good solution to these serious and urgent problems. A physical phenomenon of electromagnetically induced transparency is obtained by the destructive interference between two plasmon modes. At the same time, ultrasharp perfect absorption peaks with ultra-high Q-factor (221.43) is achieved around 1550 nm, which can lead to an ultra-high FOM (214.29) in sensing application. Particularly, by using indium-doped CdO, this metasurface is also firstly demonstrated to be a femtosecond optical reflective polarizer in near-infrared region, possessing an ultra-high polarization extinction ratio. Meanwhile, operating as nanoantennas, this metasurface achieves simultaneously strong local electric FE(|E loc |/|E 0 | > 100) and a near-perfect absorption above 99.9% for the first time, which will benefit a wide range of applications including photocatalytic water splitting and surface-enhanced infrared absorption.

  8. Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Yang, Liu; Liu, Chang; Xu, Zenghui; Liu, Yumin; Yu, Zhongyuan; Yu, Li; Chen, Lei; Ma, Rui; Ye, Han

    2018-05-01

    Plasmonic metasurfaces have attracted much attention in recent years owing to many promising prospects of applications such as polarization switching, local electric field enhancement (FE), near-perfect absorption, sensing, slow-light devices, and nanoantennas. However, many problems in these applications, like only gigahertz switching speeds of electro-optical switches, low-quality factor (Q) of plasmonic resonances, and relatively low figure of merit (FOM) of sensing, severely limit the further development of plasmonic metasurface. Besides, working as nanoantennas, it is also challenging to realize both local electric FE exceeding 100 and near-perfect absorption above 99%. Here, using finite element method and finite difference time domain methods respectively, we firstly report a novel optically tunable plasmonic metasurface based on the hybridization of in-plane near-field coupling and out-of-plane near-field coupling, which provides a good solution to these serious and urgent problems. A physical phenomenon of electromagnetically induced transparency is obtained by the destructive interference between two plasmon modes. At the same time, ultrasharp perfect absorption peaks with ultra-high Q-factor (221.43) is achieved around 1550 nm, which can lead to an ultra-high FOM (214.29) in sensing application. Particularly, by using indium-doped CdO, this metasurface is also firstly demonstrated to be a femtosecond optical reflective polarizer in near-infrared region, possessing an ultra-high polarization extinction ratio. Meanwhile, operating as nanoantennas, this metasurface achieves simultaneously strong local electric FE(| E loc|/| E 0| > 100) and a near-perfect absorption above 99.9% for the first time, which will benefit a wide range of applications including photocatalytic water splitting and surface-enhanced infrared absorption.

  9. Children’s Contact With Their Incarcerated Parents

    PubMed Central

    Poehlmann, Julie; Dallaire, Danielle; Loper, Ann Booker; Shear, Leslie D.

    2014-01-01

    Approximately 1.7 million children have parents who are incarcerated in prison in the United States, and possibly millions of additional children have a parent incarcerated in jail. Many affected children experience increased risk for developing behavior problems, academic failure, and substance abuse. For a growing number of children, incarcerated parents, caregivers, and professionals, parent– child contact during the imprisonment period is a key issue. In this article, we present a conceptual model to provide a framework within which to interpret findings about parent– child contact when parents are incarcerated. We then summarize recent research examining parent–child contact in context. On the basis of the research reviewed, we present initial recommendations for children’s contact with incarcerated parents and also suggest areas for future intervention and research with this vulnerable population. PMID:20822198

  10. [Eye contact in adult patients with Asperger syndrome].

    PubMed

    Roy, M; Wolfgang, D

    2015-05-01

    It is unclear if individuals with autism spectrum disorders rarely hold direct eye contact because eyes are unimportant for them, or if it is actively avoided. The aim of the current investigation was to gain a better understanding for their views on direct eye contact by exploring adult patients with Asperger syndrome. 63 adult patients with Asperger syndrome (28 females, 35 males, 21 - 62 years old) were explored about using and sensing direct eye contact by means of a standardised questionnaire. 87 % of investigated patients depict direct eye contact as being disagreeable. They describe it as arduous and distracting. Therefore they mostly actively avoid direct eye contact. The here gained knowledge about aversion towards direct eye contact in individuals with autism should lead to a stronger understanding and acceptance of this problem in the non-autistic population. © Georg Thieme Verlag KG Stuttgart · New York.

  11. The behaviour of lubricated EHD contacts subjected to vibrations

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Glovnea, R. P.

    2017-02-01

    Machine components containing contacts working in elastohydrodynamic (EHD) conditions are often subjected to vibrations. These may be originated from the mechanism or machine the contact is part of, the surrounding environment and within the contact itself. The influence of vibrations upon the behaviour of elastohydrodynamic films has been studied experimentally in a number of papers, but a comprehensive study of the effect of the parameters of the oscillatory motion upon the film thickness has not been carried out yet. In this study the authors evaluate the effect of the frequency of the oscillatory motion upon the EHD film thickness. Optical interferometry is used to measure lubricant film thickness in a ball-on-flat disc arrangement. A high - speed camera records the interferometric images for later analysis and conversion into film thickness maps. The disc runs at a constant angular velocity while the ball is driven by the traction forces developed in the EHD film. In steady state conditions, this would ensure pure rolling conditions, however in the present investigation the ball is subjected to harmonic vibrations in a direction perpendicular to the plane of the film. The contact under study is lubricated by basic oils and the temperature is kept at a constant value of 60°C. The aim of this paper is to understand how vibrations influence the lubricant film formation.

