Sample records for half-wave reduction potentials

  1. Synchronous Half-Wave Rectifier

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  2. QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors.

    PubMed

    Hemmateenejad, Bahram; Yazdani, Mahdieh

    2009-02-16

    Steroids are widely distributed in nature and are found in plants, animals, and fungi in abundance. A data set consists of a diverse set of steroids have been used to develop quantitative structure-electrochemistry relationship (QSER) models for their half-wave reduction potential. Modeling was established by means of multiple linear regression (MLR) and principle component regression (PCR) analyses. In MLR analysis, the QSPR models were constructed by first grouping descriptors and then stepwise selection of variables from each group (MLR1) and stepwise selection of predictor variables from the pool of all calculated descriptors (MLR2). Similar procedure was used in PCR analysis so that the principal components (or features) were extracted from different group of descriptors (PCR1) and from entire set of descriptors (PCR2). The resulted models were evaluated using cross-validation, chance correlation, application to prediction reduction potential of some test samples and accessing applicability domain. Both MLR approaches represented accurate results however the QSPR model found by MLR1 was statistically more significant. PCR1 approach produced a model as accurate as MLR approaches whereas less accurate results were obtained by PCR2 approach. In overall, the correlation coefficients of cross-validation and prediction of the QSPR models resulted from MLR1, MLR2 and PCR1 approaches were higher than 90%, which show the high ability of the models to predict reduction potential of the studied steroids.

  3. Full-wave and half-wave rectification in second-order motion perception

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1994-01-01

    Microbalanced stimuli are dynamic displays which do not stimulate motion mechanisms that apply standard (Fourier-energy or autocorrelational) motion analysis directly to the visual signal. In order to extract motion information from microbalanced stimuli, Chubb and Sperling [(1988) Journal of the Optical Society of America, 5, 1986-2006] proposed that the human visual system performs a rectifying transformation on the visual signal prior to standard motion analysis. The current research employs two novel types of microbalanced stimuli: half-wave stimuli preserve motion information following half-wave rectification (with a threshold) but lose motion information following full-wave rectification; full-wave stimuli preserve motion information following full-wave rectification but lose motion information following half-wave rectification. Additionally, Fourier stimuli, ordinary square-wave gratings, were used to stimulate standard motion mechanisms. Psychometric functions (direction discrimination vs stimulus contrast) were obtained for each type of stimulus when presented alone, and when masked by each of the other stimuli (presented as moving masks and also as nonmoving, counterphase-flickering masks). RESULTS: given sufficient contrast, all three types of stimulus convey motion. However, only one-third of the population can perceive the motion of the half-wave stimulus. Observers are able to process the motion information contained in the Fourier stimulus slightly more efficiently than the information in the full-wave stimulus but are much less efficient in processing half-wave motion information. Moving masks are more effective than counterphase masks at hampering direction discrimination, indicating that some of the masking effect is interference between motion mechanisms, and some occurs at earlier stages. When either full-wave and Fourier or half-wave and Fourier gratings are presented simultaneously, there is a wide range of relative contrasts within which the

  4. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  5. Structured light generation by magnetic metamaterial half-wave plates at visible wavelength

    NASA Astrophysics Data System (ADS)

    Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong

    2017-12-01

    Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam-Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light-matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.

  6. Rayleigh wave effects in an elastic half-space.

    NASA Technical Reports Server (NTRS)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  7. Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface.

    PubMed

    Khan, M Ismail; Tahir, Farooq A

    2017-11-22

    A highly flexible single-layer metasurface manifesting quarter-wave plate as well as half-mirror (1:1 beam-splitter) operation in the microwave frequency regime is being presented in this research. The designed metasurface reflects half power of the impinging linearly polarized electromagnetic wave as circularly polarized wave while the remaining half power is transmitted as circularly polarized wave at resonance frequency. Similarly, a circularly polarized incident wave is reflected and transmitted as linearly polarized wave with equal half powers. Moreover, the response of the metasurface is quite stable against the variations in the incidence angle up to 45°. The measurements performed on the fabricated prototype exhibit a good agreement with the simulation results. The compact size, flexible structure, angular stability and two in one operation (operating as a quarter-wave plate and beam-splitter at the same time) are the main characteristics of the subject metasurface that makes it a potential candidate for numerous applications in communication and miniaturized and conformal polarization control devices.

  8. Synchrony of two uncoupled neurons under half wave sine current stimulation

    NASA Astrophysics Data System (ADS)

    Peng, Yueping; Wang, Jue; Jian, Zhong

    2009-04-01

    Two uncoupled Hindmarsh-Rose neurons under different initial discharge patterns are stimulated by the half wave sine current; and the synchronization mechanism of the two neurons is discussed by analyzing their membrane potentials and their interspike interval (ISI) distribution. Under the half wave sine current stimulation, the two uncoupled neurons under different initial conditions, whose parameter r (the parameter r is related to the membrane penetration of calcium ion, and reflects the changing speed of the slow adaptation current) is different or the same, can realize discharge synchronization (phase synchronization) or the full synchronization (state synchronization). The synchronization characteristics are mainly related to the frequency and the amplitude of the half wave sine current, and are little related to the parameter r and the initial state of the two neurons. This investigation shows the mechanism of the current's amplitude and its frequency affecting the synchronization process of neurons, and the neurons' discharge patterns and synchronization process can be adjusted and controlled by the current's amplitude and its frequency. This result is of far reaching importance to study synchronization and encode of many neurons or neural network, and provides the theoretic basis for studying the mechanism of some nervous diseases such as epilepsy and Alzheimer's disease by the slow wave of EEG.

  9. Wave propagation through an inhomogeneous slab sandwiched by the piezoelectric and the piezomagnetic half spaces.

    PubMed

    Jiao, Fengyu; Wei, Peijun; Li, Li

    2017-01-01

    Wave propagation through a gradient slab sandwiched by the piezoelectric and the piezomagnetic half spaces are studied in this paper. First, the secular equations in the transverse isotropic piezoelectric/piezomagnetic half spaces are derived from the general dynamic equation. Then, the state vectors at piezoelectric and piezomagnetic half spaces are related to the amplitudes of various possible waves. The state transfer equation of the functionally graded slab is derived from the equations of motion by the reduction of order, and the transfer matrix of the functionally gradient slab is obtained by solving the state transfer equation with the spatial-varying coefficient. Finally, the continuous interface conditions are used to lead to the resultant algebraic equations. The algebraic equations are solved to obtain the amplitude ratios of various waves which are further used to obtain the energy reflection and transmission coefficients of various waves. The numerical results are shown graphically and are validated by the energy conservation law. Based on the numerical results on the fives of gradient profiles, the influences of the graded slab on the wave propagation are discussed. It is found that the reflection and transmission coefficients are obviously dependent upon the gradient profile. The various surface waves are more sensitive to the gradient profile than the bulk waves. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Three-dimensional coupled thermoelastodynamic stress and flux induced wave propagation for isotropic half-space with scalar potential functions

    NASA Astrophysics Data System (ADS)

    Hayati, Yazdan; Eskandari-Ghadi, Morteza

    2018-02-01

    An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot's coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a 6{th}- and a 2{nd}-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in

  11. Power converter for raindrop energy harvesting application: Half-wave rectifier

    NASA Astrophysics Data System (ADS)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  12. Rayleigh-type waves in nonlocal micropolar solid half-space.

    PubMed

    Khurana, Aarti; Tomar, S K

    2017-01-01

    Propagation of Rayleigh type surface waves in nonlocal micropolar elastic solid half-space has been investigated. Two modes of Rayleigh-type waves are found to propagate under certain approximations. Frequency equations of these Rayleigh type modes and their conditions of existence have been derived. These frequency equations are found to be dispersive in character due to the presence of micropolarity and nonlocality parameters in the medium. One of the frequency equations is a counterpart of the classical Rayleigh waves and the other is new and has appeared due to micropolarity of the medium. Phase speeds of these waves are computed numerically for Magnesium crystal and their variation against wavenumber are presented graphically. Comparisons have been made between the phase speeds of Rayleigh type waves through nonlocal micropolar, local micropolar and elastic solid half-spaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Scattering of three-dimensional plane waves in a self-reinforced half-space lying over a triclinic half-space

    NASA Astrophysics Data System (ADS)

    Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy

    2018-06-01

    The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.

  14. Skin friction drag reduction in turbulent flow using spanwise traveling surface waves

    NASA Astrophysics Data System (ADS)

    Musgrave, Patrick F.; Tarazaga, Pablo A.

    2017-04-01

    A major technological driver in current aircraft and other vehicles is the improvement of fuel efficiency. One way to increase the efficiency is to reduce the skin friction drag on these vehicles. This experimental study presents an active drag reduction technique which decreases the skin friction using spanwise traveling waves. A novel method is introduced for generating traveling waves which is low-profile, non-intrusive, and operates under various flow conditions. This wave generation method is discussed and the resulting traveling waves are presented. These waves are then tested in a low-speed wind tunnel to determine their drag reduction potential. To calculate the drag reduction, the momentum integral method is applied to turbulent boundary layer data collected using a pitot tube and traversing system. The skin friction coefficients are then calculated and the drag reduction determined. Preliminary results yielded a drag reduction of ≍ 5% for 244Hz traveling waves. Thus, this novel wave generation method possesses the potential to yield an easily implementable, non-invasive drag reduction technology.

  15. Rayleigh-wave diffractions due to a void in the layered half space

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.

    2006-01-01

    Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.

  16. Spin wave propagation detected over 100 μm in half-metallic Heusler alloy Co2MnSi

    NASA Astrophysics Data System (ADS)

    Stückler, Tobias; Liu, Chuanpu; Yu, Haiming; Heimbach, Florian; Chen, Jilei; Hu, Junfeng; Tu, Sa; Alam, Md. Shah; Zhang, Jianyu; Zhang, Youguang; Farrell, Ian L.; Emeny, Chrissy; Granville, Simon; Liao, Zhi-Min; Yu, Dapeng; Zhao, Weisheng

    2018-03-01

    The field of magnon spintronics offers a charge current free way of information transportation by using spin waves (SWs). Compared to forward volume spin waves for example, Damon-Eshbach (DE) SWs need a relatively weak external magnetic field which is suitable for small spintronic devices. In this work we study DE SWs in Co2MnSi, a half-metallic Heusler alloy with significant potential for magnonics. Thin films have been produced by pulsed laser deposition. Integrated coplanar waveguide (CPW) antennas with different distances between emitter and detection antenna have been prepared on a Co2MnSi film. We used a vector network analyzer to measure spin wave reflection and transmission. We observe spin wave propagation up to 100 μm, a new record for half-metallic Heusler thin films.

  17. Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle

    DOE PAGES

    Liu, Zhaocheng; Li, Zhancheng; Liu, Zhe; ...

    2017-06-30

    Manipulation of polarization state is of great fundamental importance and plays a crucial role in modern photonic applications such as optical communication, imaging, and sensing. Metamaterials and metasurfaces have attracted increasing interest in this area because they facilitate designer optical response through engineering the composite subwavelength structures. In this paper, we propose a general methods of designing half-wave plate and demonstrate in the near-infrared wavelength range an optically thin plasmonic metasurface half-wave plates that rotate the polarization direction of the linearly polarized incident light with a high degree of linear polarization. Finally, the half-wave plate functionality is realized through arrangingmore » the orientation of the nanoantennas to form an appropriate spatial distribution profile, which behave exactly as in classical half-wave plates but over in a wavelength-independent way.« less

  18. Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces.

    PubMed

    Jiao, Fengyu; Wei, Peijun; Li, Yueqiu

    2018-01-01

    Reflection and transmission of plane waves through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces are studied in this paper. The secular equations in the flexoelectric piezoelectric material are first derived from the general governing equation. Different from the classical piezoelectric medium, there are five kinds of coupled elastic waves in the piezoelectric material with the microstructure effects taken into consideration. The state vectors are obtained by the summation of contributions from all possible partial waves. The state transfer equation of flexoelectric piezoelectric slab is derived from the motion equation by the reduction of order, and the transfer matrix of flexoelectric piezoelectric slab is obtained by solving the state transfer equation. By using the continuous conditions at the interface and the approach of partition matrix, we get the resultant algebraic equations in term of the transfer matrix from which the reflection and transmission coefficients can be calculated. The amplitude ratios and further the energy flux ratios of various waves are evaluated numerically. The numerical results are shown graphically and are validated by the energy conservation law. Based on these numerical results, the influences of two characteristic lengths of microstructure and the flexoelectric coefficients on the wave propagation are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A Cryogenic Half-Wave Plate Module to Measure Polarization at Multiple FIR Passbands

    NASA Technical Reports Server (NTRS)

    Rennick, Timothy S.; Vaillancourt, John E.; Hildebrand, Roger H.; Heimsath, Stephen J.

    2002-01-01

    One of the key components in a far-infrared polarimeter that is being designed at the University of Chicago is a locally-powered half-wave plate module. This compact, lightweight, and reliable module will operate at cryogenic temperatures, rotating a half-wave plate about its axis within the optical path. By doing so, polarization measurements can be made. Further, by utilizing multiple half-wave plate modules within the polarimeter, multiple wavelengths or passbands can be studied. In this paper, we describe the design and performance of a relatively inexpensive prototype module that was assembled and tested successfully, outline the difficulties that had to be overcome, and recommend improvements to future modules. This effort now lays some of the groundwork for a next-generation polarimeter for far-infrared astronomy.

  20. Analytic Wave Functions for the Half-Filled Lowest Landau Level

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    We consider a two-dimensional strongly correlated electronic system in a strong perpendicular magnetic field at half-filling of the lowest Landau level (LLL). We seek to build a wave function that, by construction, lies entirely in the Hilbert space of the LLL. Quite generally, a wave function of this nature can be built as a linear combination of all possible Slater determinants formed by using the complete set of single-electron states that belong to the LLL. However, due to the vast number of Slater determinant states required to form such basis functions, the expansion is impractical for any but the smallest systems. Thus, in practice, the expansion must be truncated to a small number of Slater determinants. Among many possible LLL Slater determinant states, we note a particular special class of such wave functions in which electrons occupy either only even, or only odd angular momentum states. We focus on such a class of wave functions and obtain analytic expressions for various quantities of interest. Results seem to suggest that these special wave functions, while interesting and physically appealing, are unlikely to be a very good approximation for the exact ground state at half-filling factor. The overall quality of the description can be improved by including other additional LLL Slater determinant states. It is during this process that we identify another special family of suitable LLL Slater determinant states to be used in an enlarged expansion.

  1. Estimation of elastic moduli in a compressible Gibson half-space by inverting Rayleigh-wave phase velocity

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Chen, C.

    2006-01-01

    A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson's ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model. ?? Springer 2006.

  2. Highly uniform and monodisperse carbon nanospheres enriched with cobalt-nitrogen active sites as a potential oxygen reduction electrocatalyst

    NASA Astrophysics Data System (ADS)

    Wan, Xing; Wang, Hongjuan; Yu, Hao; Peng, Feng

    2017-04-01

    Uniform cobalt and nitrogen co-doped carbon nanospheres (CoN-CNS) with high specific surface area (865 m2 g-1) have been prepared by a simple but efficient method. The prepared CoN-CNS catalyst exhibits outstanding catalytic performance for the oxygen reduction reaction (ORR) in both alkaline and acidic electrolytes. In alkaline electrolyte, the prepared CoN-CNS has more positive half-wave potential and larger kinetic current density than commercial Pt/C. In acidic electrolyte, CoN-CNS also shows good ORR activity with high electron transfer number, its onset and half-wave potentials are all close to those of commercial carbon supported platinum catalyst (Pt/C). CoN-CNS catalyst shows more superior stability and higher methanol-tolerance than commercial Pt/C both in alkaline and in acidic electrolytes. The potassium thiocyanate-poisoning test further confirms that the cobalt-nitrogen active sites exist in CoN-CNS, which are dominating to endow high ORR catalytic activity in acidic electrolyte. This study develops a new method to prepare non-precious metal catalyst with excellent ORR performances for direct methanol fuel cells.

  3. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong

    2009-03-01

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.

  4. Reflection and transmission of elastic waves through a couple-stress elastic slab sandwiched between two half-spaces

    NASA Astrophysics Data System (ADS)

    Wang, Changda; Chen, Xuejun; Wei, Peijun; Li, Yueqiu

    2017-12-01

    The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.

  5. Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: incident plane SH waves

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Yin, Xiao

    2016-06-01

    A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.

  6. Wave energy transfer in elastic half-spaces with soft interlayers.

    PubMed

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  7. Signal-to-Noise Ratio Requirements for Half-Wave and Full-Wave Nonlinear Detectors with Arbitrary Power Laws, Sampling Rates, Input Spectra, and Filter Characteristics

    DTIC Science & Technology

    1986-06-10

    system consisting of a sampler, a nonlinear rectifier, and a low-pass filter is evaluated generally , for arbitrary half-wave or full-wave v-th law...spectra, the possibility of using deliberate undersampling with no loss of performance is illustrated. The use of a half-wave rectifier generally ... some cases, significantly so. Programs for all procedures employed are presented so that investigation of additional cases or combinations of

  8. The three-wave equation on the half-line

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Fan, Engui

    2014-01-01

    The Fokas method is used to analyze the initial-boundary value problem for the three-wave equation p-{bi-bj}/{ai-aj}p+∑k ({bk-bj}/{ak-aj}-{bi-bk}/{ai-ak})pp=0, i,j,k=1,2,3, on the half-line. Assuming that the solution p(x,t) exists, we show that it can be recovered from its initial and boundary values via the solution of a Riemann-Hilbert problem formulated in the plane of the complex spectral parameter λ.

  9. Transfer of a wave packet in double-well potential

    NASA Astrophysics Data System (ADS)

    Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang

    2018-04-01

    Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.

  10. Impedance of strip-traveling waves on an elastic half space - Asymptotic solution

    NASA Technical Reports Server (NTRS)

    Crandall, S. H.; Nigam, A. K.

    1973-01-01

    The dynamic normal-load distribution across a strip that is required to maintain a plane progressive wave along its length is studied for the case where the strip is of infinite length and lies on the surface of a homogeneous isotropic elastic half space. This configuration is proposed as a preliminary idealized model for analyzing the dynamic interaction between soils and flexible foundations. The surface load distribution across the strip and the motion of the strip are related by a pair of dual integral equations. An asymptotic solution is obtained for the limiting case of small wavelength. The nature of this solution depends importantly on the propagation velocity of the strip-traveling wave in comparison with the Rayleigh wave speed, the shear wave speed and the dilatational wave speed. When the strip-traveling wave propagates faster than the Rayleigh wave speed, a pattern of trailing Rayleigh waves is shed from the strip. The limiting amplitude of the trailing waves is provided by the asymptotic solution.

  11. Modeling of the response of the POLARBEAR bolometers with a continuously rotating half-wave plate

    NASA Astrophysics Data System (ADS)

    Takakura, Satoru; POLARBEAR Collaboration

    2018-01-01

    The curly pattern, the so-called B-mode, in the polarization anisotropy of the cosmic microwave background (CMB) is a powerful probe to measure primordial gravitational waves from the cosmic inflation, as well as the weak lensing due to the large scale structure of the Universe. At present, ground-based CMB experiments with a few arcminutes resolution such as POLARBEAR, SPTpol, and ACTPol have successfully measured the angular power spectrum of the B-mode only in sub-degree scales, though these experiments also have potential to measure the inflationary B-modes in degree scales in absence of the low-frequency noise (1/f noise). Thus, techniques of polarization signal modulation such as a continuously rotating half-wave plate (CRHWP) are widely investigated to suppress the 1/f noise and also to reduce instrumental systematic errors. In this study, we have implemented a CRHWP placed around the prime focus of the POLARBEAR telescope and operated at ambient temperatures. We construct a comprehensive model including half-wave plate synchronous signals, detector non-linearities, beam imperfections, and all noise sources. Using this model, we show that, in practice, the 1/f noise and instrumental systematics could remain even with the CRHWP. However, we also evaluate those effects from test observations using a prototype CRHWP on the POLARBEAR telescope and find that the residual 1/f noise is sufficiently small for POLARBEAR to probe the multipoles about 40. We will also discuss prospects for future CMB experiments with better sensitivities.

  12. CORRIGENDUM: Supersymmetric Kaluza-Klein reductions of M-waves and MKK-monopoles

    NASA Astrophysics Data System (ADS)

    Figueroa-O'Farrill, J.; Simón, J.

    2004-01-01

    In this paper we classified the smooth supersymmetric Kaluza-Klein reductions of the purely gravitational half-BPS backgrounds of M-theory: the purely gravitational plane wave and the Kaluza-Klein monopole. The analysis of the Kaluza-Klein monopole yielded seven possible Kaluza-Klein reductions labelled (A)-(G). In truth, we failed to discard two of the reductions: those labelled (F) and (G). These reductions fail to be smooth due to the fact that the orbits of the Killing vector effecting the reduction have different topological type: at those points where the null rotation component vanishes, the orbits are circles, whereas at the other points they are diffeomorphic to the real line. In other words, although the action is free, some points (corresponding to the circular orbits) possess nontrivial stabilizers: namely the infinite cyclic subgroup generated by the period. A similar argument has already been used in [1] to discard one of the possible reductions of the M2 brane. Even though the discarded reductions exist, and some of them can even be supersymmetric, one of the purposes of the paper was to present a full classification of smooth reductions of the purely gravitational half-BPS backgrounds of M-theory. As a result the following changes must be made. At the very end of section 3.2, the two cases (F) and (G) must be deleted. In section 3.3, the paragraphs discussing the supersymmetry of these reductions should be omitted. Similarly the entries in table 7 which are in parentheses should also be omitted. In section 3.4, the parameter β in the expression for λ in the unnumbered equation preceding (3.14) should be put to zero, with the corresponding change in equation (3.14). Finally the entry in table10 containing the nullbrane (N) disappears. References [1] Figueroa-O'Farrill J and SimA~3n J 2002 Supersymmetric Kaluza-Klein reductions of M2 and M5-branes Adv. Theor. Math. Phys. 6 703-93 (Preprint hep-th/0208107)

  13. Coherent electromagnetic waves in the presence of a half space of randomly distributed scatterers

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1988-01-01

    The present investigation of coherent field propagation notes, upon solving the Foldy-Twersky integral equation for a half-space of small spherical scatterers illuminated by a plane wave at oblique incidence, that the coherent field for a horizontally-polarized incident wave exhibits reflectivity and transmissivity consistent with the Fresnel formula for an equivalent continuous effective medium. In the case of a vertically polarized incident wave, both the vertical and longitudinal waves obtained for the coherent field have reflectivities and transmissivities that do not agree with the Fresnel formula.

  14. Performance of a continuously rotating half-wave plate on the POLARBEAR telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takakura, Satoru; Aguilar, Mario; Akiba, Yoshiki

    A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure three of the Stokes parameters, I, Q and U, thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i.e. the primary mirror is larger than the current maximum half-wave plate diameter of ~0.5 m), where the CRHWP can be placed between the primary mirror and focalmore » plane. In this configuration, one needs to address the intensity to polarization (I→P) leakage of the optics, which becomes a source of 1/f noise and also causes differential gain systematics that arise from CMB temperature fluctuations. In this paper, we present the performance of a CRHWP installed in the {\\scshape Polarbear} experiment, which employs a Gregorian telescope with a 2.5 m primary illumination pattern. The CRHWP is placed near the prime focus between the primary and secondary mirrors. We find that the I→P leakage is larger than the expectation from the physical properties of our primary mirror, resulting in a 1/f knee of 100 mHz. The excess leakage could be due to imperfections in the detector system, i.e. detector non-linearity in the responsivity and time-constant. We demonstrate, however, that by subtracting the leakage correlated with the intensity signal, the 1/f noise knee frequency is reduced to 32 mHz (ℓ ~ 39 for our scan strategy), which is very promising to probe the primordial B-mode signal. We also discuss methods for further noise subtraction in future projects where the precise temperature control of instrumental components and the leakage reduction will play a key role.« less

  15. Performance of a continuously rotating half-wave plate on the POLARBEAR telescope

    DOE PAGES

    Takakura, Satoru; Aguilar, Mario; Akiba, Yoshiki; ...

    2017-05-03

    A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure three of the Stokes parameters, I, Q and U, thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i.e. the primary mirror is larger than the current maximum half-wave plate diameter of ~0.5 m), where the CRHWP can be placed between the primary mirror and focalmore » plane. In this configuration, one needs to address the intensity to polarization (I→P) leakage of the optics, which becomes a source of 1/f noise and also causes differential gain systematics that arise from CMB temperature fluctuations. In this paper, we present the performance of a CRHWP installed in the {\\scshape Polarbear} experiment, which employs a Gregorian telescope with a 2.5 m primary illumination pattern. The CRHWP is placed near the prime focus between the primary and secondary mirrors. We find that the I→P leakage is larger than the expectation from the physical properties of our primary mirror, resulting in a 1/f knee of 100 mHz. The excess leakage could be due to imperfections in the detector system, i.e. detector non-linearity in the responsivity and time-constant. We demonstrate, however, that by subtracting the leakage correlated with the intensity signal, the 1/f noise knee frequency is reduced to 32 mHz (ℓ ~ 39 for our scan strategy), which is very promising to probe the primordial B-mode signal. We also discuss methods for further noise subtraction in future projects where the precise temperature control of instrumental components and the leakage reduction will play a key role.« less

  16. Performance of a continuously rotating half-wave plate on the POLARBEAR telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takakura, Satoru; Aguilar, Mario; Akiba, Yoshiki

    A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure three of the Stokes parameters, I , Q and U , thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i.e. the primary mirror is larger than the current maximum half-wave plate diameter of ∼0.5 m), where the CRHWP can be placed between the primary mirrormore » and focal plane. In this configuration, one needs to address the intensity to polarization ( I → P ) leakage of the optics, which becomes a source of 1/f noise and also causes differential gain systematics that arise from CMB temperature fluctuations. In this paper, we present the performance of a CRHWP installed in the (\\scshape Polarbear) experiment, which employs a Gregorian telescope with a 2.5 m primary illumination pattern. The CRHWP is placed near the prime focus between the primary and secondary mirrors. We find that the I → P leakage is larger than the expectation from the physical properties of our primary mirror, resulting in a 1/f knee of 100 mHz. The excess leakage could be due to imperfections in the detector system, i.e. detector non-linearity in the responsivity and time-constant. We demonstrate, however, that by subtracting the leakage correlated with the intensity signal, the 1/f noise knee frequency is reduced to 32 mHz (ℓ ∼ 39 for our scan strategy), which is very promising to probe the primordial B-mode signal. We also discuss methods for further noise subtraction in future projects where the precise temperature control of instrumental components and the leakage reduction will play a key role.« less

  17. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach.

    PubMed

    Ding, Fei; Wang, Zhuoxian; He, Sailing; Shalaev, Vladimir M; Kildishev, Alexander V

    2015-04-28

    We design, fabricate, and experimentally demonstrate an ultrathin, broadband half-wave plate in the near-infrared range using a plasmonic metasurface. The simulated results show that the linear polarization conversion efficiency is over 97% with over 90% reflectance across an 800 nm bandwidth. Moreover, simulated and experimental results indicate that such broadband and high-efficiency performance is also sustained over a wide range of incident angles. To further obtain a background-free half-wave plate, we arrange such a plate as a periodic array of integrated supercells made of several plasmonic antennas with high linear polarization conversion efficiency, consequently achieving a reflection-phase gradient for the cross-polarized beam. In this design, the anomalous (cross-polarized) and the normal (copolarized) reflected beams become spatially separated, hence enabling highly efficient and robust, background-free polarization conversion along with broadband operation. Our results provide strategies for creating compact, integrated, and high-performance plasmonic circuits and devices.

  18. Information hiding and retrieval in Rydberg wave packets using half-cycle pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J. M.; Pisharody, S. N.; Wen, H.

    We demonstrate an information hiding and retrieval scheme with the relative phases between states in a Rydberg wave packet acting as the bits of a data register. We use a terahertz half-cycle pulse (HCP) to transfer phase-encoded information from an optically accessible angular momentum manifold to another manifold which is not directly accessed by our laser pulses, effectively hiding the information from our optical interferometric measurement techniques. A subsequent HCP acting on these wave packets reintroduces the information back into the optically accessible data register manifold which can then be read out.

  19. The Future Potential of Wave Power in the US

    NASA Astrophysics Data System (ADS)

    Previsic, M.; Epler, J.; Hand, M.; Heimiller, D.; Short, W.; Eurek, K.

    2012-12-01

    The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the US, is located in close proximity of coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As renewable electricity generation technologies, ocean wave energy offers a low air pollutant option for diversifying the US electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses: (1) The energy extraction potential from the US wave energy resource, (2) The present cost of wave technology in /kW, (3) The estimated cost of energy in /kWh, and (4) Cost levels at which the technology should see significant deployment. RE Vision Consulting in collaboration with NREL engaged in various analyses to establish present-day and future cost profiles for MHK technologies, compiled existing resource assessments and wave energy supply curves, and developed cost and deployment scenarios using the ReEDS analysis model to estimate the present-day technology cost reductions necessary to facilitate significant technology deployment in the US.

  20. The reflection and diffraction of internal waves from the junction of a slit and a half-space, with application to submarine canyons

    NASA Astrophysics Data System (ADS)

    Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.

    1985-07-01

    We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.

  1. Electromagnetic plane-wave pulse transmission into a Lorentz half-space.

    PubMed

    Cartwright, Natalie A

    2011-12-01

    The propagation of an electromagnetic plane-wave signal obliquely incident upon a Lorentz half-space is studied analytically. Time-domain asymptotic expressions that increase in accuracy with propagation distance are derived by application of uniform saddle point methods on the Fourier-Laplace integral representation of the transmitted field. The results are shown to be continuous in time and comparable with numerical calculations of the field. Arrival times and angles of refraction are given for prominent transient pulse features and the steady-state signal.

  2. Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism.

    PubMed

    Bryan, Sean A; Montroy, Thomas E; Ruhl, John E

    2010-11-10

    We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.

  3. Computational circular dichroism estimation for point-of-care diagnostics via vortex half-wave retarders

    NASA Astrophysics Data System (ADS)

    Haider, Shahid A.; Tran, Megan Y.; Wong, Alexander

    2018-02-01

    Observing the circular dichroism (CD) caused by organic molecules in biological fluids can provide powerful indicators of patient health and provide diagnostic clues for treatment. Methods for this kind of analysis involve tabletop devices that weigh tens of kilograms with costs on the order of tens of thousands of dollars, making them prohibitive in point-of-care diagnostic applications. In an e ort to reduce the size, cost, and complexity of CD estimation systems for point-of-care diagnostics, we propose a novel method for CD estimation that leverages a vortex half-wave retarder in between two linear polarizers and a two-dimensional photodetector array to provide an overall complexity reduction in the system. This enables the measurement of polarization variations across multiple polarizations after they interact with a biological sample, simultaneously, without the need for mechanical actuation. We further discuss design considerations of this methodology in the context of practical applications to point-of-care diagnostics.

  4. Method for measuring the alternating current half-wave voltage of a Mach-Zehnder modulator based on opto-electronic oscillation.

    PubMed

    Hong, Jun; Chen, Dongchu; Peng, Zhiqiang; Li, Zulin; Liu, Haibo; Guo, Jian

    2018-05-01

    A new method for measuring the alternating current (AC) half-wave voltage of a Mach-Zehnder modulator is proposed and verified by experiment in this paper. Based on the opto-electronic self-oscillation technology, the physical relationship between the saturation output power of the oscillating signal and the AC half-wave voltage is revealed, and the value of the AC half-wave voltage is solved by measuring the saturation output power of the oscillating signal. The experimental results show that the measured data of this new method involved are in agreement with a traditional method, and not only an external microwave signal source but also the calibration for different frequency measurements is not needed in our new method. The measuring process is simplified with this new method on the premise of ensuring the accuracy of measurement, and it owns good practical value.

  5. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

    2013-04-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

  6. Data reduction and analysis of HELIOS plasma wave data

    NASA Technical Reports Server (NTRS)

    Anderson, Roger R.

    1988-01-01

    Reduction of data acquired from the HELIOS Solar Wind Plasma Wave Experiments on HELIOS 1 and 2 was continued. Production of 24 hour survey plots of the HELIOS 1 plasma wave data were continued and microfilm copies were submitted to the National Space Science Data Center. Much of the effort involved the shock memory from both HELIOS 1 and 2. This data had to be deconvoluted and time ordered before it could be displayed and plotted in an organized form. The UNIVAX 418-III computer was replaced by a DEC VAX 11/780 computer. In order to continue the reduction and analysis of the data set, all data reduction and analysis computer programs had to be rewritten.

  7. Calculations on the half-lives of Cluster decay in two-potential approach

    NASA Astrophysics Data System (ADS)

    Soylu, A.

    The half-lives of the cluster decay (CD) from the isotopes having the known experimental values, the half-lives of the α-decay (AD) of same nuclei and also the branching ratios are obtained, within the framework of two-potential approach with cosh potential including with and without the isospin effects. Using two-potential approach and taking into account the isospin effects in the calculations decrease the rms values and they improve the results. The obtained branching ratios are in good agreement with the experimental ones for some isotopes. It is obtained that the isospin-dependent potentials have an influence on the half-lives of the cluster decays of nuclei. Present calculations would be important for predicting the experimental half-lives and branching ratios for the cluster decays of different types of isotopes.

  8. Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Appel, J. W.; Campusano, L. E.; Choi, S. K.; Crowley, K. T.; Essinger-Hileman, T.; Gallardo, P.; Ho, S. P.; Kusaka, A.; Nati, F.; Palma, G. A.; Page, L. A.; Raghunathan, S.; Staggs, S. T.

    2016-08-01

    The Atacama B-Mode Search (ABS) instrument is a cryogenic (˜ 10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the cosmic microwave background (CMB) at large angular scales (40<ℓ <500) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at ℓ ˜ 100. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1 / f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.

  9. Wave Energy Potential in the Latvian EEZ

    NASA Astrophysics Data System (ADS)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  10. Reduction of electro-optic half-wave voltage of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 single crystal through large piezoelectric strain

    PubMed Central

    Sun, Enwei; Wang, Zhu; Zhang, Rui; Cao, Wenwu

    2011-01-01

    The influence of converse piezoelectric effect on the electro-optic coefficient of single domain relaxor-based 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-0.07PT) has been quantified under ambient conditions. It was found that the large piezoelectric constants d31 and d33 have significant influence to the half-wave voltage of electro-optic modulators. For single domain PZN-0.07PT crystal, Vπ13T is reduced by a factor of 8 and Vπ13L can be decreased by more than an order of magnitude due to the large piezoelectric effect. Compared to commonly used electro-optic crystal LiNbO3 and BaTiO3, PZN-xPT single crystal is much superior for optic phase modulation applications because they have much higher linear electro-optic coefficients and much lower half-wave voltage when piezoelectric strain influence is considered. PMID:21308004

  11. The diffraction of Rayleigh waves by a fluid-saturated alluvial valley in a poroelastic half-space modeled by MFS

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Liang, Jianwen; Wu, Chengqing

    2016-06-01

    Two dimensional diffraction of Rayleigh waves by a fluid-saturated poroelastic alluvial valley of arbitrary shape in a poroelastic half-space is investigated using the method of fundamental solutions (MFS). To satisfy the free surface boundary conditions exactly, Green's functions of compressional (PI and PII) and shear (SV) wave sources buried in a fluid-saturated poroelastic half-space are adopted. Next, the procedure for solving the scattering wave field is presented. It is verified that the MFS is of excellent accuracy and numerical stability. Numerical results illustrate that the dynamic response strongly depends on such factors as the incident frequency, the porosity of alluvium, the boundary drainage condition, and the valley shape. There is a significant difference between the diffraction of Rayleigh waves for the saturated soil case and for the corresponding dry soil case. The wave focusing effect both on the displacement and pore pressure can be observed inside the alluvial valley and the amplification effect seems most obvious in the case of higher porosity and lower frequency. Additionally, special attention should also be paid to the concentration of pore pressure, which is closely related to the site liquefaction in earthquakes.

  12. Absolute Standard Hydrogen Electrode Potential Measured by Reduction of Aqueous Nanodrops in the Gas Phase

    PubMed Central

    Donald, William A.; Leib, Ryan D.; O'Brien, Jeremy T.; Bush, Matthew F.; Williams, Evan R.

    2008-01-01

    In solution, half-cell potentials are measured relative to those of other half cells, thereby establishing a ladder of thermochemical values that are referenced to the standard hydrogen electrode (SHE), which is arbitrarily assigned a value of exactly 0 V. Although there has been considerable interest in, and efforts toward, establishing an absolute electrochemical half-cell potential in solution, there is no general consensus regarding the best approach to obtain this value. Here, ion-electron recombination energies resulting from electron capture by gas-phase nanodrops containing individual [M(NH3)6]3+, M = Ru, Co, Os, Cr, and Ir, and Cu2+ ions are obtained from the number of water molecules that are lost from the reduced precursors. These experimental data combined with nanodrop solvation energies estimated from Born theory and solution-phase entropies estimated from limited experimental data provide absolute reduction energies for these redox couples in bulk aqueous solution. A key advantage of this approach is that solvent effects well past two solvent shells, that are difficult to model accurately, are included in these experimental measurements. By evaluating these data relative to known solution-phase reduction potentials, an absolute value for the SHE of 4.2 ± 0.4 V versus a free electron is obtained. Although not achieved here, the uncertainty of this method could potentially be reduced to below 0.1 V, making this an attractive method for establishing an absolute electrochemical scale that bridges solution and gas-phase redox chemistry. PMID:18288835

  13. Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument.

    PubMed

    Kusaka, A; Essinger-Hileman, T; Appel, J W; Gallardo, P; Irwin, K D; Jarosik, N; Nolta, M R; Page, L A; Parker, L P; Raghunathan, S; Sievers, J L; Simon, S M; Staggs, S T; Visnjic, K

    2014-02-01

    We evaluate the modulation of cosmic microwave background polarization using a rapidly rotating, half-wave plate (HWP) on the Atacama B-Mode Search. After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 s, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly rotating HWP.

  14. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zuo, Quan; Zhao, Pingping; Luo, Wei; Cheng, Gongzhen

    2016-07-01

    Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the best non-precious catalysts ever reported for ORR.Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the

  15. Mechanical design and analysis of a low beta squeezed half-wave resonator

    NASA Astrophysics Data System (ADS)

    He, Shou-Bo; Zhang, Cong; Yue, Wei-Ming; Wang, Ruo-Xu; Xu, Meng-Xin; Wang, Zhi-Jun; Huang, Shi-Chun; Huang, Yu-Lu; Jiang, Tian-Cai; Wang, Feng-Feng; Zhang, Sheng-Xue; He, Yuan; Zhang, Sheng-Hu; Zhao, Hong-Wei

    2014-08-01

    A superconducting squeezed type half-wave resonator (HWR) of β=0.09 has been developed at the Institute of Modern Physics, Lanzhou. In this paper, a basic design is presented for the stiffening structure for the detuning effect caused by helium pressure and Lorentz force. The mechanical modal analysis has been investigated the with finite element method (FEM). Based on these considerations, a new stiffening structure is proposed for the HWR cavity. The computation results concerning the frequency shift show that the low beta HWR cavity with new stiffening structure has low frequency sensitivity coefficient df/dp and Lorentz force detuning coefficient KL, and stable mechanical properties.

  16. AWARE - The Automated EUV Wave Analysis and REduction algorithm

    NASA Astrophysics Data System (ADS)

    Ireland, J.; Inglis; A. R.; Shih, A. Y.; Christe, S.; Mumford, S.; Hayes, L. A.; Thompson, B. J.

    2016-10-01

    Extreme ultraviolet (EUV) waves are large-scale propagating disturbances observed in the solar corona, frequently associated with coronal mass ejections and flares. Since their discovery over two hundred papers discussing their properties, causes and physics have been published. However, their fundamental nature and the physics of their interactions with other solar phenomena are still not understood. To further the understanding of EUV waves, and their relation to other solar phenomena, we have constructed the Automated Wave Analysis and REduction (AWARE) algorithm for the detection of EUV waves over the full Sun. The AWARE algorithm is based on a novel image processing approach to isolating the bright wavefront of the EUV as it propagates across the corona. AWARE detects the presence of a wavefront, and measures the distance, velocity and acceleration of that wavefront across the Sun. Results from AWARE are compared to results from other algorithms for some well known EUV wave events. Suggestions are also give for further refinements to the basic algorithm presented here.

  17. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. Copyright © 2016 the American Physiological Society.

  18. Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2017-01-01

    The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.

  19. Design for the optical retardation in broadband zero-order half-wave plates.

    PubMed

    Liu, Jin; Cai, Yi; Chen, Hongyi; Zeng, Xuanke; Zou, Da; Xu, Shixiang

    2011-04-25

    This paper presents a novel design for broadband zero-order half-wave plates to eliminate the first-order or up to second-order wavelength-dependent birefringent phase retardation (BPR) with 2 or 3 different birefringent materials. The residual BPRs of the plates increase monotonously with the wavelength deviation from a selected wavelength, so the plates are applicable to the broadband light pulses which gather most of the light energy around their central wavelengths. The model chooses the materials by the birefringent dispersion coefficient and evaluates the performances of the plates by the weighted average of the absolute value of residual BPR in order to emphasize the contributions of the incident spectral components whose possess higher energies.

  20. Higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan

    2018-02-01

    Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.

  1. A new 2 Kelvin Superconducting Half-Wave Cavity Cryomodule for PIP-II

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Barcikowski, A.; Cherry, G. L.; Fischer, R. L.; Gerbick, S. M.; Jansma, W. G.; Kedzie, M. J.; Kelly, M. P.; Kim, S.-h.; Lebedev, V. A.; MacDonald, S. W. T.; Nicol, T. H.; Ostroumov, P. N.; Reid, T. C.; Shepard, K. W.; White, M. J.

    2015-12-01

    Argonne National Laboratory has developed and is implementing a novel 2 K superconducting cavity cryomodule operating at 162.5 MHz. This cryomodule is designed for the acceleration of 2 mA H-/proton beams from 2.1 to 10 MeV as part of the Fermilab Proton Improvement Project-II (PIP-II). This work is an evolution of techniques recently implemented in two previous heavy-ion accelerator cryomodules now operating at Argonne National Laboratory. The 2 K cryomodule is comprised of 8 half-wave cavities operated in the continuous wave mode with 8 superconducting magnets, one in front of each cavity. All of the solenoids and cavities operate off of a single gravity fed 2 K helium cryogenic system expected to provide up to 50 W of 2 K cooling. Here we review the mechanical design of the cavities and cryomodule which were developed using methods similar to those required in the ASME Boiler and Pressure Vessel Code. This will include an overview of the cryomodule layout, the alignment of the accelerator components via modifications of the cryomodule vacuum vessel and provide a status report on the cryomodule assembly.

  2. Research of the impact of coupling between unit cells on performance of linear-to-circular polarization conversion metamaterial with half transmission and half reflection

    NASA Astrophysics Data System (ADS)

    Guo, Mengchao; Zhou, Kan; Wang, Xiaokun; Zhuang, Haiyan; Tang, Dongming; Zhang, Baoshan; Yang, Yi

    2018-04-01

    In this paper, the impact of coupling between unit cells on the performance of linear-to-circular polarization conversion metamaterial with half transmission and half reflection is analyzed by changing the distance between the unit cells. An equivalent electrical circuit model is then built to explain it based on the analysis. The simulated results show that, when the distance between the unit cells is 23 mm, this metamaterial converts half of the incident linearly-polarized wave into reflected left-hand circularly-polarized wave and converts the other half of it into transmitted left-hand circularly-polarized wave at 4.4 GHz; when the distance is 28 mm, this metamaterial reflects all of the incident linearly-polarized wave at 4.4 GHz; and when the distance is 32 mm, this metamaterial converts half of the incident linearly-polarized wave into reflected right-hand circularly-polarized wave and converts the other half of it into transmitted right-hand circularly-polarized wave at 4.4 GHz. The tunability is realized successfully. The analysis shows that the changes of coupling between unit cells lead to the changes of performance of this metamaterial. The coupling between the unit cells is then considered when building the equivalent electrical circuit model. The built equivalent electrical circuit model can be used to perfectly explain the simulated results, which confirms the validity of it. It can also give help to the design of tunable polarization conversion metamaterials.

  3. The Role of Nicotine Dependence in E-Cigarettes' Potential for Smoking Reduction.

    PubMed

    Selya, Arielle S; Dierker, Lisa; Rose, Jennifer S; Hedeker, Donald; Mermelstein, Robin J

    2017-07-07

    E-cigarettes (Electronic Nicotine Delivery Systems, or ENDS) are an increasingly popular tobacco product among youth. Some evidence suggests that e-cigarettes may be effective for harm reduction and smoking cessation, although these claims remain controversial. Little is known about how nicotine dependence may contribute to e-cigarettes' effectiveness in reducing or quitting conventional smoking. A cohort of young adults were surveyed over 4 years (approximately ages 19-23). Varying-coefficient models (VCMs) were used to examine the relationship between e-cigarette use and conventional smoking frequency, and how this relationship varies across users with different nicotine dependence levels. Lifetime, but not recent, e-cigarette use was associated with less frequent concurrent smoking of conventional cigarettes among those with high levels of nicotine dependence. However, nondependent e-cigarette users smoked conventional cigarettes slightly more frequently than those who had never used e-cigarettes. Nearly half of ever e-cigarette users reported using them to quit smoking at the last measurement wave. For those who used e-cigarettes in a cessation attempt, the frequency of e-cigarette use was not associated with reductions in future conventional smoking frequency. These findings offer possible support that e-cigarettes may act as a smoking reduction method among highly nicotine-dependent young adult cigarette smokers. However, the opposite was found in non-dependent smokers, suggesting that e-cigarette use should be discouraged among novice tobacco users. Additionally, although a substantial proportion of young adults used e-cigarettes to help them quit smoking, these self-initiated quit attempts with e-cigarettes were not associated with future smoking reduction or cessation. This study offers potential support for e-cigarettes as a smoking reduction tool among highly nicotine-dependent young adult conventional smokers, although the extent and nature of this

  4. Characterization of Regular Wave, Irregular Wave, and Large-Amplitude Wave Group Kinematics in an Experimental Basin

    DTIC Science & Technology

    2011-02-01

    seakeeping was the transient wave technique, developed analytically by Davis and Zarnick (1964). At the David Taylor Model Basin, Davis and Zarnick, and...Gersten and Johnson (1969) applied the transient wave technique to regular wave model experiments for heave and pitch, at zero forward speed. These...tests demonstrated a potential reduction by an order of magnitude of the total necessary testing time. The transient wave technique was also applied to

  5. Wave power potential in Malaysian territorial waters

    NASA Astrophysics Data System (ADS)

    Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul

    2016-06-01

    Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.

  6. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization.

    PubMed

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K

    2006-09-20

    An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.

  7. A model with chaotic scattering and reduction of wave packets

    NASA Astrophysics Data System (ADS)

    Guarneri, Italo

    2018-03-01

    Some variants of Smilansky’s model of a particle interacting with harmonic oscillators are examined in the framework of scattering theory. A dynamical proof is given of the existence of wave operators. Analysis of a classical version of the model provides a transparent picture for the spectral transition to which the quantum model owes its renown, and for the underlying dynamical behaviour. The model is thereby classified as an extreme case of chaotic scattering, with aspects related to wave packet reduction and irreversibility.

  8. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  9. Direct synthesis of Fe3 C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction.

    PubMed

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Huang, Yunjie; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-08-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3 C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electrocatalyst, the graphene-based composite exhibited excellent catalytic activity towards the oxygen reduction reaction in alkaline solution with an onset potential of ca. 1.05 V (vs. the reversible hydrogen electrode) and a half-wave potential of 0.83 V, which is comparable to the commercial Pt/C catalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Generalized Sagdeev potential theory for shock waves modeling

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-05-01

    In this paper, we develop an innovative approach to study the shock wave propagation using the Sagdeev potential method. We also present an analytical solution for Korteweg de Vries Burgers (KdVB) and modified KdVB equation families with a generalized form of the nonlinearity term which agrees well with the numerical one. The novelty of the current approach is that it is based on a simple analogy of the particle in a classical potential with the variable particle energy providing one with a deeper physical insight into the problem and can easily be extended to more complex physical situations. We find that the current method well describes both monotonic and oscillatory natures of the dispersive-diffusive shock structures in different viscous fluid configurations. It is particularly important that all essential parameters of the shock structure can be deduced directly from the Sagdeev potential in small and large potential approximation regimes. Using the new method, we find that supercnoidal waves can decay into either compressive or rarefactive shock waves depending on the initial wave amplitude. Current investigation provides a general platform to study a wide range of phenomena related to nonlinear wave damping and interactions in diverse fluids including plasmas.

  11. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  12. Study of the potential of wave energy in Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  13. Derivative expansion of wave function equivalent potentials

    NASA Astrophysics Data System (ADS)

    Sugiura, Takuya; Ishii, Noriyoshi; Oka, Makoto

    2017-04-01

    Properties of the wave function equivalent potentials introduced by the HAL QCD collaboration are studied in a nonrelativistic coupled-channel model. The derivative expansion is generalized, and then applied to the energy-independent and nonlocal potentials. The expansion coefficients are determined from analytic solutions to the Nambu-Bethe-Salpeter wave functions. The scattering phase shifts computed from these potentials are compared with the exact values to examine the convergence of the expansion. It is confirmed that the generalized derivative expansion converges in terms of the scattering phase shift rather than the functional structure of the non-local potentials. It is also found that the convergence can be improved by tuning either the choice of interpolating fields or expansion scale in the generalized derivative expansion.

  14. Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Zhao, Songlin

    2018-01-01

    In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.

  15. Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  16. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  17. Sulfur doped reduced graphene oxides with enhanced catalytic activity for oxygen reduction via molten salt redox-sulfidation.

    PubMed

    Gu, Yuxing; Chen, Zhigang; Tang, Juanjuan; Xiao, Wei; Mao, Xuhui; Zhu, Hua; Wang, Dihua

    2016-12-07

    A spontaneous redox reaction of reduced graphene oxide (rGO) in molten Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 with a small amount of Li 2 SO 4 at 550 °C was applied to synthesize sulfur and sulfur-cobalt doped rGOs (S-rGO/S-Co-rGO). The obtained S-rGOs and S-Co-rGOs show enhanced catalytic activity for the oxygen reduction reaction (ORR) in alkaline aqueous solutions. The onset reduction potential and the half-wave potential of S-Co-rGO are 60 and 40 mV more positive than those of the original rGO, respectively. The reduction current density of S-Co-rGO increases by nearly five times. This study provides a green and continuous molten salt doping approach for the fabrication of heteroatom-doped graphene with excellent catalytic activity for the ORR.

  18. Isotopic Probe Illuminates the Role of the Electrode Surface in Proton Coupled Hydride Transfer Electrochemical Reduction of Pyridinium on Pt(111)

    DOE PAGES

    Zeitler, Elizabeth L.; Ertem, Mehmed Z.; Pander, III, James E.; ...

    2015-10-21

    A recently proposed mechanism for electrochemical CO 2 reduction on Pt (111) catalyzed by aqueous acidic pyridine solutions suggests that the observed redox potential of ca. -600 mV vs. SCE is due to the one-electron reduction of pyridinium through proton coupled electron transfer (PCET) to form H atoms adsorbed on the Pt surface (H ads). The initial pyridinium reduction was probed isotopically via deuterium substitution. A combined experimental and theoretical analysis found equilibrium isotope effects (EIE) due to deuterium substitution at the acidic pyridinium site. A shift in the cathodic cyclic voltammetric half wave potential of -25 mV was observed,more » consistent with the theoretical prediction of -40 mV based on the recently proposed reaction mechanism where pyridinium is essential to establish a high concentration of Bronsted acid in contact with the substrate CO 2 and with the Pt surface. A prefeature in the cyclic voltammogram was examined under isotopic substitution and indicated an H-ads intermediate in pyridinium reduction. In conclusion, the theoretical prediction and observation of an BM supported the assignment of the cathodic wave to the proposed reduction of pyridinium through PCET forming H ads and eventually H 2 on the Pt surface.« less

  19. Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.

    1982-01-01

    The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.

  20. A mechanism of wave drag reduction in the thermal energy deposition experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markhotok, A., E-mail: amarhotk@phys.washington.edu

    2015-06-15

    Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressuremore » and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.« less

  1. Ionizing potential waves and high-voltage breakdown streamers.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  2. Extracellular Cl- regulates electrical slow waves and setting of smooth muscle membrane potential by interstitial cells of Cajal in mouse jejunum.

    PubMed

    Saravanaperumal, Siva Arumugam; Gibbons, Simon J; Malysz, John; Sha, Lei; Linden, David R; Szurszewski, Joseph H; Farrugia, Gianrico

    2018-01-01

    What is the central question of this study? The aim was to investigate the roles of extracellular chloride in electrical slow waves and resting membrane potential of mouse jejunal smooth muscle by replacing chloride with the impermeant anions gluconate and isethionate. What is the main finding and its importance? The main finding was that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in interstitial cells of Cajal (ICCs) is a major contributor to the shape of electrical slow waves. Furthermore, the data confirm that ICCs set the smooth muscle membrane potential and that altering Cl - homeostasis in ICCs can alter the smooth muscle membrane potential. Intracellular Cl - homeostasis is regulated by anion-permeable channels and transporters and contributes to excitability of many cell types, including smooth muscle and interstitial cells of Cajal (ICCs). Our aims were to investigate the effects on electrical activity in mouse jejunal muscle strips of replacing extracellular Cl - (Cl - o ) with the impermeant anions gluconate and isethionate. On reducing Cl - o , effects were observed on electrical slow waves, with small effects on smooth muscle membrane voltage (E m ). Restoration of Cl - hyperpolarized smooth muscle E m proportional to the change in Cl - o concentration. Replacement of 90% of Cl - o with gluconate reversibly abolished slow waves in five of nine preparations. Slow waves were maintained in isethionate. Gluconate and isethionate substitution had similar concentration-dependent effects on peak amplitude, frequency, width at half peak amplitude, rise time and decay time of residual slow waves. Gluconate reduced free ionized Ca 2+ in Krebs solutions to 0.13 mm. In Krebs solutions containing normal Cl - and 0.13 mm free Ca 2+ , slow wave frequency was lower, width at half peak amplitude was smaller, and decay time was faster. The transient hyperpolarization following restoration of Cl - o was not observed

  3. Dynamic interaction of twin vertically overlapping lined tunnels in an elastic half space subjected to incident plane waves

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Wang, Yirui; Liang, Jianwen

    2016-06-01

    The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.

  4. Volumetric strain in relation to particle displacements for body and surface waves in a general viscoelastic half-space

    USGS Publications Warehouse

    Borcherdt, R.D.

    1988-01-01

    Dilatational earth strain, associated with the radiation fields for several hundred local, regional, and teleseismic earthquakes, has been recorded over an extended bandwidth and dynamic range at four borehole sites near the San Andreas fault, CA. The general theory of linear viscoelasticity is applied to account for anelasticity of the near-surface materials and to provide a mathematical basis for interpretation of seismic radiation fields as detected simultaneously by co-located volumetric strain meters and seismometers. The general theory is applied to describe volumetric strain and displacement for general (homogeneous or inhomogeneous) P and S waves in an anelastic whole space. Solutions to the free-surface reflection problems for incident general P and S-I waves are used to evaluate the effect of the free surface on observations from co-located sensors. Corresponding expressions are derived for a Rayleigh-type surface wave on a linear viscoelastic half-space. The theory predicts a number of anelastic wave field characteristics that can be inferred from observation of volumetric strains and displacement fields as detected by co-located sensors that cannot be inferred from either sensor alone. -from Author

  5. Development of an Inductively Coupled Thermometer for a Cryogenic Half-Wave Plate

    NASA Astrophysics Data System (ADS)

    Madurowicz, Alexander; Kusaka, Akito

    2017-01-01

    The current state of Cosmic Microwave Background (CMB) research has focused much attention on the measurement of polarization. In an effort to modulate the CMB polarization while also minimizing photon noise due to thermal emission, we are developing a sapphire half-wave plate (HWP) cooled to 50 K rotating at 2 Hz on a superconducting magnetic levitating bearing. In order to measure the temperature of the rotor without making physical contact, we designed an inductively coupled cryogenic thermometer. The complex impedance of the circuit has a resonant peak when driven around 1 MHz. The width of this resonance is dependent on the value of the resistor, which varies with temperature and functions as a thermometer once calibrated. In this talk, we will present results from stationary measurements of this impedance and discuss the temperature accuracy of this thermometer, as well as a preliminary circuit design to measure this impedance during the HWP rotation.

  6. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE PAGES

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.; ...

    2017-04-18

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  7. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  8. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission

    NASA Astrophysics Data System (ADS)

    Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young

    2018-02-01

    Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.

  9. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction.

    PubMed

    Wang, Jing; Huang, Zhengqing; Liu, Wei; Chang, Chunran; Tang, Haolin; Li, Zhijun; Chen, Wenxing; Jia, Chunjiang; Yao, Tao; Wei, Shiqiang; Wu, Yuen; Li, Yadong

    2017-12-06

    We develop a host-guest strategy to construct an electrocatalyst with Fe-Co dual sites embedded on N-doped porous carbon and demonstrate its activity for oxygen reduction reaction in acidic electrolyte. Our catalyst exhibits superior oxygen reduction reaction performance, with comparable onset potential (E onset , 1.06 vs 1.03 V) and half-wave potential (E 1/2 , 0.863 vs 0.858 V) than commercial Pt/C. The fuel cell test reveals (Fe,Co)/N-C outperforms most reported Pt-free catalysts in H 2 /O 2 and H 2 /air. In addition, this cathode catalyst with dual metal sites is stable in a long-term operation with 50 000 cycles for electrode measurement and 100 h for H 2 /air single cell operation. Density functional theory calculations reveal the dual sites is favored for activation of O-O, crucial for four-electron oxygen reduction.

  10. Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. M., E-mail: smilehhm@163.com; Luo, S. J.; Yao, K. L.

    2014-01-28

    Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range ofmore » c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.« less

  11. Quantitative evaluation of thickness reduction in corroded steel plates using surface SH waves

    NASA Astrophysics Data System (ADS)

    Suzuki, Keigo; Ha, Nguyen Phuong; Otobe, Yuichi; Tamura, Hiroshi; Sasaki, Eiichi

    2018-04-01

    This study evaluates the effect of reduction in plate thickness for a steel plate existing in concrete on guided ultrasonic SH (g-SH) waves. It has been found that the time of flight (TOF) increases if the plate thickness is reduced. The parameter investigated in this study is a delay time obtained from a TOF comparison between a healthy and a damaged plate. The wave propagation is simulated by dynamic Finite Element Analysis (FEA). The resulting data are then used to propose a theoretical equation for predicting TOF. The prediction of delay time obtained from the proposed equation is found to be in general agreement, with an error of 10% (or less), when compared with the experiment results, if the thickness reduction is over 3.65mm.

  12. Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.

    2009-09-01

    Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.

  13. Half-and-Half Palatoplasty.

    PubMed

    Han, Hyun Ho; Kang, In Sook; Rhie, Jong Won

    2014-08-01

    A 14-month-old child was diagnosed with a Veau Class II cleft palate. Von Langenbeck palatoplasty was performed for the right palate, and V-Y pushback palatoplasty was performed for the left palate. The child did not have a special problem during the surgery, and the authors were able to elongate the cleft by 10 mm. Contrary to preoperative concerns regarding the hybrid use of palatoplasties, the uvula and midline incisions remained balanced in the middle. The authors named this combination method "half-and-half palatoplasty" and plan to conduct a long-term follow up study as a potential solution that minimizes the complications of palatoplasty.

  14. Half-and-Half Palatoplasty

    PubMed Central

    Han, Hyun Ho; Kang, In Sook

    2014-01-01

    A 14-month-old child was diagnosed with a Veau Class II cleft palate. Von Langenbeck palatoplasty was performed for the right palate, and V-Y pushback palatoplasty was performed for the left palate. The child did not have a special problem during the surgery, and the authors were able to elongate the cleft by 10 mm. Contrary to preoperative concerns regarding the hybrid use of palatoplasties, the uvula and midline incisions remained balanced in the middle. The authors named this combination method "half-and-half palatoplasty" and plan to conduct a long-term follow up study as a potential solution that minimizes the complications of palatoplasty. PMID:28913201

  15. Assessment of shock wave lithotripters via cavitation potential

    PubMed Central

    Iloreta, Jonathan I.; Zhou, Yufeng; Sankin, Georgy N.; Zhong, Pei; Szeri, Andrew J.

    2008-01-01

    A method to characterize shock wave lithotripters by examining the potential for cavitation associated with the lithotripter shock wave (LSW) has been developed. The method uses the maximum radius achieved by a bubble subjected to a LSW as a representation of the cavitation potential for that region in the lithotripter. It is found that the maximum radius is determined by the work done on a bubble by the LSW. The method is used to characterize two reflectors: an ellipsoidal reflector and an ellipsoidal reflector with an insert. The results show that the use of an insert reduced the −6 dB volume (with respect to peak positive pressure) from 1.6 to 0.4 cm3, the −6 dB volume (with respect to peak negative pressure) from 14.5 to 8.3 cm3, and reduced the volume characterized by high cavitation potential (i.e., regions characterized by bubbles with radii larger than 429 µm) from 103 to 26 cm3. Thus, the insert is an effective way to localize the potentially damaging effects of shock wave lithotripsy, and suggests an approach to optimize the shape of the reflector. PMID:19865493

  16. Alpha Decay Potential Barriers and Half-Lives and Analytical Formula Predictions for Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Royer, Guy; Zhang, Hongfei

    The α decay potential barriers are determined in the cluster-like shape path within a generalized liquid drop model including the proximity effects between the α particle and the daughter nucleus and adjusted to reproduce the experimental Qα. The α emission half-lives are determined within the WKB penetration probability. Calculations using previously proposed formulae depending only on the mass and charge of the alpha emitter and Qα are also compared with new experimental alpha-decay half-lives. The agreement allows to provide predictions for the α decay half-lives of other still unknown superheavy nuclei using the Qα determined from the 2003 atomic mass evaluation of Audi, Wapstra and Thibault.

  17. s -wave scattering length of a Gaussian potential

    NASA Astrophysics Data System (ADS)

    Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim

    2018-04-01

    We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.

  18. Speckle reduction in optical coherence tomography images based on wave atoms

    PubMed Central

    Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping

    2014-01-01

    Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507

  19. Reduction of high-energy shock-wave-induced renal tubular injury by selenium.

    PubMed

    Strohmaier, W L; Lahme, S; Weidenbach, P M; Bichler, K H

    1999-10-01

    In shock-wave-induced renal injury cavitation-generated free radicals play an important role. Using an in vitro model with Madin-Darby canine kidney (MDCK) cells, we investigated the influence of selenium, a free radical scavenger, in shock-wave-induced tubular cell injury. Suspensions of MDCK cells (33 x 10(6) cells/ml) were placed in small containers (volume 1.1 ml) for shock wave exposure. Two groups of 12 containers each were examined: (1) control (no medication), (2) selenium (0.4 microg/ml nutrient medium). Six containers in each group were exposed to shock waves (impulse rate 256, frequency 60 Hz, generator voltage 18 kV), while the other six containers in each group served as a control. After shock wave exposure, the concentration of cellular enzymes such as lactate dehydrogenase (LDH), N-acetyl-beta-glucosaminidase (NAG), glutamate oxaloacetate transaminase (GOT) and glutamate lactate dehydrogenase (GLDH) in the nutrient medium was examined. Following shock wave exposure there was a significant rise in LDH, NAG, GOT and GLDH concentrations. Selenium reduced this enzyme leakage significantly. Thus we conclude that selenium protects renal tubular cells against shock-wave-induced injury. Since selenium is an essential part of glutathione peroxidase, this effect seems to be mediated by a reduction in reactive oxygen species.

  20. Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity

    PubMed Central

    Tiwari, Jitendra N.; Nath, Krishna; Kumar, Susheel; Tiwari, Rajanish N.; Kemp, K. Christian; Le, Nhien H.; Youn, Duck Hyun; Lee, Jae Sung; Kim, Kwang S.

    2013-01-01

    Nanosize platinum clusters with small diameters of 2–4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA–graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA–graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA–graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries. PMID:23900456

  1. Bound states of moving potential wells in discrete wave mechanics

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2017-10-01

    Discrete wave mechanics describes the evolution of classical or matter waves on a lattice, which is governed by a discretized version of the Schrödinger equation. While for a vanishing lattice spacing wave evolution of the continuous Schrödinger equation is retrieved, spatial discretization and lattice effects can deeply modify wave dynamics. Here we discuss implications of breakdown of exact Galilean invariance of the discrete Schrödinger equation on the bound states sustained by a smooth potential well which is uniformly moving on the lattice with a drift velocity v. While in the continuous limit the number of bound states does not depend on the drift velocity v, as one expects from the covariance of ordinary Schrödinger equation for a Galilean boost, lattice effects can lead to a larger number of bound states for the moving potential well as compared to the potential well at rest. Moreover, for a moving potential bound states on a lattice become rather generally quasi-bound (resonance) states.

  2. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation.

    PubMed

    Savini, Giorgio; Pisano, Giampaolo; Ade, Peter A R

    2006-12-10

    We adopted an existing formalism and modified it to simulate, with high precision, the transmission, reflection, and absorption of multiple-plate birefringent devices as a function of frequency. To validate the model, we use it to compare the measured properties of an achromatic five-plate device with a broadband antireflection coating to expectations derived from the material optical constants and its geometric configuration. The half-wave plate presented here is observed to perform well with a phase shift variation of < 2 degrees from the ideal 180 degrees over a bandwidth of Deltav/v approximately 1 at millimeter wavelengths. This formalism represents a powerful design tool for birefringent polarization modulators and enables its optical properties to be specified with high accuracy.

  3. Manganese oxide/poly(3,4-ethylenedioxythiophene) hybrid electrocatalysts for the oxygen reduction reaction in alkaline fuel cells

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.

    2016-08-22

    Manganese oxide/poly(3,4-ethylene-dioxythiophene) (MnO x/ PEDOT) nanostructured hybrid thin films were prepared using a simple anodic electrodeposition process from aqueous solution, and then tested for oxygen reduction reaction (ORR) activity in alkaline electrolyte using rotating disk electrode and rotating ring disk electrode methods. MnO x/PEDOT provided improvements over MnO x-only and PEDOT-only control films, with > 0.2 V decrease in onset and half-wave overpotentials, and > 1.5 times increase in terminal current density. The MnO x/PEDOT film exhibited only a slightly lower n value (n = 3.86-3.92) than the 20% Pt/C benchmark electrocatalyst (n = 3.98) across all potentials. MnO x/PEDOTmore » also displayed a more positive half-wave potential and superior electrocatalytic selectivity for the ORR upon methanol exposure than 20% Pt/C. Here, the high activity and synergism of MnO x/PEDOT towards the ORR is attributed to effective intermixing/dispersion of the two materials, intimate substrate contact with improved charge transfer processes attained by co-electrodepositing MnO x with PEDOT and due to the increase in Mn 3+ content at the surface of the oxide.« less

  4. Manganese oxide/poly(3,4-ethylenedioxythiophene) hybrid electrocatalysts for the oxygen reduction reaction in alkaline fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Timothy N.; Vigil, Julian A.

    Manganese oxide/poly(3,4-ethylene-dioxythiophene) (MnO x/ PEDOT) nanostructured hybrid thin films were prepared using a simple anodic electrodeposition process from aqueous solution, and then tested for oxygen reduction reaction (ORR) activity in alkaline electrolyte using rotating disk electrode and rotating ring disk electrode methods. MnO x/PEDOT provided improvements over MnO x-only and PEDOT-only control films, with > 0.2 V decrease in onset and half-wave overpotentials, and > 1.5 times increase in terminal current density. The MnO x/PEDOT film exhibited only a slightly lower n value (n = 3.86-3.92) than the 20% Pt/C benchmark electrocatalyst (n = 3.98) across all potentials. MnO x/PEDOTmore » also displayed a more positive half-wave potential and superior electrocatalytic selectivity for the ORR upon methanol exposure than 20% Pt/C. Here, the high activity and synergism of MnO x/PEDOT towards the ORR is attributed to effective intermixing/dispersion of the two materials, intimate substrate contact with improved charge transfer processes attained by co-electrodepositing MnO x with PEDOT and due to the increase in Mn 3+ content at the surface of the oxide.« less

  5. Wide spectral range multiple orders and half-wave achromatic phase retarders fabricated from two lithium tantalite single crystal plates

    NASA Astrophysics Data System (ADS)

    Emam-Ismail, M.

    2015-11-01

    In a broad spectral range (300-2500 nm), we report the use of channeled spectra formed from the interference of polarized white light to extract the dispersion of the phase birefringence Δnp(λ) of the x- and y-cuts of lithium tantalite (LiTaO3:LT) plates. A new method named as wavenumber difference method is used to extract the spectral behavior of the phase birefringence of the x- and y- cuts of LT plates. The correctness of the obtained birefringence data is confirmed by using Jones vector method through recalculating the plates thicknesses. The spectral variation of the phase birefringence Δnp(λ) of the x- and y-cuts of LT plates is fitted to Cauchy dispersion function with relative error for both x- and y-cuts of order 2.4×10-4. The group birefringence dispersion Δng (λ) of the x- and y-cuts of LT plates is also calculated and fitted to Ghosh dispersion function with relative error for both x- and y-cuts of order 2.83×10-4. Furthermore, the phase retardation introduced by the x- and y-cuts of LT plates is also calculated. It is found that the amount of phase retardation confirms that the x- and y-cuts of LT plates can act as a multiple order half- and quarter-wave plates working at many different wavelengths through the spectral range 300-2500 nm. For the x- and y-cuts of LT plates, a large difference between group and phase birefringence is observed at a short wavelength (λ=300 nm); while such difference progressively diminished at longer wavelength (λ=2000 nm). In the near infrared region (NIR) region (700-2500 nm), a broad spectral full width at half maximum (FWHM) is observed for either x- or y-cut of LT plate which can act as if it is working as a zero order wave plate. Finally, an achromatic half-wave plate working at 598 nm and covering a wide spectral range (300-900 nm) is demonstrated experimentally by combining both x- and y-cuts of LT plates.

  6. Half Moon Bay, Grays Harbor, Washington: Movable-Bed Physical Model Study

    DTIC Science & Technology

    2006-09-01

    wave machine used in Half Moon Bay physical model.................................50 Figure 28. Wave analysis output from model wave measurements...Point Chehalis used to reduce strong longshore current................82 Figure 46. Analysis of irregular waves measured at model wave Gauge 4...required several reconstruction efforts between origi- nal construction and present day due to the harsh wave climate on the Washington coast. After

  7. Non-plane-wave Hartree-Fock states and nuclear homework potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, G.; Plastino, A.; de Llano, M.

    1979-12-01

    It is shown that non-plane-wave single-particle Hartree-Fock orbitals giving rise to a ''spin-density-wave-like'' structure give lower energy than plane waves beyond a certain relatively low density in both nuclear and neutron matter with homework pair potentials v/sub 1/ and v/sub 2/.

  8. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id; Suparmi,; Cari,

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectramore » of system.« less

  9. Assessment of wave energy potential along the south coast of Java Island

    NASA Astrophysics Data System (ADS)

    Song, Qingyang; Mayerle, Roberto

    2018-04-01

    The south coast of Java Island has a great potential for wave energy. A long-term analysis of a 10-year wave dataset obtained from the ERA-Interim database is performed for preliminary wave energy assessment in this area, and it was seen that the annual median power is expected to exceed 20kW/m along the coast. A coastal wave model with an unstructured grid was run to reveal the wave conditions and to assess the wave energy potential along the coast in detail. The effect of swells and local wind on the wave conditions is investigated. Annual median wave power, water depth and distance from the coast are selected as criteria for the identification of suitable locations for wave energy conversion. Two zones within the study area emerge to be suitable for wave energy extraction. Swells from the southwest turned out to be the major source of wave energy and highest monthly median wave power reached about 33kW/m.

  10. Harm Reduction Agencies as a Potential Site for Buprenorphine Treatment.

    PubMed

    Fox, Aaron D; Chamberlain, Adam; Frost, Taeko; Cunningham, Chinazo O

    2015-01-01

    Harm reduction agencies complement addiction treatment by providing diverse services that improve the health of people who use drugs. Buprenorphine maintenance treatment (BMT) is an effective opioid addiction treatment that may be provided from flexible settings, potentially including harm reduction agencies. This study investigated attitudes toward different potential sites for BMT (harm reduction agencies, general medical clinics, and drug treatment programs) among harm reduction clients. Using computer-based interviews, participants indicated preferred potential site for BMT (harm reduction agency, drug treatment program, or general medical clinic), interest in BMT by potential site, motivation for treatment, and barriers to BMT. Multivariable logistic regression was used to determine factors associated with harm reduction agency preference. Of 102 opioid users, the most preferred potential site for BMT was a harm reduction agency (51%), whereas fewer preferred general medical clinics (13%), drug treatment programs (12%), or were not interested in BMT (25%). In multivariable analysis, experiencing ≥1 barrier to BMT was strongly associated with preferring harm reduction agencies (adjusted odds ratio [aOR] = 3.39, 95% confidence interval [CI]: 1.00-11.43). The potential to initiate BMT at harm reduction agencies is highly favorable among harm reduction clients, especially among those experiencing barriers to BMT. Offering BMT at harm reduction agencies could improve access to treatment, but studies are needed to determine safety and efficacy of this approach.

  11. CMS-Wave

    DTIC Science & Technology

    2015-10-30

    Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can

  12. Catching the right wave: evaluating wave energy resources and potential compatibility with existing marine and coastal uses.

    PubMed

    Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.

  13. Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses

    PubMed Central

    Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  14. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus

    2014-09-01

    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm-2) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.

  15. Universal potential-barrier penetration by initially confined wave packets

    NASA Astrophysics Data System (ADS)

    Granot, Er'El; Marchewka, Avi

    2007-07-01

    The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.

  16. On Reductions of the Hirota-Miwa Equation

    NASA Astrophysics Data System (ADS)

    Hone, Andrew N. W.; Kouloukas, Theodoros E.; Ward, Chloe

    2017-07-01

    The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.

  17. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    NASA Astrophysics Data System (ADS)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  18. Constant-intensity waves and their modulation instability in non-Hermitian potentials

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2015-07-01

    In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.

  19. The sea surface currents as a potential factor in the estimation and monitoring of wave energy potential

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis

    2015-04-01

    The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.

  20. Symmetry Reductions, Integrability and Solitary Wave Solutions to High-Order Modified Boussinesq Equations with Damping Term

    NASA Astrophysics Data System (ADS)

    Yan, Zhen-Ya; Xie, Fu-Ding; Zhang, Hong-Qing

    2001-07-01

    Both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou are extended to reduce the high-order modified Boussinesq equation with the damping term (HMBEDT) arising in the general Fermi-Pasta-Ulam model. As a result, several types of similarity reductions are obtained. It is easy to show that the nonlinear wave equation is not integrable under the sense of Ablowitz's conjecture from the reduction results obtained. In addition, kink-shaped solitary wave solutions, which are of important physical significance, are found for HMBEDT based on the obtained reduction equation. The project supported by National Natural Science Foundation of China under Grant No. 19572022, the National Key Basic Research Development Project Program of China under Grant No. G1998030600 and Doctoral Foundation of China under Grant No. 98014119

  1. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  2. Charged Particle Detection: Potential of Love Wave Acoustic Devices

    NASA Astrophysics Data System (ADS)

    Pedrick, Michael; Tittmann, Bernhard

    2006-03-01

    An investigation of the dependence of film density on group and phase velocities in a Love Wave Device shows potential for acoustic-based charged particle detection (CPD). Exposure of an ion sensitive photoresist to charged particles causes localized changes in density through either scission or cross-linking. A theoretical model was developed to study ion fluence effects on Love Wave sensitivity based on: ion energy, effective density changes, layer thickness and mode selection. The model is based on a Poly(Methyl Methacralate) (PMMA) film deposited on a Quartz substrate. The effect of Helium ion fluence on the properties of PMMA has previously been studied. These guidelines were used as an initial basis for the prediction of helium ion detection in a PMMA layer. Procedures for experimental characterization of ion effects on the material properties of PMMA are reviewed. Techniques for experimental validation of the predicted velocity shifts are discussed. A Love Wave Device for CPD could potentially provide a cost-effective alternative to semiconductor or photo-based counterparts. The potential for monitoring ion implantation effects on material properties is also discussed.

  3. Modeling of matter-wave solitons in a nonlinear inductor-capacitor network through a Gross-Pitaevskii equation with time-dependent linear potential

    NASA Astrophysics Data System (ADS)

    Kengne, E.; Lakhssassi, A.; Liu, W. M.

    2017-08-01

    A lossless nonlinear L C transmission network is considered. With the use of the reductive perturbation method in the semidiscrete limit, we show that the dynamics of matter-wave solitons in the network can be modeled by a one-dimensional Gross-Pitaevskii (GP) equation with a time-dependent linear potential in the presence of a chemical potential. An explicit expression for the growth rate of a purely growing modulational instability (MI) is presented and analyzed. We find that the potential parameter of the GP equation of the system does not affect the different regions of the MI. Neglecting the chemical potential in the GP equation, we derive exact analytical solutions which describe the propagation of both bright and dark solitary waves on continuous-wave (cw) backgrounds. Using the found exact analytical solutions of the GP equation, we investigate numerically the transmission of both bright and dark solitary voltage signals in the network. Our numerical studies show that the amplitude of a bright solitary voltage signal and the depth of a dark solitary voltage signal as well as their width, their motion, and their behavior depend on (i) the propagation frequencies, (ii) the potential parameter, and (iii) the amplitude of the cw background. The GP equation derived in this paper with a time-dependent linear potential opens up different ideas that may be of considerable theoretical interest for the management of matter-wave solitons in nonlinear L C transmission networks.

  4. Coherent wave packet dynamics in a double-well potential in cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui

    2018-02-01

    We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.

  5. Reduction of optically observed artillery blast wave trajectories using low dimensionality models

    NASA Astrophysics Data System (ADS)

    Steward, Bryan J.; Gross, Kevin C.; Perram, Glen P.

    2011-05-01

    Muzzle blast trajectories from firings of a 152 mm caliber gun howitzer were obtained with high-speed optical imagers and used to assess the fidelity with which low dimensionality models can be used for data reduction. Characteristic flow regions were defined for the blast waves. The near-field region was estimated to extend to 0.98 - 1.25 meters from the muzzle and the far-field region was estimated to begin at 2.61 - 3.31 meters. Blast wave geometries and radial trajectories were collected in the near through far-fields with visible imagers operating at 1,600 Hz. Beyond the near-field the blast waves exhibited a near-spherical geometry in which the major axis of the blast lay along the axis of the gun barrel and measured within 95% of the minor axis. Several blast wave propagation models were applied to the mid and far-field data to determine their ability to reduce the blast wave trajectories to fewer parameters while retaining the ability to distinguish amongst three munitions configurations. A total of 147 firings were observed and used to assess within-configuration variability relative to separation between configurations. Results show that all models perform well, and drag and point blast model parameters additionally provide insight into phenomenology of the blast.

  6. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes.

    PubMed

    Pérez-Arancibia, Carlos; Bruno, Oscar P

    2014-08-01

    This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.

  7. Voltammetric studies of antimony ions in soda-lime-silica glass melts up to 1873 K.

    PubMed

    Yamashita, H; Yamaguchi, S; Nishimura, R; Maekawa, T

    2001-01-01

    The half wave potential of reduction of Sb5+ in 16Na2O x 10CaO x 74SiO2 glass melts was examined by differential pulse voltammetry up to 1873 K. The half wave potential shifted to the positive direction with an increase in temperature. The results indicate that the equilibrium of Sb5+/Sb3+ shifted to negative direction with an increase in temperature. The half wave potential shifted to positive direction (48 mV at 1473 K) when the atmosphere over the melts changed from pure oxygen gas to air, in agreement with the theoretical prediction. The reversibility of Pt:O2 reference electrode is confirmed.

  8. Regioselective electrochemical reduction of 2,4-dichlorobiphenyl - Distinct standard reduction potentials for carbon-chlorine bonds using convolution potential sweep voltammetry

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.; Boyarskiy, V. P.; Boyarskaya, I. A.

    2010-04-01

    The reductive cleavage of carbon-chlorine bonds in 2,4-dichlorobiphenyl (PCB-7) is investigated using the convolution potential sweep voltammetry and quantum chemical calculations. The potential dependence of the logarithmic rate constant is non-linear which indicates the validity of Marcus-Hush theory of quadratic activation-driving force relationship. The ortho-chlorine of the 2,4-dichlorobiphenyl gets reduced first as inferred from the quantum chemical calculations and bulk electrolysis. The standard reduction potentials pertaining to the ortho-chlorine of 2,4-dichlorobiphenyl and that corresponding to para chlorine of the 4-chlorobiphenyl have been estimated.

  9. N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Chen, Linlin; Guo, Xingpeng; Zhang, Guoan

    2017-08-01

    It is still a great challenge in preparing non-precious metal catalysts with high activity and long-term stability to substitute for precious metal catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile catalyst-N, S co-doped carbon spheres with highly dispersed CoO (CoO@NS-CSs), where biomass glucose spheres act as carbon precursor and H2S, NH3 derived from the decomposition of thiourea not only provide N, S sources but also can etch carbon spheres to produce nanoporous structure. CoO@NS-CSs catalyst exhibits excellent ORR activity with a high onset potential of 0.946 V vs. RHE (reversible hydrogen electrode) and a half-wave potential of 0.821 V vs. RHE through a four-electron pathway in alkaline solution, which is comparable to commercial Pt/C catalyst (onset potential: 0.926 V vs. RHE, half-wave potential: 0.827 V vs. RHE). Furthermore, both the long-term stability and methanol-tolerance of CoO@NS-CSs catalyst are superior to those of commercial Pt/C catalyst. The excellent ORR performance of CoO@NS-CSs catalyst can be attributed to its micro-mesopore structure, high specific surface area (667 m2 g-1), and highly dispersed CoO. This work manifests that the obtained CoO@NS-CSs catalyst is promising to be applied to fuel cells.

  10. Magnitude of parallel pseudo potential in a magnetosonic shock wave

    NASA Astrophysics Data System (ADS)

    Ohsawa, Yukiharu

    2018-05-01

    The parallel pseudo potential F, which is the integral of the parallel electric field along the magnetic field, in a large-amplitude magnetosonic pulse (shock wave) is theoretically studied. Particle simulations revealed in the late 1990's that the product of the elementary charge and F can be much larger than the electron temperature in shock waves, i.e., the parallel electric field can be quite strong. However, no theory was presented for this unexpected result. This paper first revisits the small-amplitude theory for F and then investigates the parallel pseudo potential F in large-amplitude pulses based on the two-fluid model with finite thermal pressures. It is found that the magnitude of F in a shock wave is determined by the wave amplitude, the electron temperature, and the kinetic energy of an ion moving with the Alfvén speed. This theoretically obtained expression for F is nearly identical to the empirical relation for F discovered in the previous simulation work.

  11. Modified screening interaction potential on dust lattice waves in dusty plasma ring

    NASA Astrophysics Data System (ADS)

    He, Kerong; Chen, Hui; Liu, Sanqiu

    2017-05-01

    In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.

  12. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGES

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; ...

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  13. Potential applications of low-energy shock waves in functional urology.

    PubMed

    Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi

    2017-08-01

    A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.

  14. Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions.

    PubMed

    Lobarinas, Edward; Spankovich, Christopher; Le Prell, Colleen G

    2017-06-01

    In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Potential of shock waves to remove calculus and biofilm.

    PubMed

    Müller, Philipp; Guggenheim, Bernhard; Attin, Thomas; Marlinghaus, Ernst; Schmidlin, Patrick R

    2011-12-01

    Effective calculus and biofilm removal is essential to treat periodontitis. Sonic and ultrasonic technologies are used in several scaler applications. This was the first feasibility study to assess the potential of a shock wave device to remove calculus and biofilms and to kill bacteria. Ten extracted teeth with visible subgingival calculus were treated with either shock waves for 1 min at an energy output of 0.4 mJ/mm(2) at 3 Hz or a magnetostrictive ultrasonic scaler at medium power setting for 1 min, which served as a control. Calculus was determined before and after treatment planimetrically using a custom-made software using a grey scale threshold. In a second experiment, multispecies biofilms were formed on saliva-preconditioned bovine enamel discs during 64.5 h. They were subsequently treated with shock waves or the ultrasonic scaler (N = 6/group) using identical settings. Biofilm detachment and bactericidal effects were then assessed. Limited efficiency of the shock wave therapy in terms of calculus removal was observed: only 5% of the calculus was removed as compared to 100% when ultrasound was used (P ≤ 0.0001). However, shock waves were able to significantly reduce adherent bacteria by three orders of magnitude (P ≤ 0.0001). The extent of biofilm removal by the ultrasonic device was statistically similar. Only limited bactericidal effects were observed using both methods. Within the limitations of this preliminary study, the shock wave device was not able to reliably remove calculus but had the potential to remove biofilms by three log steps. To increase the efficacy, technical improvements are still required. This novel noninvasive intervention, however, merits further investigation.

  16. Strong potential wave functions with elastic channel distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macek, J.; Taulbjerg, K.

    1989-06-01

    The strong-potential Born approximation is analyzed in a channel-distorted-wave approach. Channel-distorted SPB wave functions are reduced to a conventional form in which the standard off-energy-shell factor /ital g/ has been replaced by a modified factor ..gamma.., which represents a suitable average of /ital g/ over the momentum distribution of the distorted-channel function. The modified factor is evaluated in a physically realistic model for the distortion potential, and it is found that ..gamma.. is well represented by a slowly varying phase factor. The channel-distorted SPB approximation is accordingly identical to the impulse approximation if the phase variation of ..gamma.. can bemore » ignored. This is generally the case in applications to radiative electron capture and to a good approximation for ordinary capture at not too small velocities.« less

  17. A momentum-space formulation without partial wave decomposition for scattering of two spin-half particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus

    2016-03-11

    A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in twomore » variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.« less

  18. Wave drag reduction due to a self-aligning aerodisk

    NASA Astrophysics Data System (ADS)

    Schnepf, Ch.; Wysocki, O.; Schülein, E.

    2015-06-01

    The effect of a self-aligning aerodisk on the wave drag of a blunt slender body in a pitching maneuver has been numerically investigated. The self-alignment was realized by a coupling of the flow solver and a flight mechanics tool. The slender body was pitched with high repetition rate between α = 0° and 20° at M = 1.41. Even at high α, the concept could align the aerodisk to the oncoming flow. In comparison to the reference body without a self-aligning aerodisk, a distinct drag reduction is achieved. A comparison with existing experimental data shows a qualitatively good agreement considering the shock and separation structure and the kinematics of the aerodisk.

  19. Modulation of somatosensory evoked potentials during wake-sleep states and spike-wave discharges in the rat.

    PubMed

    Shaw, Fu-Zen; Lee, Su-Ying; Chiu, Ted H

    2006-03-01

    To clarify the cortical evoked responses in the primary somatosensory cortex of the rat under states of waking, slow-wave sleep (SWS), paradoxical sleep (PS), and spike-wave discharges (SWDs), which are associated with absence seizure. Somatosensory evoked potentials (SEPs) in response to single- and paired-pulse stimulations under waking, SWS, PS, and SWDs were compared. SEPs to a single-pulse stimulus with regard to cortical spikes of sleep spindles and SWDs were also evaluated. Twenty Long Evans rats. Single- and paired-pulse innocuous electrical stimulations were applied to the tail of rats with chronically implanted electrodes in the primary somatosensory cortex and neck muscle under waking, SWS, PS, and SWDs. SEPs displayed distinct patterns under waking/PS and SWS/SWDs. The short-latency P1-N1 wave of the SEP was severely impeded during SWDs but not in other states. Reduction of the P1-N1 magnitude to the second stimulus of the paired-pulse stimulus for interstimulus intervals of < or = 300 milliseconds appeared in waking and PS states, but the decrease occurred only at particular interstimulus intervals under SWS. Interestingly, augmentation was found under SWDs. Moreover, cyclic augmentation of the P1-N1 magnitude was associated with spindle spikes, but cyclic reduction was observed with SWD spikes. Changes in SEPs are not only behavior dependent, but also phase locked onto ongoing brain activity. Distinct short-term plasticity of SEPs during sleep spindles or SWDs may merit further studies for seizure control and tactile information processing.

  20. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    USGS Publications Warehouse

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  1. Oceanic-wave-measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T.

    1980-01-01

    Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.

  2. The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential

    NASA Astrophysics Data System (ADS)

    Grosche, Christian

    1988-10-01

    Rigorous path integral treatments on the Poincaré upper half-plane with a magnetic field and for the Morse potential are presented. The calculation starts with the path integral on the Poincaré upper half-plane with a magnetic field. By a Fourier expansion and a non-linear transformation this problem is reformulated in terms of the path integral for the Morse potential. This latter problem can be reduced by an appropriate space-time transformation to the path integral for the harmonic oscillator with generalised angular momentum, a technique which has been developed in recent years. The well-known solution for the last problem enables one to give explicit expressions for the Feynman kernels for the Morse potential and for the Poincaré upper half-plane with magnetic field, respectively. The wavefunctions and the energy spectrum for the bound and scattering states are given, respectively.

  3. Generation and reduction of the data for the Ulysses gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Agresti, R.; Bonifazi, P.; Iess, L.; Trager, G. B.

    1987-01-01

    A procedure for the generation and reduction of the radiometric data known as REGRES is described. The software is implemented on a HP-1000F computer and was tested on REGRES data relative to the Voyager I spacecraft. The REGRES data are a current output of NASA's Orbit Determination Program. The software package was developed in view of the data analysis of the gravitational wave experiment planned for the European spacecraft Ulysses.

  4. Can Pacing Be Regulated by Post-Activation Potentiation? Insights from a Self-Paced 30 km Trial in Half-Marathon Runners

    PubMed Central

    Del Rosso, Sebastián; Barros, Edilberto; Tonello, Laís; Oliveira-Silva, Iransé; Behm, David G.; Foster, Carl; Boullosa, Daniel A.

    2016-01-01

    Purpose Given the co-existence of post-activation potentiation (PAP) and fatigue within muscle, it is not known whether PAP could influence performance and pacing during distance running by moderating fatigue. The aim of this study was to assess the influence of PAP on pacing, jumping and other physiological measures during a self-paced 30 km trial. Methods Eleven male endurance-trained runners (half-marathon runners) volunteered to participate in this study. Runners participated in a multi-stage 30 km trial. Before the trial started, determination of baseline blood lactate (bLa) and countermovement jump (CMJ) height was performed. The self-paced 30 km trial consisted of 6 × 5 km splits. At the end of each 5 km split (60 s break), data on time to complete the split, CMJ height, Rating of Perceived Exertion (RPE) and blood lactate were collected while heart rate was continuously monitored. Results There was a significant decrease in speed (e.g. positive pacing strategy after the 4th split, p<0.05) with a progressive increase in RPE throughout the trial. Compared with baseline, CMJ height was significantly (p<0.05) greater than baseline and was maintained until the end of the trial with an increase after the 5th split, concomitant with a significant reduction in speed and an increase in RPE. Significant correlations were found between ΔCMJ and ΔSPEED (r = 0.77 to 0.87, p<0.05) at different time points as well as between RPE and speed (r = -0.61 to -0.82, p<0.05). Conclusion Our results indicates that fatigue and potentiation co-exist during long lasting endurance events, and that the observed increase in jump performance towards the end of the trial could be reflecting a greater potentiation potentially perhaps counteracting the effects of fatigue and preventing further reductions in speed. PMID:26934357

  5. Scattering of SH wave by a semi-cylindrical salient near vertical interface in the bi-material half space

    NASA Astrophysics Data System (ADS)

    Qi, Hui; Zhang, Xi-meng

    2017-10-01

    With the aid of the Green function method and image method, the problem of scattering of SH-wave by a semi-cylindrical salient near vertical interface in bi-material half-space is considered to obtain its steady state response. Firstly, by the means of the image method, Green function which is the essential solution of displacement field is constructed to satisfy the stress-free condition on the horizontal boundary in a right-angle space including a semi-cylindrical salient and bearing a harmonic out-of-plane line source force at any point on the vertical boundary. Secondly, the bi-material is separated into two parts along the vertical interface, then unknown anti-plane forces are applied on the vertical interface, and according to the continuity condition, the first kind of Fredholm integral equations is established to determine unknown anti-plane forces by "the conjunction method", then the integral equations are reduced to the linear algebraic equations by effective truncation. Finally, the dynamic stress concentration factor (DSCF) around the edge of semi-cylindrical salient is calculated, and the influences of incident wave number, incident angle, effect of interface and different combination of material parameters, etc. on DSCF are discussed.

  6. Computing the Dynamic Response of a Stratified Elastic Half Space Using Diffuse Field Theory

    NASA Astrophysics Data System (ADS)

    Sanchez-Sesma, F. J.; Perton, M.; Molina Villegas, J. C.

    2015-12-01

    The analytical solution for the dynamic response of an elastic half-space for a normal point load at the free surface is due to Lamb (1904). For a tangential force, we have Chaós (1960) formulae. For an arbitrary load at any depth within a stratified elastic half space, the resulting elastic field can be given in the same fashion, by using an integral representation in the radial wavenumber domain. Typically, computations use discrete wave number (DWN) formalism and Fourier analysis allows for solution in space and time domain. Experimentally, these elastic Greeńs functions might be retrieved from ambient vibrations correlations when assuming a diffuse field. In fact, the field could not be totally diffuse and only parts of the Green's functions, associated to surface or body waves, are retrieved. In this communication, we explore the computation of Green functions for a layered media on top of a half-space using a set of equipartitioned elastic plane waves. Our formalism includes body and surface waves (Rayleigh and Love waves). These latter waves correspond to the classical representations in terms of normal modes in the asymptotic case of large separation distance between source and receiver. This approach allows computing Green's functions faster than DWN and separating the surface and body wave contributions in order to better represent Green's function experimentally retrieved.

  7. Wave Energy Prize - 1/20th Testing - Sea Potential

    DOE Data Explorer

    Scharmen, Wesley

    2016-09-23

    Data from the 1/20th scale testing data completed on the Wave Energy Prize for the Sea Potential team, including the 1/20th scale test plan, raw test data, video, photos, and data analysis results. The top level objective of the 1/20th scale device testing is to obtain the necessary measurements required for determining Average Climate Capture Width per Characteristic Capital Expenditure (ACE) and the Hydrodynamic Performance Quality (HPQ), key metrics for determining the Wave Energy Prize (WEP) winners.

  8. Resonant tunneling of spin-wave packets via quantized states in potential wells.

    PubMed

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O

    2007-09-21

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  9. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 wheremore » the emissivity reduction coefficient is too weak and lost among the noise.« less

  10. Half-cell potentials of semiconductive simple binary sulphides in aqueous solution

    USGS Publications Warehouse

    Sato, M.

    1966-01-01

    Theoretical consideration of the charge-transfer mechanism operative in cells with an electrode of a semiconductive binary compound leads to the conclusion that the half-cell potential of such a compound is not only a function of ionic activities in the electrolytic solution, but also a function of the activities of the component elements in the compound phase. The most general form of the electrode equation derived for such a compound with a formula MiXj which dissociates into Mj+ and Xi- ions in aqueous solution is. EMiXj = EMiXj0 + R T 2 ij ln [ (sua Mj+)aqi ?? (suaX)jMiXj/ (suaXi-)aqj ?? (suaM)iMiXj],. where. EMiXj0 = 1 2(EM,Mj+0 + EXi-,X). The equation can be modified to other forms. When applied to semiconductive simple binary sulphides, these equations appear to give better descriptions of the observed electrode potentials of such sulphides than any other proposed equations. ?? 1966.

  11. The contribution of wind wave changes on diminishing ice period in Lake Pyhäjärvi during the last half-century.

    PubMed

    Wu, Tingfeng; Qin, Boqiang; Zhu, Guangwei; Huttula, Timo; Lindfors, Antti; Ventelä, Anne-Mari; Sheng, Yongwei; Ambrose, Richard F

    2018-06-21

    To address the contribution of long-term wind wave changes on diminishing ice period in Northern European lakes, an in situ observation of wind waves was conducted to calibrate a wind-wave numerical model for Lake Pyhäjärvi, which is the largest lake in southwest Finland. Using station-measured hydrometeorological data from 1963 to 2013 and model-simulated wind waves, correlation and regression analyses were conducted to assess the changing trend and main influences on ice period. Ice period in Lake Pyhäjärvi decreased significantly over 51 years (r = 0.47, P < 0.01). The analysis of main hydrometeorological factors to ice period showed that the significant air temperature rise is the main contributor for the diminishing of ice period in the lake. Besides air temperature, wind-induced waves can also weaken lake ice by increasing water mixing and lake ice breakage. The regression indicated that mean significant wave height in December and April was negatively related to ice period (r = - 0.48, P < 0.01). These results imply that long-term changes of wind waves related to climate change should be considered to fully understand the reduction of aquatic ice at high latitudes.

  12. Scattering of electromagnetic waves from a half-space of randomly distributed discrete scatterers and polarized backscattering ratio law

    NASA Technical Reports Server (NTRS)

    Zhu, P. Y.

    1991-01-01

    The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.

  13. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  14. Determinants, analysis and interpretation of the muscle compound action potential (M wave) in humans: implications for the study of muscle fatigue.

    PubMed

    Rodriguez-Falces, Javier; Place, Nicolas

    2018-03-01

    The compound muscle action potential (M wave) has been commonly used to assess the peripheral properties of the neuromuscular system. More specifically, changes in the M-wave features are used to examine alterations in neuromuscular propagation that can occur during fatiguing contractions. The utility of the M wave is based on the assumption that impaired neuromuscular propagation results in a decrease in M-wave size. However, there remains controversy on whether the size of the M wave is increased or decreased during and/or after high-intensity exercise. The controversy partly arises from the fact that previous authors have considered the M wave as a whole, i.e., without analyzing separately its first and second phases. However, in a series of studies we have demonstrated that the first and second phases of the M wave behave in a different manner during and after fatiguing contractions. The present review is aimed at five main objectives: (1) to describe the mechanistic factors that determine the M-wave shape; (2) to analyze the various factors influencing M-wave properties; (3) to emphasize the need to analyze separately the first and second M-wave phases to adequately identify and interpret changes in muscle fiber membrane properties; (4) to advance the hypothesis that it is an increase (and not a decrease) of the M-wave first phase which reflects impaired sarcolemmal membrane excitability; and (5) to revisit the involvement of impaired sarcolemmal membrane excitability in the reduction of the force generating capacity.

  15. Experiments with BECs in a Painted Potential: Atom SQUID, Matter Wave Bessel Beams, and Matter Wave Circuits

    NASA Astrophysics Data System (ADS)

    Boshier, Malcolm; Ryu, Changhyun; Blackburn, Paul; Blinova, Alina; Henderson, Kevin

    2014-05-01

    The painted potential is a time-averaged optical dipole potential which is able to create arbitrary and dynamic two dimensional potentials for Bose Einstein condensates (BECs). This poster reports three recent experiments using this technique. First, we have realized the dc atom SQUID geometry of a BEC in a toroidal trap with two Josephson junctions. We observe Josephson effects, measure the critical current of the junctions, and find dynamic behavior that is in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment. Second, we have used free expansion of a rotating toroidal BEC to create matter wave Bessel beams, which are of interest because perfect Bessel beams (plane waves with amplitude profiles described by Bessel functions) propagate without diffraction. Third, we have realized the basic circuit elements necessary to create complex matter wave circuits. We launch BECs at arbitrary velocity along straight waveguides, propagate them around curved waveguides and stadium-shaped waveguide traps, and split them coherently at y-junctions that can also act as switches. Supported by LANL/LDRD.

  16. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  17. Controllable rogue waves in the nonautonomous nonlinear system with a linear potential

    NASA Astrophysics Data System (ADS)

    Dai, C. Q.; Zheng, C. L.; Zhu, H. P.

    2012-04-01

    Based on the similarity transformation connected the nonautonomous nonlinear Schrödinger equation with the autonomous nonlinear Schrödinger equation, we firstly derive self-similar rogue wave solutions (rational solutions) for the nonautonomous nonlinear system with a linear potential. Then, we investigate the controllable behaviors of one-rogue wave, two-rogue wave and rogue wave triplets in a soliton control system. Our results demonstrate that the propagation behaviors of rogue waves, including postpone, sustainment, recurrence and annihilation, can be manipulated by choosing the relation between the maximum value of the effective propagation distance Z m and the parameter Z 0. Moreover, the excitation time of controllable rogue waves is decided by the parameter T 0.

  18. Surface wave energy absorption by a partially submerged bio-inspired canopy.

    PubMed

    Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B

    2018-03-27

    Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.

  19. A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Ren, Luchuan

    2015-04-01

    A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there

  20. Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.

    PubMed

    Cao, Le; Wei, Bing

    2014-08-25

    Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.

  1. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    NASA Astrophysics Data System (ADS)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  2. Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion

    NASA Astrophysics Data System (ADS)

    Cercato, Michele

    2018-04-01

    The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.

  3. Quantized Vector Potential and the Photon Wave-function

    NASA Astrophysics Data System (ADS)

    Meis, C.; Dahoo, P. R.

    2017-12-01

    The vector potential function {\\overrightarrow{α }}kλ (\\overrightarrow{r},t) for a k-mode and λ-polarization photon, with the quantized amplitude α 0k (ω k ) = ξω k , satisfies the classical wave propagation equation as well as the Schrodinger’s equation with the relativistic massless Hamiltonian \\mathop{H}\\limits∼ =-i\\hslash c\\overrightarrow{\

  4. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order.more » It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.« less

  5. Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials

    NASA Astrophysics Data System (ADS)

    Britt, S.; Tsynkov, S.; Turkel, E.

    2018-02-01

    We solve the wave equation with variable wave speed on nonconforming domains with fourth order accuracy in both space and time. This is accomplished using an implicit finite difference (FD) scheme for the wave equation and solving an elliptic (modified Helmholtz) equation at each time step with fourth order spatial accuracy by the method of difference potentials (MDP). High-order MDP utilizes compact FD schemes on regular structured grids to efficiently solve problems on nonconforming domains while maintaining the design convergence rate of the underlying FD scheme. Asymptotically, the computational complexity of high-order MDP scales the same as that for FD.

  6. Bloch-like waves in random-walk potentials based on supersymmetry

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Hong, Jiho; Park, Namkyoo

    2015-09-01

    Bloch's theorem was a major milestone that established the principle of bandgaps in crystals. Although it was once believed that bandgaps could form only under conditions of periodicity and long-range correlations for Bloch's theorem, this restriction was disproven by the discoveries of amorphous media and quasicrystals. While network and liquid models have been suggested for the interpretation of Bloch-like waves in disordered media, these approaches based on searching for random networks with bandgaps have failed in the deterministic creation of bandgaps. Here we reveal a deterministic pathway to bandgaps in random-walk potentials by applying the notion of supersymmetry to the wave equation. Inspired by isospectrality, we follow a methodology in contrast to previous methods: we transform order into disorder while preserving bandgaps. Our approach enables the formation of bandgaps in extremely disordered potentials analogous to Brownian motion, and also allows the tuning of correlations while maintaining identical bandgaps, thereby creating a family of potentials with `Bloch-like eigenstates'.

  7. Assessing the Wave Energy Potential of Jamaica, a Greater Antilles Island, through Dynamic Modelling

    NASA Astrophysics Data System (ADS)

    Daley, A. P., Jr.; Dorville, J. F. M.; Taylor, M. A.

    2017-12-01

    Globally wave energy has been on the rise as a result of the impacts of climate change and continuous fluctuation in oil prices. The water's inertia provides waves with greater stability than that of other renewable energy sources such as solar and wind. Jamaica is part of the Greater Antilles Arc and has over 1000 km of coast line with an abundance of shallow water approximately 80% within a 50km band. This configuration provides a wealth of sites for wave exploitation even in minimal wave energy conditions. Aside from harnessing the oceans waves converters can be viewed as a tool for protection of coastal areas against natural marine occurrences. Jamica has done extensive studies where solar, hydro and wind resouces are concerned. However, there has been no studies done to date on the country's wave energy resources.The aim of this study is to bridge this gap by characterizing Jamaica's wave energy resources generating in a half-closed Caribbean Sea using data available from: buoys, altimetric satellite, and numerical model. Available data has been used to assess the available resource on the coastal area for the last 12 years. Statistical analysis of the available energy is determined using the sea state (Hs, Tp and Dir) and the atmospheric forcing (10m-wind, atmospheric pressure, sea-air temperature) relating to the season.The chain of dynamical model is presented (WW3-SWAN-SWASH), allowing for the tracking of the propagation of the wave energy from an offshore region to nearshore zone along with their interaction with areas of shallow depth. This will provide a better assessment of the energy and the quality of the waves closer to the electrical grid.Climate prediction is used to estimate the sea state and wave energy exploitable up to 2100. An analysis of the possible usage of the available coastal resource up to 2100. The main results present small but exploitable resources with seasonal variability in the energy available but not wave direction.

  8. Numerical and Experimental Study on the Effect of Coral Reef and Beach Vegetation on Reduction of Long Wave Run-Up

    NASA Astrophysics Data System (ADS)

    Mohandie, R. K.; Teng, M. H.

    2009-12-01

    Numerical and experimental studies were carried out to examine the mitigating capabilities of coral reefs and vegetations on tsunami and storm surge inundation. For long waves propagating over variable depth such as that over a reef, the nonlinear and dispersive Boussinesq equations were applied. For run-up onto dry land where the nonlinear effect dominates, the nonlinear and nondispersive shallow water equations were used. Long waves with various amplitudes and wavelengths propagating over coral reefs of different length and height were investigated to quantify under which conditions a coral reef may be effective in reducing the wave impact. It was observed that a reef can make a long wave separate into several smaller waves and it can also cause wave breaking resulting in energy dissipation. Our data suggest that both wave separation and breaking induced by coral reefs are effective at mitigating long wave run-up, with the latter being noticeably more effective than the former. As expected, it was observed that the higher the coral reef height, the more the reduction in wave run-up especially when the reef height is greater than 50% of the water depth. For reefs to be effective as a barrier for long waves such as tsunamis and storm surges, it was found that the reefs must be sufficiently long in the wave propagation direction, for example, with its length to be at least of the same magnitude as the wavelength or longer. In this study, it was shown that an effective reef can reduce the long wave run-up by as much as 25% and 50% by wave separation and wave breaking, respectively. Three types of vegetation, namely, grass, shrub and coconut trees, were modeled and tested in a wave tank against various initial wave amplitude and beach slopes in the Hydraulics Lab at the University of Hawaii (UH) to examine each particular type’s effectiveness in reducing wave run-up and to determine its roughness coefficient for wave run-up through numerical simulation and

  9. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    NASA Astrophysics Data System (ADS)

    Ali Asgarian, M.; Abbasi, M.

    2018-04-01

    Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  10. Quantum effects on compressional Alfven waves in compensated semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, M. R.

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linearmore » and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.« less

  11. Potential damage to DC superconducting magnets due to the high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.

    1977-01-01

    Experimental data are presented in support of the hypothesis that a dc superconducting magnet coil does not behave strictly as an inductor, but as a complicated electrodynamic device capable of supporting electromagnetic waves. Travel times of nanosecond pulses and evidence of sinusoidal standing waves were observed on a prototype four-layer solenoidal coil at room temperature. Ringing observed during switching transients appears as a sequence of multiple reflected square pulses whose durations are related to the layer lengths. With sinusoidal excitation of the coil, the voltage amplitude between a pair of points on the coil exhibits maxima at those frequencies such that the distance between these points is an odd multiple of half wavelength in free space. Evidence indicates that any disturbance, such as that resulting from switching or sudden fault, initiates multiple reflections between layers, thus raising the possibility for sufficiently high voltages to cause breakdown.

  12. All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances.

    PubMed

    Ma, Zhijie; Hanham, Stephen M; Gong, Yandong; Hong, Minghui

    2018-02-15

    We present an all-dielectric metasurface that simultaneously supports electric and magnetic dipole resonances for orthogonal polarizations. At resonances, the metasurface reflects the incident light with nearly perfect efficiency and provides a phase difference of π in the two axes, making a low-loss half-wave plate in reflection mode. The polarization handedness of the incident circularly polarized light is preserved after reflection; this is different from either a pure electric mirror or magnetic mirror. With the features of high reflection and circular polarization conservation, the metamirror is an ideal platform for the geometric phase-based gradient metasurface functioning in reflection mode. Anomalous reflection with the planar meta-mirror is demonstrated as a proof of concept. The proposed meta-mirror can be a good alternative to plasmonic metasurfaces for future compact and high-efficiency metadevices for polarization and phase manipulation in reflection mode.

  13. OXIDATION-REDUCTION POTENTIAL MEASUREMENTS OF IMPORTANT OXIDANTS IN DRINKING WATER

    EPA Science Inventory

    Oxidation-reduction (redox) reactions are important in drinking water treatment and distribution. Oxidation-reduction potential (ORP) measurements of water reflect the tendency of major constituents in the water to accept or lose electrons. Although ORP measurements are valuable...

  14. Lorentz-boosted evanescent waves

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.

    2018-06-01

    Polarization, spin, and helicity are important properties of electromagnetic waves. It is commonly believed that helicity is invariant under the Lorentz transformations. This is indeed so for plane waves and their localized superpositions. However, this is not the case for evanescent waves, which are well-defined only in a half-space, and are characterized by complex wave vectors. Here we describe transformations of evanescent electromagnetic waves and their polarization/spin/helicity properties under the Lorentz boosts along the three spatial directions.

  15. The potential for iron reduction in upland soils in Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Chen, C.; Noor, N.; Hodges, C. A.; Barcellos, D.; Richter, D. D., Jr.

    2017-12-01

    Fe redox cycling plays an important role in organic matter preservation and degradation, and the fate of nutrients and contaminants. Despite its importance, Fe redox cycling in non-flooded upland soils has been underappreciated, although many upland terrestrial ecosystems have episodes of low redox events and an abundance of anoxic microsites. Soil Fe reduction is generally constrained by C availability, the reactivity of Fe(III) oxyhydroxides, and the abundance of Fe reducing bacteria. The goal of this study was to determine the potential for Fe reduction in upland soils under varying land-uses (Hardwood, Pine and Cultivated soils) from Calhoun Critical Zone Observatory. Fresh field soils from multiple depths were incubated in the lab without amendments under anoxic conditions for 3 weeks to determine the native potential for soil Fe reduction and to assess the limiting factors, the soils were amended with factorial mixtures of the following: (1) organic substrates (glucose and alanine); (2) bioavailable Fe (ferrihydrite); and (3) Fe reducing bacteria (Shewanella oneidensis strain MR-1). Results showed that Fe reduction potential generally decreased with soil depth. Fe reduction potential is very minimal below 1m of soil profile. The availability of Fe(III) minerals did not constrain pine and hardwood soil Fe reduction potential. Fe(III) availability only slightly limited the potential for Fe reduction the cultivated soils, which have the lowest extractable Fe by ascorbate-citrate. Labile C constrained Fe reduction in the hardwood and cultivated soils, but not in the pine soils, which had the highest extractable C by K2SO4. In addition, we found the more energetic C source (glucose) facilitated more Fe reduction in the subsurface soil than did Alanine. Finally, the abundance of Fe-reducing bacteria limited Fe reduction potential in almost all of these soils, particularly the pine soils.

  16. ASTER Waves

    NASA Image and Video Library

    2000-10-06

    The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces. http://photojournal.jpl.nasa.gov/catalog/PIA02662

  17. Benefits of measuring half-cell potentials and rebar corrosion rates in condition surveys of concrete bridge decks.

    DOT National Transportation Integrated Search

    1992-01-01

    The practice of conducting a half-cell potential survey during the assessment of the condition of a concrete deck was reexamined with the objective of eliminating some of the doubts concerning its benefits. It was found that the survey grid size of 4...

  18. Stratospheric mountain wave attenuation in positive and negative ambient wind shear

    NASA Astrophysics Data System (ADS)

    Kruse, C. G.; Smith, R. B.

    2016-12-01

    Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced wind with no critical levels. Within a valve layer, negative wind shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum wind speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive wind shear. Within these deep events, increasing amplitude with decreasing density causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient wind shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal variability of wave attenuation and the various factors driving this variability (e.g. variability in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.

  19. Wave Propagation Problems in Certain Elastic Anisotropic Half Spaces.

    DTIC Science & Technology

    1980-12-01

    874-882. 33. Paul , S.L., and Robinson, A.R., "Interaction of Plane Elastic Waves with a Cylindrical Cavity," Technical Documentary Report Mo. RTD...Professor Paul M. Naghdi University of California Department of Mechanical Engineering Berkeley, California 94720 Professor A. J. Durelli Oakland...Burt Paul University of Pennsylvania Towne School of Civil and Mechanical Engineering Philadelphia, Pennsylvania 19104 Professor H. W. Liu Syracuse

  20. Standing wave tube electro active polymer wave energy converter

    NASA Astrophysics Data System (ADS)

    Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.

    2012-04-01

    Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.

  1. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory

    PubMed Central

    Fowler, Nicholas J.; Blanford, Christopher F.

    2017-01-01

    Abstract Blue copper proteins, such as azurin, show dramatic changes in Cu2+/Cu+ reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high‐level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long‐range electrostatic changes and hence can be modeled accurately with continuum electrostatics. PMID:28815759

  2. Potential fitness benefits of the half-pounder life history in Klamath River steelhead

    USGS Publications Warehouse

    Hodge, Brian W.; Wilzbach, Peggy; Duffy, Walter G.

    2014-01-01

    Steelhead Oncorhynchus mykiss from several of the world's rivers display the half-pounder life history, a variant characterized by an amphidromous (and, less often, anadromous) return to freshwater in the year of initial ocean entry. We evaluated factors related to expression of the half-pounder life history in wild steelhead from the lower Klamath River basin, California. We also evaluated fitness consequences of the half-pounder phenotype using a simple life history model that was parameterized with our empirical data and outputs from a regional survival equation. The incidence of the half-pounder life history differed among subbasins of origin and smolt ages. Precocious maturation occurred in approximately 8% of half-pounders and was best predicted by individual length in freshwater preceding ocean entry. Adult steelhead of the half-pounder phenotype were smaller and less fecund at age than adult steelhead of the alternative (ocean contingent) phenotype. However, our data suggest that fish of the half-pounder phenotype are more likely to spawn repeatedly than are fish of the ocean contingent phenotype. Models predicted that if lifetime survivorship were equal between phenotypes, the fitness of the half-pounder phenotype would be 17–28% lower than that of the ocean contingent phenotype. To meet the condition of equal fitness between phenotypes would require that first-year ocean survival be 21–40% higher among half-pounders in freshwater than among their cohorts at sea. We concluded that continued expression of the half-pounder phenotype is favored by precocious maturation and increased survival relative to that of the ocean contingent phenotype.

  3. Full-wave generalizations of the fundamental Gaussian beam.

    PubMed

    Seshadri, S R

    2009-12-01

    The basic full wave corresponding to the fundamental Gaussian beam was discovered for the outwardly propagating wave in a half-space by the introduction of a source in the complex space. There is a class of extended full waves all of which reduce to the same fundamental Gaussian beam in the appropriate limit. For the extended full Gaussian waves that include the basic full Gaussian wave as a special case, the sources are in the complex space on different planes transverse to the propagation direction. The sources are cylindrically symmetric Gaussian distributions centered at the origin of the transverse planes, the axis of symmetry being the propagation direction. For the special case of the basic full Gaussian wave, the source is a point source. The radiation intensity of the extended full Gaussian waves is determined and their characteristics are discussed and compared with those of the fundamental Gaussian beam. The extended full Gaussian waves are also obtained for the oppositely propagating outwardly directed waves in the second half-space. The radiation intensity distributions in the two half-spaces have reflection symmetry about the midplane. The radiation intensity distributions of the various extended full Gaussian waves are not significantly different. The power carried by the extended full Gaussian waves is evaluated and compared with that of the fundamental Gaussian beam.

  4. Wave Energy Prize - 1/50th Testing - Sea Potential

    DOE Data Explorer

    Wesley Scharmen

    2015-12-04

    This submission of data includes all the 1/50th scale testing data completed on the Wave Energy Prize for the Sea Potential team, and includes: 1/50th test data (raw & processed) 1/50th test data video and pictures 1/50th Test plans and testing documents SSTF_Submission (summarized results)

  5. Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate.

    PubMed

    Liu, Gui-Geng; Wang, Ke; Lee, Yun-Han; Wang, Dan; Li, Ping-Ping; Gou, Fangwang; Li, Yongnan; Tu, Chenghou; Wu, Shin-Tson; Wang, Hui-Tian

    2018-02-15

    Vortex vector optical fields (VVOFs) refer to a kind of vector optical field with an azimuth-variant polarization and a helical phase, simultaneously. Such a VVOF is defined by the topological index of the polarization singularity and the topological charge of the phase vortex. We present a simple method to measure the topological charge and index of VVOFs by using a space-variant half-wave plate (SV-HWP). The geometric phase grating of the SV-HWP diffracts a VVOF into ±1 orders with orthogonally left- and right-handed circular polarizations. By inserting a polarizer behind the SV-HWP, the two circular polarization states project into the linear polarization and then interfere with each other to form the interference pattern, which enables the direct measurement of the topological charge and index of VVOFs.

  6. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    NASA Astrophysics Data System (ADS)

    Lu, Li; Liu, Zhen-Xing; Cao, Jin-Bin

    2002-02-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere.

  7. Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    PubMed Central

    Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.

    2014-01-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This

  8. Molecular Modeling of Environmentally Important Processes: Reduction Potentials

    ERIC Educational Resources Information Center

    Lewis, Anne; Bumpus, John A.; Truhlar, Donald G.; Cramer, Christopher J.

    2004-01-01

    The increasing use of computational quantum chemistry in the modeling of environmentally important processes is described. The employment of computational quantum mechanics for the prediction of oxidation-reduction potential for solutes in an aqueous medium is discussed.

  9. The reduction potential of nitric oxide (NO) and its importance to NO biochemistry

    PubMed Central

    Bartberger, Michael D.; Liu, Wei; Ford, Eleonora; Miranda, Katrina M.; Switzer, Christopher; Fukuto, Jon M.; Farmer, Patrick J.; Wink, David A.; Houk, Kendall N.

    2002-01-01

    A potential of about −0.8 (±0.2) V (at 1 M versus normal hydrogen electrode) for the reduction of nitric oxide (NO) to its one-electron reduced species, nitroxyl anion (3NO−) has been determined by a combination of quantum mechanical calculations, cyclic voltammetry measurements, and chemical reduction experiments. This value is in accord with some, but not the most commonly accepted, previous electrochemical measurements involving NO. Reduction of NO to 1NO− is highly unfavorable, with a predicted reduction potential of about −1.7 (±0.2) V at 1 M versus normal hydrogen electrode. These results represent a substantial revision of the derived and widely cited values of +0.39 V and −0.35 V for the NO/3NO− and NO/1NO− couples, respectively, and provide support for previous measurements obtained by electrochemical and photoelectrochemical means. With such highly negative reduction potentials, NO is inert to reduction compared with physiological events that reduce molecular oxygen to superoxide. From these reduction potentials, the pKa of 3NO− has been reevaluated as 11.6 (±3.4). Thus, nitroxyl exists almost exclusively in its protonated form, HNO, under physiological conditions. The singlet state of nitroxyl anion, 1NO−, is physiologically inaccessible. The significance of these potentials to physiological and pathophysiological processes involving NO and O2 under reductive conditions is discussed. PMID:12177417

  10. WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Hartmann, Carsten

    2018-07-01

    WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous

  11. Supergranular waves revisited

    NASA Astrophysics Data System (ADS)

    Langfellner, Jan; Birch, Aaron; Gizon, Laurent

    2017-08-01

    Solar supergranules remain a mysterious phenomenon, half a century after their discovery. One particularly interesting aspect of supergranulation is its wave-like nature detected in Fourier space. Using SDO/HMI local helioseismology and granulation tracking, we provide new evidence for supergranular waves. We also discuss their influence on the evolution of the network magnetic field using cork simulations.

  12. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory.

    PubMed

    Fowler, Nicholas J; Blanford, Christopher F; Warwicker, Jim; de Visser, Sam P

    2017-11-02

    Blue copper proteins, such as azurin, show dramatic changes in Cu 2+ /Cu + reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high-level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long-range electrostatic changes and hence can be modeled accurately with continuum electrostatics. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.

    2015-02-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.

  14. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    PubMed Central

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K

    2015-01-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g−1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of −0.045 V and a half-wave potential of −0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ∼5% as compared to ∼14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance. PMID:27877746

  15. Control of shock wave-boundary layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Hingst, W. G.; Reshotko, E.

    1975-01-01

    An experimental investigation was conducted to determine the effect of bleed on a shock wave-boundary layer interaction in an axisymmetric mixed-compression supersonic inlet. The inlet was designed for a free-stream Mach number of 2.50 with 60-percent supersonic internal area contraction. The experiment was conducted in the NASA Lewis Research Center 10-Foot Supersonic Wind Tunnel. The effects of bleed amount and bleed geometry on the boundary layer after a shock wave-boundary layer interaction were studied. The effect of bleed on the transformed form factor is such that the full realizable reduction is obtained by bleeding of a mass flow equal to about one-half of the incident boundary layer mass flow. More bleeding does not yield further reduction. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise.

  16. Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.

    ERIC Educational Resources Information Center

    Branson, David

    1979-01-01

    Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)

  17. Observations of running penumbral waves.

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Stein, A.

    1972-01-01

    Quiet sunspots with well-developed penumbrae show running intensity waves with period running around 300 sec. The waves appear connected with umbral flashes of exactly half the period. Waves are concentric, regular, with velocity constant around 10 km/sec. They are probably sound waves and show intensity fluctuation in H alpha centerline or wing of 10 to 20%. The energy is tiny compared to the heat deficit of the umbra.

  18. 3D Polymer Hydrogel for High-Performance Atomic Fe and Mn Catalysts for Oxygen Reduction in Challenging Acids

    NASA Astrophysics Data System (ADS)

    Qiao, Zhi

    Current platinum group metal (PGM)-free carbon nanocomposite catalysts for the oxygen reduction reaction (ORR) in acidic electrolyte often suffer from rapid degradation associated with carbon corrosion due to the use of large amount of the amorphoous carbon black supports. Here, we developed a new concept of using freestanding 3D hydrogel to design support-free Fe-N-C catalysts. A 3D polyaniline (PANI)-based hydrogel approach was used for preparing a new type of single atomic iron site-rich catalyst, which has exhibited exceptionally enhanced activity and stability compared to conventional Fe-N-C catalysts supported on amorphous carbon blacks. The achieved performance metric on the hydrogel PANI-Fe catalysts is one of the best ever reported PGM-free catalysts, reaching a half-wave potential up to 0.83 V vs. RHE and only leaving 30 mV gap with Pt/C catalysts (60mugPt/cm 2) in challenging acidic media. Remarkable ORR stability was accomplished as well on the same catalyst evidenced by using harsh potential cycling tests. The well dispersion of atomic iron into partially graphitized carbon, featured with dominance of micropores and porous network structures, is capable of accommodating increased number of active sites, strengthening local bonding among iron, nitrogen and carbon, and facilitating mass transfer. On the other hand, in order to decrease the produced Fenton reagent, which will oxidize the proton exchange membrane and ionomer in membrane electrode assembly (MEA), we produce Mn-based catalysts by this novel hydrogel method. This is the first time that Mn-based catalysts can show such outstanding performance in acid media, whose half-wave potential is up to 0.80 V vs. RHE. The work related to the performance improvement is still in processing. We believe the 3D polymer hydrogel approach would be a new pathway to advance PGM-free catalysts.

  19. Non-autonomous matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and harmonic potential

    NASA Astrophysics Data System (ADS)

    Wang, Deng-Shan; Liu, Jiang; Wang, Lizhen

    2018-03-01

    In this paper, we investigate matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and external potentials. Three types of time-modulated harmonic potentials are considered and, for each of them, two groups of exact non-autonomous matter-wave soliton solutions of the coupled Gross-Pitaevskii equation are presented. Novel nonlinear structures of these non-autonomous matter-wave solitons are analyzed by displaying their density distributions. It is shown that the time-modulated nonlinearities and external potentials can support exact non-autonomous atomic-molecular matter-wave solitons.

  20. Computing wave functions in multichannel collisions with non-local potentials using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena

    2017-09-01

    The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.

  1. The potential of household solid waste reduction in Sukomanunggal District, Surabaya

    NASA Astrophysics Data System (ADS)

    Warmadewanthi, I. D. A. A.; Kurniawati, S.

    2018-01-01

    The rapid population growth affects the amount of waste generated. Sukomanunggal Subdistrict is the densest area in West Surabaya which has a population of 100,602 inhabitants with a total area of 11.2 km2. The population growth significantly affects the problem of limited land for landfill facilities (final processing sites). According to the prevailing regulations, solid waste management solutions include the solid waste reduction and management. This study aims to determine the potential reduction of household solid waste at the sources. Household solid waste samplings were performed for eight consecutive days. The samples were then analyzed to obtain the generation rate, density, and composition so that the household solid waste reduction potential for the next 20 years could be devised. Results of the analysis showed that the value of waste is 0.27 kg/person/day, while the total household solid waste generation amounted to 27,162.58 kg/day or 187.70 m3/day. Concerning the technical aspects, the current solid waste reduction in Sukomanunggal Subdistrict has reached 2.1% through the application of waste bank, composting, and scavenging activities at the dumping sites by the garbage collectors. In the year of 2036, the potential reduction of household solid waste in Sukomanunggal Subdistrict has been estimated to reach 28.0%.

  2. Preventing preterm births: trends and potential reductions with current interventionsin 39 very high human development index countries

    PubMed Central

    Chang, Hannah H.; Larson, Jim; Blencowe, Hannah; Spong, Catherine Y.; Howson, Christopher P.; Cairns-Smith, Sarah; Lackritz, Eve M.; Lee, Shoo K.; Mason, Elizabeth; Serazin, Andrew C.; Walani, Salimah; Simpson, Joe Leigh; Lawn, Joy E.

    2013-01-01

    Summary Background Each year,1.1 million babies die from prematurity, andmany survivors are disabled. Worldwide, 15 million babies are preterm(<37 weeks’ gestation),withtwo decades of increasing ratesinalmost all countries with reliable data. Improved care of babies has reduced mortality in high-income countries, although effective interventions have yet to be scaled-up in most low-income countries. A 50% reduction goal for preterm-specific mortality by 2025 has been set in the “Born Too Soon” report. However, for preterm birth prevention,understanding of drivers and potential impact of preventive interventions is limited. We examine trends and estimate the potential reduction in preterm birthsforvery high human development index (VHHDI) countries if current evidence-based interventions were widely implemented. This analysis is to inform a “Born Too Soon” rate reduction target. Methods Countries were assessed for inclusion based on availability and quality ofpreterm prevalence data (2000-2010), and trend analyses with projections undertaken. We analysed drivers of rate increases in the USA, 1998-2004. For 39 VHHDI countrieswith >10,000 births, country-by-country analyses were performed based on target population, incremental coverage increase,and intervention efficacy. Cost savings were estimated based on reported costs for preterm care in the USAadjusted usingWorld Bank purchasing power parity. Findings From 2010, even if all VHHDI countries achieved annual preterm birth rate reductions of the best performers, (Sweden and Netherlands), 2000-2010 or 2005-2010(Lithuania, Estonia)), rates would experience a relative reduction of<5% by 2015 on average across the 39 countries.Our analysis of preterm birth rise 1998-2004 in USA suggests half the change is unexplained, but important drivers includeinductions/cesareandelivery and ART.For all 39 VHHDI countries, five interventionsmodeling at high coveragepredicted 5%preterm birth rate relative reduction from 9

  3. A Large-Diameter Cryogenic Rotation Stage for Half-Wave Plate Polarization Modulation on the POLARBEAR-2 Experiment

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Kusaka, A.; Barton, P.; Bixler, B.; Droster, A. G.; Flament, M.; Ganjam, S.; Jadbabaie, A.; Jeong, O.; Lee, A. T.; Madurowicz, A.; Matsuda, F. T.; Matsumura, T.; Rutkowski, A.; Sakurai, Y.; Sponseller, D. R.; Suzuki, A.; Tat, R.

    2018-05-01

    We describe the design of a cryogenic rotation stage (CRS) for use with the cryogenic half-wave plate (CHWP) polarization modulator on the POLARBEAR-2b and POLARBEAR-2c (PB2b/c) cosmic microwave background (CMB) experiments, the second and third installments of the Simons Array. Rapid modulation of the CMB polarization signal using a CHWP suppresses 1/f contamination due to atmospheric turbulence and allows a single polarimeter to measure both polarization states, mitigating systematic effects that arise when differencing orthogonal detectors. To modulate the full detector array while avoiding excess photon loading due to thermal emission, the CHWP must have a clear-aperture diameter of > 450 mm and be cooled to < 100 K. We have designed a 454 mm clear-aperture, < 65 K CRS using a superconducting magnetic bearing driven by a synchronous magnetic motor. We present the specifications for the CRS, its interfacing to the PB2b/c receiver cryostat, its performance in a stand-alone test, and plans for future work.

  4. Potential to kinetic energy conversion in wave number domain for the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Huang, H.-J.; Vincent, D. G.

    1984-01-01

    Preliminary results of a wave number study conducted for the South Pacific Convergence Zone (SPCZ) using FGGE data for the period January 10-27, 1979 are reported. In particular, three variables (geomagnetic height, z, vertical p-velocity, omega, and temperature, T) and one energy conversion quantity, omega-alpha (where alpha is the specific volume), are shown. It is demonstrated that wave number 4 plays an important role in the conversion from available potential energy to kinetic energy in the Southern Hemisphere tropics, particularly in the vicinity of the SPCZ. It is therefore suggested that the development and movement of wave number 4 waves be carefully monitored in making forecasts for the South Pacific region.

  5. RELATIONSHIPS BETWEEN OXIDATION-REDUCTION POTENTIAL, OXIDANT, AND PH IN DRINKING WATER

    EPA Science Inventory

    Oxidation and reduction (redox) reactions are very important in drinking water. Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox measurements are not widely made by drinking water utilities in part because they are not well understood. The ...

  6. Effect of exchange correlation potential on dispersion properties of lower hybrid wave in degenerate plasma

    NASA Astrophysics Data System (ADS)

    Rimza, Tripti; Sharma, Prerana

    2017-05-01

    The dispersion properties of lower hybrid wave are studied in electron-iondegenerate plasma with exchange effect in non-relativistic regime. It is found that the combined effect of Bohm potential and exchange correlation potential significantly modifies the dispersion properties of lower hybrid wave. The graphical results explicitly show the influence of degeneracy pressure, Bohm force and exchange correlation potential on the frequency of the lower hybrid mode. Present work should be of relevance for the dense astrophysical environments like white dwarfs and for laboratory experiments.

  7. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger

  8. Molecular isomerization induced by ultrashort infrared pulses. II. Pump-dump isomerization using pairs of time-delayed half-cycle pulses.

    PubMed

    Uiberacker, Christoph; Jakubetz, Werner

    2004-06-22

    We investigate population transfer across the barrier in a double-well potential, induced by a pair of time-delayed single-lobe half-cycle pulses. We apply this setup both to a one-dimensional (1D) quartic model potential and to a three-dimensional potential representing HCN-->HNC isomerization. Overall the results for the two systems are similar, although in the 3D system some additional features appear not seen in the 1D case. The generic mechanism of population transfer is the preparation by the pump pulse of a wave packet involving delocalized states above the barrier, followed by the essentially 1D motion of the delocalized part of wave packet across the barrier, and the eventual de-excitation by the dump pulse to localized states in the other well. The correct timing is given by the well-to-well passage time of the wave packet and its recurrence properties, and by the signs of the field lobes which determine the direction and acceleration or deceleration of the wave packet motion. In the 3D system an additional pump-pump-dump mechanism linked to wave packet motion in the reagent well can mediate isomerization. Since the transfer time and the pulse durations are of the same order of magnitude, there is also a marked dependence of the dynamics and the transfer yield on the pulse duration. Our analysis also sheds light on the pronounced carrier envelope phase dependence previously observed for isomerization and molecular dissociation with one-cycle and sub-one-cycle pulses. (c) 2004 American Institute of Physics.

  9. Brainstem auditory evoked potential wave V latency-intensity function in normal Dalmatian and Beagle puppies.

    PubMed

    Poncelet, L; Coppens, A; Deltenre, P

    2000-01-01

    This study investigated whether Dalmatian puppies with normal hearing bilaterally had the same click-evoked brainstem auditory potential characteristics as age-matched dogs of another breed. Short-latency brainstem auditory potentials evoked by condensation and rarefaction clicks were recorded in 23 1.5- to 2-month-old Dalmatian puppies with normal hearing bilaterally by a qualitative brainstem auditory evoked potential test and in 16 Beagle dogs of the same age. For each stimulus intensity, from 90 dB normal hearing level down to the wave V threshold, the sum of the potentials evoked by the 2 kinds of stimuli were added, giving an equivalent to the alternate click polarity stimulation. The slope of the L segment of the wave V latency-intensity curve was steeper in Dalmatian (-40 +/- 10 micros/dB) than in Beagles (-28 +/- 5 micros/dB, P < .001) puppies. The hearing threshold was lower in the Beagle puppies (P < .05). These results suggest that interbreed differences may exist at the level of cochlear function in this age class. The wave V latency and wave V-wave I latencies differences at high stimulus intensity were different between the groups of puppies (4.3 +/- 0.2 and 2.5 +/- 0.2 milliseconds, respectively, for Beagles; and 4.1 +/- 0.2 and 2.3 +/- 0.2 milliseconds for Dalmatians, P < .05). A different maturation speed of the neural pathways is one possible explanation of this observation.

  10. Small Moon Makes Big Waves

    NASA Image and Video Library

    2012-12-31

    Saturn small moon Daphnis is caught in the act of raising waves on the edges of the Keeler gap, which is the thin dark band in the left half of the image. Waves like these allow scientists to locate small moons in gaps and measure their masses.

  11. Peculiarities of spreading of acoustic waves over a shelf with decreasing depth

    NASA Astrophysics Data System (ADS)

    Dolgikh, G. I.; Budrin, S. S.; Ovcharenko, V. V.; Plotnikov, A. A.

    2016-09-01

    We analyze experimental data collected in Vityaz Bay of the Sea of Japan during study of the peculiarities of spreading of hydroacoustic waves over a shelf with decreasing depth. We found that the waves propagate over a shelf with depths greater than half of the hydroacoustic wave according to the law of cylindrical divergence with least losses of the wave energy. If the depths are shallower than half of the hydroacoustic wave, they spread along the water-bottom boundary as Rayleigh waves of decaying and undamped types with significant absorption of the wave energy by the bottom.

  12. Influence of initial stress, irregularity and heterogeneity on Love-type wave propagation in double pre-stressed irregular layers lying over a pre-stressed half-space

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek Kumar; Das, Amrita; Parween, Zeenat; Chattopadhyay, Amares

    2015-10-01

    The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half-space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface of uppermost initially stressed heterogeneous layer and intermediate initially stressed isotropic layer. Dispersion equations are obtained in closed form for both cases of irregularities, distinctly. The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave are the major highlights of the study. Comparative study has been made to identify the effects of different shapes of irregularity, presence of heterogeneity and initial stresses. Numerical computations have been carried out and depicted by means of graphs for the present study.

  13. Identifying external nutrient reduction requirements and potential in the hypereutrophic Lake Taihu Basin, China.

    PubMed

    Peng, Jiao-Ting; Zhu, Xiao-Dong; Sun, Xiang; Song, Xiao-Wei

    2018-04-01

    Reducing external nutrient loads is the first step for controlling eutrophication. Here, we identified external nutrient reduction requirements and potential of strategies for achieving reductions to remediate a eutrophic water body, Lake Taihu, China. A mass balance approach based on the entire lake was used to identify nutrient reduction requirements; an empirical export coefficient approach was introduced to estimate the nutrient reduction potential of the overall program on integrated regulation of Taihu Lake Basin (hereafter referred to as the "Guideline"). Reduction requirements included external total nitrogen (TN) and total phosphorus (TP) loads, which should be reduced by 41-55 and 25-50%, respectively, to prevent nutrient accumulation in Lake Taihu and to meet the planned water quality targets. In 2010, which is the most seriously polluted calendar year during the 2008-2014 period, the nutrient reduction requirements were estimated to be 36,819 tons of N and 2442 tons of P, and the potential nutrient reduction strategies would reduce approximately 25,821 tons of N and 3024 tons of P. Since there is a net N remaining in the reduction requirements, it should be the focus and deserves more attention in identifying external nutrient reduction strategies. Moreover, abatement measures outlined in the Guideline with high P reduction potential required large monetary investments. Achieving TP reduction requirement using the cost-effective strategy costs about 80.24 million USD. The design of nutrient reduction strategies should be enacted according to regional and sectoral differences and the cost-effectiveness of abatement measures.

  14. Emissivity of half-space random media. [in passive remote sensing

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.

    1976-01-01

    Scattering of electromagnetic waves by a half-space random medium with three-dimensional correlation functions is studied with the Born approximation. The emissivity is calculated from a simple integral and is illustrated for various cases. The results are valid over a wavelength range smaller or larger than the correlation lengths.

  15. Ion Association, Solubilities, and Reduction Potentials in Aqueous Solution.

    ERIC Educational Resources Information Center

    Russo, Steven O.; Hanania, George I. H.

    1989-01-01

    Incorporates the combined effects of ionic strength and ion association to show how calculations involving ionic equilibria are carried out. Examines the variability of reduction potential data for two aqueous redox systems. Provides several examples. (MVL)

  16. Wave resource variability: Impacts on wave power supply over regional to international scales

    NASA Astrophysics Data System (ADS)

    Smith, Helen; Fairley, Iain; Robertson, Bryson; Abusara, Mohammad; Masters, Ian

    2017-04-01

    The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid. Intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. A matching supply of electricity must be planned to meet the predicted demand, leading to a need for gas-fired and back-up generating plants to supplement intermittent supplies, and potentially limiting the integration of intermittent power into the grid. Issues relating to resource intermittency and their mitigation through the development of spatially separated sites have been widely researched in the wind industry, but have received little attention to date in the less mature wave industry. This study analyses the wave resource over three different spatial scales to investigate the potential impacts of the temporal and spatial resource variability on the grid supply. The primary focus is the Southwest UK, a region already home to multiple existing and proposed wave energy test sites. Concurrent wave buoy data from six locations, supported by SWAN wave model hindcast data, are analysed to assess the correlation of the resource across the region and the variation in wave power with direction. Power matrices for theoretical nearshore and offshore devices are used to calculate the maximum step change in generated power across the region as the number of deployment sites is increased. The step change analysis is also applied across national and international spatial scales using output from the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-Interim hindcast model. It is found that the deployment of multiple wave energy sites, whether on a regional, national or international scale, results in both a reduction in step changes in power and reduced times of zero generation, leading to an overall smoothing of the wave-generated electrical power. This has implications for the

  17. Transmural Ultrasound-based Visualization of Patterns of Action Potential Wave Propagation in Cardiac Tissue

    PubMed Central

    Luther, Stefan; Singh, Rupinder; Gilmour, Robert F.

    2010-01-01

    The pattern of action potential propagation during various tachyarrhythmias is strongly suspected to be composed of multiple re-entrant waves, but has never been imaged in detail deep within myocardial tissue. An understanding of the nature and dynamics of these waves is important in the development of appropriate electrical or pharmacological treatments for these pathological conditions. We propose a new imaging modality that uses ultrasound to visualize the patterns of propagation of these waves through the mechanical deformations they induce. The new method would have the distinct advantage of being able to visualize these waves deep within cardiac tissue. In this article, we describe one step that would be necessary in this imaging process—the conversion of these deformations into the action potential induced active stresses that produced them. We demonstrate that, because the active stress induced by an action potential is, to a good approximation, only nonzero along the local fiber direction, the problem in our case is actually overdetermined, allowing us to obtain a complete solution. Use of two- rather than three-dimensional displacement data, noise in these displacements, and/or errors in the measurements of the fiber orientations all produce substantial but acceptable errors in the solution. We conclude that the reconstruction of action potential-induced active stress from the deformation it causes appears possible, and that, therefore, the path is open to the development of the new imaging modality. PMID:20499183

  18. Kato Smoothing and Strichartz Estimates for Wave Equations with Magnetic Potentials

    NASA Astrophysics Data System (ADS)

    D'Ancona, Piero

    2015-04-01

    Let H be a selfadjoint operator and A a closed operator on a Hilbert space . If A is H-(super)smooth in the sense of Kato-Yajima, we prove that is -(super)smooth. This allows us to include wave and Klein-Gordon equations in the abstract theory at the same level of generality as Schrödinger equations. We give a few applications and in particular, based on the resolvent estimates of Erdogan, Goldberg and Schlag (Forum Mathematicum 21:687-722, 2009), we prove Strichartz estimates for wave equations perturbed with large magnetic potentials on , n ≥ 3.

  19. Capillary reference half-cell

    DOEpatents

    Hall, Stephen H.

    1996-01-01

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods.

  20. Capillary reference half-cell

    DOEpatents

    Hall, S.H.

    1996-02-13

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods. 11 figs.

  1. Some Exact Results for the Schroedinger Wave Equation with a Time Dependent Potential

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2009-01-01

    The time dependent Schroedinger equation with a time dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wave function at the origin, one may derive the wave function everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the p otential lead to conservation of the normalization of the probability density.

  2. Xylary pH and Reduction Potential Levels of Iron-stressed Silver Maple (Acer saccharinum L.) 1

    PubMed Central

    Morris, Robert L.; Swanson, Bert T.

    1980-01-01

    Xylary fluid pH and reduction potentials were measured on silver maple (Acer saccharinum L.) grown under Fe and pH stress. Although pH and reduction potential (millivolt/59.2) varied significantly in the nutrient solution, xylary pH and reduction potential remained constant. It was concluded that changes in the pH and reduction potential in the xylary fluid of silver maple are not responsible for iron chlorosis. PMID:16661196

  3. Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyun; Mo, Qijie; Guo, Yulin; Chen, Nana; Gao, Qingsheng

    2018-03-01

    Controlled N-doping is feasible to engineer the surface stoichiometry and the electronic configuration of metal-oxide electrocatalysts toward efficient oxygen reduction reactions (ORR). Taking reduced graphene oxide supported tantalum-oxides (TaOx/RGO) for example, this work illustrated the controlled N-doping in both metal-oxides and carbon supports, and the contribution to the improved ORR activity. The active N-doped TaOx/RGO electrocatalysts were fabricated via SiO2-assisted pyrolysis, in which the amount and kind of N-doping were tailored toward efficient electrocatalysis. The optimal nanocomposites showed a quite positive half-wave potential (0.80 V vs. RHE), the excellent long-term stability, and the outstanding tolerance to methanol crossing. The improvement in ORR was reasonably attributed to the synergy between N-doped TaOx and N-doped RGO. Elucidating the importance of controlled N-doping for electrocatalysis, this work will open up new opportunities to explore noble-metal-free materials for renewable energy applications.

  4. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    NASA Astrophysics Data System (ADS)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  5. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction.

    PubMed

    Zhou, Huang; Zhang, Jian; Amiinu, Ibrahim Saana; Zhang, Chenyu; Liu, Xiaobo; Tu, Wenmao; Pan, Mu; Mu, Shichun

    2016-04-21

    Porous nitrogen-doped graphene with a very high surface area (1152 m(2) g(-1)) is synthesized by a novel strategy using intrinsically porous biomass (soybean shells) as a carbon and nitrogen source via calcination and KOH activation. To redouble the oxygen reduction reaction (ORR) activity by tuning the doped-nitrogen content and type, ammonia (NH3) is injected during thermal treatment. Interestingly, this biomass-derived graphene catalyst exhibits the unique properties of mesoporosity and high pyridine-nitrogen content, which contribute to the excellent oxygen reduction performance. As a result, the onset and half-wave potentials of the new metal-free non-platinum catalyst reach -0.009 V and -0.202 V (vs. SCE), respectively, which is very close to the catalytic activity of the commercial Pt/C catalyst in alkaline media. Moreover, our catalyst has a higher ORR stability and stronger CO and CH3OH tolerance than Pt/C in alkaline media. Importantly, in acidic media, the catalyst also exhibits good ORR performance and higher ORR stability compared to Pt/C.

  6. Wave Energy Potential in the Eastern Mediterranean Levantine Basin. An Integrated 10-year Study

    DTIC Science & Technology

    2014-01-01

    SUBTITLE Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... Cardone CV, Ewing JA, et al. The WAM model e a third generation ocean wave prediction model. J Phys Oceanogr 1988;18(12):1775e810. [70] Varinou M

  7. Two-Center/Three-Electron Sigma Half-Bonds in Main Group and Transition Metal Chemistry.

    PubMed

    Berry, John F

    2016-01-19

    extensive studies using X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, density functional theory, and wave function-based computational methods, as well as chemical oxidation and reduction. The compounds contain E-E 2c/3e σ half-bonds and unprecedented E2(3-) "subchalcogenide" ligands, ushering in a new oxidation state paradigm for transition metal-chalcogen chemistry.

  8. Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan; Romano, Joseph D.; Taylor, Stephen; Mingarelli, Chiara M. F.

    2014-10-01

    We describe an alternative approach to the analysis of gravitational-wave backgrounds, based on the formalism used to characterize the polarization of the cosmic microwave background. In contrast to standard analyses, this approach makes no assumptions about the nature of the background and so has the potential to reveal much more about the physical processes that generated it. An arbitrary background can be decomposed into modes whose angular dependence on the sky is given by gradients and curls of spherical harmonics. We derive the pulsar timing overlap reduction functions for the individual modes, which are given by simple combinations of spherical harmonics evaluated at the pulsar locations. We show how these can be used to recover the components of an arbitrary background, giving explicit results for both isotropic and anisotropic uncorrelated backgrounds. We also find that the response of a pulsar timing array to curl modes is identically zero, so half of the gravitational-wave sky will never be observed using pulsar timing, no matter how many pulsars are included in the array. An isotropic, unpolarized and uncorrelated background can be accurately represented using only three modes, and so a search of this type will be only slightly more complicated than the standard cross-correlation search using the Hellings and Downs overlap reduction function. However, by measuring the components of individual modes of the background and checking for consistency with isotropy, this approach has the potential to reveal much more information. Each individual mode on its own describes a background that is correlated between different points on the sky. A measurement of the components that indicates the presence of correlations in the background on large angular scales would suggest startling new physics.

  9. Coupled Transmission Line Based Slow Wave Structures for Traveling Wave Tubes Applications

    NASA Astrophysics Data System (ADS)

    Zuboraj, Md. Rashedul Alam

    High power microwave devices especially Traveling Wave Tubes (TWTs) and Backward Wave Oscillators (BWOs) are largely dependent on Slow Wave Structures for efficient beam to RF coupling. In this work, a novel approach of analyzing SWSs is proposed and investigated. Specifically, a rigorous study of helical geometries is carried out and a novel SWS "Half-Ring-Helix" is designed. This Half-Ring-Helix circuit achieves 27% miniaturization and delivers 10dB more gain than conventional helices. A generalization of the helix structures is also proposed in the form of Coupled Transmission Line (CTL). It is demonstrated that control of coupling among the CTLs leads to new propagation properties. With this in mind, a novel geometry referred to as "Curved Ring-Bar" is introduced. This geometry is shown to deliver 1MW power across a 33% bandwidth. Notably, this is the first demonstration of MW power TWT across large bandwidth. The CTL is further expanded to enable engineered propagation characteristics. This is done by introducing CTLs having non-identical transmission lines and CTLs with as many as four transmission lines in the same slow wave structure circuit. These non-identical CTLs are demonstrated to generate fourth order dispersion curves. Building on the property of CTLs, a `butterfly' slow wave structure is developed and demonstrated to provide degenerate band edge (DBE) mode. This mode are known to provide large feld enhancement that can be exploited to design high power backward wave oscillators.

  10. Anisotropy in layered half-metallic Heusler alloy superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam

    2016-01-28

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  11. Green’s functions for a volume source in an elastic half-space

    PubMed Central

    Zabolotskaya, Evgenia A.; Ilinskii, Yurii A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Green’s functions are derived for elastic waves generated by a volume source in a homogeneous isotropic half-space. The context is sources at shallow burial depths, for which surface (Rayleigh) and bulk waves, both longitudinal and transverse, can be generated with comparable magnitudes. Two approaches are followed. First, the Green’s function is expanded with respect to eigenmodes that correspond to Rayleigh waves. While bulk waves are thus ignored, this approximation is valid on the surface far from the source, where the Rayleigh wave modes dominate. The second approach employs an angular spectrum that accounts for the bulk waves and yields a solution that may be separated into two terms. One is associated with bulk waves, the other with Rayleigh waves. The latter is proved to be identical to the Green’s function obtained following the first approach. The Green’s function obtained via angular spectrum decomposition is analyzed numerically in the time domain for different burial depths and distances to the receiver, and for parameters relevant to seismo-acoustic detection of land mines and other buried objects. PMID:22423682

  12. Examination of Wave Speed in Rotating Detonation Engines Using Simplified Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2018-01-01

    A simplified, two-dimensional, computational fluid dynamic (CFD) simulation, with a reactive Euler solver is used to examine possible causes for the low detonation wave propagation speeds that are consistently observed in air breathing rotating detonation engine (RDE) experiments. Intense, small-scale turbulence is proposed as the primary mechanism. While the solver cannot model this turbulence, it can be used to examine the most likely, and profound effect of turbulence. That is a substantial enlargement of the reaction zone, or equivalently, an effective reduction in the chemical reaction rate. It is demonstrated that in the unique flowfield of the RDE, a reduction in reaction rate leads to a reduction in the detonation speed. A subsequent test of reduced reaction rate in a purely one-dimensional pulsed detonation engine (PDE) flowfield yields no reduction in wave speed. The reasons for this are explained. The impact of reduced wave speed on RDE performance is then examined, and found to be minimal. Two other potential mechanisms are briefly examined. These are heat transfer, and reactive mixture non-uniformity. In the context of the simulation used for this study, both mechanisms are shown to have negligible effect on either wave speed or performance.

  13. Non-autonomous multi-rogue waves for spin-1 coupled nonlinear Gross-Pitaevskii equation and management by external potentials.

    PubMed

    Li, Li; Yu, Fajun

    2017-09-06

    We investigate non-autonomous multi-rogue wave solutions in a three-component(spin-1) coupled nonlinear Gross-Pitaevskii(GP) equation with varying dispersions, higher nonlinearities, gain/loss and external potentials. The similarity transformation allows us to relate certain class of multi-rogue wave solutions of the spin-1 coupled nonlinear GP equation to the solutions of integrable coupled nonlinear Schrödinger(CNLS) equation. We study the effect of time-dependent quadratic potential on the profile and dynamic of non-autonomous rogue waves. With certain requirement on the backgrounds, some non-autonomous multi-rogue wave solutions exhibit the different shapes with two peaks and dip in bright-dark rogue waves. Then, the managements with external potential and dynamic behaviors of these solutions are investigated analytically. The results could be of interest in such diverse fields as Bose-Einstein condensates, nonlinear fibers and super-fluids.

  14. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  15. Nonlinear excitation of fast magnetosonic waves via quasi-electrostatic whistler wave mixing

    NASA Astrophysics Data System (ADS)

    Zechar, Nathan; Sotnikov, Vladimir; Caplinger, James; Chu, Arthur

    2017-10-01

    We report on experiments of nonlinear simultaneous generation of low frequency fast magnetosonic waves and electromagnetic whistler waves using two loop antennas in the afterglow of a cold magnetized helium plasma. The exciting antennas each have a frequency that is below half the electron cyclotron frequency, and the difference between the two is just below the lower hybrid frequency. They both directly excite whistler waves, however their nonlinear interaction excite the low frequency fast magnetosonic waves at the frequency given by their difference. Plasma is generated using a helicon plasma source in a one meter length cylindrical chamber. The spatial and temporal data of the electromagnetic and electrostatic components of the plasma waves are then captured with developed diagnostic techniques. Wave spectra, general structure and time domain frequencies observed will be reported.

  16. Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets

    EIA Publications

    2012-01-01

    Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets is an update to a previous Energy Information Administration (EIA) report, Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets, released in December 2011. This update analyzes possible market responses and impacts in the event Sunoco's Philadelphia refinery closes this summer, in addition to the recently idled refineries on the East Coast and in the U.S. Virgin Islands.

  17. 5-D interpolation with wave-front attributes

    NASA Astrophysics Data System (ADS)

    Xie, Yujiang; Gajewski, Dirk

    2017-11-01

    Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that

  18. WindWaveFloat (WWF): Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alla Weinstein; Roddier, Dominique; Banister, Kevin

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided thatmore » the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.« less

  19. Reduction and analysis of data from the plasma wave instruments on the IMP-6 and IMP-8 spacecraft

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.

    1983-01-01

    The primary data reduction effort during the reporting period was to process summary plots of the IMP 8 plasma wave data and to submit these data to the National Space Science Data Center. Features of the electrostatic noise are compared with simultaneous observations of the magnetic field, plasma and energetic electrons. Spectral characteristics of the noise and the results of this comparison both suggest that in its high frequency part at least the noise does not belong to normal modes of plasma waves but represents either quasi-thermal noise in the non-Maxwellian plasma or artificial noise generated by spacecraft interaction with the medium.

  20. Bounce-harmonic Landau Damping of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  1. Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Yan, Xiaomei; Xu, Xiao; Liu, Qin; Guo, Jia; Kang, Longtian; Yao, Jiannian

    2018-06-01

    Iron single-atom catalyst in form of iron-nitrogen-carbon structure possesses the excellent catalytic activity in various chemical reactions. However, exploring a sustainable and stable single-atom metal catalyst still faces a great challenge due to low yield and complicated synthesis. Here, we report a functional multi-wall carbon nanotubes modified with iron phthalocyanine molecules via a liquid chemical reaction and realize the performance of similar single-atom catalysis for oxygen reduction reaction. A serial of characterizations strongly imply the structure change of iron phthalocyanine molecule and its close recombination with multi-wall carbon nanotubes, which are in favor of ORR catalysis. Compared to commercial platinum-carbon catalyst, composites exhibit superior activity for oxygen reduction reaction with higher half-wave potential (0.86 V), lower Tafel slope (38 mV dec-1), higher limiting current density and excellent electrochemical stability. The corresponding Zinc-air battery also presents higher maximum power density and discharge stability. Therefore, these findings provide a facile route to synthesize a highly efficient non-precious metal carbon-based catalyst.

  2. Predictions of the Contribution of HCN Half-Maximal Activation Potential Heterogeneity to Variability in Intrinsic Adaptation of Spiral Ganglion Neurons.

    PubMed

    Boulet, Jason; Bruce, Ian C

    2017-04-01

    Spiral ganglion neurons (SGNs) exhibit a wide range in their strength of intrinsic adaptation on a timescale of 10s to 100s of milliseconds in response to electrical stimulation from a cochlear implant (CI). The purpose of this study was to determine how much of that variability could be caused by the heterogeneity in half-maximal activation potentials of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, which are known to produce intrinsic adaptation. In this study, a computational membrane model of cat type I SGN was developed based on the Hodgkin-Huxley model plus HCN and low-threshold potassium (KLT) conductances in which the half-maximal activation potential of the HCN channel was varied and the response of the SGN to pulse train and paired-pulse stimulation was simulated. Physiologically plausible variation of HCN half-maximal activation potentials could indeed determine the range of adaptation on the timescale of 10s to 100s of milliseconds and recovery from adaptation seen in the physiological data while maintaining refractoriness within physiological bounds. This computational model demonstrates that HCN channels may play an important role in regulating the degree of adaptation in response to pulse train stimulation and therefore contribute to variable constraints on acoustic information coding by CIs. This finding has broad implications for CI stimulation paradigms in that cell-to-cell variation of HCN channel properties are likely to significantly alter SGN excitability and therefore auditory perception.

  3. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    PubMed Central

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260

  4. Experimental studies on wave interactions of partially perforated wall under obliquely incident waves.

    PubMed

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  5. Marine Planning for Potential Wave Energy Facility Placement Amongst a Crowded Sea of Existing Resource Uses

    NASA Astrophysics Data System (ADS)

    Feist, B. E.; Fuller, E.; Plummer, M. L.

    2016-12-01

    Conversion to renewable energy sources is a logical response to increasing pressure to reduce greenhouse gas emissions. Ocean wave energy is the least developed renewable energy source, despite having the highest energy per unit area. While many hurdles remain in developing wave energy, assessing potential conflicts and evaluating tradeoffs with existing uses is essential. Marine planning encompasses a broad array of activities that take place in and affect large marine ecosystems, making it an ideal tool for evaluating wave energy resource use conflicts. In this study, we focus on the potential conflicts between wave energy conversion (WEC) facilities and existing marine uses in the context of marine planning, within the California Current Large Marine Ecosystem. First, we evaluated wave energy facility development using the Wave Energy Model (WEM) of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) toolkit. Second, we ran spatial analyses on model output to identify conflicts with existing marine uses including AIS based vessel traffic, VMS and observer based measures of commercial fishing effort, and marine conservation areas. We found that regions with the highest wave energy potential were distant from major cities and that infrastructure limitations (cable landing sites) restrict integration with existing power grids. We identified multiple spatial conflicts with existing marine uses; especially shipping vessels and various commercial fishing fleets, and overlap with marine conservation areas varied by conservation designation. While wave energy generation facilities may be economically viable in the California Current, this viability must be considered within the context of the costs associated with conflicts that arise with existing marine uses. Our analyses can be used to better inform placement of WEC devices (as well as other types of renewable energy facilities) in the context of marine planning by accounting for economic tradeoffs

  6. Half-time strategies to enhance second-half performance in team-sports players: a review and recommendations.

    PubMed

    Russell, Mark; West, Daniel J; Harper, Liam D; Cook, Christian J; Kilduff, Liam P

    2015-03-01

    A number of intermittent team sports require that two consecutive periods of play (lasting for ~30-45 min) are separated by a 10-20 min half-time break. The half-time practices employed by team-sports players generally include returning to the changing rooms, temporarily relaxing from the cognitive and physical demands of the first half, rehydration and re-fuelling strategies, addressing injury or equipment concerns, and receiving tactical instruction and coach feedback. However, the typically passive nature of these actions has been associated with physiological changes that impair performance during the second half. Both physical and cognitive performances have been found to decline in the initial stages of subsequent exercise that follows half-time. An increased risk of injury has also been observed during this period. Therefore, half-time provides sports scientists and strength and conditioning coaches with an opportunity to optimise second-half performance. An overview of strategies thought to benefit team-sports athletes is presented; specifically, the efficacy of heat maintenance strategies (including passive and active methods), post-activation potentiation, hormonal priming, and modified hydro-nutritional practices are discussed. A theoretical model of applying these strategies in a manner that compliments current practice is also offered.

  7. California State Waters Map Series: offshore of Half Moon Bay, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by

  8. Effect Of Electromagnetic Waves Emitted From Mobile Phone On Brain Stem Auditory Evoked Potential In Adult Males.

    PubMed

    Singh, K

    2015-01-01

    Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p < 0.05) and V (p < 0.001) wave, amplitude of I-Ia wave (p < 0.05) and decrease in IPL of III-V wave (P < 0.05) after exposure to MP. But no significant change was found in waves of BAEP in left ear before vs after MP. On comparison of right (having exposure routinely as found to be dominating ear) and left ears (not exposed to MP), before exposure to MP, IPL of IIl-V wave and amplitude of V-Va is more (< 0.001) in right ear compared to more latency of III and IV wave (< 0.001) in left ear. After exposure to MP, the amplitude of V-Va was (p < 0.05) more in right ear compared to left ear. In conclusion, EMWs emitted from MP affects the auditory potential.

  9. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.

    PubMed

    Leicht, Katja; Seppälä, Katri; Seppälä, Otto

    2017-06-15

    On-going global climate change poses a serious threat for natural populations unless they are able to evolutionarily adapt to changing environmental conditions (e.g. increasing average temperatures, occurrence of extreme weather events). A prerequisite for evolutionary change is within-population heritable genetic variation in traits subject to selection. In relation to climate change, mainly phenological traits as well as heat and desiccation resistance have been examined for such variation. Therefore, it is important to investigate adaptive potential under climate change conditions across a broader range of traits. This is especially true for life-history traits and defences against natural enemies (e.g. parasites) since they influence organisms' fitness both directly and through species interactions. We examined the adaptive potential of fitness-related traits and their responses to heat waves in a population of a freshwater snail, Lymnaea stagnalis. We estimated family-level variation and covariation in life history (size, reproduction) and constitutive immune defence traits [haemocyte concentration, phenoloxidase (PO)-like activity, antibacterial activity of haemolymph] in snails experimentally exposed to typical (15 °C) and heat wave (25 °C) temperatures. We also assessed variation in the reaction norms of these traits between the treatments. We found that at the heat wave temperature, snails were larger and reproduced more, while their immune defence was reduced. Snails showed high family-level variation in all examined traits within both temperature treatments. The only negative genetic correlation (between reproduction and antibacterial activity) appeared at the high temperature. However, we found no family-level variation in the responses of most examined traits to the experimental heat wave (i.e. largely parallel reaction norms between the treatments). Only the reduction of PO-like activity when exposed to the high temperature showed family

  10. Potentiation Effects of Half-Squats Performed in a Ballistic or Nonballistic Manner.

    PubMed

    Suchomel, Timothy J; Sato, Kimitake; DeWeese, Brad H; Ebben, William P; Stone, Michael H

    2016-06-01

    This study examined and compared the acute effects of ballistic and nonballistic concentric-only half-squats (COHSs) on squat jump performance. Fifteen resistance-trained men performed a squat jump 2 minutes after a control protocol or 2 COHSs at 90% of their 1 repetition maximum (1RM) COHS performed in a ballistic or nonballistic manner. Jump height (JH), peak power (PP), and allometrically scaled peak power (PPa) were compared using three 3 × 2 repeated-measures analyses of variance. Statistically significant condition × time interaction effects existed for JH (p = 0.037), PP (p = 0.041), and PPa (p = 0.031). Post hoc analysis revealed that the ballistic condition produced statistically greater JH (p = 0.017 and p = 0.036), PP (p = 0.031 and p = 0.026), and PPa (p = 0.024 and p = 0.023) than the control and nonballistic conditions, respectively. Small effect sizes for JH, PP, and PPa existed during the ballistic condition (d = 0.28-0.44), whereas trivial effect sizes existed during the control (d = 0.0-0.18) and nonballistic (d = 0.0-0.17) conditions. Large statistically significant relationships existed between the JH potentiation response and the subject's relative back squat 1RM (r = 0.520; p = 0.047) and relative COHS 1RM (r = 0.569; p = 0.027) during the ballistic condition. In addition, large statistically significant relationship existed between JH potentiation response and the subject's relative back squat strength (r = 0.633; p = 0.011), whereas the moderate relationship with the subject's relative COHS strength trended toward significance (r = 0.483; p = 0.068). Ballistic COHS produced superior potentiation effects compared with COHS performed in a nonballistic manner. Relative strength may contribute to the elicited potentiation response after ballistic and nonballistic COHS.

  11. Age-Related Reduction in Daytime Sleep Propensity and Nocturnal Slow Wave Sleep

    PubMed Central

    Dijk, Derk-Jan; Groeger, John A.; Stanley, Neil; Deacon, Stephen

    2010-01-01

    Objective: To investigate whether age-related and experimental reductions in SWS and sleep continuity are associated with increased daytime sleep propensity. Methods: Assessment of daytime sleep propensity under baseline conditions and following experimental disruption of SWS. Healthy young (20-30 y, n = 44), middle-aged (40-55 y, n = 35) and older (66-83 y, n = 31) men and women, completed a 2-way parallel group study. After an 8-h baseline sleep episode, subjects were randomized to 2 nights with selective SWS disruption by acoustic stimuli, or without disruption, followed by 1 recovery night. Objective and subjective sleep propensity were assessed using the Multiple Sleep Latency Test (MSLT) and the Karolinska Sleepiness Scale (KSS). Findings: During baseline sleep, SWS decreased (P < 0.001) and the number of awakenings increased (P < 0.001) across the 3 age groups. During the baseline day, MSLT values increased across the three age groups (P < 0.0001) with mean values of 8.7min (SD: 4.5), 11.7 (5.1) and 14.2 (4.1) in the young, middle-aged, and older adults, respectively. KSS values were 3.7 (1.0), 3.2 (0.9), and 3.4 (0.6) (age-group: P = 0.031). Two nights of SWS disruption led to a reduction in MSLT and increase in KSS in all 3 age groups (SWS disruption vs. control: P < 0.05 in all cases). Conclusions: Healthy aging is associated with a reduction in daytime sleep propensity, sleep continuity, and SWS. In contrast, experimental disruption of SWS leads to an increase in daytime sleep propensity. The age-related decline in SWS and reduction in daytime sleep propensity may reflect a lessening in homeostatic sleep requirement. Healthy older adults without sleep disorders can expect to be less sleepy during the daytime than young adults. Citation: Dijk DJ; Groeger JA; Stanley N; Deacon S. Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep. SLEEP 2010;33(2):211-223. PMID:20175405

  12. The influence of pore-fluid in the soil on ground vibrations from a tunnel embedded in a layered half-space

    NASA Astrophysics Data System (ADS)

    Yuan, Zonghao; Cao, Zhigang; Boström, Anders; Cai, Yuanqiang

    2018-04-01

    A computationally efficient semi-analytical solution for ground-borne vibrations from underground railways is proposed and used to investigate the influence of hydraulic boundary conditions at the scattering surfaces and the moving ground water table on ground vibrations. The arrangement of a dry soil layer with varying thickness resting on a saturated poroelastic half-space, which includes a circular tunnel subject to a harmonic load at the tunnel invert, creates the scenario of a moving water table for research purposes in this paper. The tunnel is modelled as a hollow cylinder, which is made of viscoelastic material and buried in the half-space below the ground water table. The wave field in the dry soil layer consists of up-going and down-going waves while the wave field in the tunnel wall consists of outgoing and regular cylindrical waves. The complete solution for the saturated half-space with a cylindrical hole is composed of down-going plane waves and outgoing cylindrical waves. By adopting traction-free boundary conditions on the ground surface and continuity conditions at the interfaces of the two soil layers and of the tunnel and the surrounding soil, a set of algebraic equations can be obtained and solved in the transformed domain. Numerical results show that the moving ground water table can cause an uncertainty of up to 20 dB for surface vibrations.

  13. Researching of the reduction of shock waves intensivity in the “pseudo boiling” layer

    NASA Astrophysics Data System (ADS)

    Pavlov, G. I.; Telyashov, D. A.; Kochergin, A. V.; Nakoryakov, P. V.; Sukhovaya, E. A.

    2017-09-01

    This article applies to the field of acoustics and deals with noise reduction of pulsating combustion chambers, in particular the reduction of the shock waves’ intensity with the help of pseudo boiling layer. In the course of work on a test stand that included a pulsator, a compressor with the receiver and a high pressure fan was simulated gas jet flowing from the chamber pulsating combustion and studied the effect of different types of fluidization on effect of reducing the sound pressure levels. Were obtained the experimental dependence of the sound pressure levels from parameters such as: height of the layer of granules; diameter of the used granules; amplitude of the pressure pulsations in the gas stream at the entrance to the camera; frequency of pressure pulsations. Based on the results of the study, it was concluded that the using of a pseudo boiling layer is promising for reducing shock wave noise.

  14. Predicting Reduction Rates of Energetic Nitroaromatic Compounds Using Calculated One-Electron Reduction Potentials

    DOE PAGES

    Salter-Blanc, Alexandra; Bylaska, Eric J.; Johnston, Hayley; ...

    2015-02-11

    The evaluation of new energetic nitroaromatic compounds (NACs) for use in green munitions formulations requires models that can predict their environmental fate. The susceptibility of energetic NACs to nitro reduction might be predicted from correlations between rate constants (k) for this reaction and one-electron reduction potentials (E1NAC) / 0.059 V, but the mechanistic implications of such correlations are inconsistent with evidence from other methods. To address this inconsistency, we have reevaluated existing kinetic data using a (non-linear) free-energy relationship (FER) based on the Marcus theory of outer-sphere electron transfer. For most reductants, the results are inconsistent with rate limitation bymore » an initial, outer-sphere electron transfer, suggesting that the strong correlation between k and E1NAC is justified only as an empirical model. This empirical correlation was used to calibrate a new quantitative structure-activity relationship (QSAR) using previously reported values of k for non-energetic NAC reduction by Fe(II) porphyrin and newly reported values of E1NAC determined using density functional theory at the B3LYP/6-311++G(2d,2p) level with the COSMO solvation model. The QSAR was then validated for energetic NACs using newly measured kinetic data for 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (DNAN). The data show close agreement with the QSAR, supporting its applicability to energetic NACs.« less

  15. The Effect of Reduction Potential on the Generation of the Perylene Diimide Radical Anions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Z.; Li, K. X.; Ding, S. Y.; Zhu, M.; Ren, H. P.; Ma, Q.; Guo, Z.; Tian, S. P.; Zhang, H. Q.; Miao, Z. C.

    2018-07-01

    Perylene diimide derivatives (PDIs) with different substituents in the bay positions (Un-PDI, DFPDI and THBPDI) were chosen in this report to investigate the effect of potential on the reduction of PDIs through base (hydrazine, 1,2-ethanediamine and triethylamine)-driven keto-enol anion tautomerism. The reduction potentials (PDI/PDI•-) of these compounds determined via cyclic voltammetry are -0.51, ‒0.34, and -0.098 V for Un-PDI, DFPDI, and THBPDI, respectively. The reduction of Un-PDI, DFPDI and THBPDI by hydrazine can produce corresponding radical anions and dianions, but the volume of hydrazine added at which the radicals started to appear is different and depends on their reduction potential. The similar phenomenon was observed using 1,2-ethylenediamine and triethylamine. However, only the radical anion was obtained even in a large excess of 1,2-ethanediamine or triethylamine. Moreover, the reduction of these PDIs with different bases added in the same amount was investigated, and the correlation with their basicity was shown.

  16. Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron-Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis.

    PubMed

    Artz, Jacob H; Mulder, David W; Ratzloff, Michael W; Lubner, Carolyn E; Zadvornyy, Oleg A; LeVan, Axl X; Williams, S Garrett; Adams, Michael W W; Jones, Anne K; King, Paul W; Peters, John W

    2017-07-19

    An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H 2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (∼ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fd ox /Fd red ratio at which CpI can operate, consistent with the role of CpI in recycling Fd red that accumulates during fermentation. Subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.

  17. Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer.

    PubMed

    Ravichandran, Kanchana R; Zong, Allan B; Taguchi, Alexander T; Nocera, Daniel G; Stubbe, JoAnne; Tommos, Cecilia

    2017-03-01

    Redox-active tyrosines (Ys) play essential roles in enzymes involved in primary metabolism including energy transduction and deoxynucleotide production catalyzed by ribonucleotide reductases (RNRs). Thermodynamic characterization of Ys in solution and in proteins remains a challenge due to the high reduction potentials involved and the reactive nature of the radical state. The structurally characterized α 3 Y model protein has allowed the first determination of formal reduction potentials (E°') for a Y residing within a protein (Berry, B. W.; Martı́nez-Rivera, M. C.; Tommos, C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9739-9743). Using Schultz's technology, a series of fluorotyrosines (F n Y, n = 2 or 3) was site-specifically incorporated into α 3 Y. The global protein properties of the resulting α 3 (3,5)F 2 Y, α 3 (2,3,5)F 3 Y, α 3 (2,3)F 2 Y and α 3 (2,3,6)F 3 Y variants are essentially identical to those of α 3 Y. A protein film square-wave voltammetry approach was developed to successfully obtain reversible voltammograms and E°'s of the very high-potential α 3 F n Y proteins. E°'(pH 5.5; α 3 F n Y(O•/OH)) spans a range of 1040 ± 3 mV to 1200 ± 3 mV versus the normal hydrogen electrode. This is comparable to the potentials of the most oxidizing redox cofactors in nature. The F n Y analogues, and the ability to site-specifically incorporate them into any protein of interest, provide new tools for mechanistic studies on redox-active Ys in proteins and on functional and aberrant hole-transfer reactions in metallo-enzymes. The former application is illustrated here by using the determined α 3 F n Y ΔE°'s to model the thermodynamics of radical-transfer reactions in F n Y-RNRs and to experimentally test and support the key prediction made.

  18. Complex space monofilar approximation of diffraction currents on a conducting half plane

    NASA Technical Reports Server (NTRS)

    Lindell, I. V.

    1987-01-01

    Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.

  19. Half-metallicity and electronic structures for carbon-doped group III-nitrides: Calculated with a modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Fan, Shuai-wei; Wang, Ri-gao; Xu, Pemg

    2016-09-01

    The electronic structures and magnetism for carbon-doped group III-nitrides are investigated by utilizing the first principle method with the modified Becke-Johnson potential. Calculations show that carbon substituting cations (anions) would induce the group III-nitrides to be paramagnetic metals (half-metallic ferromagnets). Single carbon substituting nitrogen could produce 1.00μB magnetic moment. Electronic structures indicate that the carriers-mediated double-exchange interaction plays a crucial role in forming the ferromagnetism. Based on the mean-field theory, the Curie temperature for carbon-doped group III-nitrides would be above the room temperature. Negative chemical pair interactions imply that carbon dopants tend to form clustering distribution in group III-nitrides. The nitrogen vacancy would make the carbon-doped group III-nitrides lose the half-metallic ferromagnetism.

  20. The Effect of Atrial Fibrillation Ablation Techniques on P Wave Duration and P Wave Dispersion.

    PubMed

    Furniss, Guy O; Panagopoulos, Dimitrios; Kanoun, Sadeek; Davies, Edward J; Tomlinson, David R; Haywood, Guy A

    2018-02-14

    A reduction in surface electrocardiogram (ECG) P wave duration and dispersion is associated with improved outcomes in atrial fibrillation ablation. We investigated the effects of different ablation strategies on P wave duration and dispersion, hypothesising that extensive left atrial (LA) ablation with left atrial posterior wall isolation would give a greater reduction in P wave duration than more limited ablation techniques. A retrospective analysis of ECGs from patients who have undergone atrial fibrillation (AF) ablation was performed and pre-procedural sinus rhythm ECGs were compared with the post procedure ECGs. Maximal P wave duration was measured in leads I or II, minimum P wave duration in any lead and values were calculated for P wave duration and dispersion. Left atrial dimensions and medications at the time of ECG were documented. Ablation strategies compared were; pulmonary vein isolation (PVI) for paroxysmal atrial fibrillation (PAF) and the persistent AF (PsAF) ablation strategies of pulmonary vein isolation plus additional linear lesions (Lines), left atrial posterior wall isolation via catheter (PWI) and left atrial posterior wall isolation via staged surgical and catheter ablation (Hybrid). Sixty-nine patients' ECGs were analysed: 19 PVI, 21 Lines, 14 PWI, 15 Hybrid. Little correlation was seen between pre-procedure left atrial size and P wave duration (r=0.24) but LA size and P wave duration was larger in PsAF patients. A significant difference was seen in P wave reduction driven by Hybrid AF ablation (p<0.005) and Lines (<0.02). There was no difference amongst P wave dispersion between groups but the largest reduction was seen in the Hybrid ablation group. P wave duration increased with duration of continuous atrial fibrillation. Hybrid AF ablation significantly reduced P wave duration and dispersion compared to other ablation strategies including posterior wall isolation via catheter despite this being the same lesion set. Copyright © 2018

  1. Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Straus, D. M.

    1983-01-01

    The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eiiassen-Palm flux are also discussed.

  2. Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Straus, D. M.

    1983-01-01

    The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eliassen-Palm flux are also discussed.

  3. Benchmark solution for vibrations from a moving point source in a tunnel embedded in a half-space

    NASA Astrophysics Data System (ADS)

    Yuan, Zonghao; Boström, Anders; Cai, Yuanqiang

    2017-01-01

    A closed-form semi-analytical solution for the vibrations due to a moving point load in a tunnel embedded in a half-space is given in this paper. The tunnel is modelled as an elastic hollow cylinder and the ground surrounding the tunnel as a linear viscoelastic material. The total wave field in the half-space with a cylindrical hole is represented by outgoing cylindrical waves and down-going plane waves. To apply the boundary conditions on the ground surface and at the tunnel-soil interface, the transformation properties between the plane and cylindrical wave functions are employed. The proposed solution can predict the ground vibration from an underground railway tunnel of circular cross-section with a reasonable computational effort and can serve as a benchmark solution for other computational methods. Numerical results for the ground vibrations on the free surface due to a moving constant load and a moving harmonic load applied at the tunnel invert are presented for different load velocities and excitation frequencies. It is found that Rayleigh waves play an important role in the ground vibrations from a shallow tunnel.

  4. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-guo; Huang, Xing-xing; Liu, Wei-fang; Zhao, Wei-jun; Song, Jian-yong; Xiong, Bin; Wang, Shang-xu

    2017-10-01

    2-D seismic modelling has notable dynamic information discrepancies with field data because of the implicit line-source assumption, whereas 3-D modelling suffers from a huge computational burden. The 2.5-D approach is able to overcome both of the aforementioned limitations. In general, the earth model is treated as an elastic material, but the real media is viscous. In this study, we develop an accurate and efficient frequency-domain finite-element method (FEM) for modelling 2.5-D viscoelastic wave propagation. To perform the 2.5-D approach, we assume that the 2-D viscoelastic media are based on the Kelvin-Voigt rheological model and a 3-D point source. The viscoelastic wave equation is temporally and spatially Fourier transformed into the frequency-wavenumber domain. Then, we systematically derive the weak form and its spatial discretization of 2.5-D viscoelastic wave equations in the frequency-wavenumber domain through the Galerkin weighted residual method for FEM. Fixing a frequency, the 2-D problem for each wavenumber is solved by FEM. Subsequently, a composite Simpson formula is adopted to estimate the inverse Fourier integration to obtain the 3-D wavefield. We implement the stiffness reduction method (SRM) to suppress artificial boundary reflections. The results show that this absorbing boundary condition is valid and efficient in the frequency-wavenumber domain. Finally, three numerical models, an unbounded homogeneous medium, a half-space layered medium and an undulating topography medium, are established. Numerical results validate the accuracy and stability of 2.5-D solutions and present the adaptability of finite-element method to complicated geographic conditions. The proposed 2.5-D modelling strategy has the potential to address modelling studies on wave propagation in real earth media in an accurate and efficient way.

  5. Study of dispersive and nonlinear effects of coastal wave dynamics with a fully nonlinear potential flow model

    NASA Astrophysics Data System (ADS)

    Benoit, Michel; Yates, Marissa L.; Raoult, Cécile

    2017-04-01

    Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the

  6. On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.; Butman, B.

    2006-01-01

    A self-consistent formalism to estimate baroclinic energy densities and fluxes resulting from the propagation of internal waves of arbitrary amplitude is derived using the concept of available potential energy. The method can be applied to numerical, laboratory or field data. The total energy flux is shown to be the sum of the linear energy flux ??? u??? p??? dz (primes denote baroclinic quantities), plus contributions from the non-hydrostatic pressure anomaly and the self-advection of kinetic and available potential energy. Using highly resolved observations in Massachusetts Bay, it is shown that due to the presence of nonlinear internal waves periodically propagating in the area, ??? u??? p??? dz accounts for only half of the total flux. The same data show that equipartition of available potential and kinetic energy can be violated, especially when the nonlinear waves begin to interact with the bottom. ?? 2006 Cambridge University Press.

  7. Impact of stream restoration on flood waves

    NASA Astrophysics Data System (ADS)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  8. Investigation to optimize the passive shock wave-boundary layer control for supercritical airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Ficarra, R.; Orozco, R.

    1983-01-01

    The optimization of passive shock wave/boundary layer control for supercritical airfoil drag reduction was investigated in a 3 in. x 15.4 in. Transonic Blowdown Wind Tunnel. A 14% thick supercritical airfoil was tested with 0%, 1.42% and 2.8% porosities at Mach numbers of .70 to .83. The 1.42% case incorporated a linear increase in porosity with the flow direction while the 2.8% case was uniform porosity. The static pressure distributions over the airfoil, the wake impact pressure data for determining the profile drag, and the Schlieren photographs for porous surface airfoils are presented and compared with the results for solid-surface airfoils. While the results show that linear 1.42% porosity actually led to a slight increase in drag it was found that the uniform 2.8% porosity can lead to a drag reduction of 46% at M = .81.

  9. Surface Green's function of a piezoelectric half-space.

    PubMed

    Laude, Vincent; Jerez-Hanckes, Carlos F; Ballandras, Sylvain

    2006-02-01

    The computation of the two-dimensional harmonic spatial-domain Green's function at the surface of a piezoelectric half-space is discussed. Starting from the known form of the Green's function expressed in the spectral domain, the singular contributions are isolated and treated separately. It is found that the surface acoustic wave contributions (i.e., poles in the spectral Green's function) give rise to an anisotropic generalization of the Hankel function H0(2), the spatial Green's function for the scalar two-dimensional wave equation. The asymptotic behavior at infinity and at the origin (for the electrostatic contribution) also are explicitly treated. The remaining nonsingular part of the spectral Green's function is obtained numerically by a combination of fast Fourier transform and quadrature. Illustrations are given in the case of a substrate of Y-cut lithium niobate.

  10. Floating Potential Probe Langmuir Probe Data Reduction Results

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Minow, Joseph I.

    2002-01-01

    During its first five months of operations, the Langmuir Probe on the Floating Potential Probe (FPP) obtained data on ionospheric electron densities and temperatures in the ISS orbit. In this paper, the algorithms for data reduction are presented, and comparisons are made of FPP data with ground-based ionosonde and Incoherent Scattering Radar (ISR) results. Implications for ISS operations are detailed, and the need for a permanent FPP on ISS is examined.

  11. A uniform GTD analysis of the EM diffraction by a thin dielectric/ferrite half-plane and related configurations

    NASA Technical Reports Server (NTRS)

    Rojas, Roberto G.

    1985-01-01

    A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.

  12. Nonplanar ion acoustic waves with kappa-distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Biswajit

    2011-06-15

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing {kappa}) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. Themore » present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.« less

  13. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.

    PubMed

    Soldevila-Barreda, Joan J; Habtemariam, Abraha; Romero-Canelón, Isolda; Sadler, Peter J

    2015-12-01

    Organometallic complexes have the potential to behave as catalytic drugs. We investigate here Rh(III) complexes of general formula [(Cp(x))Rh(N,N')(Cl)], where N,N' is ethylenediamine (en), 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), and Cp(x) is pentamethylcyclopentadienyl (Cp*), 1-phenyl-2,3,4,5-tetramethylcyclopentadienyl (Cp(xPh)) or 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl (Cp(xPhPh)). These complexes can reduce NAD(+) to NADH using formate as a hydride source under biologically-relevant conditions. The catalytic activity decreased in the order of N,N-chelated ligand bpy > phen > en with Cp* as the η(5)-donor. The en complexes (1-3) became more active with extension to the Cp(X) ring, whereas the activity of the phen (7-9) and bpy (4-6) compounds decreased. [Cp*Rh(bpy)Cl](+) (4) showed the highest catalytic activity, with a TOF of 37.4±2h(-1). Fast hydrolysis of the chlorido complexes 1-10 was observed by (1)H NMR (<10min at 310K). The pKa* values for the aqua adducts were determined to be ca. 8-10. Complexes 1-9 also catalysed the reduction of pyruvate to lactate using formate as the hydride donor. The efficiency of the transfer hydrogenation reactions was highly dependent on the nature of the chelating ligand and the Cp(x) ring. Competition reactions between NAD(+) and pyruvate for reduction by formate catalysed by 4 showed a preference for reduction of NAD(+). The antiproliferative activity of complex 3 towards A2780 human ovarian cancer cells increased by up to 50% when administered in combination with non-toxic doses of formate, suggesting that transfer hydrogenation can induce reductive stress in cancer cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    PubMed

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  15. Assessing wave energy effects on biodiversity: the wave hub experience.

    PubMed

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  16. Assessing wave climate trends in the Bay of Biscay through an intercomparison of wave hindcasts and reanalyses

    NASA Astrophysics Data System (ADS)

    Paris, F.; Lecacheux, S.; Idier, D.; Charles, E.

    2014-09-01

    The Bay of Biscay, located in the Northeast Atlantic Ocean, is exposed to energetic waves coming from the open ocean that have crucial effects on the coast. Knowledge of the wave climate and trends in this region are critical to better understand the last decade's evolution of coastal hazards and morphology and to anticipate their potential future changes. This study aims to characterize the long-term trends of the present wave climate over the second half of the twentieth century in the Bay of Biscay through a robust and homogeneous intercomparison of five-wave datasets (Corrected ERA-40 (C-ERA-40), ECMWF Reanalysis Interim (ERA-Interim), Bay Of Biscay Wave Atlas (BOBWA-10kH), ANEMOC, and Bertin and Dodet 2010)). The comparison of the quality of the datasets against offshore and nearshore measurements reveals that at offshore locations, global reanalyses slightly underestimate wave heights, while regional hindcasts overestimate wave heights, especially for the highest quantiles. At coastal locations, BOBWA-10kH is the dataset that compares the best with observations. Concerning long time-scale features, the comparison highlights that the main significant trends are similarly present in the five datasets, especially during summer for which there is an increase of significant wave heights and mean wave periods (up to +15 cm and +0.6 s over the period 1970-2001) as well as a southerly shift of wave directions (around -0.4° year-1). Over the same period, an increase of high quantiles of wave heights during the autumn season (around 3 cm year-1 for 90th quantile of significant wave heights (SWH90)) is also apparent. During winter, significant trends are much lower than during summer and autumn despite a slight increase of wave heights and periods during 1958-2001. These trends can be related to modifications in the wave-type occurrence. Finally, the trends common to the five datasets are discussed by analyzing the similarities with centennial trends issued from longer

  17. The Potential for Ambient Plasma Wave Propulsion

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  18. Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron–Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artz, Jacob H.; Mulder, David W.; Ratzloff, Michael W.

    An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H 2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentialsmore » for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (~ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fd ox/Fd red ratio at which CpI can operate, consistent with the role of CpI in recycling Fd redthat accumulates during fermentation. In conclusion, subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.« less

  19. Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron–Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis

    DOE PAGES

    Artz, Jacob H.; Mulder, David W.; Ratzloff, Michael W.; ...

    2017-06-21

    An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H 2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentialsmore » for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (~ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fd ox/Fd red ratio at which CpI can operate, consistent with the role of CpI in recycling Fd redthat accumulates during fermentation. In conclusion, subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.« less

  20. Potential reduction of non-residential solid waste in Sukomanunggal district West Surabaya

    NASA Astrophysics Data System (ADS)

    Warmadewanthi, I. D. A. A.; Reswari, S. A.

    2018-01-01

    Sukomanunggal district a development unit 8 with the designation as a regional trade and services, industrial, education, healthcare, offices, and shopping center. The development of this region will make an increasing solid waste generation, especially waste from non-residential facilities. The aims of this research to know the potential reduction of waste source. The method used is the Likert scale questionnaire to determine the knowledge, attitude, and behavior of non-residential facilities manager. Results from this research are the existing reduction of non-residential solid waste is 5.34%, potential reduction of the waste source is optimization of plastic and paper waste with the reduction rate up to 19,52%. The level of public participation existing amounted to 46.79% with a willingness to increase recycling efforts amounted to 72.87%. Efforts that can be developed to increase public awareness of 3R are providing three types of bins, modification of solid waste collection schedule according to a type of waste that has been sorted, the provision of the communal bin.

  1. High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves

    PubMed Central

    Angstman, Nicholas B.; Kiessling, Maren C.; Frank, Hans-Georg; Schmitz, Christoph

    2015-01-01

    In blast-related mild traumatic brain injury (br-mTBI) little is known about the connections between initial trauma and expression of individual clinical symptoms. Partly due to limitations of current in vitro and in vivo models of br-mTBI, reliable prediction of individual short- and long-term symptoms based on known blast input has not yet been possible. Here we demonstrate a dose-dependent effect of shock wave exposure on C. elegans using shock waves that share physical characteristics with those hypothesized to induce br-mTBI in humans. Increased exposure to shock waves resulted in decreased mean speed of movement while increasing the proportion of worms rendered paralyzed. Recovery of these two behavioral symptoms was observed during increasing post-traumatic waiting periods. Although effects were observed on a population-wide basis, large interindividual variability was present between organisms exposed to the same highly controlled conditions. Reduction of cavitation by exposing worms to shock waves in polyvinyl alcohol resulted in reduced effect, implicating primary blast effects as damaging components in shock wave induced trauma. Growing worms on NGM agar plates led to the same general results in initial shock wave effect in a standard medium, namely dose-dependence and high interindividual variability, as raising worms in liquid cultures. Taken together, these data indicate that reliable prediction of individual clinical symptoms based on known blast input as well as drawing conclusions on blast input from individual clinical symptoms is not feasible in br-mTBI. PMID:25705183

  2. Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets

    EIA Publications

    2011-01-01

    This report is the Energy Information Administration's (EIA) initial effort to provide information and analysis on the potential impacts on petroleum product markets from reductions in Northeast petroleum refining activity.

  3. Modulation of cytosolic and intra-sarcoplasmic reticulum calcium waves by calsequestrin in rat cardiac myocytes

    PubMed Central

    Kubalova, Zuzana; Györke, Inna; Terentyeva, Radmila; Viatchenko-Karpinski, Serge; Terentyev, Dmitry; Williams, Simon C; Györke, Sandor

    2004-01-01

    Waves of Ca2+-induced Ca2+ release occur in various cell types and are involved in the pathology of certain forms of cardiac arrhythmia. These arrhythmias include catecholaminergic polymorphic ventricular tachycardia (CPVT), certain cases of which are associated with mutations in the cardiac calsequestrin gene (CASQ2). To explore the mechanisms of Ca2+ wave generation and unravel the underlying causes of CPVT, we investigated the effects of adenoviral-mediated changes in CASQ2 protein levels on the properties of cytosolic and sarcoplasmic reticulum (SR) Ca2+ waves in permeabilized rat ventricular myocytes. The free [Ca2+] inside the sarcoplasmic reticulum ([Ca2+]SR) was monitored by fluo-5N entrapped into the SR, and cytosolic Ca2+ was imaged using fluo-3. Overexpression of CASQ2 resulted in significant increases in the amplitude of Ca2+ waves and interwave intervals, whereas reduced CASQ2 levels caused drastic reductions in the amplitude and period of Ca2+ waves. CASQ2 abundance had no impact on resting diastolic [Ca2+]SR or on the amplitude of the [Ca2+]SR depletion signal during the Ca2+ wave. However, the recovery dynamics of [Ca2+]SR following Ca2+ release were dramatically altered as the rate of [Ca2+]SR recovery increased ∼3-fold in CASQ2-overexpressing myocytes and decreased to 30% of control in CASQ2-underexpressing myocytes. There was a direct linear relationship between Ca2+ wave period and the half-time of basal [Ca2+]SR recovery following Ca2+ release. Loading the SR with the low affinity exogenous Ca2+ buffer citrate exerted effects quantitatively similar to those observed on overexpressing CASQ2. We conclude that free intra-SR [Ca2+] is a critical determinant of cardiac Ca2+ wave generation. Our data indicate that reduced intra-SR Ca2+ binding activity promotes the generation of Ca2+ waves by accelerating the dynamics of attaining a threshold free [Ca2+]SR required for Ca2+ wave initiation, potentially accounting for arrythmogenesis in CPVT linked

  4. Evanescent-wave particle velocimetry measurements of zeta-potentials in fused-silica microchannels.

    PubMed

    Cevheri, Necmettin; Yoda, Minami

    2013-07-01

    The wall ζ-potential ζ(w), the potential at the shear plane of the electric double layer, depends on the properties of the BGE solution such as the valence and type of electrolyte, the pH and the ionic strength. Most of the methods estimate ζ(w) from measurements of the EOF velocity magnitude ueo , usually spatially averaged over the entire capillary. In these initial studies, evanescent-wave particle velocimetry was used to measure ueo in steady EOF for a variety of monovalent aqueous solutions to evaluate the effect of small amounts of divalent cations, as well as the pH and ionic strength of BGE solutions. In brief, the magnitude of the EOF velocity of NaCl-NaOH and borate buffer-NaOH solutions was estimated from the measured velocities of radius α = 104 nm fluorescent polystyrene particles in 33 μm fused-silica microchannels. The particle ζ-potentials were measured separately using laser-Doppler micro-electrophoresis; ζ(w) was then determined from ueo. The results suggest that evanescent-wave particle velocimetry can be used to estimate ζ(w) for a variety of BGE solutions, and that it can be used in the future to estimate local wall ζ-potential, and hence spatial variations in ζ(w). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. State of charge monitoring of vanadium redox flow batteries using half cell potentials and electrolyte density

    NASA Astrophysics Data System (ADS)

    Ressel, Simon; Bill, Florian; Holtz, Lucas; Janshen, Niklas; Chica, Antonio; Flower, Thomas; Weidlich, Claudia; Struckmann, Thorsten

    2018-02-01

    The operation of vanadium redox flow batteries requires reliable in situ state of charge (SOC) monitoring. In this study, two SOC estimation approaches for the negative half cell are investigated. First, in situ open circuit potential measurements are combined with Coulomb counting in a one-step calibration of SOC and Nernst potential which doesn't need additional reference SOCs. In-sample and out-of-sample SOCs are estimated and analyzed, estimation errors ≤ 0.04 are obtained. In the second approach, temperature corrected in situ electrolyte density measurements are used for the first time in vanadium redox flow batteries for SOC estimation. In-sample and out-of-sample SOC estimation errors ≤ 0.04 demonstrate the feasibility of this approach. Both methods allow recalibration during battery operation. The actual capacity obtained from SOC calibration can be used in a state of health model.

  6. Potential for Automobile Weight Reduction Outlook as of 1975-1976

    DOT National Transportation Integrated Search

    1978-08-01

    A study has been carried out to evaluate the potential for weight reduction of automobiles. It is concluded that automobiles of lighter weight than those current (1976 models) in the domestic market may be built in each of three size classes, 4, 5, a...

  7. Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.

    PubMed

    Yang, Guangye; Li, Lu; Jia, Suotang

    2012-04-01

    Based on the soliton solution on a continuous wave background for an integrable Hirota equation, the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of the formation of the Peregrine rogue wave: one is the localized process of the continuous wave background, and the other is the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine rogue wave are exhibited by strong temporal and spatial localization. Also, various initial excitations of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can be excited by a small localized (single peak) perturbation pulse of the continuous wave background, even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the dynamics of the Peregrine rogue wave is discussed. The results show that in the absence of the self-frequency shift, the Peregrine rogue wave can split into several subpulses; however, when the self-frequency shift is considered, the Peregrine rogue wave no longer splits and exhibits mainly a peak changing and an increasing evolution property of the field amplitude.

  8. Active skin for turbulent drag reduction

    NASA Astrophysics Data System (ADS)

    Rediniotis, Othon K.; Lagoudas, Dimitris C.; Mani, Raghavendran; Karniadakis, George

    2002-07-01

    Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption with the associated economic and environmental consequences, larger flight range and endurance and higher achievable flight speeds. This work capitalizes on recent advances in active turbulent drag reduction and active material based actuation to develop an active or 'smart' skin for turbulent drag reduction in realistic flight conditions. The skin operation principle is based on computational evidence that spanwise traveling waves of the right amplitude, wavelength and frequency can result in significant turbulent drag reduction. Such traveling waves can be induced in the smart skin via active-material actuation. The flow control technique pursued is 'micro' in the sense that only micro-scale wave amplitudes (order of 30mm) and energy inputs are sufficient to produce significant benefits. Two actuation principles have been proposed and analyzed. Different skin designs based on these two actuation principles have been discussed. The feasibility of these different actuation possibilities (such as Shape Memory Alloys and Piezoelectric material based actuators) and relative merits of different skin designs are discussed. The realization of a mechanically actuated prototype skin capable of generating a traveling wave, using a rapid prototyping machine, for the purpose of validating the proposed drag reduction technique is also presented.

  9. Reduced clot debris size using standing waves formed via high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Guo, Shifang; Du, Xuan; Wang, Xin; Lu, Shukuan; Shi, Aiwei; Xu, Shanshan; Bouakaz, Ayache; Wan, Mingxi

    2017-09-01

    The feasibility of utilizing high intensity focused ultrasound (HIFU) to induce thrombolysis has been demonstrated previously. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. This study investigates the use of standing wave fields formed via HIFU to disintegrate the thrombus while achieving a reduced clot debris size in vitro. The results showed that the average diameter of the clot debris calculated by volume percentage was smaller in the standing wave mode than in the travelling wave mode at identical ultrasound thrombolysis settings. Furthermore, the inertial cavitation dose was shown to be lower in the standing wave mode, while the estimated cavitation bubble size distribution was similar in both modes. These results show that a reduction of the clot debris size with standing waves may be attributed to the particle trapping of the acoustic potential well which contributed to particle fragmentation.

  10. Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep

    PubMed Central

    Datta, Subimal; O'Malley, Matthew W .

    2013-01-01

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372

  11. Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones.

    PubMed

    Martínez-Cifuentes, Maximiliano; Salazar, Ricardo; Ramírez-Rodríguez, Oney; Weiss-López, Boris; Araya-Maturana, Ramiro

    2017-04-04

    The rational design of quinones with specific redox properties is an issue of great interest because of their applications in pharmaceutical and material sciences. In this work, the electrochemical behavior of a series of four p -quinones was studied experimentally and theoretically. The first and second one-electron reduction potentials of the quinones were determined using cyclic voltammetry and correlated with those calculated by density functional theory (DFT) using three different functionals, BHandHLYP, M06-2x and PBE0. The differences among the experimental reduction potentials were explained in terms of structural effects on the stabilities of the formed species. DFT calculations accurately reproduced the first one-electron experimental reduction potentials with R ² higher than 0.94. The BHandHLYP functional presented the best fit to the experimental values ( R ² = 0.957), followed by M06-2x ( R ² = 0.947) and PBE0 ( R ² = 0.942).

  12. Half-State Readout In Vertical-Bloch-Line Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.

    1994-01-01

    Potentially narrow margins of chirality-based chopping of magnetic stripes avoided. Half-state readout is experimental method of readout in Vertical-Bloch-Line (VBL) memory. Based on differential deflections of magnetic stripe domains in which data bits stored. To give meaning to explanation of half-state readout, see "Vertical-Bloch-Line Memory" (NPO-18467).

  13. Control of shock-wave boundary-layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Reshotko, E.; Hingst, W. R.

    1975-01-01

    An experimental investigation has been conducted to determine the effect of bleed region geometry and bleed rate on shock wave-boundary layer interactions in an axisymmetric, mixed-compression inlet at a Mach number of 2.5. The full realizable reduction in transformed form factor is obtained by bleeding off about half the incident boundary layer mass flow. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise. Slanted holes are more effective than normal holes. Two different bleed hole sizes were tested without detectable difference in performance.

  14. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens

    PubMed Central

    Levar, Caleb E; Hoffman, Colleen L; Dunshee, Aubrey J; Toner, Brandy M; Bond, Daniel R

    2017-01-01

    Geobacter sulfurreducens uses at least two different pathways to transport electrons out of the inner membrane quinone pool before reducing acceptors beyond the outer membrane. When growing on electrodes poised at oxidizing potentials, the CbcL-dependent pathway operates at or below redox potentials of –0.10 V vs the standard hydrogen electrode, whereas the ImcH-dependent pathway operates only above this value. Here, we provide evidence that G. sulfurreducens also requires different electron transfer proteins for reduction of a wide range of Fe(III)- and Mn(IV)-(oxyhydr)oxides, and must transition from a high- to low-potential pathway during reduction of commonly studied soluble and insoluble metal electron acceptors. Freshly precipitated Fe(III)-(oxyhydr)oxides could not be reduced by mutants lacking the high-potential pathway. Aging these minerals by autoclaving did not change their powder X-ray diffraction pattern, but restored reduction by mutants lacking the high-potential pathway. Mutants lacking the low-potential, CbcL-dependent pathway had higher growth yields with both soluble and insoluble Fe(III). Together, these data suggest that the ImcH-dependent pathway exists to harvest additional energy when conditions permit, and CbcL switches on to allow respiration closer to thermodynamic equilibrium conditions. With evidence of multiple pathways within a single organism, the study of extracellular respiration should consider not only the crystal structure or solubility of a mineral electron acceptor, but rather the redox potential, as this variable determines the energetic reward affecting reduction rates, extents, and final microbial growth yields in the environment. PMID:28045456

  15. Resonance in fast-wave amplitude in the periphery of cylindrical plasmas and application to edge losses of wave heating power in tokamaks

    DOE PAGES

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.; ...

    2016-07-01

    Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. Furthermore, this process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wave power along magnetic field lines in front of the antenna to the divertor. Understanding this loss may be key to achieving effective heating and expanding the operational space of NSTX-Upgrade. Here, we propose that a new type of mode, which conducts a significant fraction of the total wave power in the low-density peripheral plasma, is drivingmore » these losses. We demonstrate the existence of such modes, which are distinct from surface modes and coaxial modes, in a cylindrical cold-plasma model when a half wavelength structure fits into the region outside the core plasma. The latter condition generalizes the previous hypothesis regarding the occurence of the edge losses and may explain why full-wave simulations predict these losses in some cases but not others. If valid, this condition implies that outer gap control is a potential strategy for mitigating the losses in NSTX-Upgrade in addition to raising the magnetic field or influencing the edge density.« less

  16. Potential reduction of en route noise from an advanced turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1990-01-01

    When the en route noise of a representative aircraft powered by an eight-blade SR-7 propeller was previously calculated, the noise level was cited as a possible concern associated with the acceptance of advanced turboprop aircraft. Some potential methods for reducing the en route noise were then investigated and are reported. Source noise reductions from increasing the blade number and from operating at higher rotative speed to reach a local minimum noise point were investigated. Greater atmospheric attenuations for higher blade passing frequencies were also indicated. Potential en route noise reductions from these methods were calculated as 9.5 dB (6.5 dB(A)) for a 10-blade redesigned propeller and 15.5 dB (11 dB(A)) for a 12-blade redesigned propeller.

  17. Third All-Union Symposium on Wave Diffraction.

    DTIC Science & Technology

    1982-08-02

    the Half - Plane of Waves, Formed on the Surface of Liquid and on the Interface in the Laminar Liquid by the Periodically Functioning Source, by...majority of the cases is of basic practical interest. For this way of integration it is displaced into lower half - plane Im xɘ and are computed deductions...and f(x) exponentially decrease, then u(x, p) is continued as meromorphic function for the variable/alternating p into half - plane Re p>-b,

  18. Calibration of redox potential in sperm wash media and evaluation of oxidation-reduction potential values in various assisted reproductive technology culture media using MiOXSYS system.

    PubMed

    Panner Selvam, M K; Henkel, R; Sharma, R; Agarwal, A

    2018-03-01

    Oxidation-reduction potential describes the balance between the oxidants and antioxidants in fluids including semen. Various artificial culture media are used in andrology and IVF laboratories for sperm preparation and to support the development of fertilized oocytes under in vitro conditions. The composition and conditions of these media are vital for optimal functioning of the gametes. Currently, there are no data on the status of redox potential of sperm processing and assisted reproduction media. The purpose of this study was to compare the oxidation-reduction potential values of the different media and to calibrate the oxidation-reduction potential values of the sperm wash medium using oxidative stress inducer cumene hydroperoxide and antioxidant ascorbic acid. Redox potential was measured in 10 different media ranging from sperm wash media, freezing media and assisted reproductive technology one-step medium to sequential media. Oxidation-reduction potential values of the sequential culture medium and one-step culture medium were lower and significantly different (p < 0.05) from the sperm wash media. Calibration of the sperm wash media using the oxidant cumene hydroperoxide and antioxidant ascorbic acid demonstrated that oxidation-reduction potential and the concentration of oxidant or antioxidant are logarithmically dependent. This study highlights the importance of calibrating the oxidation-reduction potential levels of the sperm wash media in order to utilize it as a reference value to identify the physiological range of oxidation-reduction potential that does not have any adverse effect on normal physiological sperm function. © 2017 American Society of Andrology and European Academy of Andrology.

  19. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices andmore » their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.« less

  20. Exploring Wave-Wave Interactions in a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Nystrom, Virginia; Gasperini, Federico; Forbes, Jeffrey M.; Hagan, Maura E.

    2018-01-01

    Nonlinear interactions involving Kelvin waves with (periods, zonal wave numbers) = (3.7d, s =- 1) (UFKW1) and = (2.4d, s =- 1) (UFKW2) and s = 0 and s = 1 quasi 9 day waves (Q9DW) with diurnal tides DW1, DW2, DW3, DE2, and DE3 are explored within a National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulation driven at its ˜30 km lower boundary by interpolated 3-hourly output from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The existence of nonlinear wave-wave interactions between the above primary waves is determined by the presence of secondary waves (SWs) with frequencies and zonal wave numbers that are the sums and differences of those of the primary (interacting) waves. Focus is on 10-21 April 2009, when the nontidal dynamics in the mesosphere-lower thermosphere (MLT) region is dominated by UFKW and when identification of SW is robust. Fifteen SWs are identified in all. An interesting triad is identified involving UFKW1, DE3, and a secondary UFKW4 = (1.5d, s =- 2): The UFKW1-DE3 interaction produces UFKW4, the UFKW4-DE3 interaction produces UFKW1, and the UFKW1 interaction with UFKW4 produces DE3. At 120 km the dynamic range of the reconstructed latitude-longitude zonal wind field due to all of the SW is roughly half that of the primary waves, which produced them. This suggests that nonlinear wave-wave interactions could significantly modify the way that the lower atmosphere couples with the ionosphere.

  1. Spherical-wave expansions of piston-radiator fields.

    PubMed

    Wittmann, R C; Yaghjian, A D

    1991-09-01

    Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.

  2. Methodology for Assessing the Probability of Corrosion in Concrete Structures on the Basis of Half-Cell Potential and Concrete Resistivity Measurements

    PubMed Central

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures. PMID:23766706

  3. Methodology for assessing the probability of corrosion in concrete structures on the basis of half-cell potential and concrete resistivity measurements.

    PubMed

    Sadowski, Lukasz

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures.

  4. Reflection of electromagnetic wave from the boundary of the piezoelectric half-space with cubic symmetry

    NASA Astrophysics Data System (ADS)

    Berberyan, A. Kh; Garakov, V. G.

    2018-04-01

    A large number of works have been devoted to investigation of the influence of the piezoelectric properties of a material on the propagation of elastic waves [1–3]. Herewith, the quasi-static piezoelasticity model was mainly used. In the problem of an electromagnetic wave reflection from an elastic medium with piezoelectric properties, it is necessary to consider hyperbolic equations [4].

  5. CT image reconstruction with half precision floating-point values.

    PubMed

    Maaß, Clemens; Baer, Matthias; Kachelrieß, Marc

    2011-07-01

    Analytic CT image reconstruction is a computationally demanding task. Currently, the even more demanding iterative reconstruction algorithms find their way into clinical routine because their image quality is superior to analytic image reconstruction. The authors thoroughly analyze a so far unconsidered but valuable tool of tomorrow's reconstruction hardware (CPU and GPU) that allows implementing the forward projection and backprojection steps, which are the computationally most demanding parts of any reconstruction algorithm, much more efficiently. Instead of the standard 32 bit floating-point values (float), a recently standardized floating-point value with 16 bit (half) is adopted for data representation in image domain and in rawdata domain. The reduction in the total data amount reduces the traffic on the memory bus, which is the bottleneck of today's high-performance algorithms, by 50%. In CT simulations and CT measurements, float reconstructions (gold standard) and half reconstructions are visually compared via difference images and by quantitative image quality evaluation. This is done for analytical reconstruction (filtered backprojection) and iterative reconstruction (ordered subset SART). The magnitude of quantization noise, which is caused by a reduction in the data precision of both rawdata and image data during image reconstruction, is negligible. This is clearly shown for filtered backprojection and iterative ordered subset SART reconstruction. In filtered backprojection, the implementation of the backprojection should be optimized for low data precision if the image data are represented in half format. In ordered subset SART image reconstruction, no adaptations are necessary and the convergence speed remains unchanged. Half precision floating-point values allow to speed up CT image reconstruction without compromising image quality.

  6. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    NASA Astrophysics Data System (ADS)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  7. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis.

    PubMed

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-11-14

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The reduction of a ""safety catastrophic'' potential hazard: A case history

    NASA Technical Reports Server (NTRS)

    Jones, J. P.

    1971-01-01

    A worst case analysis is reported on the safety of time watch movements for triggering explosive packages on the lunar surface in an experiment to investigate physical lunar structural characteristics through induced seismic energy waves. Considered are the combined effects of low pressure, low temperature, lunar gravity, gear train error, and position. Control measures constitute a seal control cavity and design requirements to prevent overbanking in the mainspring torque curve. Thus, the potential hazard is reduced to safety negligible.

  9. Enhanced electrocatalytic activity and stability of Pd 3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    DOE PAGES

    Liu, Sufen; Han, Lili; Zhu, Jing; ...

    2015-09-14

    In this study, carbon supported Pd 3V bimetallic alloy nanoparticles (Pd 3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H 2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd 3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd 3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd 3V/C nanoparticles. The catalytic activity and stability of the Pd 3V@Pt/C and Pt-Pd 3V/C catalystsmore » for the oxygen reduction reaction (ORR) are enhanced significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd 3V@Pt/C and Pt-Pd 3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd 3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.« less

  10. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.

    PubMed

    Bauweraerts, Ingvar; Wertin, Timothy M; Ameye, Maarten; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2013-02-01

    The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2 ] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2 ] (380 or 700 μmol CO2 mol(-1) ) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2 ] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2 ]. Low soil moisture significantly decreased net photosynthesis (Anet ) and biomass in all [CO2 ] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2 ]. Although this reduction was relatively greater under elevated [CO2 ], Anet values during this heat wave were still 34% higher than under ambient [CO2 ]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2 ] and soil moisture conditions. © 2012 Blackwell Publishing Ltd.

  11. WAVE-E: The WAter Vapour European-Explorer Mission

    NASA Astrophysics Data System (ADS)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    surface to the lower stratosphere. The mission strategy involves a pioneering launch of WAVE-E 1 followed by a joint launch of WAVE-E 2 and 3, minimizing both costs and risks as well as naturally offering a descoping option only affecting the temporal resolution of the mission. Assuming a nominal lifetime of five years for each satellite, the rough order of costs estimate amounts to 600M€ for the overall mission, while numerous cost reduction potentials remain open due to the early stage of instrument and mission design. The space mission concept 'WAVE-E' was developed by a team of 15 students with the support of two tutors at the Alpbach Summer School 2016, a ten-day design challenge organised by FFG and ESA and devoted to 'Satellite Observations of the Global Water Cycle'. The concept won the 'best science case' and 'best presentation' awards.

  12. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understandmore » dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.« less

  13. Phloretin-induced reduction in dipole potential of sterol-containing bilayers.

    PubMed

    Ostroumova, Olga S; Efimova, Svetlana S; Schagina, Ludmila V

    2013-12-01

    The phloretin-induced reduction in the dipole potential of planar lipid bilayers containing cholesterol, ergosterol, stigmasterol, 7-dehydrocholesterol and 5α-androstan-3β-ol was investigated. It is shown that effects depend on the type and concentration of membrane sterol. It is supposed that the effectiveness of phloretin in reducing the dipole potential of the bilayers that contain cholesterol, ergosterol and 7-dehydrocholesterol correlates with the ordering and condensing effects. The role of the concentration-dependent ability of different sterols to promote lateral heterogeneity in membranes is also discussed.

  14. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  15. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  16. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  17. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  18. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  19. 21 CFR 131.180 - Half-and-half.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...). (ii) Natural and artificial food flavoring. (c) Methods of analysis. The milkfat content is determined... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Half-and-half. 131.180 Section 131.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  20. Explicit and exact nontraveling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation

    NASA Astrophysics Data System (ADS)

    Yuan, Na

    2018-04-01

    With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.

  1. Muscle afferent potential (`A-wave') in the surface electromyogram of a phasic stretch reflex in normal humans

    PubMed Central

    Clarke, Alex. M.; Michie, Patricia T.; Glue, Leonard C. T.

    1972-01-01

    The experiments reported in this paper tested the hypothesis that the afferent potential elicited by a tendon tap in an isometrically recorded phasic stretch reflex can be detected in the surface EMG of normal humans when appropriate techniques are used. These techniques involved (1) training the subjects to relax mentally and physically so that the EMG was silent before and immediately after the diphasic MAP which reflects a highly synchronous discharge of afferent impulses from low threshold muscle stretch receptors after a tendon tap, and (2) using a data retrieval computer to summate stimulus-locked potentials in the EMG over a series of 16 samples using taps of uniform peak force and duration on the Achilles tendon to elicit the tendon jerk in the calf muscles. A discrete, diphasic potential (`A-wave') was recorded from EMG electrodes placed on the surface of the skin over the medial gastrocnemius muscle. The `A-wave' afferent potential had the opposite polarity to the corresponding efferent MAP. Under control conditions of relaxation the `A-wave' had a latency after the onset of the tap of 2 msec, the peak to peak amplitude was of the order of 5 μV and the duration was in the range of 6 to 10 msec. Further experiments were conducted to show that the `A-wave' (1) was not an artefact of the instrumentation used, (2) had a threshold at low intensities of stimulation, and (3) could be reliably augmented by using a Jendrassik manoeuvre compared with the potential observed during control (relaxation) conditions. The results support the conclusion that the `A-wave' emanates from the pool of muscle spindles which discharges impulses along group Ia nerve fibres in response to the phasic stretch stimulus because the primary ending of the spindles is known to initiate the stretch reflex and the spindles can be sensitized by fusimotor impulses so that their threshold is lowered as a result of a Jendrassik manoeuvre. The finding has important implications for the

  2. Experiment on a feedback control of nonlinear thermocapillary convection in a half-zone liquid bridge

    NASA Astrophysics Data System (ADS)

    Kudo, M.; Ueno, I.; Shiomi, J.; Amberg, G.; Kawamura, H.

    dominant mode number. This scheme enabled us to predict the azimuthal temperature distribution properly. The control was applied to a highly nonlinear flow that exhibited a traveling-wave type oscillatory flow (traveling flow) in the absence of the control. Under the control, the amplitude of temperature measured by each sensor attenuated significantly. The flow visualization exhibited a gradual change of the flow structure from the traveling down to the standing flow with less nonlinearity. We realized the reduction of the amplitude less than half of the initial value without amplifying other azimuthal-wave-number oscillations.

  3. Wave Period and Coastal Bathymetry Estimations from Satellite Images

    NASA Astrophysics Data System (ADS)

    Danilo, Celine; Melgani, Farid

    2016-08-01

    We present an approach for wave period and coastal water depth estimation. The approach based on wave observations, is entirely independent of ancillary data and can theoretically be applied to SAR or optical images. In order to demonstrate its feasibility we apply our method to more than 50 Sentinel-1A images of the Hawaiian Islands, well-known for its long waves. Six wave buoys are available to compare our results with in-situ measurements. The results on Sentinel-1A images show that half of the images were unsuitable for applying the method (no swell or wavelength too small to be captured by the SAR). On the other half, 78% of the estimated wave periods are in accordance with buoy measurements. In addition, we present preliminary results of the estimation of the coastal water depth on a Landsat-8 image (with characteristics close to Sentinel-2A). With a squared correlation coefficient of 0.7 for ground truth measurement, this approach reveals promising results for monitoring coastal bathymetry.

  4. Nitrogen-doped graphene anchored with mixed growth patterns of CuPt alloy nanoparticles as a highly efficient and durable electrocatalyst for the oxygen reduction reaction in an alkaline medium.

    PubMed

    Illathvalappil, Rajith; Dhavale, Vishal M; Bhange, Siddheshwar N; Kurungot, Sreekumar

    2017-07-06

    A highly active and durable CuPt alloy catalyst with trigonal bipyramidal and truncated cube-type mixed morphologies, anchored on the nitrogen-doped graphene (NGr) surface (CuPt-TBTC/NGr), was prepared by a simple and fast method. The obtained CuPt alloy showed improved oxygen reduction reaction (ORR) activity, with a 30 mV positive shift in the half-wave potential value, as compared to the state-of-the-art Pt/C catalyst in a 0.1 M KOH solution. The CuPt alloy with the trigonal bipyramidal morphology possesses porous type inter-connected sides, which help to achieve improved mass transport of oxygen during the ORR. The exposure of the (111) plane of the CuPt alloy further improved the catalytic activity towards the dioxygen reduction in alkaline media. The ORR activity of the NGr-supported CuPt alloy was found to be dependent on the reaction time, and improved activity was obtained on the material derived at a reaction time of 90 min (CuPt-TBTC/NGr-90). The material synthesized at a lower or higher reaction time than 90 min resulted in a partially formed trigonal bipyramidal morphology with more truncated cubes or agglomerated trigonal bipyramidal and truncated cubes with closed type structures, respectively. Along with the high intrinsic ORR activity, CuPt-TBTC/NGr-90 displayed excellent electrochemical stability. Even after repeated 1000 potential cycling in a window ranging from 0.10 to 1.0 V (vs. RHE), the system clearly outperformed the state-of-the-art Pt/C catalyst with 15 and 60 mV positive shifts in the onset and half-wave potentials, respectively. CuPt-TBTC/NGr-90 also exhibited 2.1 times higher mass activity and 2.2 times higher specific activity, compared to Pt/C at 0.90 V (vs. RHE). Finally, a zinc-air battery fabricated with the alloy catalyst as the air electrode displayed a peak power density of 300 mW cm -2 , which is much higher than the peak power density of 253 mW cm -2 obtained for the state-of-the-art Pt/C catalyst as the air electrode.

  5. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  6. Potential for Sonic Boom Reduction of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1999-01-01

    The HSR sonic boom technology program includes a goal of reducing the objectionable aspects of sonic boom. Earlier HSCT sonic boom studies considered achieving significant sonic boom reduction by the use of arrow-wing planforms and detailed shaping of the airplane to produce shaped waveforms (non N-waves) at the ground. While these design efforts were largely successful, the added risk and cost of the airplanes were judged to be unacceptable. The objective of the current work is to explore smaller configuration refinements that could lead to reduced sonic boom impact, within design and operational constraints. A somewhat modest target of 10% reduction in sonic boom maximum overpressure was selected to minimize the effect on the configuration performance. This work was a joint NASA/Industry effort, utilizing the respective strengths of team members at Boeing, NASA Langley, and NASA Ames. The approach used was to first explore a wide range of modifications and airplane characteristics for their effects on sonic boom and drag, using classical Modified Linear Theory (MLT) methods. CFD methods were then used to verify promising, modifications and to analyze modifications for which the MLT methods were not appropriate. The tea m produced a list of configuration changes with their effects on sonic boom and, in some cases, an estimate of the drag penalty. The most promising modifications were applied to produce a boom-softened derivative of the baseline Boeing High Speed Civil Transport (HSCT) configuration. This boom-softened configuration was analyzed in detail for the reduce sonic boom impact and also for the effect of the configuration modifications on drag, weight, and overall performance relative to the baseline.

  7. Surface elastic wave detectors

    NASA Technical Reports Server (NTRS)

    Lawson, R. L.

    1971-01-01

    The potential applications of acoustic surface wave technology to multiplex communication systems such as data-bus, are examined. The goals are primarily to characterize certain aspects of surface wave trapped delay lines, surface wave modulation techniques, and surface wave applications that are relevant to the evaluation of surface wave devices in multiplex systems. The results indicate that there is a potential for the application of surface wave technology in data-bus type systems.

  8. The oxidative half-reaction of Old Yellow Enzyme. The role of tyrosine 196.

    PubMed

    Kohli, R M; Massey, V

    1998-12-04

    Tyrosine 196 in Old Yellow Enzyme (OYE) was mutated to phenylalanine, and the resulting mutant enzyme was characterized to evaluate the mechanistic role of the residue. The residue demonstrates little effect on ligand binding and the reductive half-reaction, but a dramatic slowing by nearly 6 orders of magnitude of its oxidative half-reaction with 2-cyclohexenone. Observation of the oxidative half-reaction with a series of substrates allows us to propose a model describing the mechanism of the oxidative half-reaction. In addition, the curtailed reactivity with enones allows for characterization of the manner in which reduced enzyme primes the substrate for the redox reaction by observation of the Michaelis complex with reduced enzyme bound to substrate.

  9. β-decay half-life of V50 calculated by the shell model

    NASA Astrophysics Data System (ADS)

    Haaranen, M.; Srivastava, P. C.; Suhonen, J.; Zuber, K.

    2014-10-01

    In this work we survey the detectability of the β- channel of 2350V leading to the first excited 2+ state in 2450Cr. The electron-capture (EC) half-life corresponding to the transition of 2350V to the first excited 2+ state in 2250Ti had been measured earlier. Both of the mentioned transitions are 4th-forbidden non-unique. We have performed calculations of all the involved wave functions by using the nuclear shell model with the GXPF1A interaction in the full f-p shell. The computed half-life of the EC branch is in good agreement with the measured one. The predicted half-life for the β- branch is in the range ≈2×1019 yr whereas the present experimental lower limit is 1.5×1018 yr. We discuss also the experimental lay-out needed to detect the β--branch decay.

  10. Cathodic Potential Dependence of Electrochemical Reduction of SiO2 Granules in Molten CaCl2

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Yasuda, Kouji; Nohira, Toshiyuki; Hagiwara, Rika; Homma, Takayuki

    2016-09-01

    As part of an ongoing fundamental study to develop a new process for producing solar-grade silicon, this paper examines the effects of cathodic potential on reduction kinetics, current efficiency, morphology, and purity of Si product during electrolysis of SiO2 granules in molten CaCl2 at 1123 K (850 °C). SiO2 granules were electrolyzed potentiostatically at different cathodic potentials (0.6, 0.8, 1.0, and 1.2 V vs Ca2+/Ca). The reduction kinetics was evaluated based on the growth of the reduced Si layer and the current behavior during electrolysis. The results suggest that a more negative cathodic potential is favorable for faster reduction. Current efficiencies in 60 minutes are greater than 65 pct at all the potentials examined. Si wires with sub-micron diameters are formed, and their morphologies show little dependence on the cathodic potential. The impurities in the Si product can be controlled at low level. The rate-determining step for the electrochemical reduction of SiO2 granules in molten CaCl2 changes with time. At the initial stage of electrolysis, the electron transfer is the rate-determining step. At the later stage, the diffusion of O2- ions is the rate-determining step. The major cause of the decrease in reduction rate with increasing electrolysis time is the potential drop from the current collector to the reaction front due to the increased contact resistance among the reduced Si particles.

  11. ENSO-Related Variability in Wave Climate Drives Greater Erosion Potential on Central Pacific Atolls

    NASA Astrophysics Data System (ADS)

    Bramante, J. F.; Ashton, A. D.; Donnelly, J. P.

    2015-12-01

    The El Nino Southern Oscillation (ENSO) modulates atmospheric circulation across the equatorial Pacific over a periodic time scale of 2-7 years. Despite the importance of this climate mode in forcing storm generation and trade wind variability, its impact on the wave climate incident on central Pacific atolls has not been addressed. We used the NOAA Wavewatch III CFSR reanalysis hindcasts (1979-2007) to examine the influence of ENSO on sediment mobility and transport at Kwajalein Atoll (8.8°N, 167.7°E). We found that during El Nino event years, easterly trade winds incident on the atoll weakened by 4% compared to normal years and 17% relative to La Nina event years. Despite this decrease in wind strength, significant wave heights incident on the atoll were 3-4% greater during El Nino event years. Using machine learning to partition these waves revealed that the greater El Nino wave heights originated mainly from greater storm winds near the atoll. The southeastern shift in tropical cyclone genesis location during El Nino years forced these storm winds and contributed to the 7% and 16% increases in annual wave energy relative to normal and La Nina years, respectively. Using nested SWAN and XBeach models we determined that the additional wave energy during El Nino event years significantly increased potential sediment mobility at Kwajalein Atoll and led to greater net offshore transport on its most populous island. The larger storm waves likely deplete ocean-facing beaches and reef flats of sediment, but increase the supply of sediment to the atoll lagoon across open reef platforms that are not supporting islands. We discuss further explicit modelling of storms passing over the atoll to elucidate the confounding role of storm surge on the net erosional/depositional effects of these waves. Extrapolating our results to recent Wavewatch III forecasts leads us to conclude that climate change-linked increases in wave height and storm wave energy will increase erosion on

  12. The role of internal waves in larval fish interactions with potential predators and prey

    NASA Astrophysics Data System (ADS)

    Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy

    2014-09-01

    Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.

  13. Influence of deformed surface diffuseness on alpha decay half-lives of actinides and lanthanides

    NASA Astrophysics Data System (ADS)

    Dahmardeh, S.; Alavi, S. A.; Dehghani, V.

    2017-07-01

    By using semiclassical WKB method and taking into account the Bohr-Sommerfeld quantization condition, the alpha decay half-lives of some deformed lanthanide (with 151 ≤ A ≤ 160 and 66 ≤ Z ≤ 73) and rare-earth nuclei (with 217 ≤ A ≤ 261 and 92 ≤ Z ≤ 104) have been calculated. The effective potential has been considered as sum of deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential. The influence of deformed surface diffuseness on the potential barrier, transmission coefficient at each angle, assault frequency, and alpha decay half-lives has been investigated. Good agreement between calculated half-lives with deformed surface diffuseness and experiment is observed. Relative differences between calculated half-lives with deformed surface diffuseness and with constant surface diffuseness were significant.

  14. Time-lapse changes of P- and S-wave velocities and shear wave splitting in the first year after the 2011 Tohoku earthquake, Japan: shallow subsurface

    NASA Astrophysics Data System (ADS)

    Sawazaki, Kaoru; Snieder, Roel

    2013-04-01

    We detect time-lapse changes in P- and S-wave velocities (hereafter, VP and VS, respectively) and shear wave splitting parameters associated with the 2011 Tohoku earthquake, Japan, at depths between 0 and 504 m. We estimate not only medium parameters but also the 95 per cent confidence interval of the estimated velocity change by applying a new least squares inversion scheme to the deconvolution analysis of KiK-net vertical array records. Up to 6 per cent VS reduction is observed at more than half of the analysed KiK-net stations in northeastern Japan with over 95 per cent confidence in the first month after the main shock. There is a considerable correlation between the S-wave traveltime delay and the maximum horizontal dynamic strain (MDS) by the main shock motion when the strain exceeds 5 × 10- 4 on the ground surface. This correlation is not clearly observed for MDS at the borehole bottom. On the contrary, VP and shear wave splitting parameters do not show systematic changes after the Tohoku earthquake. These results indicate that the time-lapse change is concentrated near the ground surface, especially in loosely packed soil layers. We conclude that the behaviour of VP, VS and shear wave splitting parameters are explained by the generation of omnidirectional cracks near the ground surface and by the diffusion of water in the porous subsurface. Recovery of VS should be related to healing of the crack which is proportional to the logarithm of the lapse time after the main shock and/or to decompaction after shaking.

  15. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives.

    PubMed

    He, Feng J; Marciniak, Maciej; Visagie, Elisabeth; Markandu, Nirmala D; Anand, Vidya; Dalton, R Neil; MacGregor, Graham A

    2009-09-01

    A reduction in salt intake lowers blood pressure. However, most previous trials were in whites with few in blacks and Asians. Salt reduction may also reduce other cardiovascular risk factors (eg, urinary albumin excretion, arterial stiffness). However, few well-controlled trials have studied these effects. We carried out a randomized double-blind crossover trial of salt restriction with slow sodium or placebo, each for 6 weeks, in 71 whites, 69 blacks, and 29 Asians with untreated mildly raised blood pressure. From slow sodium to placebo, urinary sodium was reduced from 165+/-58 (+/-SD) to 110+/-49 mmol/24 hours (9.7 to 6.5 g/d salt). With this reduction in salt intake, there was a significant decrease in blood pressure from 146+/-13/91+/-8 to 141+/-12/88+/-9 mm Hg (P<0.001), urinary albumin from 10.2 (IQR: 6.8 to 18.9) to 9.1 (6.6 to 14.0) mg/24 hours (P<0.001), albumin/creatinine ratio from 0.81 (0.47 to 1.43) to 0.66 (0.44 to 1.22) mg/mmol (P<0.001), and carotid-femoral pulse wave velocity from 11.5+/-2.3 to 11.1+/-1.9 m/s (P<0.01). Subgroup analysis showed that the reductions in blood pressure and urinary albumin/creatinine ratio were significant in all groups, and the decrease in pulse wave velocity was significant in blacks only. These results demonstrate that a modest reduction in salt intake, approximately the amount of the current public health recommendations, causes significant falls in blood pressure in all 3 ethnic groups. Furthermore, it reduces urinary albumin and improves large artery compliance. Although both could be attributable to the falls in blood pressure, they may carry additional benefits on reducing cardiovascular disease above that obtained from the blood pressure falls alone.

  16. Theory and application of equivalent transformation relationships between plane wave and spherical wave

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Yang, Zailin; Zhang, Jianwei; Yang, Yong

    2017-10-01

    Based on the governing equations and the equivalent models, we propose an equivalent transformation relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic issues in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent relationships between the geometry and the material properties. It indicates that the spherical wave problem in globular geometry can be transformed into the plane wave problem in the bar with variable property fields, and its inverse transformation is valid as well. Four different examples of wave motion problems in the inhomogeneous media are solved based on the presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the reflection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated problem easier.

  17. Nonlinear Talbot effect of rogue waves.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-03-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  18. Longitudinal Waves Drive the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2000-05-01

    In Physics Essays 12: 3-10 I explain the placement of the planets in terms of low velocity waves emitted by the sun. Evidence for the wave pulse generated near the center of the sun is indicated by the initial high latitude sunspots observed on the butterfly diagram. The wave pulse carries charge with it as observed for similar waves in plants (W-waves). For the first half cycle negative charge is carried to the surface of the sun where much of the wave pulse radiates a wave crest into space while the charge slowly redistributes itself. Meanwhile the next wave pulse carrying excess positive charge moves outward. Rotating charge determines the polarity of the sun's magnetic poles so they reverse as the pulse moves outward. The wave pulse, which interacts strongly with force fields, is guided by centripetal force and gravity so that the pulse comes out near the sun's equator. W-waves produce an automatic return wave in the vacuum so that standing waves are produced in the space around the sun providing a template for the formation and stabilization planets. W-waves are hypothesized to provide self organization for both the universe and life. See the

  19. Wave Journal Bearing. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1995-01-01

    A wave journal bearing concept features a waved inner bearing diameter of the non-rotating bearing side and it is an alternative to the plain journal bearing. The wave journal bearing has a significantly increased load capacity in comparison to the plain journal bearing operating at the same eccentricity. It also offers greater stability than the plain circular bearing under all operating conditions. The wave bearing's design is relatively simple and allows the shaft to rotate in either direction. Three wave bearings are sensitive to the direction of an applied stationary side load. Increasing the number of waves reduces the wave bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the wave bearing design for a specific application. It is concluded that the stiffness of an air journal bearing, due to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  20. Structural damage detection using deep learning of ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.

    2018-04-01

    Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.

  1. Potential Hydrodynamic Loads on Coastal Bridges in the Greater New York Area due to Extreme Storm Surge and Wave

    DOT National Transportation Integrated Search

    2018-04-18

    This project makes a computer modeling study on vulnerability of coastal bridges in New York City (NYC) metropolitan region to storm surges and waves. Prediction is made for potential surges and waves in the region and consequent hydrodynamic load an...

  2. Lamina-specific contribution of glutamatergic and GABAergic potentials to hippocampal sharp wave-ripple complexes.

    PubMed

    Schönberger, Jan; Draguhn, Andreas; Both, Martin

    2014-01-01

    The mammalian hippocampus expresses highly organized patterns of neuronal activity which form a neuronal correlate of spatial memories. These memory-encoding neuronal ensembles form on top of different network oscillations which entrain neurons in a state- and experience-dependent manner. The mechanisms underlying activation, timing and selection of participating neurons are incompletely understood. Here we studied the synaptic mechanisms underlying one prominent network pattern called sharp wave-ripple complexes (SPW-R) which are involved in memory consolidation during sleep. We recorded SPW-R with extracellular electrodes along the different layers of area CA1 in mouse hippocampal slices. Contribution of glutamatergic excitation and GABAergic inhibition, respectively, was probed by local application of receptor antagonists into s. radiatum, pyramidale and oriens. Laminar profiles of field potentials show that GABAergic potentials contribute substantially to sharp waves and superimposed ripple oscillations in s. pyramidale. Inhibitory inputs to s. pyramidale and s. oriens are crucial for action potential timing by ripple oscillations, as revealed by multiunit-recordings in the pyramidal cell layer. Glutamatergic afferents, on the other hand, contribute to sharp waves in s. radiatum where they also evoke a fast oscillation at ~200 Hz. Surprisingly, field ripples in s. radiatum are slightly slower than ripples in s. pyramidale, resulting in a systematic shift between dendritic and somatic oscillations. This complex interplay between dendritic excitation and perisomatic inhibition may be responsible for the precise timing of discharge probability during the time course of SPW-R. Together, our data illustrate a complementary role of spatially confined excitatory and inhibitory transmission during highly ordered network patterns in the hippocampus.

  3. Coupled matter-wave solitons in optical lattices

    NASA Astrophysics Data System (ADS)

    Golam Ali, Sk; Talukdar, B.

    2009-06-01

    We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution

  4. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.

    PubMed

    El-Shamy, E F

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.

  5. Reduction potentials of heterometallic manganese–oxido cubane complexes modulated by redox-inactive metals

    PubMed Central

    Tsui, Emily Y.; Agapie, Theodor

    2013-01-01

    Understanding the effect of redox-inactive metals on the properties of biological and heterogeneous water oxidation catalysts is important both fundamentally and for improvement of future catalyst designs. In this work, heterometallic manganese–oxido cubane clusters [MMn3O4] (M = Sr2+, Zn2+, Sc3+, Y3+) structurally relevant to the oxygen-evolving complex (OEC) of photosystem II were prepared and characterized. The reduction potentials of these clusters and other related mixed metal manganese–tetraoxido complexes are correlated with the Lewis acidity of the apical redox-inactive metal in a manner similar to a related series of heterometallic manganese–dioxido clusters. The redox potentials of the [SrMn3O4] and [CaMn3O4] clusters are close, which is consistent with the observation that the OEC is functional only with one of these two metals. Considering our previous studies of [MMn3O2] moieties, the present results with more structurally accurate models of the OEC ([MMn3O4]) suggest a general relationship between the reduction potentials of heterometallic oxido clusters and the Lewis acidities of incorporated cations that applies to diverse structural motifs. These findings support proposals that one function of calcium in the OEC is to modulate the reduction potential of the cluster to allow electron transfer. PMID:23744039

  6. Nonsteady Problem for an Elastic Half-Plane with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-03-01

    An approach to studying nonstationary wave processes in an elastic half-plane with mixed boundary conditions of the fourth boundary-value problem of elasticity is proposed. The Laplace and Fourier transforms are used. The sequential inversion of these transforms or the inversion of the joint transform by the Cagniard method allows obtaining the required solution (stresses, displacements) in a closed analytic form. With this approach, the problem can be solved for various types of loads

  7. Role of constant value of surface diffuseness in alpha decay half-lives of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Dehghani, V.; Alavi, S. A.; Benam, Kh.

    2018-05-01

    By using WKB method and considering deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential, the alpha decay half-lives of 68 superheavy alpha emitters have been calculated. The effect of the constant value of surface diffuseness parameter in the range of 0.1 ≤ a ≤ 0.9 (fm) on the potential barrier, tunneling probability, assault frequency, and alpha decay half-lives has been investigated. Significant differences were observed for alpha decay half-lives and decay quantities in this range of surface diffuseness. Good agreement between calculated half-lives with fitted surface diffuseness parameter a = 0.54 (fm) and experiment was observed.

  8. Design of Iron(II) Phthalocyanine-Derived Oxygen Reduction Electrocatalysts for High-Power-Density Microbial Fuel Cells.

    PubMed

    Santoro, Carlo; Gokhale, Rohan; Mecheri, Barbara; D'Epifanio, Alessandra; Licoccia, Silvia; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2017-08-24

    Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm -2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm -2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pareto Joint Inversion of Love and Quasi Rayleigh's waves - synthetic study

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Dalton, David; Danek, Tomasz; Miernik, Katarzyna; Slawinski, Michael A.

    2017-04-01

    In this contribution the specific application of Pareto joint inversion in solving geophysical problem is presented. Pareto criterion combine with Particle Swarm Optimization were used to solve geophysical inverse problems for Love and Quasi Rayleigh's waves. Basic theory of forward problem calculation for chosen surface waves is described. To avoid computational problems some simplification were made. This operation allowed foster and more straightforward calculation without lost of solution generality. According to the solving scheme restrictions, considered model must have exact two layers, elastic isotropic surface layer and elastic isotropic half space with infinite thickness. The aim of the inversion is to obain elastic parameters and model geometry using dispersion data. In calculations different case were considered, such as different number of modes for different wave types and different frequencies. Created solutions are using OpenMP standard for parallel computing, which help in reduction of computational times. The results of experimental computations are presented and commented. This research was performed in the context of The Geomechanics Project supported by Husky Energy. Also, this research was partially supported by the Natural Sciences and Engineering Research Council of Canada, grant 238416-2013, and by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.

  10. Search for thermoelectrics with high figure of merit in half-Heusler compounds with multinary substitution

    NASA Astrophysics Data System (ADS)

    Choudhary, Mukesh K.; Ravindran, P.

    2018-04-01

    In order to improve the thermoelectric performance of TiCoSb we have substituted 50% of Ti equally with Zr and Hf at Ti site and Sb with Sn and Se equally at Sb site. The electronic structure of Ti0.5Zr0.25Hf0.25CoSn0.5Se0.5 is investigated using the full potential linearized augmented plane wave method and the thermoelectric transport properties are calculated on the basis of semi-classical Boltzmann transport theory. Our band structure calculations show that Ti0.5Zr0.25Hf0.25CoSn0.5Se0.5 has semiconducting behavior with indirect band gap value of 0.98 eV which follow the empirical rule of 18 valence-electron content to bring semiconductivity in half Heusler compounds, indicating that one can have semiconducting behavior in multinary phase of half Heusler compounds if they full fill the 18 VEC rule and this open-up the possibility of designing thermoelectrics with high figure of merit in half Heusler compounds. We show that at high temperature of around 700K Ti0.5Zr0.25Hf0.25CoSn0.5Se0.5 has high thermoelectric figure of merit of ZT = 1.05 which is higher than that of TiCoSb (˜ 0.95) suggesting that by going from ternary to multinary phase system one can enhance the thermoelectric figure of merit at higher temperatures.

  11. Structural, Electronic and Elastic Properties of Half-Heusler Alloys CrNiZ (Z = Al, Si, Ge and As)

    NASA Astrophysics Data System (ADS)

    Zitouni, A.; Benstaali, W.; Abbad, A.; Lantri, T.; Bouadjemi, B.; Aziz, Z.

    2018-06-01

    In the present work, a self-consistent ab-initio calculation using the full- potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT) was used to study the structural, electronic, magnetic and elastic properties of the half Heusler alloys CrNiZ (Z = Al, Si, Ge and As) in three phases ( α, β and γ phases). The generalized gradient approximation (GGA) described by Perdew-Burke-Ernzerhof (PBE) was used. The results obtained for the spin-polarized band structure and the density of states show a halfmetallic behavior for the four compounds. The elastic constants ( C ij ) show that our compounds are ductile, stiff and anisotropic.

  12. Approximation to cutoffs of higher modes of Rayleigh waves for a layered earth model

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2009-01-01

    A cutoff defines the long-period termination of a Rayleigh-wave higher mode and, therefore is a key characteristic of higher mode energy relationship to several material properties of the subsurface. Cutoffs have been used to estimate the shear-wave velocity of an underlying half space of a layered earth model. In this study, we describe a method that replaces the multilayer earth model with a single surface layer overlying the half-space model, accomplished by harmonic averaging of velocities and arithmetic averaging of densities. Using numerical comparisons with theoretical models validates the single-layer approximation. Accuracy of this single-layer approximation is best defined by values of the calculated error in the frequency and phase velocity estimate at a cutoff. Our proposed method is intuitively explained using ray theory. Numerical results indicate that a cutoffs frequency is controlled by the averaged elastic properties within the passing depth of Rayleigh waves and the shear-wave velocity of the underlying half space. ?? Birkh??user Verlag, Basel 2009.

  13. Effect of action potential duration on Tpeak-Tend interval, T-wave area and T-wave amplitude as indices of dispersion of repolarization: Theoretical and simulation study in the rabbit heart.

    PubMed

    Arteyeva, Natalia V; Azarov, Jan E

    The aim of the study was to differentiate the effect of dispersion of repolarization (DOR) and action potential duration (APD) on T-wave parameters being considered as indices of DOR, namely, Tpeak-Tend interval, T-wave amplitude and T-wave area. T-wave was simulated in a wide physiological range of DOR and APD using a realistic rabbit model based on experimental data. A simplified mathematical formulation of T-wave formation was conducted. Both the simulations and the mathematical formulation showed that Tpeak-Tend interval and T-wave area are linearly proportional to DOR irrespectively of APD range, while T-wave amplitude is non-linearly proportional to DOR and inversely proportional to the minimal repolarization time, or minimal APD value. Tpeak-Tend interval and T-wave area are the most accurate DOR indices independent of APD. T-wave amplitude can be considered as an index of DOR when the level of APD is taken into account. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Effect of Vegetation on Sea-Swell Waves, Infragravity Waves and Wave-Induced Setup

    NASA Astrophysics Data System (ADS)

    Roelvink, J. A.; van Rooijen, A.; McCall, R. T.; Van Dongeren, A.; Reniers, A.; van Thiel de Vries, J.

    2016-02-01

    Aquatic vegetation in the coastal zone (e.g. mangrove trees) attenuates wave energy and thereby reduces flood risk along many shorelines worldwide. However, in addition to the attenuation of incident-band (sea-swell) waves, vegetation may also affect infragravity-band (IG) waves and the wave-induced water level setup (in short: wave setup). Currently, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are they are key parameters for coastal risk assessment. In this study, the process-based storm impact model XBeach was extended with formulations for attenuation of sea-swell and IG waves as well as the effect on the wave setup, in two modes: the sea-swell wave phase-resolving (non-hydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode a wave shape model was implemented to estimate the wave phase and to capture the intra-wave scale effect of emergent vegetation and nonlinear waves on the wave setup. Both modeling modes were validated using data from two flume experiments and show good skill in computing the attenuation of both sea-swell and IG waves as well as the effect on the wave-induced water level setup. In surfbeat mode, the prediction of nearshore mean water levels greatly improved when using the wave shape model, while in non-hydrostatic mode this effect is directly accounted for. Subsequently, the model was used to study the influence of the bottom profile slope and the location of the vegetation field on the computed wave setup with and without vegetation. It was found that the reduction is wave setup is strongly related to the location of vegetation relative to the wave breaking point, and that the wave setup is lower for milder slopes. The extended version of XBeach developed within this study can be used to study the nearshore hydrodynamics on coasts fronted by vegetation such as mangroves. It can also serve as tool for storm impact studies on coasts with aquatic vegetation, and can help to quantify the

  15. [P300 event-related potentials in stutterers pre and post treatment: a pilot study].

    PubMed

    Andrade, Claudia Regina Furquim de; Sassi, Fernanda Chiarion; Matas, Carla Gentile; Neves, Ivone Ferreira; Martins, Vanessa Oliveira

    2007-01-01

    P300 event-related potential has been used as an instrument to establish the diagnosis of several disorders as well as to assess therapeutic outcomes. to investigate the relationship between stuttering amelioration and cerebral activity. P300 event-related potentials were obtained in three adult males, all stutterers, aged 20 to 31 years, pre and post-treatment, verifying changes in wave amplitude and latency between waves. results indicate a significant positive correlation between the reduction in the percentage of stuttered syllables and the improvement in wave amplitude for the right ear. stutterers can exhibit different patterns of interhemispheric activity with a tonal P300 task after undergoing a fluency-enhancing program.

  16. Evolution of potentially eroding events along the northern coast of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; García Codrón, J. C.

    2009-09-01

    The anthropogenic global warming is expected to result in a rise in sea-level, accompanied by changes in extreme climate events, such as the frequency and intensity of storms. Such scenario would result in an acceleration of coastal erosion. The aim of the present study is to assess the temporal evolution of potentially eroding events along the northern coast of the Iberian Peninsula during the second half of the 20th century, and to investigate changes in forcing processes such as the frequency and magnitude of storm surges and high wave events. To characterize the potentially eroding events, the total elevation of the water level was selected, being calculated as the sum of the contributions of the average water level, wave run up and the storm surges. Potentially eroding events were identified and quantified following a two-step procedure. Through the first step the potential flood induced by a given storm was estimated by simulating its effects on a theoretical beach profile (intermediate) using an empirical parameterization for extreme run-up approach. The second step consisted on characterizing the maximum storm surge registered during a storm. Those parameters were calculated from hindcasted data (storm surge, wave heights and period, wind speed and direction), retrieved from the SIMAR-44 database (Puertos del Estado), and validated against actual tide gauge measurements and buoy data (RedMar and RedExt networks). Analyses of total water levels showed a long term increase since 1958, resulting from the increase of mean sea level; conversely, a reduction of the frequency and the intensity of the storm events were deduced from the analysis of meteorological records. Since the impact of the storms on macro- and meso- tidal coast closely depend on the tides, a storm impact index was computed taking into account the storm surge magnitude, the wave heights and time duration during which a predefined threshold was exceeded by the sea level. The results are

  17. Potential for the Vishniac instability in ionizing shock waves propagating into cold gases

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Pasley, J.

    2018-05-01

    The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats below 1.3. The potential importance of this instability to these astrophysical objects has motivated a number of laser-driven laboratory studies. However, the Vishniac instability is essentially a dynamical instability that should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In this paper, we examine the possibility that ionization and molecular dissociation processes can achieve this, and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating shock waves propagating into cold atomic and molecular gases.

  18. TIPS Evaluation Project Retrospective Study: Wave 1 and 2.

    ERIC Educational Resources Information Center

    Hubbard, Susan M.; Mulvey, Kevin P.

    2003-01-01

    Measured substance abuse treatment professionals' knowledge, attitudes, and practices regarding the Treatment Improvement Protocol (TIP) series and the 28 TIPs. Results for 3,267 respondents in wave 1 and 1,028 in wave 2 indicate that almost half of all professionals were aware of the TIPs. Attitudes toward TIPs were positive, but professionals…

  19. Lossless acoustic half-bipolar cylindrical cloak with negative-index metamaterial

    NASA Astrophysics Data System (ADS)

    Lee, Yong Y.; Ahn, Doyeol

    2018-05-01

    A lossless acoustic half-bipolar cylindrical cloak that has an exposed bottom is considered. Here, we show that a cloak that includes a complementary region including a negative-index medium inside of the cloaking shell works in the illumination direction independently even in the presence of the exposed bottom of the structure. This is due to the fact that the phase velocity of the wave in the normal direction can be cancelled in the presence of a boundary containing a negative-index medium that reduces scattering significantly.

  20. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2.

    PubMed

    Abou-Kheir, Wassim; Isaac, Beth; Yamaguchi, Hideki; Cox, Dianne

    2008-02-01

    Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous (WAVE) proteins play a major role in Rac-induced actin dynamics, but Rac does not bind directly to WAVE proteins. It has been proposed that either the insulin receptor substrate protein 53 (IRSp53) or a complex of proteins containing Abelson interactor protein 1 (Abi1) mediates the interaction of WAVE2 and Rac. Depletion of endogenous IRSp53 by RNA-mediated interference (RNAi) in a RAW/LR5 macrophage cell line resulted in a significant reduction of Rac1Q61L-induced surface ruffles and colony-stimulating factor 1 (CSF-1)-induced actin polymerization, protrusion and cell migration. However, IRSp53 was not essential for Fcgamma-R-mediated phagocytosis, formation of podosomes or for formation of Cdc42V12-induced filopodia. IRSp53 was found to be present in an immunoprecipitable complex with WAVE2 and Abi1 in a Rac1-activation-dependent manner in RAW/LR5 cells in vivo. Importantly, reduction of endogenous IRSp53 or expression of IRSp53 lacking the WAVE2-binding site (IRSp53DeltaSH3) resulted in a significant reduction in the association of Rac1 with WAVE2 and Abi1, indicating that the association of Rac1 with WAVE2 and Abi1 is IRSp53 dependent. While it has been proposed that WAVE2 activity is regulated by membrane recruitment, membrane targeting of WAVE2 in RAW/LR5 and Cos-7 cells did not induce actin polymerization or protrusion, suggesting that membrane recruitment was insufficient for regulation of WAVE2. Combined, these data suggest that IRSp53 links Rac1 to WAVE2 in vivo and its function is crucial for production of CSF-1-induced F-actin-rich protrusions and cell migration in macrophages. This study indicates that Rac1, along with IRSp53 and Abi1, is involved in a more complex and tight regulation of WAVE2 than one operating solely through membrane localization.

  1. Membrane targeting of WAVE2 is not sufficient for WAVE2 dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2*

    PubMed Central

    Abou-Kheir, Wassim; Isaac, Beth; Yamaguchi, Hideki; Cox, Dianne

    2009-01-01

    Summary Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous (WAVE) proteins play a major role in Rac-induced actin dynamics, but Rac does not bind directly to WAVE proteins. It has been proposed that either the insulin receptor substrate protein 53 (IRSp53) or a complex of proteins containing Abelson interactor protein 1 (Abi1) mediate the interaction of WAVE2 and Rac. Depletion of endogenous IRSp53 by RNA-mediated interference (RNAi) in a RAW/LR5 macrophage cell line resulted in a significant reduction of Rac1Q61L-induced surface ruffles and colony stimulating factor-1 (CSF-1)-induced actin polymerization, protrusion, and cell migration. However, IRSp53 was not essential for Fcγ-R-mediated phagocytosis, formation of podosomes or for Cdc42V12-induced filopodia. IRSp53 was found to be present in an immunoprecipitatable complex with WAVE2 and Abi1 in a Rac1 activation-dependent manner in RAW/LR5 cells in vivo. Importantly, reduction of endogenous IRSp53 or expression of IRSp53 lacking the WAVE2 binding site (IRSp53ΔSH3) resulted in a significant reduction in the association of Rac1 with WAVE2 and Abi1, indicating that the association of Rac1 with WAVE2 and Abi1 is IRSp53 dependent. While it has been proposed that WAVE2 activity is regulated by membrane recruitment, membrane targeting of WAVE2 in RAW/LR5 and Cos-7 cells did not induce actin polymerization or protrusion suggesting thatt membrane recruitment was insufficient for WAVE2 regulation. Altogether, these data suggest that IRSp53 links Rac1 to WAVE2 in vivo and its function is crucial for CSF-1-induced F-actin rich protrusions and cell migration in macrophages. This study indicates that Rac1, along with IRSp53 and Abi1, is involved in a more complex and tight regulation of WAVE2 than solely through membrane localization. PMID:18198193

  2. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  3. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  4. Intraseasonal to interannual variations in the tropical wave activity revealed in reanalyses and their potential impact on the QBO

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ha; Yoo, Changhyun

    2017-04-01

    We investigate activities of tropical waves represented in reanalysis products. The wave activities are quantified by the Eliassen-Palm (EP) flux at 100 hPa, after decomposed into the following four components: equatorially trapped Kelvin waves and mixed Rossby-gravity waves, gravity waves, and Rossby waves. Monthly EP fluxes of the four waves exhibit considerable temporal variations at intraseasonal and interannual, along with seasonal, time scales. These variations are discussed with the tropical large-scale variabilities, including the Madden-Julian Oscillation (MJO), the El Ninõ-Southern Oscillation, and the stratospheric quasi-biennial oscillation (QBO). We find that during boreal winter, the interannual variation of Kelvin wave activity is in phase with that of the MJO amplitude, while such a simultaneous variation cannot be seen in other seasons. The gravity wave is dominated by a semi-annual cycle, while the departure from its semi-annual cycle is largely correlated with the QBO phase in the stratosphere. Potential impacts of the variations in the wave activity upon the QBO properties will be assessed using a simple one-dimensional QBO model.

  5. Extracorporeal shock wave treatment for chronic lateral epicondylitis (tennis elbow).

    PubMed

    Ho, C

    2007-01-01

    (1) Electrohydraulic, electromagnetic, or piezoelectric devices are used to translate energy into acoustic waves during extracorporeal shock wave treatment (ESWT) for chronic lateral epicondylitis (CLE) of the elbow (elbow tendonitis or tennis elbow). These waves may help to accelerate the healing process via an unknown mechanism. (2) Results from randomized controlled trials have been conflicting. Half of the studies showed statistically significant improvement in pain in the treatment group, and half of the studies had data showing no benefit over placebo for any measured outcomes. (3) Limited evidence shows that ESWT is cheaper than arthroscopic surgery, open surgery, and other conservative therapies, such as steroid infiltrations and physiotherapy, that continue for more than six weeks. (4) The lack of convincing evidence regarding its effectiveness does not support the use of ESWT for CLE.

  6. Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential.

    PubMed

    Yu, Fajun

    2017-02-01

    Starting from a discrete spectral problem, we derive a hierarchy of nonlinear discrete equations which include the Ablowitz-Ladik (AL) equation. We analytically study the discrete rogue-wave (DRW) solutions of AL equation with three free parameters. The trajectories of peaks and depressions of profiles for the first- and second-order DRWs are produced by means of analytical and numerical methods. In particular, we study the solutions with dispersion in parity-time ( PT) symmetric potential for Ablowitz-Musslimani equation. And we consider the non-autonomous DRW solutions, parameters controlling and their interactions with variable coefficients, and predict the long-living rogue wave solutions. Our results might provide useful information for potential applications of synthetic PT symmetric systems in nonlinear optics and condensed matter physics.

  7. Extracorporeal shock wave therapy in the management of Peyronie's disease: initial experience.

    PubMed

    Husain, J; Lynn, N N; Jones, D K; Collins, G N; O'Reilly, P H

    2000-09-01

    To evaluate prospectively the efficacy of extracorporeal shock wave therapy (ESWT) as a conservative treatment for Peyronie's disease. After obtaining ethical committee approval, 37 patients with Peyronie's disease were treated using ESWT. Before treatment the degree of angulation was assessed by artificially inducing an erection with a vacuum device. The severity of pain on erection was assessed using a visual analogue scale (0-5). Each patient was treated with a minimum of three sessions of ESWT (3000 shock waves at an energy density of 0.11-0.17 mJ/mm2) at 3-week intervals. The results were analysed using the Wilcoxon signed-rank test. Of the 37 patients, 34 completed the protocol; the mean (range) duration of the disease was 19.43 (4-60) months and the mean follow-up 7.5 (5-11) months. Almost half (47%) of the patients reported an improvement in angulation, with a mean reduction of 29.3 degrees (10 degrees -60 degrees ) (P < 0.001); 12 of the 20 (60%) patients with pain on erection reported immediate relief, the mean reduction being 2.3 (1-4) on the visual analogue scale (P < 0.001). There was only minimal bruising at the site of treatment and no major side-effects were reported. ESWT is an effective and safe treatment for Peyronie's disease; the long-term follow-up and results are awaited.

  8. pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts.

    PubMed

    Horvath, Samantha; Fernandez, Laura E; Appel, Aaron M; Hammes-Schiffer, Sharon

    2013-04-01

    The nickel-based P2(Ph)N2(Bn) electrocatalysts comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the Ni(II/I) reduction potential on pH with a slope of 57 mV/pH unit, implicating a proton-coupled electron transfer (PCET) process with the same number of electrons and protons transferred. The combined theoretical and experimental studies herein provide an explanation for this pH dependence in the context of the overall proposed catalytic mechanism. In the proposed mechanisms, the catalytic cycle begins with a series of intermolecular proton transfers from an acid to the pendant amine ligand and electrochemical electron transfers to the nickel center to produce the doubly protonated Ni(0) species, a precursor to H2 evolution. The calculated Ni(II/I) reduction potentials of the doubly protonated species are in excellent agreement with the experimentally observed reduction potential in the presence of strong acid, suggesting that the catalytically active species leading to the peak observed in these cyclic voltammetry (CV) experiments is doubly protonated. The Ni(I/0) reduction potential was found to be slightly more positive than the Ni(II/I) reduction potential, indicating that the Ni(I/0) reduction occurs spontaneously after the Ni(II/I) reduction, as implied by the experimental observation of a single CV peak. These results suggest that the PCET process observed in the CV experiments is a two-electron/two-proton process corresponding to an initial double protonation followed by two reductions. On the basis of the experimental and theoretical data, the complete thermodynamic scheme and the Pourbaix diagram were generated for this catalyst. The Pourbaix diagram, which identifies the most thermodynamically stable species at each reduction potential and pH value, illustrates that this catalyst undergoes

  9. Bulk and surface half-metallicity: The case of D0{sub 3}-type Mn{sub 3}Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Gao, G. Y., E-mail: guoying-gao@mail.hust.edu.cn; Hu, Lei

    2014-01-21

    Motivated by the experimental realization of D0{sub 22}-type Mn{sub 3}Ge (001) films [Kurt et al. Appl. Phys. Lett. 101, 132410 (2012)] and the structural stability of D0{sub 3}-type Heusler alloy Mn{sub 3}Ge [Zhang et al. J. Phys.: Condens. Matter 25, 206006 (2013)], we use the first-principles calculations based on the full potential linearized augmented plane-wave method to investigate the electronic and magnetic properties of D0{sub 3}-type Heusler alloy Mn{sub 3}Ge and its (001) surface. We show that bulk D0{sub 3}-Mn{sub 3}Ge is a half-metallic ferromagnet with the minority-spin energy gap of 0.52 eV and the magnetic moment of 1.00 μ{sub B} permore » formula unit. The bulk half-metallicity is preserved at the pure Mn-terminated (001) surface due to the large exchange split, but the MnGe-terminated (001) surface destroys the bulk half-metallicity. We also reveal that the surface stabilities are comparable between the D0{sub 3}-Mn{sub 3}Ge (001) and the experimental D0{sub 22}-Mn{sub 3}Ge (001), which indicates the feasibility to grow the Mn{sub 3}Ge (001) films with D0{sub 3} phase other than D0{sub 22} one. The surface half-metallicity and stability make D0{sub 3}-Mn{sub 3}Ge a promising candidate for spintronic applications.« less

  10. Scattering of accelerated wave packets

    NASA Astrophysics Data System (ADS)

    Longhi, S.; Horsley, S. A. R.; Della Valle, G.

    2018-03-01

    Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.

  11. Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index.

    PubMed

    Chang, Hannah H; Larson, Jim; Blencowe, Hannah; Spong, Catherine Y; Howson, Christopher P; Cairns-Smith, Sarah; Lackritz, Eve M; Lee, Shoo K; Mason, Elizabeth; Serazin, Andrew C; Walani, Salimah; Simpson, Joe Leigh; Lawn, Joy E

    2013-01-19

    Every year, 1·1 million babies die from prematurity, and many survivors are disabled. Worldwide, 15 million babies are born preterm (<37 weeks' gestation), with two decades of increasing rates in almost all countries with reliable data. The understanding of drivers and potential benefit of preventive interventions for preterm births is poor. We examined trends and estimate the potential reduction in preterm births for countries with very high human development index (VHHDI) if present evidence-based interventions were widely implemented. This analysis is to inform a rate reduction target for Born Too Soon. Countries were assessed for inclusion based on availability and quality of preterm prevalence data (2000-10), and trend analyses with projections undertaken. We analysed drivers of rate increases in the USA, 1989-2004. For 39 countries with VHHDI with more than 10,000 births, we did country-by-country analyses based on target population, incremental coverage increase, and intervention efficacy. We estimated cost savings on the basis of reported costs for preterm care in the USA adjusted using World Bank purchasing power parity. From 2010, even if all countries with VHHDI achieved annual preterm birth rate reductions of the best performers for 1990-2010 (Estonia and Croatia), 2000-10 (Sweden and Netherlands), or 2005-10 (Lithuania, Estonia), rates would experience a relative reduction of less than 5% by 2015 on average across the 39 countries. Our analysis of preterm birth rise 1989-2004 in USA suggests half the change is unexplained, but important drivers include non-medically indicated labour induction and caesarean delivery and assisted reproductive technologies. For all 39 countries with VHHDI, five interventions modelling at high coverage predicted a 5% relative reduction of preterm birth rate from 9·59% to 9·07% of livebirths: smoking cessation (0·01 rate reduction), decreasing multiple embryo transfers during assisted reproductive technologies (0·06

  12. Impaired response selection in schizophrenia: Evidence from the P3 wave and the lateralized readiness potential

    PubMed Central

    Luck, Steven J.; Kappenman, Emily S.; Fuller, Rebecca L.; Robinson, Benjamin; Summerfelt, Ann; Gold, James M.

    2008-01-01

    Reaction times (RTs) are substantially prolonged in schizophrenia patients, but the latency of the P3 component is not. This suggests that the RT slowing arises from impairments in a late stage of processing. To test this hypothesis, 20 schizophrenia patients and 20 control subjects were tested in a visual oddball paradigm that was modified to allow measurement of the lateralized readiness potential (LRP), an index of stimulus-response translation processes. Difference waves were used to isolate the LRP and the P3 wave. Patients and control subjects exhibited virtually identical P3 difference waves, whereas the LRP difference wave was reduced in amplitude and delayed in latency in the patients. These results indicate that, at least in simple tasks, the delayed RTs observed in schizophrenia are primarily a consequence of impairments in the response selection and preparation processes that follow perception and categorization. PMID:19386044

  13. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong

    2018-03-01

    Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.

  14. The Potential Energy Density in Transverse String Waves Depends Critically on Longitudinal Motion

    ERIC Educational Resources Information Center

    Rowland, David R.

    2011-01-01

    The question of the correct formula for the potential energy density in transverse waves on a taut string continues to attract attention (e.g. Burko 2010 "Eur. J. Phys." 31 L71), and at least three different formulae can be found in the literature, with the classic text by Morse and Feshbach ("Methods of Theoretical Physics" pp 126-127) stating…

  15. Weight Reduction Potential of Automobiles and Light Trucks: 1980 Summary Source Document

    DOT National Transportation Integrated Search

    1981-06-01

    This report provides an assessment of the potential of weight reduction for passenger cars and light trucks (including pickup trucks, vans, and utility vehicles of GVWR up to 8500 pounds) in the post-1985 period. Vehicle characteristics and weight re...

  16. Cylindrical fast magnetosonic solitary waves in quantum degenerate electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Abdikian, A.

    2018-02-01

    The nonlinear properties of fast magnetosonic solitary waves in a quantum degenerate electron-positron (e-p) plasma in the presence of stationary ions for neutralizing the plasma background of bounded cylindrical geometry were studied. By employing the standard reductive perturbation technique and the quantum hydrodynamic model for the e-p fluid, the cylindrical Kadomtsev-Petviashvili (CKP) equation was derived for small, but finite, amplitude waves and was given the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars. By a suitable coordinate transformation, the CKP equation can be solved analytically. An analytical solution for magnetosonic solitons and periodic waves is presented. The numerical results reveal that the Bohm potential has a main effect on the periodic and solitary wave structures. By increasing the values of the plasma parameters, the amplitude of the solitary wave will be increased. The present study may be helpful in the understanding of nonlinear electromagnetic soliton waves propagating in both laboratory and astrophysical plasmas, and can help in providing good agreement between theoretical results and laboratory plasma experiments.

  17. A Relation Between the Eikonal Equation Associated to a Potential Energy Surface and a Hyperbolic Wave Equation.

    PubMed

    Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc

    2012-12-11

    The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.

  18. Extending the half-life of a fab fragment through generation of a humanized anti-human serum albumin Fv domain: An investigation into the correlation between affinity and serum half-life.

    PubMed

    Adams, Ralph; Griffin, Laura; Compson, Joanne E; Jairaj, Mark; Baker, Terry; Ceska, Tom; West, Shauna; Zaccheo, Oliver; Davé, Emma; Lawson, Alastair Dg; Humphreys, David P; Heywood, Sam

    2016-10-01

    We generated an anti-albumin antibody, CA645, to link its Fv domain to an antigen-binding fragment (Fab), thereby extending the serum half-life of the Fab. CA645 was demonstrated to bind human, cynomolgus, and mouse serum albumin with similar affinity (1-7 nM), and to bind human serum albumin (HSA) when it is in complex with common known ligands. Importantly for half-life extension, CA645 binds HSA with similar affinity within the physiologically relevant range of pH 5.0 - pH 7.4, and does not have a deleterious effect on the binding of HSA to neonatal Fc receptor (FcRn). A crystal structure of humanized CA645 Fab in complex with HSA was solved and showed that CA645 Fab binds to domain II of HSA. Superimposition with the crystal structure of FcRn bound to HSA confirmed that CA645 does not block HSA binding to FcRn. In mice, the serum half-life of humanized CA645 Fab is 84.2 h. This is a significant extension in comparison with < 1 h for a non-HSA binding CA645 Fab variant. The Fab-HSA structure was used to design a series of mutants with reduced affinity to investigate the correlation between the affinity for albumin and serum half-life. Reduction in the affinity for MSA by 144-fold from 2.2 nM to 316 nM had no effect on serum half-life. Strikingly, despite a reduction in affinity to 62 µM, an extension in serum half-life of 26.4 h was still obtained. CA645 Fab and the CA645 Fab-HSA complex have been deposited in the Protein Data Bank (PDB) with accession codes, 5FUZ and 5FUO, respectively.

  19. Influence of Internal Waves on Transport by a Gravity Current

    NASA Astrophysics Data System (ADS)

    Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart

    2017-11-01

    Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.

  20. Magnetosonic cnoidal waves and solitons in a magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Kaur, Nimardeep; Singh, Manpreet; Saini, N. S.

    2018-04-01

    An investigation of magnetosonic nonlinear periodic (cnoidal) waves is presented in a magnetized electron-ion-dust ( e -i -d ) plasma having cold dust fluid with inertialess warm ions and electrons. The reductive perturbation method is employed to derive the Korteweg-de Vries equation. The dispersion relation for magnetosonic cnoidal waves is determined in the linear limit. The magnetosonic cnoidal wave solution is derived using the Sagdeev pseudopotential approach under the specific boundary conditions. There is the formation of only positive potential magnetosonic cnoidal waves and solitary structures in the high plasma-β limit. The effects of various plasma parameters, viz., plasma beta (β), σ (temperature ratio of electrons to ions), and μd (ratio of the number density of dust to electrons) on the characteristics of magnetosonic cnoidal waves are also studied numerically. The findings of the present investigation may be helpful in describing the characteristics of various nonlinear excitations in Earth's magnetosphere, solar wind, Saturn's magnetosphere, and space/astrophysical environments, where many space observations by various satellites confirm the existence of dust grains, highly energetic electrons, and high plasma-β.

  1. Understanding the effects of cationic dopants on α-MnO 2 oxygen reduction reaction electrocatalysis

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.; White, Suzanne E.; ...

    2017-01-09

    Nickel-doped α-MnO 2 nanowires (Ni–α-MnO 2) were prepared with 3.4% or 4.9% Ni using a hydrothermal method. A comparison of the electrocatalytic data for the oxygen reduction reaction (ORR) in alkaline electrolyte versus that obtained with α-MnO 2 or Cu–α-MnO 2 is provided. In general, Ni-α-MnO 2 (e.g., Ni-4.9%) had higher n values (n = 3.6), faster kinetics (k = 0.015 cm s –1), and lower charge transfer resistance (R CT = 2264 Ω at half-wave) values than MnO 2 (n = 3.0, k = 0.006 cm s –1, R CT = 6104 Ω at half-wave) or Cu–α-MnO 2 (Cu-2.9%,more » n = 3.5, k = 0.015 cm s –1, R CT = 3412 Ω at half-wave), and the overall activity for Ni–α-MnO 2 trended with increasing Ni content, i.e., Ni-4.9% > Ni-3.4%. As observed for Cu–α-MnO 2, the increase in ORR activity correlates with the amount of Mn 3+ at the surface of the Ni–α-MnO 2 nanowire. Examining the activity for both Ni–α-MnO 2 and Cu–α-MnO 2 materials indicates that the Mn 3+ at the surface of the electrocatalysts dictates the activity trends within the overall series. Single nanowire resistance measurements conducted on 47 nanowire devices (15 of α-MnO 2, 16 of Cu–α-MnO 2-2.9%, and 16 of Ni–α-MnO 2-4.9%) demonstrated that Cu-doping leads to a slightly lower resistance value than Ni-doping, although both were considerably improved relative to the undoped α-MnO 2. As a result, the data also suggest that the ORR charge transfer resistance value, as determined by electrochemical impedance spectroscopy, is a better indicator of the cation-doping effect on ORR catalysis than the electrical resistance of the nanowire.« less

  2. Faraday waves in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Xiaochen; Chen, Kaijie; Xie, Bin; Liao, Shijun

    2018-04-01

    We investigate Faraday waves in a Hele-Shaw cell via experimental, numerical, and theoretical studies. Inspired by the Kelvin-Helmholtz-Darcy theory, we develop the gap-averaged Navier-Stokes equations and end up with the stable standing waves with half frequency of the external forced vibration. To overcome the dependency of a numerical model on the experimental parameter of wave length, we take two-phase flow into consideration and a novel dispersion relation is derived. The numerical results compare well with our experimental data, which effectively validates our proposed mathematical model. Therefore, this model can produce robust solutions of Faraday wave patterns and resolve related physical phenomena, which demonstrates the practical importance of the present study.

  3. The issues in the development of a f = 162 . 5 MHz, β = 0 . 12 superconducting half-wave resonator for the Rare Isotope Science Project (RISP)

    NASA Astrophysics Data System (ADS)

    Park, Gunn Tae; Joo, Jongdae; Yao, Zhongyuan

    2017-10-01

    A f = 162 . 5 MHz superconducting half-wave resonator (HWR) with β = 0 . 12 is one of the four superconducting cavities being developed for the heavy ion linac of the Rare Isotope Science Project (RISP). The linac will accelerate various ions ranging from proton to uranium with beam power of about 400 kW. In particular, the HWR's will accelerate the ion beam in low-medium energy range, i.e., from 1.6 to 18 MeV for the case of uranium. In this paper, we describe design, fabrication, surface treatment, and vertical test of the 1st prototype of the cavity in detail. We also discuss some issues on the performance enhancement of the cavity. The Q0 values at 2 K surpassed the target performance, Q0 = 1 . 1 × 109 at Eacc = 6 . 3 MV / m.

  4. a Speculative Study on Negative-Dimensional Potential and Wave Problems by Implicit Calculus Modeling Approach

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Wang, Fajie

    Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.

  5. Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

    DOE PAGES

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; ...

    2017-05-22

    Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less

  6. Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang

    Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both eventsmore » is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV–1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1–10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. Here, the current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.« less

  7. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  8. Surface spin-electron acoustic waves in magnetically ordered metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz'menkov, L. S., E-mail: lsk@phys.msu.ru

    2016-05-09

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuirmore » waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.« less

  9. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalystmore » drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  10. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emadi, E.; Zahed, H.

    2016-08-15

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantummore » diffraction parameter H can lead to the creation of compressive solitary waves.« less

  11. A system for telemetering sea wave parameters

    NASA Astrophysics Data System (ADS)

    Qian, Zhengxu; Jin, Junmo; Suckling, E. E.

    1982-04-01

    A wave staff to be anchored at sea and containing sensing and telemetering equipment is described. This gives a record at the land station of water level changes due to tides and of waves as they pass the staff. The staff is a 13 metre long PCV tube, the upper half comprising a capacitance with inner plate a foil layer, dielectric the tube wall, and outer electrode the sea. Wave direction is obtained by a separate device comprising a raft moored near to the staff. The raft streams behind its mooring and substantially points into the advancing waves and changes its slope as these pass under it. This slope and its direction referred to magnetic north, are telemetered to the land station to give the direction from which the waves arrive.

  12. Weight Reduction Potential of Automobiles and Light Trucks, 1979 Summary Source Document

    DOT National Transportation Integrated Search

    1980-03-01

    The purpose of this report is to provide an assessment of the potential for weight reduction for passenger cars and light trucks (including pickup trucks, vans, and utility vehicles of GVWR up to 8500 pounds) in the 1980 to 2000 model year period. Va...

  13. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the

  14. Synoptic-scale variability of arctic gravity wave activity during summer and potential impacts on the high latitude middle atmosphere

    NASA Astrophysics Data System (ADS)

    Gerrard, Andrew John

    Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar

  15. Variational approach to studying solitary waves in the nonlinear Schrödinger equation with complex potentials

    DOE PAGES

    Mertens, Franz G.; Cooper, Fred; Arevalo, Edward; ...

    2016-09-15

    Here in this paper, we discuss the behavior of solitary wave solutions of the nonlinear Schrödinger equation (NLSE) as they interact with complex potentials, using a four-parameter variational approximation based on a dissipation functional formulation of the dynamics. We concentrate on spatially periodic potentials with the periods of the real and imaginary part being either the same or different. Our results for the time evolution of the collective coordinates of our variational ansatz are in good agreement with direct numerical simulation of the NLSE. We compare our method with a collective coordinate approach of Kominis and give examples where themore » two methods give qualitatively different answers. In our variational approach, we are able to give analytic results for the small oscillation frequency of the solitary wave oscillating parameters which agree with the numerical solution of the collective coordinate equations. We also verify that instabilities set in when the slope dp(t)/dv(t) becomes negative when plotted parametrically as a function of time, where p(t) is the momentum of the solitary wave and v(t) the velocity.« less

  16. Variational approach to studying solitary waves in the nonlinear Schrödinger equation with complex potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertens, Franz G.; Cooper, Fred; Arevalo, Edward

    Here in this paper, we discuss the behavior of solitary wave solutions of the nonlinear Schrödinger equation (NLSE) as they interact with complex potentials, using a four-parameter variational approximation based on a dissipation functional formulation of the dynamics. We concentrate on spatially periodic potentials with the periods of the real and imaginary part being either the same or different. Our results for the time evolution of the collective coordinates of our variational ansatz are in good agreement with direct numerical simulation of the NLSE. We compare our method with a collective coordinate approach of Kominis and give examples where themore » two methods give qualitatively different answers. In our variational approach, we are able to give analytic results for the small oscillation frequency of the solitary wave oscillating parameters which agree with the numerical solution of the collective coordinate equations. We also verify that instabilities set in when the slope dp(t)/dv(t) becomes negative when plotted parametrically as a function of time, where p(t) is the momentum of the solitary wave and v(t) the velocity.« less

  17. Automatic p wave analysis over 24 hours in patients with paroxysmal or persistent atrial fibrillation.

    PubMed

    Bitzen, Alexander; Sternickel, Karsten; Lewalter, Thorsten; Schwab, Jörg Otto; Yang, Alexander; Schrickel, Jan Wilko; Linhart, Markus; Wolpert, Christian; Jung, Werner; David, Peter; Lüderitz, Berndt; Nickenig, Georg; Lickfett, Lars

    2007-10-01

    Patients with atrial fibrillation (AF) often exhibit abnormalities of P wave morphology during sinus rhythm. We examined a novel method for automatic P wave analysis in the 24-hour-Holter-ECG of 60 patients with paroxysmal or persistent AF and 12 healthy subjects. Recorded ECG signals were transferred to the analysis program where 5-10 P and R waves were manually marked. A wavelet transform performed a time-frequency decomposition to train neural networks. Afterwards, the detected P waves were described using a Gauss function optimized to fit the individual morphology and providing amplitude and duration at half P wave height. >96% of P waves were detected, 47.4 +/- 20.7% successfully analyzed afterwards. In the patient population, the mean amplitude was 0.073 +/- 0.028 mV (mean variance 0.020 +/- 0.008 mV(2)), the mean duration at half height 23.5 +/- 2.7 ms (mean variance 4.2 +/- 1.6 ms(2)). In the control group, the mean amplitude (0.105 +/- 0.020 ms) was significantly higher (P < 0.0005), the mean variance of duration at half height (2.9 +/- 0.6 ms(2)) significantly lower (P < 0.0085). This method shows promise for identification of triggering factors of AF.

  18. Layer-separated MoS2 bearing reduced graphene oxide formed by an in situ intercalation-cum-anchoring route mediated by Co(OH)2 as a Pt-free electrocatalyst for oxygen reduction.

    PubMed

    Illathvalappil, Rajith; Unni, Sreekuttan M; Kurungot, Sreekumar

    2015-10-28

    A significant improvement in the electrochemical oxygen reduction reaction (ORR) activity of molybdenum sulphide (MoS2) could be accomplished by its layer separated dispersion on graphene mediated by cobalt hydroxide (Co(OH)2) through a hydrothermal process (Co(OH)2-MoS2/rGO). The activity makeover in this case is found to be originated from a controlled interplay of the favourable modulations achieved in terms of electrical conductivity, more exposure of the edge planes of MoS2 and a promotional role played by the coexistence of Co(OH)2 in the proximity of MoS2. Co(OH)2-MoS2/rGO displays an oxygen reduction onset potential of 0.855 V and a half wave potential (E1/2) of 0.731 V vs. RHE in 0.1 M KOH solution, which are much higher than those of the corresponding values (0.708 and 0.349 V, respectively) displayed by the as synthesized pristine MoS2 (P-MoS2) under identical experimental conditions. The Tafel slope corresponding to oxygen reduction for Co(OH)2-MoS2/rGO is estimated to be 63 mV dec(-1) compared to 68 mV dec(-1) displayed by the state-of-the-art Pt/C catalyst. The estimated number of electrons transferred during oxygen reduction for Co(OH)2-MoS2/rGO is in the range of 3.2-3.6 in the potential range of 0.77 V to 0.07 V, which again stands out as valid evidence on the much favourable mode of oxygen reduction accomplished by the system compared to its pristine counterpart. Overall, the present study, thus, demonstrates a viable strategy of tackling the inherent limitations, such as low electrical conductivity and limited access to the active sites, faced by the layered structures like MoS2 to position them among the group of potential Pt-free electrocatalysts for oxygen reduction.

  19. Half-metallicity in new Heusler alloys NaTO2 (T=Sc, Ti, V, Cr, and Mn): A first-principles study

    NASA Astrophysics Data System (ADS)

    Rajabi, Kh; Ahmadian, F.

    2018-03-01

    On the basis of the full-potential linearized augmented plane wave (FPLAPW) method within density functional theory (DFT), electronic structure and magnetic properties of Heusler alloys NaTO2 (T = Sc, Ti, V, Cr, and Mn) were investigated. The negative values of formation energy showed that these compounds can be experimentally synthesized. Results showed that in all compounds, AlCu2Mn-type structure was the most favorable one. The NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys were HM ferromagnets except NaScO2 (in both structures which were nonmagnetic semiconductors) and NaVO2 (in AlCu2Mn-type structure which was a magnetic semiconductor). The origin of half-metallicity was also verified in HM alloys. NaCrO2 and NaVO2 alloys had higher half-metallic band gaps in comparison with Heusler alloys including and excluding transition metals. The total magnetic moments of HM NaTO2 (T = Ti, V, Cr, and Mn) alloys obeyed Slater-Pauling rule (Mtot = Ztot-12). Among NaTO2 (T = Sc, Ti, V, Cr, and Mn) alloys, NaCrO2 had the highest robustness of half-metallicity with variation of lattice constant in both structures.

  20. Teaching graphical simulations of Fourier series expansion of some periodic waves using spreadsheets

    NASA Astrophysics Data System (ADS)

    Singh, Iqbal; Kaur, Bikramjeet

    2018-05-01

    The present article demonstrates a way of programming using an Excel spreadsheet to teach Fourier series expansion in school/colleges without the knowledge of any typical programming language. By using this, a student learns to approximate partial sum of the n terms of Fourier series for some periodic signals such as square wave, saw tooth wave, half wave rectifier and full wave rectifier signals.

  1. LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces

    NASA Astrophysics Data System (ADS)

    Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina

    2016-11-01

    The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.

  2. Observation of a high-quality quasi-periodic rapidly propagating wave train using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Pascoe, D. J.; Nakariakov, V. M.

    2014-09-01

    Context. We present a new event of quasi-periodic wave trains observed in EUV wavebands that rapidly propagate away from an active region after a flare. Aims: We measured the parameters of a wave train observed on 7 December 2013 after an M1.2 flare, such as the phase speeds, periods and wavelengths, in relationship to the local coronal environment and the energy sources. Methods: We compared our observations with a numerical simulation of fast magnetoacoustic waves that undergo dispersive evolution and leakage in a coronal loop embedded in a potential magnetic field. Results: The wave train is observed to propagate as several arc-shaped intensity disturbances for almost half an hour, with a speed greater than 1000 km s-1 and a period of about 1 min. The wave train followed two different patterns of propagation, in accordance with the magnetic structure of the active region. The oscillatory signal is found to be of high-quality, i.e. there is a large number (10 or more) of subsequent wave fronts observed. The observations are found to be consistent with the numerical simulation of a fast wave train generated by a localised impulsive energy release. Conclusions: Transverse structuring in the corona can efficiently create and guide high-quality quasi-periodic propagating fast wave trains. The movies are available in electronic form at http://www.aanda.org

  3. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    NASA Astrophysics Data System (ADS)

    Panwar, A.; Ryu, C. M.; Bains, A. S.

    2014-12-01

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c , κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ωci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present.

  4. Multi-hump potentials for efficient wave absorption in the numerical solution of the time-dependent Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Silaev, A. A.; Romanov, A. A.; Vvedenskii, N. V.

    2018-03-01

    In the numerical solution of the time-dependent Schrödinger equation by grid methods, an important problem is the reflection and wrap-around of the wave packets at the grid boundaries. Non-optimal absorption of the wave function leads to possible large artifacts in the results of numerical simulations. We propose a new method for the construction of the complex absorbing potentials for wave suppression at the grid boundaries. The method is based on the use of the multi-hump imaginary potential which contains a sequence of smooth and symmetric humps whose widths and amplitudes are optimized for wave absorption in different spectral intervals. We show that this can ensure a high efficiency of absorption in a wide range of de Broglie wavelengths, which includes wavelengths comparable to the width of the absorbing layer. Therefore, this method can be used for high-precision simulations of various phenomena where strong spreading of the wave function takes place, including the phenomena accompanying the interaction of strong fields with atoms and molecules. The efficiency of the proposed method is demonstrated in the calculation of the spectrum of high-order harmonics generated during the interaction of hydrogen atoms with an intense infrared laser pulse.

  5. A random wave model for the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Houston, Alexander J. H.; Gradhand, Martin; Dennis, Mark R.

    2017-05-01

    We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.

  6. Scaling depth-induced wave-breaking in two-dimensional spectral wave models

    NASA Astrophysics Data System (ADS)

    Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.

    2015-03-01

    Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.

  7. Improved half-metallic gap of zincblende half-metal superlattices with the Tran-Blaha modified Becke-Johnson density functional

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2016-08-01

    Binary transition-metal pnictides and chalcogenides half-metallic ferromagnetic materials with zincblende structure, being compatible with current semiconductor technology, can be used to make high-performance spintronic devices. Here, we investigate electronic structures and magnetic properties of composite structure ((CrX)2 /(YX)2 (X=As, Sb; Se, Te and Y=Ga; Zn) superlattices) of zincblende half-metallic ferromagnetism and semiconductor by using Tran and Blaha's modified Becke and Johnson (mBJ) exchange potential. Calculated results show that they all are half-metallic ferromagnets with both generalized gradient approximation (GGA) and mBJ, and the total magnetic moment per formula unit follows a Slater-Pauling-like "rule of 8". The key half-metallic gaps by using mBJ are enhanced with respect to GGA results, which is because mBJ makes the occupied minority-spin p-bands move toward lower energy, but toward higher energy for empty minority-spin Cr-d bands. When the spin-orbit coupling (SOC) is included, the spin polarization deviates from 100%, and a most reduced polarization of 98.3% for (CrSb)2 /(GaSb)2, which indicates that SOC has small effects, of the order of 1%, in the considered four kinds of superlattice.

  8. Monodisperse Ultrasmall Manganese-Doped Multimetallic Oxysulfide Nanoparticles as Highly Efficient Oxygen Reduction Electrocatalyst.

    PubMed

    Zhang, Yingying; Wang, Xiang; Hu, Dandan; Xue, Chaozhuang; Wang, Wei; Yang, Huajun; Li, Dongsheng; Wu, Tao

    2018-04-25

    The highly efficient and cheap non-Pt-based electrocatalysts such as transition-based catalysts prepared via facile methods for oxygen reduction reaction (ORR) are desirable for large-scale practical industry applications in energy conversion and storage systems. Herein, we report a straightforward top-down synthesis of monodisperse ultrasmall manganese-doped multimetallic (ZnGe) oxysulfide nanoparticles (NPs) as an efficient ORR electrocatalyst by simple ultrasonic treatment of the Mn-doped Zn-Ge-S chalcogenidometalate crystal precursors in H 2 O/EtOH for only 1 h at room temperature. Thus obtained ultrasmall monodisperse Mn-doped oxysulfide NPs with ultralow Mn loading level (3.92 wt %) not only exhibit comparable onset and half-wave potential (0.92 and 0.86 V vs reversible hydrogen electrode, respectively) to the commercial 20 wt % Pt/C but also exceptionally high metal mass activity (189 mA/mg at 0.8 V) and good methanol tolerance. A combination of transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical analysis demonstrated that the homogenous distribution of a large amount of Mn(III) on the surface of NPs mainly accounts for the high ORR activity. We believe that this simple synthesis of Mn-doped multimetallic (ZnGe) oxysulfide NPs derived from chalcogenidometalates will open a new route to explore the utilization of discrete-cluster-based chalcogenidometalates as novel non-Pt electrocatalysts for energy applications and provide a facile way to realize the effective reduction of the amount of catalyst while keeping desired catalytic performances.

  9. All half-lives are wrong, but some half-lives are useful.

    PubMed

    Wright, J G; Boddy, A V

    2001-01-01

    The half-life of a drug, which expresses a change in concentration in units of time, is perhaps the most easily understood pharmacokinetic parameter and provides a succinct description of many concentration-time profiles. The calculation of a half-life implies a linear, first-order, time-invariant process. No drug perfectly obeys such assumptions, although in practise this is often a valid approximation and provides invaluable quantitative information. Nevertheless, the physiological processes underlying half-life should not be forgotten. The concept of clearance facilitates the interpretation of factors affecting drug elimination, such as enzyme inhibition or renal impairment. Relating clearance to the observed concentration-time profile is not as naturally intuitive as is the case with half-life. As such, these 2 approaches to parameterising a linear pharmacokinetic model should be viewed as complementary rather than alternatives. The interpretation of pharmacokinetic parameters when there are multiple disposition phases is more challenging. Indeed, in any pharmacokinetic model, the half-lives are only one component of the parameters required to specify the concentration-time profile. Furthermore, pharmacokinetic parameters are of little use without a dose history. Other factors influencing the relevance of each disposition phase to clinical end-points must also be considered. In summarising the pharmacokinetics of a drug, statistical aspects of the estimation of a half-life are often overlooked. Half-lives are rarely reported with confidence intervals or measures of variability in the population, and some approaches to this problem are suggested. Half-life is an important summary statistic in pharmacokinetics, but care must be taken to employ it appropriately in the context of dose history and clinically relevant pharmacodynamic end-points.

  10. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    NASA Astrophysics Data System (ADS)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  11. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    PubMed Central

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-01-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities. PMID:27853187

  12. Wave interference: mechanics of the standing wave component and the illusion of "which way" information

    NASA Astrophysics Data System (ADS)

    Hudgins, W. R.; Meulenberg, A.; Penland, R. F.

    2015-09-01

    Two adjacent coherent light beams, 180° out of phase and traveling on adjacent, parallel paths, remain visibly separated by the null (dark) zone from their mutual interference pattern as they merge. Each half of the pattern can be traced to one of the beams. Does such an experiment provide both "which way" and momentum knowledge? To answer this question, we demonstrate, by examining behavior of wave momentum and energy in a medium, that interfering waves interact. Central to the mechanism of interference is a standing wave component resulting from the combination of coherent waves. We show the mathematics for the formation of the standing wave component and for wave momentum involved in the waves' interaction. In water and in open coaxial cable, we observe that standing waves form cells bounded "reflection zones" where wave momentum from adjacent cells is reversed, confining oscillating energy to each cell. Applying principles observed in standing waves in media to the standing wave component of interfering light beams, we identify dark (null) regions to be the reflection zones. Each part of the interference pattern is affected by interactions between other parts, obscuring "which-way" information. We demonstrated physical interaction experimentally using two beams interfering slightly with one dark zone between them. Blocking one beam "downstream" from the interference region removed the null zone and allowed the remaining beam to evolve to a footprint of a single beam.

  13. Trapped waves on the mid-latitude β-plane

    NASA Astrophysics Data System (ADS)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  14. Potential for Mercury Reduction by Microbes in the High Arctic▿

    PubMed Central

    Poulain, Alexandre J.; Ní Chadhain, Sinéad M.; Ariya, Parisa A.; Amyot, Marc; Garcia, Edenise; Campbell, Peter G. C.; Zylstra, Gerben J.; Barkay, Tamar

    2007-01-01

    The contamination of polar regions due to the global distribution of anthropogenic pollutants is of great concern because it leads to the bioaccumulation of toxic substances, methylmercury among them, in Arctic food chains. Here we present the first evidence that microbes in the high Arctic possess and express diverse merA genes, which specify the reduction of ionic mercury [Hg(II)] to the volatile elemental form [Hg(0)]. The sampled microbial biomass, collected from microbial mats in a coastal lagoon and from the surface of marine macroalgae, was comprised of bacteria that were most closely related to psychrophiles that had previously been described in polar environments. We used a kinetic redox model, taking into consideration photoredox reactions as well as mer-mediated reduction, to assess if the potential for Hg(II) reduction by Arctic microbes can affect the toxicity and environmental mobility of mercury in the high Arctic. Results suggested that mer-mediated Hg(II) reduction could account for most of the Hg(0) that is produced in high Arctic waters. At the surface, with only 5% metabolically active cells, up to 68% of the mercury pool was resolved by the model as biogenic Hg(0). At a greater depth, because of incident light attenuation, the significance of photoredox transformations declined and merA-mediated activity could account for up to 90% of Hg(0) production. These findings highlight the importance of microbial redox transformations in the biogeochemical cycling, and thus the toxicity and mobility, of mercury in polar regions. PMID:17293515

  15. Reductive Dissolution of Goethite and Hematite by Reduced Flavins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhi; Zachara, John M.; Wang, Zheming

    2013-10-02

    The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron transfer mediators (ETM) secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. In contrast to the rapid redox reaction rate observed for ferrihydrite and lepidocrocite (Shi et al., 2012), the reductive dissolution of crystalline goethite and hematite was slower, with the extent of reaction limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive thanmore » hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic ETM anthraquinone-2,6-disulfonate (AQDS), yielded higher rates than FMNH2 under most reaction conditions, despite the fact that FMNH2 was a more effective reductant than AH2DS for ferryhydrite and lepidocrocite. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a broad range of half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear, parabolic relationship was observed between log ra and the redox potential for eight reducants at pH 7.0, as predicted by Marcus theory for electron transfer. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear parabolic relationship as well.« less

  16. Refined boundary conditions on the free surface of an elastic half-space taking into account non-local effects.

    PubMed

    Chebakov, R; Kaplunov, J; Rogerson, G A

    2016-02-01

    The dynamic response of a homogeneous half-space, with a traction-free surface, is considered within the framework of non-local elasticity. The focus is on the dominant effect of the boundary layer on overall behaviour. A typical wavelength is assumed to considerably exceed the associated internal lengthscale. The leading-order long-wave approximation is shown to coincide formally with the 'local' problem for a half-space with a vertical inhomogeneity localized near the surface. Subsequent asymptotic analysis of the inhomogeneity results in an explicit correction to the classical boundary conditions on the surface. The order of the correction is greater than the order of the better-known correction to the governing differential equations. The refined boundary conditions enable us to evaluate the interior solution outside a narrow boundary layer localized near the surface. As an illustration, the effect of non-local elastic phenomena on the Rayleigh wave speed is investigated.

  17. Bright half-cycle optical radiation from relativistic wavebreaking

    NASA Astrophysics Data System (ADS)

    Miao, Bo; Goers, Andy; Hine, George; Feder, Linus; Salehi, Fatholah; Wahlstrand, Jared; Milchberg, Howard

    2015-11-01

    Wavebreaking injection of electrons into relativistic plasma wakes generated in near-critical density hydrogen plasmas by sub-terawatt laser pulses is observed to generate an extremely energetic and ultra-broadband radiation flash. The flash is coherent, with a bandwidth of Δλ / λ ~ 0 . 7 consistent with half-cycle optical emission of duration ~ 1 fs from violent unidirectional acceleration of electrons to light speed from rest over a distance much less than the radiated wavelength. We studied the temporal duration and coherence of the flash by interfering it in the frequency domain with a well-characterized Xe supercontinuum pulse. Fringes across the full flash spectrum were observed with high visibility, and the extracted flash spectral phase supports it being a nearly transform-limited pulse. To our knowledge, this is the first evidence of bright half-cycle optical emission. This research is supported by the Defense Threat Reduction Agency, the US Department of Energy, and the Air Force Office of Scientific Research.

  18. Reduction of Bubble Cavitation by Modifying the Diffraction Wave from a Lithotripter Aperture

    PubMed Central

    2012-01-01

    Abstract Purpose A new method was devised to suppress the bubble cavitation in the lithotripter focal zone to reduce the propensity of shockwave-induced renal injury. Materials and Methods An edge extender was designed and fabricated to fit on the outside of the ellipsoidal reflector of an electrohydraulic lithotripter to disturb the generation of diffraction wave at the aperture, but with little effect on the acoustic field inside the reflector. Results Although the peak negative pressures at the lithotripter focus using the edge extender at 20 kV were similar to that of the original configuration (-11.1±0.9 vs −10.6±0.7 MPa), the duration of the tensile wave was shortened significantly (3.2±0.54 vs 5.83±0.56 μs, P<0.01). There is no difference, however, in both the amplitude and duration of the compressive shockwaves between these two configurations as well as the −6 dB beam width in the focal plane. The significant suppression effect of bubble cavitation was confirmed by the measured bubble collapse time using passive cavitation detection. At the lithotripter focus, while only about 30 shocks were needed to rupture a blood vessel phantom using the original HM-3 reflector at 20 kV, no damage could be produced after 300 shocks using the edge extender. Meanwhile, the original HM-3 lithotripter at 20 kV can achieve a stone comminution efficiency of 50.4±2.0% on plaster-of-Paris stone phantom after 200 shocks, which is comparable to that of using the edge extender (46.8±4.1%, P=0.005). Conclusions Modifying the diffraction wave at the lithotripter aperture can suppress the shockwave-induced bubble cavitation with significant reduced damage potential on the vessel phantom but satisfactory stone comminution ability. PMID:22332839

  19. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction.

    PubMed

    Li, Qiheng; Chen, Wenxing; Xiao, Hai; Gong, Yue; Li, Zhi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Cheong, Weng-Chon; Shen, Rongan; Fu, Ninghua; Gu, Lin; Zhuang, Zhongbin; Chen, Chen; Wang, Dingsheng; Peng, Qing; Li, Jun; Li, Yadong

    2018-06-01

    Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rotational motions for teleseismic surface waves

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Jen; Huang, Han-Pang; Pham, Nguyen Dinh; Liu, Chun-Chi; Chi, Wu-Cheng; Lee, William H. K.

    2011-08-01

    We report the findings for the first teleseismic six degree-of-freedom (6-DOF) measurements including three components of rotational motions recorded by a sensitive rotation-rate sensor (model R-1, made by eentec) and three components of translational motions recorded by a traditional seismometer (STS-2) at the NACB station in Taiwan. The consistent observations in waveforms of rotational motions and translational motions in sections of Rayleigh and Love waves are presented in reference to the analytical solution for these waves in a half space of Poisson solid. We show that additional information (e.g., Rayleigh wave phase velocity, shear wave velocity of the surface layer) might be exploited from six degree-of-freedom recordings of teleseismic events at only one station. We also find significant errors in the translational records of these teleseismic surface waves due to the sensitivity of inertial translation sensors (seismometers) to rotational motions. The result suggests that the effects of such errors need to be counted in surface wave inversions commonly used to derive earthquake source parameters and Earth structure.

  1. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning.

    PubMed

    Van Der Werf, Ysbrand D; Altena, Ellemarije; Vis, José C; Koene, Teddy; Van Someren, Eus J W

    2011-01-01

    Total sleep deprivation in healthy subjects has a profound effect on the performance on tasks measuring sustained attention or vigilance. We here report how a selective disruption of deep sleep only, that is, selective slow-wave activity (SWA) reduction, affects the performance of healthy well-sleeping subjects on several tasks: a "simple" and a "complex" vigilance task, a declarative learning task, and an implicit learning task despite unchanged duration of sleep. We used automated electroencephalogram (EEG) dependent acoustic feedback aimed at selective interference with-and reduction of-SWA. In a within-subject repeated measures crossover design, performance on the tasks was assessed in 13 elderly adults without sleep complaints after either SWA-reduction or after normal sleep. The number of vigilance lapses increased as a result of SWA reduction, irrespective of the type of vigilance task. Recognition on the declarative memory task was also affected by SWA reduction, associated with a decreased activation of the right hippocampus on encoding (measured with fMRI) suggesting a weaker memory trace. SWA reduction, however, did not affect reaction time on either of the vigilance tasks or implicit memory task performance. These findings suggest a specific role of slow oscillations in the subsequent daytime ability to maintain sustained attention and to encode novel declarative information but not to maintain response speed or to build implicit memories. Of particular interest is that selective SWA reduction can mimic some of the effects of total sleep deprivation, while not affecting sleep duration. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Electronic transport across a junction between armchair graphene nanotube and zigzag nanoribbon. Transmission in an armchair nanotube without a zigzag half-line of dimers

    NASA Astrophysics Data System (ADS)

    Sharma, Basant Lal

    2018-05-01

    Based on the well known nearest-neighbor tight-binding approximation for graphene, an exact expression for the electronic conductance across a zigzag nanoribbon/armchair nanotube junction is presented for non-interacting electrons. The junction results from the removal of a half-row of zigzag dimers in armchair nanotube, or equivalently by partial rolling of zigzag nanoribbon and insertion of a half-row of zigzag dimers in between. From the former point of view, a discrete form of Dirichlet condition is imposed on a zigzag half-line of dimers assuming the vanishing of wave function outside the physical structure. A closed form expression is provided for the reflection and transmission moduli for the outgoing wave modes for each given electronic wave mode incident from either side of the junction. It is demonstrated that such a contact junction between the nanotube and nanoribbon exhibits negligible backscattering, and the transmission has been found to be nearly ballistic. In contrast to the previously reported studies for partially unzipped carbon nanotubes (CNTs), using the same tight binding model, it is found that due to the "defect" there is certain amount of mixing between the electronic wave modes with even and odd reflection symmetries. But the junction remains a perfect valley filter for CNTs at certain energy ranges. Applications aside from the electronic case, include wave propagation in quasi-one-dimensional honeycomb structures of graphene-like constitution. The paper includes several numerical calculations, analytical derivations, and graphical results, which complement the provision of succinct closed form expressions.

  3. Space-Wave Routing via Surface Waves Using a Metasurface System.

    PubMed

    Achouri, Karim; Caloz, Christophe

    2018-05-15

    We introduce the concept of a metasurface system able to route space waves via surface waves. This concept may be used to laterally shift or modulate the beam width of scattered waves. The system is synthesized based on a momentum transfer approach using phase-gradient metasurfaces. The concept is experimentally verified in an "electromagnetic periscope". Additionally, we propose two other potential applications namely a beam expander and a multi-wave refractor.

  4. P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments

    USGS Publications Warehouse

    Gangi, A.F.; Wesson, R.L.

    1978-01-01

    An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.

  5. ANAEROBIC DDT BIOTRANSFORMATION: ENHANCEMENT BY APPLICATION OF SURFACTANTS AND LOW OXIDATION REDUCTION POTENTIAL

    EPA Science Inventory

    Enhancement of anaerobic DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) biotransformation by mixed cultures was studied with application of surfactants and oxidation reduction potential reducing agents. Without amendments, DDT transformation resulted mainly in the pr...

  6. Theoretical Studies of N2-broadened Half-widths of H2O Lines Involving High j States

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    Based on the properties of the energy levels and wave functions of H2O states, one can categorize H2O lines into individually defined groups such that within the same group, the energy levels and the wave functions associated with two paired lines have an identity property while those associated with different pairs have a similarity property. Meanwhile, by thoroughly analyzing processes used to calculate N2-broadened half-widths, it was found that the 'Fourier series' of W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub f) T(sub f) and W(sup a)(sub L(sub 1))(sub K(sub 1))(sub K(sub 1)) (t; j(sub i) T(sub i), and a factor P(sub 222) (j(sub f) T(sub f) j(sub i) T(sub i)) are the key items in the Robert-Bonamy formalism to distinguish contributions to ReS2(r(sub c)) among different transitions of j(sub f) T(sub f) - j(sub i). However, these items are completely determined by the energy levels and the wave functions associated with their initial and final states and they must bear the latter's features as well. Thus, it becomes obvious that for two paired lines in the same group, their calculated half-widths must be almost identical and the values associated with different pairs must vary smoothly as their ji values vary. Thus, the pair identity and the smooth variation rules are established within individual groups of lines. One can use these rules to screen half-width data listed in HITRAN and to improve the data accuracies.

  7. Nonlinear Electron Acoustic Waves in Dissipative Plasma with Superthermal Electrons

    NASA Astrophysics Data System (ADS)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Kassem, A. I.; Darweesh, H. F.

    2016-01-01

    The nonlinear properties of small amplitude electron-acoustic ( EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma consisted of a cold electron fluid and superthermal hot electrons obeying superthermal distribution, and stationary ions have been investigated. A reductive perturbation method was employed to obtain the Kadomstev-Petviashvili-Burgers (KP-Brugers) equation. Some solutions of physical interest are obtained. These solutions are related to soliton, monotonic and oscillatory shock waves and their behaviour are shown graphically. The formation of these solutions depends crucially on the value of the Burgers term and the plasma parameters as well. By using the tangent hyperbolic (tanh) method, another interesting type of solution which is a combination between shock and soliton waves is obtained. The topology of phase portrait and potential diagram of the KP-Brugers equation is investigated.The advantage of using this method is that one can predict different classes of the travelling wave solutions according to different phase orbits. The obtained results may be helpful in better understanding of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  8. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  9. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  10. Synthesis of flower-like molybdenum sulfide/graphene hybrid as an efficient oxygen reduction electrocatalyst for anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Arunchander, A.; Peera, S. Gouse; Sahu, A. K.

    2017-06-01

    Nanostructured transition metal chalcogenides (TMCs) have significant interest towards electrochemical devices such as fuel cells, metal-ion batteries, due to their unique physical and electrochemical properties. Herein, we report a facile hydrothermal synthesis of flower-like nanostructured molybdenum sulphide and its incorporation on to graphene as a potential oxygen reduction reaction catalyst in alkaline medium. The phase purity and morphological evolution of MoS2 is systematically studied through X-ray diffraction and scanning electron microscopic techniques. The electronic states of metal and non-metallic species are deeply studied by X-ray photoelectron spectroscopy. The effect of annealing temperatures and TMC concentrations are also investigated by electrochemical techniques such as cyclic and linear sweep voltammograms. The optimised electrocatalyst (MoS2/G-500) delivers significant ORR activity with onset and half-wave potentials of 0.91 and 0.80 V (vs. RHE), respectively. Superior durability compared to state-of-art Pt/C catalyst is ascertained by repeating potential cycles for about 5000 times and also by chronoamperometric technique. Finally, the hybrid catalyst is evaluated in AEMFC as cathode catalyst which delivers peak power density of about 29 mW cm-2 under ambient temperature and pressure. The present findings emphasis that MoS2/G catalyst is promising as cost-effective and alternative to noble metal-based catalysts for fuel cell applications.

  11. Wave energy analysis based on simulation wave data in the China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Zhan-sheng; Qian, Yu-hao; Sui, Yu-wei; Chen, Xuan; Zhang, Da

    2018-05-01

    In the current world, where human beings are severely plagued by environmental problems and energy crisis, the full and reasonable utilization of marine new energy resources will contribute to alleviating the energy crisis, contributing to global energy-saving, emission reduction and environmental protection, thus to promote sustainable development. In this study, we firstly simulated a 10-year (1991-2000) 6-hourly wave data of the China Sea, by using the Simulating WAves Nearshore (SWAN) wave model nested with WAVEWATCH-III (WW3) wave model forced with Cross-Calibrated, Multi-Platform (CCMP) wind data. Considering the value size and stability of the wave energy density, we analyzed the overall characteristics of the China Sea wave energy with using the simulation wave data. Results show that: (1) The wave energy density in January and October is distinctly higher than that in April and July. The large center of annual average Wave energy density is located in the north of the South China Sea (of about 12-16 kW/m). (2) Synthetically considering the value size and stability of the wave energy density and stability, the energy-rich area is found to be located in the north region of the South China Sea.

  12. Antenna Construction & Propagation of Radio Waves, 5-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio…

  13. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.

    PubMed

    Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying

    2015-11-01

    Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential

  14. Dust Acoustic Solitary Waves in Dusty Plasma with Trapped Electrons Having Different Temperature Nonthermal Ions

    NASA Astrophysics Data System (ADS)

    Deka, Manoj Kr.

    2016-12-01

    In this report, a detailed investigation on the study of dust acoustics solitary waves solution with negatively dust charge fluctuation in dusty plasma corresponding to lower and higher temperature nonthermal ions with trapped electrons is presented. We consider temporal variation of dust charge as a source of dissipation term to derive the lower order modified Kadomtsev-Petviashvili equation by using the reductive perturbation technique. Solitary wave solution is obtained with the help of sech method in presence of trapped electrons and low (and high) temperature nonthermal ions. Both nonthermality of ions and trapped state of the electrons are found to have an imperative control on the nonlinear coefficient, dissipative coefficient as well as height of the wave potential.

  15. A novel iron (Ⅱ) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Li, Meng; Jiang, Liqing; Li, Yongfeng; Liu, Dajun; He, Xingquan; Cui, Lili

    2014-12-01

    To realize the large-scale commercial application of direct methanol fuel cells (DMFCs), the catalysts for oxygen reduction reaction (ORR) are the crucial obstacle. Here, an efficient non-noble-metal catalyst for ORR, denoted FePPc/PSS-Gr, has been obtained by anchoring p-phenyl-bis(3,4-dicyanophenyl) ether iron(Ⅱ) polyphthalocyanine (FePPc) on poly(sodium-p-styrenesulfonate) (PSS) modified graphene (PSS-Gr) through a solvothermally assisted π-π assembling approach. The Ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results reveal the π-π interaction between FePPc and PSS-Gr. The rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurements show that the proposed catalyst possesses an excellent catalytic performance towards ORR comparable with the commercial Pt/C catalyst in alkaline medium, such as high onset potential (-0.08 V vs. SCE), half-wave potential (-0.19 V vs. SCE), better tolerance to methanol crossover, excellent stability (81.1%, retention after 10,000 s) and an efficient four-electron pathway. The enhanced electrocatalytic performance could be chiefly attributed to its large electrochemically accessible surface area, fast electron transfer rate of PSS-Gr, in particular, the synergistic effect between the FePPc moieties and the PSS-Gr sheets.

  16. Facile preparation of efficient electrocatalysts for oxygen reduction reaction: One-dimensional meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Yoon, Ki Ro; Choi, Jinho; Cho, Su-Ho; Jung, Ji-Won; Kim, Chanhoon; Cheong, Jun Young; Kim, Il-Doo

    2018-03-01

    Efficient electrocatalyst for oxygen reduction reaction (ORR) is an essential component for stable operation of various sustainable energy conversion and storage systems such as fuel cells and metal-air batteries. Herein, we report a facile preparation of meso/macroporous Co and N co-doped carbon nanofibers (Co-Nx@CNFs) as a high performance and cost-effective electrocatalyst toward ORR. Co-Nx@CNFs are simply obtained from electrospinning of Co precursor and bicomponent polymers (PVP/PAN) followed by temperature controlled carbonization and further activation step. The prepared Co-Nx@CNF catalyst carbonized at 700 °C (Co-Nx@CNF700) shows outstanding ORR performance, i.e., a low onset potential (0.941 V) and half wave potential (0.814 V) with almost four-electron transfer pathways (n= 3.9). In addition, Co-Nx@CNF700 exhibits a superior methanol tolerance and higher stability (>70 h) in Zn-air battery in comparison with Pt/C catalyst (∼30 h). The outstanding performance of Co-Nx@CNF700 catalysts is attributed to i) enlarged surface area with bimodal porosity achieved by leaching of inactive species, ii) increase of exposed ORR active Co-Nx moieties and graphitic edge sites, and iii) enhanced electrical conductivity and corrosion resistance due to the existence of numerous graphitic flakes in carbon matrix.

  17. Voyager 2 plasma wave observations at saturn.

    PubMed

    Scarf, F L; Gurnett, D A; Kurth, W S; Poynter, R L

    1982-01-29

    The first inbound Voyager 2 crossing of Saturn's bow shock [at 31.7 Saturn radii (RS), near local noon] and the last outbound crossing (at 87.4 RS, near local dawn) had similar plasma wave signatures. However, many other aspects of the plasma wave measurements differed considerably during the inbound and outbound passes, suggesting the presence of effects associated with significant north-south or noon-dawn asymmetries, or temporal variations. Within Saturn's magnetosphere, the plasma wave instrument detected electron plasma oscillations, upper hybrid resonance emissions, half-gyrofrequency harmonics, hiss and chorus, narrowband electromagnetic emissions and broadband Saturn radio noise, and noise bursts with characteristics of static. At the ring plane crossing, the plasma wave instrument also detected a large number of intense impulses that we interpret in terms of ring particle impacts on Voyager 2.

  18. Forced Gravity Waves and the Tropospheric Response to Convection

    NASA Astrophysics Data System (ADS)

    Halliday, O. J.; Griffiths, S. D.; Parker, D. J.; Stirling, A.

    2017-12-01

    It has been known for some time that gravity waves facilitate atmospheric adjustment to convective heating. Further, convectively forced gravity waves condition the neighboring atmosphere for the initiation and / or suppression of convection. Despite this, the radiation of gravity waves in macro-scale models (which are typically forced at the grid-scale, by existing parameterization schemes) is not well understood. We present here theoretical and numerical work directed toward improving our understanding of convectively forced gravity wave effects at the mesoscale. Using the linear hydrostatic equations of motion for an incompressible (but non-Boussinesq) fluid with vertically varying buoyancy frequency, we find a radiating solution to prescribed sensible heating. We then interrogate the spatial and temporal sensitivity of the vertical velocity and potential temperature response to different heating functions, considering the remote and near-field forced response both to steady and pulsed heating. We find that the meso-scale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and stratification of the domain. Moving from a trapped to upwardly-radiating solution there is a 50% reduction in tropospherically averaged vertical velocity, but significant perturbations persist for up to 4 hours in the far-field. We find the tropospheric adjustment to be sensitive to the horizontal length scale which characterizes the heating, observing a 20% reduction in vertical velocity when comparing the response from a 10 km to a 100 km heat source. We assess the implications for parameterization of convection in coarse-grained models in the light of these findings. We show that an idealized `full-physics' nonlinear simulation of deep convection in the UK Met Office Unified Model is qualitatively described by the linear solution

  19. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier

    NASA Astrophysics Data System (ADS)

    Nanni, Luca

    2017-11-01

    This paper investigates the problem of a relativistic Dirac half-integer spin free particle tunneling through a rectangular quantum-mechanical barrier. If the energy difference between the barrier and the particle is positive, and the barrier width is large enough, there is proof that the tunneling may be superluminal. For first spinor components of particle and antiparticle states, the tunneling is always superluminal regardless the barrier width. Conversely, the second spinor components of particle and antiparticle states may be either subluminal or superluminal depending on the barrier width. These results derive from studying the tunneling time in terms of phase time. For the first spinor components of particle and antiparticle states, it is always negative while for the second spinor components of particle and antiparticle states, it is always positive, whatever the height and width of the barrier. In total, the tunneling time always remains positive for particle states while it becomes negative for antiparticle ones. Furthermore, the phase time tends to zero, increasing the potential barrier both for particle and antiparticle states. This agrees with the interpretation of quantum tunneling that the Heisenberg uncertainty principle provides. This study's results are innovative with respect to those available in the literature. Moreover, they show that the superluminal behaviour of particles occurs in those processes with high-energy confinement.

  20. Causal Wave Propagation for Relativistic Massive Particles: Physical Asymptotics in Action

    ERIC Educational Resources Information Center

    Berry, M. V.

    2012-01-01

    Wavepackets representing relativistic quantum particles injected into a half-space, from a source that is switched on at a definite time, are represented by superpositions of plane waves that must include negative frequencies. Propagation is causal: it is a consequence of analyticity that at time t no part of the wave has travelled farther than…

  1. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  2. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction.

    PubMed

    Yang, Liu; Cheng, Daojian; Xu, Haoxiang; Zeng, Xiaofei; Wan, Xin; Shui, Jianglan; Xiang, Zhonghua; Cao, Dapeng

    2018-06-26

    It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm -2 Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.

  3. Refining cocoon to prepare (N, S, and Fe) ternary-doped porous carbon aerogel as efficient catalyst for the oxygen reduction reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Li, Changqing; Sun, Fengzhan; Lin, Yuqing

    2018-04-01

    Various advanced sulfur doped Fe-N-C non-noble metal catalysts of oxygen reduction reaction (ORR) have been recently designed and reported with excellent catalytic activity. Herein, we refined cocoon with several steps to form silk fibroin solution, treated with iron salt to prepare an easy available, heteroatom (N, S, and Fe) ternary-doped, porous carbon aerogel (HDCA). Heteroatom existed in organic compounds in silk fibroin endow active site for ORR of the resultant carbon frameworks. Moreover, the amino acids presented in silk fibroin acted as ligands, functioning with Fe ions to form FeNx coordination compounds, which also served as active sites towards ORR. The synthesized HDCA electrocatalysts, especially HDCA-800 (obtained at 800 °C) displayed excellent catalytic activity with onsets, half-wave potential of 0.94 V, 0.79 V and higher limited current density of 3.80 mA cm-2 through a near four-electron reduction pathway with an average electron transferred number of 3.86, making them promising alternatives for state-of-the-art ORR electrocatalysts in fuel cell field. The porous structure with synergistic effect of N and S heteroatom doping has been proposed to play a key role in facilitating the desired ORR reaction.

  4. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K

    2016-02-01

    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Insights on Microbial Activity from Reduction Potential: Electrochemical Noise Analysis of a Pristine Aquifer

    NASA Astrophysics Data System (ADS)

    Enright, A. M.; Shirokova, V.; Ferris, G.

    2012-12-01

    Reduction potential was measured in a shallow, till-hosted, pristine aquifer. A previous study* characterized the microbial community of the aquifer, and geochemical analysis of water from the aquifer from 2010, 2011, and 2012 indicates persistent localized geochemical gradients of ferrous, ferric, sulphate, and sulphide ions. The chemical plume changes oxidation state from a reduced centre to oxidized outer boundaries, and microbial activity is responsible for the shift in redox state. Analysis of reduction potential as electrochemical noise in both the frequency and time domains provides insight into the manipulation of dissolved ions by the microbial community. Analysis of electrochemical noise is sensitive enough to distinguish the rates and magnitude of influence of the mechanisms which contribute to the redox state of a system. Self-similarity has been suggested to arise in any system where electrochemical noise is the result of a multitude of contributory processes, and this type of noise signature has been reported for many biological and abiotic natural processes. This observed ubiquity is not well understood. Reduction potential data is analyzed using detrended fluctuation analysis in the frequency domain and detrended moving average analysis in the time domain to characterize the Hurst exponent and fractal dimension of this physiological time series. *V.L. Shirokova and F.G. Ferris. (2012). Microbial Diversity and Biogeochemistry of a Pristine Canadian Shield Groundwater System. Geomicrobiology Journal.

  6. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    PubMed Central

    2015-01-01

    Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. PMID:27162977

  7. Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor.

    PubMed

    Fernández, J J; Tablero, C; Wahnón, P

    2004-06-08

    In this paper we present an analysis of the convergence of the band structure properties, particularly the influence on the modification of the bandgap and bandwidth values in half metallic compounds by the use of the exact exchange formalism. This formalism for general solids has been implemented using a localized basis set of numerical functions to represent the exchange density. The implementation has been carried out using a code which uses a linear combination of confined numerical pseudoatomic functions to represent the Kohn-Sham orbitals. The application of this exact exchange scheme to a half-metallic semiconductor compound, in particular to Ga(4)P(3)Ti, a promising material in the field of high efficiency solar cells, confirms the existence of the isolated intermediate band in this compound. (c) 2004 American Institute of Physics.

  8. Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzit, Omar; Tribeche, Mouloud

    2015-10-15

    The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic onemore » (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.« less

  9. High-frequency guided ultrasonic waves to monitor corrosion thickness loss

    NASA Astrophysics Data System (ADS)

    Fromme, Paul; Bernhard, Fabian; Masserey, Bernard

    2017-02-01

    Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.

  10. The high-frequency dispersion coefficient for the Rayleigh velocity in a vertically inhomogeneous anisotropic half-space.

    PubMed

    Shuvalov, A L

    2008-05-01

    For an arbitrary anisotropic half-space with continuous vertical variation of material properties, an explicit closed-form expression for the coefficient B of high-frequency dispersion of the Rayleigh velocity v(R)(omega) approximately v(R)(0)(1+B/omega) is derived. The result involves two matrices, one consisting of the surface-traction derivatives in velocity and the other of its Wentzel-Kramers-Brillouin coefficients, which are contracted with an amplitude vector of the Rayleigh wave in the reference homogeneous half-space. The "ingredients" are routinely defined through the fundamental elasticity matrix and its first derivative, both taken at v=v(R)(0) and referred to the surface.

  11. Fractional Whirl Motion in Wave Journal Bearings

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Hendricks, Robert C.

    1996-01-01

    Unloaded gas, plain journal bearings experience sub-synchronous whirl motion due to fluid film instabilities and wall contact usually occurs immediately after the onset of the whirl motion. An alternative is the wave journal bearing which significantly improves bearing stability. The predicted threshold where the sub-synchronous whirl motion starts was well confirmed by the experimental observation. In addition, both a two-wave and a three-wave journal bearing can operate free of sub-synchronous whirl motion over a large range in speeds. When the sub-synchronous whirl motion occurs, both the two-wave and three-wave bearing can run in a whirl orbit well within the bearing clearance. At large clearances and wave amplitudes a two-wave bearing, unliKe other bearings, can exhibit a sub-synchronous whirl movement at both low and high speeds, but can run extremely stable and without whirl at intermediate speeds. Moreover, in these cases, the whirl frequencies are close to a quarter of the synchronous speed. The three-wave bearing can exhibit sub-synchronous whirl motion only after a specific threshold when the speed increases and the whirl frequencies are close to half of the synchronous speed.

  12. Assessment of H reflex sensitivity with M wave alternation consequent to fatiguing contractions.

    PubMed

    Hwang, Ing-Shiou; Huang, Cheng-Ya; Wu, Pei-Shan; Chen, Yi-Ching; Wang, Chun-Hou

    2008-09-01

    The objective of this study was to examine the changes in H reflex sensitivity after neuromuscular fatigue associated with fluctuations of the M wave. In the maximal and submaximal voluntary contraction (MVC and SMVC) paradigms, subjects performed voluntary plantarflexion at 100% MVC and 40% MVC respectively until the limit of torque maintenance was reached. In the submaximal electrical stimulation (SMES) paradigm, the tricep surae was exhausted with sustained electrical stimulation of 40% of the maximal tolerable intensity at a 40-Hz stimulus rate. The H reflexes and maximal M waves (M(max)) of the soleus were recorded before and after the three fatigue paradigms, and the H reflex was standardized with M(max) to minimize possible bias due to fatigue-induced M wave fluctuation. The results showed a significant increase in the standardized H reflex due to the SMES paradigm in spite of M(max) potentiation. The SMVC paradigm led to a reduction in size of the standardized H reflex without modification of M(max), whereas the standardized H reflex was not mediated by the MVC paradigm, which contributed to a noticeable M(max) potentiation. The present study underscored the fact that the H reflex sensitivity and M wave amplitude were not necessarily suppressed consequent to neuromuscular fatigue, but varied with the activation history of a muscle for size-dependent efficacy of the Ia transmission pathways and postactivation potentiation.

  13. Application of time dependent Green's function method to scattering of elastic waves in anisotropic solids

    NASA Astrophysics Data System (ADS)

    Tewary, Vinod K.; Fortunko, Christopher M.

    The present, time-dependent 3D Green's function method resembles that used to study the propagation of elastic waves in a general, anisotropic half-space in the lattice dynamics of crystals. The method is used to calculate the scattering amplitude of elastic waves from a discontinuity in the half-space; exact results are obtained for 3D pulse propagation in a general, anisotropic half-space that contains either an interior point or a planar scatterer. The results thus obtained are applicable in the design of ultrasonic scattering experiments, especially as an aid in the definition of the spatial and time-domain transducer responses that can maximize detection reliability for specific categories of flaws in highly anisotropic materials.

  14. Confinement-induced p-wave resonances from s-wave interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Tan, Shina; School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

    2010-12-15

    We show that a purely s-wave interaction in three dimensions (3D) can induce higher partial-wave resonances in mixed dimensions. We develop two-body scattering theories in all three cases of 0D-3D, 1D-3D, and 2D-3D mixtures and determine the positions of higher partial-wave resonances in terms of the 3D s-wave scattering length assuming a harmonic confinement potential. We also compute the low-energy scattering parameters in the p-wave channel (scattering volume and effective momentum) that are necessary for the low-energy effective theory of the p-wave resonance. We point out that some of the resonances observed in the Florence group experiment [Phys. Rev. Lett.more » 104, 153202 (2010)] can be interpreted as the p-wave resonances in the 2D-3D mixed dimensions. Our study paves the way for a variety of physics, such as Anderson localization of matter waves under p-wave resonant scatterers.« less

  15. Modeling guided wave propagation in curved thick composites with ply drops and marcelling

    NASA Astrophysics Data System (ADS)

    Hakoda, Christopher; Choi, Gloria; Lissenden, Clifford

    2018-04-01

    Setting the process parameters for fabrication of thick composites having complex geometries is a challenging endeavor, with the best result being a high-quality part and less desirable results being parts that contain voids or fiber marcelling. An equal challenge is the nondestructive testing of these parts. Consider a U-shaped portion of a more complex part. The straight segments of the U-shape are approximately 10-mm thick, but a series of ply-drops reduce the thickness by one half at the center portion. Ultrasonic guided waves that have the potential to nondestructively test this part can be actuated by coupling transducers to the straight segments if and only if wave modes that are sensitive to the defects of interest can propagate through the ply drops, the curve, and the attenuation due to internal damping. A frequency domain finite element approach proposed in recent years for guided wave analysis is applied to this inhomogeneous waveguide problem in order to select modes and frequencies that are sensitive to marcelling.

  16. Experimental Study on Tsunami Risk Reduction on Coastal Building Fronted by Sea Wall

    PubMed Central

    Khan, M. T. R.; Shirazi, S. M.

    2014-01-01

    This experimental study was conducted to idealize the efficacy of sea wall in controlling the tsunami forces on onshore structures. Different types of sea walls were placed in front of the building model. The tsunami forces and the wave heights were measured with and without the sea wall conditions. Types of sea wall, wall height, and wall positions were varied simultaneously to quantify the force reductions. Maximum of 41% forces was reduced by higher sea wall, positioned closer proximity to the model whereas this reduction was about 27% when the wall height was half of the high wall. Experimental investigations revealed that wall with adequate height and placed closer to the structures enables a satisfactory predictor of the force reduction on onshore structures. Another set of tests were performed with perforated wall placing near the building model. Less construction cost makes the provision of perforated sea wall interesting. The overall results showed that the efficacy of perforated wall is almost similar to solid wall. Hence, it can be efficiently used instead of solid wall. Moreover, overtopped water that is stuck behind the wall is readily gone back to the sea through perforations releasing additional forces on the nearby structures. PMID:24790578

  17. Measurement and subtraction of Schumann resonances at gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael W.; Cirone, Alessio; Meyers, Patrick; Atsuta, Sho; Boschi, Valerio; Chincarini, Andrea; Christensen, Nelson L.; De Rosa, Rosario; Effler, Anamaria; Fiori, Irene; Gołkowski, Mark; Guidry, Melissa; Harms, Jan; Hayama, Kazuhiro; Kataoka, Yuu; Kubisz, Jerzy; Kulak, Andrzej; Laxen, Michael; Matas, Andrew; Mlynarczyk, Janusz; Ogawa, Tsutomu; Paoletti, Federico; Salvador, Jacobo; Schofield, Robert; Somiya, Kentaro; Thrane, Eric

    2018-05-01

    Correlated magnetic noise from Schumann resonances threatens to contaminate the observation of a stochastic gravitational-wave background in interferometric detectors. In previous work, we reported on the first effort to eliminate global correlated noise from the Schumann resonances using Wiener filtering, demonstrating as much as a factor of two reduction in the coherence between magnetometers on different continents. In this work, we present results from dedicated magnetometer measurements at the Virgo and KAGRA sites, which are the first results for subtraction using data from gravitational-wave detector sites. We compare these measurements to a growing network of permanent magnetometer stations, including at the LIGO sites. We show the effect of mutual magnetometer attraction, arguing that magnetometers should be placed at least one meter from one another. In addition, for the first time, we show how dedicated measurements by magnetometers near to the interferometers can reduce coherence to a level consistent with uncorrelated noise, making a potential detection of a stochastic gravitational-wave background possible.

  18. Stress wave emission from plasmonic nanobubbles

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru

    2017-01-01

    Stress wave emission from the collapse of cavitation nanobubbles, generated after irradiation of single-spherical gold nanoparticles with laser pulses, was investigated numerically. The significant parameters of this study are the nanoparticle radius, laser pulse duration, and laser fluence. For conditions comparable to those existing during plasmonic photothermal therapy, a purely compressive pressure wave is emitted during nanobubble collapse, not a shock. In the initial stage of its propagation, the stress wave amplitude is proportional to the inverse of the stress wave radius. The maximum amplitude and the duration of the stress wave decreases with the laser fluence, laser pulse duration, and gold nanoparticle radius. The full width at half maximum duration of the stress wave is almost constant up to a distance of 50 µm from the emission center. The stress wave amplitude is smaller than 5 MPa, while the stress wave duration is smaller than 35 ns. The stress wave propagation results in minor mechanical effects on biological tissue that are restricted to very small dimensions on a cellular or sub-cellular level. The stress wave is, however, able to produce breaching of the human cell membrane and bacterial wall even at distances as large as 50 µm from the emission centre. The experimentally observed melting of gold nanoparticles comes from the large temperature reached inside the nanoparticles during laser irradiation and not from the propagation of the stress wave into the surrounding liquid during nanobubble rebound.

  19. On the modeling of wave-enhanced turbulence nearshore

    NASA Astrophysics Data System (ADS)

    Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth

    2016-07-01

    A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.

  20. On the half-life of luminescence signals in dosimetric applications: A unified presentation

    NASA Astrophysics Data System (ADS)

    Pagonis, V.; Kitis, G.; Polymeris, G. S.

    2018-06-01

    Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of

  1. On the propagation of elasto-thermodiffusive surface waves in heat-conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.; Sharma, Y. D.; Sharma, P. K.

    2008-09-01

    The present paper deals with the study of the propagation of Rayleigh surface waves in homogeneous isotropic, thermodiffusive elastic half-space. After developing the formal solution of the model, the secular equations for stress free, thermally insulated or isothermal, and isoconcentrated boundary conditions of the half-space have been obtained. The secular equations have been solved by using irreducible Cardano's method with the help of DeMoivre's theorem in order to obtain phase velocity and attenuation coefficient of waves under consideration. The motion of the surface particles during the Rayleigh surface wave propagation is also discussed and found to be elliptical in general. The inclinations of wave normal with the major axis of the elliptical path of a typical particle have also been computed. Finally, the numerically simulated results regarding phase velocity, attenuation coefficient, specific loss and thermo-mechanical coupling factors of thermoelastic diffusive waves have been obtained and presented graphically. Some very interesting and useful characteristics of surface acoustic waves have been obtained, which may help in improving the fabrication quality of optical and electronic devices in addition to construction and design of materials such as semiconductors and composite structures. Therefore, this work finds applications in the geophysics and electronics industry.

  2. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin

    2017-08-01

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.

  3. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laming, J. Martin, E-mail: laming@nrl.navy.mil

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. Inmore » closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.« less

  4. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  5. Computational wave dynamics for innovative design of coastal structures

    PubMed Central

    GOTOH, Hitoshi; OKAYASU, Akio

    2017-01-01

    For innovative designs of coastal structures, Numerical Wave Flumes (NWFs), which are solvers of Navier-Stokes equation for free-surface flows, are key tools. In this article, various methods and techniques for NWFs are overviewed. In the former half, key techniques of NWFs, namely the interface capturing (MAC, VOF, C-CUP) and significance of NWFs in comparison with the conventional wave models are described. In the latter part of this article, recent improvements of the particle method are shown as one of cores of NWFs. Methods for attenuating unphysical pressure fluctuation and improving accuracy, such as CMPS method for momentum conservation, Higher-order Source of Poisson Pressure Equation (PPE), Higher-order Laplacian, Error-Compensating Source in PPE, and Gradient Correction for ensuring Taylor-series consistency, are reviewed briefly. Finally, the latest new frontier of the accurate particle method, including Dynamic Stabilization for providing minimum-required artificial repulsive force to improve stability of computation, and Space Potential Particle for describing the exact free-surface boundary condition, is described. PMID:29021506

  6. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  7. Wave drag as the objective function in transonic fighter wing optimization

    NASA Technical Reports Server (NTRS)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  8. Enhanced H2O2 Production at Reductive Potentials from Oxidized Boron-Doped Ultrananocrystalline Diamond Electrodes.

    PubMed

    Thostenson, James O; Ngaboyamahina, Edgard; Sellgren, Katelyn L; Hawkins, Brian T; Piascik, Jeffrey R; Klem, Ethan J D; Parker, Charles B; Deshusses, Marc A; Stoner, Brian R; Glass, Jeffrey T

    2017-05-17

    This work investigates the surface chemistry of H 2 O 2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H 2 O 2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H 2 O 2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H 2 O 2 . Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H 2 O 2 more efficiently compared to static potential methods.

  9. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  10. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  11. [Application of Multiple Genetic Markers in a Case of Determination of Half Sibling].

    PubMed

    Yang, Xue; Shi, Mei-sen; Yuan, Li; Lu, Di

    2016-02-01

    A case of half sibling was determined with multiple genetic markers, which could be potentially applied for determination of half sibling relationship from same father. Half sibling relationship was detected by 39 autosomal STR genetic markers, 23 Y-chromosomal STR genetic markers and 12 X -chromosomal STR genetic markers among ZHAO -1, ZHAO -2, ZHAO -3, ZHAO -4, and ZHAO-5. According to autosomal STR, Y-STR and X-STR genotyping results, it was determined that ZHAO-4 (alleged half sibling) was unrelated with ZHAO-1 and ZHAO-2; however, ZHAO-3 (alleged half sibling), ZHAO-5 (alleged half sibling) shared same genetic profile with ZHAO-1, and ZHAO-2 from same father. It is reliable to use multiple genetic markers and family gene reconstruction to determine half sibling relationship from same father, but it is difficult to determination by calculating half sibling index with ITO and discriminant functions.

  12. The fictitious force method for efficient calculation of vibration from a tunnel embedded in a multi-layered half-space

    NASA Astrophysics Data System (ADS)

    Hussein, M. F. M.; François, S.; Schevenels, M.; Hunt, H. E. M.; Talbot, J. P.; Degrande, G.

    2014-12-01

    This paper presents an extension of the Pipe-in-Pipe (PiP) model for calculating vibrations from underground railways that allows for the incorporation of a multi-layered half-space geometry. The model is based on the assumption that the tunnel displacement is not influenced by the existence of a free surface or ground layers. The displacement at the tunnel-soil interface is calculated using a model of a tunnel embedded in a full space with soil properties corresponding to the soil in contact with the tunnel. Next, a full space model is used to determine the equivalent loads that produce the same displacements at the tunnel-soil interface. The soil displacements are calculated by multiplying these equivalent loads by Green's functions for a layered half-space. The results and the computation time of the proposed model are compared with those of an alternative coupled finite element-boundary element model that accounts for a tunnel embedded in a multi-layered half-space. While the overall response of the multi-layered half-space is well predicted, spatial shifts in the interference patterns are observed that result from the superposition of direct waves and waves reflected on the free surface and layer interfaces. The proposed model is much faster and can be run on a personal computer with much less use of memory. Therefore, it is a promising design tool to predict vibration from underground tunnels and to assess the performance of vibration countermeasures in an early design stage.

  13. Analysis of Pheochromocytoma (PC12) Membrane Potential under the Exposure to Millimeter-wave Radiation

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Hirata, A.; Kawase, K.; Otani, C.; Nagatsuma, T.

    2004-08-01

    Non-thermal effects of millimeter wave (MMW) on Pheochromocytoma (PC12) were studied by potential measurement with a voltage sensitive dye (DiBAC4(3)). Cells were irradiated at fixed frequencies of 30, 40, 60, 76GHz as well as sweeping frequency between 10 and 100 GHz by an MMW generator based on a uni-traveling-carrier photodiode (UTC-PD), the most widely tunable MMW source. However there were no significant changes in membrane potential between MMW-irradiated and control cells. The results suggest that MMW irradiation in the range from 10 to 100GHz appears to be safe for ordinary PC12 cells under non-thermal conditions.

  14. Reflection and interference of electromagnetic waves in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Kyle, H. L.

    1973-01-01

    Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.

  15. Quantum phase transitions and phase diagram for a one-dimensional p-wave superconductor with an incommensurate potential.

    PubMed

    Cai, X

    2014-04-16

    The effect of the incommensurate potential is studied for the one-dimensional p-wave superconductor. It is determined by analyzing various properties, such as the superconducting gap, the long-range order of the correlation function, the inverse participation ratio and the Z2 topological invariant, etc. In particular, two important aspects of the effect are investigated: (1) as disorder, the incommensurate potential destroys the superconductivity and drives the system into the Anderson localized phase; (2) as a quasi-periodic potential, the incommensurate potential causes band splitting and turns the system with certain chemical potential into the band insulator phase. A full phase diagram is also presented in the chemical potential-incommensurate potential strength plane.

  16. Soil Oxidation-Reduction Potential and Plant Photosynthetic Capacity in the Northern Pantanal of Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Dalmagro, H. J.; Pinto Junior, O. B.; Couto, E. G.

    2013-12-01

    Plant communities of the Pantanal wetland are able to survive long periods of climatic and physiological stress in the dry and wet seasons. During inundation, soil oxygen demand increases dramatically as reducing soil conditions create stress in the root system with possible impacts on photosynthetic capacity of plants. We look at inundation cycles of a tree island (locally known as a cordilheira) in the Northern Pantanal near Poconé, Mato Grosso, and relate soil oxidation-reduction potential and soil oxygen depletion to the photosynthetic capacity of two plant communities of flooded scrub forest (Vochysia divergens and Curatela americana). Results show a drop in soil oxidation-reduction potential of over 400 mV, to levels below the absolute value of -200 mV, following inundation around the tree island. Both plant species showed increased carbon assimilation at highest soil oxygen demand despite a change in stomatal conductance, suggesting adaptation to the inundated environment. Absolute values of soil oxidation-reduction potential also allow for the determination of specific soil chemical reactions characteristic of the tree island environment, namely the reduction of iron(III), or carbon dioxide which in turn produces methane. Our combined analysis of soil chemistry with plant ecophysiology allows for a better understanding of soil-plant interactions in the Pantanal, specifically the drivers of biogeochemical processes between inundation periods.

  17. Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions

    NASA Astrophysics Data System (ADS)

    Dhouibi, Abdallah; Nawaz Burokur, Shah; de Lustrac, André; Priou, Alain

    2013-01-01

    The broadband directive emission from a metamaterial surface is numerically and experimentally reported. The metasurface, composed of non-resonant complementary closed ring structures, is designed to obey the refractive index of a half Maxwell fish-eye lens. A planar microstrip Vivaldi antenna is used as transverse magnetic polarized wave launcher for the lens. A prototype of the lens associated with its feed structure has been fabricated using standard lithography techniques. To experimentally demonstrate the broadband focusing properties and directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Measurements agree quantitatively and qualitatively with theoretical simulations.

  18. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan

    PubMed Central

    Glombitza, Clemens; Adhikari, Rishi R.; Riedinger, Natascha; Gilhooly, William P.; Hinrichs, Kai-Uwe; Inagaki, Fumio

    2016-01-01

    Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm−3 d−1) but showed elevated values (up to 1.8 pmol cm−3 d−1) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ34S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study

  19. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan.

    PubMed

    Glombitza, Clemens; Adhikari, Rishi R; Riedinger, Natascha; Gilhooly, William P; Hinrichs, Kai-Uwe; Inagaki, Fumio

    2016-01-01

    Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35 S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm -3 d -1 ) but showed elevated values (up to 1.8 pmol cm -3 d -1 ) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ 34 S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34 S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study

  20. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants.

    PubMed

    Zhu, Qing; McLellan, Jason S; Kallewaard, Nicole L; Ulbrandt, Nancy D; Palaszynski, Susan; Zhang, Jing; Moldt, Brian; Khan, Anis; Svabek, Catherine; McAuliffe, Josephine M; Wrapp, Daniel; Patel, Nita K; Cook, Kimberly E; Richter, Bettina W M; Ryan, Patricia C; Yuan, Andy Q; Suzich, JoAnn A

    2017-05-03

    Prevention of respiratory syncytial virus (RSV) illness in all infants is a major public health priority. However, no vaccine is currently available to protect this vulnerable population. Palivizumab, the only approved agent for RSV prophylaxis, is limited to high-risk infants, and the cost associated with the requirement for dosing throughout the RSV season makes its use impractical for all infants. We describe the development of a monoclonal antibody as potential RSV prophylaxis for all infants with a single intramuscular dose. MEDI8897*, a highly potent human antibody, was optimized from antibody D25, which targets the prefusion conformation of the RSV fusion (F) protein. Crystallographic analysis of Fab in complex with RSV F from subtypes A and B reveals that MEDI8897* binds a highly conserved epitope. MEDI8897* neutralizes a diverse panel of RSV A and B strains with >50-fold higher activity than palivizumab. At similar serum concentrations, prophylactic administration of MEDI8897* was ninefold more potent than palivizumab at reducing pulmonary viral loads by >3 logs in cotton rats infected with either RSV A or B subtypes. MEDI8897 was generated by the introduction of triple amino acid substitutions (YTE) into the Fc domain of MEDI8897*, which led to more than threefold increased half-life in cynomolgus monkeys compared to non-YTE antibody. Considering the pharmacokinetics of palivizumab in infants, which necessitates five monthly doses for protection during an RSV season, the high potency and extended half-life of MEDI8897 support its development as a cost-effective option to protect all infants from RSV disease with once-per-RSV-season dosing in the clinic. Copyright © 2017, American Association for the Advancement of Science.

  1. Prediction of a new class of half-metallic ferromagnets from first principles [A new class of half-metallic ferromagnets from first principles

    DOE PAGES

    Griffin, Sinead M.; Neaton, Jeffrey B.

    2017-09-12

    Half-metallic ferromagnetism (HMFM) occurs rarely in materials and yet offers great potential for spintronic devices. Recent experiments suggest a class of compounds with the `ThCrmore » $$_{2}$$Si$$_{2}$$' (122) structure -- isostructural and containing elements common with Fe pnictide-based superconductors -- can exhibit HMFM. Here we use $ab$ $initio$ density-functional theory calculations to understand the onset of half-metallicity in this family of materials and explain the appearance of ferromagnetism at a quantum critical point. We also predict new candidate materials with HMFM and high Curie temperatures through A-site alloying.« less

  2. Expedition 41 Crew Wave

    NASA Image and Video Library

    2014-09-25

    Expedition 41 Soyuz Commander Alexander Samokutyaev of the Russian Federal Space Agency (Roscosmos), bottom, Flight Engineer Barry Wilmore of NASA, middle, and Elena Serova of Roscosmos, top, wave farewell prior to boarding the Soyuz TMA-14M spacecraft for launch, Thursday, Sept. 25, 2014 at the Baikonur Cosmodrome in Kazakhstan. Samokutyaev, Wilmore, and Serova will spend the next five and a half months aboard the International Space Station. Photo Credit: (NASA/Aubrey Gemignani)

  3. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  4. Maturation of the auditory system in clinically normal puppies as reflected by the brain stem auditory-evoked potential wave V latency-intensity curve and rarefaction-condensation differential potentials.

    PubMed

    Poncelet, L C; Coppens, A G; Meuris, S I; Deltenre, P F

    2000-11-01

    To evaluate auditory maturation in puppies. Ten clinically normal Beagle puppies. Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.

  5. Greenhouse gas mitigation potentials in the livestock sector

    NASA Astrophysics Data System (ADS)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  6. Wave energy: a Pacific perspective.

    PubMed

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  7. Potential fire behavior in pine flatwood forests following three different fuel reduction techniques

    Treesearch

    Patrick Brose; Dale Wade

    2002-01-01

    A computer modeling study to determine the potential fire behavior in pine flatwood forests following three fuel hazard reduction treatments: herbicide, prescribed fire and thinning was conducted in Florida following the 1998 wildfire season. Prescribed fire provided immediate protection but this protection quickly disappeared as the rough recovered. Thinning had a...

  8. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Y. S.; Guo, Y. W.; Kao, B. H.

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competingmore » modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.« less

  9. An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Liu, Lei

    2015-02-01

    The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.

  10. Direct-to-digital holography reduction of reference hologram noise and fourier space smearing

    DOEpatents

    Voelkl, Edgar

    2006-06-27

    Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.

  11. Half-Lives of Proton Emitters With a Deformed Density-Dependent Model

    NASA Astrophysics Data System (ADS)

    Qian, Yi-Bin; Ren, Zhong-Zhou; Ni, Dong-Dong; Sheng, Zong-Qiang

    2010-11-01

    Half-lives of proton radioactivity are investigated with a deformed density-dependent model. The single folding potential which is dependent on deformation and orientation is employed to calculate the proton decay width through the deformed potential barrier. In addition, the spectroscopic factor is taken into account in the calculation, which is obtained in the relativistic mean field theory with NL3. The calculated results of semi-spherical nuclei are found to be in good agreement with the experimental data, and the results of well-deformed nuclei are also satisfactory. Moreover, a formula for the spherical proton emission half-life based on the Gamow quantum tunneling theory is presented.

  12. Sodium intake in US ethnic subgroups and potential impact of a new sodium reduction technology: NHANES Dietary Modeling.

    PubMed

    Fulgoni, Victor L; Agarwal, Sanjiv; Spence, Lisa; Samuel, Priscilla

    2014-12-18

    Because excessive dietary sodium intake is a major contributor to hypertension, a reduction in dietary sodium has been recommended for the US population. Using the National Health and Nutrition Examination Survey (NHANES) 2007-2010 data, we estimated current sodium intake in US population ethnic subgroups and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were analyzed using The National Cancer Institute method to estimate usual intake in population subgroups. Potential impact of SODA-LO® Salt Microspheres sodium reduction technology on sodium intake was modeled using suggested sodium reductions of 20-30% in 953 foods and assuming various market penetrations. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across age, gender and ethnic groups. Current sodium intake across all population subgroups exceeds the Dietary Guidelines 2010 recommendations and has not changed during the last decade. However, sodium intake measured as a function of food intake has decreased significantly during the last decade for all ethnicities. "Grain Products" and "Meat, Poultry, Fish, & Mixtures" contribute about 2/3rd of total sodium intake. Sodium reduction, using SODA-LO® Salt Microspheres sodium reduction technology (with 100% market penetration) was estimated to be 185-323 mg/day or 6.3-8.4% of intake depending upon age, gender and ethnic group. Current sodium intake in US ethnic subgroups exceeds the recommendations and sodium reduction technologies could potentially help reduce dietary sodium intake among those groups.

  13. Half-life of the superallowed β+ emitter Ne18

    NASA Astrophysics Data System (ADS)

    Grinyer, G. F.; Smith, M. B.; Andreoiu, C.; Andreyev, A. N.; Ball, G. C.; Bricault, P.; Chakrawarthy, R. S.; Daoud, J. J.; Finlay, P.; Garrett, P. E.; Hackman, G.; Hyland, B.; Leslie, J. R.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Williams, S. J.; Zganjar, E. F.

    2007-08-01

    The half-life of Ne18 has been determined by detecting 1042-keV γ rays in the daughter F18 following the superallowed-Fermi β+ decay of samples implanted at the center of the 8πγ-ray spectrometer, a spherical array of 20 HPGe detectors. Radioactive Ne18 beams were produced on-line, mass-separated, and ionized using an electron-cyclotron-resonance ionization source at the ISAC facility at TRIUMF in Vancouver, Canada. This is the first high-precision half-life measurement of a superallowed Fermi β decay to utilize both a large-scale HPGe spectrometer and the isotope separation on-line technique. The half-life of Ne18, 1.6656 ± 0.0019 s, deduced following a 1.4σ correction for detector pulse pile-up, is four times more precise than the previous world average. As part of an investigation into potential systematic effects, the half-life of the heavier isotope Ne23 was determined to be 37.11 ± 0.06 s, a factor of 2 improvement over the previous precision.

  14. Socio-economic and Engineering Assessments of Renewable Energy Cost Reduction Potential

    NASA Astrophysics Data System (ADS)

    Seel, Joachim

    This dissertation combines three perspectives on the potential of cost reductions of renewable energy--a relevant topic, as high energy costs have traditionally been cited as major reason to vindicate developments of fossil fuel and nuclear power plants, and to justify financial support mechanisms and special incentives for renewable energy generators. First, I highlight the role of market and policy drivers in an international comparison of upfront capital expenses of residential photovoltaic systems in Germany and the United States that result in price differences of a factor of two and suggest cost reduction opportunities. In a second article I examine engineering approaches and siting considerations of large-scale photovoltaic projects in the United States that enable substantial system performance increases and allow thus for lower energy costs on a levelized basis. Finally, I investigate future cost reduction options of wind energy, ranging from capital expenses, operating expenses, and performance over a project's lifetime to financing costs. The assessment shows both substantial further cost decline potential for mature technologies like land-based turbines, nascent technologies like fixed-bottom offshore turbines, and experimental technologies like floating offshore turbines. The following paragraphs summarize each analysis: International upfront capital cost comparison of residential solar systems: Residential photovoltaic (PV) systems were twice as expensive in the United States as in Germany in 2012. This price discrepancy stems primarily from differences in non-hardware or "soft" costs between the two countries, of which only 35% be explained by differences in cumulative market size and associated learning. A survey of German PV installers was deployed to collect granular data on PV soft costs in Germany, and the results are compared to those of a similar survey of U.S. PV installers. Non-module hardware costs and all analyzed soft costs are lower in

  15. Lagrangian methods in nonlinear plasma wave interaction

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1980-01-01

    Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.

  16. The Potential Role of Perceived Support for Reduction of Special Education Teachers' Burnout

    ERIC Educational Resources Information Center

    Langher, Viviana; Caputo, Andrea; Ricci, Maria Elisabetta

    2017-01-01

    Teacher burnout is conceived as a general concern in special education because of the emotionally demanding work context. This study explored the potential role of perceived support for reduction of burnout in a sample of 276 special education teachers working in lower (n=130) and higher (n=146) secondary schools. Participants completed the…

  17. Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations

    NASA Astrophysics Data System (ADS)

    Huang, Li-Li; Qiao, Zhi-Jun; Chen, Yong

    2018-02-01

    Based on nonlocal symmetry method, localized excitations and interactional solutions are investigated for the reduced Maxwell-Bloch equations. The nonlocal symmetries of the reduced Maxwell-Bloch equations are obtained by the truncated Painleve expansion approach and the Mobious invariant property. The nonlocal symmetries are localized to a prolonged system by introducing suitable auxiliary dependent variables. The extended system can be closed and a novel Lie point symmetry system is constructed. By solving the initial value problems, a new type of finite symmetry transformations is obtained to derive periodic waves, Ma breathers and breathers travelling on the background of periodic line waves. Then rich exact interactional solutions are derived between solitary waves and other waves including cnoidal waves, rational waves, Painleve waves, and periodic waves through similarity reductions. In particular, several new types of localized excitations including rogue waves are found, which stem from the arbitrary function generated in the process of similarity reduction. By computer numerical simulation, the dynamics of these localized excitations and interactional solutions are discussed, which exhibit meaningful structures.

  18. Radiative albedo from a linearly fibered half-space

    NASA Astrophysics Data System (ADS)

    Grzesik, J. A.

    2018-05-01

    A growing acceptance of fiber-reinforced composite materials imparts some relevance to exploring the effects which a predominantly linear scattering lattice may have upon interior radiative transport. Indeed, a central feature of electromagnetic wave propagation within such a lattice, if sufficiently dilute, is ray confinement to cones whose half-angles are set by that between lattice and the incident ray. When such propagation is subordinated to a viewpoint of an unpolarized intensity transport, one arrives at a somewhat simplified variant of the Boltzmann equation with spherical scattering demoted to its cylindrical counterpart. With a view to initiating a hopefully wider discussion of such phenomena, we follow through in detail the half-space albedo problem. This is done first along canonical lines that harness the Wiener-Hopf technique, and then once more in a discrete ordinates setting via flux decomposition along the eigenbasis of the underlying attenuation/scattering matrix. Good agreement is seen to prevail. We further suggest that the Case singular eigenfunction apparatus could likewise be evolved here in close analogy to its original, spherical scattering model. A cursory contact with related problems in the astrophysical literature suggests, in addition, that the basic physical fidelity of our scalar radiative transfer equation (RTE) remains open to improvement by passage to a (4×1) Stokes vector, (4×4) matricial setting.

  19. Nitrogen-induced surface area and conductivity modulation of carbon nanohorn and its function as an efficient metal-free oxygen reduction electrocatalyst for anion-exchange membrane fuel cells.

    PubMed

    Unni, Sreekuttan M; Bhange, Siddheshwar N; Illathvalappil, Rajith; Mutneja, Nisha; Patil, Kasinath R; Kurungot, Sreekumar

    2015-01-21

    Nitrogen-doped carbon morphologies have been proven to be better alternatives to Pt in polymer-electrolyte membrane (PEM) fuel cells. However, efficient modulation of the active sites by the simultaneous escalation of the porosity and nitrogen doping, without affecting the intrinsic electrical conductivity, still remains to be solved. Here, a simple strategy is reported to solve this issue by treating single-walled carbon nanohorn (SWCNH) with urea at 800 °C. The resulting nitrogen-doped carbon nanohorn shows a high surface area of 1836 m2 g(-1) along with an increased electron conductivity, which are the pre-requisites of an electrocatalyst. The nitrogen-doped nanohorn annealed at 800 °C (N-800) also shows a high oxygen reduction activity (ORR). Because of the high weight percentage of pyridinic nitrogen coordination in N-800, the present catalyst shows a clear 4-electron reduction pathway at only 50 mV overpotential and 16 mV negative shift in the half-wave potential for ORR compared to Pt/C along with a high fuel selectivity and electrochemical stability. More importantly, a membrane electrode assembly (MEA) based on N-800 provides a maximum power density of 30 mW cm(-2) under anion-exchange membrane fuel cell (AEMFC) testing conditions. Thus, with its remarkable set of physical and electrochemical properties, this material has the potential to perform as an efficient Pt-free electrode for AEMFCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enhanced H2O2 Production at Reductive Potentials from Oxidized Boron-Doped Ultrananocrystalline Diamond Electrodes

    PubMed Central

    2017-01-01

    This work investigates the surface chemistry of H2O2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H2O2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H2O2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H2O2. Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H2O2 more efficiently compared to static potential methods. PMID:28471651