  12. Interface crack in a nonhomogeneous elastic medium

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1988-01-01

    The linear elasticity problem for an interface crack between two bonded half planes is reconsidered. It is assumed that one of the half planes is homogeneous and the second is nonhomogeneous in such a way that the elastic properties are continuous throughout the plane and have discontinuous derivatives along the interface. The problem is formulated in terms of a system of integral equations and the asymptotic behavior of the stress state near the crack tip is determined. The results lead to the conclusion that the singular behavior of stresses in the nonhomogeneous medium is identical to that in a homogeneous material provided the spacial distribution of material properties is continuous near and at the crack tip. The problem is solved for various values of the nonhomogeneity parameter and for four different sets of crack surface tractions, and the corresponding stress intensity factors are tabulated.

  13. Oscillation criteria for half-linear dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Hassan, Taher S.

    2008-09-01

    This paper is concerned with oscillation of the second-order half-linear dynamic equation(r(t)(x[Delta])[gamma])[Delta]+p(t)x[gamma](t)=0, on a time scale where [gamma] is the quotient of odd positive integers, r(t) and p(t) are positive rd-continuous functions on . Our results solve a problem posed by [R.P. Agarwal, D. O'Regan, S.H. Saker, Philos-type oscillation criteria for second-order half linear dynamic equations, Rocky Mountain J. Math. 37 (2007) 1085-1104; S.H. Saker, Oscillation criteria of second order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005) 375-387] and our results in the special cases when and involve and improve some oscillation results for second-order differential and difference equations; and when , and , etc., our oscillation results are essentially newE Some examples illustrating the importance of our results are also included.

  14. Rolling contact fatigue : a comprehensive review.

    DOT National Transportation Integrated Search

    2011-11-01

    "Rolling contact fatigue (RCF) is a pervasive and insidious problem on all types of railway systems. Although it is a dominant cause of maintenance and replacements on heavy haul rail lines, it is also a significant economic and safety challenge for ...

  15. Problem-based learning outcomes: the glass half-full.

    PubMed

    Distlehorst, Linda H; Dawson, Elizabeth; Robbs, Randall S; Barrows, Howard S

    2005-03-01

    To compare the characteristics and outcome data of students from a single institution with a two-track, problem based learning (PBL) and standard (STND) curriculum. PBL and STND students from nine graduating classes at Southern Illinois University School of Medicine were compared using common medical school performance outcomes (USMLE Step 1, USMLE Step 2, clerkship mean ratings, number of clerkship honors and remediation designations, and the senior clinical competency exam), as well as common admission and demographic variables. PBL students were older, and the cohort had a higher proportion of women. The two tracks had similar USMLE Step 1 and 2 mean scores and pass rates. Performance differences were significant for PBL students in two clerkships as well as in the clerkship subcategories of clinical performance, knowledge and clinical reasoning, and noncognitive behaviors. In addition, the proportion of PBL students earning honors was greater. The traditional undergraduate educational outcomes for the PBL and STND students are very positive. In several of the clerkship performance measures, the PBL students performed significantly better, and in no circumstance did they perform worse than the STND students.

  16. Pain in general practice. Pain as a cause of patient-doctor contact.

    PubMed

    Frølund, F; Frølund, C

    1986-05-01

    In 1983 26 general practitioners in a Danish provincial town made a week's survey of pain as the main cause of patient-doctor contact during the day time. The population served was 45 000-50 000 persons of all ages. Coexistent pain which was not the cause of actual contact was not recorded. Out of 2 886 contacts of all causes 641 were due to pain (22% or 222/1 000 contacts). Percentages for acute and chronic pain were 61 and 39 respectively. The commonest causes of pain were musculo-skeletal (50%), visceral including cardio-vascular (20%), infectious (15%), and headaches (8%). The overall female: male ratio was 1.5: 1, but with considerable variation within the different pain categories. The ratios for acute and chronic pain were 1.4: 1 and 1.8: 1 respectively. About one hundred contacts were recorded as "problem cases" whose predominant complaints were low back pain, headaches, and visceral pain. Pain--especially chronic pain with a non-malignant cause--is a major problem in general practice. Essentially, pain is a primary health care problem and research in this field should be encouraged.

  17. Une formulation variationnelle du problème de contact avec frottement de Coulomb

    NASA Astrophysics Data System (ADS)

    Le van, Anh; Nguyen, Tai H. T.

    2008-07-01

    A variational relationship is proposed as the weak form of the large deformation contact problem with Coulomb friction. It is a mixed relationship involving both the displacements and the multipliers; the weighting functions are the virtual displacements and the virtual multipliers. It is shown that the proposed weak form is equivalent to the strong form of the initial/boundary value contact problem and the multipliers are equal to the contact tractions. To cite this article: A. Le van, T.H.T. Nguyen, C. R. Mecanique 336 (2008).

  18. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  19. Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound

    NASA Astrophysics Data System (ADS)

    Shrivastava, Deepika; Sanyal, Sankar P.

    2018-05-01

    In the framework of density functional theory based on plane wave pseudopotential method and linear response technique, we have studied the electronic, phonon and superconducting properties of LaPtBi half-Heusler compound. The electronic band structure and density of states show that it is gapless semiconductor which is consistent with previous results. The positive phonon frequencies confirm the stability of this compound in cubic MgAgAs phase. Superconductivity is studied in terms of Eliashberg spectral function (α2F(ω)), electron-phonon coupling constants (λ). The value of electron-phonon coupling parameter is found to be 0.41 and the superconducting transition temperature is calculated to be 0.76 K, in excellent agreement with the experimentally reported values.

  20. Intertwined Hamiltonians in two-dimensional curved spaces

    NASA Astrophysics Data System (ADS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-04-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincaré half plane (AdS2), de Sitter plane (dS2), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle.